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Abstract

Future large scale systems will execute novel operating systems running across many chips with many cores. In this highly distributed
environment, resource discovery is an important building block. Resource discovery aims to match the application’s demands to the
existing (distributed) resources, by discovering and f nding resources at run-time, and then selecting the best resource that matches
the application running requirements. The main contribution of this paper is the design and evolution of a highly scalable, highly
f exible, resource discovery model for such heterogeneous environments. The model is based on self-organizing processing resources
in the system according to a hierarchical resource description where each group of resources has a local directory that collects and
keeps the information of the underlying resource members (cores) in dif erent layers. Operationally, at each layer, it consists of
a peer-to-peer architecture of modules that, by interacting with each other, provide a global view of the resource availability in
a large, dynamic and heterogeneous distributed environment. The proposed resource discovery model provides the adaptability
and f exibility to perform complex querying by supporting a large set of signif cant querying features (such as multi-dimensional,
range and aggregate querying) while supporting exact and partial matching, both for static and dynamic object contents. The paper
demonstrates by simulation how the proposed model can deal with issues such as scalability, ef ciency and adaptability of resource
discovery in future many-core systems which are the major challenges in the current state of the art. The simulation show that
the proposed resource discovery model can be applied to arbitrary scales of dynamicity, both in terms of complexity and of scale,
positioning this proposal as a good architecture for future many-core systems.

Keywords: many-core systems, distributed operating system, service oriented operating system, resource discovery, resource
management, resource sharing, DHT, P2P, grid and cloud computing, cloud-like systems, distributed systems, resource description,
overlay networks

1. Introduction

Processors will not be able to enhance their (single-thread)
performance exponentially[1]. Rather, due to the many-core
nature of future large scale computing platforms, the evolution
will proceed by scaling the number of processing cores. Con-
sequently, application software will no longer necessarily get
faster execution speeds automatically with each hardware up-
grade, but will have to be adapted to get exposed to the higher
level of parallelism by the CPU. This means that to benef t from
the many-core hardware improvements, we should reconsider
our traditional concepts of applications, operating systems and
compilers towards the direction of massively distributed, hetero-
geneous and dynamic computing environments. We can imagine
that computing nodes in future High Performance Computing
(HPC) systems, with thousands of cores, may be connected to-
gether to form a single transparent computing unit, thus hiding
the complexity and distributed nature of the many-core system
from applications while it is expected that the computational
systems extend far beyond the chip, with hundreds and thou-
sands of chips incorporated into collaborative execution units in
a wide-scale distributed structure.

Moreover, due to the specif c requirements and limitations of

the current HPC systems, particularly in terms of high dynamic-
ity and high heterogeneity (e.g. the static conf guration of the
task execution environment which usually depends on specif c
applications, libraries, job schedulers and operating systems,
restricts the service users to implement certain application sce-
narios) and also to the steady progress of Service-oriented and
Cloud computing paradigms, we can envision that the long-term
future of HPC clusters will tend towards large scale distributed
cloud-like systems supporting high performance computing with
increasing f exibility and ef ciency.

For distributed operating systems executed on such Cloud-like
many-core-enabled computing environments, resource discovery
(RD) is a vital building block to maximally exploit the capabil-
ities of all distributed heterogeneous resources. In fact, when
we have a pool of variable-type and large number of processors,
resource sharing becomes complex. This is specially true if we
are trying for overloaded processors to potentially migrate some
applications to other (possibly dif erent) processors in the sys-
tem. But before resource (re)allocation and execution migration,
we need to f nd resources and locate them.

Resource discovery challenges for the next generations of
many-core systems can be considered mainly as associated to
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scalability and efficiency issues. The description of arbitrary
resources for a huge number of heterogeneous resources in an
adequate and efficient manner is not practically attainable at
present. All the diverse resources in a distributed system need to
be defined by a set of strict parameters that adequately describe
the characteristics and performance factors of the correspondent
resources sufficiently. However, exploring all the existing cores,
when different architectures and features are bound, and discov-
ering the ones apt for a certain set of conditions on the local
chip or on a larger scale network is almost unfeasible due to
potential excessive information exchange. Therefore discovery
mechanisms should be efficient enough to support large scale dis-
tributed heterogeneous (many-cores, and not only multi-cores)
environments. Furthermore, with the potential high dynamicity
of resources, providing an intelligent real-time resource aware-
ness mechanism for managing and scheduling resources (cores),
which is able to estimate an optimum resource allocation for a
specified request, is a major challenge.

We must note that values such as clock rate, MIPS, GFLOPS,
cache size, etc., are useful metrics to describe computing units,
but they are not reliable enough and applicable to operate as
complete resource descriptions[2]. Micro Benchmarks such as
HPL, NAMD, or SPEC[3] attempted to solve this problem from
the application side, testing a set of standard algorithms on the
target system. However, there is still not an entirely accurate
and precise performance metric to properly describe resources
in a many-core system in general. The problem of resource
identification and discovery, respectively can be structured along
the following two questions:

1. How to identify the resources required for a given process?
or How to identify the hardware resources requirements
from either the static (source code) or the dynamic (runtime)
behavior of the program (i.e., Resource Identification)?

2. How to find the required resources for a given query (i.e.,
Resource Discovery)?

For optimally running a given process, we need to identify
the resources which maximize the matching between resource
capabilities and process characteristics. This could be done us-
ing a code analyzer component (based on methods such as meta
data provided by developer) or examining the characteristics and
behaviors which are exhibited by the code itself. For example, in
the case of a process with several data inputs and single instruc-
tion, perhaps the best matching resource could be a SIMD vector
processor. In other example, for a given parallel application
containing several threads, according to its dependency graph,
the required resources could be a set of processing cores which
are connected to each other with the links that satisfy the specific
communication requirements.

