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Abstract

This paper studies the impact of modelling time-varying variances of stock returns

in terms of risk measurement and extreme risk spillover. Using a general class of

regime-dependent models, we find that volatility can be disaggregated into distinct

components: a persistent stable process with low sensitivity to shocks and a high

volatility process capturing rather short-lived rare events. Out-of-sample forecasts

show that, once regime shifts are accounted for, accuracy is improved compared to the

standard GARCH or the historical volatility model. Volatility plays an important role

in controlling and monitoring financial risks. Therefore, by means of a risk management

application, we illustrate the economic value and the practical implications of risk

control ability of the models in terms of value-at-risk. Finally, tests for predictability

in co-movements in the tails of stock index returns suggest that large losses are strongly

correlated, supporting asymmetric transmission processes for financial contagion in the

left tail of return distributions whereas contagion in reverse direction (gains) is weak.
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1 Introduction

Volatility is of great concern to economic agents involved in the decision making process

under uncertainty. The traditional framework for modelling volatility is the generalized

autoregressive conditional heteroscedasticity (GARCH) process, pioneered by Engle (1982)

and Bollerslev (1986). This model class captures the salient features of financial time series,

such as volatility clustering, persistence, non-linear dependence and thick tails. Yet, the value

of volatility lies in the capability of the model to predict market fluctuations, contributing,

inter alia, to risk exposure evaluation, stress testing, asset allocation, derivatives pricing, and

risk management. This corroborates the importance of developing volatility models able to

replicate the salient features of financial time series.

Regardless of its interesting properties, the common GARCH model has several short-

comings. Among others, Bollerslev (1987) and Baillie and Bollerslev (1989) find that the

observed non-normalities in return distributions are more pronounced than those implied

by GARCH. In effect, the model fails to reproduce skewed unconditional distributions or

time variability in higher moments, unless explicitly modelled (see Harvey and Siddique,

1999). As a result, a number of variants have been put forward accounting for asymme-

tries (e.g., leverage effect, see Glosten et al., 1993), long memory (Baillie et al., 1996), and

non-normal densities (Bollerslev, 1987; Politis, 2004), while other developments make use

of non-parametric structures for which a priori knowledge of the innovation distribution is

not required (Bühlmann and McNeil, 2002). Another drawback of GARCH is the rather

strong degree of persistence imputed to volatility, suggesting that distant past shocks can

have a nontrivial impact in the current variance. However, excessive persistence may be due

to structural breaks in the data generating process (Lamoureux and Lastrapes, 1990). In

fact, economic variables may appear to have integrated variance disturbances, but inclusion

of regime-specific dummies might lead to stationary GARCH movements within regimes

(Diebold, 1986). Therefore, neglecting structural breaks might lead to impaired forecasts,

particularly in periods of high turbulence (Hamilton and Susmel, 1994). A popular ap-
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proach to modelling regime changes is the family of Markov regime switching (MRS) models

introduced by Hamilton (1989, 1990). In this setting, regime classification is based on opti-

mal probabilistic inference1 and model parameters are functions of a hidden Markov chain.

Following the above ideas, the first to combine MRS and GARCH in a unified framework

are Hamilton and Susmel (1994) and Cai (1994), whereas other generalizations have been

proposed by Gray (1996) and Haas et al. (2004b).

To overcome the previous limitations, this paper builds on a general class of regime

volatility models described by a normal mixture conditional density. Besides disaggregating

volatility persistence into its sources (due to shocks or shifts in the variance parameters),

these models are able to reproduce a skewed leptokurtic distribution and capture time vari-

ation in conditional higher moments. To this end, we revisit the MRS GARCH (Haas et al.,

2004b) and the normal mixture GARCH (Haas et al., 2004a; Alexander and Lazar, 2006)

models to examine stock return volatility dynamics. In doing so, we advance a comprehen-

sive discussion on firms’ risk measurement and assess the efficacy of the proposed framework

in predicting extreme market risk and describing its spillover function.

In addition, we evaluate the economic significance of model choice in a forecasting exercise

using a robust set of loss functions (Patton, 2011). Nevertheless, volatility alone cannot

effectively replicate the risk of extreme rare events especially in periods of financial turmoil

(e.g., see Longin, 2000). Moreover, as volatility is unobserved, statistical loss functions

based on imperfect proxies may be of little value from a practitioner’s perspective. Thus, we

also assess risk control ability using the notion of Value-at-Risk (VaR), which serves as an

essential financial regulation tool, setting risk capital requirements to reduce the likelihood

of financial distress. Out-of-sample VaR forecasts are validated for the left and right tails

based on coverage rates (Christoffersen, 1998) and in terms of losses to the level of utility they

generate (Sarma et al., 2003; Gonzalez-Rivera et al., 2004); incremental predictive aptitude

against benchmarks is tested by implementing the reality check of Hansen (2005). Further,

1Another nomenclature of regime switching models include Tsay (1989) and Teräsvirta (1994); however,
these inexorably require auxiliary information or prior beliefs about how regime switching is manifested.
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we extend the research on stock markets’ interconnectedness by examining tail co-movements

featuring financial contagion. Understanding the mechanism of causality in tail risk (Hong

et al., 2009) when markets are integrated and exposed to the same global shocks has crucial

implications for predicting and monitoring risk spillover. For example, how large shocks

transmit across different sectors offers valuable insights for market participants who deal

with investment, portfolio and financial risk management decisions, and regulatory policies

(see, for example, Longin and Solnik, 2001), supporting the planning of relevant strategies

to ease adverse impacts on the economy.

As a case study, our numerical experiments focus on a segment of the consumer services

sector, namely, travel and leisure. Despite the broad economic and financial impact of the

volatility of the industry, research on the risk profile of global tourism stocks is scant. This

is surprising given that the wealth of the sector impacts all aspects of economic activity, cre-

ating employment, generating export revenues or advancing infrastructure developments2.

Many empirical studies confirm the strong links of tourism to economic growth with regard

to policy and decision making in the public and private sectors (see Chen and Chiou-Wei,

2009). Stock investors are vital constituents of the industry and stock markets serve as

fundamental indicators of business activity, reflecting investors’ expectations about future

corporate earnings (e.g., see Choi et al., 1999). Hence, it is important to examine how risk

responds to investing, financing and operating decisions and provide benchmarks against

which to measure the risk of stock portfolios. Our results show that volatility regimes con-

stitute key factors to improve both in-sample fit and forecast accuracy, i.e., the model choice

has a material effect on risk forecasting. We also report significant cross-sector asymmetric

spillover effects. Tail dependence increases during periods of large losses, but not when mar-

2In the OECD (Organization for Economic Co-operation and Development) area, tourism contributes
more than 4% of GDP, 5.9% of employment, and 21.3% of service exports, while around 80% of the tourism
exports convert into domestic value added (World Tourism Organization, 2016). The industry key challenges
are the growth in tourism flows, changing consumer trends, concerns over security, economy digitalization
and adaptation to climate change. These require innovative and integrated policy responses to improve com-
petitiveness and support sustainable tourism growth, and efficient tools and solutions pertinent to accurate
risk assessments for consistent decision making and rational planning.
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kets experience large gains (Longin and Solnik, 2001); this way, we provide evidence on the

degree of diversification benefits in times of extreme return fluctuations.

The proposed risk analysis framework extends beyond the tourism sector as failing to

account for regime dependence can lead to inferior projections. There are many possible

applications of the considered models, including asset allocation, investment analysis, or

derivatives pricing. In terms of risk management, the results have implications for risk

managers, market makers, traders, institutional investors, and fund managers. Therefore, our

paper is of potential interest to stakeholders (public shareholders or private equity investors)

for understanding and evaluating the risk of their portfolios, as well as responding to emerging

issues and new risks; providers of credit (banks or bond investors) for determining and

monitoring the covenants included in loans and bond issues; and finally, regulators and

governmental organizations, as the lack of cohesive risk policies could undermine stability in

the system, especially when the overall sentiment is bearish.

