

City, University of London Institutional Repository

Citation: Zarrin, J., Aguiar, R. L. & Barraca, J. P. (2016). ElCore: Dynamic elastic resource

management and discovery for future large-scale manycore enabled distributed systems.
Microprocessors and Microsystems, 46(B), pp. 221-239. doi: 10.1016/j.micpro.2016.06.007

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18148/

Link to published version: https://doi.org/10.1016/j.micpro.2016.06.007

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

ElCore: Dynamic Elastic Resource Management and Discovery for Future Large-Scale
Manycore Enabled Distributed Systems

Javad Zarrin, Rui L. Aguiar, João Paulo Barraca
Javad Zarrin {javad@av.it.pt} Instituto de Telecomunicações - Aveiro. Rui L. Aguiar {ruilaa@ua.pt} Universidade de Aveiro, Portugal. João Paulo

Barraca{jpbarraca@ua.pt} Universidade de Aveiro, Portugal.

Abstract

Large-scale computing environments (such as HPC Clusters, Grids and Clouds) provide a vast number of heterogeneous resources
(such as computing, storage, data and network resources) for the users/machines with various types of accessibility (in terms of
resource, data, service and application). Resource management is one of the most significant underlying challenges for e�cient
resource sharing and utilization in such computing environments. Designing a resource management model which can be applied
and adjusted to the requirements of these di↵erent future complex computing environments is an extra challenge. This paper will
address the problem of resource management for the future large-scale manycore enabled computing environments by focusing on
resource allocation issues. It provides a fully decentralized generic resource management architecture which can be applied to such
distributed environments. Simulation results prove that our resource management scheme is highly scalable and provides a high level
of accuracy for resource allocation which has a significant impact on the overall system performance.

Keywords: Resource Allocation, Manycore, Many-Chip, HPC, Cluster, Grid, Cloud Computing, Scheduling, Resource Discovery,
Resource Utilization

1. Introduction

Modern large-scale distributed computing systems are un-
dergoing with the rapid evolution of processor and network
architectures. And they have made possible: i) the integration
of more and more cores into one single chip; ii) many-chips
being interconnected into a single machine; iii) more and more
machines getting connected with highly increasing bandwidth.
This leads to the emergence of the next generation of manycore
enabled large-scale computing systems which rely on thousands
of billions of heterogeneous processing cores connected to form
a single computing unit.

Current large-scale computing environments such as HPC
clusters (e.g., Infiniband-based distributed memory machines,
Bewolf clusters), Grids and Clouds are common scenarios
when discussing enhancements to overall computing/system
performance and resource/data/service/application accessibility
through e�cient sharing and utilization of the integrated infras-
tructures and hardware resources (such as computing, storage,
data and network resources) in large-scale systems with high het-
erogeneity (in terms of resources, applications, platforms, users,
virtual organization, administration policies, etc.) and high dy-
namicity. In such large-scale computing environments, resource
management is one of the most challenging, and complex issues
for e�cient resource sharing and utilization, particularly as we
move toward Future ManyCore Systems (FMCS).

There are various types of techniques and methods to control
and manage the infrastructure for each one of the aforementioned
computing environments, which di↵er based on their main fo-
cus, embedded technologies and system architectures. And in

fact, designing a resource management architecture which can
be applied and adjusted to the requirements of these di↵erent
computing environments is an extra challenge.

In this paper, by “manycore enabled computing systems”, we
mean future computing systems that support thousands of chips
per compute node and thousands of heterogeneous cores per chip
(as predicted in [1]). We address the problem of resource man-
agement for this future large-scale manycore enabled computing
environment. In such large-scale systems (e.g., future multi-
tenant Clouds, petascale manycores, and heterogeneous clusters)
it is not feasible for the control system to centrally and statically
have a complete and perfect knowledge of the entire system
due to the magnitude and diversity of the amount of cores/pro-
cessors and other resources. For uniformity of discussion, we
will address all these control systems as distributed operation
systems (DOS), although their realization may be quite di↵er-
ent, depending on the specific large-scale computing technology
under discussion. Furthermore, the variety of new emergent
applications and the heterogeneous resources distributed across
the network owned by di↵erent organizations and administrative
domains, demand that these DOSs support an e�cient mecha-
nism for both process and resource management. Designing a
DOS resource management system that meets the requirements
of such large-scale environments is challenging due to several
issues: a) Supporting adaptability, scalability and extensibility,
b) Incorporating computing resources within di↵erent virtual
organizations (VOs) while preserving the site autonomy (i.e.,
the distributed ownership of the resources), c) Co-allocating
resources, d) Supporting low-cost computation, e) Supporting

Preprint submitted to Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) April 30, 2016

Quality of Service (QoS) guarantees.
The main contribution of this paper is to propose ElCore, a

new elastic, scalable, accurate and dynamic resource manage-
ment architecture for distributed systems in future large-scale
manycore enabled computing environments, which supports
high quality resource mapping and allocation (i.e., resource allo-
cation accuracy) in a fully decentralized manner. In our work,
we mainly focus on scalability and accuracy issues, since in
our target computing environments (future large-scale manycore
system), one of the most important requirements for resource
management is the ability to deal with very large number of
heterogeneous resources.

Using ElCore, applications/processes can be distributed
among a set of automatically self-organized and self-configured
Resource Management Entities/Components (RMs or RMCs)
in the system. RMCs can individually control and monitor their
own collection of resources while resources can dynamically
be traded (transacted) among RMCs on demand basis. This is
achieved by the usage of an embedded dynamic resource dis-
covery method which is able to e�ciently discover the most
accurate and appropriate resources with the lowest possible la-
tency (i.e., nearest matching resources) among many available
resources belonging to di↵erent RM entities. ElCore provides
scalability since its decentralized discovery mechanism allows
scalable communications and resource trading between RMC
instances. ElCore discovery mechanism also supports a highly
sophisticated query and resource description model (from the
very low level of processors and processes to the level of com-
puter clusters with respect to inter-resource and inter-process
communication constraints) which enables the requesters to ac-
curately discover the resources based on the required specifica-
tions and constraints for each given query. These features make
ElCore flexible to be e�ciently adapted to the requirements of
future large-scale manycore enabled systems, be the future HPC
clusters, Grids or Clouds.

ElCore also supports elasticity (roughly defined as the ability
to address variable run-time changes on resources and work-
loads) with respect to the following two aspects. First, in our ap-
proach, we employ several resource management entities which
are distributed across the system in a fully decentralized fashion.
Each RMC instance can flexibly control and modify its own pool
of resources according to on-demand basis. This gives elasticity
to each instance of RMC to dynamically meet various, arbitrary
scale, users’ resource requirements, ranged from small appli-
cations to large computing-intensive tasks (we discuss ElCore
policy to trade resources among di↵erent instances of RMC in
Section 4.2). Second, similar to the requirements of the current
Cloud computing technology [2], we can expect that one of the
most important requirement for application execution in future
large-scale manycore enabled systems would be the ability of
the system to deal with dynamic applications which have high
variability fluctuations in their workloads. As an example of this
type of applications we can mention malleable applications [3]
where malleability is defined as the capability of the application
to dynamically modify its data size and also number of compu-
tational entities (threads). The dynamicity of applications (in
term of dynamic workload) a↵ects the performance of resource

management systems, since resource mapping is based on ini-
tial QoS requirements of applications, when workload changes
(during run-time), the application execution might fails to meet
its initial QoS requirements. ElCore provides elasticity to dy-
namically detect overloaded resources and reallocate additional
resources, allowing migration of processes (like new threads)
from overloaded to newly assigned resources (see Section 5).

Furthermore, the modularity and Service-Oriented Architec-
ture (SOA-based) design of ElCore allow it to be coherently
integrated and used within DOSs. In fact, we developed this
work under the framework of the S[o]OS project, as an example
of DOSs [4–10]. S[o]OS (Service-oriented Operating System)
was a European project aiming to develop reference architecture
concepts for future very large-scale, distributed infrastructures,
considering current system trends.

In this paper, for better illustration and evaluation of our
approach, we use the term “resource” to refer to “computational
resource” and we discuss resource management mostly from
the point of view of computational capacity. Nevertheless, our
resource management model is fully generic, and applicable to
other types of resources (e.g., storage and networking resources).

The remainder of paper is organized as follows: In Section II
we describe the related works. Section III elaborates on some
important requirements for designing a resource management
model for future large-scale manycore systems. In Section IV we
explain our proposed resource management architecture (DOS
level discussion). In Section V, we discuss our approach with
respect to FMCS. Section VI provides detail on our manycore
simulation methods and presents the simulation results. Finally,
Section VII presents our conclusion.

2. Related Work

We investigate resource management issues for DOS in petas-
cale computing environments such as HPC, Grid and Cloud in
the matter of future manycore architectures. High Performance
Computing (HPC) is generally recognized as a role model for
manycore systems due to the essential similarity of their ar-
chitectures and hence the means of program development for
both of them (HPC and manycore systems). At the same time,
the manycore movement leads to a sudden boost of scale in
high performance computing without essentially increasing the
requirements or costs. Many HPC cluster systems employ a
centralized resource allocation and management, where the jobs
are being controlled centrally and statically by a single resource
manager that has complete knowledge of the system. In fact,
HPC clusters are generally based on a batch scheduler and re-
source management system which allows users to submit their
jobs to a batch system where a central scheduler and resource
manager entity that is hosted on the cluster-head makes deci-
sion (in terms of timing aspects and the physical location of
resources) for the resource allocation to run a given job. A cen-
tralized resource manager generally manages a pool of resources
and runs the jobs based on a prioritization policy. However,
it may distribute the jobs among a set of other resource man-
ager entities in a hierarchical fashion. The resources might be
organized in single or multiple queues (aka partitions) based

2

on some common characteristics of resources. Slurm [11, 12],
TORQUE [13], LSF [14], PBS [15], Load Leveler [16], CCS
[17] and Univa’s Grid Engine (formerly Sun Grid Engine) [18]
are some of the popular centralized schedulers and resource
managers for the HPC clusters. HTCondor [19, 20] is another
example of centralized resource management in High Through-
put Computing (HTC) environments which is able to utilize
large heterogeneous clusters where large numbers of relatively
small-sized and short-live jobs are processed.

The future manycore enabled HPC clusters can not rely on
the centralized and static resource management approaches. Re-
source management for large-scale manycore systems is inher-
ently a NP-complete problem. The large number of heteroge-
neous cores and applications with various requirements causes
scalability issues for centrally acting heuristics, where a central-
ized component must maintain a global view of the entire system.
Resource management itself can become a bottleneck due to
high computational requests and communication latencies. Fur-
thermore, the amount of the detailed information on the resource
characteristics which is maintained by the central resource man-
agers would be limited to a very abstract level and this leads
to reducing the accuracy of resource mapping and allocation
(i.e., the quality of resource mapping) for the applications. On
the other hand, managing dynamic resources (when resources
join, leave or fail) with dynamic attributes and behaviors be-
comes more complex for the central resource managers since
the solutions such as periodical or triggered updating, for the
large number of resources and state changes, impose significant
communication overheads on the system.

In decentralized resource management, multiple resource man-
agement entities cooperate to keep the workload for all comput-
ing resources in di↵erent pools or clusters balanced and satisfy
the user requirements. REXEC [21], Tycoon [22] and Cluster-
on-demand [23] are some examples of decentralized resource
managers for HPC clusters.

In Grid computing where multiple geographically distributed
and heterogeneous clusters are combined into a single system,
according to the type of Grid, there exists di↵erent types of re-
source management system particularly designed for computing
Grids such as Nimrod/G [24, 25], 2K [26] (on-demand hierarchi-
cal), Bond [27] (on-demand flat), Condor [28] (computational
flat), Darwin [29] (multimedia hierarchical), Globus [30] (vari-
ous hierarchical cell), Legion [31] and Ninf [32] (computational
hierarchical).

Similar to HPC clusters, it is also common to use centralized
resource management in Grid computing where users could
submit their jobs to a single resource management or scheduling
entity that makes decision on which cluster and nodes run the
job. Grids also deploy decentralized approaches for managing
resources in the system.

