IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: zarrin, J., Aguiar, R. L. & Barraca, J. P. (2017). Manycore simulation for peta-

scale system design: Motivation, tools, challenges and prospects. Simulation Modelling
Practice and Theory, 72, pp. 168-201. doi: 10.1016/j.simpat.2016.12.014

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18147/

Link to published version: https://doi.org/10.1016/j.simpat.2016.12.014

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Manycore Simulation for Peta-scale System Design: Motivation, Tools, Challenges and
Prospects

Javad Zarrin®*, Rui L. Aguiarb, Jodo Paulo Barraca®

“Instituto de Telecomunicagdes, Campus Universitdrio de Santiago, Aveiro, Portugal
bUniversidade de Aveiro, Aveiro, Portugal

Abstract

The architecture design of peta-scale computing systems is complex and presents lots of difficulties to designs, as current tools
lack support for relevant features of future scenarios. Novel systems must be designed with great care and tools, such as manycore
architecture simulators, must be adapted accordingly. However, current simulation tools are very slow, often specific-purpose-
oriented, suffer from various issues and are rarely able to simulate thousands of cores. The emergence of peta-scale systems and the
upcoming manycore era brings nevertheless new challenges to computing systems and architectures, adding further difficulties and
requirements on the development of the corresponding simulators. Furthermore, the design of architecture simulators for manycore
systems involve methods and techniques from various interdisciplinary research areas, which in turn brings more challenges in
different aspects. As system complexity grows, the growth of the simulation capacity is being outpaced (reaching the so called
simulation wall). In this paper, we present the challenges for simulating future large scale manycore environments, and we investigate
the adequacy of current modeling and simulation tools, methodologies and techniques. The aim of this work is to highlight how
current approaches can best deal with the identified problems, smoothing the challenges of research in future peta-scale systems.

Keywords: architectural simulations, manycore simulators, full-system simulation, manycore systems, computer architecture

1. Introduction

Current trends in computation technology have focused in
improving performance by increasing the number of cores per
die (parallelism) rather than by increasing the rate of clock fre-
quency of each core, due to the exhaustion of the Moore’s law.
Many companies and academic communities pushed this trend,
designing multicore and manycore systems with capacity of tens
to hundreds of cores per single die. These manycore proces-
sors are more like data-centers-on-a-chip than previous single
processors, as a complex communication network connects the
different cores. It is predictable in a near future to consider
systems with a very large interconnect network in manycore
machines with dimensions from thousands to millions of cores.

A consequence is that both system design and programming
concepts must increasingly focus in heterogeneous parallelism.
Future parallel and distributed applications, compilers, operating
systems and tools must be able to scale well with the hardware
nature of manycore and distributed execution. However, in-
creasing the number of cores on a die increases the complexity
of hardware designs, and has considerable impacts which re-
sult in enlargement of the potential design-space. Moreover, it
brings serious challenges particularly for memory hierarchies
and on-die interconnect bandwidth, both within the die and off
die.

*Corresponding author. Tel:+351 234 377 900, Fax: +351 234 377 901
Email addresses: javad@av.it.pt (Javad Zarrin), ruilaa@ua.pt (Rui
L. Aguiar), jpbarraca@ua.pt (Jodo Paulo Barraca)

Preprint submitted to Journal of Simulation Modelling Practice and Theory

Systems must then be designed with great care and tools, such
as manycore architecture simulators, must be adapted to address
these disruptive challenges. Manycore simulators (i.e. manycore
architecture simulators) can assist researchers from different ar-
eas. These areas include software (such as programming models,
operating systems, compilers, etc.), hardware and computing
architectures to model and assess future systems. The upcoming
manycore era brings new challenges to computer architects that
must be paralleled by the development of adequate architecture
simulators. Ideally, to simulate a fully parallel system we can
expect that an efficient architecture simulator should (at-least)
be able to be parallelizable, and use the benefit of concurrency,
enabling faster evaluation of future systems. Moreover, archi-
tecture simulators should provide a highly scalable, fast and
accurate model to describe, emulate/simulate and measure the
hardware details, memory hierarchy and interconnection net-
works. Furthermore, they must meet the stringent requirements
along the lines of productivity, multi-modeling, synchronization,
modularity, and event sampling capabilities. However, these
properties are not true for the majority of the currently available
architecture simulators. As complexity grows, the performance
of a single simulated CPU core slows down, and the usage of
these sequential simulators (i.e. architecture simulators) will be
mainly limited by the performance of simulating a single CPU.

Note that, in this paper, we use the term “simulator” to refer
to “architecture simulator” or “manycore architecture simulator”
which differs from its more general meaning. We use the term
“manycore simulation tools” in a slightly more general way to
cover a wider range of contexts (methods and techniques). In

November 18, 2016

other words, a simulator (architecture simulator) is a type of
manycore simulation tool. Furthermore, the term “emulator” (or
architecture emulator), as used in this paper, also differs from
its general meaning in other research fields. In this paper, an
emulator means a simulator which lacks support for performance
measurements. In fact, we associate an emulator with functional
correctness only. This means that the notion of time for an
emulator is imprecise and often just a representation of the wall-
clock time of the host. We use the term “emulation” to refer both
to “functional simulation” and to describe the act of an emulator.

The rest of this paper is organized as follows. In Section II, we
discuss why manycore architectural simulation is needed, partic-
ularly for research on peta-scale systems. Section III presents in
detail our taxonomy to addresses current modeling and simula-
tion tools, as well as the methodologies that could be exploited
and enhanced in order to design next generation efficient simula-
tors. In Section IV, we provide an overview of recently proposed
simulation tools for architectural analysis, which are able to
simulate the entire execution cycle of application for the target
systems. Other simulator types, such as those that mainly focus
on physical modeling aspects (e.g. power, energy and thermal)
or interconnect simulators (e.g. Network on Chip simulators),
are out of the scope of paper for conciseness. In Section V, we
extract and elaborate a set of major problems and challenging
issues created by manycore simulation. Finally, in Section VI,
we present our conclusions, followed by a discussion of future
directions for research. This includes possible approaches and
solutions which can be used to solve the problems and deal with
the challenges identified.

2. Simulation and Peta-scale Systems

Peta-scale systems are defined as systems which are able to
provide peta-FLOPS, millions of billions of FLoating OPera-
tions per Second, computational power [1, 2]. They can be
described as the increasingly massive and dynamic networks
of interconnected diverse processors and components (i.e. ele-
ments). Such as system, as a whole, exhibits a set of properties
and behaviors among the elements, which are not distinguishable
from the properties of the individual processors and components.
These systems are only on its infancy currently, but in future
peta-scale manycore systems, we can expect to have computing
nodes with more than 10 thousands cores per node. We can also
expect to have much more diversity (heterogeneity) of cores,
interconnections and architecture designs compared to today
systems.

Architectural simulation is a common method for studying
and analyzing different architectures, designs and algorithms
for various target systems through imitating the operation of
real-world processes, processors and systems over time. Archi-
tectural simulation acts as a low cost alternative to experimen-
tation on real systems by representation of key characteristics,
behaviors and functions of the real systems. The objective of
simulation is to provide capability to researchers and design-
ers to flexibly and efficiently explore a design space. This can
include analyzing the performance of current systems (e.g. archi-
tecture assessment), acquiring and predicting processor/system

behaviors and evaluating novel designs. Simulation enables to-
day’s designers to analyze and predict different aspects (such
as performance, reliability and efficiency) of future’s machines.
This means that simulation is a particularly useful tool when
the desired target systems, such as peta-scale systems, do not
currently exist in reality. However, current simulation tools are
very slow, often specific-purpose-oriented, suffer from various
issues and are rarely able to simulate more than 2000 cores
(we discuss current simulation tools further in Section 4). Fur-
thermore, introducing the concept of peta-scale system presents
more requirements that must be fulfilled by current simulation
tools. We discuss these requirements and their corresponding
issues further in Section 5.

Figure 1 demonstrates a generic structure for (software-based)
simulation. As it is shown in the figure, a simulator is an appli-
cation software which runs on single host or multiple networked
host machines (distributed simulation). The target system is
the system which needs to be simulated by simulator. Depend-
ing on user requirements the target system might be a partial
system or a full system including target (simulated) OS. The
term “target Instruction Set Architecture (or target ISA)”, as
used in this paper, refers to the ISA of the processor architecture
simulated. Similarly, the term “host ISA” refers to the ISA of
the host machine which runs the simulation. Note that, it might
be possible to have some similarities between a target system
and its host system (e.g. target ISA = host ISA or target OS =
host OS). In such a case, a simulator can alternatively employ a
different simulation approach which might be faster (or easier
to implement) (see Section 3). More details of this structure are
discussed in the next section.

Applications

Simulator
Target System

‘ Target ISA | Simulated Cores llll‘

\ Target Hardware \ \ Target OS \

I Distributed Simulation I

Execution on
Single/Multiple Hosts
/v

‘ Host OS ‘

Host Hardware

‘ Host ISA Host Cores HHENR ‘
| w0 | [Memory| HD | [Network|

Figure 1: Overall Simulation Structure

3. Manycore Simulation

Simulators are essential tools for the design and evaluation of
computer and system architectures. Taking in consideration the

Simulation Classification

Examples Examples
//F:l;ctior:a‘l\\ Y /’ ”””” \\\
[{
m _ Modeling) < Parallel /hm
AN e~ @ =P o
/’Performanc;\\‘\ - @ = ‘5’// s\\\\
m—l\ Modeling) { sequential LN
iming Modellggf \\ _d
Synchronization ______‘
T TTT T T ~ Ve o S
Ve N { Distributed \hm
mg\ Full System [\ Shared Memory/
N o~ [P~ -
———————— [///
————— I P T
= =~ - N
i 3] renitecture)= J RAMP-Gold
o —>{ Shared M -
m—l\Application Level) : : Architecture " ares emory/)f RAMP-Gold
N 4 TS -
S~ -7 -] | \\\ —
o S
—————— [Y e >
L N 1 /" Distributed \Fm
4 . N [\ Memory J
w,_,'\ Conservative) —— | A -
N S T~ [: _______
T \’ PDES) [=TT~ .
s P | e DBT N
P e S————— - 1 (Dynamic Binary km
. et \ | Code —'9\ Translation 7/
Mﬂ CCOmEEs J Translation / ~ TS=—————7
AN // 7/
\\\\\\\\ g 4 ~< T T T T T T
// T SBT N
P N 7 '\ Static Binary km
" 7 N s __Translation __~
B3 (o) . Tandeien.
AN - 4
_________ ~o V2 / e ——
~ 4 v _ e >,
T T T T T T - \v’—_"g\ T T T~ T T T~ [Instrumentation kw
«~ N7 N Vg N Vg N S o
mﬂ Lax j«<— Non-PDES) \ Decoupled) \ Coupled) . . - S g
JoN_ ToEEER) EEEEERER o FRER T L/ Simulation
T ol S __ 7 D - S -7 Engine
P - T v==—"" 1 N 7 L
- i / ~< T ~_
——————— - -7, | .
- ~& e / p;
Ve N - Vi ! /
Y 4 e 4 I P £
_________ - - 4] <) 2
P 4 | { Timing Directed \J
e / \(Execution Driven)
- 4 ! Y -
- e | S~ell -
-
R ‘\’: /,———Z\\ /’F’__t_'t\l\\\
/ : . ,7” Functiona .
m#\ Timing First) \/ F:Tr::tggr:)al!i:;‘s)t [} Directed
~< - \)~ _ \(~F\e\edhack Driveny
______ P -r- R
// i
-
———————— w3 T T PR
s ‘\\ e ‘\\ e . N
e 7 \\ 7 o /
_________ > \‘»__‘___f’ ST ~< - S~ ——

Raghav et al. [74]

Figure 2: Simulation Classifications

objective of the evaluation, there are a large variety of different
simulation tools, techniques and methods in the current literature.
Figure 2 presents a snapshot of the most important classifications
for manycore simulation tools and related technologies. Figure
2 also presents example simulator for each category (note that
a simulator can be in multiple categories). We discuss these
classifications and their related concepts in detail in Section 3.1.

3.1. Terminology and Classifications

There are plentiful tools, methods and techniques for many-
core simulation in the current literature. These can be classified
along many dimensions, such as: user/application-level vs full-
system; functional vs timing; trace-driven vs execution-driven;
cycle-driven vs event-driven. In the following, we discuss and
briefly explain the terminology and concepts associated with
some of the most important classifications.

Emulators vs Simulators: Emulators are tools able to
demonstrate the functional behavior of the system, focused on

the exact reproduction for an external system. They repeat the
function of a target platform on a host platform. Simulators dif-
fer from the former because they consider an abstract, simplified
model and do not try to replicate all the aspects of a system.
A simulator in addition to ensuring the functional correctness,
must provide capability to study and analyze the performance
of proposed system/hardware designs by using accurate timing
information.

Functional vs Timing/Performance: According to our ter-
minology (see Section 1), architecture emulators include only
functional models while simulators contain both functional and
performance models. The functional model (functional partition)
is in charge for the correct execution of the target Instruction
Set Architecture (ISA) (i.e. architectural modeling). In addition,
functional models may provide facility to observe the interac-
tions among processors, memory and I/O peripherals without
modeling micro-architectural details. As examples of the tasks
for a functional model we can mention aspects as decoding in-

structions, updating simulator memory and verifying the floating
point operations.

The performance model (timing partition) is responsible to
drive a functional model. This is done by providing accurate
timing information in a way that simulating a particular micro-
architecture (at least in a specific aspect) would be possible (i.e.
micro-architectural modeling). In other words, a timing model
is able to determine the time the target architecture takes to
execute an instruction. Examples of the tasks for the timing
model include making decisions to select the next instruction for
execution, tracking branch mispredictions, and predicting the
clock cycles to execute instructions.

Creating a new functional model might be complex in terms
of implementation, optimization and verification, but after that,
it can modularly be coupled and reused across various timing
models. On the other hand, implementation of only a timing
model with capability to reuse an existing functional model can
be much easier and less time consuming than developing a com-
plete simulator (including both functional and timing models)
from scratch. Unlike functional models, the correctness of tar-
get architectures (in term of ISA functional) is not of primary
concern for timing models. What matters is to track and control
the accuracy of micro-architecture-specific timing details [3].

Simulation Scope: An architectural simulator is defined as a
piece of software which mimics the behavior of a real computer
system with ability to estimate performance and outputs for
a given input (application). It may model different computer
devices and components (i.e. only a single target microprocessor,
or an entire computer system including processors, memory
system, and I/O devices) with different level of details. The
simulation scope specifies the scope of target systems that an
architectural simulator can model. According to this, we classify
the processor simulators (i.e. architectural simulators) into two
categories: full-system simulators and user/application level
simulators (see Figure 3).

N

Application | | Application k

-

-

o 4

Target Operating System |

Full System Simulator ication Level Sy
1/10 Peripheral
Models Models
CPU/GPU CPU . Memory
Models Models Models
i /

Memory Interconnect
Models Models

-

-

s||eD waishks

System Calls

[Host Operating System]

Host Hardware]

Figure 3: Full System Simulator vs Application Level Simulator

A full system simulator provides capability to run a detailed,
complete and real software stack on the target (simulated) sys-
tem without any modification. The software stack might be OS,
complex applications such as multithreaded and multiprocess
workloads, or applications that highly exercise system calls, I/O
and networking. The full system model generally includes pro-
cessor cores, memories, network and interconnection, buses,

peripheral devices and privileged modes. However, the sup-
ported models and the level of details for each model are various
for different simulators. A full system simulator, besides tim-
ing/performance modeling might also supports simulation of the
physical models such as power, energy and thermal. Gem5 [4],
Flexus (SimFlex) [5], and MARSS [6] are some examples of
full system simulators.

Furthermore, full system simulators can be very important
design tools, particularly for System-on-Chip (SoC) simulation
where it is necessary to efficiently cope with the huge hard-
ware/software design space. SoC architecture integrates all
components of a (electronic/computing) system (including com-
plex hardware/software) into a single integrated concept. This
provides capability to scale computing performance / power
efficiency through combining (massively parallel and high per-
formance) manycore processors, Network-on-Chip (including
several network/interconnect communication protocols) and soft-
ware (including OS and various computing intensive user appli-
cations) [7, 8].

On the other hand, user/application level simulators model
only the user side of applications without OS support. They rely
on the host machine (host OS) to service the system calls and
execute a given user code of a benchmark on top of the simulator.
These simulators are easier to develop and use, since they do not
boot an OS. But they are also limited to only support specific
workloads. In other words, they can not run applications such
as multithreaded and JVM workloads that frequently use appli-
cations that are sensitive to system time like and client-server
workloads. As examples of user/application level simulators
we can mention SimpleScalar [9], BigSim [10], Graphite [11],
Sniper [12], ZSim [13] and PriME [14].

Simulator Organization: Each simulator generally contains
functional and timing partitions which interact in order to form
a complete simulation. According to whether the functional and
the timing partitions are completely separated or not, simulators
can be categorized into decoupled and coupled. Coupled simu-
lators potentially can provide flexibility for developing precise
simulations (i.e. highly detailed simulation), due to speculative
execution modeling (producing all the values and possible side
effects) and timing-dependent outcomes. However, this flexibil-
ity is reduced when there is need for frequent modifications of
functional or performance models. In other words, complexity
arises due to new complex devices (functional models), modern
performance/timing models and their internal interactions. For
coupled simulators, it is challenging to address multiple differ-
ent conflicting demands (such as simulation precision, accuracy,
flexibility and performance) in a single simulator component
which integrates both functionality and timing modeling. On
the other hand, decoupled simulators aim to reduce this com-
plexity by completely decoupling functional and timing models.
Accordingly, they can achieve better flexibility and potentially
other advantages such as accuracy (through correctness verifi-
cation) and modularity (which can lead to faster development
and easy modification) [15]. The drawback for this approach
is to introduce redundancy which may reduce the simulation
performance. Moreover, decoupled simulators typically call
an external simulator/emulator to perform functional model-

ing. This might increase the difficulty for modeling interactions
among functional and timing models.

Based on the type of interaction or the relationship between
the functional model and the timing model, the simulators can
use different organizations. A taxonomy of microarchitectural
simulator organizations is introduced in [15] and [16]. We ex-
tend those taxonomies and classify the simulator organizations
into the following five categories (Table 1 presents the advan-
tages and disadvantages for each of the aforementioned simula-
tor organizations):

1- Functional First (Trace Driven): The functional-first is
a completely decoupled approach. The functional model is
separately executed first, and later, when the functional modeling
is finished, the timing model is run. As demonstrated in Figure 4,
the functional model executes instructions and produces traces
that are streams of information about the execution. Traces are
then fed into the timing partition where the microarchitectural
simulation is performed. Depending on whether speculative
execution is supported or not, the functional-first organization
can be categorized into speculative and non-speculative.

- ~
- Corrections for Speculative Execution

~
e

-~ FM: Functional Partition

TM: Timing Partition
Simulate
Instractions in
micro-
architecturg

Control|

> FM-TM
Divergence
Detection

Instraction Generating
Execution Traces

Rollback

Traces

Store Traces +
‘ Disk ‘

Read Traces

Real Time

Figure 4: Functional First Organization - The gray elements (rollback and mis-
match detection) are only supported by speculative-functional-first organization

The speculative functional-first assumes that all parts of ex-
ecution (not just for branch control) are speculative. When the
timing partition detects that the execution in functional partition
has differed from the timing partition, it asks the functional parti-
tion to undo or rollback the effects of wrong path for instruction
execution, and to redirect fetch. Examples of this approach in-
clude UTFast [17], FastSim [18], SimpleScalar [9], Zesto [19],
ReSim [20], BigSim [10] and Transformer [21].

Unlike speculative approach, in non-speculative functional-
first, rollback mechanism is not supported. This means that
the timing partition independently provides the timing model
in a highly decoupled fashion and regardless of any potential
execution divergence (mismatching functional execution and
timing model). Non-speculative approach might be easy for
implementation and parallelism through a highly modular and
decouple design. However, it potentially suffers from execution
divergence issues which results in being inadequate for model-
ing timing-dependent execution behaviors (such as interactions
among threads in a multithreaded application). Examples of
this approach include single thread work load simulators (like
PTCMP [22]).

2- Functional Directed (Feedback Driven or Event Driven):
The functional-directed is a completely decoupled approach
where the functional model drives the timing model. The func-
tional model is assumed to be accurate, but timing feedback

from the timing model is needed in order to correct the timing
behavior. As we can see in Figure 5, using a timing feedback
mechanism, the timing model periodically adjusts the speed
of functional execution to reflect the timing estimates. This
gives the running application a more-precise timing correction.
COTSon [23] and Teraflux [24] use this approach.

T T T T T T =
//’ Periodical Timing Feedback ~
-~ S~
_ ~

P . N iti « Timi ition
P FM: Functional Partition Control TM: Timing Partition \

—— >
Speed o Instraction Generating
Adjustment Execution Events Events
per
Interval

Real Time

Generating
Timing
Feedback

Timing
Simulation

Figure 5: Functional Directed Organization

3- Timing First (Instruction Driven): The timing-first is a
decoupled approach which uses the timing model to drive the
functional model. Figure 6 demonstrates the timing-functional
interactions for this organization. The timing model runs ahead
of the functional model and simulates the functional behavior
(i.e. instruction execution) in addition to the timing simulation.