Upon identification of the adequate resources for a given pro-
cess, the user or any responsible OS component can generate a
query for discovery. Afterwards, the resource discovery module
would be responsible to find the best matching resources for the
query through efficient exploration of the resources in the whole
system.

In this paper, developed under the framework of the S[o]OS
project[4, 5], we focus on the second question and present a re-

source discovery model for distributed operating systems which
deals with the aforementioned challenges. S[o]OS (Service-
oriented Operating System) was a European project aiming
to generate a reference architecture for future large scale, dis-
tributed infrastructures, considering the current trends in pro-
cessor manufacturing including many-core systems, the mem-
ory wall problem, the growing degree of heterogeneity, high-
dynamicty of the resources and the different hierarchies within
the communication infrastructure.

The main contribution of this paper is to design and imple-
ment a new resource discovery (RD) model for the large scale
distributed cloud-like systems with the following general pre-
conditions and assumptions:

1. The heterogeneity of the resources is very high. i.e., high-
heterogeneity in terms of computation and communication
characteristics such as heterogeneity of the processing re-
sources (e.g. CPU, GPU, etc.), interconnecting and com-
munication networks, memory hierarchies, etc.

2. The environment is highly dynamic, so that no static con-
figuration would be possible.

3. The execution “threads” are on the level of tasks or services.

Due to space restrictions, and for a better illustration and eval-
uation of our solution, in this work we discuss mostly RD from
the point of view of computational capacity, expressed by the
capabilities of the Central Processing Unit (CPU). Neverthe-
less, our RD method is fully general, applicable to all resources
needed in a large future computational systems with suitably
adapted discussion.

The rest of paper is organized as follows: In section II we
describe our proposed resource discovery model for large dimen-
sion many-core systems. In section III we present the evaluation
results. Section IV describes related works and finally section V
presents our conclusion.

2. Proposed Resource Discovery in Many-Core Systems

Current RD solutions [6] are either directory based or fully
distributed approaches, trading reliability and efficiency by de-
lay and overhead. Our proposed RD method tries to provide a
bridge between these two approaches. Our protocol makes use
of a hierarchical structure, albeit relying on chord based [7] [6],
distributed hash tables (DHTs) to maintain resource information.
By resources, we consider all the entities that compose a com-
putational system, such as its Random Access Memory (RAM)
modules, CPU, Network Interface Controller (NIC), intercon-
nects (or network links), special processing and Graphic cards,
as well as their operational status and performance metrics. We
endeavour to make this information potentially available to all
systems in a heterogeneous, many-core environment so that the
processes are distributed in the most effective and efficient man-
ner. The decisions can then be taken at each core, in a truly
distributed fashion.

We consider DHT as an essential technology that allows the
design of robust distributed components to provide storage and
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lookup services. Despite the existing master/slave data replica-
tion architectures often used today, DHTs are more reliable and
able to provide performance guarantees [8] in fully distributed
systems. In multi-core environments we attempt to avoid the ex-
change of unnecessary resource discovery information between
nodes, to keep overhead to a minimum. To achieve this purpose,
we noticed that basic DHT approaches are not enough, and we
decided to organize resources in multiple layers, implemented
by using hierarchical Chord based [7] Distributed Hash Tables,
essentially with resource aggregation and summarization.

2.1. Description of Resources

Figure 1 illustrates the hierarchy model of our resource de-
scription system. We categorize all relevant resource informa-
tion, including computational and communication properties in
different layers, going from more abstract information to more
detailed characteristics. By using a hierarchical resource descrip-
tion model we can, at each level, just transmit the information
required for the specific needs of a given discovery procedure.
The model needs to rely on techniques for information aggre-
gation and summarization. Information available at different
domains will contain different levels of detail. Aggregation and
summarization allow nodes to have coarse views about their
neighbors, and then, after deciding that a neighbor is a potential
candidate, get detailed information about its resources, if needed.
For our model we consider the existence of the following layers:

Figure 1: Information architecture for hierarchical resource description

• Layer1 (Inter-Core Level or Network On Chip (NOC)
Level): Resource description on this level is characterized
by information directly related to core internal operation.
The most typical information in this level is related to the de-
scription of the cores, performance counters, private cache
size or routing paths established inside the NoC. This infor-
mation is of interest for optimizing the operation inside the
chip and managing cores locally.

• Layer2 (Inter-Chip Level): This describes the specifications
of the edges for the core communications, interconnection
networks and memory hierarchy which include information
such as bandwidth, latency, shared and/or global cache size,

as well as the number of cores available and their charac-
teristics. This information is relevant to the management
of several boards in the same host. Traditional operating
systems take into account this information when scheduling
tasks in Symmetric Multi Processing (SMP) [9] systems.

• Layer3 (Inter-Board Level): Resource description here cov-
ers a total overview of all the communications, memory and
processing features and aspects in the nodes, such as mem-
ory size and number of processors, and coarse performance
counters, as well as inter-node communication information
and its network structure. This aggregate information is
available to other nodes to optimize task placement across
hosts in the same operational domain (see Table1).

The distribution of resource information in the system is
schematically depicted in Figure 2. According to this scheme,
each node has the possibility of getting directly the highest level
of information about itself and its close neighbors in different
circles of vicinity. Furthermore, each node has some summa-
rized information about remote nodes, enough to provide an
overall perspective of the whole system from its point of view.
It is obvious that nearby resources with lower latency will be
preferred for resource selection in the discovery procedure. This
is particularly relevant if the tasks which are to be distributed
have input and/or output dependencies associated with the local
devices. Task placement must take in consideration both pro-
cessing capabilities and communication (I/O, network) latency.