However, there are some major drawbacks with the current
decentralized resource management schemes in HPC clusters
and Grids. Most of these approaches do not consider the dynam-
icity of the applications (e.g., the application load might change
during the run-time) and the resources (e.g., resources might
join, leave or fail) in computing environments and they stati-
cally pre-assign a group of resources to each resource manager

(RM) entity in order to provide a load balanced solution to dis-
tribute jobs among di↵erent queues or RM entities in the system.
This limits the dynamicity of resource management, since the
resources are not allowed to be traded among di↵erent RM enti-
ties in the system (i.e., each resource is managed by a fixed RM
entity). In other words, when a job is submitted to a RM, if the re-
sources in RM resource-pool do not satisfy the query conditions
the RM is not able to dynamically borrow resources from other
RMs in the system and this results to either failing the query or
forwarding the query to other resource manager entities in the
system. E�cient decision making to forward queries among the
distributed RMs leads to a resource discovery problem. Some
of the decentralized RM approaches employ resource discovery
techniques to manage query-forwarding between RMs, but these
discovery mechanisms generally are not really dynamic and
decentralized. For example Nimrod/G [24, 25] employs MDS
resource discovery [33] which is based on publish/subscribe
method to maintain resources in a set of hierarchical LDAP
directories. MDS hierarchical discovery approach still su↵ers
from single point failure mentioned for centralized methods be-
cause at each level there is a central data base server responsible
for resource update requests. Moreover, MDS does not scale
well in computing environments with frequent updates and large
numbers of application requests.

In Cloud computing systems, resource provisioning using
on-demand virtualization and VM migration technologies en-
able the data centers to consolidate their computing services and
use minimal number of physical servers. In fact, the virtualiza-
tion allows workloads to be deployed and scaled-out quickly
through the rapid provisioning of Virtual Machines (VMs) on
physical machines. But similar to HPC cluster and Grid, Cloud
computing systems still need to deal with resource allocation
and resource discovery problem to e�ciently map the virtual
machines to the the real physical resources.

An e�cient resource management (in IaaS Cloud service
model) can potentially provide significant number of benefits
specifically in terms of quality of service, scalability, throughput
and utility optimization, cost e�ciency and overhead/latency
reduction. However, for future diverse, large-scale systems, there
are issues such as resource modeling (description), estimation
(identification), provisioning, discovery, brokering, mapping,
allocation and adaptation that it should yet deal with.

Implicitly, the scale in Cloud systems must be regarded as
horizontal where instances of data and code are replicated to
increase availability. Whilst this is particularly useful for data
and service hosts (eBay, Amazon, etc.), it does have little or
no impact on scalable systems acting on vertical scale (i.e.,
where the actual application is split into multiple processes or
threads that jointly contribute to the application’s functionality).
Recently there have been more and more references to the so-
called HPC Cloud [34]. However these either focus on making
small parallel machines (for instance, in the order of 8 cores
in Amazon EC), or provide access to thousands of cores in an
almost unconnected fashion, similar to Compute Grids, (like
Plura Processing). In the current literature there are several
types of resource management systems for Cloud computing.
For instance we can mention OpenNebula [35], Eucalyptus [36],

3

In-VIGO [37] and Cluster-on-Demand [38].
We can summarize that most of the existing resource man-

agement systems do not support fully decentralized, dynamical,
scaleable, elastic and high quality resource mapping and al-
location particularly for future large-scale manycore enabled
computing systems with respect to multiple aspects such as
changes in resources and the application behaviors. Workloads
(i.e., the loads for applications) might be changed over time, thus
the resource allocation for a process/application might need to
grow or shrink in size. And also a process migration mechanism
may required to tolerate failing/overloading resources. These
are paradigms that are beyond most of the current resource man-
agement approaches in large-scale distributed computing.

3. Requirements

This section provides some key aspects required to design
an e�cient resource management model with respect to the
requirements of future large-scale manycore systems. It also
must be taken into account that our proposed approach does not
address all the shortcomings of prior works. Nevertheless, we
address the following key aspects for future DOSs:

System Size: In the future, billions of devices may be con-
nected to form a single computing system. This means that, in
order to still be able to e�ciently use such computing environ-
ments, we need to provide scalable approaches which can deal
with so very large-scale systems. Thus, scalability becomes one
of the most important requirements for resource management for
future computing systems [39, 40]. Along this line, decentral-
ized models are generally the approaches that lead to maximum
scalability [41], since centralized models commonly su↵er from
several inherent drawbacks (such as single point of failure and
communication bottlenecks). On the other hand, implementing
purely decentralized resource management models might hugely
increase the level of system complexity (and in some cases it
may not be feasible). Distributed hierarchies (which used for our
work) can be considered as a realistic alternative decentralized
model for resource management, since it can provide scalability
while avoiding to overly increase the system complexity.

Heterogeneity: For future massively parallel, distributed and
heterogeneous systems, capability of resource management ap-
proaches to e�ciently handle high heterogeneity of resources is
an essential requirement [42]. High heterogeneity of resources
(i.e., core diversity) results in increasing the complexity of or-
ganizing and managing the resources. For example, di↵erent
resources, positioned in the same chip or node, may provide
di↵erent types and levels of capabilities which makes it di�cult
to apply a common resource management policy to e�ciently
explore all those heterogeneous resources. In order to solve
this problem, we introduce the concept of virtual node (vnode)
where each group of homogeneous resources, positioned in a
common vicinity, participates to form a single vnode based on
given vnode clustering parameters (we discuss this further in
Section 5). In addition, we must note that using a shared mem-
ory programming or communication model is not feasible for
heterogeneous cores, as well as a↵ecting the scalability of the

system. Thus, we assume message passing for communication
between cores and chips.

Mapping: For future scenarios, with very large numbers of
diverse applications and resources, high quality process-resource
mapping can be identified as one of the most urgent problems
to be solved [43–45]. The quality of mapping is directly rele-
vant to the accuracy of both resource identification (i.e., precise
identification of required resources for each given process) and
resource allocation (precise process-resource mapping to meet
process requirements). In our work, assuming the former can be
dynamically performed by process managers (we discuss this
further in Section 6), we focus on the later. In order to achieve
high resource allocation accuracy, we provide a matching strat-
egy which uses a decentralized strategy (based on distributed
hierarchies) to find and map resources. Our mapping strategy
supports querying for both design-time (static workload) and
run-time (dynamic workload) application requirements through
enabling dynamic resource discovery and facilitating process
migrations (for overloaded resources). We further discuss our
matching strategy in Section 5.

Elasticity: The elasticity can be defined as the capability of
the resource management system to flexibly and sensitively be-
have on demand basis where the demand comes from resource
manager users (requests for resources). Elasticity is one of the
desired requirements for resource management in current Cloud
computing systems [46–50]. It must also be considered as an im-
portant resource management requirement for future manycore
systems, due to the trend of moving Cloud computing concepts
to manycore systems. As we mentioned earlier, ElCore provides
elasticity with respect to the amount of resources controlled by
each resource management entity and the amount of resources
assigned to each process.

4. The Proposed Architecture

We propose a novel generic resource management architecture
for DOSs which is able to e�ciently manage the allocation
of resources in the large-scale computing environments with
high rate of dynamicity and heterogeneity of resources. We
assume a reliable (no message loss, duplication or corruption)
and asynchronous message passing model, for inter-core and
inter-chip communication in such environments. Our system
covers all levels of resources, in all di↵erent levels of clustering.

4.1. Architecture Functional Description

We organize the distributed resources in the computing envi-
ronment (containing a large number of interconnected resources
in di↵erent levels) in a set of distributed hierarchies through
leveraging a dynamic self-organization and self-configuration
approach [51]. We define the entities of Main-Control (i.e., DOS
main-kernel) and Nano-Control(i.e., DOS nano-kernel) which
are providing maximal and minimal numbers of capabilities,
functionalities and services in the system through running each
kernel on multiple cores [4, 5, 10]. These control entities di↵er
in terms of service types which they can dynamically instantiate
on demand. The instances of these entities are positioned in

4

the system in a way to map the structure of the underlying dis-
tributed hierarchies (i.e., deploying the main-control instances
in the hierarchies head-nodes and the nano-control instances in
the leaf-nodes). Similar to Multitenant Clouds architecture, each
(main/nano) control instance provides a dedicated share of the
instance including a set of dynamic on demanded services to
client machines/components in their region in the hierarchy. In
fact, this approach could potentially enhance the multitenancy
model for the resource management to work in the hierarchies
and support dynamic service instantiation (although this paper
does not highlight this aspect due to space constraints). More-
over, we classify control services as atomic-services (e.g., for the
resource management service where every island of distributed
resources in the system is managed by a single instance) and
non-atomic services. For the non-atomic-services, for instance,
we can consider the scheduling service: a local scheduler in-
stance per tile / processor may be responsible for scheduling all
code segments within that domain, but will itself be subject to a
higher-level scheduler which triggers the respective code block
as a whole. The atomic-services are the ones that should not be
subdivided in terms of functionalities and workloads.

Figure 1: ElCore resource management architecture

Figure 1 highlights the key services associated to control
decisions for resource management (aspects such as deployment
instantiation on process movement are important but are not
involved in the resource management decisions). These services
include:

Resource Requester (RR): is a client-side discovery compo-
nent which is responsible for generating, starting and dissemi-
nating a query in the system which finally returns information
about the requested resources (e.g., available qualified process-
ing cores and their respective capabilities). It is an atomic service
that can be instantiated by any control entities. Each potential
resource client in the system can also have a single RR instance.

Resource Provider (RP): or Resource Information Provider
is a server-side discovery component which directly o↵ers infor-
mation services to Resource Requesters and communicates with
other Resource Providers in the distributed system. RPs collab-
orate with each other to resolve the received queries from RRs
in a completely decentralized and distributed fashion. It is an

atomic service which can only be instantiated by main-control
instances. However, depending on the specific level of hierarchy,
it can be configured as a non-atomic service considering a wider
searching space. The RR-RP model is based on self-organizing
processing resources in the system where the computing re-
sources are organized into distributed hierarchies according to
a hierarchical resource description (i.e., multi-layered resource
description). Moreover, in each layer di↵erent algorithms and
adapted mechanisms (such as distributed hash tables, distributed
probability tables and any-casting) are implemented in order to
redirect the discovery requests to the proper requested resources
within layers (e.g., leaf-node, aggregate-node and super-node
layers) in the system. More details of our RR-RP resource
discovery model have been presented in [51] and [52].

Resource Management Component (RMC): is an atomic
service which can only be instantiated by the main-control enti-
ties. Each RMC instance provides a global view of the available
resources (i.e., existing capabilities) in the system for its clients
while it o↵ers accessibility mechanisms to access those resources
and capabilities.

4.2. Resource Management Component

Since the resource management is the major focus of this
paper, we discuss the RMC mechanisms in more detail. RMC
manages, monitors and controls the resources in the distributed
system. It keeps, monitors and modifies the status of the re-
sources which are used by the local process managers. It in-
vokes resource discovery components (i.e., RRs and RPs) to
find the list of required resources according to the incoming
request (wishlist) from Process Managers (PMs) or any other
DOS components. It is also able to reserve a single resource or
set of resources for a specific process/thread/threads, in order
for the result of resource discovery (originated by other remote
instances of RRs in the distributed system) not to contain the
occupied resources. The reserved resources would be released
upon receiving the notification (i.e., notification of process ex-
ecution completion) from PMs. Additionally, RMC provides
a set of capabilities to manage and monitor resources for the
other DOS components like the Process Manager. In order to
allocate the proper available resources to the application the
Process Manager needs to query the Resource Manager.

RMC provides support for distributed management and con-
trol of resources. Every pool of resources is managed by one
instance of RMC and each instance can provide a global view
of all the potential resources in the network. It receives requests
from many PM components while each request will specify a
set of resource requirements (see Figure 2). For example a PM
may ask for a minimum and maximum number of processors
per each kind, for a certain fraction of the network bandwidth.
RMC checks if the required amount of resources is available,
and in case of positive answer it returns a set of resource de-
scriptors that the PM caller module can use to run its tasks. The
interaction between the PM and the RMC can be very simple
(one simple request that can be accepted or rejected) or very
complex (based on a negotiation protocol), depending on the
specific DOS configuration.

5

(a)

(b)

Figure 2: a) Extraction of the resource requirements from a given application
graph, b) The resource graph of the qualified resources for a given query

Algorithm 1 illustrates the RMC resource requesting mecha-
nism when it is invoked by a PM. Upon receiving a PM request,
RMC tries to conduct all the requirements of the given request us-
ing all the resources it has under control. When it fails to handle
a request using the available resources in its own administrative
domain (i.e., the collection of distributed resources which are
managed by an instance of RMC) RMC starts to extend its global
view of resources by invoking a RR component (see Figure 3).
Consequently RR negotiates with other remote RP instances in
order to get information about the required resources which are
in the free-ownership-list (i.e., a list of free resources managed
by an RMC instance whose ownership is allowed to be trans-
ferred on request) of other RMC instances in the system. If those
resources can be found in the free-ownership-list of other remote

Figure 3: RMC mechanism

RMC domains, the local RMC would be able to add them to its
own administrative domain.