The remainder of this paper is organized as follows. Section 2 outlines the details of the

postulated regime-dependent models for the volatility dynamics and presents the forecasting

valuation framework. In Section 3, we present the data and discuss our model calibration

results, our volatility and VaR forecasts. This is accompanied by an analysis of Granger

causality in risk. Section 4 concludes.

2 Methodology

This section is divided into three main subsections. First, we present the univariate model

employed to estimate conditional volatility dynamics. Second, we describe the criteria em-

ployed to evaluate forecasting performance. Finally, we present the methodology to measure

the economic value of forecasts in terms of value-at-risk and extreme risk spillovers.
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2.1 The model

Let the daily log-returns {rt} satisfy

rt = µst + ǫst,t, (1)

where

ǫst,t := εtσst,t, (2)

εt
iid
∼ N (0, 1) and st is a Markov chain with finite state space S = {1, 2}, describing the

state/regime the system is in, and 2 × 2 transition matrix with elements pij := P (st =

j|st−1 = i), i, j = 1, 2. (µ1, µ2)
′ is the vector of regime means. The vector σ

(2)
t := (σ2

1t, σ
2
2t)

′

of regime variances follows the GARCH(1,1) model

σ
(2)
t = α0 + α1ǫ

2
st−1,t−1 + βσ

(2)
t−1, (3)

where αi := (αi1, αi2)
′, i = 0, 1, and β is a 2 × 2 diagonal matrix satisfying element-wise

α0 > 0, α1, β ≥ 0 to ensure positivity of the variance process. We will dub the model defined

by equations (1)–(3) MRS (Haas et al., 2004b). Under conditional normality within each

regime, the aggregate variance is given by

σ2
t = π1t(µ

2
1 + σ2

1t) + π2t(µ
2
2 + σ2

2t)− (π1tµ1 + π2tµ2)
2, (4)

where π1t (π2t = 1−π1t) is the probability that the process is in regime 1 (regime 2) at time

t (see Gray, 1996). The process defined by (1)–(3) is stationary if and only if ρ(M) < 1,

where ρ(M) denotes the largest eigenvalue in modulus of the matrix

M :=







M11 M21

M12 M22






, (5)
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Mji := pji(β + α1u
′
i), i, j = 1, 2, and ui is the ith 2× 1 unit vector, i.e.,

M =



















p11(α11 + β1) 0 p21(α11 + β1) 0

p11α12 p11β2 p21α12 p21β2

p12β1 p12α11 p22β1 p22α11

0 p12(α12 + β2) 0 p22(α12 + β2)



















.

A necessary condition for the process to be stationary is β1, β2 < 1.

In addition, we consider certain special cases of the MRS model, i.e., the mixed normal

(Mix-N) GARCH(1,1) model with a constant vector of mixing weights (λ1, λ2)
′ (Haas et al.,

2004a), and the normal model with λ2 = 0. For the Mix-N model, M11 = M21 = λ1(β+α1u
′
1)

and M12 = M22 = λ2(β + α1u
′
2), i.e.,

M =



















λ1(α11 + β1) 0 λ1(α11 + β1) 0

λ1α12 λ1β2 λ1α12 λ1β2

λ2β1 λ2α11 λ2β1 λ2α11

0 λ2(α12 + β2) 0 λ2(α12 + β2)



















.

Mix-N and MRS are models of finite mixtures, flexible to accommodate many different

types of conditional distributions. For this reason, once a variance regime structure is al-

lowed, there is not much gain from assuming other component distributions, such as t, to

explain the fat tails of the distribution of conditional returns (see Susmel, 2000). For illus-

tration purposes, Fig. 1 portrays four density plots of two-component mixture of normal

distributions with mixing weight λ1: the two mixing components include the standard nor-

mal (blue line) and a normal N (−2, 2) or N (−5, 2) (red line) as indicated in each sub-plot.

Clearly, the resulting normal mixture density can capture fat tails and asymmetries (see

Haas et al., 2004a; 2004b), i.e., models that provide such flexibility pose as attractive al-

ternatives for modelling financial time series with multimodal conditional distributions and

heteroscedasticity (see Wong and Li, 2001).
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[INSERT FIGURE 1 HERE]

2.2 Volatility forecast evaluation

Although more sophisticated models are expected to provide better fit than the basic (single-

regime) model, a primary concern remains whether the additional parameterization warrants

its use. We investigate the appropriateness of our modelling approach by studying the

empirical performance of one-step-ahead volatility forecasts. We use as benchmarks the

normal GARCH(1,1) model and the constant historical volatility (hist. vol.).

We compare the accuracy of the out-of-sample volatility model forecasts σ̂2
t from (4)

against the realized squared returns r2t which we use as a proxy for the true, but unobserved,

conditional variance. Andersen and Bollerslev (1998) argue that imperfect volatility proxies

may affect the power of traditional tests as well as their asymptotic size. Hence, to avoid

distortions in the rankings of competing forecasts, we employ the parametric family of robust

loss functions of Patton (2011) indexed by a scalar parameter b:

LF (σ̂2
t , r

2
t ; b) =























σ̂2
t

r2t
− ln

σ̂2
t

r2t
− 1, b = −2

r2t − σ̂2
t + σ̂2

t ln
σ̂2
t

r2t
, b = −1

σ̂2b+4
t −r2b+4

t

(b+1)(b+2)
−

r2b+2
t (σ̂2

t−r2t )
b+1

, otherwise

. (6)

We note that the Mean Squared Error (MSE) and Quasi-Likelihood (QLIKE) loss functions

are given by T−1
∑T

t=1 LF (σ̂2
t , r

2
t ; b), where T is the total number of forecasts, for b = 0 and

b = −2, respectively. QLIKE is less sensitive to extreme observations in the sample period,

as opposed to MSE which also depends on the level of return volatility (see Patton, 2011).

The loss functions (6) can be symmetric (b = 0) or asymmetric with heavier penalty to

under-prediction (b < 0) or over-prediction (b > 0) of the true variance.
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2.3 Measuring the economic value of volatility forecasts: Appli-

cation in VaR and causality in tail risk

In order to provide a more informative insight into the economic benefits and the practical

implications of the volatility forecasts, we develop a risk management exercise based on VaR

forecasts. VaRc
t is defined as the maximum expected loss of an asset or a portfolio of assets

over a target horizon for a given confidence level 100(1− c)%. Given the predictions (µ̂t, σ̂t)

of the competing models, we quantify the one-day-ahead risk (VaR) as

P (rt < VaRc
t |Ωt−1) = c, (7)

where Ωt−1 = σ{rs: s ≤ t} is the information set available up to t − 1 based on r. From

(7), we may retrieve VaRc
t = µ̂t + σ̂tF

−1(c), where F denotes the cumulative distribution

function of the model-filtered standardized residuals.

We assess the performance of the VaR estimates by conducting likelihood ratio tests for

unconditional (LRUC) and conditional coverage (LRCC). LRUC tests the null hypothesis

that the probability of realizing a loss which exceeds the forecasted VaR is statistically equal

to the nominal level c. LRCC is a joint test of correct unconditional coverage and independent

VaR violations against the alternative of a first-order Markov process for the violations (see

Christoffersen, 1998 ). Under iid Bernoulli VaR violations,

LRUC = −2 ln

(

cn(1− c)T−n

ĉn(1− ĉ)T−n

)

d
→ χ2

1 (8)

and

LRCC = −2 ln

[

ĉn(1− ĉ)T−n

(1− q̂01)n00 q̂01n01(1− q̂11)n10 q̂11n11

]

d
→ χ2

2, (9)

where χ2
m denotes the chi-squared distribution withm degrees of freedom, ĉ = T−1

∑T

t=1 1{rt<VaRc
t}

is the empirical level of coverage, n the realized number of violations, nij the number of vi-

olations (i = 1) or non-violations (i = 0) followed by violations (j = 1) or non-violations

9



(j = 0), and q̂ij the corresponding ‘transition’ probabilities.