Figure 2: Fish eyes’s model of resource description for resource discovery

We describe resources by using a set of attributes which are
structured in two different classes: individual and collective at-
tributes. Individual attributes are the particular properties and
characteristics for each resource. Collective attributes describe
the communication properties between individual members in-
side a group of resources or group of resource groups. Link
properties are necessary to create a descriptive graph of the
interconnected resources which can be employed for mapping
between application segments and required set of resources.
Attributes are static (such as Cache Size, Frequency, Proces-
sor Type, number of cores, etc.) or dynamic (such as CPU
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Table 1: Examples of resource attributes in each layers

Layers Communication Attributes

Layer3 Node2Node Core Clock Rate, L1 Cache Size, L1 Latency, L2 Cache Size, L2 Latency, L1 Cache Line, L2 Cache Line, L1 Cache
Associativity, L2 Cache Associativity, MIPS, Number of ALUs, Type of ALUs, ALU Functionalities, Number of
Data-PU Channels, Number of Instruction-PU Channels, Vector Length, L3 Latency, Memory Latency, etc.

Layer2 Die2Die BUS Frequency, Memory Bandwidth, Memory Frequency, Cache Coherence, ISA, Micro Architecture, Intercon-
nection Network, Size of Processor Address Bus, Size of Processor Data Bus, Processor Name, Processor Class,
Processor Type, Number of Cores, etc.

Layer1 Core2Core Memory Size, Number of Dies, Network Bandwidth, Network Latency, Total Number of Cores, etc.

load, available memory, available bandwidth, etc.). The static
attributes are not required to be updated in short intervals, how-
ever dynamic attributes are very sensitive and they might change
very frequently.

2.2. Node Types

We store the resource information discussed above in dif-
ferent layers and in a ring-based distributed hash tables where
resources are placed in a ring according to their hashed keys.
With these hashing functions we can map all attribute values in
a specific layer to the same m-bit space in a DHT ring. We must
consider that depending on the resource discovery approaches,
it is not necessary to use DHT in all layers. Specifically for the
upper layers we can store resource information in the format of
the layer stamps which can be validated according to a set of con-
ditions in the incoming query templates. In our system we use
different procedures at different layers by efficiency/complicity
trade-offs.

We define our system architecture according to three different
types of nodes: super-nodes, aggregate-nodes and leaf-nodes.
(For the discussion in this paper, we assume that a node is
supported by a physical core.) Each of these node types take
position in a layer within the hierarchy.

Leaf-nodes are in Layer1, so all the nodes in this layer main-
tain their own resource information plus a finger table which
handles forwarding lookup request to other nodes in its DHT
ring. Leaf-nodes have the ability to run the resource discovery
procedure which generates and sends a resource request query
that includes a m bits key to an aggregate-node that hosts a Query
Management Service(QMS).

Leaf-nodes communicate with their aggregate-nodes and the
aggregate-nodes establish a structured DHT-based overlay in the
form of a Chord ring among their leaf-nodes. For instance, all
the cores in a CPU can be considered as leaf-nodes, bearing in
mind that there is at-least one core per CPU which runs a service
that behaves as the aggregate-node, a central contact point that
summarizes all the information in that CPU.

Aggregate-nodes address the information on layer2. Query
Management Service(QMS) instances are the information ser-
vice modules that reside in aggregate-nodes. QMS gets a query
from a leaf-node and then starts the lookup procedure to find
the required reply. If the reply is found in the local QMS do-
main, it will be sent back to the requester. Otherwise the QMS
forwards the query to other aggregate-nodes in its neighbor-
hood. It will use a probability based method to select the next

Figure 3: Types of node in our hierarchical structure

aggregate-nodes among others. In fact, each aggregate-node in
our many-core system is a QMS host and in this paper we use
“QMS” to refer to the aggregate-node.

Super-nodes are in Layer3. If the resource discovery can’t
find a specified resource after searching all the QMS in the local
board, the query message will be forwarded to other neighbor
nodes in the network by a SQMS (super-node QMS) which is
hosted on the super-node. This Super-node has information
about all the adjacent super-nodes in the network. Accordingly,
it uses Any-cast mechanism to select the subsequent super-node
among others with the minimum latency (see Figure 3 and 4).

Figure 4: Transaction of the query messages between layers

2.3. Discovery Processes and Algorithms

According to the characteristics of each resource, we can
extract the values for our set of attributes. Conforming to the
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resource requester’s priority list of the attributes, multiple at-
tributes’ values of each processor are extracted and encoded in
order to form an m-bit key which is used to update and locate
that resource. In the system with d1, d2 and d3 attribute dimen-
sions, in each layer, we need to generate a set of keys (k1,k2 and
k3) with m1, m2 and m3 bits for all the layers. A query message
consists of three parts (c1, c2, c3), each representing a set of con-
ditions for satisfactory resources in each layer. The below script
is the general format of the resource discovery query messages.

Query : Condition1 ∧Condition2 ∧Condition3 ∧ ...
Condition : AttributeOperatorValue ∧ AttributeOperatorValue ∧ ...
Operator : (<,≤,=,≥, >)

In the DHT ring we ensure that any leaf-node is able to dis-
cover other resources by using the resource m-bit key up to a
certain limit of time with the order of log N, where N is the
number of leaf-nodes in Layer1. In the inter-core layer, discov-
ery proceeds in a multi-hop fashion with each of the leaf-nodes
maintaining its small finger table containing the information
about other leaf-nodes in the group. They forward the discovery
message recursively to the leaf-node that is closest to the m1-bit
key of the original requester’s query.