We must note that the resources which are controlled by a
single instance of RMC are not necessarily positioned in the
local node. In fact there, each RMC instance has three main
resource collections which include the reserved-list (or allo-
cated resources), the free-list and the free-ownership-list. The
reserved-list maintains the status of the resources which are al-
located to the processes. The free-list keeps the information of
the resources which are available for the upcoming processes.
However, the other remote RMC instances do not have access
to these resources. After releasing a resource, it will be moved
from the reserved-list to the free-list. Generally, the resources
in the free-list will be moved to the free-ownership-list after a
certain period of time. Nevertheless, depending on the type of
processes and their QoS requirements, RMC can decide to keep
some particular resources in the free-list for a longer time. This
could be an important feature particularly for deadline-sensitive
applications. Examples for this situation would be real-time
applications (such as online gaming, voice over IP), where pro-
cesses must guarantee response within specified timeframes (i.e.,
deadlines). This means that for such processes, correctness
of an operation depends not only upon its logical correctness,
but also upon the time in which it is performed [53] (i.e., a
process may fail if has not met its specific deadline). RMC
policy flexibility may allow longer maintenance of resources,
released by deadline-sensitive processes, in the free-list, for
two reasons: first, RMC potentially gets similar requests from
PMs for upcoming processes, so that, RMC would be able to re-
spond immediately to those requests without a need to perform a
global resource discovery. Second, by keeping a resource in the
free-list, instead of free-ownership-list, the scope for resource
contention for the upcoming similar, deadline-sensitive, requests
would be limited only to local RMC processes, and not to all
processes around the system. This increases the probability of
getting immediate response for those requesters.

The free-ownership-list contains the resources that RMC will
share with other remote RMC instances. Upon receiving a re-
quest for a resource, presented in the free-ownership-list, RMC
transfers the authority to the requester (i.e., the remote RMC in-
stance) to manage that resource. In fact, despite the free-list, the
free-ownership-list contains the only available (free) resources
which are allowed to be accessed globally in the system and
their ownership can be transferred to the requesters on demand.

4.3. Resource Management System Operation
In the continuation of this section we elaborate on the inter-

operations between the modules/services (which have been pre-
viously described in this section) in a general DOS environment
and specifically for the discussed under the terminology for the
project Service Oriented Operating System (S[o]OS) [4]. Figure
4 demonstrates general steps in configuration/inter-operation
(i.e., in terms of modules, resources or threads) which contain
all the major activities needed to be performed for resource
management and allocation (i.e., before the actual execution of
the code’s processes). These configuration/inter-operation steps
include the following: a) Analysis of the program and extracting

6

Algorithm 1: Pseudo code of mechanism for resource requesting in RMC
when PM asks RMC to provide the resource descriptors for a set of required
resources

Input: ProcId app, ResourceRequestList rl ; /* process identifier and the
description of the required resources */

Output: ResIDs ; /* res-IDs for the matched qualified available
resources */

ResID-Collection reserved-resources; ResId i;
ResID-Collection free-remote-resources; Resource res;
ResourceRequestList rr = rl;
ResourceRequestList request-remote-resources;
ResourceType rt ;
foreach rt 2 rr do

while rt.requested-number >0 do
i= find-free-resource(rt.descriptor) ; /* searching in the local
free-list and free-ownership-list */
if i==null then

; /* if the resources cant be found in the local
set, the RMC will ask RR to find them in the
system */
request-remote-resources.add(rt);
break ;

else
dep=analyze-dep-constraints(i,app,rl);
if dep is not achieved then

request-remote-resources.add(rt);
break;

else
make-busy(app, i);
reserved-resources.add(i);
rt.requested-number- -;

free-remote-resources=RR.FindResources(request-remote-resources);
foreach res 2 f ree-remote-resources do

free-resources.add(res);
make-busy(app, res);
reserved-resources.add(res);

return reserved-resources;

the application’s graph. b) Identifying the resources required
for a given process (i.e., identifying the resources which max-
imize the matching between resource capabilities and process
characteristics). c) Resource discovery, reservation, monitor-
ing and management to find and reserve a matching graph of
resources for a given application graph. d) Loading, configuring
and instantiating all the necessary modules. e) Deploying the ap-
plication segments in the reserved resources. f) Distributing code
segments and their co-related reserved resources between the
assigned sub-schedulers and starting to schedule the allocated
threads on the reserved resources.

As we see in Figure 4, the PM employs the application han-
dler to load the requested application. The application handler
invokes memory manager (or stream manager) in order to load
the application in memory and then it returns the application
graph to the PM. In fact the code is analyzed with regard to its
main dependencies and the resulting application graph can be
created with respect to the specific hardware features that would
suit the execution best. Due to the application graph, the PM
subsequently creates the list of resource requirements, which
consists of all the individual characteristics of the potential re-
source candidate for each vertex combined with the aggregated
characteristics and the required communication behavior of all
the edges in the application graph. The PM will also pass the
minimum and maximum resource requirements (i.e., the individ-
ual characteristics of the required resource in terms of processor
architecture, type of processor, speed, etc.) for each thread as

Figure 4: Interaction diagram among modules

well as the minimum and maximum communication properties
among threads in terms of latency and bandwidth (i.e., the in-
ter threads communication requirements) to RMC. This means
that RMC, regardless of the specific requirements of di↵erent
applications, is able to discover and assign the required set of
resources within given ranges (in terms of di↵erent computation
or communication properties/attributes). In other words, RMC
can be queried for resources satisfying arbitrary range condi-
tions on di↵erent attributes since it benefits from a range-query
enabled resource discovery mechanism. For example a PM may
send a query to RMC with conditions such as the following:
the required number of resources is 5, core clock rate for each
resource must be greater than 1.5 Ghz, L1 cache size for each
resource must be in the range of [128Kb, 1Mb] and also max-
imum communication latency between each pair of resources
must be less than 10ms.

In current Grid and Cloud computing technologies, it is very
common to specify the minimum and maximum computation re-
quirements (i.e., desired computing attributes) for the resources
requested by each query. Similarly, for many real applications,
it is very important that the resource management and querying
system can perform process-resource mapping with respect to
minimum and maximum inter-resource/inter-process communi-
cation requirements. For example, for real-time applications, in
order to meet the deadlines, we need to ensure that the maximum
communication latency among the allocated resources does not
exceed a given threshold.

RMC specifies the required resource graph and then it trig-
gers the resource discovery module. Resource Discovery starts
to locate resources based on the required computing and com-
municating conditions. It analyzes all the possible selection of
resources and finally in order to fulfill all the requirements of the
input query, it chooses the most e�cient and appropriate graph
of resources by considering the behavior of the communica-
tion routes between resources which follows the communication

7

Figure 5: Example of resource contention occurs when two (or multiple) di↵erent RMC instances (like RMC1 and RMC2 on behalf of PMi and PMj) simultaneously
attempt to obtain the same or overlapping set of rare resources (like Rx).

dependencies (i.e., data source and sink) as identified in the ap-
plication graph during code analysis. We must note that during
the discovery procedure, every discovered resource (within the
free-ownership-list of a remote RMC) will initially be marked
as “reserved” for a relevant thread in the application graph. This
is the process which happens before transferring the ownership
of the discovered resources to the local RMC (requester) and it
results in a more immediate prevention of other remote instances
of discovery module to find the resources that are locally marked
as “reserved” (i.e., the discovered resources for a query will
immediately be hidden from other queries in the system and if
not used in a given time window will be again released). It also
must be taken into account that, in our approach, the discovery
results (set of discovered resources for a request/process) are
deterministic. This means that RMC does not need to either
reevaluate the mapping conditions for the discovered resources
or select the best matches among a set of candidates (discovery
results), rather it simply assigns the discovered resources for the
corresponding process.

Figure 5 shows an example of resource contention between
two RMC instances which require the same resource and initi-
ated at the same time. As we can see in the figure, the resource
discovery requests from both RMC1 and RMC2 suddenly and
simultaneously arrive at the same destination resource provider
(RPn). RPn orders the incoming requests in its own FIFO queue
based on the time of arrival (requests that arrive at the same time
slot are organized in a generally random order). RPn processes
requests one by one. Accordingly, the request from RMC2 will
be successful in discovering its desired resource (resource Rx).
The state of resource Rx will immediately be changed to “re-
served”, thus the next request in the queue (from RMC1) fails to
discover the resource Rx. Afterwards, the ownership of Rx from
RMCn will be transferred to RMC2.

In fact, once the destination resources for application threads
are known, they will be reserved and prepared. All necessary
DOS modules for maintaining communication, loading code,
executing rendering, etc., will be loaded along with the actual
code. For doing this, RMC will trigger the component manager
in order to instantiate and setup all the necessary DOS modules.

The component manager consequently employs the deployment
manager to deploy the respective modules. The deployment man-
ager has the resource description of the target hardware platform
(remote resource) and it can invoke code adapter to translate the
code and finally it can write the respective adapted code in the
target resource memory by invoking memory manager. In the
next step, PM triggers deployment manager in order to deploy
each of the thread codes in the allocated remote resources. In
turn, deployment manager calls the local RMC to get the full
resource description for each resource and afterwards it starts
deploying each thread on the relevant remote resource platform.
PM will finally pass a set of threads on a set of reserved re-
sources to the scheduler component in order to begin the actual
execution.

5. Resource Management for FMCS

We can envision that, in future, very large dimension many-
core systems will be constructed by connecting a large number
of computing nodes, with many chips and several thousands of
heterogeneous cores per chip, using very high-speed network
and interconnect technologies. In such FMCS, mapping appli-
cations to cores and adapting each application to the allocated
cores plays a key role for an e�cient utilization of the com-
putation resources. E�cient resource mapping and allocation
in systems with thousands of cores integrated per chip spans a
large solution space and leads to the problem of optimal map-
ping of parallel applications to the cores which is known to be
NP-complete [54].

Current approaches for resource management in manycore
systems can be categorized to o↵-line, mixed and on-line ap-
proaches. The o↵-line approaches such as [55–57] and [58] are
based on priori (static) knowledge about the whole system states
and resources, thus they can not resolve the unpredicted dynamic
situations particularly when the application workload dynami-
cally varies at run-time. The mixed approaches such as [59, 60]
and [61] are based on the pre-calculation of all potential appli-
cation mapping and selection of the best mapping at run-time.

8

This also requires that all input applications and all possible com-
binations of mapping (for those applications) must be known
at design-time. These approaches generally employ a central
entity to select the best mapping amongst the pre-calculated
solutions at run-time. But the application behavior and sequence
of execution might be changed at run-time. Dynamic workload
is not supported by mixed approaches. In online mapping (e.g.,
[62–64] and [65]), instead of pre-determination, the application
mapping is dynamically decided at run-time. However we must
note that online mapping trades o↵ the resource allocation accu-
racy (i.e., the quality of resource mapping) versus computational
complexity and scalability.

5.1. RM Strategy

Our proposed resource management scheme can be leveraged
for FMCS to provide a highly decentralized, distributed, scalable
and online application mapping with highly resource allocation
accuracy. The system is initially configured as follows:

I1) In the first step, a virtual hierarchical overlay is created on
top of the manycore system by dynamic self-organization of the
vnodes (virtual nodes) over the system. Each vnode is defined
as a group of homogeneous resources (i.e., processing cores)
which are not necessarily positioned on a common physical
chip (e.g., a CPU) rather they are positioned within a common
vicinity that is described by parameters such as number of hops
or interconnect latency (i.e., resources are grouped within virtual-
nodes by proximity and similarity). We must note that the
resources within a vnode can be also bound to a single common
chip. Furthermore, the number of resources within a vnode
is bound by a pre-configured threshold value. Therefore, the
vnodes with similar resources (i.e., sibling-nodes) might coexist
within a single common chip. All vnodes in the system are
connected to each other through an overlay topology which is a
connected graph created based on the underlying network and
interconnect topology during the self-organization phase.

We define two main parameters to construct every vnode
which are ⌘ and �. ⌘ is the maximum number of resources
(cores) in the vnode and � is the maximum distance between
each pair of resources. The maximum distance can be also
defined in terms of latency or number of hops.

Depending on the values of the aforementioned parameters,
the vnode clustering can be obtained through various approaches.
It can be simply achieved by specifying each single core (⌘=1,
�=0), or all the cores of a homogeneous processor (⌘=number
of cores in the processor, �=maximum latency among cores in
the processor, � < � where � is minimum latency for inter-chip
communication) as a vnode. Another way is to simply spec-
ify every group of homogeneous cores, positioned in di↵erent
processors (i.e., chip or die) of a network node, as a single vn-
ode (⌘=total number of cores in the node, �=maximum latency
among cores in the node, � < � where � is minimum latency
for communication between cores of di↵erent nodes across the
network). In fact a vnode is limited to include cores inside a
single chip when � < � and it is extended to multiple chips when
� � �. Apart from that, various dynamic approaches can be also
leveraged to perform vnode clustering. However, since vnode

clustering is out of scope for this paper we briefly describe a
sample approach for dynamic vnode clustering.