To further assess the relative size of losses when model violations occur, we follow Sarma

et al. (2003) and calculate the Quadratic Loss (QL) function

QL = (rt − VaRc
t)

21{rt<VaRc
t}, (10)

which measures the magnitude of violations assigning heavier penalty to large ones. Also

important is the Predictive Quantile Loss (PQL) function

PQL = (rt − VaRc
t)(c− 1{rt<VaRc

t}), (11)

which penalizes more heavily observations for which a violation occurs, but also takes into

account the capital forgone from over-predicting the true VaR. In fact, this represents a

measure of fit of the predicted tail for a given confidence level, rather than just a measure of

the violations’ size. In this sense, PQL is asymmetric and controls for the diverse implications

of under and over-prediction of risk.

Next, to investigate whether large risks interconnect, we test for causality. In doing so,

we focus on the tail co-movement between two distributions rather than Granger causality

in mean (Granger, 1969) or variance (Granger et al., 1986), and examine causality in risk by

implementing the Hong et al. (2009) kernel-based test. We define the occurrence of a large

risk at a specific confidence level, when actual loss exceeds VaR at the given level. This

way, extreme downside risk spillover between markets can arise not only from co-movements

in mean and in variance, but also from co-movements in higher order conditional moments

(and in the absence of causality in mean and/or in variance).

Let {r1,t}Tt=1, {r2,t}
T
t=1 be the returns of the two sectors with Ωj,t = σ{rj,s: s ≤ t}, j = 1, 2,

denoting the individual information set up to t based on rj , and associated VaRc
j,t; also, let

Ωt = σ{rs: s ≤ t} be the overall information set based on (r1, r2). If the null hypothesis

H0: P (r2,t < VaRc
2,t|Ω2,t−1) = P (r2,t < VaRc

2,t|Ωt−1) holds, we say that the time series {r1,t}
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does not Granger-cause {r2,t} in risk at level c with respect to Ωt−1. Rejection of H0 implies

that the time series {r1,t} Granger-causes {r2,t} in risk at level c, hence VaR exceedances in

{r1,t} can be used to predict VaR exceedances in {r2,t}. Let Ẑj,t = 1{rj,t<VaRc
j,t}

be a VaR

exceedance at time t,

Ĝ(l) =











T−1
∑T

l=1+l(Ẑ1,t−l − ĉ1)(Ẑ2,t − ĉ2), 0 ≤ l ≤ T − 1

T−1
∑T

l=1−l(Ẑ1,t − ĉ1)(Ẑ2,t+l − ĉ2), 1− T ≤ l < 0

the lth sample cross-covariance function between {Ẑ1,t} and {Ẑ2,t}, and ĉj = T−1
∑T

t=1 Ẑj,t

the empirical coverage rate with sample variance Ŝ2
j = ĉj(1− ĉj). Then, the test statistic of

Hong et al. (2009) is given by

Q(L) =
T

√

ν2(L)

(

T−1
∑

l=1

k2(l/L)
Ĝ2(l)

Ŝ2
1 Ŝ

2
2

− ν1(L)

)

, (12)

where L is an appropriate bandwidth, k(z) is a symmetric kernel satisfying k(0) = 1 and
∫∞

−∞
k2(z)dz < ∞, and

ν1(L) =
T−1
∑

l=1

(1− l/T )k2(l/L),

ν2(L) = 2
T−1
∑

l=1

(1− l/T )(1− (l + 1)/T )k4(l/L)

are, respectively, centering and standardization constants. Under certain regularity condi-

tions (see Hong et al., 2009, Theorem 1), Q(L)
d
→ N (0, 1) as T → ∞. We conduct two

directional tests for one-way Granger causality in risk for pairwise sector indices, for the

left and right tails of the distribution, adopting the Daniell kernel k(z) = sin(zπ)/(zπ) as

suggested by Hong et al. (2009).
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3 Empirical results

In what follows, we introduce our dataset and present the parameter calibration results

of the MRS and Mix-N models with two regimes associated with periods of low and high

volatility, capturing the second-moment dynamics in a parsimonious way. Out-of-sample

predictive performance of the proposed volatility models is compared to that of a single-

regime GARCH(1,1) and the historical volatility benchmark. Finally, to illustrate some of

the possible uses of the model forecast, we present a VaR application and investigate the

existence of Granger causality in risk.

3.1 Data description

Our dataset comprises daily observations of seven Datastream global stock indices. The

closing index price levels include an aggregate index of travel and leisure (TL) stocks, and

six individual sectors including airlines (AL), gambling (GM), hotels (HT), recreational

services (RS), restaurants and bars (RB), and travel and tourism (TT) stocks. Our sample

period spans from 12 April 1973 to 13 September 2016. The Datastream global indices are

capitalization-weighted and cover a minimum of 75% of the total market value. TL stocks

cover a total average market value over the last year in our sample of more than 1.5 trillion

USD with min-max sector market values of 126 (HT) and 413 (RB) billion USD. All indices

are updated daily while all index constituents are reviewed quarterly to determine the new

top group of stocks by market value. In total, as of September 2016, 334 tourism stocks are

included, representing stock exchanges from 59 different countries.

[INSERT TABLE 1 HERE]

Our sample period encompasses a total of 11, 260 observations of USD log-returns. Ta-

ble 1 presents summary statistics and the results of unit-root tests for the price indices of

interest. The seven indices have diverse mean, volatility, skewness and kurtosis values. For

example, returns realized for the AL and HT sector are not impressive compared to the

12



remaining stock indices. Annualized mean returns for the GM sector are the highest of the

cohort with also highest annualized volatility. As expected, the TL index volatility is the

lowest due to diversification effects (there are 334 stocks included in the index). The third

and fourth moments indicate negative skewness and high excess kurtosis for all log-returns.

This is confirmed by the strong rejections of the Jarque and Bera (1980) tests for normality.

The historical log-return distributions are fat-tailed (thin-tailed) relative to the 1% (5%)

tails of the normal distribution implying higher likelihood of extreme events. Over a given

estimation period, regime-dependent models assign weights to different market regimes, es-

sentially assuming that sub-samples are drawn from different distributions, i.e., structural

breaks can be effectively captured by a regime-dependent model (Li and Lin, 2004). More-

over, the Ljung and Box (1978) statistic shows significant signs of autocorrelation, whereas

the autocorrelations of the squared returns indicate existing heteroscedasticity in the return

series (Engle, 1982). In addition, given the above statistics, the chosen sector offers an

ideal platform to illustrate our empirical framework as the sectoral indices present diverse

dynamics, which are representative of the stock market properties. For example, the first

four moments of the unconditional distribution of the Datastream global non-sector stock

market index are 6.3%, 13%, −0.52 and 10.20 with the time series exhibiting similar signs

of autocorrelation, heteroscedasticity and tail thickness.

3.2 Estimation results

The ‘regime-switching’ literature typically uses maximum likelihood estimation. Having

specified the log-return model (1), the log-likelihood function can be written as

L =
∑

t

log

[

π1t
1

2πσ1t

exp

{

−(rt − µ1)
2

2σ2
1t

}

+ π2t
1

2πσ2t

exp

{

−(rt − µ2)
2

2σ2
2t

}]

(13)

(subject to straightforward amendment for the special case models). Table 2 presents the

Mix-N and MRS model parameters for all stock indices. For brevity, we report parameter
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estimates for the normal GARCH(1,1) only for the TL index, however estimates for the

remaining indices can be made available from the authors upon request; it is worth noting

that the normal GARCH parameters are described by a high degree of volatility persistence,

i.e., 0.9785 < α11 + β1 < 0.9915.