=" "Correction ™«
-
PR \\
TM: Timing Partition Pd FM: Functional Partition \
‘ Architectural State ‘ _E ‘ Architectural State ‘ \
icro- " 18] .
. Functional : o2 Functional TM-FM
Arc%ltmeicntgural Instraction Eﬁeecclﬁlr?g L2 % Instraction Divergence
! 5 ! !
Simulation Execution g Execution Detection

Real Time
Figure 6: Timing First Organization

But the functional execution (for each instruction) must be
checked and verified later by the functional model. This means
that the functional model is only used for checking; when a
mismatch (execution divergence) is detected, the timing model
is notified by the functional model for the correction. In such a
case, the architectural state of the timing model is reloaded from
the functional partition. Examples of timing-first organization
include TFsim [15], FeS2 [25] and GEMS [26].

4- Timing Directed (Execution Driven or Cycle Driven): In
timing-directed simulators, functional and timing models are
tightly coupled. As we can see in Figure 7, multiple interactions
(per instruction) between timing and functional model raise
system complexity. The timing model processes the flow of
instructions through micro-architectural timing simulation. In
each cycle, it directs the functional model with which step (e.g.
fetch, decode, operand fetch, memory access, execute, write-
back) of which instruction should be executed. Accordingly,
the functional model returns the execution information to the
timing model for each step. In timing-directed organization, the
architectural state in both (timing and functional) partitions are
naturally matched with each other, thereby preventing execution
divergence. Talisman [27], Graphite [11], ZSim [13] and PriME
[14] use this organization.

Table 1: Advantages and disadvantages of various simulator organizations

Simulator Organization

Pros

Cons

Functional-First (Non-Speculative)

Functional-First (Speculative)

Functional-Directed

Timing-First

Timing-Directed

Easy implementation and parallelization, Highly-
decoupled design, On-way data flow, Highly-Modular,
Support for binary translation, direct execution and
compiled-code simulation

Matching between functional execution and timing simu-
lator, Support for speculative execution and multithreaded
applications, Natural parallelism of the functional and
timing simulator, On-way data flow

Efficient trade-off between high speed functional modeling
and high accurate timing simulation, Highly-adapted with
sampling techniques, Support speculative execution and
multithreading

Single timing-functional call per instruction, Fast devel-
opment, Debuggability of the timing simulator, Matching
between functional execution and timing simulator.

Highly-accurate, Natural support for speculative execution
and multithreading in timing partition, Potential support
for memory and memory consistency modeling, Easy val-
idation of the timing simulator, Matching between func-
tional execution and timing simulator

No support for speculative execution, Not able to model
timing-dependent outcomes between threads, No correc-
tions for the timing model , Mismatching functional exe-
cution and timing simulation (i.e. execution divergence)

The functional model must support speculation, The tim-
ing simulator needs to implement some of the functionality
behaviors

Periodical feedback has impact on the simulation accu-
racy.

No support for accurate modeling of interactions between
threads, The timing simulator needs to implement almost
all functionality behaviors.

Highly-coupled design, Complex functional modeling,
Highly frequent inter-partition (timing-functional) com-
munication which impacts the simulation speed, Multiple
functional-timing calls per instruction.

TM: Timing Partition
—linstruction | Microarchitecture

flow Timing Simulation "I Architectural State |
4 A
| Control: Decision Making / Select Instruction-Step |

Control
Each Cycle
Execution

Info

ISA-level Execution |

FM: Functional Partition | Architectural State |

>
>

Real Time

Figure 7: Timing Directed Organization

Simulator Execution: The execution of simulations on the
host machines can be either sequential or parallel. Sequen-
tial simulators are highly accurate but as the complexity of the
target architecture increases the simulation speed significantly
decreases [28, 29]. There are numerous examples of sequen-
tial emulators and simulators in the literature including QEMU
[30], Embra [31], Mambo [32], SimNow [33], SimpleScalar [9],
Simics [34], SimOS [35], Rsim [36], Gem5 [4] and PROTEUS
[37]. While most of these tools are able to model multicore ar-
chitectures and multi-processors (in parallel chips), they are all
limited to only utilizing a single processor on a single host ma-
chine which leads to significant slowdown in simulation speed.
Parallel emulators (e.g. PQEMU [38], COREMU [39], Paral-

lel Mambo [40] , and Parallel Embra [41]) and simulators (e.g.
FastMP [42], SlackSim [43], Wisconsin Wind Tunnel Simula-
tors (WWT) [44, 45], CMPSim [46], ZSim [13], MARSS [6],
SimFlex [47], GEMS [26], COTSon [23], Graphite [11], Sniper
[12, 48] and BigSim [10]) enhance the performance of simula-
tion (in terms of simulation speed) by dividing and distributing
the simulation workload across multiple cores on multiple host
machines. However, parallelizing a simulator without sacrificing
simulation accuracy is challenging. Furthermore, the execution
of functional and timing models might be different. For exam-
ple, COTSon [23] uses SimNow [33], a sequential emulator, for
functional modeling, while it benefits of a parallel timing model.

Parallelization and Synchronization Strategies: Synchro-
nization overhead is one of the major challenges for parallel
simulation [49]. Different parallelization strategies and synchro-
nization algorithms such as Parallel Discrete Event Simulation
(PDES) [50], Lax synchronization [11] and Bound-Weave par-
allelization [13] have been proposed for parallel architectural
simulators. Along this line we can classify parallel simulators
based on their parallelization techniques into PDES-based and
non-PDES-based simulators.

I. PDES-based Synchronization: PDES aims to facilitate
fast execution of large simulation programs. It refers to the paral-
lelization strategies for distributed simulation through execution
of a single discrete event simulation program on a parallel com-
puter [50]. Many of the conventional parallel micro-architectural
simulators in the literature such as HORNET (conservative) [51],
BigSim (Optimistic) [10], SimK (conservative) [52], SlackSim
(hybrid) [43] and COTSon [23] are based on PDES. Using PDES,
the components of the simulator are divided across host threads.
The time-stamped simulation events from each component are
distributed among multicores in parallel chips of multiple host
machines. These events are executed concurrently while main-
taining the causality relationship (i.e. cause and effect relation-
ship) between them. This means that some sequencing order

between events executing in two separate processes must be
maintained, although maintaining this causality relationship is
challenging while exploiting inherent parallelism for faster job
scheduling [53].

PDES-based synchronizations can be broadly classified as
conservative (pessimistic), optimistic and hybrid. Conservative
approaches, using pessimistic estimates, only process events
when it is safe to do so. The events are scheduled in time stamp
order while avoiding deadlocks efficiently. The synchronization
is performed every time an ordering violation (causality error)
may happen. On the other hand, in optimistic approaches, all
events are executed speculatively and once an ordering violation
is detected, the recovery can be performed by invoking a rollback
mechanism.

There are several classic algorithms for conservative and op-
timistic synchronizations including asynchronous-conservative
[54], Lower Bound Time Stamp (LBTS) [55] and optimistic
time warp [56]. In asynchronous-conservative, there is no need
to perform any global synchronization. Instead, various dead-
lock avoidance algorithms can be applied to ensure that only
safe events in the future queue are processed. Using LBTS, in
each cycle, the events in the future queue which have the lower
bounded time stamp are executed while time progressing is man-
aged by a global reduction and synchronization mechanism. In
optimistic time warp, a causality error is detected whenever the
time stamp of the received event message by a process is smaller
than the process’s clock. Many other PDES based synchroniza-
tion mechanisms have been proposed in the last decade such as
conservative null message (or CMB) [57], conservative forecast
null message (FNM) [58].

PDES-based parallel simulators might support single or mul-
tiple synchronization algorithms. For example, Manifold [59]
supports multiple standard PDES algorithms including LBTS
[55], CMB [57], FNM [58] and time quantum synchronization
[59].

Parallel simulators based on Optimistic-PDES generally suffer
from poor scalability due to frequent roll-back and synchroniza-
tion. On the other hand, simulators based on conservative-PDES
provide better scalability due to their simplicity and less synchro-
nization overhead in comparison with optimistic based simula-
tors [51, 60]. Nevertheless, both approaches provide reasonable
accuracy [13]. The scalabity for parallel simulators means that
the simulation speedup constantly rises when the number of
allocated host processors for simulation is increased [61]. Over
the decades of research in the field, many optimization methods
such as Lazy Cancellation [62], Lazy Reevaluation [63], Direct
Cancellation [50], Early Cancellation [64], Space-time Simula-
tion, Optimistic Time Windows [65], Wolf Calls [66] and Time
Warp Straggler Message Identification [67] have been proposed
to improve the overall performance of PDES based Simulators.
However, PDES based parallel simulators are not yet truly com-
petitive with performant sequential simulators with respect to
simulation accuracy and scalability.

I1. Non-PDES-based Synchronization: Non-PDES based
parallel simulators such as Sniper [12, 48] and Graphite [11],
relax synchronization requirements to obtain scalability by per-
mitting micro-architectural events to occur out of order. How-

ever, these approaches provide complexity to model the actual
behavior of the target system components such as memory con-
trollers and shared caches while they sacrifice the simulation
accuracy. In fact, Graphite leverages lax synchronization models
to enable trade-offs between simulation speed and simulation
accuracy while Sniper (which is built on Graphite) uses higher
levels models by reducing accuracy compromise. ParTejas [68],
a more recent work, is a shared memory based parallel simulator
written in Java. Unlike Sniper and Graphite, ParTejas doesn’t
rely on highly relaxed synchronization, but rather it primarily
relies on novel concurrent data structures. In fact, it uses a lock
free parallel slot scheduler for synchronizing the accesses of
multiple threads at a shared resource while uses flexible barri-
ers known as phasers to relax synchronization within bounds.
ZSim [13] is one of the latest parallel simulators that provides an
alternative approach for synchronization which is called Bound-
Weave. ZSim simulation runs in time quanta where each time
quanta is defined as a small interval (e.g. 1000 cycles). ZSim di-
vides each time quanta (interval) into two parallel phases: bound
phase and weave phase. In the bound phase, similar to the lax
synchronization, the cores are simulated without simulation of
the interactions among the cores (i.e. unordered simulation), but
the core-memory access traces for all the cores are recorded. In
the weave phase, parallel event-driven simulation is performed
by using the traces to simulate the memory accesses in order.
Bound-weave is proposed based on the assumption that path-
altering interference is extremely rare. This is a right assump-
tion but only for cores that implicitly communicate through the
cache hierarchy. Thus, bound-weave parallelization methods are
not applicable to other communication styles (e.g. extremely
fine-grained message-passing across whole chip). Moreover,
simulating speculation (e.g. transactional memory) and complex
workloads (e.g. kernel-intensive applications) would be difficult
since ZSim is a user-level simulator. ZSim also provides limita-
tions to model multi-threaded cores, detailed NoC models and
virtual memory (TLBs).

In summary, we can claim that non-PDES-based simulators
provide better scalability than PDES-based simulators, but they
suffer from inaccuracy of simulation.

Simulation Engine: The simulation engine specifies the un-
derlying strategy which each simulator uses to perform func-
tional modeling. As we already discussed at the beginning of this
section, the main responsibility of the functional model is the
correct execution of the simulated ISA (i.e. emulation). But the
ISA emulation might not be necessary when simulators directly
use the host’s ISA, instead, simulators can use instrumentation.
This indeed eliminates the need for functional model for such
simulators and increases the simulation speed with the potential
cost of limiting the ISA of the target machines to only the host’s
ISA.

Depending on which strategy is used for the simulation
engine, we classify the simulators into emulation-based (or
interpretation-based) and instrumentation-based. An emulation-
based simulator either uses its internal emulator or leverages an
external simulator/emulator to model functional behavior. The
simulator interprets the instruction and according to the simu-
lator’s organization, invokes both functional and timing model

to execute the instruction for the simulated ISA. Emulation be-
comes the primary and even the optimal option, particularly
when the simulated ISAs are supposed to be different from the
host’s ISA, or when the simulators are expected to be portable.
On the other hand, instrumentation, is faster than emulation,
since the instructions are directly executed on the host machine.
The simulator adds instrumentation calls to the simulated binary
in order to interact with the timing model by calling the timing
model before each basic block or memory operation. Instrumen-
tation provides facilities to understand the execution behavior of
each instruction and measuring the execution performance on
the host machine. It returns a set of useful information about the
execution which can fed the timing model. This can be done by
enabling transparent access to the state of host’s processor and
memory after each instruction execution. Furthermore, instru-
mentation can be very efficient, particularly when emulation and
functional modeling become difficult for complex ISAs. Most of
the current instrumentation-based simulators run on x86 hosts,
since x86 is common in both desktop and server segments, and
the ISA’s impact is less relevant. Examples using emulation
strategies include MARSS [6], Gem5 [4], SimFlex, COTSon
and BigSim while simulators such as CMPSim [46], Graphite
[11], PriME [14], ZSim [13] and McSimA+ [69] benefit from
instrumentation strategies.

Binary (Code) Translation: Binary translation is the core
technology for both emulation and instrumentation strategies
through enabling translation techniques to translate binary codes
from a simulated architecture to the host architecture. The main
difference is that, in emulation, all the functional and execution
behavior of the applications for the simulated architecture are
modeled through a functional model. In instrumentation, they
use instrumentation calls added to the translated binary. Thus,
arbitrary statistics about the run-time actions of the executing
application can be gathered from the host which can be used to
specify the functional behavior of the application for the target
architecture without needing a complete functional model.

Two main types of binary translation techniques are static
(ahead-of-time translation) and dynamic (translation at run time).

In Static Binary Translation (STB), all the binary code of an
executable file is converted into code that can be executed on the
host architecture, and after that the translated code is run on the
host. This might not be efficient, since discovering some part
of the code may depend on the run-time values (e.g. indirect
branches, dynamically loaded libraries and self-modifying code).
Wisconsin Wind Tunnel (WWT) [70] is a simulator which uses
static binary translation.

On the other hand, Dynamic Binary Translation (DBT), relies
on on-line code translation which means that that the portions
of the binary code (each short sequence of code or single basic
block), are translated and executed one after another in the order;
the code is only translated as it is discovered. DBT suffers
from large amount of overhead during translation which leads
to increased execution times. Code cache is a technique which
reduces the translation overhead by caching the translated code
sequences for later usage when subsequent executions of the
same code region can use the already translated code.

Figure 8 presents the general framework of the DBT systems

which includes four main components: dispatcher, just-in-time
compiler (JIT), emulation unit and software-based code cache.
The dispatcher coordinates translation and execution of the code
through directing other components. It gets the address of the
next program which is a segment of guest binary code and
determines whether a translated copy of that code is available
in the code cache. If so, the execution is resumed in the code
cache, otherwise, the dispatcher kick-starts the JIT compiler
to translate the untranslated guest code segment. JIT fetches
the code segment, and then optimizes and translates the code
to the host binary in the software code cache. Optimization
can be performed by adding, removing, inserting or replacing
instructions to the code before translation. Using this capability,
JIT allows to inject various instrumentation instructions into
code. Furthermore, the JIT’s granularity to fetch and translate
(i.e. amount of code which are proceed at a time) can be specified
as a basic block, a trace, a treegion, or an entire procedure.
The emulation unit is also responsible to handle exceptions
and interrupts (such as I/O interrupts for full-system simulation
and system calls for user/application level simulation) during
execution.

DBTs enable virtualization across ISAs by emulating a guest
binary executable code in one ISA on a host machine with a
same or different ISA. Modern DBTs also employ dynamic
recompilation techniques (e.g. just-in-time compilation). This
way, the translated code is instrumented to return information
about the execution of each portion of the code which in turn can
be used to optimize the rest of the execution (e.g. incremental
optimization of hot regions). DBT has been widely used for
many different purposes and applications (such as performance
optimization, debugging, profiling, performance motoring and
application migration). DBT, depending on the simulated ISAs
and the host’s ISA, can be classified as simulation engine into
three categories: same-ISA, cross-ISA and retargetable (see
Figure 8). For the same-ISA, the simulated ISA is identical to
the host’s ISA. In cross-ISA, guest ISA differs from the host
ISA. In retargetable DBT, the guest ISA (simulated ISA) can
be retargeted for multiple different ISAs. Both same-ISA and
cross-ISA can be considered as dedicated DBTs, since the guest
and host architecture are fixed. Dedicated DBTs are limited
by assuming that the register set of the host architecture is the
same or richer than the guest architecture. This causes lack of
translation flexibility and adaptation to highly heterogeneous
environments.

Many of the current instrumentation-based simulators such
as Graphite [11], PriME [14] and ZSim [13] benefit from DBT
tools and libraries which leverage same-ISA DBT on x86 host
architecture. Examples of these DBT systems include Pin [71],
StarDBT [72], and DynamoRIO [73]. Emulation-based sim-
ulator generally leverage cross-ISA and retargetable DBTs to
perform virtualization and emulation. TA-32 [74] and FX!32
[75] are examples of cross-ISA DBT systems. There are few
DBTs in the state of the art which have been designed for retar-
getability. Among them, QEMU [30] is a well-known emulator
which implements retargetability. It enables binary translation
from several different guest ISAs such as x86, PowerPC, ARM
and SPARC on multiple common host architectures such as as

- T T [I
: Generic DBT Platform I Guest Code Translation Host |
| I | Binary > Binary |,
| l |L e.g x86 Same-ISADBT |e.g. x86 I
I ________________________
I 1/O Interrupts / I oo T T T T T T T —— 1
! System Calls | 1] Guest Code Translation !
| q 4 | || Binary > |
I Translate > / Cach Code I ||e.g.x86 Cross-ISA DBT |
| / Return I L '
: Translated Code 513 ——=u I :________________________7
/ N
" —>{ Dispatcher = =7> | { TranslatedY I l ;ﬂﬁft > BT::: I
I Input Gust Binary | Code for | I I . xg6 ’e ARyM |
| Store Code t_the Host) I I -9 g. I
| / Read Code -___" | I
I Execute / Return Info I I Guest -~ BTr?aley I
| I | Binary >
R U | | e-g. MIPS) |
|
I |
Host OS : Guest o Host ||
: Binary | Code Translation ~ | Binary |!
Host Architecture ! Retargetable-ISA DBT !

Figure 8: General DBT Framework and DBT Types

ARM, SPARC, Alpha, x86, MIPS and PowerPC. Retargetable
DBTs broadly suffers from large emulation overhead ahead of
translation, since the guest architecture must be fully virtual-
ized by software in the memory, prior to translation. They also
suffer from optimization overhead as well as code optimization
overhead. Furthermore, providing near native and high qual-
ity translated code is another challenging issue for retargetable
DBTs.

Target Memory Architectures: Depending on the memory
architecture of the target simulated systems, manycore simula-
tors can be categorized into shared memory, distributed memory
and distributed shared memory.

In shared memory architecture, all the simulated processors
simultaneously have access to a common single memory space
in order to avoid data redundancy and facilitating inter-processor
communications. In this way, the processors do not need to know
where data resides, but they might suffer from race conditions.
In distributed memory architecture, each simulated processor
has its own private memory. Whenever communication is re-
quired (e.g. requesting a remote data), the simulated processors
can communicate with each other through simulating message
passing techniques on top of the simulated network and inter-
connect. Thus, it is necessary for every distributed memory
simulator, to provide capability for network modeling (such as
on-chip network). For example, RAMP-Gold [76] is a shared
memory simulator which doesn’t provide any network model.
But distributed memory simulators such as COTSon [23] and
BigSim [10] support network modeling.

Distributed memory simulators are more flexible than shared
memory simulators for parallel simulation, since every simulated
processor (i.e. a core) can independently be run on a different
processor of a different host in the system. In distributed shared
memory architecture, each node of a cluster has access to a

shared memory in addition to its non-shared, private memory.
Distributed shared memory simulators (e.g. SimK [52] and Mc-
SimA+ [69]) are generally required to support complex models
of memory subsystems (i.e. memory and cache hierarchies) as
well as communication networks.

Implementation: Depending on the strategy to implement
functional and timing models, simulators can be classified into
software-assisted simulators (i.e. simulators based on soft-
ware simulation of the target architectures on CPU/GPU hosts),
hardware-assisted simulators (i.e. simulators based on imple-
mentation of the target architectures on FPGA hosts) and hybrid
simulators (i.e. simulators based on combination of both soft-
ware and hardware simulation).

Most of the current architectural simulators are software-
assisted, since software simulation is low cost, easy to develop,
and flexible to explore various target architecture. COTSon,
GEMS, SystemC [77], SimFlex and BigSim use software based
simulation on CPU for both functional and performance models.
In [78], authors introduce a software based simulator which runs
on both CPU (by leveraging QEMU for functional modeling)
and GPU (by proposing a GPU-based manycore accelerator).
The work presented in [79] is another recent example of soft-
ware based simulators. It leverages QEMU for software based
functional modeling on CPU while uses a performance model,
written in C and CUDA, designed to execute partly on the host
CPU and partly on the host GPU.

On the contrary, hardware-assisted simulators are high cost
and not flexible for architectural design exploration. They also
take significant amount of time, memory and effort to develop
and use, but they provide faster simulation speed compared to
software-assisted simulators. Examples include RAMP Gold
[76], that uses FPGAs for both functional and timing models.
ProtoFlex [80] and FAST [18] are examples of hybrid simulators,

where they use FPGAs to accelerate the performance model
while using software based simulation for functional models.
Furthermore, hybrid simulators like HASim [81] use FPGAs
for functional modeling and CPU based software simulation for
performance modeling.