In order to implement layers hierarchically, Hierarchical-DHT
is the most efficient logical design[10], which best corresponds
to the underlying physical hierarchical structure of the core-chip-
node in the many-core system which stores key-data pairs by
assigning keys to different processing units (cores) according to
their positions.

The Query Management Service (QMS) components, which
provide the distributed directory service, employ H-Chord DHTs
to keep resource description available to all the cores in a chip.
Each QMS maintains the description values for all the keys for
which it is responsible, and for each core there is only one unique
key. Chord specifies how keys are mapped to cores, and how
a node can find data for a specific key or range of keys by first
locating the nodes which are responsible for that particular key.
We can summarize the QMS responsibilities and functionality
as follows:

1. Start-up, building DHT overlays and gathering information.
2. Entry point for the ring Lookup, requesters send their re-

source queries to their local QMS.
3. Maintaining resource cost table, retaining information

about other QMSs which reside on the other aggregate-
nodes in neighborhood such as neighbor ID, probe factor
and the Inter-Chip layer information. Probe factor is the
probability to find a specific requested resource in a remote
QMS domain.

4. Retaining the local Inter-Chip layer information, a summa-
rized set of characteristics shared among all the leaf-nodes
in a group.

5. Sustaining information about the local super-node which
is the representative of several leaf-nodes groups in the
system.

6. Processing, managing and forwarding of the query message
between layers.

At layer3, the super-nodes are able to send the query to a group of
super-nodes in vicinity that are using the same Any-cast address.

The actual number of receivers can range from only one to
several group members, where some of the receiver nodes satisfy
the query requirements for metrics such as latency, availability
and load balancing between the target resources. Algorithm 1
below describes the process of resource discovery in a large
cluster with multi-dye and multi-core nodes. Before discussing
the steps of this algorithm we need to explain the following
terms (concepts):

• Discovery Event: It is an event of the discovery procedure
which is assigned to the processing resources in the network
(which are supposed to operate as Resource Requester),
triggered when the corresponding processing resource has
execution overload, and later proceeds distributing the over-
loaded processing tasks over other available resources. To
put it briefly it is the trigger to initialize the procedure of
discovery for the required resources.

• QMS: Query Management Services are the components
which reside in each CPU. They are responsible for check-
ing the availability of their processing units and managing
the individual queries from various origin cores.

• RCT: Resource Cost Table is a data structure located in each
aggregate-node to record the information about the other
neighboring aggregate-nodes. This information consists of
the probability factors for each neighbor which is based
on the cost of remote resources. After searching the local
resources, the local QMS must forward the lookup request
to other remote QMSs which are adjacent to the current
one. The decision to make a selection of the next QMS is
done according to the value of the probe factors in RCT.
(see Algorithm 2 later in this section)

The procedure of resource discovery takes place according to
the following steps(see Algorithm 1):

1. System initialization and resource description: In this step
the many-core system is completely described, and compo-
nents such as QMS, and Discovery Event are assigned to
the processing units.

2. Once a core determined an overload execution, it triggers a
discovery event to distribute extra load over to other cores
in the system.

3. Discovery event generates a query which requests on-
demand resources from local and remote nodes. The query
is generated according to the application requirements and
parameters. For instance, depending on the type of appli-
cation, queries can be produced to find the most efficient
resources due to Flynn’s classifications [11]. Queries con-
sist of three types of conditions for each layer and they
would be represented in a format like c1.c2.c3. If the re-
quester doesn’t prioritize highly its required conditions in a
particular layer, the resource description checking on that
layer will be ignored. For example a query like c1.N.N
means that we do not need to investigate on layer 2 and 3,
but we just need to explore the system to find a match on
layer1(see Algorithm 1).
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Algorithm 1: Resource Discovery General Procedure

Input: applicationArguments ; /* description of the

required resources */

Output: discoveredResources ; /* list of

discovered resources */

Data: RCT ; /* resource cost table */

Data: reqMsg, repMsg, QMS, remoteQMS ; /* query

management service */

Event: discoveryEvent; discoveryEvent.setTrigger;
Collection: manyCoreSystem:=Set{n, f (i)} ; /* n nodes,

f (i) cores per nodei */

Collection: multiCastGroup, qRes(qualified recurses),
dRes(discovered resources);
foreach node ∈ manyCoreSystem do

node.nodeAssign(QMS);
foreach core ∈ node.requesters do

core.coreAssign(discoveryEvent, RCT);

On-discoveryEvent:
querymain=generateQuery(applicationArguments);
core.set(original-requester);
QMS=getLocalQMS(coreOR);
reqMsg=generateReqMsg(querymain,coreOR);
send(reqMsg,QMS) ; /* send query from the

source core (original requester) */

On-receive(QMS):
subQueries=queryAnalyzer.divide(reqMsg);
foreach query ∈ subQueries do

f orward query to the proper layer if it is required;
if QMS .layerproprties satisfies the query then

results=QMS.Lookup(query);
if query is fully resolved or query is expired then

send(results,QMS OR);

else if query is partially resolved then
send(results,QMS OR);
f orward query to the proper layer if needed;
remoteQMS=RCT.selectNextQMS();
send(updated query,remoteQMS );

else
f orward query to the proper layer if needed;
remoteQMS=RCT.selectNextQMS();
send(query,remoteQMS );

else
f orward query to the proper layer if needed;
remoteQMS=RCT.selectNextQMS();
send(query,remoteQMS );

On-receive(SQMS):
f orward query to the proper layer if needed;
multiCastGroup=SQMS.getNeighborGroup();
Broadcast(quey,multiCastGroup, Any-cast);
On-receive-queries-results(QMS OR):
qRes.add(querymain, results);
if discovery is completed or main query is expired then

dRes=queryAnalyzer.converge(querymain, qRes);
repMsg=generateRepMsg(querymain, dRes);
send(repMsg,coreOR);