[INSERT TABLE 2 HERE]

When fitting the regime-dependent models (Mix-N and MRS) the components of the mix-

ture distributions are clearly differentiated. For example, in terms of sign and significance,

the constituent means of the regime processes (µ1 and µ2) are not equal, hence the observed

skewness can be captured. Whereas the basic GARCH formulation has zero conditional

excess kurtosis as well as unconditional and conditional skewness, Mix-N and MRS capture

the time variation of the conditional skewness and kurtosis; for more technical details and

derivation of the moments, we refer, for example, to Haas et al. (2004a; 2004b).

The first (second) regime process in Table 2 is associated with high (low) regime probabil-

ities in the range 82.01-97.89% (2.11-17.99%); this is the frequency of the regime occurrence

within the estimation period and corresponds to the mixing weight (λ1 for Mix-N) or the

unconditional regime probability (π1 for MRS). Therefore, the model captures two distinct

regimes in stock index volatility: a ‘stable’ volatility process (dominant state), which prevails

most of the time, and a rather high ‘extreme’ volatility process, which occurs rarely. The

long-term volatility
√

E(σ2
2t) of the ‘extreme’ regime is almost twice as large as

√

E(σ2
1t) of

the ‘stable’ regime in all sectors. In the case of MRS, it is observed that the probability of

switching from the low to the high variance state (max. p12 = 1 − p11 = 15.16% in the case

of GM) is lower than the probability of switching from the high to the low variance state

(min. p21 = 1− p22 = 26.96% in the case of RB). This is consistent with the short duration

of the high-variance state.

The estimated Mix-N and MRS models exhibit asymmetry across the regime-variance

dynamics with significant ARCH and GARCH terms. The low-variance states are described

by lower degree of persistence (0.92 < α11 + β1 < 0.99), as opposed to the high-variance

14



states with 0.97 < α12+β2 < 2.80. This is in line with other studies in the literature such as

Haas et al. (2004a; 2004b), Alexander and Lazar (2006) and Nomikos and Pouliasis (2011).

All, but the HT and RB MRS, models have non-stationary high volatility regime processes;

nevertheless the overall variance process is covariance-stationary in all cases as ρ(M) < 1

(see Section 2.1). The ‘stable’ volatility regime has low sensitivity with respect to shocks

(α11 < 0.11), which dissipate slowly as evidenced by the high lagged variance coefficient

β1 > 0.86 across sectors. On the contrary, in the ‘extreme’ volatility regime, market shocks

affect the variance more and dissipate at a much faster rate. Fig. 2 depicts historical patterns

of volatility in tourism stocks and highlights the varying effect of shocks: ‘stable’ volatility

regimes are less variable than ‘extreme’ volatility processes (for completeness, we present

also the aggregate volatility process (4) which lies between the two regime volatilities).

[INSERT FIGURE 2 HERE]

Table 2 exhibits the values of the maximized log-likelihood (13), the Schwarz (1978)

Bayesian and Akaike (1973) information criteria. All model selection criteria are favoring

MRS to Mix-N, marginally though. The effect of parameter restrictions is formally assessed

via the standard likelihood ratio test statistic −2(LR − LU ), where LR (LU) is the log-

likelihood of the restricted (unrestricted) parameterization. (Due to existence of nuisance

parameters, the likelihood ratio test statistic p-value has been corrected upwards, see Davies,

1987.) These tests do not favor the normal model at the 1% significance level against MRS

and Mix-N. The same applies when comparing Mix-N against MRS at the 5% significance

level. Overall, our results support MRS highlighting the importance of modelling variance

switches stochastically between the states of the market.

3.3 Forecasting accuracy

In the ensuing analysis, MRS, Mix-N and the normal and hist. vol. benchmarks are used

to produce daily volatility forecasts for each stock price index. We calibrate to 5, 630 daily
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log-returns over the sample period 12 April 1973 to 30 December 1994. Then, using rolling

windows of 5, 630 days, we recalibrate the models every twenty trading days, allowing thus

the parameters to change over time. It is worth noting that model recalibration does not

affect the significance of the ARCH and GARCH terms in our models and the qualitative

implications remain consistent with the analysis of the previous section.

[INSERT TABLE 3 HERE]

We obtain 5, 630 daily one-step-ahead volatility forecasts from 2 January 1995 to 13

September 2016. Table 3 presents our forecast results. More specifically, MRS is more

accurate when considering symmetric loss functions (b = 0) and functions that assign heav-

ier penalty to under-prediction (b ∈ {0,−1,−2}). Instead, Mix-N generates lower over-

prediction errors (b = 1). Asymmetric errors have important implications. For example,

volatility under-prediction leads to downward-biased stock option premia (undesirable to

option writers). In addition, under-estimating risk results in assigning less resources to

prospective risks, increasing thus the likelihood of financial distress (undesirable to regu-

lators and banks). On the other hand, risk over-prediction leads to unnecessary accrual of

funds for capital adequacy requirements (undesirable for portfolio managers or hedge funds).

Our MSE reports are smaller for the RB sector and the TL aggregate stock index,

whereas the volatilities of the RS, HT and GM sectors are the most unpredictable (see Table

2). RB and TL have a relatively high unconditional probability of being in the ‘stable’

volatility regime (π1 > 95%) implying that the ‘extreme’ volatility state exhibits sudden

jumps rather than a persistent process; jumps are due to random shocks that are harder to

predict. RS, with the highest MSE, has the most erratic ‘extreme’ volatility regime (see

Fig. 2), whereas GM has the highest volatility (see also Table 1). Similar are the results for

over-prediction (b = 1), yet GM has in this case lower errors (even compared to AL and TL),

implying that volatility under-prediction is the main source of high errors for GM; when

assigning more weight to under-prediction (b = −1) errors are higher for GM.
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We statistically evaluate whether the regime-dependent extensions of the basic GARCH

model yield significant improvement in the forecasts by approximating the empirical dis-

tribution of the loss function differential ∆LFi,j = LFi(σ̂
2
t , r

2
t ; b) − LFj(σ̂

2
t , r

2
t ; b), where

i, j ∈ {MRS, Mix-N, hist.vol., normal}. For given j, consider the null hypothesis H0:

max
i

E(∆LFi,j) ≤ 0, i.e., model i is not outperformed by model j. Using the stationary

bootstrap procedure (see Politis and Romano, 1994 and Sullivan et al., 1999), we obtain

the loss functions based on 10,000 bootstrap simulations and a smoothing parameter of 0.1

(results were not affected by different choices). Table 3 reports significance at the 5% level

obtained using the Hansen (2005) test of superior predictive ability. Mix-N and MRS mod-

els’ superiority is obvious across all sectors, especially when focusing on under-prediction

(b = −1 and b = −2). When b = 1 (b = 0), it is only for the AL and HT (AL) sectors

that the benchmarks lead to statistically equivalent forecasting ability, although in terms of

nominal values they still appear inferior.

A collective view of the results so far suggests that Mix-N and MRS capture better the

persistence in volatility and tend to perform better out-of-sample than the benchmarks3:

across all criteria (Table 3), MRS outperforms the competing models in 18 out of 28 cases;

Mix-N performs better in the remaining 36% of the cases. Evidently, allowing volatility to

switch stochastically across different states, as in MRS, provides a flexible and reasonable

characterization of stock return volatility generating more realistic forecasts.