Sampling: Sampling and reduction techniques enable faster
simulation of large scale execution workloads through simu-
lating representative portions of execution (i.e. samples) [82].
In this way, architectural simulators can be classified based on
their sampling strategies. There are various methods for ex-
ecution sampling in the current literature. Examples include
random sampling [10], dynamic sampling [23] and statistical
sampling [47, 83] such as SimPoint [82] and Sampling Micro-
ARchiTecture Simulation (SMARTS) [83]. Sampling techniques
might reduce the simulation accuracy and precision in the esti-
mate.

Assuming that a population is a complete set of elements (e.g.
execution instructions of a complete workload) which need to
be simulated. Sampling means simulation of a sample workload,
instead of a complete workload. Each sample includes a subset
of population (i.e. a set of sampling units) where a sampling
unit is defined as a quantum of population. An ideal sampling
approach must create a sample with choosing a minimal but
(highly) representative set of sampling units in order to provide
a reliable and quantifiable simulation (in terms of accuracy and
speed).

A random sampling is performed by selecting and simulating
only a random sample from the entire workload (the whole popu-
lation) through a random selection of a fixed number of sampling
units. The number of selected sampling units (or the sample
size) must be sufficiently large for obtaining reliable (in terms of
accuracy and precision in the estimate) simulation results (close
to complete workload simulation). In a systematic (or period-
ical) sampling, sampling units are chosen from a population
at periodical intervals. A uniform sampling, perform this with
equal selection probability for (all) sampling units distributed
in the entire population. In a representative sampling, sampling
units are chosen from weighed regions of the population. In
a dynamic sampling, the sample intervals (and the duration of
each interval) are determined dynamically through monitoring
the variation of execution behavior for the given benchmark
[84].

Statistical sampling attempts to estimate (simulate) the exe-
cution behavior and characteristics of a given workload (i.e. a
population) by selecting and simulating an optimal sample. This
can be done by examining the adequacy of potential samples
over the entire population using priori profiling (preprocess-
ing), consisting statistical analysis (for example in terms of total,
mean, and proportion) of the code. In other words, an statistical
sampling prescribes a specified and constructive mechanism to
determine an optimal sample (including a large number of tiny
sampling units) in order to obtain a desired confidence interval.
The sample must be able to capture the inherent variations of
the given stream of execution instructions [85]. Statistical sam-
pling is an efficient approach in capturing average behavior. And
also it can specially provide an appropriate sampling when the
population benefits from a clear internal control and contains

10

a large number of similar transactions. However, it might be
more complex and time consuming compared to non-statistical
sampling approaches [86, 87].

3.2. Virtual Machines

Systems based on Virtual Machine (VMs) hypervisors are
typical tools to model the hardware. These provide an emulated
environment where the guest applications (particularly operating
systems) can be executed virtually, very close to the way that
they are executed on real hardware. Generally, virtual machines
are faster than architecture emulators. This happens because
the hypervisors create environments where substantial amount
of instructions execute directly on the real underlying hardware
without any overhead. VMs also permit execution times near
to native speed. However, without support for hardware vir-
tualisation, performance may be severely degraded, and not
all currently available processors support virtualisation. They
should meet a set of requirements which are elaborated in [88].
Of course, these can only be used when the system to test al-
ready exists, precluding the usage of VMs for many design space
exploration tasks.

3.3. Architecture Emulators

Architecture emulators are software tools which emulate the
behavior and characteristics of a given CPU. They do not di-
rectly run the instructions of the emulated processor on the
underlying real host processor. Rather, they employ methods of
interpretation, or of dynamic translation, to translate the emu-
lated instructions to a corresponding set of instructions for the
target platform. Then, they execute the translated instructions on
the hardware of the host platform. Therefore, architecture emula-
tors generally decrease execution speed, but dynamic translation,
a cache intensive technique, is used to enhance the speed.

Definitely architecture emulators are appropriate tools to be
embedded in manycore full simulators for the purpose of func-
tional modelling due to their accuracy, and reasonable speed.
Qemu [30] and SimNow [33, 89] are common examples of
architecture emulators which have been employed in several
full-system simulators.

Qemu is an open source full system emulator which uses the
dynamic translation technique. It provides capabilities to emu-
late several types of CPU architectures (x86, PowerPC, ARM
and Sparc) on several different hosts (x86, PowerPC, ARM,
Sparc, Alpha and MIPS) to virtually run a complete and un-
modified operating system. It also offers three operation modes:
full system emulation mode, where the processor architecture
and other peripheral devices are emulated; user mode emulation,
where Qemu can launch executables compiled for one processor
on another host processor which could have a completely dif-
ferent architecture; and finally Qemu acceleration mode, which
executes most of the code directly on the hardware without
dynamic translation, resorting to different execution rings.

AMD SimNow is a fast cycle, accurate full system emula-
tor, using caching and dynamic compilation techniques. It can
support booting an real operating system and launch complex
applications over it. The SimNow emulator supports the x86

and x86-64 instruction sets, with support for other devices of
a real system. It performs emulation of the real system with
(at least) 10x slowdown in comparison with the native execu-
tion. SimNow cores generate a series of event that are stored in
the asynchronous queues. COTSon provides timing feedback
for SimNow instances, it parses asynchronous queues to create
higher level objects such as instructions. COTSon is a complete
tool which provides timing information back to the functional
emulator in order to affect the behavior of the application. It
also uses quantum based simulation [23, 59] as synchronization
technique. Quantum is the smallest, atomistic timing entity. i.e.
the dimension of length (“time”) as a single entity is a quantum.
In this way, every time a quantum starts, the timing module will
get a notification about the staring time and the quantum length.
Similarly once a node ends a quantum, the timing module will
let the other modules to know about the network timing infor-
mation which has been calculated during the past quantum. The
functional simulation adds extra latency to all packets submitted,
because network packets are sent twice. The source Network In-
terface Card (NIC) sends packets to the mediator timing module
and the mediator will send the packets to the target NIC module.
Additional time is required to for the packet processing in the
mediator, therefore COTSon uses a Quanta (Q) bigger than real
latency time between two nodes [90].

3.4. Network on Chip, Thermal and Energy Aspects

Most full-system simulators can simulate the interconnection
network (particularly the Network On Chip (NoC)) as well as
the entire processor and memory system. However, due to inher-
ent limitations, they are not able to perform NoC simulations, in
a very detailed level [91]. ASIM [92] is an example of this case.
It is a full-system simulator, used in industrial laboratories, that
simulates the processing cores and memory hierarchy. It only
models ring interconnects and it cannot model other intercon-
nects such as mesh, hypercube, x-tree, shuffle exchange, fully
connected, butterfly, cube connected cycles, etc. RSIM [93]
and SESC [94] are other examples of full-system simulators,
whose interconnection network is not modeled precisely in these
frameworks. On the other hand some of the simulators support
modeling of the entire system, including the on-chip network, to
a significant degree of detail, such as PharmSim [95].

For the purpose of designing new manycore simulators and
particularly with the objective of modeling the future peta-scale
parallel machines, we should consider a very efficient and ac-
curate network-on-chip model. NoC is an integral part of the
memory system and not modeling its details leads to an unsatis-
factory model. Today, there are several NoC only simulators like
NOXIM [96] and SICOSYS [93] which are used by the NoC
community for experiments. However, these are not able to be
used to perform full-system modeling and simulation.

In the current literature, SystemC [77] (refer to Section 4.3),
a simulation framework, has been widely used to design full
system simulators and particularly for NoC simulators. SystemC-
based NoC simulators [97—103] are powerful tools to evaluate
different NoC configurations by means of simulation. Xpipes
[103] is an example of this type. It provides capability to sim-
ulate both homogeneous/heterogeneous NoC architectures for

11

multiprocessor SoCs through using a set of flexible SystemC-
based NoC macros, enabling to act as instance-specific network
components at instantiation time.

One of the efficient solutions to enhance the capability of
a full-system simulator is leveraging other accurate and high-
performance network on chip simulators for NoC modeling
instead of using a weak built-in network model. It is required for
each of the simulator component and tools to provide modularity.
SICOSYS [93] is an example which has been plugged into RSIM
[36] for simulating symmetric multiprocessor systems.

Energy consumption in uniprocessor architectures grows lin-
early with the clock rate frequency and quadratically with volt-
age. Usually, lowering frequency permits operation at smaller
voltages, and this has a cubic effect on energy savings. As for
multicore and manycore processors, the power consumption in-
creases linearly with the number of cores while clock frequency
increases at a much slower pace [104]. Further, the use of identi-
cal processing elements in an homogeneous architecture reduces
the overall hardware complexity and verification process in the
entire development cycle.

Other than power consumption, thermal issues have a sig-
nificant impact on the performance of manycore architectures.
Simulating the thermal behavior of the manycore processors
is an important objective in many different aspects. The archi-
tecture designers need to know and analyze the impact of their
designs on the temperature of the processors. Similarly, thermal
modeling is required by the OS and system designers. The prob-
lem is that this kind of modeling is computationally expensive.
In processors, thermal time changes in time interval of the order
of ten milliseconds. Thus, to simulate a very complex thermal
impact of a proposed design, it is required to simulate the system
in a high level of details at least for several seconds.

In manycore architectures, thermal status of the individual
cores are related to the actual computing workloads of each
core. Thus, analytical [105] and mathematical models as Fourier
expansion [106] can be used to characterize and model manycore
processor workloads and foresee the accurate amount of the
processors load.

In the current literature, various tools and simulators have
been proposed to investigate power consumption and energy ef-
ficiency of microprocessors and manycore architectural designs.
Examples include Wattch [107], SimplePower [108], SoftWatt
[109], XTREM [110], Orion [111], Orion2 [112], McPAT [113],
Sim-PowerCMP [114], PrEsto [115], Sniper/McPAT [116], Man-
ifold [59] and [117], providing capability for power or thermal
modeling of computing processors. However, since physical
modeling (power, energy and thermal) of manycore systems is
out of the scope of our interest in this paper, we do not discuss
the details of those approaches here.

4. Architecture Simulators

Parallel and distributed simulation tools such as SimFlex [47],
GEMS [26, 118], FastMP [42], SlackSim [43, 60], BigSim [10]
and COTSon framework [23, 89], have been created in order
to enhance the performance of simulation by concurrently dis-
tributing the simulator workloads among several parallel hosts.

Furthermore, running parallel manycore simulators in acceler-
ated hardware platforms such as FPGAs, and more recently in
general purpose GPUs, helps to increase the throughput of the
system simulation.

Architectural simulators provide capability to simulate either
the target microprocessors, or the full hardware and software
functionality of the target machines, as platforms, where plat-
forms may consist of parallel processors, memory hierarchy,
storage devices, I/O devices, compiler, OS, etc. Along the line
of the growing issues in manycore era architectures, simula-
tors have changed and they used new approaches to solve the
problems and improve the system efficiency. They started from
a simple approximate uniprocessor simulator, and continually
improved to the recent high efficient clustered simulators.

Table 2 provides a generic comparison of architecture simu-
lators and other simulation tools. However, this comparison is
very general and depending on each specific tools it might differ.
The table shows that simulators (both types) are the more flexi-
ble tools to analyze and predict the behavior of future systems.
Furthermore, emulation-based simulators are the most powerful
tools, since they can potentially simulate any type of architec-
tures. On the other hand, instrumentation-based simulators are
faster, since they provide near-native execution speeds.

In the remaining of this section, we discuss some of the most
important architecture simulators that have been proposed in the
last decade.

4.1. SimpleScalar

SimpleScalar [9] is one of the oldest uniprocessor serialized
software simulators, which previously was widely used by the
research community focused in processing architectures. As well
as other similar simulators, SimpleScalar was limited to only
run single-threaded, user-mode workloads. With the advances
in manycore micro-architectures, researchers and designers are
more interested to use simulators with the capability to run multi-
threaded workloads, and to model large number of processing
cores along with the memory subsystem and interconnects.

4.2. BigSim

BigSim is a parallel simulator and performance modeling
system which is particularly designed to study parallel program-
ming issues [10]. It can predict performance of parallel appli-
cations on machines (like IBM Blue-Gene/L systems) [119]
with a very large number of processors (i.e. large number of
processing nodes). This is done by actual execution of real ap-
plications on smaller machines (i.e. small number of processing
nodes). Indeed, BigSim can be used for the architecture design
of manycore-enabled HPC systems. It has been built on POSE
[120] and includes several components. POSE is a general-
purpose optimistically synchronized PDES (parallel discrete
event simulation) framework which is designed for scalability
of fine-grained parallel and distributed large-scale discrete event
simulations. However, its load-balancing framework still needs
to be improved. BigSim simulates the behaviors of communica-
tion and computation separately in two steps. At first, it uses an
emulator to execute an application, containing number of virtual

12

processes, on a small number of physical processors to generate
trace logs. At the next step, a trace-based simulator uses the
log files and simulates activities on a much larger processing
system.

BigSim directly executes the application (in small scale) using
its emulator and mimics the behavior of the target platform (in
large scale). The direct execution creates significant demands
on host CPU and memory. For this reason, the simulator al-
lows skipping computations and instead simulates latencies that
would be resulted by executing those computations. But the
problem is, this works only for data-independent applications,
due to the fact that some part of the data are not really computed.
The simulator explores the inherent determinacy of several par-
allel applications. But still it is not an application-independent
performance modeling system and its functionality is limited to
specific applications. Moreover, tracing in BigSim is specifically
designed for its implementation language Charm++, and doesn’t
support the message passing applications.

BigNetSim, a BigSim’s component, uses a simple analytical
model (e.g. SimGrid [121]) to simulate interconnection net-
works by supporting detailed network models of various topolo-
gies. However it still doesn’t provide capability for packet-level
interconnections simulations (e.g. MPI-NetSim [122]) which is
the most precise approach (while it is very resource-consuming)
for network simulation. This leads to reduction in the overall
system accuracy. In fact, the major drawback of BigSim is that it
suffers from inaccuracy (with respect to the expected behaviors
of the real system) caused by log-based postmortem simulation
of the generated traces.

4.3. SystemC

The SystemC language [77] is an extension of C++, pro-
viding a cycle-accurate, event-driven, simulation interface for
system-level modeling by describing modules of a target archi-
tecture as a set of C++ classes. It is a popular framework for
SoC architecture simulation, providing a powerful interface to
describe HW/SW components as well as interconnections be-
tween modules (ports and signals), facilitating description of
interconnection between multiple SoC processors. SystemC also
provides support for integrating different Instruction Set Simula-
tors (ISS) in a unified system simulation framework, as it is able
to plug an independent ISS into the entire simulation framework
(as a new system module), where all system modules can be
activated and synchronized through a common reference clock.
Furthermore, SystemC based simulators (such as [123—-127])
can benefit from advantages of C++ language as a hardware de-
scription language while bridging the gap between hardware and
software description languages [123]. In fact, one of the most
important advantages of C/C++ based description languages
such as SystemC (or SpecC [128], a similar alternative) is their
capability to concurrently specify both hardware and software
components in the design (i.e. co-simulation of both hardware
and software). This is a necessary requirements for full system
simulators (system level).

In the current literature, SystemC has also been extensively
used for designing NoC simulators, due to the powerful capa-

Table 2: General Specifications of Simulators, Emulators and Virtual Machines (Execution Info: Information about the execution behaviour, Functional Results:

Execution Results)

Tools Engine

Code Translation

Output Information

Virtual Machines

Emulators

Emulation-based Simulators
Instrumentation-based Simulators

Mainly Direct Execution
Emulation (Interpretation)
Emulation (Interpretation)
Instrumentation

Same-ISA DBT
Cross-ISA & Retargetable
Cross-ISA & Retargetable
Same-ISA DBT

Functional Results
Functional Results
Functional Results, Execution Info
Functional Results, Execution Info

bility of SystemC to describe various interconnections between
hardware components. Examples of this include [97-103].

SystemC based simulators are accurate and sufficient for val-
idating hardware specifications. However, they might fail to
adequately support embedded software (in terms of writing or
debugging), which is an important requirement for SoC design
[129], are often slow compared to the traditional ISSs like Sim-
pleScalar.

MPARM [123, 124] is an example of such simulators. It is a
full-system SystemC-based architecture simulator, enabling to
model functional, performance, and power consumption aspects,
as well as a complete OS for a Multi-Processor System-on-a-
Chip (MP-S0C), in a cycle accurate manner. Using SystemC,
MPARM (or MP-ARM) can provide processor models, memory
models, the AMBA bus architecture (for communication be-
tween models through ports and signals) and support for parallel
programming. However, the MPARM simulator is slow and
its models for processing cores are very abstract and relatively
simple, lacking detailed core modeling [130].

One of the conventional solutions to overcome the speed lim-
itation of SystemC-based simulators is to integrate SystemC
with QEMU, making possible to simultaneously benefit from
accuracy of SystemC and speed of QEMU. However, interfac-
ing between SystemC and QEMU might be challenging, since
their combination must be capable of accessing all the hardware
modeled in QEMU and SystemC for co-simulation of HW/SW.
For doing this, SystemC needs the QEMU support to provide
I/O operations (initiated by the processor), memory access inter-
face, interrupt handling and also peripherals to access memory
directly [131]. Furthermore, there are timing aspects which need
to be taken into account for synchronization between SystemC
and QEMU models [132], making SystemC-QEMU combina-
tion a complex task. There are several research works in the
current state of the art, which perform this using different ap-
proaches [131, 133-136]. Among these types of simulators,
Virtualsoc [8, 137] is a recent work for many-core-based accel-
erators, allowing the execution of a full-fledged Linux operating
system.

4.4. Graphite

Graphite [11] was created for the exploration of large-scale
manycore environments, as well as for research of isolated ap-
plications. It can be used as a distributed, high-level parallel
simulator. In order to deliver the high performance and scalabil-
ity needed for useful evaluations, it uses various methods such as
direct execution, multi-machine distribution and analytical mod-
eling. In addition, it benefits from lax synchronization schemes
like LaxP2P [138-140] (a distributed synchronization technique,

13

in which the progress of one core is periodically checked against
another randomly selected core). Graphite has other important
capabilities, such as its flexible and extensible architecture, its
compatibility with commodity multicores and clusters, its ability
to run off-the-shelf p-threads application binaries, and its sup-
port for a single shared simulated address space despite running
across several physical host machines.

Graphite, unlike BigSim, FastMP and COTSon, allows the
analysis of a much wider category of architectures. While it
offers the possibility to model distributed memory architectures,
it also provides a coherent shared memory between the simu-
lator threads [11]. In addition, Graphite also models compute
cores and interconnected networks while operates transparently
through providing a single shared address space to off-the-shelf
applications.

Graphite can simulate manycore target architectures with hun-
dreds of cores launched on several parallel hosts, but the problem
is that the simulator accuracy resides in the application-level. It
is not very successful to deal with speed/accuracy challenges.
Graphite has three different methods for synchronization: base
model (or Lax synchronization), barrier (LaxBarrier or Lax with
quanta-based barrier synchronization) [140] and random-pairs
(LaxP2P or Lax with point-to-point synchronization). Lax lets
the clocks differ and offers the highest performance and scalabil-
ity. However, in order to keep the simulated clocks in reasonable
agreement, Graphite needs to deploy application events to make
them synchronized, otherwise it must let the threads run freely.

LaxBarrier and LaxP2P [58, 140] are the mechanisms on top
of Lax to improve its accuracy. LaxBarrier is the most accurate
synchronization methods of Graphite where all active threads
must wait on a barrier after a configurable number of cycles. It
has a relatively poor performance and scalability compared to
the other two synchronization models. LaxP2P aims to achieve
the accuracy of quanta-based LaxBarrier without reducing the
scalability and performance of lax synchronization. Using this
scheme each tile periodically chooses another random tile and
synchronizes with it. If the clocks in the source and target tiles
differ by more than the number of configured cycles then the
tile which is ahead goes to sleep for a short period of time.
LaxP2P is fully distributed therefore it creates less overhead
than LaxBarrier. In comparison to the barrier method it provides
more scalability and less accuracy [11].

4.5. SimK

SimK [52] is a framework based on the Parallel Discrete-
Event Simulator (PDES) synchronization protocol [141] to de-
velop system simulators. PDES [53] is a well known parallel
distributed synchronization technique for parallel simulation.

SimK provides simulation modules that target system compo-
nents, such as CPUs and memory modules. All modules commu-
nicate through message passing methods, which enables them
to run concurrently. A dedicated module maintains the time
synchronization of all simulation modules. P-GAS [142], HPP-
NetSim [143] and G-Cluster [144] are the simulators which have
been developed based on the SimK framework.

Since each component has to synchronize the execution state
with its peers, continuously at a microsecond rate, SimK em-
ploys several optimization strategies and techniques to avoid
the severe performance degradation that synchronization would
impose. Each node is handled by a single process, which further
creates one thread per processor. A user level scheduling scheme
is employed where simulation modules are dispatched to each
thread. CPU affinity is used to avoid cache related performance
penalties. Since the simulation modules run on the same process
and share the same memory, SimK employs an asynchronous
zero-copy [52] communication mechanism. Further synchro-
nization optimizations are employed at the scheduling level to
avoid blocking of the simulation modules. Other optimizations
employed include lock-free queues, buffer management and load
balance.

SimK requires a host shared-memory multiprocessor system.
While it has shown to scale within this system, the lack of
cache coherence on manycore systems does not allow the shared-
memory dependent approach used by SimK to be effective. Thus,
the major bottleneck of this simulation framework, which is
synchronization, cannot be solved with the approach taken by
SimK on a manycore system. This severely limits the scalability
of SimK to multiprocessor systems.

