IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: zarrin, J., Aguiar, R. L. & Barraca, J. P. (2015). A Specification-based Anycast
Scheme for Scalable Resource Discovery in Distributed Systems. Paper presented at the
10th ConfTele 2015 - Conference on Telecommunications, 17-18 Sep 2015, Aveiro,
Portugal.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18180/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Specification-based Anycast Scheme for Scalable
Resource Discovery in Distributed Systems

Javad Zarrin
Instituto de Telecomunicagdes
3810-193 Aveiro, Portugal
Email: javad @av.it.pt

Abstract—Anycast is a powerful paradigm for managing and
locating resources in large scale distributed computing systems.
This paper presents a novel specification-based anycasting scheme
for resource discovery in such environments. The effectiveness of
our proposal is demonstrated through simulation results, in which
we observed a remarkable performance enhancement in different
aspects (such as discovery latency, discovery cost, discovery load,
etc.) over similar non-anycast based discovery methods.

I. INTRODUCTION

Anycast can be considered as a powerful paradigm for
resource discovery in large scale distributed systems. It enables
communication between a source node and the nearest (or
the best) member of an anycast group. The proximity metric
(or the metric for being the best) can be defined in terms
of hop count, delay or the minimum amount of load [1].
However, at present, there are challenging issues that prevent
easy adoption and deterministic deployment of anycasting
in general and particularly for reliable and scalable resource
discovery application. These limitations include the issues such
as followings:

CH#1: Lack of support for session-oriented communications
which makes anycasting inappropriate specfically for stateful
applications [2].

CH#2: Lack of support for globally scalable anycast routing
in the current network routers, due to the fact that routing paths
to any-cast groups cannot be aggregated [3], [4].

CH#3: Dynamic nature of anycast creates a significant
overhead for updating and maintenance of the anycast groups
specifically for discovering resources in large scale dynamic
distributed computing environments (i.e., including joining,
leaving or failing nodes/resources) [3], [4].

The main contribution of this paper is to propose a novel
specification-based anycasting scheme which deals with the
aforementioned challenges for discovering resources in large
scale computing environments. The rest of this paper is
structured as follows: Section II proposes a system model for
deploying anycast for a hierarchical attribute-based resource
discovery. It also provides an overview of the proposed
anycasting scheme. Section III presents the details of our
algorithm. Section IV summarizes the evaluation results and
Section V provides our conclusion.

Rui L. Aguiar
Universidade de Aveiro
3810-193 Aveiro, Portugal
Email: ruilaa@ua.pt

Joao Paulo Barraca
Universidade de Aveiro
3810-193 Aveiro, Portugal
Email: jpbarraca@ua.pt

II. SPECIFICATION-BASED ANYCASTING

In this paper, we are interested in proposing a scalable
resource discovery approach based on anycasting to discover
processing resources (e.g. a core) in large scale many-core-
enabled computing environments which are saturated with huge
number of heterogeneous distributed resources, connected using
heterogeneous interconnection and network access. For doing
this, in the first step, we describe resources (i.e. computing
resources) in the system based on their specific attributes (i.e.
computation and communication characteristics) in a multi-
layer hierarchy.

The depth of the hierarchy (i.e. number of layers in resource
description model) and the definition of each layer might range
from very high level (e.g. super clusters, clusters) to very low
level (e.g. processing core, ALUs) depending on the architecture
designing aspects. In this paper, we assume that our description
model contains three levels (layers) of the hierarchy: Core Layer
or Inter-Core Level (i.e. layer;,, which has attributes such as
Data-PU channels, number of Instruction-PU channels, vector
length, core clock rate, etc,.), Die Layer or Inter-Chip Level
(i.e. layer,,, which has attributes such as which has attributes
such as cache coherence, instruction set architecture (ISA),
micro architecture, interconnection network, etc,.) and Node
Layer or Inter-Board Level (i.e. layer,, window size, total
number of cores, memory size, Die count, etc,.).

The model is conducted by gathering and combining the
individual attributes (ranging from more abstract information in
the higher layers to more detailed characteristics in the lower
layers) in each layer, augmented with information aggregation
and summarization techniques, in order to create the layer-
stamps . In fact, all specifications (i.e. attributes) of each layer
as well as their values are represented by a single layer-stamp.