3.4 Application to VaR

Portfolio managers develop different risk models, therefore it is necessary to assess the relative

performance. In this section, we explore the economic implications of the forecasting results

of Section 3.3 in a risk management exercise based on computation of VaR forecasts, which

3To discount the possibility that our results are sample period-specific, we also partition the dataset into:
(i) fixed windows (time-partitioned), i.e., 1995–2005 versus 2006–2016, and (ii) expansions versus contractions
(market condition-partitioned) based on the OECD recession indicator from the Federal Reserve Bank of St.
Louis. Results are similar, i.e., regime-dependent models consistently produce significant lower errors, and
can be made available upon request. In addition, forecast ability deteriorates during 1995–2005 and during
recessions, but mainly due to over-prediction errors; under-prediction errors are alike across sub-samples.
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constitutes the basis to calculate the minimum required capital to cover market risk.

[INSERT TABLE 4 HERE]

[INSERT FIGURE 3 HERE]

Table 4 reports the 1%, 5% VaR PF for the left and and right tails, that is, the realized

% number of violations (failures), i.e., instances when rt < VaRc
t . Recalling that ĉ denotes

the empirical coverage rate, we test the null hypothesis H0: ĉ = c based on (8). We also test

the null hypothesis that violations do not arrive in clusters based on (9). We find that the

regime models pass these tests in most of the cases. In particular, MRS (Mix-N) passes both

tests in 21 (17) out of 28 cases, whereas the benchmarks in a total of 3 cases. Fig. 3 exhibits

the TL stock index log-returns against the MRS-based VaR forecasts at the 5% and 95%

levels. Table 4 presents also the QL results (see equation 10) to assess the size of the realized

% violations. MRS and Mix-N give the smallest QL in, respectively, 18 and 6 out of 28 cases.

The benchmarks generate lower QL in only 4 cases with, however, empirical coverage rate

far below the theoretical 1%, as confirmed by the unconditional coverage tests (0.44 and

0.30, respectively), deeming the interpretation of the loss function dubious. Finally, in terms

of PQL (see equation 11), reports in Table 4 suggest that the benchmarks do rather poor;

regime-dependent models are superior in 27 (17 for MRS and 10 for Mix-N) out of 28 cases,

with the hist. vol. and normal model being significantly outperformed in 28 and 16 cases.

Summing up, the above application further corroborates the robust out-of-sample fore-

casting performance of the regime-dependent models relative to the hist. vol. and normal

benchmarks; hence, MRS matches more accurately the moments of the predictive distribu-

tion of the stock price changes.

3.4.1 Granger causality in risk

Controlling and monitoring extreme downside market risk are important for risk management

and investment diversification. We now proceed to test for extreme downside risk spillover,
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where risk is measured by the VaR, aiming to investigate the existence of bilateral Granger-

causal relationships interconnecting large losses of our sector indices. To this end, we use

the MRS-based violations (out-of-sample), which proved to be the most efficient and robust,

and follow the approach outlined in Section 2.3.

[INSERT TABLE 5 HERE]

Table 5 reports the Q(L) statistic (12). In consistency with the regularity conditions of

Hong et al. (2009, Theorem 1) based on our models and sample size of choice, we consider

bandwidth L ≤ 8, e.g., L ∈ {4, 8}. The one-way tests for risk causality at the 1% VaR

level from the aggregate index (TL) to the sector indices yield statistic values in the range

−0.465 to 37.94, for L = 4, suggesting a two-way feedback mechanism with strong extreme

risk spillover from TL to all but the GM and RS sectors. Similar observations apply for

the 5% VaR level and L = 8. AL is the only sector that uniformly Granger-causes all

indices. Accordingly, a large downward movement exceeding the VaR levels in airline stocks

is a useful predictor of future contractions in the other sectors. In fact, for the majority of

the sectors analyzed, risk causality is strong. GM seems to be the sector for which large

downside risk is the most difficult to predict by looking at the occurrence of large downside

risk in another sector. In addition, GM and RS exhibit the least systemic vulnerability as

the statistic is significant in fewer cases. Overall, causality at the left tail of the distributions

is significant in about 80% of the cases considered. For the right tail of the distributions,

i.e., 95% and 99% VaR (equivalent to loss of short position, also interpreted as value within

reach), risk causality is significant in less than 15% of the cases. This is in agreement with

various empirical findings in the literature suggesting that the correlation between financial

assets or markets becomes stronger in large downside market movements, i.e., as Longin and

Solnik (2001) argue “correlation increases in bear markets, but not in bull markets”.
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4 Conclusion

Risk analysis applications share the need for continuous evaluation, especially in the after-

math of the 1998 currency crisis, the 2000–2001 internet bubble, and the collapse of collat-

eralized debt securities in 2007–2008. In this paper, we employ a set of regime-dependent

GARCH-type models to examine stock return volatility dynamics and tail risk. The ratio-

nale behind the use of these models is that the volatility can be characterized by regime

shifts; by allowing the second moments to depend on the state of the market, one can obtain

more efficient estimates associated with enhanced forecast ability. As a case study for the

empirical applications, we use capitalization-weighted tourism stock indices which serve as

a broad barometer of the well-being of the industry.

Our main findings can be summarized as follows. First, MRS and Mix-N models fit the

data well and capture volatility persistence better than the standard GARCH. Volatility

can be described by a persistent ‘stable’ process with low sensitivity to shocks that die out

slowly, and a short-lived ‘extreme’ process with high sensitivity to shocks that dissipate fast.

Second, regarding the relative forecasting performance, regime-dependent models provide

significant gains, compared to appropriate benchmarks, and further improve VaR backtests

at the 1% and 5% left and right tail probability levels. Loss functions which measure the

magnitude of losses when models fail to forecast the true VaR and the capital forgone as

a result of over-predictions also verify the consistency of MRS and Mix-N. Overall, results

are in line with the existing studies on commodity (Nomikos and Pouliasis, 2011), stock

index (Haas et al., 2004a), interest rate (Gray, 1996) and foreign exchange rate markets

(Alexander and Lazar, 2006; Haas et al., 2004b). Third, we document asymmetric cross-

sector spillover effects favouring the explanation that correlation increases mostly in bear

markets. In effect, large downside past movements Granger-cause large future price falls

between related sectors. In contrast, the transmission process for financial contagion in the

right tail of return distributions is weak. This finding is in agreement with the existing

literature (e.g., see Hong et al., 2009 for exchange rates; Longin and Solnik, 2001 for equity
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indices) and has implications for international policies aimed at relieving adverse impacts on

the economy as a whole.

This research highlights the importance of closely monitoring firms as large idiosyncratic

shocks convey useful information about expected shocks in other related economic sectors.

Therefore, it constitutes one of the few applications of stock return volatility modelling

and the first to assess the predictive potential of regime-dependent models in the sector.

However, the suggested risk analysis framework extends to all segments of the economy

as robust volatility forecasts support effective evaluation of strategic decisions, facilitate

good governance and lead to sound risk policies that reflect market risks. Such analysis

offers insights on the vulnerability of economic sectors and the stability of the system, thus

advances the knowledge of investors by providing the means for identifying global economic

changing patterns and signals of where capital should flow, as volatility can be used in the

decision making process of investment strategies and governmental policies.
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Table 1: Summary statistics: tourism firms global stock price indices

This table reports the summary statistics of the index log-returns based on the period 12 April 1973–13

September 2016, i.e., a total of 11,261 daily closing price levels. The closing index price levels include an

aggregate index of travel and leisure (TL) stocks and six individual sectors: airlines (AL), gambling (GM),

hotels (HT), recreational services (RS), restaurants and bars (RB), and travel and tourism (TT) stocks. The

first line of the table shows the number of index constituents with the figures in (·) indicating the number

of countries represented in each index. JB is the Jarque and Bera (1980) statistic for normality, LB(5) and

LB(10) the Ljung and Box (1978) statistic for the 5th and 10th order sample autocorrelation of the returns

series, whereas LB2(5) and LB2(10) are based on the squared returns series. Asterisk ∗ indicates significance

at the 5% level.