4.6. GEMS

GEMS [26, 118] is a full-system simulation platform capable
of capturing detailed aspects of processing cores, cache hierar-
chy, cache coherence, and memory controllers. The simulation
platform consists of a set of nodes connected with links allowing
for wide variety of topologies, with each link having a particular
latency and bandwidth. This has led to the widespread use of
GEMS in the computer architecture research community, with a
huge amount of contributions for validating research ideas.

A major limitation of GEMS is its simple interconnection
model that serves as a communication fabric between various
cache and memory controllers. Messages traverse the network
hop by hop, which makes GEMS incapable of modeling a de-
tailed router or a network interface. In fact it does not integrate
a real interconnection network model [145]. Because of this
limitation, GEMS ignores buffer contention, switch and Virtual
Channel (VC) arbitration, realistic link contention and pipeline
bubbles. The GEMS interconnect SimpleScalar model also as-
sumes perfect hardware multicast support in routers. However,
considering on-chip network designs, supporting fast and low
power hardware multicast is currently still a challenge.

The limitations in the interconnect model can significantly
affect the results reported by the current GEMS implementation.
Thus, GEMS has not been adopted by researchers focusing on
low-level interconnection network issues. Researchers instead
rely on traffic trace-driven simulation with synthetic or actual

14

traces. In a trace-driven approach, the functional simulation is
not impacted by the timing simulator. Timing dependent effects
are not captured because the trace is generated a priori on a fixed
system, and the timing variation caused in the network does not
affect the message trace. Trace-driven techniques also do not
capture program variability that a full-system evaluation can.

4.7. SimFlex

SimFlex [5, 47] is a full system, component-based simulator,
inspired by the ASIM simulator [92], which enables creation
of timing models for uni and multiprocessor systems running
unmodified commercial applications. It integrates SMARTS
methodology [83] for simulation sampling and Simics [34] for
functional modeling with techniques to avoid runtime overheads
that arise from component-based software design. Simics is
a high configurable simulator with a basic timing model (i.e.
uniform timing for all instructions and memory accesses). It
can provide functional execution of unmodified commercial
OSs and applications for wide variety of systems and ISAs (e.g.
x86, SPARC, etc.). SimFlex enables full system simulation
by augmenting Simics with a framework for rapidly building
complex timing models. SimFlex receives a stream of fetched
instructions from Simics, and then models the timing behavior
of the system while controls the timing advancement in Simics.

SimFlex is a collection of C++ described components con-
nected together in a hierarchical fashion where each component
represents a hardware or software component of a real system.
Each component is connected to other components by definition
of ports (i.e. unspecified C++ template parameters during com-
ponent development). The connections between components can
be configured and specified in a C++ code which is called wiring
description. And accordingly, when these wiring descriptions
are fed to the compiler, the interconnection between compo-
nent is created at compile-time. This way, SimFlex framework
can produce a custom timing simulator binary which reflects
the desired wiring description. Examples of SimFlex timing
models include UniFlex (uniprocessor simulation), TraceFlex
(no timing), CMPFlex (in-order timing) and CMPFlex.OOO
(out-of-order timing).

Most of applications exhibit homogeneous execution phases
which can include millions of instructions. Statistical sampling
reduces the amount of simulation effort required for performance
estimation of such applications and leads to increase the sim-
ulation speed. SimFlex, using SMARTS rigorous statistical
methods, identifies the minimal sample that assesses application
performance with a required confidence level.

SimFlex offers detailed multiprocessor memory systems but
lacks detailed I/O models and multiple-system capability. Fur-
thermore, SimFlex suffers from the lack of flexibility for devel-
opment, particularly for non-academics, since it relies on Simics,
which is a commercial functional simulator with licensing re-
strictions.

4.8. COTSon

COTSon is the HP labs’ full system simulator based on AMD
SimNow. It allows researchers to trade speed for accuracy, de-
pending on the simulation purpose and the user preferences. It

uses a trace driven approach where a single core, full system,
simulator generates thread instruction streams. This helps COT-
Son achieve better simulation speeds, compared to execution-
driven simulation, because of the decoupling of functional simu-
lation from detailed simulation. It also is possible to simulate
any application that might have been run on different platforms,
given the correct tracing infrastructure.

Functional simulation generally adds some extra latency to
every transmitted packet. It happens because packets are sent to
the mediator and then the mediator sends them to the destination.
COTSon performs bandwidth and network simulation in the
sender NIC device, but all the network timing characteristics
and information is collected at the mediator level. Potentially,
COTSon can present reasonable speedups in comparison to some
of other simulators, but it assumes an idealized architecture
consisting of a perfect memory hierarchy, which is a little far
from real architectures.

COTSon leverages some of the other existing simulators and
tools for individual sub-components through a robust interface
layer, integrated closely with the COTSon timing models to im-
prove simulation accuracy (versus simulation speed). Notable
examples are SimNow, for the purpose of functional model-
ing, and Q-Mediator, for simulation of interconnected network.
However, COTSon does suffer from using SimNow, which is a
sequential emulator.

SimNow produces a sequential instruction stream as output
which is demultiplexed into different threads before timing sim-
ulation. It creates a significant drawback for COTSon, limiting
parallelism and restricting the simulator to a single host machine
for shared-memory simulations. On the other hand, COTSon is
able to launch simulations over an overlay network consisting
of multiple manycore machines. But, it becomes limited to run
applications which are created for distributed memory environ-
ments and use a message-passing library (like MPI [146]).

4.9. RAMP-Gold

RAMP-Gold [147] performs system modeling by employing a
single timing pipeline, coupled with a single functional pipeline
with moderate resource consumption launched on a low-cost
mid-size FPGA. The simulator design is constrained in the total
amount of cache capacity that we can model by using the BRAM
consumption of the timing model [76, 148].

FPGAs include Block RAM (BRAM) and Distributed RAMs
(DRAM). Block RAMs or BRAMs are dedicated memory blocks
and DRAMs are the RAMs that are constructed using Look-Up-
Tables (LUT). LUTs are distributed across the FPGA fabric
and they can be used as small blocks of RAM by combining
DRAMs. RAMP Gold has the capability to simulate 64 SPARC
CPUs over 250 times faster than a regular software-based system
simulator launched on a Xilinx Virtex-5 board (which is low-
cost in comparison to other FPGA hardware). This demonstrates
the cost performance benefit of FPGA-based simulation. The
design of RAMP Gold also shows that designing FPGA-based
architecture simulators is dramatically different from designing
multicore processors in either ASICs or in FPGAs.

15

4.10. Other FPGA-based Simulators

FAST [149] is a hybrid FPGA-based simulator, whose func-
tional model runs in software and its timing model runs in FP-
GA:s. It needs a significant amount of communication bandwidth
between FPGA and CPU, which may result in limited simulation
scalability. ProtoFlex [150] and HASim [81] are other simula-
tors which use FPGAs to implement timing models for full-
cycle-accurate simulations similar to FAST. Unlike FAST and
ProtoFlex, HASim implements its functional model in FPGA
and timing model in CPU.

In general, FPGA-based solutions are costly and require the
user to buy expensive hardware. In addition, FPGA-based ap-
proaches are difficult for development and it is not easy to
quickly experiment with various designs while implementing
new models in FPGA instead of CPU.

4.11. GEM5

GEMS [4] is a modular, sequential, full system simulator,
based on a combination of both M5 [29] and GEMS [26] sim-
ulators. It merges the high configurablity of M5 with high
detailed and flexible memory subsystem modeling of GEMS.
This leads to the support of a wide range of simulation fea-
tures ranging from multiple ISAs (such as Alpha, ARM, MIPS,
Power, SPARC, and x86), diverse CPU model (non-pipelined
and pipelined CPU models such as AtomicSimple, TimingSim-
ple, In-Order, and Out-Of-Order), detailed cache hierarchies
(using Ruby memory model) and multiple cache coherence pro-
tocols (using SLICC language) to the instantiation of various
interconnection networks (Ruby based network models such as
Simple network model and Garnet [151] network model), I/O de-
vices (ranging from simple timers to complex network interface
controllers) and multiple systems. Despite the high accuracy
and flexibility of GEMS, it suffers from very slow simulation
speed due to the lack of parallelization in simulation.

4.12. McSimA+

McSimA+ [69] provides a lightweight, flexible, and detailed
microarchitecture-level simulator by offering a middle ground
between a full-system simulator and an application-level sim-
ulator. It can benefit from the light weight of an application-
level simulator, while the simulator is able to fully control the
threads and processes (similar to a full-system simulator). Mc-
SimA+ can simulate x86-based asymmetric manycore systems
(up to more than 1,000 cores) for both core and uncore subsys-
tems. The modeling for asymmetric cores can be ranged from
single-threaded to multi-threaded workloads and from in-order
to out-of-order CPU models. It also supports sophisticated cache
hierarchies, coherence hardware, on-chip interconnects, memory
controllers, and main memory. Furthermore, using DBT as sim-
ulation engine and the ability to support both execution-driven
and trace-driven simulations, McSimA+ is able to reasonably
improve both simulation speed and accuracy. However, Mc-
SimA+ suffers from the inherent limitation of application-level
simulators, which is the lack of full support for OSes and applica-
tions with complex I/O system calls and extensive system events.
Moreover, the simulation workloads for McSimA+ is limited to

only Pthread applications due to the frontend Pthread library of
McSimA+. Non-Pthread multithreaded applications cannot be
executed on McSimA+ without re-targeting the thread interface.
In addition, the simulation accuracy of McSimA+ is most likely
suboptimal as compared to most of the cycle accurate emulation
based simulators. McSimA+ is also limited to support model-
ing of speculative wrong path executions due to the inherent
limitation of its Pin [71] based functional modeling. In fact,
Pin does not provide wrong-path instructions, since wrong-path
instructions in Pin are invisible beyond the ISA interface and
they are not committed in the native hardware.

4.13. ZSim

The ZSim [13] simulator introduces three techniques in order
to enable fast, accurate, and scalable simulation for manycore
systems (up to 1024 cores). These techniques are: detailed DBT-
accelerated core models, in order to increase sequential simu-
lation speed; bound-weave parallelization, in order to achieve
scalable and accurate parallelization; and lightweight user-level
virtualization, in order to provide support for simulation of com-
plex workloads. ZSim proposes instruction-driven timing mod-
els, based on Pin DBT, to perform most of the core’s operations
in the timing model during instrumentation (i.e. eliminating the
need for functional modeling of x86). This reduces most of the
FM-TM overheads compared to conventional cycle-driven or
event-driven core models. It also leads to fast sequential simula-
tion (between 20-90 MIPS) while the core modeling is detailed
enough to allow simulation of detailed core models like Out-
Of-Order (O0O0), including features such as branch prediction,
limited fetch and issue widths, and pop fission.

ZSim also introduces the bound-weave algorithm which is
a two phase event-driven parallelization technique that scales
parallel simulation without increasing overheads or loosing ac-
curacy. The main insight behind this algorithm is that, at a
small time scale, most concurrent core-memory accesses occur
to different unrelated cache lines. This means that out of order
simulation of these accesses at first and then simulating their
detailed timing in order, can be equivalent as simulating them
completely in order. This allows reorderings of instructions only
within a small interval (e.g. within 1,000 cycles) with assump-
tion that, in such case, path-altering interference is exceedingly
rare.

A two core-memory accesses might suffer from path-altering
interference, if out of order simulation of those accesses, mod-
ifies their paths through the memory hierarchy (e.g. two write
for the same cache line from two different cores). ZSim divides
the simulation into small intervals of a few thousand cycles
each. As we already mentioned in Section 3.1, for each inter-
val the simulator proceeds bound phase and weave phase. In
bound phase, cores are simulated in parallel with assumption
that all memory accesses have initially zero latencies and for
each memory access, the path through memory hierarchy is
recorded. The bound phase also puts a lower bound on the
cycle of each microarchitectural event. Accordingly per-core
event traces are generated through instrumenting all loads, stores
and basic blocks of the host thread which simulates a core. In

16

the weave phase, these traces are used to perform parallel mi-
croarchitectural event-driven timing simulation of the aforemen-
tioned memory accesses by dividing events among parallel event
queues, and simulating them in full order.

While bound-weave parallelization is efficient to provide scal-
ability for parallel simulation, it is only applicable for shared
memory target systems. The reason is that the bound-weave
approach relies on the assumption that path-altering interference
being rare, which is true but only for the cores that communi-
cate implicitly through the cache hierarchy. This means that
bound-weave mechanism is not applicable for other target sys-
tems like distributed systems with message passing inter-core
communications. Moreover, ZSim is a user-level simulator but
since it is using a set of lightweight user-level virtualization
mechanisms, it can run most modern workloads (such as client-
server workloads and multiprocess applications) without any
modifications.

4.14. PriME

PriME [14] is an MPI-based, manycore, x86 simulator. It uses
Pin as simulation engine and combines both shared memory and
message passing techniques in order to achieve high parlleliza-
tion and distribution of simulation workloads through running
simulation across any MPI-enabled cluster of multiprocessor
and multicore machines. This allows PriME to support multi-
threaded workloads as well as multi-programmed workloads
through benefiting from two levels of parallelization; within
a host machine and across host machines. The simulation of
multi-threaded workloads can be parallelized inside of a host ma-
chine while the simulation of multi-programmed workloads can
be parallelized across several host machines. This happens by
utilizing MPI to communicate among different PriME modules.

PriME demonstrates reasonable performance and speed for
manycore simulation (for example, it can simulate more than
2000 cores on 9 machines with a total number of 108 cores).
However, similar to other simulators, it also suffers from draw-
backs. While the simulator supports detailed modeling of uncore
components such as the memory subsystem and NoCs, it can
only simulate simple in-order core models with a constant cycles-
per-instruction (CPI) for non-memory instructions. Therefore,
using PriMe, simulation of the detailed core models, like mod-
ern out-of-order processors, is not feasible. While PriME is fast
enough to explore thousand-core architectures, it is not cycle-
accurate. While PriME offers high configurability for uncore
models such as memory subsystem, cache coherence and inter-
connect models, the configurability of the simulator for the core
models is poor. For example, the simulated ISA is limited to
x86 architectures.

4.15. Comparison

Tables 3 and 4 provide comparative analysis of some of the
most important multiprocessor and manycore architecture simu-
lators with respect to the taxonomies presented in Section 3.1.

suorjeordde TJIN

79-98x%

sHdd

Surdures
OIWRUAD PopeaIY}-o[3ulg

so0ej]
-I9JUl YIOM}OU IO ‘OOpIA
‘SYSIP SB [ONS S9OIASP UOW
-wod pue §O oY} ‘Aroweur
‘syIomgeu ‘se100 aynduro))

payroadg joN

111
SAIN ‘FISITN(NdD uo)

(uoryezruoyouhs paseq

-Yoo[qun/yoo[q paurers
-ouly) SHd PAIIRAISSUO))

paygroeds joN

}I0M)OU UOTPIUU0D
-I9JUT ‘SOUDIIMS ‘SI9INOI
‘stoydepe qIomjou ‘©OUd
-I970D 91DBD dIRMPIRY] INO
-ypm Arowswr ‘s810d N JD

peyroadg joN

039 ‘gA pue A-DYVAS
HIMOI ‘Dd1emod
0EVASIN ‘SAIIN ‘NYV
T9VI ‘79-98X ‘VHITV

‘uIyoRw
OHVdS§ [eod & U0 p[nom 31
se A[)oexo SYIOoM UOI)eZIU
-oIyouds 9nq jueuoduiod
uorjeziuoIyouis gordxe
ue 9ARY J0U SOOP Xo[JWIS

SLUYVINS
pue sjulod xo[Sursn
Surdures [eo13S1YRIS SNO
-10811 PapeaIy)-TINN

ST
-Tered Arowewr Y3y eonp
-oxd 0} peunj o100 I9PIO
-JO-9NO 9AISSoI33e ‘S[opouwt
wsks]NSA Pue JIND
‘(swoysAs 1ossedordiymnu

pue -tum) sppow Ao

peyadg joN

019 ‘98X ‘6A-DYVJS

paymwadg 10N

peyroadg 10N

Epow NdH
redQ ‘jI0Mm318U UOI}I8UUOD
-Iojul 10 [epow Aqny

‘(Arowowr urewr Jo syueq
puUR ‘SIO[[OIIU0D AIOUIOUL
‘SIO[[OIJUOD OYDRD ‘SOYDRD
103 opowr Aqny) AIO0UWLIA

suorn)
-eordde [N oandepy
pue ++NUVHDO ‘IdIN

98X

(proyIen0 uoIIRZIU
-OIYDUAS 20N Pal 0 Aoeurua
-1939p juareyqul sweidoid
errered oY) jo a3ejueape
sunyel) SHAJ dHstundQ

UOI)RZIINJRIUIA] ‘SUIDI[S
‘S}D0[q UOIINOOXd [RIjUIND
-0s jo Surdures wopuey

spepow 10ssoooxd-run
‘(ouonyonyg pue SIOYRA\
an[g se yYONS soulydew
Burssed-o3essowt o3re|
o] Surepow {Iom)ou
i) SI0MIdU uory}
-eOIUNUIWOD JO S[POW
Ppo[rejop) S[opou YI0M)9N

(s11059

SS9 pue Ayordurts
ATJR[dI [Y)IM SUOI}RD
-[dde orysifear) speof
-YI0m popeaIy)-o[3ulg

98X pue DHJIamoJ
‘INIV - ‘VSId ‘VHJTV

(1oproino-us ut
2101s/prO] AIoWOW puR
9jepdn I199s18al1 10J UOIY}
-RZIUOIYDUAS TDJIR] oFe)s
-19qur A[uo) payradg 10N

peyroadg 30N

SsoIyoIRISIY
A1owswx [eAs]-o1d1y N
UIIM SOINI09YOIR-0IOTIL
ponpeyds A[[estwreudp
porejep 03 siossedord
paurjedidun o[dwis uroj
spepowr N gD ©I100-9[3ulg

SPRO[IOA\

syS] portoddng

UOIYRZIUOIYOUAG

Suridureg juoAs]

seanjes SUIEPOIN

(uoryoeuu0dI9gUL (1op1ono-uuts

I0] uoIje[NUWIS QOURWU :Surmry yimm [euorjduny

-10J10d) wigleNddyg (uoryenuuts ‘pargg-wiis ‘Uegeayd

‘(woryeinuits [euOI}OUN]) (uoryenuats eouewr (uonyen eouewrojrod) wiiglONSIg -wis ‘oyoed-wuls ‘orgord

wiigmgddy ‘(woryernuats -1ojred) TYVINS ‘(uoryer -wats Surwury) Aqqny ‘(uory ¢(uoryernuurs [euory -wis ‘eyes-wils ‘)seJ-wWIS
moNwIg edueuriojrad) wigddy -nwis [eUOIOUNJ) SOIWIG -R[NUIIS [RUOIIOUNJ) SIS -OUNJ) JIoje[nwe wigSlg :[euordounj) pappaquiy siseqy
UOIJR[NWIS 9IBRM)JOS UOTJR[NUIIS 9I'M)JOS UOIJR[NWIS 9IBMIJOS UOT)R[NUIIS 9IBRM)JOS UOT)R[NUIIS 9I'M)JOS UOIJR[NWIS 9IBRM)JOS uotyejuowadw]
(e100 pejroddns a1e 2100 pojroddns a1e 9100 pajrod peajiod y10d
$g0T 01 dn) peiroddng -1ynuw pue Iosseooidinyy -Mnur pue 1ossedoxdnnjy -dns st Josseoordmmiy -dns s1 Josseooidiyniy Josseooxdiun) -dng 2100 -Auey
Moy MO MO Moy MO Mo 1500
dnjeg
91RIOPOIA 91RIOPOIN MO U3t 91RIOPOIN 91RIOPOIN JO Ayxordwio)

97RINDOR (szowury
91eINddR J[0LD) 91RINDOR [RUOIJOUN 9jeInode 9[0L) 91RINDDY S[PAD -9[0AD /ToAST-UOTIONIISU] 9[0AD) 9jeINIOR J[ILD AoeIndoy
yStyg 9)RIOPOIN 9)RISPOIN 100 1004 100J AIop Ayiqeresyg

(uony

Alowow paInqgrI} £10 (110ddns 9ouo1oy0d OYDRD -RINUIIS Pposeq-199snd) S9IN40991YD
-SIp ‘Alowlewl paleyg -WOW paleys pPaIngLIysi(] Alowowr poreyg UYjm) Alowow pareys — Alowaux peInquigsi(q Arowewt pareyg -1y AIOWSN 1031e],
uorje[MUIL uoTye[NI uorjRIMWIL uorpe[nuIL uolje[NW] uorje[MUIL ouIU; UOIYR[NUIS

Joye[nuiis JoyeInuwiIs

JOojye[nuirs we)sAs [N

(weALIp-3ORqPa9))
PpoejoaIIp-[euOI}OUN,]

(s109enuuts U0}
-ounj rerjuenbas) [a[eIRg

Joje[nuIrs wa)sAs [N

(uoaL1p
UOIINISXD) Pa302IIp
Surwry, pue (udALIp
QoeI1) 1SI-euoI}oun, |

PONqLIISIP ‘[o[[erR]

JOjye[nNUIIS Wa)sAS [[Ng

UOT)R[NWIS 10S
-seoo1drnur I9pIo-Jo-ino
10 9sig-Surwil} ‘[epowt
UOIINDOXS ULALIP O[24D)

(s109enuuts euory
-ounjy [enuenbes ‘sjutod
X0} 10 sjutod 9AI[JO UOTY
-e[nuuts [a[rered) [areIR]

Ioye[nuwurs we)sAs [y

(uaarIp
UOIIND9Xd) PajdaIlp Sur
-wiy pue)sIyg-Suruualg,

(s109enuuts [RUOL}
-ounj Terjuenbes) [o[ered

[easr-uoryeorddy /1os()

(woatTp

-90RI})) ISIY-[RUOI}OUN]

[elrered

[oao1-uoryeorddy /108y

(uaarIp
90RI}) 1SIY-[RUOIIOUN] PUR
(s10301dI0gur ‘UOALIp UOTY
-Nooxe) Pajoalrp Surwil],

Teryuenbag

adoog uoryernurg

uorjez

-ue8i() JIojenuIlg

uory
-NO9XF UOIPe[NUIIG

(6002) U0SL.OD

(6002) >1uaIg

(9002) xa1qug

(g002) SINAD

(¥00z) wissig

(zo0g) rereogejduurg

sor3sII9jORIRyD

‘SI0je[nuIls 9.d13o0931ygoae 9I00-Aureua STIOLIRA JO wﬁm%ﬁmg\m ®>HG®H®QEOO VYV ‘¢ °lqel

Table 4. A comparative analysis of various many-core architecture simulators.