4. Origin core (resource requester, or the one that has over-
load) is a processor that starts query dissemination. It sends
a message(containing the main-query) to its local QMS
and checks the surrounding processors. In fact, when a
requester sends a main-query to a QMS node, the QMS
would analyze that request and in function of the main-
query requirements, the QMS propagates one-to-several
sub-queries around the system with similar TTL. Due to
the type of each query (i.e., sub-query), the local QMS
decides to direct them to a proper layer using one of the
below rules:
Action 1- c1.N.N: Starts a local DHT lookup to find a
resource that satisfies the c1 conditions.
Action 2- c1.c2.N: Checks the layer2 information of the
local QMS and if it fits c2 conditions it continues with
action one, else the local QMS checks RCT to select the
subsequent matching remote QMS which manages a group
of leaf-nodes.
Action 3- c1.c2.c3: Forwards the query to a super-node
in higher layer. Once the query reaches a super-node, a
QMS that is running on it (which is called SQMS), checks
the layer3 information and if it fits c3 conditions, it contin-
ues with the action two, or it performs a top-level lookup
service which routes the query through the network to the
network node that is acceptable for the c3. During this
phase, the query only passes through super-nodes, hopping
from one group to the next. A super-node in one group uses
its knowledge of the IP addresses of super-nodes in the sub-
sequent group along the route to forward the query message
from a network node to another network node. Any-cast is
used to decide and select the subsequent super-node.

5. All the receiver processors check the query messages, their
conditions and requirements, and according to the resource
description, they will be added to a collection of the quali-
fied resources if they can fulfil the query requirements.

6. If all the potential local processors fail to satisfy a specified
query and the collection of qualified resources gets empty,
the discovery procedure checks the list of remote SQMS
and sends Any-cast queries to all the remote resources
neighboring the Origin group (i.e., a group of processors
with the same SQMS address where the original requester
belonged). This process will continue within increasingly
larger neighborhoods until one of these two situations hap-
pens; (a) the query is fully resolved. (b) the query timeout
is expired. In both of the aforementioned situations, the
QMS OR (the QMS of the original requester) would be up-
dated with the query results. In other situation, when a
query is partially resolved, an update message containing
the query partial results will be transferred to QMS OR while
a new version of the query continues the search within the
current layer or the upper layer in order to find the rest of
requested resources.

7. Finally after finding qualified resources for a particular
query (i.e., sub-query), the query reply follows the re-
verse path already taken by the query message to QMS OR

through the overlay network. It updates the probe factor
values in intermediate nodes and RCTs for their next us-
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age. The main-query which has already registered in the
QMS OR would be completed either if all the sub-queries
are resolved or if the main-query is expired. Upon com-
pletion of the main-query, the optimum results would be
converged into the collection of discovered resources which
would be transmitted to the original requester by a reply-
message. The optimum results would be calculated by
considering also the required communication capacities
among the qualified resources. We must note that, on the
time of main-query expiration, some of the sub-queries may
be resolved while others may not have returned any results.
In such a case the QMS of the original requester will send
the reply message corresponded to the main-query to the
original requester containing the optimal partial gathered
results.

Algorithm 2: Query Forwarding in Layer2

InputQuery= Query(c1,c2,c3) ; /* c1,c2,c3: set of

query conditions in layer1,layer2,layer3 */

Collection: L1,L2,L3;
foreach record in RCT do

if record.k2 is a valid key according to c2 then
add record to L1;

else
add record to L2;

; /* k2: representation of the resource

characteristics in layer2 as a key */

L1.sort(probe factor); L2.sort(probe factor);
L3=L1+L2;
f orward(InputQuery,L3[0].nid);

2.4. Multi-Dimensional Discovery
The description of resources is not only supposed to support

single attribute based discovery, rather it should be able to be
used for multi-dimensional range queries. Therefore for multi-
dimensional abstraction in a system in which the information of
resources are distributed in hierarchical layers, we assume our
abstraction system to have L layers l1, l2, .., lL and each resource
to have A attributes a1, a2, .., aA. Then according to the layers
description each attribute ai is placed in the layer l j:

ai ∈ l j where 1 ≤ i ≤ A and 1 ≤ j ≤ L
Each attribute is described by
< At ID : Op ID : At VA : La ID : At TY >

which its parameters are self describing Attribute ID (At ID),
Operator ID (Op ID), Attribute Value (At VA), Layer ID (La ID)
and Attribute Type (At TY: String or Number).

La ID can be extracted from At ID and also we assume bitmap
and numeric values to represent the string types so that an at-
tribute can be defined in a triple format like < At ID : Op ID :
At VA >, where At ID and At VA are numerical values and
OP = {<,≤,=, >,≥}. Using a hash function we create H(At VA)
for every At VA values, besides, in order to support range query-
ing the hash function has to support locality preserving. It means
that for each attribute ai:

i f AtVA(ai) ∈ [VAmin,VAmax]
⇒ H(AtVA(ai)) ∈ [H(VAmin),H(VAmax)]
Our proposed resource discovery solution supports four dif-

ferent approaches for range-based multi-dimensional discovery.
Approach A: In the first approach, each resource has to gen-

erate hash values for its information in all the dimensions. Af-
terwards it uses a priority function to place hashed values in an
ordered list of PL. In the next step each resource will create
a uniform key of HT which demonstrates all of the resource
properties in a specific layer. So for each resource ri we have:

HT (ri) = f (H(AtVA(a1)),H(AtVA(a2)), ..,H(AtVA(aA)), PL)
Finally each resource ri has to register its uniform key in S (ri),

where S (ri) = successor(HT (ri)).
Approach B: In the second approach we store resource infor-

mation for each dimension in an individual DHT ring. Therefore
each resource ri with A attributes collaborates in D particular
DHTs where A = D. For example in order to perform a range
query in such an environment, we will be looking for resources
with set of specific attributes a1, a2, .., aA in the layer of l j which
attribute values AtVA(a1), AtVA(a2), .., AtVA(aA) should be in follow-
ing ranges respectively:

[VA(a1)min,VA(a1)max] , [VA(a2)min,VA(a2)max] , ..,
[VA(aA)min,VA(aA)max]

We distribute the resource information within layer l j to D
distributed hash tables H1,H2, ..,HD where each dimension is
hasstored in a DHT:

H1(AtVA(a1)),H2(AtVA(a2)), ..,HD(AtVA(aA))
To resolve a query, resource discovery module composes

a multi-dimensional range query which is the combination of
sub-queries on each attribute dimension, and each sub query is
responsible to resolve query conditions for a particular attribute
in a certain DHT. To perform a range query for a single attribute
ai in the range [VA(ai)min,VA(ai)max], resource discovery performs
DHT lookup in the range [Hi(VA(ai)min),Hi(VA(ai)max)]. Finally,
the discovery results have to satisfy all the single attribute-
queries on each attribute dimension. They would be the in-
tersection set of all the individual sub queries results.

Approach C: In the third approach we just select one attribute
dimension and establish a DHT for the appointed attributed di-
mension. The information of the other attribute dimensions is not
necessary to be stored in DHT, and it will be stored locally for
each resource. To perform range query over multi-dimensional
attributes, resource discovery component first performs a range
query for the selected single attribute dimension and then the
discovery procedure explores the primary set of discovered re-
sources and chooses the ones that meet all the query conditions
for the rest of attribute dimensions. In comparison with the
previous approach, this method is better in terms of discovery
load and traffic generation because it doesn’t generate extra sub-
queries. However, the distribution of resource information in the
previous approach is more balanced.

Approach D: The fourth approach deploys a hierarchical
DHT which consists of A hierarchical lookup layers.The dis-
covery request first explores the top layer of the hierarchy that
belongs to a certain attribute a1, which has the maximum priority
in comparison with other attribute dimensions. It performs DHT
lookup for a single attribute range query in the top layer and then
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it narrows the exploring space to a certain set of resources that
satisfy the query condition for a1. In the next level the discovery
procedure searches in the second level for a2, and finally this
procedure will end up in last DHT level for aA. Deploying hier-
archical multi-level DHT is similar to the second approach but
it creates a significant performance improvement in comparison
with the second approach. It eliminates the answers that are not
qualified for the single attribute conditions in each level and it
makes the exploring space smaller in each level which reduces
the discovery traffic load.

Figure 5: Mechanism of resource discovery according to the cost of resources
(The numbers are the sequences of messages)

2.5. Probability-Based Discovery
Figure 5 depicts the mechanism of resource discovery in a

cluster with multi-core nodes. Finding the optimal resource
for a query with minimal requirements depends on processing
capability, memory and availability. The search algorithm first
explores the possible neighboring nodes and then selects the
most promising ones, explores the search graph and goes to the
next tier only if the found optimal does not meet the minimal
requirements of the query.

We have classified the performance metrics and parameters to
evaluate resources in the format of resource description in three
individual layers: Core2Core, Die2Die and Node2Node commu-
nications level (see Table 1). These parameters handle gathering
real time information about the current status of executions and
processing capabilities of the available resources. Each group of
processors has its own resource cost table (RCT), (see Figure 6),
which includes metrics to asses other processors viability to be
used as destination of process migration. According to the met-
rics values in RCT, ranking algorithms generate a rank number
for every particular processor in the network. The following
figure is a sample of a generic RCT. According to a specific
resource description, we must identify the relevant metrics for
describing the potential performance of a given resource.

Resource cost tables are maintained in aggregate-nodes and
they keep information about the probability of finding a re-
quested resource on different neighbor groups of nodes. They

Figure 6: RCT -Assessment of cost of resources per type of query for various
ranges of latency

Table 2: Structure of resource cost table for each particular queryTypeID
NID K2 PF Probability

aim to evaluate the cost of resources per query type. In order to
organize RCT we need to define query types. Table 2 shows the
structure of the cost table, where: NID is the neighbor ID; K2
is a binary key that represents the layer2 information; and PF
is the probe factor for each neighbor. RCT ranks the neighbor
QMSs for each queryTypeID which is conceptually elaborated
and based on the range of computation and communication laten-
cies. Before performing query classifications we must estimate
optimal or minimal application resource requirements.

Computational clusters are common alternative platforms for
handling massively large computational problems and paral-
lel applications. Many-core systems are able to be more effi-
cient when resource management is deployed according to the
run-time application requirements. Generating queries for re-
source discovery requires a capability to predict the resource
requirements of parallel applications before making decisions
for scheduling. There are a multitude of technologies to estimate
and extract the application features which try to deploy perfor-
mance models or mechanisms to forestall resource utilization in
case of computation and communication complexities for appli-
cations launched under a distributed parallel system including
multiple homogeneous or heterogeneous resources with various
processing capabilities[12, 13]. Application modeling or appli-
cation description can provide accurate information for querying
operations in the resource discovery protocol.