TL AL GM HT RS RB TT
No. of constituents 334 (59) 42 (30) 49 (21) 77 (32) 49 (22) 61 (16) 56 (22)

Annualized mean (%) 7.836 5.074 15.008 5.669 7.310 8.768 6.350
Annualized vol. (%) 16.20 17.76 33.20 17.25 20.40 17.24 18.13

Skew -0.525 -0.542 -0.005 -0.763 -0.438 -0.317 -0.243
Exc kurt 10.746 10.559 25.159 12.297 12.017 5.977 13.639

JB 54,699∗ 52,861∗ 296,966∗ 72,035∗ 68,109∗ 16,949∗ 87,381∗

LB(5) 373.2∗ 316.7∗ 62.15∗ 365.4∗ 154.5∗ 104.7∗ 80.59∗

LB(10) 380.3∗ 328.1∗ 75.40∗ 380.1∗ 161.5∗ 113.8∗ 105.8∗

LB2(5) 1736∗ 966.2∗ 1161∗ 962.3∗ 832.1∗ 1653∗ 1076∗

LB2(10) 2197∗ 1141.7∗ 1562∗ 1306∗ 1084∗ 3218∗ 1326∗

Cutoff points of standardized returns distributions

1% tail -2.753 -2.627 -2.694 -2.784 -2.747 -2.737 -2.592
5% tail -1.563 -1.518 -1.383 -1.544 -1.509 -1.554 -1.446
95% tail 1.473 1.538 1.415 1.487 1.526 1.535 1.535
99% tail 2.573 2.595 2.929 2.584 2.648 2.525 2.897
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Table 2: Calibrated model parameters for global tourism stocks by sector (12 April 1973–13 September 2016)

This table reports the parameter estimates of the Markov Regime Switching GARCH (MRS) model with unconditional regime probabilities (π1, π2),

the mixture of normals GARCH (Mix-N) model with mixing weights (λ1, λ2) and the single-regime GARCH (normal) model (for brevity, only for

TL; results for remaining sectors available by the authors upon request). Figures in (·) are the estimated standard errors and the asterisk ∗ indicates

significance at the 5% level. Also reported are ρ(M), i.e., the largest eigenvalue in modulus of matrix (5), the log-likelihood function L , and the

Schwarz (1978) Bayesian and Akaike (1973) information criteria BIC and AIC.
√

E(σ2

1t
),
√

E(σ2

2t
) are the annualised unconditional volatilities in the

low and high volatility regimes, respectively, whereas
√

E(σ2
t
) the corresponding figure for the aggregate variance process.

Travel & Leisure (TL) Airlines (AL) Gambling (GM) Hotels (HT) Recreational Services (RS) Restaurants & Bars (RB) Travel & Tourism (TT)
Normal Mix-N MRS Mix-N MRS Mix-N MRS Mix-N MRS Mix-N MRS Mix-N MRS Mix-N MRS

µ1 0.0662∗ 0.0662∗ 0.1048∗ 0.0337∗ 0.0415∗ 0.0616∗ 0.0645∗ 0.0550∗ 0.0660∗ 0.0482∗ 0.0485∗ 0.0562∗ 0.0811∗ 0.0021 0.0022
(0.007) (0.008) (0.008) (0.009) (0.009) (0.014) (0.014) (0.008) (0.008) (0.009) (0.009) (0.011) (0.010) (0.009) (0.009)

α01 0.0209∗ 0.0086∗ 0.0051∗ 0.0123∗ 0.0088∗ 0.0400∗ 0.0354∗ 0.0134∗ 0.0111∗ 0.0098∗ 0.0098∗ 0.0042∗ 0.0031∗ 0.0093∗ 0.0083∗

(0.002) (0.001) (0.001) (0.002) (0.001) (0.005) (0.004) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
α11 0.1054∗ 0.0557∗ 0.0366∗ 0.0550∗ 0.0398∗ 0.0636∗ 0.0508∗ 0.0618∗ 0.0444∗ 0.0447∗ 0.0448∗ 0.0313∗ 0.0246∗ 0.0435∗ 0.0379∗

(0.003) (0.004) (0.004) (0.004) (0.003) (0.005) (0.004) (0.004) (0.004) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003)
β1 0.8757∗ 0.9243∗ 0.9443∗ 0.9210∗ 0.9406∗ 0.8694∗ 0.8834∗ 0.9134∗ 0.9334∗ 0.9416∗ 0.9417∗ 0.9534∗ 0.9648∗ 0.9238∗ 0.9334∗

(0.004) (0.005) (0.005) (0.005) (0.005) (0.008) (0.008) (0.005) (0.005) (0.004) (0.004) (0.005) (0.004) (0.005) (0.005)
p11 - - 0.9489∗ - 0.964∗ - 0.8484∗ - 0.9819∗ - 0.9816∗ - 0.9501∗ - 0.9069∗

(0.008) (0.006) (0.012) (0.003) (0.004) (0.012) (0.010)
λ1 or π1 1 0.9592∗ 0.8830 0.9535∗ 0.9392 0.8328∗ 0.8301 0.9680∗ 0.9534 0.9789∗ 0.9811 0.8201∗ 0.8438 0.8815∗ 0.8869

(0.007) (0.006) (0.010) (0.005) (0.004) (0.030) (0.009)
µ2 - -0.0105 -0.3729∗ -0.0538 -0.2514∗ 0.1603∗ 0.1371∗ 0.1039 -0.7058∗ 0.5970∗ 0.6548∗ 0.0503 -0.1630∗ 0.0752 0.0827

(0.086) (0.052) (0.135) (0.102) (0.069) (0.069) (0.154) (0.133) (0.210) (0.276) (0.043) (0.054) (0.049) (0.054)
α02 - 0.0742 0.0000 0.1623∗ 0.1028∗ 0.0001 0.0000 0.6284∗ 0.4581 0.9144 1.1601 0.0798∗ 0.1107∗ 0.0863∗ 0.0810∗

(0.077) (0.017) (0.068) (0.042) (0.010) (0.010) (0.239) (0.332) (0.485) (0.634) (0.020) (0.021) (0.016) (0.015)
α12 - 0.9766∗ 0.2264∗ 0.4501∗ 0.2459∗ 0.1483∗ 0.1324∗ 0.8261∗ 0.0838∗ 1.4996∗ 2.1937∗ 0.2427∗ 0.1099∗ 0.3429∗ 0.2784∗

(0.179) (0.018) (0.076) (0.033) (0.011) (0.011) (0.222) (0.035) (0.511) (0.978) (0.040) (0.022) (0.042) (0.039)
β2 - 0.8065∗ 0.9076∗ 0.8861∗ 0.9192∗ 0.9583∗ 0.9610∗ 0.7701∗ 0.8866∗ 0.6914∗ 0.5997∗ 0.8519∗ 0.884∗ 0.8881∗ 0.9061∗

(0.033) (0.007) (0.022) (0.014) (0.003) (0.003) (0.053) (0.068) (0.062) (0.087) (0.022) (0.022) (0.011) (0.012)
p22 - - 0.6145∗ - 0.4433∗ - 0.2594∗ - 0.6302∗ - 0.0481 - 0.7304∗ - 0.2698∗

(0.045) (0.062) (0.042) (0.053) (0.044) (0.046) (0.049)
λ2 or π2 0 0.0408∗ 0.1170 0.0465∗ 0.0608 0.1672∗ 0.1699 0.0320∗ 0.0466 0.0211∗ 0.0189 0.1799∗ 0.1562 0.1185∗ 0.1131

(0.007) (0.006) (0.010) (0.005) (0.004) (0.030) (0.009)
ρ(M) 0.9811 0.9923 0.9947 0.9872 0.9896 0.9970 0.9970 0.9818 0.9776 0.9905 0.9913 0.9908 0.9897 0.9883 0.9890
√

E(σ2
1t) - 16.98 13.56 16.95 16.48 25.05 23.62 16.08 14.96 18.31 19.05 14.48 13.79 15.67 15.47