Figure 6: Example of vnode clustering for a processor containing 24 heteroge-
neous cores, connected through 2-D mesh topology

In this approach, for each multiprocessor node in the sys-
tem, a random single resource (core) is triggered to initiate the
clustering process. This resource, which is called primary vnode-
head, would be responsible to organize the initial vnode for each
physical node (multiprocessor node). The primary vnode-head
broadcasts a vnode-clustering-request to all the cores in all the
processors positioned in the current physical node and it will
receive the description of each resource as well as the latency
information from the cores. The primary vnode-head chooses
a subset from the responding resources with respect to their
similarity and vnode clustering parameters (i.e., ⌘ and �). In
this way, a candidate resource of c is selected based upon three
conditions: firstly the resource description of c must be matched
to the primary vnode-head. Secondly the latency between the
primary vnode-head and c must be equal or less than � and
lastly by selecting c, the number of members for the primary
vnode-head, should not exceed ⌘. Upon establishing the first
vnode, the primary vnode-head specifies the next vnode-head
by randomly selecting a resource among the list of unsuccessful
candidates. The next vnode-head will be triggered by receiving
a message from the primary vnode-head, containing the list of
unsuccessful candidates. The operation of the next vnode-head
is similar to the primary vnode-head, but what makes it di↵erent
is that instead of broadcasting to all cores, it uses multicast-
ing to send its vnode-clustering-request only to the resources
which were unsuccessful to join the previous vnode-head. The
overall clustering process will continue until the list of unsuc-
cessful candidates for the current vnode-head becomes empty.
Figure 6 demonstrates an example of using this approach for
vnode-clustering in a single chip containing 4 di↵erent types of
resources. It results in establishing 5 vnodes.

I2) In the next step, each vnode acquires its role (LN:leaf-
node, AN:aggregate-node, SN:super-node) to play in the com-
puting environment using a dynamic distributed election mech-
anism. ANs and SNs are the resource providers (RPs) where
ANs provide Query Management Service (QMS) and SNs pro-
vide Super Query Management Service (SQMS). These services
work as the system services interleaved with the applications on

9

the cores of each vnode with the AN or SN role. Alternatively,
they can be also executed on the dedicated cores that are not
available to the applications in each target vnode.

The vnodes which host QMS (i.e., RP-QMSs) are responsible
to manage querying within a group of LN members and their-
self. Similarly, the vnodes which host SQMS (i.e., RP-SQMSs)
manage the querying within a group of AN members as well
as their local resources. This mechanism divides the querying
space to multiple layers such as layerln, layeran and layersn where
in each layer di↵erent adaptive query resolution and forwarding
methods (such as DHT-based, Probability-based and Anycast-
based approaches) are applied to direct and resolve the queries
within or across layers. We must note that a single LN/AN is not
allowed to participate simultaneously in more than one LN/AN
group. Moreover, each compute node atleast hosts a single RP-
SQMS while every chip on a compute node hosts a single or
multiple RP-QMS. Depending on the system configuration, the
resources within a vnode or multiple vnodes initially managed
by a single instance of RMC which cooperate with a RR entity.
In other words, each RMC instance initially assigns a set of
resources to its local free-list.

5.2. Application and Resource Description Aspects

We describe resources (i.e., computing resources) in the sys-
tem based on their specific attributes (i.e., computation and
communication characteristics) in a multi-layer hierarchy. The
depth of the hierarchy (i.e., number of layers in resource descrip-
tion model) and the definition of each layer might range from
very high level (e.g., super clusters, clusters) to very low level
(e.g., processing core, ALUs) depending on the architecture de-
signing aspects. In this paper, we assume that our description
model contains three levels (layers) of the hierarchy: Core Layer
or Inter-Core Level (i.e., layerln which has attributes such as
Data-PU channels, number of Instruction-PU channels, vector
length, core clock rate, etc,.), Die Layer or Inter-Chip Level (i.e.,
layeran which has attributes such as cache coherence, instruction
set architecture (ISA), micro architecture, interconnection net-
work, etc,.) and Node Layer or Inter-Board Level (i.e., layersn
which has attributes such as window size, total number of cores,
memory size, Die count, etc,.).

The model is conducted by gathering and combining the indi-
vidual attributes (ranging from more abstract information in the
higher layers to more detailed characteristics in the lower lay-
ers) in each layer, augmented with information aggregation and
summarization techniques, in order to create the layer-stamps.
In fact, all specifications (i.e., attributes) of each layer as well
as their values are represented by a single layer-stamp. We also
use a similar description model to specify the desired resources
by each single query as <c|nln.c|nan.c|nsn>. This query-scheme
identifies the status of the query conditions for each individual
layer in the hierarchy. cln, can and csn denote the existence of
query constraints for the layerln, layeran and layersn accordingly,
while nln, nan and nsn determine non-existence of any query-
conditions on those layers.

Application description (i.e., application performance mod-
eling) is necessary to accurately specify the desired resources

as well as the minimum/maximum required inter-resource com-
munication capacities for the e�cient application execution. By
using an appropriate application description model, PMs would
be able to dynamically query for the right set of cores for their
corresponding processes. Since the application description is
out of scope for this paper, we assume that the PMs are indepen-
dently able to initially extract the number and characteristics of
required resources as well as the required inter-resource commu-
nication capacities for their corresponding processes at run-time
and in an explicit manner. For example (see Figure 2), a PM
for a process containing 9 threads with di↵erent resource and
inter-thread communication requirements might ask RMC to
allocate 3 di↵erent groups of homogeneous cores to fulfil both
the inter-group and intra-group constraints for communication
between allocated cores. We also assume applications/processes
to consist of tasks/threads that are executed on single cores and
that may freely be re-allocated to di↵erent cores.

5.3. Matching Strategy
When a RMC entity receives a resource request from a PM,

if the demanded resources are not in the local free-list and free-
ownership-list, RMC invokes a RR component to perform a re-
source discovery. RR in turn sends the given query to a RP-QMS
where the RR host (i.e., a vnode which hosts the RR service) is
a member of its LN group. Due to the type of query and query
demand (e.g., simple single resource, multiple heterogeneous
resources, complex resource graph containing constraints for
inter resource communications) RP-QMS splits the main-query
to a set of sub-queries and chooses individually the appropriate
layer for each sub-query to start being processed. The query
processing in layeran is based on distributed probability tables
that facilitate dynamic distributed learning processes which are
adapted to the progressive environmental changes. In layerln, LN
members participate in a specification-based DHT ring where
the sibling nodes are linearly organized in linked lists with single
entries on the DHT ring and the vnodes are positioned in DHT
based on their core-level specification stamp. The query process-
ing and forwarding in layersn also leverages the specification of
the resources in the node-level to conduct a specification based
anycasting method to direct the queries among SNs.

The matching strategy of the resource discovery mechanism
is based on matching the given query descriptions for each layer
(desired attribute conditions for each layer) to their correspond-
ing layer-stamps, at the time of visiting every individual vnode
in di↵erent hierarchies. As we mentioned earlier, each hierarchy
consists of three layers and every vnode depending on its role in
the hierarchy (LN, AN or SN) provides layer-stamps. The explo-
ration process for every sub-query (i.e., a sub-request, aiming to
discover a set of homogeneous resources within a common vicin-
ity) starts from the nearest, potentially qualified and available,
resources to the far resources with respect to giving matching pri-
ority from the highest layer to the lowest layer (layersn to layerln).
This way guaranties that the nearest resources (to the origin re-
quester) are discovered in advance. Each sub-query may include
a number of required resources with similar specifications as
well as inter-resource communication requirements (e.g., max-
imum communication latency among desired resources). For

10

each sub-query, in order to match the given communication re-
quirements to the inter-resource communication links among the
matched resources, we use the following approach:

1-Sub-query proceeds to explore vnodes/resources (from near-
est resources to far resources), regardless of its communication
conditions, focusing on computation requirements (query re-
quirements for di↵erent layers).

2-Upon discovering the first match, sub-query sets it as the
initial pivot (reference) for measuring inter-resource communi-
cations.

3-Sub-query continues to discover the rest of required re-
sources and when it found the next match, it makes a decision,
by first evaluating lower bound, and then evaluating upper bound
of inter-resource communication requirements, to perform one
of the actions listed: ignore the current matched resource, per-
form pivot switching or continue the normal search. Sub-query
ignores the current matched resource and continues the discov-
ery process, if the current matched resource fails to meet the
lower bound requirement (minimum latency). If this doesn’t
happen, sub-query must next evaluate the upper bound condi-
tion (maximum latency). Accordingly, pivot switching might
be required. Pivot switching is the operation for changing the
pivot of a sub-query to the current matched resource (see Figure
7). By doing a pivot switch, sub-query ignores all previously
matched resources and adds the current matched resource, as
the first match, to its list of matched resources. Afterwards it
proceeds to discover the rest of required resources. Pivot switch-
ing happens when the current matched resource fails to meet the
upper bound requirement (maximum latency). If pivot switching
doesn’t happen, the discovery process proceeds normally, until
all required resources are detected.

Figure 7: Example of matching strategy for inter-resource communication re-
quirements using Pivot Switching mechanism. A sub-query, for 5 homogeneous
resources with given maximum inter-resource latency, initiated from RP-QMSorg
and explores vnodes (from the closest vnodes to the most far one). The sub-query
switches the pivot, when the recent matched resource fails to meet the upper
bound communication requirement (maximum latency).

Finally, the RP-QMS that originated the sub-queries, aggre-
gates the discovery results and replies the RR with a set of
resource matches that optimally satisfy the main-query demand.
After acquiring the discovery result from RR, RMC starts to
perform a resource trading operation. It begins to negotiate

with other related RMCs in the system which maintain the dis-
covered resources in their free-ownership-list and consequently
transforms the ownership of those resources to its local free-list.

Each RMC instance periodically monitor the status of re-
sources in its own resource pool through a HotSpot-detector
component which is responsible to detect the overloading re-
sources in the resource-pool. Whenever a HotSpot is detected,
the RMC re-evaluate the resource requirements for the running
application. Accordingly RMC allocates set of new resources
for that application and start to migrate processes to the new
resources. This mechanism provides elasticity for ElCore to
be able to tolerate the application with dynamic behaviors (aka
malleable applications).

6. Simulation Results

In this section, we evaluate the performance of our proposed
resource management scheme with respect to di↵erent evalua-
tion criteria. We use simulation instead of experiment on the real
large-scale computing infrastructures (e.g., PlanetLab, TACC,
Oak Ridge, BSC, GENCI and public Cloud providers like Ama-
zon and Google) due to low cost and flexibility of the simulation
to design, development and evaluation of the new algorithms as
well as providing full control over system behavior and evalu-
ation scenarios. Furthermore, the real infrastructures generally
provide limitations to explore the design space particularly for
scalable performance and large-scale evaluation.

In general, one of the traditional evaluation criteria, in order
to evaluate resource management system is resource utilization
which demonstrates how the resources in terms of computation
and communication capabilities (e.g., CPU usage, Memory us-
age, Network Bandwidth, etc,.) have been e�ciently utilized in
order to distribute and manage the workload. Resource utiliza-
tion as an evaluation criteria has been used for many resource
management systems specifically for virtualization based re-
source management systems or Cloud platforms available today.

In this paper, we decided to use the Resource Allocation
Accuracy (RAA) as the main criteria to evaluate our work instead
of Resource Utilization. RAA indicates how much a set of
allocated resources for a process fulfills the original resource
requirements emphasized by the PM requester.

In our resource management scheme we assumed that PM
would dynamically be able to precisely identify the resource
requirements for each process and consequently in the next
level RMC would be responsible for finding and reserving the
optimum set of qualified resources which will be allocated to
the relevant threads by PM where the scheduler will be invoked
to run the process accordingly.

We note that our assumption of dynamic identification of re-
source requirements for given applications/workloads (by PMs),
may not be fully practical in current manycore systems (or im-
plemented in current operating systems), but it is becoming a
practice in nowadays Cloud computing technologies [66–77].
We argue that current Cloud computing systems are a poten-
tial ancestor of the future manycore systems (Intel 48-Core
“Single-Chip Cloud Computer” [78] is an example of this trend).

11

Since the target computing environments of ElCore is the future
manycore systems, our assumption is reasonable; this is further
supported by the concepts developed in the context of S[o]OS
(which is an example of distributed operation systems, concern-
ing the requirements of future manycore systems) [6]. In other
words, S[o]OS is not for today, but we can see the ancestors
of S[o]OS on current cloud systems, where the service demand
(or the resources needed to run a job) is estimated prior to VM
allocation and job execution [66–70].