At the time of query generation, function of the application
features we can assign a queryTypeID for each particular query.
After discovering an appropriate resource, all the query-resource
mapping information is used to update the probability infor-
mation and reuse of the discovered resources in similar query
statements. For the purpose of simplicity we can assume that
we have only one type of query otherwise we have to build a
different resource cost table for each query type separately. If
we increase the number of resource types it helps the system
to be faster and more accurate but it has the drawback of using
more storage to keep instances of RCT per queryTypeID.

On − discoveryEvent : query = generateQuery(applicationArguments)
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The cost of a resource depends on three aspects, the first one
is the processor that is looking for other resources (i.e., the re-
quester) to augment its processing capabilities and distribute jobs
among them. It starts the process of discovery and triggers its
assigned discovery event. The second element is the application
that runs on the aforementioned processor. There are a variety of
applications with different specifications and requirements but
for simplicity we assume that for each particular application we
can map it to a queryTypeID, where the type of query describes
the application execution’s resource requirements. The final
element is the processor that would be nominated as the result
of the discovery. Considering these elements and their effects
on the resource evaluation, we can model the complexity of the
assessment as follows:

ResourceCost = CommunicationT ime + ComputationT ime

In classic resource discovery protocols, a typical cluster en-
vironment is generally defined as a Virtual Organization (VO)
which consists of two types of individuals: resources and re-
source directories. In our approach, for discovery we assume that
a cluster (i.e., The QMS region) is a directed graph Cg (Ve, Ed)
with n nodes and w edges. Each edge ed (a, b) connects to two
nodes a and b where:

ed (a, b) ∈ Ed ∧ ∀a, b ∈ Ve | a, b ≤ n

Figure 7: Selection of the consequence QMS based on values of probe factors
and probabilities

We assign a probe factor P f to each one of the links from
local QMS to the neighboring QMSs. Nodes in the graph are
cores in real cluster. Cores are linked to each other through
interconnection networks. We assume that all the cores which
are placed in a CPU or cluster node are members of a QMS.
ed (a, b) is the connection link between core a and core b, where
communication cost to describe it are bandwidth and delay. For
each core, states and descriptions of its processing resource and
also other group of cores in the first-tier vicinity are stored in
localQMS. Cost of resource r in localQMS of core b through
ed (a, b) maintained as Rcr

ab = 1
P f r

ab
which P f is the probe factor

for the existence of resource r with resource type of t in the
QMS of b when the query is going to be forwarded from the
QMS of a (see Figure 7).

In our resource discovery approach, we generate one query
per discovery request, and in the whole cluster system according
to the number of requesters, several queries would be generated

concurrently. They explore different paths in line with the link
parameters like probe factor. However, the values of the probe
factors are updated by all those query replies that have completed
a discovery procedure.

Queries explore the cluster and check local and remoteQMS
for the best resource matching. In fact, when a query explores a
QMS and related resources, it shows one of the following two
behaviors: First, query does not find the requested resource, then
it goes to the next QMS, and continues until the best matching
for discovery is achieved or the query is expired. If a query that is
exploring QMS associated with aggregate-node a is not satisfied
with the local resources it goes to the next aggregate-node b in
one of the QMS neighbor with the following probability which
is proportionally related to the rate of P f r

ab for each one of r
resources over edge ed (a, b):

Probabilityr
ab =

P f r
ab∑

z P f r
az

z is an aggregate-node which is in vicinity of a. And r is a re-
source type which probably existed in the QMS of b. According
to the above formula, queries use the probability to select the
next QMS for discovery. After finding a match for a query, the re-
ply message includes the description of the qualified discovered
resources which will be returned to the initial requester. Among
all the potential resources the best matching is a resource with
lowest rate of latency. In the next step the probe factor for the
result of the performed discovery procedure would be updated
according to following formula:

P f r
ab =

P f r
ab − δP f r

ab + δ
Lab

i f r ∈ QMS b

δP f r
ab i f r < QMS b

δ is a random number which is 0 < δ ≤ 1 and Lab is the
latency between a and b. r is the requested resource with type t.
The default value of P f is 1.

3. Evaluation

In this section we describe simulation results regarding the
resource discovery evaluation in multi/many-core networked
environments. A key factor in our evaluation is showing the
functionality and scalability of the RD system. To achieve this
we have set up a virtual networked environment with a number
of multi-core / multi-processor nodes where all the processors
are enabled to invoke the resource discovery module in order
to find other possible alternative resources for the transaction
of the overloaded processes to remote processors. The simula-
tion experiments have been conducted based on the COTSon
Simulator[14] and we simulated a networked environment with
23 multi-core nodes (each node has 2, 4, 6 or 8 cores) including
the total number of 88 resources (cores). Scalability for RD
means the ability of the discovery mechanism to support a larger
number of resources or a greater number of inter-operations
between the nodes, or both. We analyze the RD scalability by
measuring discovery latency versus the number of nodes where
one, or a constant fraction of the nodes, or a percentage of the
total nodes, concurrently and periodically (with different inter-
vals) generate a query and trigger the resource discovery module
to get information about other nodes in a congested network.
We analyzed the impact of the network size on the discovery
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delay which is the response time to get information. To achieve
scalability, discovery delay should not have a big variation when
we change the size of network.

Figure 8: Average Discovery Latency for Single Requester, 25% and 40% of
nodes as requesters with interval 30s

We evaluated the impact of the network size on the resource
discovery latency for different number of requesters. After a
random initialization time, each requester starts submitting a
query to the system every 30s. We have run 1000 RD queries
for each requester in the given network size. The minimum
query dimension is 4 and the maximum number of attributes
is 20. We also vary the number of desired resources for each
resource discovery query from 1 to 4. The properties of each
query and also the network topology are random. Accordingly,
dependent on the network topology and network size in each
run time, the simulation scenarios with different number of re-
source information providers (i.e., the nodes with QMS support)
as distributed directories for our simulated network, would be
established. However, the number of resource providers would
be fixed during the simulation run time.