Characteristics

Graphite (2010)

RAMP-Gold (2010)

GEMS5 (2011)

McSimA+ (2013)

ZSim (2013)

PriME (2014)

Simulation Execu-
tion

Simulator Organi-

zation

Simulation Scope

Simulation Engine

Target Memory Ar-

Parallel, distributed

Timing directed (execu-
tion driven)

User/Application-level
simulator

DBT

Coherent shared memory

Parallel
Multithreaded FAME
(FPGA Architecture

Model Execution)

Full system simulator

Emulation

Shared memory (no co-

Sequential

Timing directed (execu-
tion driven)

Full system simulator

Emulation

Shared memory (with

Parallel

Supports both execution-
driven and trace-driven,
event-driven backend sim-
ulator

A middle ground be-
tween a user/application-
level simulator and a full
system simulator

DBT

Shared memory (with

Parallel (Bound-weave)

Timing directed
(execution-driven),
(instruction-driven
event-driven uncore)

core,

User/Application-level
simulator

DBT

Shared memory (with

Parallel, distributed

Timing directed
(execution-driven)

User/Application-level
simulator

DBT

Shared memory (with

chitectures across a cluster of ma- herence) cache coherence support) cache coherence support), cache coherence support) cache coherence support),
chines, distributed mem- distributed memory distributed memory
ory (cluster-based simula- (across a cluster of

tion) machines)

Scalability High Moderate Poor Moderate High High

Speed Very Fast Fast Very Slow Moderate Fast Fast

Accuracy Not cycle accurate Cycle accurate Cycle accurate Cycle accurate Not strictly cycle accu- Not cycle accurate

rate

Complexity of High High Low Moderate High Moderate

Setup

Cost Moderate High Low Low Low Low

Many-Core Sup- Supported (up to 1024 Supported (up to 64 Supported (up to 64 Supported (up to 1024 Supported (up to 1024 Supported (up to 2048

port cores) cores) cores) cores) cores) cores)

Implementation Software simulation FPGA implementation Software simulation Software simulation Software simulation Software simulation

Basis Pin Embedded M5 (processor simulator), Pin based frontend simu- Pin Pin based frontend simu-

Modeling Features

Event Sampling
Synchronization

Supported ISAs

Workloads

Core models, memory
subsystems (cache hier-
archies with full cache
coherence), on-chip net-
works

Statistical sampling

Lax, lax with barrier and
lax with P2P synchro-
nization

x86

Unmodified Pthread ap-
plications

Cache models, abstract
core models, CMP mod-
els, no network models

Not Specified

Cycle-level
tion

synchroniza-

SPARC-v8

Not Specified

GEMS (network and
memory simulator)->
Ruby (cache and simple
networks), Garnet (com-
plex networks), SLICC
(coherence protocols)

Core models, pipelined
model, memory subsys-
tems , networks models,
system execution modes

Not Specified
Not Specified

ARM, ALPHA, MIPS,
Power, SPARC, and x86

Multi-threaded appli-
cations in System-call
emulation mode and

variety of workloads in
Full-system mode.

lator for functional sim-
ulations and the event-
driven backend simulator
for timing simulations

Asymmetric core models,
memory subsystems and
network models

Not Specified
Pthread scheduling

x86

Unmodified Pthread
applications (single-
threaded and multi-

threaded workloads)

Detailed DBT-
accelerated core models,
memory subsystems

(cache hierarchies)

Not Specified

Bound-Weave paralleliza-
tion

x86

Most modern and com-
plex workloads (such
as multithreaded ap-
plications, JVM and
client-server workload)

lator for functional sim-
ulations and the event-
driven backend simulator
for timing simulations

One-CPI core models,
profiling-based core mod-
els, memory subsystem,
other uncore models

Not Specified
Thread-level and process-

level barrier synchroniza-
tion

x86

MPI applications

The results of these comparative analysis, presented in the ta-
bles, also demonstrate the qualitative ideas expressed on Section
3.1. The discussion of the consequences of these analysis will
be deeply used in the Sections 5 and 6 in order to discuss the
status of manycore future simulators.

5. Fundamental Simulation Challenges

Two important features of future peta-scale systems are high-
heterogeneity of cores and, very large number of cores. Due to
these features, the requirements for simulation of future peta-
scale manycore systems include supporting:

e Scalability, in terms of number of cores simulated;
o Heterogeneity, in terms of diversity of cores;

e High speed simulation, due to the complexity and large
number of components of such systems;

e Accuracy, in terms of level of detail and similarity to the
target systems;

o Flexibility to rapidly explore a very large design space, due
to the high diversity of potential architectures for future
peta-scale systems;

e And low cost simulation, in terms of hardware required as
simulation host.

Efficiently designing future peta-scale manycore architectures
is not achievable unless we use powerful simulation tools, fulfill-
ing the abovementioned requirements, and able to drive micro-
architecture exploration, evaluate novel systems and design de-
cisions. It is obviously desirable to have a simulator with the
highest level of accuracy and scalability, while providing a very
fast simulation speed. Along this line, the typical full-cycle-
accurate simulators cannot be used anymore, since in some
cases, simulating a single second of execution can take between
1 to 12 days. We expect simulators to deal with a lot of design
space variables, such as heterogeneity, scalability, modularity,
in order or out-of-order core models, cache coherency, mem-
ory hierarchy, distributed or shared memory, accelerators, etc.
However, there are critical challenges that create difficulties and
obstacles to produce such a desirably simulator.

Improving large manycore architectures with large amount of
cache memory led simulators to employ highly parallel methods
to distribute simulation workloads (as it is the case in current
parallel simulators such as PriME and Graphite). However,
due to data dependency between parts of the simulated environ-
ment, full parallelization is not easy to achieve and we return
to the problem of concurrency in current architecture models.
Additionally, scale-out from core/tile to die, socket, rack and
data-center is really challenging, although this is a necessary
requirement for evaluation of future peta-scale machines.

In the remaining of this section, we discuss the major chal-
lenges for simulation of future peta-scale systems. We must also
note that, in this paper, due to the space limitations, and to avoid
losing focus, we avoid the discussion on the issues related to

19

implementation details of the architectural simulators (such as
scheduling, synchronization, etc.), since most of these issues are
not particularly specific to the area of microprocessor and many-
core simulation, but instead generally apply to many different
areas in computing.

5.1. System Complexity vs Simulation Capacity

Complexity arises in manycore systems by having more and
more diversity and intricacy in the computing architecture and
interconnects. For future peta-scale systems, we expect simula-
tion tools to provide functionalities to evaluate the complexity
of such nonlinear systems by modeling properties and behavior
of each individual component, showing ways where the sys-
tem behavior cannot be assumed as the sum of the behavior of
its parts. For instance, a minor manipulation on the process-
ing/communication properties/behaviors of one system element
may cause a significant impact, a proportional impact, or even
no impact on other elements or the whole system. However,
managing such complexity is a critical challenge in manycore
system simulators which are constrained by limited capacity to
deal with the system complexity like coupling timing models
with functional models. For example, timing models can be
multiple orders of magnitude slower than real time.

5.2. Performance

Execution performance for manycore simulators is pushed to
its limits when a parallel simulator divides its main sequential
instruction stream in a set of segmented simulation workloads
which have to be executed on a group of individual processors.
Basically, it is not just the problem of simulators, but rather it is
a challenge in the upcoming manycore architectures, which obli-
gate a paradigm shift in algorithmic design to effectively fully
unlock manycore capabilities to achieve maximum performance.
Thus, simulators have to deal with challenges such as increasing
the level of parallelism, multi-scaling, hardware acceleration,
etc., both during development and implementation phases.

5.3. Speed vs Accuracy

Interconnection networks and hardware details of manycore
machines can be modeled at very different levels of abstraction
depending on the target usage of the simulator. So there is a
trade-off between simulation detail and simulation speed. The
level of detail of the models used for describing the resources
employed within the simulator has a direct impact on the final
behavior and characteristics of the simulator. Hardware resource
Description Languages (HDLs) are essential tools to build an ar-
chitecture simulator, and to build an efficient simulator we must
use a powerful, accurate and appropriate resource description
model. While classical HDLs, like Verilog and VHDL [152], are
very good at describing detailed hardware characteristics and be-
haviors (such as timing behavior), they are generally inadequate
for expressing the higher-level abstractions required for (today
and) future large and complex micro-architectural architecture
designs.

The Architecture Description Language (ADL) [153] and
the XML-Based ADL [154] are examples of the higher-level

resource description model, which have been used to build many-
core simulators such as Mhetero [155] and M3C [156]. CAaSH
[157-159] is another example of functional resource description
which is based on Haskell. Using an efficient resource descrip-
tion language might help to increase the total performance of
the constructed simulators.

Ideally, in order to achieve a proper peta-scale-level simu-
lation platform it is required to describe the hardware details
and interconnections as detailed as possible while keeping the
total throughput of the system within an acceptable level. This
requires the (simulator) designers to build methodologies for
constructing calibrated models. Unfortunately, this is not easy
to perform, and a common strategy in current simulators is to
balance the need for simulation accuracy versus the desire for
good simulation performance. Better modelling of target system
details by a simulator will produce more accurate results but will
result in a slower simulation. This trade-off is particularly im-
portant when modeling the interconnection network of a parallel
computer.

5.4. Development Cost

The cost of developing a new validated and useful simulator
refers to two different aspects. On one hand, the developing
time of a simulator should not exceed a reasonable duration.
For example if we go to design a more detailed cycle-accurate
modeling system, this results in consumption of more time on
development, which is not desired. On the other hand the de-
signed simulator should be modular, pluggable and able to reuse
in future related works. In addition, new methodologies for
constructing simulators have to show an acceptable performance
while executing on the underlying hardware, and should not be
dependent of some specific-purpose hardware infrastructure.

However, sticking to the objective of cost efficient modeling
solutions in case of either the cost of the required hardware (e.g.
current software-based simulators like GEMS), or the cost of
time consuming for development (e.g. SimK), creates substantial
constraints on implementation of some efficient solutions in
aspects other than cost.

5.5. Design Space

Efficient design space exploration and modeling of manycore
environments could be desired from different research commu-
nities with focusing on different metrics, design aspects, appli-
cations and requirements. This is a major research challenge for
manycore modeling and simulation. On one hand, a diversity of
metrics comes from differentiated market segments and metric
emphases, such as power, temperature, latency, or throughput.
On the other hand, a diversity of variable multi-processor de-
signs (even designs which are not existing yet) are of interest
by users. A comprehensive design exploration model has to
locate the optimal amounts of results for different metrics and
workloads in a large and high-resolution design space. It should
consider all design space parameters simultaneously, while en-
abling predictions for metrics of interest.

Full design space exploration (e.g. the case in current full
system simulators such as SimFlex and GEMY) is constrained

20

by the substantial costs of cycle-accurate simulators, which
provide very detailed view into system modeling for a wide
range of manycore micro-architectural configurations. We can
expose specific trends or interested metrics in design space.
However, due to issues as long simulation times, we are limited
to constrain design scenarios and consider only small subsets of
the full design space (as it is the case in current instrumentation-
based simulators such as ZSim and McSimA+). Unfortunately,
implying these limitations in design space may lead to results
that may not be acceptable for the larger space (e.g. future
peta-scale systems with high diversity of processors).

5.6. Simulation Time

Designing a high-performance manycore system is extremely
time-consuming. It involves exploring and analyzing a huge
number of input parameters and configuration elements. Thus,
it would be expectable that, in most cases, general simulation
methods become infeasible or inefficient. The problem is that
architectural simulation is very time consuming. In order to
design a microprocessor with optimal characteristics, the simu-
lator must explore and evaluate all possible configurations and
find the optimal one. Note that finding the optimum set of con-
figuration values can be different depending on the target and
the design criteria. In fact we can say that the total simulation
time is directly proportional to the number of configuration pa-
rameters which are required to be evaluated. The simulation
time is also proportional to the size of the workload space, the
average number of instructions in each application-input pair in
the workload space, and the simulator slowdown factor [160].

During simulation, the performance evaluation of the system
configuration is done through running a software program or
a benchmark with a suitable set of inputs. In other words a
collection of computer programs (workload) is used for the
evaluation process. The simulator must provide capabilities to
compose required workloads (the benchmarks with appropriate
inputs) which are quite specific depending on the target operation
domain of simulated system. Exploration of workload space
along with design space has direct impact on the simulation
time. Furthermore, the size of workload and extra features of
the manycore processor architecture increase the timing cost of
the simulation.

It is obvious, that to reduce the total simulation time, we need
to reduce the size of any or all of the aforementioned factors
(e.g. COTSon has reduced its workload space to only support
MPI applications, ZSim has also reduced its design space by
only supporting x86 as target ISA). But this might have greater
costs in other aspects of simulator performance. Along this
line, techniques such as selecting a region of interest through
statistical simulation [161, 162] (as used in Graphite, LiveSim
[163] and BigHouse [164]), choosing a limited but representative
set of program-input pairs [165-167], reduced input sets [168],
trace sampling [169] (as used in TQSIM [170]), barrier interval
time parallelism [171] and simulation optimization [172, 173]
(as these are partially used in BigSim and COTSon) might be
taken into account.

5.7. Multi-Model Simulations

We must consider modeling manycore systems in different
scenarios, as for some studies and analyses we need to have
a simulator with capability of multi-dimensional modeling. It
means that the simulator must provide an accurate modeling of
the system and processor architecture while it offers functionali-
ties to analyze the impact of interconnect networks, thermal and
power consumption modeling. It is a challenging task, since we
need to put several modeling mechanisms that communicate and
work together.

5.8. Scalability

In order to model future peta-scale manycore systems and ar-
chitectures, the current parallel software simulators are supposed
to exploit the highest level of parallelism from the underlying
parallel architectural host platforms. The obvious big challenge
of such simulation is dealing with the rapid increasing number
of cores and threads. We expect modeling and analyzing tools
to keep a constant amount of overhead, while coping with the
exponentially increasing number of the cores. In other words,
overhead must be constant in time and independent from the
system size. Handling and managing the intercommunication be-
tween threads/cores, resources and threads, which are involved
in synchronization and contention points between threads and
cores, in both application and architecture level is critical with
respect to the synchronization bottlenecks. The problem of
synchronization in manycore era will result in large scalability
issues.

5.9. Productivity

Researchers and system designers expect simulators to be
more productive and come with a set of requirements, features
and characteristics such as ease of use, management tools, docu-
mentation and deploy-ability, visualization, deployment, debug-
ging, etc. which could help them to perform modeling, designing
and evaluating of the future systems in a better way. However,
these requirements are changing, and sometimes are unclear. In
addition it increases the cost of simulator construction.

6. Discussion and Future Directions

In order to produce peta-scale manycore simulators with capa-
bility to explore a wide range of micro-architectural design space
of future parallel systems and architecture we have to use the
capabilities of the current parallel hardware. This means that we
must be able to fully exploit the current hardware architecture to
build future parallel hardware and platforms. This direction, the
only that will follow current hardware evolution, brings all of
the challenges in application concurrency, manycore and hard-
ware parallelism, to simulator designs, while they face some
specific challenges which particularly belongs to the scope of
distributed and parallel simulations. We also need to identify the
most important capabilities of the current simulators.

The followings summarize the key information on the capabil-
ities of the current architecture simulators (as already discussed
in Sections 3 and 4):

21

o Instrumentation (DBT) based simulators provide faster and
more scalable simulation capability compared to emulation
based simulators, while the emulation based simulators
provide better simulation accuracy to general architectures.

e The configurability (i.e. the ability to explore various ISAs
and system architecture) of instrumentation based simu-
lators is limited. Moreover, most of the instrumentation
based simulators are user/application level simulators.

e Sampling based simulators are faster and more scalable
compared to non-sampling based simulators with the cost
of reducing simulation accuracy.

e Hardware-assisted simulators are faster than software-
assisted simulators. However, they create complexity for
development and they are not flexible for design space ex-
ploration. Furthermore, hardware-assisted simulators are
more expensive than software-assisted simulators.

e Network/interconnect modeling is a requirement for
distributed-memory simulation. Furthermore, distributed
memory simulators are more scalable than shared mem-
ory simulators and they can provide faster simulation by
enabling cluster based simulation.

e Parallel simulators are faster than sequential simulators.
However, they generally suffer from drawbacks, such as
complicated and inefficient scheduling of simulation seg-
ments and high communication overhead. Synchronization
techniques improve the performance of the parallel simu-
lators. But still efficient synchronization is a challenging
issue for parallel simulation.

e Modularity is a very important feature for simulators, since
it provides fast development, ease of use and flexibility for
simulators. Accordingly, for most current simulators, ef-
forts have been made to apply modularity through creating
component based architectures which enables leveraging
of existing tools and components.

We can conclude that, due to the large variety of simulator
applications and methodologies trade-offs, it is not feasible to
expect a comprehensive simulator to simultaneously satisfy the
requirements of researchers in different communities. Therefore
simulator designers must clarify the specific target usage of
their simulation tools at the first step. Furthermore, due to the
aforementioned challenges, we should make efforts towards
modular simulation platforms that are able to leverage existing
high throughput modules, methods and solutions to build the new
tools. Here, base-simulation techniques such as synchronization,
sampling, scheduling, etc. are required either to be improved or
recreated.

In this paper, we have presented the characteristics and capa-
bilities of the current simulations and modeling tools, aiming to
simulate future peta-scale manycore systems and architectures.
We have extracted and demonstrated a set of most significant
problems and challenging issues which the simulator designers
have to deal with. In order to cope with the aforementioned

challenges, and to respond to the needs and concerns of different
design space exploration and multi/many core architecture simu-
lation requirements, we argue that, several techniques appear to
be more promising to develop. Thus, we expect that the future
direction of research in modeling and simulation of manycore
systems will expand upon the following lines, relying on existing
best of breed features currently incipient in different simulators:

Regression and Analytic Models

Statistical Simulation

Acceleration and FPGA-Based Prototyping

Modularity, Integrability and Aspect-oriented Simulation
Parallel Simulation

Cloud-based Simulation

Raising Level of Abstraction

Model-driven Simulation

6.1. Regression and Analytic Models

Regression and analytical modeling is a statistical tool for the
investigation of relationships between design space metrics and
variables and it is an efficient approach for accurately predicting
different metrics and parameters in a large micro-architectural
design space. Regularly, in manycore modeling we seek to clar-
ify the causal effect of one metrics upon another metrics and
parameters. To explore such issues, we can apply regression
techniques to simulators, enabling them to efficiently obtain ap-
proximates of the design metrics. Simulators can collect data
on the interested underlying metrics and employ regression ana-
lytic approaches to foresee the quantitative effect of the causal
metrics upon the metric that they influence. For example, the
work presented in [184] uses this approach for design space
exploration by applying a class of models where, in each model,
the response time is modeled as a weighted sum of foreseeing
metrics plus a random noise (a noise is defined as the effect
of the other metrics which are not considered in the prediction
model).

6.2. Statistical Simulation

Analyzing all the functional events and creating timing mod-
els for each component is costly due to the simulation time.
Sampling and statistical simulation techniques are solutions to
decrease the time of simulation. These approaches rely on col-
lecting and pre-calculating certain architecture-dependent per-
formance factors. The analysis techniques periodically sample
and statistic on some characteristics of the running application in
order to accelerate subsequent simulations. This solution proved
to be highly accurate while having low overhead. However, the
statistical simulation is constrained in the number of architec-
tures that it can support. Furthermore, it is not clear whether
these techniques can tolerate significant modifications in the
number of cores or the interconnect network topology.

6.3. Acceleration and FPGA-Based Prototyping

Architecture research already has started to concentrate more
on implementation and less on design of instruction sets. Along
this line, FPGAs have been employed at different levels of ab-
straction in the design for the purpose of simulation, implementa-
tion and evaluation of current and future computer architectures.
Architecture simulators can achieve benefits from increasing

22

the speed of register transfer level simulation by performing
logical simulation and evaluation based on FPGA-accelerated
hardware platforms. As example of these range of simulators,
we can mention Quick-turn [179] (an old product) and Caden-
cePalladium [180] (a more recent one). [181] is another example
which integrated FPGA technologies into a tool for exploring
and evaluating microarchitectural designs especially for newly
proposed architectures.