Due to the above assumption, and the fact that the e�cient
mapping between the RMC-o↵ered resources and the PM re-
source requests has significant impact on the whole system per-
formance, we consider RAA as one of the most important per-
formance criteria for managing resources in future large-scale
manycore environments (with presence of high diversity of re-
sources and applications) since it fully depends on the quality
of resource management component, while resource utilization
very much depends on the specific dynamicity of the requests
being processed as well.

As it is shown in Equation 1, RAA for each query can be
measured by calculating the ratio of the fully satisfied conditions
to the total number of query conditions (in terms of the required
computing attributes for each single resource and the desired
inter-resource communication properties).

RAA =
� +
Pg

i

⇣Pmi
j

⇣
� j
⌘
+ ⌧i
⌘

L +
Pg

i (ni⇢i + li)
⇥ 100 (1)

Here, ⇢i is the number of desired (computing) attributes for
each requested resource in a sub-query for a group of homoge-
neous resources (i is the group index); ni and mi are respectively
the number of requested resources and discovered resources
for each group i; li and ⌧i are respectively the number of de-
pendency links and qualified links for each group; L and � are
respectively the number of inter-group links (communication
conditions) and qualified links for all groups; g is the number of
resource-groups (number of sub-queries for the query) and � j is
the number of qualified attributes for a discovered resource (j is
the resource-index).

6.1. Simulation Setup

To do our evaluation, we developed a simulation platform,
based on OMNET++ (similar to the way that is presented in
[79]), which is able to simulate manycore environments (up to
55000 cores in di↵erent chips and nodes), focusing on commu-
nication aspects (i.e., communications between cores, chips and
nodes). Using our simulator, we have simulated a manycore net-
worked environment containing 2000 computing resources (i.e,
processing cores) where there are 6 di↵erent types of processing
resources. Each of these types have their own specific compu-
tation properties in terms of core clock rate, cache size, cach
line, ALU properties and functionalities, memory bandwidth,
etc. For instance, the processor frequency for resource type A,
B, C, D, E and F are 2.53 GHz, 3.6 GHz, 1.6 GHz, 2.8 GHz,
1.2 GHz and 2.4 GHz accordingly. We conduct our simulation
in a way to produce 20 percent of the resources as distributed
homogeneous resources of a specific type-A which later will be
required for several di↵erent processing scenarios. The reason
for adjusting the amount of a certain resource-type in the system
(as the target resources for the queries) is to facilitate measuring
the value of Maximum Reachable Accuracy (MRA) in di↵erent
settings of the experiment, but in fact it does not impact the
generality of our evaluation because the resource management
procedure is completely independent from the frequency of the
target resources.

The type of resources, as well as their distribution in the
system, is random. To do this, in the first step, we randomly order
all processors (of di↵erent nodes) in a queue. We create an array
of pairs (tx,ty) which contains all di↵erent two-combinations
from the given set of types S={A, B, .., F}. We iterate through
the array, and for each iteration, we dequeue a processor from
the queue and proceed to randomly specify the type of tx or ty
for each of its cores. The iteration is repeated and the process
continues until the queue becomes empty. As a result, each
processor in the system, will consist of maximum two di↵erent
types of cores (heterogeneous cores). In the next step, we control
and regulate the desired amount of cores of a given specific type
(type-A) through modifying the type of cores from type-A to ty

Figure 8: Manycore Simulation - System Architecture

12

Table 1: Simulation Parameters for Accuracy Evaluation

Parameter Values Description

Physical network size 2000 cores Total number of resources in the system (i.e., total number of cores)
Number of network nodes 125 nodes Total number of connected network nodes in the system
Number of tiles (CPUs) per node 2 processors Number of processors per network node
Number of cores per CPU 8 cores Each processor contains maximum two di↵erent types of cores
Interconnect topology 3-Dimensional Mesh/Torus Topology among cores of each processor
Network topology Random (connected graph, �=62.5%) Topology among network nodes, � indicates ratio of #nodes to #links in the network graph
Interconnect channel datarate 50Gbps Inter-core communication
Routing type DOR Dimension Order Routing algorithm for routing among cores
Bus speed 20 Gbps Inter-processor communication
Network channel 100 Mbps Inter-node communication
Vnode clustering ⌘=8, �=100ns Clustering is limited to include cores inside multiple chips of a single common network node
Desired inter-resource latency (0,150µs], maximum 150 µs The maximum inter-resource latency required for each query
Process Duration by sec Weibull(�=3.58,k=2.40) Execution time for each process through Weibull distribution, � is the scale parameter and k

is the shape parameter.

or from ty to type-A, in the processors that contain cores with
type-A (tx=type-A).

Figure 8 shows the overall architecture of the simulated
manycore system that we use for the evaluation in this pa-
per. The cores of each processor are connected through a
three-dimensional mesh interconnect topology (with datarate
of 50Gbps) which, in our simulation scenario, is the same as
three-dimensional torus. Each core has its own dedicated L1 and
L2 cache that are not shared with any other cores. We do not
simulate cache coherency protocols, as we use message-passing
for inter-core and inter-chip communication. The routing among
cores is performed through a variation of Dimension Order Rout-
ing algorithm [80] where packets are routed to the correct posi-
tion along higher dimensions (x or y) before being routed along
lower dimensions (y or z). Furthermore, the processors of each
node are connected through a high speed bus with datarate of 20
Gbps and we construct a network (with bandwidth of 100Mbps)
based on a random network topology, a connected graph with
� = 62.5% that indicates the ratio of the number of nodes to the
number of links in the network graph.

We define 4 settings for the processing scenarios. Every
setting is evaluated in 10 di↵erent run numbers. In each run
the network topology parameters will be randomly changed
according to our predefined simulation parameters (see Table 1).

In the first setting we assume that PMs will generate 1000
resource requests in a fixed interval (4000 ms) for di↵erent pro-
cesses of the same type (i.e., in each interval, only a single
request is generated in the entire system). The predefined pro-
cess in this setting includes 2 threads that need 2 resources of
type-A with specific communication requirements between those
resources (maximum 150 µs for each dependency link). The
other settings are similar to the first setting except for the type of
processes. However, for the sake of simplicity in the evaluation,
the type of requested resources in all of these settings are homo-
geneous (type-A). The di↵erences between the processes in the
aforementioned settings are the number of requested resources
and also the level of dependency between the threads of the pro-
cess in each setting. We also assume that the required resource
for each thread is a single processing resource (i.e., a core). The
required number of resources for each process in settings 2, 3
and 4 are 3, 5 and 9 while the threads dependency constraints
are applied for 2, 4 and 8 communication links accordingly (see

Figure 9).

Figure 9: Dependency graph for di↵erent settings

In each run, after a query is finished, the matched resources
will be allocated to the corresponding process. The allocated
resources will be released after a period of execution time (termi-
nation of the process, see Table 1). In our simulation we assume
that the released resources will be immediately transferred from
the free-list to the free-ownership-list. For each resolved query,
the simulator records information including query description,
query results and the current status of the network (system)
graph as a trace. Upon completion of simulation, the simulator
individually analyses the generated traces for each run in order
to calculate values of RAA and Maximum Reachable Accuracy
(MRA) for each query. MRA is measured, similar to RAA (as
it is presented in Equation 1). But, unlike RAA, MRA uses
the parameters of the ideal query results, instead of the real
query results achieved by our proposed resource management
approach. To do this, the simulator statically evaluates the query
conditions for each potential set of results in the network graph
(provided by a trace) and concludes with the most optimal results
attainable for the given query.

6.2. Resource Allocation Accuracy (Mapping Quality)
Figure 10 demonstrates the simulation results for each of the

defined settings for di↵erent run numbers. The linear plots above
the bar charts in each graph represent the variation of the value
for MRA which is dependent on network topology and random
distribution of resources.

As we mentioned earlier, MRA can be calculated by analyzing
the states of resources and the network topology in each run
number. In fact, it is possible that request requirements for a
set of resources not be fully obtained in the system. This might
happen when the requested set is not available (reserved), or
never existed in the system. In such a case our approach tries

13

Figure 10: RAA ratio for di↵erent settings and network topology parameters: a)
Setting 1: the processes with 2 threads b) Setting 2: the processes with 3 threads
c) Setting 3: the processes with 5 threads d) Setting 4: the processes with 9
threads (MRA is the Maximum Reachable Accuracy, each run number indicates
di↵erent random network topology parameters)

to o↵er a similar set which can fulfill most of the requirements.
MRA specifies the border line to o↵er the most optimal set of
resources for a specific process due to the realistic conditions of
the resources in the system. The bar charts represent the average
percentage of RAA with di↵erent settings and run numbers.
As we can see in the results, the RAA in all of the tests are
almost close to the value of the maximum reachable accuracy
which presents a resalable level of accuracy for the resource
allocation in the proposed resource management approach. The
result shows that, the RAA in the settings for the small processes
(i.e., the process with small number of threads) (Figure 10.a and
Figure 10.b) in comparison to the larger processes (Figure 10.c
and Figure 10.d) is closer to the maximum in overall.

Figure 11: Resource Allocation Inaccuracy ratio for the processes with di↵erent
number of threads and threads’ dependency

Figure 11 shows the average inaccuracy ratio for di↵erent
types of processes with various levels of dependency between
their threads. It can be seen that inaccuracy ratio grows for the
larger processes with higher level of threads dependency. How-
ever the inaccuracy slope is still less than the dependency slope.
The reason for this behavior is that the larger processes with
higher dependencies have more requirements for their required
set of resources which can’t be potentially fulfilled in the system
in comparison to the smaller processes with lower dependencies.
When the system is not able to provide the qualified set of re-
sources considering all the process requirements, it returns the

optimal results that partially meet the requirements. And this
increases the inaccuracy ratio. Our approach tries to provide the
most qualified set of resources for allocation. However if it is
not feasible to obtain, (for reasons such as unavailability of the
resources and system limitations) it o↵ers the best possible set
of resources.

6.3. Scalability and Performance

In continuation of this section, we evaluate the performance of
our resource management model with respect to scalability. To
do this we conduct a simulation scenario based on the simulation
parameters mentioned in Table 1 with the following changes,
presented in Table 2.

Table 2: Simulation Parameters for Scalability Evaluation

Parameter Values

Requested Resources for each Process 20
Frequency of Target Resources (FTR) 1650
Physical network size 27500 cores
Process Duration by sec Weibull(�=3.58,k=2.40)
Querying Interval by ms Exponential(�=4000)
Consecutive Query Runs per RMC 1000
Number of Active RMCs 275

In fact, we simulate a distributed dynamic computing environ-
ment containing 27500 computing resources in which a constant
number of RMCs (i.e., active RMCs) simultaneously handle the
incoming resource requests from their PM clients. The time
interval between each pair of consecutive queries issued by PMs
(i.e., the arrival rate of incoming resource requests from PMs)
is defined by Exponential distribution. We also assume that
each active RMC only receives 1000 consecutive resource re-
quests from PMs over the simulation time. RMCs assign and
reserve the proper resources for each PM request. The reserved
resources for each process be released after execution time pe-
riod which is defined by Weibull distribution. We measure the
system overhead caused by resource management components
(i.e., number of transaction messages between RMCs, RRs and
RPS to handle a resource request issued by a PM) as well as the
RMC latency for requests over time.

Figure 12: Hexbin plots for the number of transaction messages and the latency
for each resource request over time.

Figure 12-a and Figure 12-b present the Hexbin plots for re-
source management overhead and latency over simulation time
(by millisecond). Each data point in the graphs represents the

14

result of a single PM resource request. The darker points in the
graphs (i.e., the high density points) represent states that have
a higher probability of occurrence in comparison to the lighter
points. As we can see in these graphs, the majority of the queries
results, particularly the high density data points, fall on or below
the regression line. This illustrates that our resource manage-
ment scheme is highly scalable over time and can e�ciently
maintain its performance under natural churn caused by high
frequent resource reservations and resource releases in highly
dynamic computing environment.

a)

Transaction Messages

D
e

n
si

ty

0 50 100 150 200

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

gamma: α = 5.442 , β = 0.164
local estimate of the density

50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

b)

Transaction Messages

C
u

m
u

la
tiv

e
 D

is
tr

ib
u

tio
n

 F
u

n
ct

io
n

gamma: α = 5.442 , β = 0.164

c)

Discovery Latency

D
e

n
si

ty

0 500 1000 1500

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

weibull: κ = 1.78 , λ = 289.068
local estimate of the density

0 500 1500 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

d)

Discovery Latency

C
u

m
u

la
tiv

e
 D

is
tr

ib
u

tio
n

 F
u

n
ct

io
n

weibull: κ = 1.78 , λ = 289.068

Figure 13: a and b) Histogram, density plot and CDF plot for the number of
transaction messages between resource management components over simula-
tion time, c and d) Histogram, density plot and CDF plot for the querying latency
for the PM requesters over simulation time

Figure 13-a and Figure 13-b illustrate that at least 80% of the
resource requests are managed by their correspondent RMCs
with less than 50 transaction messages which shows a reasonable
overhead. But for less than 20% of the resource requests, the
resource management overhead is a value between 50 to 250
messages. This happens mainly due to resource unavailability,
rare resources and resource contentions. In fact, for larger pro-
cess execution times, it takes longer for the reserved resources
to be released by the original requesters and this leads to higher
rate of unavailability for the occupied resources in the system.
In this regard, the frequent resources in the system, might be-
come rare resources over time with higher cost of discovery. In
addition, the rate of resource unavailability and the speed with
which the resources become rare will accelerated particularly
when the overall task duration (i.e., process execution time)
exceeds the overall querying interval. Figure 13-c and Figure

13-d also present the similar results for the average querying
latency to process the requests that were initiated by di↵erent
PM components in the system over simulation time.