In Figure 8, while we increase the number of resources, the
discovery response time starts to increase but for large number
of resources it remains almost constant. In all these experiments
that were done with different number of requesters we roughly
see the same behavior in the results. This shows that discovery
latency is independent from network size which means that for
large scale networks we could still have a reasonable response
time for resource discovery queries.

Figure 9: Average Discovery Overhead in different network size for 1 requester
and 50 % of nodes as requesters with Query Rate=.033/s

In the second test we measured the average of the discovery
overhead versus the number of nodes. This test is to analyze
the impact of network size on the average number of transac-
tion messages for each discovery process. Figure 9 plots the
discovery overhead of our system network sizes in the two con-
figurations. In the first configuration only one of the nodes
generates a random query every 30 seconds. By increasing the
network size first, the overhead (the average number of discov-
ery messages per query) increases until it gets to a threshold and
then it decreases slightly and remains almost constant for large
network sizes. By augmenting the network size the RD system
is required to forward the queries to other remote directories
with larger distance in the system to find the resources around
the network. Therefore, increasing the network size leads to
increasing the search radius which would eventuate in propa-
gating more messages for resolving the discovery requests by
efficiently exploring the discovery region. Thus we could expect
to see the growing of the overhead with the increasing of the
number of resources.

The overhead starts to reduce after reaching the maximum due
to the increasing number of remote directories that provide in-
formation about other alternative resources and also the increase
of the replication of the resources. Interestingly, in a second
configuration that we have simulated for a congested network
with 50 percent of the nodes as concurrent requesters, the results
show a significant decrease in the discovery overhead. The rea-
son for this overhead reduction is that when we perform several
queries concurrently by different distributed RD components
(i.e., resource requesters), the probability tables of intermediate
directories (QMS nodes) would dynamically be updated accord-
ing to each discovery result. This will improve the degree of
resource awareness in the probability tables in the directories
which would lead to the reduction of the discovery overhead (i.e.,
reducing the number of forwarding and query dissemination)
compared to the first configuration. Moreover, implementation
of the resource caching mechanism in the nodes of different
types (either LN, AN or SN nodes) enables the general nodes to
store the experience of successful queries for a specific period
of time which facilitates the resolving of similar queries from
other requesters with less overhead cost. In both configurations
the overhead variations are reasonably small for large network
sizes. Therefore the overhead should not be dependent on the
network size which means that our RD solution is scalable.

4. Related Work

There are many resource discovery models that have been de-
veloped in the area of large scale distributed computing, but few
were proposed to address the complexities of many-core, and
even less are able to do so efficiently. Distributed RD proposals
have mostly been designed to provide a high level of scalability
and fault tolerance, which is required in large scale environments.
Iamnitchi et al [15] proposes a solution for using the benefit of
distributed Peer-to-Peer systems for resource discovery in Grids.
The combination of P2P and Grid RD models [16] would be de-
sirable to build fault tolerant and large scale distributed systems.
There are two kind of approaches in this field which are based on
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structured and unstructured overlays networks. The first model
uses a unstructured overlay network with flooding based query
propagation. Relevant solutions are Zorilla [17] and Vishwa[18].
One of the advantages of this approach is the ability to perform
resource discovery with high expressiveness. However, such
discovery systems are not exhaustive and efficient. The response
time of the queries is high due to flooding and blind search. Also,
rare resource information may be unable to be found.

There also exist some operating systems and cluster man-
agement systems which are using their own designed resource
discovery components such as Plan9 [19] and OpenMOSIX [20].

All of these techniques suffer from at least one of the follow-
ing problems: i) low scalability (e.g.,Condor [21], Condor-G
[22], BOINC [23] and etc.,), ii) low efficiency for structured envi-
ronments(e.g., Globus [24], Routing Indices (RI) [25], etc.,), iii)
inadequate resource descriptions and matching for many-core en-
vironments where hardware devices are the resources to be prop-
agated (e.g., NodeWiz [26] , Mercury[27] and SWORD[28]).

5. Conclusions

In a large scale system, where we have a pool of distinct
processors, the enabling technology for enhancing the whole
throughput of the system is resource sharing. This means that for
overloaded processors we can migrate the overloaded processes
to other potential processors in the network. But resources
should be found before the resource sharing, resource allocation
and execution migration could be done. Resource discovery as a
component of a distributed OS will be employed to discover an
efficient set of available processing resources that could match
the application requirements. The discovery latency has direct
effect on the cost of migration and execution migration is not
beneficial when resource discovery cannot provide information
services in an acceptable time. Unlike resource discovery for
various other purposes and domains, resource discovery for a
large many-core environment is very sensitive to the discovery
performance and it could be useless when it cannot satisfy the
minimal parametric conditions of the system environment.

Scalability could be considered as one of the basic problems
of resources discovery in future many-core systems which is
a generic challenge for majority of the research works in this
area. The scalability problems also refer to the methods for
description of resources and the discovery procedure. These
mechanisms must propose techniques and algorithms that are
efficiently extend-able for various number of resources. On the
other hand the generated discovery overhead must be indepen-
dent from network size. This is not fully attainable but we can
make an effort to keep the discovery overhead almost constant
with increasing the number of resources.

In this paper we have indeed presented a new resource discov-
ery solution which is scalable and efficient for future many-core
systems with a huge number of resources. We established a
distributed system with hierarchical resource description and
designed a probability-based Any-cast mechanism to locate re-
sources in hierarchical levels of core-chip-node-network. Simu-
lation results show that the proposed RD supports efficiency and
scalability for discovery in large distributed systems.
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