√

E(σ2
2t) - 43.35 24.49 42.03 37.19 64.91 61.19 42.37 34.91 51.08 54.88 24.34 21.63 36.69 36.05

√

E(σ2
t ) 16.69 18.79 15.25 18.87 18.42 35.03 33.16 17.55 16.43 19.58 20.32 16.69 15.28 19.39 18.95

L -14691 -14407 -14402 -15792 -15780 -20918 -20916 -15231 -15226 -17036 -17034 -15464 -15460 -15455 -15450
BIC 14672 14365 14355 15750 15733 20876 20869 15189 15180 16994 16988 15422 15413 15413 15404
AIC 14687 14398 14392 15783 15770 20909 20906 15222 15216 17027 17024 15455 15450 15446 15440
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Table 3: Comparison of forecasting performance of different volatility models

The table reports the average loss functions for different parameter b values (note that b = 0 and b = −2

correspond to MSE and QLIKE, respectively), for each sector and model, based on 5,630 daily volatility

forecasts obtained by the rolling-window forecasting scheme (5,630 observations at each step). Asterisk ∗

indicates that the loss function of a given model is statistically higher than that of the competing models at

the 5% significance level based on the Hansen (2005) test using 10,000 (stationary) bootstrap simulations.

b = 1 b = 0 b = −1 b = −2
Travel & Leisure (TL)
Hist. vol. 168.77∗ 6.441∗ 1.449∗ 1.837∗

Normal 168.71∗ 6.036∗ 1.098∗ 1.504∗

Mix-N 160.77∗ 4.816∗ 0.739∗ 1.278∗

MRS 135.89 3.371 0.577 1.227

Airlines (AL)
Hist. vol. 581.38 10.400∗ 1.594∗ 1.639∗

Normal 581.06 9.837 1.259∗ 1.409∗

Mix-N 563.39 8.156 0.916 1.241∗

MRS 570.08 8.376 0.854 1.180

Gambling (GM)
Hist. vol. 286.12∗ 15.710∗ 2.873∗ 1.860∗

Normal 269.94∗ 12.080∗ 1.904∗ 1.536∗

Mix-N 249.85 9.609 1.389∗ 1.361∗

MRS 242.72 9.104 1.235 1.264

Hotels (HT)
Hist. vol. 896.24 14.980∗ 1.932∗ 1.848∗

Normal 897.36 14.320∗ 1.489∗ 1.541∗

Mix-N 862.36 11.530 0.995 1.299∗

MRS 889.05 12.800 0.994 1.251

Recreational Services (RS)
Hist. vol. 1,460.9∗ 22.100∗ 2.418∗ 1.857∗

Normal 1,461.3∗ 21.250∗ 1.966∗ 1.604∗

Mix-N 1,423.4 17.770 1.325∗ 1.343∗

MRS 1,430.2 17.550 1.170 1.264

Restaurants & Bars (RB)
Hist. vol. 21.699∗ 2.811∗ 1.136∗ 1.689∗

Normal 20.790∗ 2.399∗ 0.874∗ 1.469∗

Mix-N 18.720 1.921 0.658 1.299

MRS 18.850 1.969 0.688 1.343
Travel & Tourism (TT)
Hist. vol. 287.85∗ 6.181∗ 1.252∗ 1.678∗

Normal 288.74∗ 5.979∗ 1.026∗ 1.489∗

Mix-N 281.17 5.013 0.737∗ 1.298∗

MRS 282.85 4.888 0.602 1.198
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Table 4: VaR forecasting accuracy

The table presents, for each sector and model, the VaR results across the out-of-sample period: percentage

number of failures, i.e., violations, (PF ), average quadratic loss (QL) and average predictive quantile loss

(PQL). Superscipts a and b indicate when the model does not pass the test of unconditional coverage (8)

and conditional coverage (9), respectively. Asterisk ∗ indicates that the average PQL of a given model is

statistically higher than that of the competing models at the 5% significance level (see also notes in Table

3).

1% VaR 5% VaR 95% VaR 99% VaR
PF QL PQL PF QL PQL PF QL PQL PF QL PQL

Travel & Leisure (TL)
Hist. vol. 1.723a,b 0.416 0.425∗ 6.270a,b 0.327 1.286∗ 5.435b 1.062 1.145∗ 1.332a,b 0.779 0.374∗

Normal 1.208b 0.231 0.331 5.897a,b 0.218 1.112∗ 6.483a,b 0.606 0.960∗ 1.474a,b 0.485 0.273∗

Mix-N 0.977 0.211 0.331 4.973b 0.188 1.099 5.382 0.531 0.956∗ 0.924 0.382 0.270
MRS 0.924 0.208 0.324 4.583 0.178 1.086 5.044 0.501 0.941 0.817 0.355 0.262

Airlines (AL)
Hist. vol. 1.439a,b 0.581 0.440∗ 6.750a,b 0.124 1.379∗ 5.506b 1.398 1.217∗ 0.941b 0.547 0.362∗

Normal 1.297a,b 0.423 0.383 5.702a,b 0.034 1.246 4.636b 0.904 1.073 0.710a,b 0.242 0.290∗

Mix-N 1.314a 0.423 0.373 5.808a,b 0.028 1.230 4.973 0.865 1.073 0.764 0.232 0.285

MRS 1.367a,b 0.402 0.375 5.452b 0.032 1.229 5.258 0.839 1.081 0.924 0.235 0.290
Gambling (GM)
Hist. vol. 0.675a,b 0.266 0.584∗ 3.623a,b 0.223 1.713∗ 2.842a,b 1.082 1.662∗ 0.604a,b 0.813 0.582∗

Normal 1.119b 0.289 0.448∗ 4.937b 0.153 1.484 4.795b 0.839 1.444 0.817 0.674 0.415

Mix-N 0.906 0.231 0.434 4.316a,b 0.158 1.467 4.334a,b 0.736 1.442 0.888 0.631 0.420
MRS 1.101 0.230 0.436 4.742 0.187 1.464 4.742 0.767 1.450 0.728a 0.669 0.425
Hotels (HT)
Hist. vol. 1.634a,b 0.813 0.474∗ 7.176a,b 0.340 1.423∗ 6.377a,b 1.765 1.306∗ 1.616a,b 0.997 0.431∗

Normal 1.332a,b 0.612 0.379 5.719a,b 0.131 1.235∗ 6.270a,b 1.073 1.114∗ 1.545a,b 0.462 0.320∗

Mix-N 1.012 0.587 0.374 4.991b 0.117 1.222 5.382b 1.043 1.110 1.083 0.410 0.312
MRS 1.137 0.577 0.371 5.506 0.098 1.214 5.950a,b 0.976 1.095 1.243 0.366 0.307

Recreational Services (RS)
Hist. vol. 1.883a,b 0.851 0.525∗ 7.123a,b 0.585 1.580∗ 6.057a,b 1.892 1.516∗ 1.563a,b 1.417 0.483∗

Normal 1.634a,b 0.649 0.430∗ 6.306a,b 0.440 1.376∗ 7.052a,b 1.226 1.337∗ 1.581a,b 1.014 0.384∗

Mix-N 1.119 0.626 0.418 5.399b 0.394 1.362∗ 5.524 1.126 1.315∗ 1.066 0.860 0.381∗

MRS 1.243 0.614 0.411 5.222 0.371 1.345 5.950a,b 1.104 1.287 1.226 0.813 0.364

Restaurants & Bars (RB)
Hist. vol. 1.261b 0.191 0.369∗ 5.471b 0.155 1.182∗ 4.742b 0.637 1.106∗ 1.137b 0.477 0.340∗

Normal 1.758a,b 0.087 0.305∗ 5.435b 0.054 1.070 5.488 0.369 0.990 1.137 0.290 0.278∗