In the next step, according to the aforementioned resource
description model, we divide the distributed resources in the
network in a set of distributed hierarchies using a self-organized
and self-configured virtual backbone (i.e. overlay) on top of the
underlying physical network. Along this line, the unstructured
resources in the system are organized within virtual nodes
due to their homogeneity and proximity parameters (i.e. their
similarities and locations). Subsequently, the individual vnodes
start to negotiate with each other in a multi-round distributed
fashion to seek agreement on the contribution (i.e. module-

role or vnode type) of each party in the overlay hierarchy.
As negotiations evolve, each vnode shapes its own system-
view by improving and consolidating its own knowledge
on the entire system. The resulted overlay contains three
different types of virtual-nodes: leaf-nodes (LNs), aggregate-
nodes (ANs) and super-nodes (SNs) which take position in
layer;,,, layer,,, and layer,,, of the hierarchy respectively. Each
LN maintains its own layer-stamp (i.e. leaf-stamp) which
demonstrates all the common characteristics of resources (i.e.
processors) represented by the leaf-node. Similarly, ANs and
SNs maintain aggregate-stamps and super-node-stamps on
behalf of their LN members and AN members accordingly.
Resource discovery in LN and AN layers is performed
by using a DHT-based approach and a probability-based
mechanism which is presented in our previous work [5]. But
for resource discovery in super-node level (i.e. layers,) we
propose the shortest path, routing-based anycast method which
uses the top level layer stamps (i.e. node’s specifications in SN
layer) to create any-cast groups while nodes in this layer are
able to dynamically adjust their own interest any-cast group
based on the required resource conditions provided by incoming
discovery requests from the lower layers. We define SN nodes
as the resource providers (RP;,s) which provide Super-node
Query-Management Services (SQMS) to both entities in their
local cell (i.e. a group of vnodes which are sharing a common
SQMS-ID) and the other SQMS providers in the system.
CH#1 denotes that the stateful communications cannot
be directly supported by the native network-level anycasting
since there is no guarantee that subsequent packets from
the same session arrive in the same anycast server. The
reason is that the routing path between certain nodes (e.g.
the source and destination node) may vary with the potential
changes of the network configuration and consequently the
anycast packets may arrive in different members of the anycast
group. Our resource discovery approach does not suffer from
the issue mentioned in CH#1, since it does not rely on
stateful fully anycast-based communication. Instead, a discovery
requester (i.e. a SN) initially sends a “Forward” request using
anycast to find the closest SN in the anycast group. Once an
anycast member receives a “Forward” request it can explicitly
communicate to the original requester using the sender’s unicast
address. Hence, the requester would be able to perform the
rest of the transaction using traditional unicast operations.
In order to deal with CH#2, we propose two different
approaches for anycasting which are as follows:
Network-level Approach- We extend the functionality of
the routers to make a distinction to distinguish between regular
unicast routing request and anycast routing request. However
this modification is bound to SN routers (i.e. the routers that
directly communicate with SN nodes). By doing this, it would
be necessary to upgrade the regular routers. Both type of routers
also operate as regular routers for non-anycast (unicast) requests.
Using this approach, upon receiving a discovery request (from
the requesters in the lower layers of the current hierarchy
or from other RPy,, in the same layer) in RP,,, the receiver
would be able to forward the request to the closest RP,,, by

extracting the anycast address of the destination from cg, (i.e.
the description of the query conditions in layer,, which is
the representative of the specifications of the desired resources
in SN-layer) if the c4, requirements are failed to be met in
the current SN. The discovery request would be transferred
to the lower layers of the current hierarchy whenever the cq,
requirements are fully obtained by SN node in top of the
hierarchy.