The simple idea behind FPGA-based simulators is using FP-
GAs to simulate Register Transfer Level (RTL) (i.e. a design
abstraction which models a synchronous digital circuit), because
a RTL simulation typically is very slow. In addition, we can
map processors directly to FPGAs, which results to enable us-
ing higher clock rates. According to this concept the Research
Accelerator for Multiple Processors (RAMP) [182] provides a
set of research efforts such as RAMP Blue [183], RAMP Red
and RAMP Gold [147]. RAMP Blue is a simulated machine,
with 1008 cores, which are inter-operated by message passing
and distributed memory. RAMP Red is another many-core simu-
lator designed to investigate the issues of transactional memory
(TM). Both of these projects used Xilinx FPGAs on Berkeley
Emulation Engine 2 (BEE2) boards.

The most important problem of direct-RTL-mapping is that
timing models is a property of the functional modeling. RAMP
Blue tried to solve this problem by employing a separate simple
timing model, which uses clock-gating of various components to
get correct functional behavior while faking the desired timing
model. This technique implies a tight coupling between the
timing and functional simulations because the timing model is a
wrapper around each functional component. Direct RTL-mapped
systems do not support modularity and they are also suffering
from timing wrappers. This leads FPGA-based simulators to
completely split the timing and functional modeling of the target
system.

6.4. Modularity, Integrability and Aspect-oriented Simulation
There are islands of simulation and modeling tools with vari-
ous focus on different domains, which are completely isolated
from each other. Modularity is an important requirement for
simulation tools in order to achieve integrability and reusability.
Modularity can be obtained in different levels. Implementation-
level (object-level or component-level) modularity is a com-
mon approach to design modular simulators, where a simulator
composed of a set of interrelated components/objects working
together toward a common objective. This even makes simula-
tors more flexible to interoperate with other external simulators
or simulator components. In fact, a powerful and comprehen-
sive solution has to benefit from existing tools and individual
investments as much as possible. In addition, a proper simu-
lation approach must provide an infrastructure to leverage ma-
ture tools via standardized APIs for common simulator services
and functionalities (such as time modeling, synchronization,
sampling, event modeling, interconnects simulation, bandwidth
and latency modeling, thermal and energy consumption mod-
eling). It could support a very large design space exploration
in various aspects and objectives. Furthermore, it catalyzes the
development process of the new simulator platforms while the

resulted tools would be substantially efficient. There are several
examples of successful (implementation-level) modular integra-
tions in the current literature, including Qemu-COTSon [30],
NOXIM-COTSon (NOXIM is a network on chip simulator), and
SystemC-Qemu [131, 133-136].

Modularity can also be applied in a more conceptual level
by advocating aspect-oriented paradigms into the area of many-
core simulation. This type of modularity can be described as
model-level (or aspect-level) modularity, where simulation of a
target (manycore) system can be performed considering different
viewpoints (aspects or simulation aspects). Each viewpoint can
be defined as a representation (specification) of a target system
(simulated system) in a certain view or aspect (i.e. simulation as-
pect). In fact, a viewpoint (or an aspect) specifies the simulation
focus (e.g. memory and cache, processing cores, network on
chip, power and energy, OS and application execution). For ex-
ample, in NoC simulators, it might be necessary to provide more
detailed interconnection while describing cores in more abstract
level, since the focus of such simulators is on interconnection
networks.

In this context, modularity refers to separating the simulation
of different concerns of a target system and decomposing the
entire simulation into a set of simulation aspects. Each simula-
tion aspect can simulate the system under study from a partic-
ular point of view. The simulation aspects can be recomposed
through a weaving mechanism (e.g. [185]), providing facility to
simulate a target system from all aspects or only certain aspects
of interest. These weaved modular aspects can flexibly commu-
nicate to each other in order to provide a detailed model of a
target system with respect to desired aspects. This can provide
simulation efficiency specially when simulation is required for
systematic optimization. In such a case, the optimizer aims to
optimize the system under study from a certain point of view,
therefore it needs to evaluate the system from a particular view
by simulating the certain aspects of the system. There are some
works that already introduced aspect-oriented simulators [186—
189] in the field of discrete event simulation. However, none
of them are specifically designed for the purpose of manycore
architecture simulation.

6.5. Parallel Simulation

The traditional sequential simulators already began to be con-
verted to parallel simulators. However, there are still major
challenges that adversely affect the performance of parallel sim-
ulations. These issues include segmentation of simulation work-
loads, dynamic scheduling, communications between simulator
instances, time management and synchronization. Among them,
synchronization is a key issue, since lacking an adequate syn-
chronization may result in a time causality error (i.e. violation of
the time-stamp order), imposing overhead by periodical synchro-
nization in order to achieve consistency among logical clocks
of different host nodes [174]. For example, a high speed node
might receive a straggler event with an overdated time-stamp
from a low speed node (an straggler event is an event which
its time-stamp is less than the local clock value). A potential
direction to cope with the synchronization problem might be
to use multilevel lax(relax)-based synchronization approaches,

23

as it is getting common for recent parallel (manycore) simula-
tors [174, 175] due to their capability to significantly reducing
the synchronization frequency and in turn, reducing synchro-
nization overhead and increasing parallelism. These strategies
work through efficiently adapting a lax-based technique (e.g.
by lengthening of synchronous periods in occurrence of strag-
gler events [11]) in one level, while correcting the simulation
accuracy in another level (note that traditional lax-based syn-
chronization suffer from the lack of simulation accuracy).

Overall, regardless of the aforementioned parallelism issues,
we propose two future directions for simulation-level parallelism
along the thematics of this paper: component-level (object-level)
and aspect-level (model-level) parallelism. In component-level
parallelism, a simulator contains a set of stand-alone compo-
nents (a component may include sub-components/objects) and a
target system can be simulated by instantiation of components
required and definition of inter-component processes (e.g. com-
munication between component instances). Component-level
parallelism [176, 177] can be achieved by parallel execution of
component instances on different host nodes (processors). In
aspect-level parallelism, the simulation of a target system in-
cludes a set of stand-alone aspects where each aspect provides
a detailed representation of a system from the prospective of a
certain aspect. More complete (global) simulation of a target
system can be extracted through merging a set of aspects desired.
We further discuss this in the remaining of this section (refer to
aspect-oriented simulators).

6.6. Cloud-based Simulation

The Cloud service models such as Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-
Service (IaaS) facilitate doing research in all the related fields
of distributed/parallel computing. Using Cloud-based systems
offer the end users a completely remote, self-organized, load
balanced and distributed environment as a single service/single
system which is more efficient and easy to work with. Defi-
nitely, the Cloud-based software services are able to support the
whole rage of softwares as services even simulator softwares.
Currently there exist some research works that provide system
simulation service for Cloud as part of SaaS [198]. However, all
the software (such as computation centric and real time appli-
cations) and particularly simulators are not the same and they
have different operational behaviors and characteristics, so we
might consider that using a generic SaaS would not be enough
to satisfy all the requirements of the future Peta-scale system
simulators. Deploying simulators using SaaS [199] will arise
some complexities in different aspects such as configuration,
synchronization, workload distribution, etc. In other words it
doesn’t provide the performance and ease of use as the simulator
users are expecting.

A possible approach to improve the performance of the Cloud-
based simulators [200-202] is developing the Cloud service
model as Simulation-as-a-Service(SiaS), which means that SaaS
have to be adapted and customized precisely to run simula-
tors. So by using such a simulation service, the simulator runs
on the Cloud servers while leaving the user’s local resources
free. A large scale manycore simulator explores a very large

model/experiment space where the behavior of each model is
explored during its creation. Furthermore, in runtime each exper-
iment model in the design space will find emergent properties
which can not be deducted from the model and they can only be
observed during simulation. Simulation in large scale involves
a high number of parameters, values and settings and we can
say that it is a resource intensive application which most of its
behaviors can be only identified during runtime. Such a Cloud-
based simulation service provides a service based on the amount
of simulated time for the end user experiment. It takes care of
the distribution of the experiment work load on several machines
in the Cloud, and finally it will collect all the results from the
worker machines.

6.7. Raising Level of Abstraction

Generally, architecture simulators suffer from two major tim-
ing limitations, which are simulation time and development time
of simulators. Full-cycle-accurate simulators are examples of
this case. They are accurate and fulfill the user requirements for
correctness of the experiments, but they are highly time consum-
ing and result from a complex development process which takes
time. But this detailed modeling is not necessary for many kinds
of design space exploration and just makes the development of
new models more difficult. For example, we do not usually need
to model the details of cache coherence protocols or many-core
interconnection networks when investigating trade-offs in the
memory system hierarchy.

Raising the abstraction level of the simulation will help sim-
ulators to be faster and easier to use, while remaining accurate.
The problem is finding out what level of abstraction is appro-
priate and how to deal with the tight performance among the
co-executing threads and the micro-architectures. Interval sim-
ulation [178] is a possible solution along this line. It raises the
level of abstraction in the core-level compared with the typi-
cal detailed simulation. It uses a mechanistic analytical model
[12, 178] which drives the timing models of each individual
cores with sampling of some set of the instructions through the
cores’ pipeline stages. Each interval is defined as the distance
between two miss events (branch mis-predictions, cache L1 I-
cache miss, long-latency load miss or TLB misses) (see Figure
9) through the cores’ pipeline stage which identifies a part of
instructions stream. The miss events can be determined by em-
ploying branch predictor, memory hierarchy, cache coherence
and interconnection network simulators.Thus, the mechanistic
analytical model drives the timing models for each intervals
instead of the whole instruction set. The integration between
miss event simulators and the analytical models facilitate the
modeling of the tight performance entanglement between co-
executing threads on manycore architectural processors. This
approach is a promising technique particularly for system level
exploration at the early design stage. Sampling the simulated
instruction stream, using host multi-threading and mapping the
simulations workloads on FPGAs or GPU are the other alterna-
tive approaches that achieve considerable simulation speedups
while maintain the performance in a cycle-accurate manner.

24

branch misprediction .
long-latency load miss

I I-Cjche miss

time

effective dispatch rate

interval 1 interval 2 interval 3

Figure 9: Interval simulation according to miss events (extracted from [178]).

6.8. Model-driven Simulation

MDE based simulation (simulation based on Model Driven
Engineering) can be used as a powerful alternative for manycore
simulations in future instead of instrumentation-based simula-
tion. Model-Driven Engineering (MDE) is a software devel-
opment methodology that evolved as a paradigm shift from
the object-oriented paradigm (everything is an object), into the
model engineering paradigm (everything is a model) [190]. Cur-
rently, this method is used mostly in the domain of software engi-
neering, programming languages and domain specific languages,
but not in manycore simulation. Applying MDE concepts in the
area of simulation, may lead to a new generation of manycore
simulators which can efficiently cope with multiple challenging
issues, including interoperability (e.g. ability to simulate various
target systems on a fixed host system), multi-model simulation,
simulation speed, design space exploration, etc.

In MDE, everything is defined as model and a model basi-
cally is a description of a real system (like a manycore system
including different components such as memory, processing
cores, network and interconnect). In fact, a (real) system is an
instantiation of a model. Each model, in turn, is defined by
another model, so-called metamodel (i.e. the abstract syntax of a
modeling language is specified using another model, describing
the syntactic elements and the relationships existing between
those elements). The Object Management Group (OMG) pro-
posed a four-level metamodeling framework as a standard to
develop modeling languages. In each level, except the bottom
level (MO), there is a model that specifies a set of other models
at the lower level in a recursive way. The MO is the bottom level
of this hierarchy, specifying various real systems (e.g. a memory
component, a processor, different manycore systems). At the
higher level (M1), models (e.g. UML class diagrams) represent
(abstract) these systems. Each model conforms to its metamodel
defined at the upper level (M2). And similarly, metamodels
in level M2 conform to another models, defined at the highest
level (M3), so-called meta-metamodels. Meta-metamodels (e.g.
OMG’s Meta Object Facility (MOF) [191]) are self-descriptive
entities, enabling to confirm to theirself. MDE is able to raise
the level of abstraction in system description/specification (by
using models at the different levels of abstraction) and increase
automation in running (execution or simulation of) a system (by
using code generation and model transformations mechanism).
In other words, the MDE approach promotes the use of models
as first-class entities that need to be constructed, maintained,
executed, and mapped into other models or artifacts by model
transformations.

Overall, MDE covers aspects such as architecture design, code
generation, model transformation and model checking. Model
checking includes techniques to check and ensure the quality
(performance) of the models (e.g. model validation using behav-
ioral properties). Referring to the above-mentioned metamodel
hierarchy, a model-driven manycore simulator can flexibly ex-
plore the design space through specification of unlimited target
systems as different models in different levels of metamodel
hierarchy. Since the descriptions of target models in metamodel
hierarchy is very abstract, the simulator can swiftly check the
functional accuracy of different designed target models, before
going to the detailed simulation of a specific target system. This
can be done through using model checking/validation mecha-
nism provided by MDE approach. Furthermore, using model
transformation languages [192-196], a model-driven simulator
can provide interoperability by means of capability to convert
any desired target models to codes which can be directly ex-
ecuted on the host machine. This means that a MDE-based
simulator can flexibly address platform complexities through
simulation of any desired target system on a fixed host machine
(similar to retargetable DBT, discussed in Section 3.1).

As we discussed above, current Model-Driven Architectures
(MDASs) provide capability for structural metamodeling which
can efficiently be used for functional modeling in manycore
simulators. A recent work [197] in this area introduces the be-
havioral metamodeling to complement the structural metamod-
eling (see Figure 10). This behavioral metamodeling (including
various behaviors described in different levels of metamodel
hierarchy) facilitates to extract behavioral properties of a target
model (target system) during run-time. This allows performance
modeling while functional modeling is performed (see Figure
11). Model-driven simulation can be used as an alternative
for instrumentation-based simulation which extracts the perfor-
mance behavior of the target system by injecting code into the
simulated binary, running on the host machine.

Example
¢ Defines

MOF
Meta Object Model
8
g
—————— B e e e — — — — — — — — &
5
[=}

UML Metamodel

Defines

UML Model
User Model

Real Objects
Instances

Figure 10: An example of both structural and behavioral metamodel hierarchy for
model-driven manycore simulation (note that "Behaviour” entities are specific
for behavioral metamodeling).

6.9. Summary

Overall, the areas open to innovation are manyfold. We do
expect next generation manycore simulators to rely on several of

25

[Perfotmance]

runtime behaviours

L 1 1

Model Execution
Functiona

Input Output
— Structural Behavioural '\ >
Target Metamodels Metamodels
Models

Figure 11: Extracting behavioral properties of a target model (target system)
during run-time.

the aforementioned techniques to reach the required performance
and complexity management of future simulations. Global tech-
nology development, and specially the specific development we
will see in manycore systems, and its associated market, will
determine the relevance of each of these simulation techniques
in the future manycore simulations that will handle peta-scale
computing systems.

7. Acknowledgment

The authors acknowledge the support of project FP7-ICT-
2009.8.1, Grant Agreement No.248465, Service-oriented Oper-
ating Systems (S[0]OS, 2010-2013) [203-211] and of project
Cloud Thinking (2013-2015), CENTRO-07-ST24-FEDER-
002031 [212]. We advocate for the research community to
develop a collective effort for a community integrated S[0]OS
environment, along the lines here discussed.

References

[1] Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida. Develop-
ment of a high performance eigensolver on the petascale next generation
supercomputer system. In Proceedings of Joint International Confer-
ence on Supercomputing in Nuclear Applications and Monte Carlo 2010
(SNA+ MC2010), 2010.

[2] Can-qun Yang, Qiang Wu, Tao Tang, Feng Wang, and Jing-ling Xue. Pro-
gramming for scientific computing on peta-scale heterogeneous parallel
systems. Journal of Central South University, 20(5):1189-1203, 2013.

[3] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer. Quick

performance models quickly: Closely-coupled partitioned simulation on

fpgas. In Performance Analysis of Systems and software, 2008. ISPASS

2008. IEEE International Symposium on, pages 1-10, April 2008.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar

Krishna, and Somayeh Sardashti. The gem5 simulator. 39:1-7, 2011.

[5] Nikolaos Hardavellas, Stephen Somogyi, Thomas F Wenisch, Roland E

Wunderlich, Shelley Chen, Jangwoo Kim, Babak Falsafi, James C Hoe,

and Andreas G Nowatzyk. Simflex: A fast, accurate, flexible full-system

simulation framework for performance evaluation of server architecture.

ACM SIGMETRICS Performance Evaluation Review, 31(4):31-34, 2004.

Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. Marss: a

full system simulator for multicore x86 cpus. In Proceedings of the 48th

Design Automation Conference, pages 1050-1055. ACM, 2011.

[7] Jian Lu, Hongwei Jia, Andres Arias, Xun Gong, and Z John Shen. On-
chip bondwire transformers for power soc applications. In Applied Power
Electronics Conference and Exposition, 2008. APEC 2008. Twenty-Third
Annual IEEE, pages 199-204. IEEE, 2008.

[4

[inar)

[6

[t}

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Daniele Bortolotti, Christian Pinto, Andrea Marongiu, Martino Ruggiero,
and Luca Benini. Virtualsoc: A full-system simulation environment
for massively parallel heterogeneous system-on-chip. In Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International, pages 2182-2187. IEEE, 2013.

T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for
computer system modeling. Computer, 35(2):59-67, feb 2002.
Gengbin Zheng, Gunavardhan Kakulapati, and L.V. Kale. Bigsim: a
parallel simulator for performance prediction of extremely large parallel
machines. In Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, pages 78—, April 2004.

J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for
multicores. In High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, pages 1-12, jan. 2010.

Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, page 52.
ACM, 2011.

Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate mi-
croarchitectural simulation of thousand-core systems. In ACM SIGARCH
Computer Architecture News, volume 41, pages 475-486. ACM, 2013.
Yaosheng Fu and D. Wentzlaff. Prime: A parallel and distributed sim-
ulator for thousand-core chips. In Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on, pages
116-125, March 2014.

Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-system timing-
first simulation. SIGMETRICS Perform. Eval. Rev., 30(1):108-116, June
2002.

D.A. Penry. A single-specification principle for functional-to-timing
simulator interface design. In Performance Analysis of Systems and
Software (ISPASS), 2011 IEEE International Symposium on, pages 186—
196, April 2011.

Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil Patil, William H.
Reinhart, D. Eric Johnson, and Zheng Xu. The fast methodology for high-
speed soc/computer simulation. In Proceedings of the 2007 IEEE/ACM
International Conference on Computer-aided Design, ICCAD ’07, pages
295-302, Piscataway, NJ, USA, 2007. IEEE Press.

Eric Schnarr and James R. Larus. Fast out-of-order processor simulation
using memoization. SIGPLAN Not., 33(11):283-294, October 1998.
G.H. Loh, S. Subramaniam, and Yuejian Xie. Zesto: A cycle-level simu-
lator for highly detailed microarchitecture exploration. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pages 53—-64, April 2009.

S. Fytraki and D. Pnevmatikatos. Resim, a trace-driven, reconfigurable
ilp processor simulator. In Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., pages 536541, April 2009.

Zhenman Fang, Qinghao Min, Keyong Zhou, Yi Lu, Yibin Hu, Weihua
Zhang, Haibo Chen, Jian Li, and Binyu Zang. Transformer: A functional-
driven cycle-accurate multicore simulator. In Proceedings of the 49th
Annual Design Automation Conference, DAC ’12, pages 106—114, New
York, NY, USA, 2012. ACM.

J. Donald and M. Martonosi. An efficient, practical parallelization
methodology for multicore architecture simulation. /EEE Computer
Architecture Letters, 5(2):14—14, July 2006.

Eduardo Argollo, Ayose Falc6n, Paolo Faraboschi, Matteo Monchiero,
and Daniel Ortega. Cotson: infrastructure for full system simulation.
SIGOPS Oper. Syst. Rev., 43(1):52-61, January 2009.

Roberto Giorgi. Teraflux: Exploiting dataflow parallelism in teradevices.
In Proceedings of the 9th Conference on Computing Frontiers, CF *12,
pages 303-304, New York, NY, USA, 2012. ACM.

Naveen Neelakantam, Colin Blundell, Joe Devietti, Milo MK Martin,
and Craig Zilles. Fes2: A full-system execution-driven simulator for x86.
Poster presented at ASPLOS, 2008:6, 2008.

Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.
Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and
David A. Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Comput. Archit. News, 33(4):92-99,
November 2005.

Robert C. Bedichek. Talisman: Fast and accurate multicomputer simula-

26

(28]

[29]

[30]

[33]

[34]

[35]

[36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

tion. SIGMETRICS Perform. Eval. Rev., 23(1):14-24, May 1995.

Pablo Montesinos Ortego and Paul Sack. Sesc: Superescalar simulator.
In 17 th Euro micro conference on real time systems (ECRTS’05), pages
1-4, 2004.

N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K.
Reinhardt. The mS5 simulator: Modeling networked systems. Micro,
IEEE, 26(4):52-60, July 2006.

Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the annual conference on USENIX Annual Technical
Conference, ATEC ’05, pages 41-41, Berkeley, CA, USA, 2005. USENIX
Association.

Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible
machine simulation. SIGMETRICS Perform. Eval. Rev., 24(1):68-79,
May 1996.