Mix-N 0.959 0.075 0.296 4.920 0.036 1.057 5.115 0.324 0.985 0.959 0.248 0.268

MRS 1.030 0.071 0.294 4.813 0.050 1.058 4.991 0.316 0.991 0.924 0.261 0.274
Travel & Tourism (TT)
Hist. vol. 0.444a,b 0.301 0.379∗ 3.091a,b 0.036 1.125∗ 2.487a,b 0.637 1.103∗ 0.302a 0.207 0.368∗

Normal 0.782b 0.377 0.339∗ 4.281a,b 0.031 1.067 4.210a,b 0.670 0.996∗ 0.462a 0.211 0.294
Mix-N 0.977b 0.354 0.328∗ 5.258 0.033 1.061 4.671 0.659 0.989 0.515a 0.219 0.285

MRS 0.959 0.332 0.316 5.560 0.034 1.060 4.902 0.612 0.999 0.675a 0.212 0.286
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Table 5: Extreme risk spillover effects between tourism sectors: Granger causality in risk

The table reports the Hong et al. (2009) statistic Q(L) (see equation 12) for testing the null hypothesis that

the ith sector does not Granger-cause the jth sector in risk at the 1% and 5% levels (for both tails of the

log-return distributions). Q(L) is computed for different values of the lag order parameter L based on the

Daniell kernel. i ⇒ j indicates one-way causality in risk from the ith to the jth sector.

1% VaR 5% VaR 95% VaR 99% VaR
L = 4 L = 8 L = 4 L = 8 L = 4 L = 8 L = 4 L = 8

Travel & Leisure (TL)
AL⇒TL 4.152∗ 6.491∗ 4.560∗ 3.849∗ 1.495 0.584 -0.404 -0.732
GM⇒TL -0.672 -0.923 0.102 1.346 -0.315 -0.021 -0.725 -1.010
HT⇒TL 4.784∗ 8.985∗ 0.283 0.669 2.400∗ 1.590 -0.571 -0.819
RS⇒TL 2.055∗ 2.773∗ 0.232 0.102 -0.091 -0.123 -0.439 -0.697
RB⇒TL 2.936∗ 3.514∗ 3.397∗ 2.623∗ 0.834 0.557 -0.489 -0.633
TT⇒TL 3.639∗ 3.938∗ -0.287 -0.273 -0.100 1.399 0.080 -0.456
Airlines (AL)
TL⇒AL 16.34∗ 11.76∗ 21.51∗ 15.78∗ 0.484 1.197 2.895∗ 1.856∗

GM⇒AL 12.05∗ 8.252∗ 2.858∗ 3.512∗ 0.376 0.320 5.085∗ 6.326∗

HT⇒AL 15.49∗ 11.76∗ 16.19∗ 12.21∗ -0.171 0.059 0.339 0.116
RS⇒AL 14.87∗ 10.54∗ 20.96∗ 16.29∗ 1.966∗ 1.919∗ 1.250 0.770
RB⇒AL 23.03∗ 17.39∗ 18.54∗ 14.41∗ 0.423 1.176 -0.580 -0.833
TT⇒AL 8.712∗ 7.883∗ 3.751∗ 2.456∗ 0.096 -0.477 -0.380 -0.552
Gambling (GM)
TL⇒GM 0.305 0.758 5.424∗ 4.298∗ -0.639 -0.153 -0.547 -0.954
AL⇒GM 2.360∗ 3.142∗ 1.787∗ 2.283∗ 0.793 3.083∗ -0.460 3.505∗

HT⇒GM 2.258∗ 3.509∗ 9.341∗ 7.271∗ 0.671 2.941∗ -0.408 -0.336
RS⇒GM 0.113 0.894 2.989∗ 2.628∗ 1.239 -0.554 -0.384 0.240
RB⇒GM 5.484∗ 4.040∗ 8.702∗ 8.658∗ 1.615 -0.144 -0.066 -0.835
TT⇒GM 0.879 3.623∗ 2.105∗ 3.566∗ -0.547 2.613∗ -0.568 -0.348
Hotels (HT)
TL⇒HT 4.347∗ 6.963∗ 2.015∗ 2.532∗ -0.408 -0.383 1.475 0.783
AL⇒HT 7.350∗ 10.73∗ 5.930∗ 5.531∗ 2.002∗ 1.412 -0.339 1.569
GM⇒HT 0.659 0.224 2.286∗ 3.058∗ 0.619 0.887 -0.556 -0.792
RS⇒HT -0.238 0.258 9.513∗ 7.466∗ 0.744 -0.075 -0.442 -0.494
RB⇒HT 10.79∗ 13.22∗ 6.432∗ 5.615∗ 0.780 0.278 -0.371 -0.656
TT⇒HT 1.872∗ 3.105∗ 1.943∗ 2.276∗ -0.252 0.353 -0.244 -0.523
Recreational Services (RS)
TL⇒RS -0.465 -0.132 -0.750 -0.545 -0.314 1.894∗ -0.316 -0.547
AL⇒RS 3.009∗ 2.567∗ 9.559∗ 7.200∗ 2.363∗ 1.545 0.920 6.263∗

GM⇒RS 3.105∗ 4.316∗ -0.117 0.767 -0.422 0.944 -0.120 0.559
HT⇒RS 0.414 2.506∗ 2.162∗ 2.449∗ 1.161 3.389∗ -0.825 2.761∗

RB⇒RS 0.087 -0.276 1.918∗ 1.319 3.253∗ -0.375 -0.703 -0.712
TT⇒RS 1.415 1.739∗ 2.944∗ 2.133∗ 0.865 4.641∗ -0.404 1.075
Restaurants & Bars (RB)
TL⇒RB 9.937∗ 8.921∗ 7.373∗ 5.592∗ 0.825 3.752∗ -0.416 0.454
AL⇒RB 2.332∗ 2.333∗ 2.548∗ 2.310∗ -0.363 -0.753 -0.362 -0.522
GM⇒RB 0.064 0.059 3.061∗ 3.259∗ -0.122 1.599 -0.272 -0.655
HT⇒RB 4.829∗ 5.883∗ 4.244∗ 3.959∗ 0.713 6.034∗ -0.832 -1.009
RS⇒RB 4.021∗ 3.721∗ -0.676 -0.183 -0.029 1.493 -0.686 -0.865
TT⇒RB 5.953∗ 3.918∗ 5.480∗ 4.671∗ -0.709 3.026∗ -0.436 -0.489
Travel & Tourism (TT)
TL⇒TT 37.94∗ 27.26∗ 6.657∗ 5.211∗ -0.830 -0.646 -0.662 -0.980
AL⇒TT 8.879∗ 6.228∗ 3.873∗ 3.345∗ 0.783 0.395 -0.402 -0.589
GM⇒TT 11.68∗ 8.076∗ 1.308 1.412 -0.739 -1.147 -0.748 -1.095
HT⇒TT 36.23∗ 26.79∗ 10.62∗ 7.408∗ -0.513 0.184 -0.510 -0.776
RS⇒TT 20.25∗ 17.14∗ 3.960∗ 3.193∗ 0.561 1.083 -0.545 -0.784
RB⇒TT 12.76∗ 8.812∗ 7.329∗ 7.539∗ -0.970 -0.954 -0.139 -0.520
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Fig. 1

Illustrative examples of two-component mixture of normal densities for varying mixing weight λ1 (yellow

lines) against the standard normal density N (0, 1) (blue lines) and normal densities N (µ, σ) (red lines).
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Fig. 2

Volatility of tourism sector stock indices as estimated by the MRS model (in-sample estimates based on the

period April 1973–September 2016): aggregate volatility, low and high volatility regime processes.
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Fig. 3

Tourism & Leisure stock index log-returns against the MRS-based VaR forecasts at the 5% and 95% levels.
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