Application-level Approach- Each SN creates its own
anycast address by hashing the layer-stamp of the SN node
which is the representative of all the specifications of resources
in layer,. Using this approach, the anycast address of each
SN is a function of the resource specifications in the super-
node’s layer. The anycast address of a node may change when
the node’s specifications (e.g. dynamic resource attributes) are
modified. SN nodes with uniform specifications advertise the
same anycast addresses. With respect to CH#3, the creation and
maintenance of the anycast groups are significantly lightweight,
since the anycast groups can automatically be created and
they can also dynamically be changed without creating any
necessity for communication among the group members or
group registration. SN nodes advertise their anycast address as
well as unicast address to other SN nodes in their neighborhood.
The neighborhood can be specified based on proximity metrics
such as number of hops or delay. Whenever a RPg,, is decided
to anycast a discovery request to other potential SNs in the
network, it passes the request to its local anycast-resolver
which is responsible to determine the unicast address of the
best possible destination. Subsequently, the discovery request
would be forwarded to the destination by using its unicast
address and the regular routing. The anycast-resolver operates
as followings: The anycast address of the potential destination
for a given discovery request, is extracted from cg,, mentioned
in the request. Anycast-resolver checks the list of registered
SN in the current node and selects the ones that their anycast
address are similar to the anycast address of the given request.
In the next step, the unicast address of a SN in the list with
minimum number of hops (i.e. minimum delay) is returned
to RP;,, as the final destination of the request. If the desired
anycast destination is not found among the registered SN, the
discovery request is forwarded to the closest SN in the list. If
the list is empty, the query is terminated and the proper update
(i.e. reply) message would be sent to the original requester. If
csn conditions are not existed for the given discovery request
(i.e. when the creation of the anycast address is not feasible),
the discovery request is forwarded to the closest SN in the list.

III. RESOURCE DISCOVERY

The behavior of the RPy,, is dependent on the type and status
of the received discovery message and the characteristics of the
given query. Whenever a RP;,, receives a query, the query type
retrieval is performed and accordingly different mechanisms
and procedures are conducted to resolve or redirect the query.
The “Forward” event is the most regular communication
event within layer,,. The “Forward” receiver, as the first
step, assesses whether the layer stamp (i.e. the super-node-

stamp) will be qualified due to the cg, query conditions or
not. If it is qualified, a downward self-event is triggered in the
current super-node where the SQMS provider itself as the event-
receiver acts as a QMS provider which conducts the downward
query in the lower layers. The SQMS provider, later will receive
a response from the lower layers either in the form of upward
(if query fails or remains uncompleted in the lower layers)
or update messages (if query is resolved or completed). On
occurrence of the update event, the RPy,,s redirect the incoming
messages to the orginal requesters. Receiving upward event is
exclusively dedicated to RPg,s. In fact, on occurrence of an
upward event, the RP,, will be ensured that the requirements
of the correspondent query can not be met in the lower layers
of the current SN’s cell and it is needed to direct the query to
other remote cells in the system.

Algorithm 1: Anycast based Forwarding in RPs,,

Input: sq;= The received sub-query message
/% sq:sub-query, nb:neighbor */
if sq;.type==forward then
if RP,,, is qualified due to sg;.cs, then
| send(sq;, downward, RPs,,)
else

anycast-address=mapped-ac-address(sq; .csn)
anycast(sq;,forward, anycast-address)

else if sq;.type==upward then

if sqi.csn is existed then
anycast-address=mapped-ac-address(RP, layer-stamp,,)
anycast(sq; forward, anycast-address)

else
target=random(nb:(nb € SN-Neighbors)A(nb ¢ sq;.visited-qms-ids))
send(forward, target)

else if sq;.type==update then
| RPs, Updates the original requester

As we see in Algorithm 1, if RPg,, receives an upward query,
it means that the receiver have already been qualified for the ¢,
query conditions, but the query conditions in the lower layers
have not been achieved. Accordingly, RP;,, sends a forward
message to an any-cast address which is extracted from cg,, of
the given query. The forward message will automatically be
redirected to the nearest SQMS provider in the system which
has the same any-cast address. Using the proposed anycast
scheme significantly reduces the search space for the given
query. It automatically limits the search space to only the
SQMS providers in the system that certainly would be able to
fulfill the ¢, query conditions.