Patrick Bohrer, James Peterson, Mootaz Elnozahy, Ram Rajamony,
Ahmed Gheith, Ron Rockhold, Charles Lefurgy, Hazim Shafi, Tarun
Nakra, Rick Simpson, Evan Speight, Kartik Sudeep, Eric Van Hensber-
gen, and Lixin Zhang. Mambo: A full system simulator for the powerpc
architecture. SIGMETRICS Perform. Eval. Rev., 31(4):8-12, March 2004.
Robert Bedichek. Simnow: Fast platform simulation purely in software.
In Hot Chips, volume 16, 2004.

P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. Computer, 35(2):50-58, Feb 2002.

Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A.
Herrod. Using the simos machine simulator to study complex computer
systems. ACM Trans. Model. Comput. Simul., 7(1):78-103, January
1997.

C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve. Rsim: simulating
shared-memory multiprocessors with ilp processors. Computer, 35(2):40—
49, feb 2002.

Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and
William E. Weihl. Proteus: A high-performance parallel-architecture
simulator. SIGMETRICS Perform. Eval. Rev., 20(1):247-248, June 1992.
Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching
Chung. Pgemu: A parallel system emulator based on gemu. In Par-
allel and Distributed Systems (ICPADS), 2011 IEEE 17th International
Conference on, pages 276-283, Dec 2011.

Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua Zhang,
and Binyu Zang. Coremu: A scalable and portable parallel full-system
emulator. SIGPLAN Not., 46(8):213-222, February 2011.

Kun Wang, Yu Zhang, Huayong Wang, and Xiaowei Shen. Parallelization
of ibm mambo system simulator in functional modes. SIGOPS Oper. Syst.
Rev., 42(1):71-76, January 2008.

R Lantz. Fast functional simulation with parallel embra. In Proceedings
of the 4th Annual Workshop on Modeling, Benchmarking and Simulation.
Citeseer, 2008.

Shobhit Kanaujia, Irma Esmer Papazian, Jeff Chamberlain, and Jeff
Baxter. Fastmp: A multi-core simulation methodology. In Workshop on
Modeling, Benchmarking and Simulation (MoBS 2006), 2006.

Jianwei Chen, Murali Annavaram, and Michel Dubois. Slacksim: a
platform for parallel simulations of cmps on cmps. SIGARCH Comput.
Archit. News, 37(2):20-29, July 2009.

Shubhendu S Mukherjee, Steven K Reinhardt, Babak Falsafi, Mike
Litzkow, Steven Huss-Lederman, Mark D Hill, James R Larus, and
David A Wood. Fast and portable parallel architecture simulators: Wis-
consin wind tunnel ii. /EEE Concurrency, 8(4):12-20, 2000.
Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike
Litzkow, Steve Huss-Lederman, Mark D. Hill, James R. Larus, and
David A. Wood. Wisconsin wind tunnel ii: A fast and portable parallel
architecture simulator. In Workshop on Performance Analysis and Its
Impact on Design, Denver, Co, June 1997. ACM.

Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. Cmp $
im: A pin-based on-the-fly multi-core cache simulator. In Proceedings of
the Fourth Annual Workshop on Modeling, Benchmarking and Simulation
(MoBS), co-located with ISCA, pages 28-36, 2008.

T.E. Wenisch, R.E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and
J.C. Hoe. Simflex: Statistical sampling of computer system simulation.
Micro, IEEE, 26(4):18-31, July 2006.

Wim Heirman, Trevor Carlson, and Lieven Eeckhout. Sniper: scal-
able and accurate parallel multi-core simulation. In 8th International

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Summer School on Advanced Computer Architecture and Compilation
for High-Performance and Embedded Systems (ACACES-2012), pages
91-94. High-Performance and Embedded Architecture and Compilation
Network of Excellence (HIPEAC), 2012.

Gabriele D’ Angelo and Moreno Marzolla. New trends in parallel and
distributed simulation: From many-cores to cloud computing. Simulation
Modelling Practice and Theory, 49:320 — 335, 2014.

Richard M Fujimoto. Parallel discrete event simulation. Communications
of the ACM, 33(10):30-53, 1990.

Pengju Ren, M. Lis, Myong Hyon Cho, Keun Sup Shim, C.W. Fletcher,
O. Khan, Nanning Zheng, and S. Devadas. Hornet: A cycle-level mul-
ticore simulator. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 31(6):890-903, June 2012.

Jianwei Xu, Mingyu Chen, Gui Zheng, Zheng Cao, Huiwei Lv, and
Ninghun Sun. Simk: a parallel simulation engine towards shared-
memory multiprocessor. Journal of Computer Science and Technology,
24(6):1048-1060, 2009.

Richard M. Fujimoto. Parallel discrete event simulation. Commun. ACM,
33(10):30-53, October 1990.

R. Curry, C. Kiddle, R. Simmonds, and B. Unger. Sequential performance
of asynchronous conservative pdes algorithms. In Principles of Advanced
and Distributed Simulation, 2005. PADS 2005. Workshop on, pages 217—
226, June 2005.

Richard M. Fujimoto. Parallel and Distribution Simulation Systems. John
Wiley and Sons, Inc., New York, NY, USA, Ist edition, 1999.

David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,
7(3):404-425, July 1985.

K.M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. Software Engineering,
IEEE Transactions on, SE-5(5):440-452, Sept 1979.

Jun Wang, Zhenjiang Dong, Sudhakar Yalamanchili, and George Ri-
ley. Optimizing parallel simulation of multicore systems using domain-
specific knowledge. In Proceedings of the 2013 ACM SIGSIM conference
on Principles of advanced discrete simulation, pages 127-136. ACM,
2013.

Jun Wang, Jesse Beu, Rishiraj Bheda, Tayana Conte, Zhenjiang Dong,
Chad Kersey, Mitchelle Rasquinha, George Riley, Wanjuan Song,
He Xiao, et al. Manifold: A parallel simulation framework for multicore
systems. In Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, pages 106-115. IEEE, 2014.
Jainwei Chen, L. Kumar Dabbiru, D. Wong, M. Annavaram, and Michel
Dubois. Adaptive and speculative slack simulations of cmps on cmps. In
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International
Symposium on, pages 523-534, Dec 2010.

Yanyong Mongkolsin and Worawan Marurngsith. P-hase: An efficient
synchronous pdes tool for creating scalable simulations. In Tianyuan
Xiao, Lin Zhang, and Minrui Fei, editors, AsiaSim 2012, Communications
in Computer and Information Science, pages 231-245. Springer Berlin
Heidelberg, 2012.

R. Rajan and P.A. Wilsey. Dynamically switching between lazy and
aggressive cancellation in a time warp parallel simulator. In Simulation
Symposium, 1995., Proceedings of the 28th Annual, pages 22-30, Apr
1995.

Avinash C Palaniswamy, Sandeep Aji, and Philip A Wilsey. An efficient
implementation of lazy reevaluation. In Proceedings of the 25th annual
symposium on Simulation, pages 140-146. IEEE Computer Society Press,
1992.

Ranjit Noronha and Nael B. Abu-Ghazaleh. Early cancellation: An
active nic optimization for time-warp. In Proceedings of the Sixteenth
Workshop on Parallel and Distributed Simulation, PADS ’02, pages 43—
50, Washington, DC, USA, 2002. IEEE Computer Society.

Robert Pavel. Simulation methodology and tools for the development of
novel program execution models and architectures. PhD thesis, University
of Delaware, 2015.

Duane Ball and Susan Hoyt. The adaptive time-warp concurrency control
algorithm. In Proceedings of the SCS Multiconference on Distributed
Simulation, volume 22, pages 174-177, 1990.

A.W. Malik, A. Park, and R.M. Fujimoto. Optimistic synchronization
of parallel simulations in cloud computing environments. In Cloud
Computing, 2009. CLOUD ’09. IEEE International Conference on, pages
49-56, Sept 2009.

27

[68]

[69]

[70]

(711

[72]

(73]

[74]

(751

[76]

[(77]

[78]

(791

[80]

[81]

[82]

[83]

[84]

[85]

G. Malhotra, P. Aggarwal, A. Sagar, and S.R. Sarangi. Partejas: A parallel
simulator for multicore processors. In Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on, pages
130-131, March 2014.

Jung Ho Ahn, Sheng Li, O. Seongil, and N.P. Jouppi. Mcsima+: A many-
core simulator with application-level+ simulation and detailed microar-
chitecture modeling. In Performance Analysis of Systems and Software
(ISPASS), 2013 IEEE International Symposium on, pages 74-85, April
2013.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck,
James C. Lewis, and David A. Wood. The wisconsin wind tunnel: Virtual
prototyping of parallel computers. SIGMETRICS Perform. Eval. Rev.,
21(1):48-60, June 1993.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. SIGPLAN Not., 40(6):190-200, June 2005.

Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R. Nair, Mauricio
Breternitz, Zhiwei Ying, and Youfeng Wu. Stardbt: An efficient multi-
platform dynamic binary translation system. In Proceedings of the 12th
Asia-Pacific Conference on Advances in Computer Systems Architecture,
ACSAC’07, pages 4-15, Berlin, Heidelberg, 2007. Springer-Verlag.
Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infras-
tructure for adaptive dynamic optimization. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, CGO ’03, pages 265-275, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skalet-
sky, Yun Wang, and Yigel Zemach. Ia-32 execution layer: A two-phase
dynamic translator designed to support ia-32 applications on itanium®-
based systems. In Proceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 36, pages 191—, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman
Rubin, Tony Tye, S. Bharadwaj Yadavalli, and John Yates. Fx!32: A
profile-directed binary translator. JEEE Micro, 18(2):56-64, March 1998.
Rimas Avizienis, Yunsup Lee, and Andrew Waterman. Ramp gold: A
high-throughput fpga-based manycore simulator. In The 4th Workshop
on Architectural Research Prototyping, Austin, TX, 2009.

Thorsten Grotker. System Design with SystemC. Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

Shivani Raghav, Andrea Marongiu, Christian Pinto, David Atienza, Mar-
tino Ruggiero, and Luca Benini. Full system simulation of many-core
heterogeneous socs using gpu and gemu semihosting. In Proceedings of
the 5th Annual Workshop on General Purpose Processing with Graphics
Processing Units, GPGPU-5, pages 101-109, New York, NY, USA, 2012.
ACM.

S. Raghav, M. Ruggiero, A. Marongiu, C. Pinto, D. Atienza, and
L. Benini. Gpu acceleration for simulating massively parallel many-
core platforms. Parallel and Distributed Systems, IEEE Transactions on,
26(5):1336-1349, May 2015.

E.S. Chung, E. Nurvitadhi, J.C. Hoe, B. Falsafi, and Ken Mai. Protoflex:
Fpga-accelerated hybrid functional simulator. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pages
1-6, March 2007.

M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer. Hasim: Fpga-
based high-detail multicore simulation using time-division multiplexing.
In High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, pages 406417, feb. 2011.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. SIGPLAN
Not., 37(10):45-57, October 2002.

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. Smarts: Accelerating microarchitecture simulation via rigorous
statistical sampling. SIGARCH Comput. Archit. News, 31(2):84-97, May
2003.

Ayose Falcon, Paolo Faraboschi, and Daniel Ortega. Combining sim-
ulation and virtualization through dynamic sampling. In Performance
Analysis of Systems & Software, 2007. ISPASS 2007. IEEE International
Symposium on, pages 72-83. IEEE, 2007.

T. E. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. Statistical

[86]

[87]

[88]

[89]

[90]

(911

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

sampling of microarchitecture simulation. In Proceedings 20th IEEE
International Parallel Distributed Processing Symposium, pages 8 pp.—,
April 2006.

Joshua J Yi, Lieven Eeckhout, David J Lilja, Brad Calder, Lizy Kurian
John, and James E Smith. The future of simulation: A field of dreams.
Computer, 39(11):22-29, 2006.

Joshua J Yi, Sreekumar V Kodakara, Resit Sendag, David J Lilja, and
Douglas M Hawkins. Characterizing and comparing prevailing simulation
techniques. In High-Performance Computer Architecture, 2005. HPCA-
11. 11th International Symposium on, pages 266-277. IEEE, 2005.
John Scott Robin and Cynthia E. Irvine. Analysis of the intel pentium’s
ability to support a secure virtual machine monitor. In Proceedings of the
9th conference on USENIX Security Symposium - Volume 9, SSYM’00,
pages 10-10, Berkeley, CA, USA, 2000. USENIX Association.

Diego Lugones, Emilio Luque, Daniel Franco, Juan C Moure, Dolores
Rexachs, Paolo Faraboschi, Daniel Ortega, Galo Gimenez, and Ayose Fal-
con. Initial studies of networking simulation on cotson, 2009. Accessed:
2013-07-10.

Ayose Falcon, Paolo Faraboschi, and Daniel Ortega. An adaptive syn-
chronization technique for parallel simulation of networked clusters. In
Performance Analysis of Systems and software, 2008. ISPASS 2008. IEEE
International Symposium on, pages 22-31. IEEE, 2008.

Marinho P. Barcellos, Rodolfo S. Antunes, Hisham H. Muhammad, and
Ruthiano S. Munaretti. Beyond network simulators: Fostering novel
distributed applications and protocols through extendible design. Journal
of Network and Computer Applications, 35(1):328 — 339, 2012. Collabo-
rative Computing and Applications.

Dave Nellans, Vamshi Krishna Kadaru, and Erik Brunv. Asim- an asyn-
chronous architectural level simulator abstract, 2004.

V. Puente, J.A. Gregorio, and R. Beivide. Sicosys: an integrated frame-
work for studying interconnection network performance in multiprocessor
systems. In Parallel, Distributed and Network-based Processing, 2002.
Proceedings. 10th Euromicro Workshop on, pages 15-22, 2002.

Pablo Montesinos Ortego and Paul Sack. Sesc: Superescalar simulator.
Technical report, 2004.

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. Statistical sampling of microarchitecture simulation. ACM Trans.
Model. Comput. Simul., 16(3):197-224, July 2006.

Fabrizio Fazzino, Maurizio Palesi, and Davide Patti. Noxim-noc simula-
tor. Online:http:/fnoxim. sourceforge. net, 2010.

Keita Nakajima, Takuji Hieda, Ittetsu Taniguchi, Hiroyuki Tomiyama,
and Hiroaki Takada. A fast network-on-chip simulator with gemu and
systemc. In Networking and Computing (ICNC), 2012 Third International
Conference on, pages 298-301. IEEE, 2012.

Antoni Portero, Ramon Pla, and Jordi Carrabina. Systemc implemen-
tation of a noc. In 2005 IEEE International Conference on Industrial
Technology, pages 1132-1135. IEEE, 2005.

Song Chai, Chang Wu, Yubai Li, and Zhongming Yang. A noc simulation
and verification platform based on systemc. In Computer Science and
Software Engineering, 2008 International Conference on, volume 3,
pages 423-426. IEEE, 2008.

Ye-ting Li and Li-ping Liang. A noc modeling and simulating method
with systemc. Microelectronic & Computer, pages 78-82, 2010.

Xu Ningyi, Leng Xianglun, Liu Renfei, and Zhou Zucheng. A systemc-
based noc simulation framework supporting heterogeneous communica-
tors. In 2005 6th International Conference on ASIC, volume 2, pages
1032-1035. IEEE, 2005.

Jaison Valmor Bruch, Magnos Roberto Pizzoni, and Cesar Albenes Ze-
ferino. Brownpepper: A systemc-based simulator for performance evalua-
tion of networks-on-chip. In 2009 17th IFIP International Conference on
Very Large Scale Integration (VLSI-SoC), pages 223-226. IEEE, 2009.
M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini.
Xpipes: A latency insensitive parameterized network-on-chip architecture
for multi-processor socs. In Computer Design (ICCD), 2012 IEEE 30th
International Conference on, pages 4548, Sept 2012.

Shajulin Benedict. Energy-aware performance analysis methodologies
for {HPC} architectures - an exploratory study. Journal of Network and
Computer Applications, 35(6):1709 — 1719, 2012.

R. Rao, S. Vrudhula, and K. Berezowski. Analytical results for design
space exploration of multi-core processors employing thread migration.
In Low Power Electronics and Design (ISLPED), 2008 ACM/IEEE Inter-

28

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

national Symposium on, pages 229-232, aug. 2008.

B. Wojciechowski, K.S. Berezowski, P. Patronik, and J. Biernat. Fast and
accurate thermal simulation and modelling of workloads of many-core
processors. In Thermal Investigations of ICs and Systems (THERMINIC),
2011 17th International Workshop on, pages 1-6, sept. 2011.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimizations. SIGARCH
Comput. Archit. News, 28(2):83-94, May 2000.

N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye.
Energy-driven integrated hardware-software optimizations using simple-
power. SIGARCH Comput. Archit. News, 28(2):95-106, May 2000.
Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, N. Vi-
jaykrishnan, Mahmut Kandemir, Tao Li, and Lizy Kurian John. Using
complete machine simulation for software power estimation: The soft-
watt approach. In Proceedings of the 8th International Symposium on
High-Performance Computer Architecture, HPCA *02, pages 141—, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

Gilberto Contreras, Margaret Martonosi, Jinzhang Peng, Guei-Yuan Lueh,
and Roy Ju. The xtrem power and performance simulator for the intel
xscale core: Design and experiences. ACM Trans. Embed. Comput. Syst.,
6(1), February 2007.

Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and S. Malik. Orion: a
power-performance simulator for interconnection networks. In Microar-
chitecture, 2002. (MICRO-35). Proceedings. 35th Annual IEEE/ACM
International Symposium on, pages 294-305, 2002.

A.B. Kahng, Bin Li, Li-Shiuan Peh, and K. Samadi. Orion 2.0: A power-
area simulator for interconnection networks. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 20(1):191-196, Jan 2012.

Sheng Li, Jung Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and
N.P. Jouppi. Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Microarchitec-
ture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium
on, pages 469-480, Dec 2009.

A. Flores, J.L. Aragon, and M.E. Acacio. Sim-powercmp: A detailed
simulator for energy consumption analysis in future embedded cmp archi-
tectures. In Advanced Information Networking and Applications Work-
shops, 2007, AINAW °07. 21st International Conference on, volume 1,
pages 752—757, may 2007.

Dam Sunwoo, G.Y. Wu, N.A. Patil, and D. Chiou. Presto: An fpga-
accelerated power estimation methodology for complex systems. In
Field Programmable Logic and Applications (FPL), 2010 International
Conference on, pages 310-317, Aug 2010.

Wim Heirman, Souradip Sarkar, Trevor E. Carlson, Ibrahim Hur, and
Lieven Eeckhout. Power-aware multi-core simulation for early design
stage hardware/software co-optimization. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, PACT *12, pages 3—12, New York, NY, USA, 2012. ACM.
Shah Mohammad Faizur Rahman, Qing Yi, and Houman Homayoun. Just-
in-time component-wise power and thermal modeling. In Proceedings of
the 12th ACM International Conference on Computing Frontiers, CF ’15,
pages 2:1-2:8, New York, NY, USA, 2015. ACM.

Antonio Lagana, Alessandro Costantini, Osvaldo Gervasi, Noelia Faginas
Lago, Carlo Manuali, and Sergio Rampino. Compchem: progress towards
gems a grid empowered molecular simulator and beyond. Journal of
Grid Computing, 8(4):571-586, 2010.

Neelam Saboo, Arun Kumar Singla, Joshua Mostkoff Unger, and
Laxmikant V. Kalé. Emulating petaflops machines and blue gene. In
Proceedings of the 15th International Parallel &Amp; Distributed Pro-
cessing Symposium, IPDPS °01, pages 195—, Washington, DC, USA,
2001. IEEE Computer Society.

Terry L Wilmarth and Laxmikant V Kale. Pose: Getting over grainsize
in parallel discrete event simulation. In Parallel Processing, 2004. ICPP
2004. International Conference on, pages 12-19. IEEE, 2004.

Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: A
generic framework for large-scale distributed experiments. In Computer
Modeling and Simulation, 2008. UKSIM 2008. Tenth International Con-
ference on, pages 126—131. IEEE, 2008.

Brad Penoff, Alan Wagner, Michael Tuxen, and Irene Rungeler. Mpi-
netsim: A network simulation module for mpi. In Parallel and Distributed
Systems (ICPADS), 2009 15th International Conference on, pages 464—
471. IEEE, 2009.

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco
Menichelli, and Mauro Olivieri. Mparm: Exploring the multi-processor
soc design space with systemc. Journal of VLSI signal processing systems
for signal, image and video technology, 41(2):169-182, 2005.

Jason Cong, Karthik Gururaj, Guoling Han, Adam Kaplan, Mishali Naik,
and Glenn Reinman. Mc-sim: An efficient simulation tool for mpsoc
designs. In Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design, pages 364-371. IEEE Press, 2008.

Jerome Chevalier, Olivier Benny, Mathieu Rondonneau, Guy Bois,
El Mostapha Aboulhamid, and F-R Boyer. Space: a hardware/software
systemc modeling platform including an rtos. 2003.

Marius Monton, Antoni Portero, Marc Moreno, Borja Martinez, and Jordi
Carrabina. Mixed sw/systemc soc emulation framework. In 2007 IEEE
International Symposium on Industrial Electronics, pages 2338-2341.
IEEE, 2007.