6.4. Scalability and Resource Discovery
In continuation of this section, we present the simulation

results which demonstrate the performance of our resource man-
agement scheme with respect to scalability in comparison to
other alternative approaches.The scalability of our resource man-
agement model is critically dependent on the deployment of
a proper resource discovery mechanism that can discover re-
sources managed by di↵erent independent distributed RMC
components around the network. For comparisons, we simulate
our model, ElCore, in conjunction with three other approaches
which benefit from di↵erent generic hybrid distributed meth-
ods for resource discovery. These approaches are PRW, FRW
and Broad-Walk. We also simulated another version of ElCore
which employs a non-anycast based method for resource dis-
covery. This model is identical to ElCore except that it doesn’t
support SN layer and SQMS providers for resource discovery
and instead it resolves any SN-dependent queries by extend-
ing the native probability mechanism of ElCore to support the
layersn resource information within layeran.

In order to perform resource discovery, PRW (or partial
random-walk), FRW (or full random-walk) and Broad-Walk
are organized on top of two-layered (i.e., leaf-node layer and
aggregate-node layer) distributed hierarchies. PRW and FRW
leverage the same Chord based DHT method which is used in
ElCore in the leaf-node layer, however, they provide di↵erent
query-forwarding methods in the aggregate-node layer. PRW
uses both probability and random-walk methods to guide queries
in layeran. In this approach, distributed probability tables in the
system only process the query results with respect to the resource
information in layerln and layeran. PRW might behave similar to
ElCore-nAC for non-SN-dependent queries (e.g., <cln.can.nsn>)
but for SN-dependent queries the selection of the forwarding
destination node is partially random since the probability tables
do not actually care about the required resource conditions in
the super-node layer for the given queries.

The PRW is comparable to our approach (ElCore) in the sense
that it creates clusters on top of the unstructured network. It also
provides similarity with some well-known request propagation
strategies in the literature such as the shortcut, random walk,
learning-based, best-neighbor, learning-based + best-neighbor
methods. These methods have been used in many popular re-
source discovery systems and applications [81–86]. For example
in Iamnitchi et al [87] a fully decentralized discovery approach is
proposed which is based on publish/subscription of the resource
information on some specific nodes in the virtual organization.
Learning-based and also random-walk methods are used to prop-
agate the queries among the server nodes. Our approach and
also PRW are not based on publish/subscription since it is costly
in terms of network tra�c, processing, and storage needs for
periodical updating and the maintenance of resource information
particularly in high dynamic environments. On the other hand,
our probability mechanism is comparative to or even better than
learning-based strategy. In the learning-based method nodes

15

learn from experience by recording the requests answered by
other nodes (i.e., by caching the results of successful queries).
A request is forwarded to the node that has answered similar
query previously [88]. This strategy becomes ine�cient when
the system size, dynamicity and heterogeneity of resources/-
queries increase due to the larger memory requirements to main-
tain the query results and unavailability of the pre-discovered
resources. But in our proposed probability mechanism, the sta-
tistical information about all the transacted queries by each peer
are aggregated in the fixed-size DPTs regardless of the success-
fulness of the queries. In addition, by leveraging techniques
such as dynamic best SOR detection, low-resource nodes and
resource unavailability detection and various situation-based
policies and updating strategies (e.g., shortest path, latency-
aware and attribute-based updating) our proposed probability
method provides better accuracy and e�ciency.

Unlike PRW, FRW employs a fully single random-walk
method to guide all types of queries in aggregate-node layer.
Random-walk is a common query-forwarding method which
is originally proposed in the literature to alleviate the exces-
sive tra�c problem caused by flooding [89] and to deal with
the tra�c/coverage trade-o↵. Random-walk is used in many
distributed resource discovery applications such as Gnutella
[90, 91], Iamnitchi et al [87] and [92–96].

Broad-Walk is a hybrid two layered approach which uses
broadcast-based query propagation method [97, 98] in the leaf-
node layer and the random-walk forwarding in the aggregate-
node layer. In continuation of this section we explain the details
of our simulation setup and and we discuss the comparison
results.

Using our self-organized clustering algorithm we simulate
the aforementioned discovery approaches on top of either two-
layered or three-layered distributed hierarchies. Similar to the
previous scenarios, we simulate dynamic computing environ-
ments containing various numbers of computing resources in
which a constant number of resources (i.e., requesters) simul-
taneously issue the discovery requests to the system. The time
interval between each pair of consecutive queries issued by a
requester is defined by an exponential distribution. We also as-
sume that each requester issues 10 consecutive resource requests
to the system over the simulation time. The discovered resources
will be reserved for each discovery request. The reserved re-
sources for each process will be released after execution time
period which is defined by a Weibull distribution. We execute
10 queries per requester for each system size, originating from
a uniformly chosen source-node. Each experiment for each
system-size is repeated for 100 run numbers with di↵erent topol-
ogy parameters. All the queries are identical and represent the
queries of type <cln.can.csn>. Each requester is willing to find
required resources for a process containing three thread-groups
with di↵erent resource requirements. Table 3 presents more
details of simulation parameters for our evaluation.

In the first test, we perform experiments to measure average
number of required messages and average latency (by millisec-
onds) per discovery request for ElCore, ElCore-nAC and other
approaches. The PRW, FRW and Broad-Walk with the same
topology, simulation parameters and conditions are used as al-

Table 3: Simulation Parameters for Performance Compression

Parameter Values

Physical network size 5500-55000 cores
Interconnect topology Mesh/Torus
Network topology Random
Interconnect channel datarate 50Gbps
Network channel 100 Mbps
Desired Resources for each Request 3x20
Homogeneity rate of desired resources 33%
Frequency of Target Resources (FTR) 1650
Process Duration by sec Weibull(�=3.58,k=2.40)
Querying Interval by ms Exponential(�=4000)
Consecutive Query Runs per Requesters 10
Rate of Requesters 1%

ternative reference works. Figs 14-a, b and c show plots of the
average discovery messages and the average discovery latency
per query as a function of the number of computing resources in
the system (i.e., system size). Figure 14-b demonstrates the re-
sults presented in the Figure 14-a with better resolution (without
Broad-Walk).

In Figure 14-a, we observe that the average required num-
ber of discovery messages per query for Broad-Walk is much
larger than the other approaches while in Figure 14-c the average
latency of Broad-Walk is almost close to FRW, PRW and ElCore-
nAC. This means that Broad-Walk significantly generates more
discovery tra�c in comparison to others due to the heavy cost of
broadcasting in layerln. The queries in Broad-Walk are guided in
the aggregate-node layer by being forwarded to a non-visited sin-
gle random neighboring aggregate-node. Upon arrival of a query
in an aggregate-node if that node fits the query conditions (i.e.,
can) for the current layer (i.e., layeran) the query is broadcasted
to all the leaf-node members of the current aggregate-node oth-
erwise it is forwarded further in the network using random-walk.
Broadcasting results in increased tra�c but it could also provide
reasonable response time for queries (as seen in Figure 14-c)
since the aggregate-node inquires all of its leaf-node members
in parallel. The response time for Broad-Walk is approximately
close to the results for FRW, PRW and even ElCore-nAC.

Figs 14-b and 14-c show that our approach, ElCore, provides
the highest performance and scalability among others for both
discovery tra�c (i.e., average number of discovery messages
propagated during a search) and latency when varying the num-
ber of resources in the system from 5500 to 55000 resources.
This is particularly significant for the query response time (la-
tency) since the other approaches such as ElCore-nAC and PRW
also provide close results in terms of the number of discovery
messages. ElCore e�ciently divides the exploring space to any-
cast groups in a way that queries with csn requirements are only
propagated among the SQMS providers whose specifications in
layersn fulfill the csn conditions of the given query essentially.
In comparison to the ElCore-nAC, this strategy leads to a signifi-
cant reduction in the response time of ElCore while its discovery
tra�c slightly decreases. As we already discussed, ElCore is
the enhancement of ElCore-nAC by leveraging our proposed
anycast-forwarding mechanism in an extra layer which is called
layersn. The presented results for ElCore-nAC and ElCore in
Figs 14-b and 14-c also prove that increasing the level of hi-

16

0 10000 20000 30000 40000 50000 60000

0
5

0
0

1
0

0
0

1
5

0
0

a)

System Size

#
 T

ra
n

sa
ct

io
n

 M
e

ss
a

g
e

s

ElCore
ElCore (non−anycast)
PRW
FRW
Broad−Walk

0 10000 20000 30000 40000 50000 60000

0
5

0
1

0
0

1
5

0
2

0
0

b)

System Size

#
 T

ra
n

sa
ct

io
n

 M
e

ss
a

g
e

s

ElCore
ElCore (non−anycast)
PRW
FRW

0 10000 20000 30000 40000 50000 60000

0
1

0
0

0
3

0
0

0
5

0
0

0
7

0
0

0

c)

System Size

L
a

te
n

cy
 (

m
s)

ElCore
ElCore (non−anycast)
PRW
FRW
Broad−Walk

Figure 14: Comparison between ElCore and other alternative approaches: Aver-
age number of transacted messages and latency per query for di↵erent system
size and di↵erent approaches

erarchy along with the implementation of an e�cient adaptive
corresponding query-processing method improves the overall
performance of our discovery system. Another factor contribut-
ing to ElCore’s overall performance is that ElCore controls the
discovery procedure in a more intelligent way which saves much
unnecessary message cost. Moreover due to the anycast na-
ture of ElCore, SQMS providers are able to e↵ectively guide
the given queries to the closest qualified SQMS provider in the
system which results in a significant reduction in the discovery
latency for the queries in the system (see Figure 14-c).

From Figure 14-b, we can also see that, PRW generates larger
number of discovery messages per query than ElCore-nAC and
ElCore because of its partial random-walk query-forwarding

mechanism in layeran. In fact, PRW provides an e�cient proba-
bility mechanism (similar to ElCore-nAC) to guide queries in
layeran to the potential matched resources in the system. But
this probability mechanism becomes ine�cient for processing
the queries with csn requirements because the DPTs in PRW
do not consider the csn requirements of the given queries in or-
der to statistically estimate the target aggregate-node for query-
forwarding. This leads to a sort of partial random-walk for the
SN-dependent queries (i.e., for the queries that csn <> nsn). But
for the other types of queries (e.g., < cln.can.nsn >) which are not
considered in our evaluation in this section, PRW is expected to
behave identically to ElCore-nAC.

Figure 14-b illustrates that FRW provides a lower performance
with respect to discovery overhead compared to PRW while they
exhibit almost similar behavior for discovery latency as shown in
Figure 14-c. This is due to the fact that the mechanism for query
resolution in layeran of FRW is fully based on random-walk
method. This means that the queries in layeran are forwarded to
a uniformly random selected neighboring aggregate-node in the
system which is not yet visited. Since the next-node selection
strategy is completely random-based the number of required
traversed discovery messages for resolving a query gets more
compared to the approaches benefiting a type of estimation-
based strategy.

In the next experiment, we measure the overall discovery load
per node (i.e., vnode) and the average bandwidth consumption
per node during the querying period (60000-80000 ms), which
is the duration of time that the requesters propagate a constant
number of successive queries across the network in a parallel
manner. The querying period ends when the request-initiator
corresponding to the last query is replied. The discovery load (or
control overhead per node) is the average number of transacted
discovery messages by each vnode during the querying period.
Figs 15-a and 15-b depict the discovery load per node as the
function of system size for di↵erent approaches. Figure 15-b
demonstrates the results presented in Figure 15-a with better
resolution (without Broad-Walk). As we can see in these figures,
ElCore shows better performance compared to other solutions
by generating minimal tra�c transmission control overhead per
node. This also proves that ElCore provides better scalability
than others (in terms of discovery load per node for querying) as
the system size increases.