IV. EVALUATION AND RESULTS

In this section, we evaluate the performance of our proposed
3-layered anycast based resource discovery model (ARD?3)
with respect to scalability (in terms of latency and number of
messages per discovery request) and efficiency (in terms of
discovery messages and discovery load per node). ARD3 is a
3-layered resource discovery model which employs DHT-based
discovery (i.e. a discovery approach based on a variation of
Chord DHT) in layer;,,, probability-based discovery in layer,,,
and anycast-based discovery in layer,,. We compare ARD3 to
a 2-layered random-walk based resource discovery (DPRW2)
which similar to ARD3 leverages DHT and probability based
methods in layer;,, and layer,,, accordingly. Despite ARD3,

in DPRW?2, the queries with cg, requirements are guided
in layer,, using a random-walk based method instead of
anycasting in a separated extra-layer (i.e. layers,).

To do our evaluation, using Omnet++/INET-Framework
and OverSim simulation tools, we simulate a distributed
dynamic computing environment containing various number of
computing resources in which a constant number of resources
(i.e. requesters) simultaneously issue the discovery requests to
the system. The time interval between each pair of consecutive
queries issued by a requester is defined by an exponential
distribution. We also assume that each requester issues 10
consecutive resource requests to the system over the simulation
time. The discovered resources will be reserved for each
discovery request. The reserved resources for each process will
be released after execution time period which is defined by a
Weibull distribution. Table I presents the simulation parameters
for our evaluation.

TABLE I: Simulation Parameters

Parameter Values

5500-55000 resources
Mesh/Torus

Random

50Gbps

100 Mbps

Physical network size
Interconnect topology
Network topology
Interconnect channel datarate
Network channel

Desired Resources for each Request 3x20

Homogeneity rate of desired resources 33%

Frequency of Target Resources (FTR) 1650

Process Duration by sec Weibull(A=3.58,k=2.40)
Querying Interval by ms Exponential(8=4000)
Consecutive Query Runs per Requesters 10

Rate of Requesters 1%

Figure 1 presents the evaluation results to compare the
performance of the proposed anycast-based resource discovery
(ARD3) to DPRW?2 in different aspects. From Figures 1-al and
1-a2 we can see that the average message cost (measured in
terms of the number of discovery messages propagated during
the search) of ARD?3 is slightly lower than that of DPRW2 while
the average discovery latency per request is much lower than
DPRW?2. This shows that ARD3 provides better performance
and scalability particularly in terms of discovery latency when
varying the number of resources in the system.

This is because (i) ARD3 efficiently divides the exploring
space to the anycast groups in a way that queries with cg,
requirements are only propagated among the SQMS providers
that their specifications in layery, essentially fulfill the cq,
conditions of the given query. This leads to the reduction in the
message cost for ARD3 in comparison to DPRW2. DPRW2
provides an efficient probability mechanism to guide queries
to the potential matched resources. However, the probability
mechanism in DPRW?2 is inefficient for queries with cg,
requirements, since DPRW2 employs random-walk method
to direct queries (with cg, requirements) in the system.

(ii)) ARD3 controls the discovery procedure in a more
intelligent manner, which consequently saves much unnecessary
message overhead. On the other hand, due to the anycast nature
of ARD3, SQMS providers are able to effectively guide the
given queries to the closest qualified SQMS provider in the
system. For ARD3, this significantly reduces the discovery
latency for the queries in the system. But for DPRW2, since
the selection of the next resource providers (particularly for the

al) a2) b1)
x B 8 - % S -
»n 8 n N —— ' #resources=55000
3 —*— ARD3 == ARD3 3 —— bresources=33000
T o =1 @ 7 — =27500
2 © H—— DPRW2 E 8 H—+— DPRW2 2 TosoLroe
o - - 3 @ #resources=22000
s z = 8- M
5 3 g g ~o 3 i
(4 g Q o |
<] ~ o w
(5] 7 (5]
(2] (%]
5 © T T T T © T T T T 5 © - T T T T T T T
0 10000 30000 50000 0 10000 30000 50000 10 20 30 40 50 60 70
System Size System Size Time Frame
b2) cl) c2)
— 8 —— | #resources=33000 8, o —— | #resources=33000 — 8 . —— #resources=33000
g = T —— #resources=27500 2 8 b —— #resources=27500 g =) #iresources=27500
= #resources=22000 O #respurces=22000 = - V iesources=22000
L o A A 5 o L
8 g /M/w\ 2 S 3 Jd.
— 3 / /\/
© T T T T T T T 8 o T T T T T T T e T T T T - T T T
10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60 70
Time Frame Time Frame Time Frame
d1) d2) el)
[} o
E % g &
z g ARD3 2 v s 5 | B ARD3
23 5 —0—0—0—0—90—0—9—0—9 <
_g. © |[—— DPRW2 28 MDD ER SRR EH I S © O DPRwW2
I o 3
S g8 z o ‘
g] z o —— ARD3 g S
< o
g] - —— DPRW2 g ® i [|
(2]
a e T T T T SHA T T T T F o == ﬂ
0 10000 30000 50000 0 10000 30000 50000 5.5k 16.5k 27.5k 38.5k 49.5k
System Size System Size System Size