Claude Helmstetter and Vania Joloboff. Simsoc: A systemc tm integrated
iss for full system simulation. In Circuits and Systems, 2008. APCCAS
2008. IEEFE Asia Pacific Conference on, pages 1759—1762. IEEE, 2008.
Daniel D Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, and
Shuging Zhao. SpecC: specification language and methodology. Springer
Science & Business Media, 2012.

Richard Buchmann, F Pétrot, and A Greiner. Fast cycle accurate simulator
to simulate event-driven behavior. In Electrical, Electronic and Computer
Engineering, 2004. ICEEC’04. 2004 International Conference on, pages
35-38. IEEE, 2004.

Jason Cong, Karthik Gururaj, Guoling Han, Adam Kaplan, Mishali Naik,
and Glenn Reinman. Mc-sim: An efficient simulation tool for mpsoc
designs. In Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD ’08, pages 364-371, Piscataway, NJ,
USA, 2008. IEEE Press.

Tse-Chen Yeh and Ming-Chao Chiang. On the interfacing between gemu
and systemc for virtual platform construction: Using dma as a case.
Journal of Systems Architecture, 58(3):99-111, 2012.

Davide Quaglia, Franco Fummi, Maurizio Macrina, and Saul Saggin.
Timing aspects in gemu/systemc synchronization. In Proc. of the Int.
QEMU Users’ Forum, pages 11-14, 2011.

Ming-Chao Chiang, Tse-Chen Yeh, and Guo-Fu Tseng. A gemu and
systemc-based cycle-accurate iss for performance estimation on soc de-
velopment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(4):593-606, 2011.

Tse-Chen Yeh, Guo-Fu Tseng, and Ming-Chao Chiang. A fast cycle-
accurate instruction set simulator based on gemu and systemc for soc
development. In MELECON 2010-2010 15th IEEE Mediterranean Elec-
trotechnical Conference, pages 1033—1038. IEEE, 2010.

Markus Becker, Henning Zabel, and Wolfgang Miiller. Qemu/systemc
cosimulation at different abstraction levels. In Ist International QEMU
Users Forum, volume 32, 2011.

Tse-Chen Yeh and Ming-Chao Chiang. On the interface between gemu
and systemc for hardware modeling. In 2010 International Symposium
on Next Generation Electronics, pages 73-76. IEEE, 2010.

Daniele Bortolotti, Andrea Marongiu, and Luca Benini. Virtualsoc: A
research tool for modern mpsocs. ACM Trans. Embed. Comput. Syst.,
16(1):3:1-3:27, October 2016.

Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald,
Nathan Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agar-
wal. Graphite: A distributed parallel simulator for multicores. In High
Performance Computer Architecture (HPCA), 2010 IEEE 16th Interna-
tional Symposium on, pages 1-12. IEEE, 2010.

Shuai Jiao, Da Wang, Xiaochun Ye, Weizhi Xu, Hao Zhang, and Ninghui
Sun. Partitionsim: A parallel simulator for many-cores. In High Perfor-
mance Computing and Communication & 2012 IEEE 9th International
Conference on Embedded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on, pages 119-126. IEEE, 2012.
George Kurian, Sabrina M Neuman, George Bezerra, Anthony Giov-
inazzo, Srinivas Devadas, and Jason E Miller. Power modeling and other
new features in the graphite simulator. In Performance Analysis of Sys-
tems and Software (ISPASS), 2014 IEEE International Symposium on,
pages 132-134. IEEE, 2014.

Shafagh Jafer, Qi Liu, and Gabriel Wainer. Synchronization methods in
parallel and distributed discrete-event simulation. Simulation Modelling
Practice and Theory, 30(0):54 — 73, 2013.

29

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Huiwei Lv, Yuan Cheng, Lu Bai, Mingyu Chen, Dongrui Fan, and
Ninghui Sun. P-gas: Parallelizing a cycle-accurate event-driven many-
core processor simulator using parallel discrete event simulation. In
Principles of Advanced and Distributed Simulation (PADS), 2010 IEEE
Workshop on, pages 1-8, may 2010.

Zheng Cao, Jianwei Xu, Mingyu Chen, Gui Zheng, Huiwei Lv, and
Ninghui Sun. Hppnetsim: a parallel simulation of large-scale inter-
connection networks. In Proceedings of the 2009 Spring Simulation
Multiconference, SpringSim *09, pages 32:1-32:8, San Diego, CA, USA,
2009. Society for Computer Simulation International.

Edgar A. Leodn, Rolf Riesen, Arthur B. Maccabe, and Patrick G. Bridges.
Instruction-level simulation of a cluster at scale. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, SC *09, pages 3:1-3:12, New York, NY, USA, 2009. ACM.

R Ubal, J Sahuquillo, S Petit, and P Lépez. Multi2sim: A simulation
framework to evaluate multicore-multithread processors. In IEEE 19th In-
ternational Symposium on Computer Architecture and High Performance
computing, page (s), pages 62—68, 2007.

William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing
Lusk, Bill Nitzberg, William Saphir, and Marc Snir. MPI - The Complete
Reference: The MPI-2 Extensions, volume 2. MIT Press, Cambridge,
MA, 1998.

Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry
Cook, David Patterson, and Krste Asanovi¢. Ramp gold: an fpga-based
architecture simulator for multiprocessors. In Proceedings of the 47th
Design Automation Conference, DAC *10, pages 463468, New York,
NY, USA, 2010. ACM.

Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste
Asanovi¢, and David Patterson. A case for fame: Fpga architecture
model execution. SIGARCH Comput. Archit. News, 38(3):290-301, June
2010.

D. Chiou, Dam Sunwoo, Joonsoo Kim, N.A. Patil, W. Reinhart, D.E.
Johnson, J. Keefe, and H. Angepat. Fpga-accelerated simulation tech-
nologies (fast): Fast, full-system, cycle-accurate simulators. In Microar-
chitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International
Symposium on, pages 249-261, dec. 2007.

Eric S. Chung, Eriko Nurvitadhi, James C. Hoe, Babak Falsafi, and Ken
Mai. Protoflex: Fpga-accelerated hybrid functional simulation. Technical
report, 2007.

N. Agarwal, T. Krishna, Li-Shiuan Peh, and N.K. Jha. Garnet: A detailed
on-chip network model inside a full-system simulator. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, pages 33—42, April 2009.

Jean-Michel Berge, Alain Fonkoua, Serge Maginot, and Jacques Rouil-
lard. Verilog and vhdl, 1992.

P. Mishra and N. Dutt. Architecture description languages for pro-
grammable embedded systems. Computers and Digital Techniques, IEE
Proceedings -, 152(3):285-297, may 2005.

Eric M Dashofy, André Van der Hoek, and Richard N Taylor. A highly-
extensible, xml-based architecture description language. In Software
Architecture, 2001. Proceedings. Working IEEEJIFIP Conference on,
pages 103-112. IEEE, 2001.

Barnes Christopher and Jaechwan John Lee. A dynamically configurable
discrete event simulation framework for many-core chip multiprocessors.
2015.

James Michael Schmidt. Towards many-core processor simulation on
cloud computing platforms. Master’s thesis, PURDUE UNIVERSITY,
USA, july-aug. 2011.

Jan Kuper, Christiaan Baaij, Matthijs Kooijman, and Marco Gerards.
Exercises in architecture specification using cdash. In Proceedings of
Forum on Specification and Design Languages, FDL 2010, pages 178—
183, Giéres, France, September 2010. ECSI Electronic Chips & Systems
design Initiative.

R. Wester, C.P.R. Baaij, and J. Kuper. A two step hardware design method
using cAash. In 22nd International Conference on Field Programmable
Logic and Applications, FPL 2012, pages 181-188. IEEE Computer
Society, August 2012.

Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and
Marco Gerards. CAash: Structural descriptions of synchronous hardware
using haskell. In Proceedings of the 13th EUROMICRO Conference on
Digital System Design: Architectures, Methods and Tools, pages 714-721.

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

IEEE Computer Society, September 2010.

Lieven Eeckhout and Koen De Bosschere. Speeding up architec-
tural simulations for high-performance processors. SIMULATION-
TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMU-
LATION INTERNATIONAL, 80(9):451-468, 2004.

Benard Xypolitidis, Rudin Shabani, Satej V Khandeparkar, Zain Ul-
Abdin, Tomas Nordstr, et al. Towards architectural design space ex-
ploration for heterogeneous manycores. In 2016 24th Euromicro In-
ternational Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pages 805-810. IEEE, 2016.

Tao Huang, Xue Li, Ting Zhang, and De-Tang Lu. Gpu-accelerated direct
sampling method for multiple-point statistical simulation. Computers &
Geosciences, 57:13-23, 2013.

S. Hassani, G. Southern, and J. Renau. Livesim: Going live with microar-
chitecture simulation. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 606—617, March
2016.

David Meisner, Junjie Wu, and Thomas F Wenisch. Bighouse: A simula-
tion infrastructure for data center systems. In Performance Analysis of
Systems and Software (ISPASS), 2012 IEEE International Symposium on,
pages 35-45. IEEE, 2012.

Lieven Eeckhout, Hans Vandierendonck, and Koen Bosschere. Work-
load design: Selecting representative program-input pairs. In Parallel
Architectures and Compilation Techniques, 2002. Proceedings. 2002
International Conference on, pages 83-94. IEEE, 2002.

Michael Van Biesbrouck, Lieven Eeckhout, and Brad Calder. Representa-
tive multiprogram workloads for multithreaded processor simulation. In
Workload Characterization, 2007. IISWC 2007. IEEE 10th International
Symposium on, pages 193-203. IEEE, 2007.

Maximilien B Breughe and Lieven Eeckhout. Selecting representative
benchmark inputs for exploring microprocessor design spaces. ACM
Transactions on Architecture and Code Optimization (TACO), 10(4):37,
2013.

AJ KleinOsowski, John Flynn, Nancy Meares, and David J. Lilja. Work-
load characterization of emerging computer applications. chapter Adapt-
ing the SPEC 2000 Benchmark Suite for Simulation-based Computer
Architecture Research, pages 83—100. Kluwer Academic Publishers, Nor-
well, MA, USA, 2001.

Irfan Uddin. Design space exploration in the microthreaded many-core
architecture. arXiv preprint arXiv:1309.5551, 2013.

Shin-haeng Kang, Donghoon Yoo, and Soonhoi Ha. Tqsim: A fast cycle-
approximate processor simulator based on qemu. Journal of Systems
Architecture, 2016.

P.D. Bryan, J. A. Poovey, J. G. Beu, and T. M. Conte. Accelerating multi-
threaded application simulation through barrier-interval time-parallelism.
In 2012 IEEE 20th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pages 117-126,
Aug 2012.

Lau Mai Chan and Rajagopalan Srinivasan. A hybrid cpu-graphics
processing unit (gpu) approach for computationally efficient simulation-
optimization. Computers & Chemical Engineering, 2016.

Michael C Fu, Fred W Glover, and Jay April. Simulation optimization:
a review, new developments, and applications. In Proceedings of the
37th conference on Winter simulation, pages 83-95. Winter Simulation
Conference, 2005.

J. Wu, X. Zhu, T. Li, and X. Sui. Wbsp: A novel synchronization
mechanism for architecture parallel simulation. /EEE Transactions on
Computers, 65(3):992-1005, March 2016.

Marcus Eggenberger, Manuel Strobel, and Martin Radetzki. Globally
asynchronous locally synchronous simulation of nocs on many-core
architectures. In 2016 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP), pages 763—
770. IEEE, 2016.

Z.Yu, Y. Chen, Y. Song, and S. Huang. Comparison of parallel imple-
mentations of controls on gpu for transient simulation of power system.
In 2016 35th Chinese Control Conference (CCC), pages 999610001,
July 2016.

N. Belhadj, N. Bahri, Z. Marrakchi, M. A. Ben Ayed, N. Masmoudi, and
H. Mehrez. H.264/avc high definition intra coding implementation on
multiprocessor system on chip technology architecture. IET Computers
Digital Techniques, 9(5):259-267, 2015.

30

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation: Raising
the level of abstraction in architectural simulation. In High Performance
Computer Architecture (HPCA), 2010 IEEE 16th International Sympo-
sium on, pages 1-12, jan. 2010.

Joe H Novak and Erik Brunvand. Using fpgas to prototype a self-timed
floating point co-processor. In Custom Integrated Circuits Conference,
1994., Proceedings of the IEEE 1994, pages 85-88. IEEE, 1994.

Jose Nunez-Yanez and Geza Lore. Enabling accurate modeling of power
and energy consumption in an arm-based system-on-chip. Microproces-
sors and Microsystems, 37(3):319 — 332, 2013.

Abderazek BenA., Yoshinaga Tsutomu, and Sowa Masahiro. High-level
modeling and fpga prototyping of produced order parallel queue processor
core. The Journal of Supercomputing, 38(1):3-15, 2006.

J. Wawrzynek, D. Patterson, M. Oskin, Shin-Lien Lu, C. Kozyrakis,
J.C. Hoe, D. Chiou, and K. Asanovic. Ramp: Research accelerator for
multiple processors. Micro, IEEE, 27(2):46-57, march-april 2007.

A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz.
Ramp blue: A message-passing manycore system in fpgas. In Field
Programmable Logic and Applications, 2007. FPL 2007. International
Conference on, pages 54—61, aug. 2007.

Benjamin C. Lee and David M. Brooks. Accurate and efficient regres-
sion modeling for microarchitectural performance and power prediction.
SIGOPS Oper. Syst. Rev., 40(5):185-194, October 2006.

Reiner Jung, Robert Heinrich, and Wilhelm Hasselbring. Geco: A gen-
erator composition approach for aspect-oriented dsls. In International
Conference on Theory and Practice of Model Transformations, pages
141-156. Springer, 2016.

Meriem Chibani, Brahim Belattar, and Abdelhabib Bourouis. Toward
an aspect-oriented simulation. International Journal of New Computer
Architectures and their Applications (IJNCAA), 3(1):1-10, 2013.

Tudor B Ionescu, Andreas Piater, Walter Scheuermann, and Eckart Lau-
rien. An aspect-oriented approach for the development of complex simu-
lation software. Journal of Object Technology, 9(1):161-181, 2010.
Meriem Chibani, Brahim Belattar, and Abdelhabib Bourouis. The use of
the aspect oriented programming (aop) paradigm in discrete event simu-
lation domain: Overview and perspectives. In The Third International
Conference on Digital Information Processing and Communications,
pages 653-660. The Society of Digital Information and Wireless Com-
munication, 2013.

Meriem Chibani, Brahim Belattar, and Abdelhabib Bourouis. Practi-
cal benefits of aspect-oriented programming paradigm in discrete event
simulation. Modelling and Simulation in Engineering, 2014:47, 2014.
Jean Bézivin. Model Driven Engineering: An Emerging Technical Space,
pages 36—64. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
Robert France and Bernhard Rumpe. Model-driven development of
complex software: A research roadmap. In 2007 Future of Software
Engineering, pages 37-54. IEEE Computer Society, 2007.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A
model transformation tool. Science of computer programming, 72(1):31—
39, 2008.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick
Valduriez. Atl: a qvt-like transformation language. In Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 719-720. ACM, 2006.

Lei Yonglin, Wang Weiping, Li Qun, and Zhu Yifan. A transformation
model from {DEVS} to {SMP2} based on {MDA}. Simulation Modelling
Practice and Theory, 17(10):1690 — 1709, 2009.

Abdurrahman Alshareef, Hessam S. Sarjoughian, and Bahram Zarrin. An
approach for activity-based devs model specification. In Proceedings
of the Symposium on Theory of Modeling & Simulation, TMS-DEVS
’16, pages 25:1-25:8, San Diego, CA, USA, 2016. Society for Computer
Simulation International.

Byunghun Lee, Dae-Kyoo Kim, Hyosik Yang, and Sungsoo Oh. Model
transformation between {OPC} {UA} and {UML}. Computer Standards
and Interfaces, 50:236 — 250, 2017.

Hessam S. Sarjoughian, Abdurrahman Alshareef, and Yonglin Lei. Behav-
ioral devs metamodeling. In Proceedings of the 2015 Winter Simulation
Conference, WSC ’15, pages 2788-2799, Piscataway, NJ, USA, 2015.
IEEE Press.

Heng Hel, Ruixuan Li, Xinhua Dongl, Zhi Zhang, and Hongmu Han. An
efficient and secure cloud-based distributed simulation system. Applied

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

Mathematics and Information Sciences, 6(3):729-736, May 2012.
Georgia Sakellari and George Loukas. A survey of mathematical models,
simulation approaches and testbeds used for research in cloud comput-
ing. Simulation Modelling Practice and Theory, 39(0):92 — 103, 2013.
S.I.Energy efficiency in grids and clouds.

Faruk Caglar, Shashank Shekhar, Aniruddha Gokhale, Satabdi Basu,
Tazrian Rafi, John Kinnebrew, and Gautam Biswas. Cloud-hosted
simulation-as-a-service for high school {STEM} education. Simulation
Modelling Practice and Theory, 58, Part 2:255 — 273, 2015. Special issue
on Cloud Simulation.

Wenhong Tian, Minxian Xu, Aiguo Chen, Guozhong Li, Xinyang Wang,
and Yu Chen. Open-source simulators for cloud computing: Comparative
study and challenging issues. Simulation Modelling Practice and Theory,
58, Part 2:239 — 254, 2015. Special issue on Cloud Simulation.
Bogumit Kamiriski and Przemystaw Szufel. On optimization of simu-
lation execution on amazon {EC2} spot market. Simulation Modelling
Practice and Theory, 58, Part 2:172 — 187, 2015. Special issue on Cloud
Simulation.

Lutz Schubert and Alexander Kipp. Principles of service oriented op-
erating systems. In Pascale Vicat-Blanc Primet, Tomohiro Kudoh, and
Joe Mambretti, editors, Networks for Grid Applications, volume 2 of
Lecture Notes of the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering, pages 56—69. Springer Berlin
Heidelberg, 2009.

The S(0)OS Consortium . S(o)os (service-oriented operating system):
Resource-independent execution support on exa-scale systems. http://
www.soos-project.eu/, 2010-2013. [Online: accessed 5-September-
2014].

Javad Zarrin, Rui L. Aguiar, and Jodo Paulo Barraca. Elcore: Dynamic
elastic resource management and discovery for future large-scale many-
core enabled distributed systems. Microprocessors and Microsystems,
pages —, 2016.

Tommaso Cucinotta. Challenges in operating system design for future
many-core systems. All Hands Meeting (AHM) 2010, Cardiff, UK,
Available at http://retis.sssup.it/~tommaso/presentations/
AHM-2010.pdf, 2010. [Online: accessed 15-April-2016].

Javad Zarrin, Rui L. Aguiar, and Jodo Paulo Barraca. Dynamic, scalable
and flexible resource discovery for large-dimension many-core systems.
Future Generation Computer Systems, 53:119 — 129, 2015.

Lutz Schubert. Dynamicity requirements in future cloud-like in-
frastructures. Invited Speaker, EuroCloud CLASS Conference,
Available athttp://videolectures.net/classconference2012_
schubert_infrastructures/, 2012. [Online: accessed 15-April-
2016].

Javad Zarrin, Rui L. Aguiar, and Joao Paulo Barraca. A self-organizing
and self-configuration algorithm for resource management in service-
oriented systems. In Computers and Communication (ISCC), 2014 IEEE
Symposium on, pages 1-7, June 2014.

Lutz Schubert, Alexander Kipp, and Stefan Wesner. Above the clouds:
From grids to service-oriented operating systems. In Future Internet
Assembly, pages 238249, 2009.

Sunil Kumar, Tommaso Cucinotta, and Giuseppe Lipari. A latency
simulator for many-core systems. In Proceedings of the 44th Annual
Simulation Symposium, ANSS ’11, pages 151-158, San Diego, CA, USA,
2011. Society for Computer Simulation International.

Rui L. Aguiar, Diogo Gomes, JoaoPaulo Barraca, and Nuno Lau. Cloud-
thinking as an intelligent infrastructure for mobile robotics. Wireless
Personal Communications, 76(2):231-244, 2014.

31

http://www.soos-project.eu/
http://www.soos-project.eu/
http://retis.sssup.it/~tommaso/presentations/AHM-2010.pdf
http://retis.sssup.it/~tommaso/presentations/AHM-2010.pdf
http://videolectures.net/classconference2012_schubert_infrastructures/
http://videolectures.net/classconference2012_schubert_infrastructures/
https://www.researchgate.net/publication/312484141

	Introduction
	Simulation and Peta-scale Systems
	Manycore Simulation
	Terminology and Classifications
	Virtual Machines
	Architecture Emulators
	Network on Chip, Thermal and Energy Aspects

	Architecture Simulators
	SimpleScalar
	BigSim
	SystemC
	Graphite
	SimK
	GEMS
	SimFlex
	COTSon
	RAMP-Gold
	Other FPGA-based Simulators
	 GEM5
	 McSimA+
	 ZSim
	 PriME
	Comparison

	Fundamental Simulation Challenges
	System Complexity vs Simulation Capacity
	Performance
	Speed vs Accuracy
	Development Cost
	Design Space
	Simulation Time
	Multi-Model Simulations
	Scalability
	Productivity

	Discussion and Future Directions
	Regression and Analytic Models
	Statistical Simulation
	Acceleration and FPGA-Based Prototyping
	Modularity, Integrability and Aspect-oriented Simulation
	Parallel Simulation
	Cloud-based Simulation
	Raising Level of Abstraction
	Model-driven Simulation
	Summary

	Acknowledgment