Figure 15-c compares the average bandwidth consumption per
node (during querying period) for di↵erent approaches and var-
ious system sizes. Bandwidth consumption per node indicates
the amount of control tra�c that each node generates during sim-
ulation time. The tra�c load that we measured contains control,
query and description messages that are transmitted between
nodes. As we can expect, communication among RMC in-
stances, to resolve various parallel resource requests, inevitably
imposes unwanted tra�c into the network. But, as we can see
in Figure 15-c, the bandwidth consumption per node for our
approach is significantly lower, compared to other approaches
for all di↵erent system sizes. It can be also observed that, when
we vary the system size from 5500 to 55000 resources, the
bandwidth consumption for ElCore remains reasonable (with
minimum changes), resulting in better scalability, compared to

17

Figure 15: Comparison between ElCore and other alternative approaches: a,b)
Average control overhead per node (i.e., average number of transmitted messages
per vnode) and c) Average bandwidth consumption per node, during simulation
time (60000-80000 ms), for various system sizes.

other approaches.

7. Conclusion

We have provided a novel resource management architec-
ture for large-scale distributed computing environments. The
proposed architecture contains a set of modules which will dy-
namically be instantiated on the nodes in the distributed system
on demand. Our approach is flexible to allocate the required set
of resources for various types of processes/applications. It is a
generic resource management approach which can be applied to
di↵erent large-scale computing architectures and specifically it

can be explored in Cloud systems. We must note that we have
not specifically designed our approach for Cloud computing
only. Instead, the proposed resource management architecture
provides a generic solution (considering the general require-
ments of large-scale computing environments) that can bring a
set of interesting features (such as auto-scaling, multitenancy,
multi-dimensional mapping, etc,.) which facilitate its easy adap-
tation to any distributed technology (such as SOA, Grid and
HPC manycore). Our resource management scheme can sup-
port auto-scale (the ability to provide budget to more-or-less
expensive tasks) in two di↵erent aspects: dynamic resource
allocation and dynamic module instantiation. The simulation
results show that, using our approach, the mapping between
processes and resources can be done with high level of accuracy
which will potentially lead to a significant enhancement in the
overall system performance. System module instances will be
automatically created when they are needed. The specificities
of application of our model to a given architecture start here.
Each module instance would be dependent on the type of ap-
plication (e.g., real-time, HPC), the computing resource (where
the application starts to be executed), heterogeneity of resources,
positioning of the resources in the system, network topology and
interconnection between resources. Moreover, leveraging dis-
covery components (RR-RPs) enables our resource management
platform to dynamically find and allocate available resources
that guarantee the QoS parameters on demand.

8. Acknowledgment

The authors acknowledge the support of project FP7-ICT-
2009.8.1, Grant Agreement No.248465, Service-oriented Operat-
ing Systems (2010-2013) [4–10] and of project Cloud Thinking
(2013-2015), CENTRO-07-ST24-FEDER-002031 [99].

References

[1] W. M. Arden, The international technology roadmap for semiconduc-
tors—perspectives and challenges for the next 15 years, Current Opinion
in Solid State and Materials Science 6 (2002) 371–377.

[2] I. K. Kim, J. Steele, Y. Qi, M. Humphrey, Comprehensive elastic resource
management to ensure predictable performance for scientific applications
on public iaas clouds, in: Proceedings of the 2014 IEEE/ACM 7th Inter-
national Conference on Utility and Cloud Computing, UCC ’14, IEEE
Computer Society, Washington, DC, USA, 2014, pp. 355–362.

[3] T. Desell, K. E. Maghraoui, C. A. Varela, Malleable applications for
scalable high performance computing, Cluster Computing 10 (2007)
323–337.

[4] L. Schubert, A. Kipp, Principles of service oriented operating systems, in:
P. Vicat-Blanc Primet, T. Kudoh, J. Mambretti (Eds.), Networks for Grid
Applications, volume 2 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, Springer
Berlin Heidelberg, 2009, pp. 56–69.

[5] The S[o]OS Consortium , S(o)OS (Service-oriented Operating System):
Resource-independent execution support on exa-scale systems, Available at
http://www.soos-project.eu/, http://www.soos-project.eu/
index.php/publications, 2010-2013. [Online: accessed 5-September-
2014].

[6] L. Schubert, Dynamicity requirements in future cloud-like infrastruc-
tures, Invited Speaker, EuroCloud CLASS Conference, Available at
http://videolectures.net/classconference2012_schubert_

infrastructures/, 2012. [Online: accessed 15-April-2016].

18

[7] C. P. R. Baaij, J. Kuper, L. Schubert, SoOSiM: Operating System and
Programming Language Exploration, in: G. Lipari, T. Cucinotta (Eds.),
Proceedings of the 3rd International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time System (WATERS), pp. 63–
68.

[8] G. Lipari, E. Bini, A framework for hierarchical scheduling on multi-
processors: From application requirements to run-time allocation, in:
Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pp. 249–258.

[9] T. Cucinotta, Challenges in operating system design for future
many-core systems, All Hands Meeting (AHM) 2010, Cardi↵, UK,
Available at http://retis.sssup.it/~tommaso/presentations/
AHM-2010.pdf, 2010. [Online: accessed 15-April-2016].

[10] L. Schubert, A. Kipp, S. Wesner, Above the clouds: From grids to service-
oriented operating systems., in: Future Internet Assembly, pp. 238–249.

[11] A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple linux utility for re-
source management, in: Job Scheduling Strategies for Parallel Processing,
Springer, pp. 44–60.

[12] A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple linux utility for re-
source management, in: Job Scheduling Strategies for Parallel Processing,
Springer, pp. 44–60.

[13] G. Staples, Torque resource manager, in: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, ACM, New York,
NY, USA, 2006, p. 8.

[14] S. Zhou, X. Zheng, J. Wang, P. Delisle, Utopia: A load sharing facility for
large, heterogeneous distributed computer systems, Softw. Pract. Exper.
23 (1993) 1305–1336.

[15] R. L. Henderson, Job scheduling under the portable batch system, in: Job
scheduling strategies for parallel processing, Springer, pp. 279–294.

[16] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, J. F. Skovira, Workload
management with loadleveler, IBM Redbooks 2 (2001) 2.

[17] A. Keller, A. Reinefeld, Ccs resource management in networked hpc
systems, in: Proceedings of the Seventh Heterogeneous Computing Work-
shop, HCW ’98, IEEE Computer Society, Washington, DC, USA, 1998,
pp. 44–.

[18] W. G. S. Microsystems), Sun grid engine: Towards creating a compute
power grid, in: Proceedings of the 1st International Symposium on Cluster
Computing and the Grid, CCGRID ’01, IEEE Computer Society, Wash-
ington, DC, USA, 2001, pp. 35–.

[19] M. J. Litzkow, M. Livny, M. W. Mutka, Condor-a hunter of idle work-
stations, in: Distributed Computing Systems, 1988., 8th International
Conference on, IEEE, pp. 104–111.

[20] J. Basney, M. Livny, T. Tannenbaum, Deploying a high throughput com-
puting cluster, High performance cluster computing 1 (1999) 356–361.

[21] B. N. Chun, D. E. Culler, Market-based Proportional Resource Sharing for
Clusters, Technical Report, University of California at Berkeley, Computer
Science Division, Berkeley, CA, USA, 2000.

[22] K. Lai, L. Rasmusson, E. Adar, L. Zhang, B. A. Huberman, Tycoon: An
implementation of a distributed, market-based resource allocation system,
Multiagent Grid Syst. 1 (2005) 169–182.

[23] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, S. E. Sprenkle, Dynamic
virtual clusters in a grid site manager, in: Proceedings of the 12th IEEE
International Symposium on High Performance Distributed Computing,
HPDC ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp.
90–.

[24] D. Abramson, J. Giddy, L. Kotler, High performance parametric modeling
with nimrod/g: Killer application for the global grid?, in: ipdps, IEEE, p.
520.

[25] R. Buyya, D. Abramson, J. Giddy, Nimrod/g: An architecture for a
resource management and scheduling system in a global computational
grid, in: High Performance Computing in the Asia-Pacific Region, 2000.
Proceedings. The Fourth International Conference/Exhibition on, volume 1,
IEEE, pp. 283–289.

[26] F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt, 2K: A Distributed
Operating System for Dynamic Heterogeneous Environments, Technical
Report, University of Illinois at Urbana-Champaign, Champaign, IL, USA,
1999.

[27] L. Bölöni, K. Jun, K. Palacz, R. Sion, D. C. Marinescu, The bond agent
system and applications, in: Proceedings of the Second International
Symposium on Agent Systems and Applications and Fourth International
Symposium on Mobile Agents, ASA/MA 2000, Springer-Verlag, London,
UK, UK, 2000, pp. 99–112.

[28] M. Litzkow, M. Livny, M. Mutka, Condor-a hunter of idle workstations,
in: Distributed Computing Systems, 1988., 8th International Conference
on, pp. 104–111.

[29] P. Chandra, Y. H. Chu, A. Fisher, J. Gao, C. Kosak, T. S. Ng, P. Steenkiste,
E. Takahashi, H. Zhang, Darwin: Customizable resource management for
value-added network services, Netwrk. Mag. of Global Internetwkg. 15
(2001) 22–35.

[30] M. Ripeanu, M. Bowman, J. S. Chase, I. Foster, M. Milenkovic, Globus
and planetlab resource management solutions compared, in: Proceed-
ings of the 13th IEEE International Symposium on High Performance
Distributed Computing, HPDC ’04, IEEE Computer Society, Washington,
DC, USA, 2004, pp. 246–255.

[31] S. J. Chapin, D. Katramatos, J. F. Karpovich, A. S. Grimshaw, The legion
resource management system, in: Proceedings of the Job Scheduling
Strategies for Parallel Processing, IPPS/SPDP ’99/JSSPP ’99, Springer-
Verlag, London, UK, UK, 1999, pp. 162–178.

[32] H. Nakada, M. Sato, S. Sekiguchi, Design and implementations of ninf:
Towards a global computing infrastructure, Future Gener. Comput. Syst.
15 (1999) 649–658.

[33] A. Bradley, K. Curran, G. Parr, Discovering resources in computational
grid environments, The Journal of Supercomputing 35 (2006) 27–49.

[34] T. S. Somasundaram, K. Govindarajan, Cloudrb: A framework for schedul-
ing and managing high-performance computing (hpc) applications in sci-
ence cloud, Future Generation Computer Systems 34 (2014) 47 – 65.
Special Section: Distributed Solutions for Ubiquitous Computing and
Ambient Intelligence.

[35] J. A. Wickboldt, R. P. Esteves, M. B. de Carvalho, L. Z. Granville, Re-
source management in iaas cloud platforms made flexible through pro-
grammability, Computer Networks 68 (2014) 54 – 70. Communications
and Networking in the Cloud.

[36] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youse↵,
D. Zagorodnov, The eucalyptus open-source cloud-computing system,
in: Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM
International Symposium on, pp. 124–131.

[37] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, X. Zhu, From
virtualized resources to virtual computing grids: the in-vigo system, Future
Generation Computer Systems 21 (2005) 896 – 909.

[38] J. Chase, D. Irwin, L. Grit, J. Moore, S. Sprenkle, Dynamic virtual clusters
in a grid site manager, in: High Performance Distributed Computing, 2003.
Proceedings. 12th IEEE International Symposium on, pp. 90–100.

[39] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, J. Henkel,
Distrm: distributed resource management for on-chip many-core systems,
in: Proceedings of the seventh IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, ACM, pp. 119–128.

[40] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan, R. L. Hudson,
L. Petersen, V. Menon, B. Murphy, T. Shpeisman, E. Sprangle, A. Rohillah,
D. Carmean, J. Fang, Enabling scalability and performance in a large scale
cmp environment, SIGOPS Oper. Syst. Rev. 41 (2007) 73–86.

[41] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K. Pujari,
A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, et al., Invasive manycore
architectures., in: ASP-DAC, pp. 193–200.

[42] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
R. Isaacs, Embracing diversity in the barrelfish manycore operating sys-
tem, in: Proceedings of the Workshop on Managed Many-Core Systems,
Association for Computing Machinery, Inc., 2008, p. 27.

[43] R. Marculescu, U. Y. Ogras, L. S. Peh, N. E. Jerger, Y. Hoskote, Out-
standing research problems in noc design: System, microarchitecture, and
circuit perspectives, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 28 (2009) 3–21.

[44] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha, C. Lee,
Q. Xu, L. Huang, Mapping of applications to mpsocs, in: Proceedings
of the Seventh IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ISSS ’11, ACM, New
York, NY, USA, 2011, pp. 109–118.