Fig. 1: Comparison between ARD3 and DPRW2: al&a2) Average number of required discovery messages and discovery latency per discovery request for different system size,
b1&b2) Mean number of discovery messages and discovery latency per request per time-frame (1000 ms) over time in different system size for ARD3, c1&c2) Mean number
of discovery messages and discovery latency per request per time-frame (1000 ms) over time in different system size for DPRW2, d1&d2) Average discovery load (number of
transmitted discovery messages) and average overlay load (number of transmitted messages to create the overlay) per node during simulation time (60000-80000 ms) for various
system size, el) Average transited discovery data per node during simulation time (60000-80000 ms) for various system size.

given queries with c,,) is random, it leads to larger amount
of latency in the results.

Figures 1-bl, 1-b2, 1-c1 and 1-c2 show the dynamic behavior
of ARD3 and DPRW2 in terms of discovery message cost
and latency per request per time-frame over time for various
system size. As we can see in these figures and due to the
aforementioned reasons, ARD3 provides better performance
and scalability than DPRW?2 over simulation time. Similarly,
in Figure 1-d1 and Figure 1-e1, ARD3 shows better scalability
and performance in terms of discovery load (average number
of transmitted discovery message) per node and average
transmitted discovery data per node during simulation time.
However, both ARD3 and DPRW?2 provide steady and almost
similar behavior in terms of overlay load per node (i.e.
average number of transmitted overlay message per node
during simulation time). This happens because both approaches
employ the same multistage hierarchical overlay algorithm [6]
to implement 2-layered and 3-layered architecture for DPRW?2
and ARD3 accordingly.

V. CONCLUSION

This paper presented a specification-based anycasting scheme
for resource discovery in large scale distributed computing

systems. The evaluation results prove that our proposed
approach is widely scalable and it provides better performance
and efficiency in comparison to the similar non-anycast based
resource discovery methods.

REFERENCES

[1] C. Partridge, T. Mendez, and W. Milliken, “Host anycasting service,” RFC,
United States, 1993. RFC 1546.

S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah, and Z. Fei, “Application-
layer anycasting,” in INFOCOM ’97. Sixteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Driving the
Information Revolution., Proceedings IEEE, vol. 3, pp. 1388-1396 vol.3,
Apr 1997.

T. Stevens, T. Wauters, C. Develder, F. De Turck, B. Dhoedt, and
P. Demeester, “Analysis of an anycast based overlay system for scalable
service discovery and execution,” Comput. Netw., vol. 54, pp. 97-111,
Jan. 2010.

F. Hao, E. W. Zegura, and M. H. Ammar, “Qos routing for anycast
communications: motivation and an architecture for diffserv networks,”
Communications Magazine, IEEE, vol. 40, no. 6, pp. 48-56, 2002.

J. Zarrin, R. L. Aguiar, and J. P. Barraca, “Dynamic, scalable and
flexible resource discovery for large-dimension many-core systems,” Future
Generation Computer Systems, vol. 53, pp. 119 — 129, 2015.

J. Zarrin, R. Aguiar, and J. Barraca, “A self-organizing and self-
configuration algorithm for resource management in service-oriented sys-
tems,” in Computers and Communication (ISCC), 2014 IEEE Symposium
on, pp. 1-7, June 2014.

2

[

(3]

(4]

[5

—_

(6]

https://www.researchgate.net/publication/281975906