[45] A. K. Singh, M. Shafique, A. Kumar, J. Henkel, Mapping on multi/many-
core systems: Survey of current and emerging trends, in: Proceedings of
the 50th Annual Design Automation Conference, DAC ’13, ACM, New
York, NY, USA, 2013, pp. 1:1–1:10.

[46] H.-S. Wu, C.-J. Wang, J.-Y. Xie, Terascaler elb-an algorithm of prediction-
based elastic load balancing resource management in cloud comput-

19

ing, in: Advanced Information Networking and Applications Workshops
(WAINA), 2013 27th International Conference on, IEEE, pp. 649–654.

[47] U. Sharma, Elastic resource management in cloud computing platforms,
Ph.D. thesis, University of Massachusetts, Amherst, 2013.

[48] M. Kesavan, A. Gavrilovska, K. Schwan, Elastic resource allocation in
datacenters: Gremlins in the management plane, ELASTIC 1 (2012) 8.

[49] T. Erl, R. Puttini, Z. Mahmood, Cloud computing: concepts, technology,
& architecture, Pearson Education, 2013.

[50] I. K. Kim, J. Steele, Y. Qi, M. Humphrey, Comprehensive elastic resource
management to ensure predictable performance for scientific applications
on public iaas clouds, in: Utility and Cloud Computing (UCC), 2014
IEEE/ACM 7th International Conference on, IEEE, pp. 355–362.

[51] J. Zarrin, R. L. Aguiar, J. P. Barraca, Dynamic, scalable and flexible
resource discovery for large-dimension many-core systems, Future Gener-
ation Computer Systems 53 (2015) 119 – 129.

[52] J. Zarrin, R. L. Aguiar, J. P. Barraca, A self-organizing and self-
configuration algorithm for resource management in service-oriented sys-
tems, in: Computers and Communication (ISCC), 2014 IEEE Symposium
on, pp. 1–7.

[53] K. G. Shin, P. Ramanathan, Real-time computing: a new discipline of
computer science and engineering, Proceedings of the IEEE 82 (1994)
6–24.

[54] E. G. C. Jr., M. R. Garey, D. S. Johnson, An application of bin-packing to
multiprocessor scheduling., SIAM J. Comput. 7 (1978) 1–17.

[55] Y. Jiang, X. Shen, J. Chen, R. Tripathi, Analysis and approximation of
optimal co-scheduling on chip multiprocessors, in: Proceedings of the
17th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’08, ACM, New York, NY, USA, 2008, pp. 220–229.

[56] D.-W. Kim, K.-H. Kim, W. Jang, F. F. Chen, Unrelated parallel machine
scheduling with setup times using simulated annealing, Robotics and
Computer-Integrated Manufacturing 18 (2002) 223 – 231. 11th Interna-
tional Conference on Flexible Automation and Intelligent Manufacturing.

[57] J. E. Boillat, P. G. Kropf, A fast distributed mapping algorithm, in:
Proceedings of the Joint International Conference on Vector and Parallel
Processing, CONPAR 90/VAPP IV, Springer-Verlag, London, UK, UK,
1990, pp. 405–416.

[58] C. Marcon, E. Moreno, N. Calazans, F. Moraes, Evaluation of algorithms
for low energy mapping onto nocs, in: Circuits and Systems, 2007. ISCAS
2007. IEEE International Symposium on, pp. 389–392.

[59] H. Ho↵mann, M. Maggio, M. D. Santambrogio, A. Leva, A. Agarwal,
SEEC: A framework for self-aware management of multicore resources,
Technical Report, Massachusetts Institute of Technology, 2011.

[60] H. Shojaei, A.-H. Ghamarian, T. Basten, M. Geilen, S. Stuijk, R. Hoes,
A parameterized compositional multi-dimensional multiple-choice knap-
sack heuristic for cmp run-time management, in: Design Automation
Conference, 2009. DAC ’09. 46th ACM/IEEE, pp. 917–922.

[61] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, L. Thiele, Scenario-
based design flow for mapping streaming applications onto on-chip many-
core systems, in: Proceedings of the 2012 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, CASES
’12, ACM, New York, NY, USA, 2012, pp. 71–80.

[62] B. Yang, L. Guang, T. Säntti, J. Plosila, Mapping multiple applications
with unbounded and bounded number of cores on many-core networks-on-
chip, Microprocessors and Microsystems 37 (2013) 460 – 471.

[63] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, D. Soudris, Distributed
run-time resource management for malleable applications on many-core
platforms, in: Proceedings of the 50th Annual Design Automation Confer-
ence, DAC ’13, ACM, New York, NY, USA, 2013, pp. 168:1–168:6.

[64] F. Dong, S. G. Akl, Scheduling algorithms for grid computing: State of
the art and open problems, Technical Report, Technical report, 2006.

[65] G. Sabin, M. Lang, P. Sadayappan, Moldable parallel job schedul-
ing using job e�ciency: An iterative approach, in: E. Frachtenberg,
U. Schwiegelshohn (Eds.), Job Scheduling Strategies for Parallel Process-
ing, volume 4376 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2007, pp. 94–114.

[66] J. F. Perez, G. Casale, S. Pacheco-Sanchez, Estimating computational
requirements in multi-threaded applications, Software Engineering, IEEE
Transactions on 41 (2015) 264–278.

[67] W. Wang, G. Casale, Bayesian service demand estimation using gibbs sam-
pling, in: Modeling, Analysis & Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2013 IEEE 21st International Symposium

on, IEEE, pp. 567–576.
[68] A. Kalbasi, D. Krishnamurthy, J. Rolia, S. Dawson, Dec: Service demand

estimation with confidence, Software Engineering, IEEE Transactions on
38 (2012) 561–578.

[69] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, W. Wang, Quality-of-
service in cloud computing: modeling techniques and their applications,
Journal of Internet Services and Applications 5 (2014) 1–17.

[70] S. Spinner, G. Casale, F. Brosig, S. Kounev, Evaluating approaches to
resource demand estimation, Performance Evaluation 92 (2015) 51–71.

[71] W. Iqbal, Minimalistic adaptive resource management for multi-tier appli-
cations hosted on clouds, in: Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International,
IEEE, pp. 2546–2549.

[72] J. Ortigoza, F. López-Pires, B. Barán, Workload trace generation for dy-
namic environments in cloud computing, arXiv preprint arXiv:1507.00090
(2015).

[73] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, N. Sharma, To-
wards autonomic workload provisioning for enterprise grids and clouds,
in: Grid Computing, 2009 10th IEEE/ACM International Conference on,
IEEE, pp. 50–57.

[74] A. Khan, X. Yan, S. Tao, N. Anerousis, Workload characterization and
prediction in the cloud: A multiple time series approach, in: Network
Operations and Management Symposium (NOMS), 2012 IEEE, IEEE, pp.
1287–1294.

[75] G. Galante, L. C. E. de Bona, A survey on cloud computing elasticity,
in: Utility and Cloud Computing (UCC), 2012 IEEE Fifth International
Conference on, IEEE, pp. 263–270.

[76] J. Rao, Y. Wei, J. Gong, C.-Z. Xu, Qos guarantees and service di↵erentia-
tion for dynamic cloud applications, Network and Service Management,
IEEE Transactions on 10 (2013) 43–55.

[77] M. Andreolini, S. Casolari, M. Colajanni, M. Messori, Dynamic load man-
agement of virtual machines in cloud architectures, in: Cloud Computing,
Springer, 2009, pp. 201–214.

[78] S. C. C. Computing, Platform overview, Intel White paper 7 (2011).
[79] S. Kumar, T. Cucinotta, G. Lipari, A latency simulator for many-core

systems, in: Proceedings of the 44th Annual Simulation Symposium,
ANSS ’11, Society for Computer Simulation International, San Diego, CA,
USA, 2011, pp. 151–158.

[80] J. M. Montanana, M. Koibuchi, H. Matsutani, H. Amano, Balanced
dimension-order routing for k-ary n-cubes, in: Parallel Processing Work-
shops, 2009. ICPPW ’09. International Conference on, pp. 499–506.

[81] S. Castano, A. Ferrara, S. Montanelli, D. Zucchelli, Helios: a general
framework for ontology-based knowledge sharing and evolution in p2p sys-
tems, in: Database and Expert Systems Applications, 2003. Proceedings.
14th International Workshop on, pp. 597–603.

[82] K. Sripanidkulchai, H. Zhang, Content location in peer-to-peer systems:
Exploiting locality, in: X. Tang, J. Xu, S. Chanson (Eds.), Web Content
Delivery, volume 2 of Web Information Systems Engineering and Internet
Technologies Book Series, Springer US, 2005, pp. 73–97.

[83] N. Bisnik, A. A. Abouzeid, Optimizing random walk search algorithms in
{P2P} networks, Computer Networks 51 (2007) 1499 – 1514.

[84] J. Li, R. Yahyapour, Learning-based negotiation strategies for grid schedul-
ing, in: Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, volume 1, pp. 8 pp.–583.

[85] A. Sharma, S. Bawa, Comparative analysis of resource discovery ap-
proaches in grid computing, Journal of Computers 3 (2008).

[86] I. Filali, F. Huet, C. Vergoni, A simple cache based mechanism for peer to
peer resource discovery in grid environments, in: Cluster Computing and
the Grid, 2008. CCGRID ’08. 8th IEEE International Symposium on, pp.
602–608.

[87] A. Iamnitchi, I. Foster, D. Nurmi, A peer-to-peer approach to resource lo-
cation in grid environments, in: High Performance Distributed Computing,
2002. HPDC-11 2002. Proceedings. 11th IEEE International Symposium
on, pp. 419–.

[88] A. Iamnitchi, I. Foster, A peer-to-peer approach to resource location in grid
environments, in: J. Nabrzyski, J. Schopf, JenniferM. Weglarz (Eds.), Grid
Resource Management, volume 64 of International Series on Operations
Research and Management Science, Springer US, 2004, pp. 413–429.

[89] C. Papadakis, P. Fragopoulou, E. Markatos, E. Athanasopoulos, M. Dika-
iakos, A. Labrinidis, A feedback-based approach to reduce duplicate
messages in unstructured peer-to-peer networks, in: S. Gorlatch, M. Dane-

20

lutto (Eds.), Integrated Research in GRID Computing, Springer US, 2007,
pp. 103–118.

[90] E. Pournaras, G. Exarchakos, N. Antonopoulos, Load-driven neighbour-
hood reconfiguration of gnutella overlay, Computer Communications 31
(2008) 3030 – 3039. Special Issue:Self-organization and self-management
in communications as applied to autonomic networks.

[91] A. Furno, E. Zimeo, Self-scaling cooperative discovery of service compo-
sitions in unstructured {P2P} networks, Journal of Parallel and Distributed
Computing 74 (2014) 2994 – 3025.

[92] E. Jeanvoine, C. Morin, Rw-ogs: An optimized randomwalk protocol for
resource discovery in large scale dynamic grids, in: Grid Computing, 2008
9th IEEE/ACM International Conference on, pp. 168–175.

[93] R. Robinson, J. Indulska, The emergence of order in random walk resource
discovery protocols, in: R. Khosla, R. Howlett, L. Jain (Eds.), Knowledge-
Based Intelligent Information and Engineering Systems, volume 3683 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2005, pp.
827–833.

[94] V. Bioglio, R. Gaeta, M. Grangetto, M. Sereno, Rateless codes and random
walksfor p2p resource discovery in grids, Parallel and Distributed Systems,
IEEE Transactions on 25 (2014) 1014–1023.

[95] D. Zhou, V. Lo, Cluster computing on the fly: resource discovery in a
cycle sharing peer-to-peer system, in: Cluster Computing and the Grid,
2004. CCGrid 2004. IEEE International Symposium on, pp. 66–73.

[96] N. Bisnik, A. Abouzeid, Modeling and analysis of random walk search
algorithms in p2p networks, in: Hot Topics in Peer-to-Peer Systems, 2005.
HOT-P2P 2005. Second International Workshop on, pp. 95–103.

[97] S. El-Ansary, L. Alima, P. Brand, S. Haridi, E�cient broadcast in struc-
tured p2p networks, in: M. Kaashoek, I. Stoica (Eds.), Peer-to-Peer
Systems II, volume 2735 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2003, pp. 304–314.

[98] M. Sharmin, S. Ahmed, S. Ahamed, Safe-rd (secure, adaptive, fault toler-
ant, and e�cient resource discovery) in pervasive computing environments,
in: Information Technology: Coding and Computing, 2005. ITCC 2005.
International Conference on, volume 2, pp. 271–276 Vol. 2.

[99] R. Aguiar, D. Gomes, J. Barraca, N. Lau, Cloudthinking as an intelligent
infrastructure for mobile robotics, Wireless Personal Communications 76
(2014) 231–244.

21

