US006006028A

United States Patent

Aharon et al.

(19]

6,006,028
Dec. 21, 1999

Patent Number:
Date of Patent:

(11]
[45]

[54] TEST PROGRAM GENERATOR
[75] Inventors: Aharon Aharon, DN Misgav; Yossi
Malka, Haifa; Yossi Lichtenstein,
Ramat-Gan, all of Israel
[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.
[21] Appl. No.: 08/245,179
[22] Filed: May 17, 1994
[30] Foreign Application Priority Data
May 18, 1993 [GB]  United Kingdom .......ccocuun. 9310223
[51] Int. CLO oo GO6F 17/30
[52] US.ClL ... 395/500.42; 395/701; 707/100;
364/489
[58] Field of Search .........ccccccoeecnenenncneee 395/700, 600,
395/500, 650, 75, 76, 50, 500.42, 701;
371/15.1, 22.1; 364/489, 490, 513
[56] References Cited
U.S. PATENT DOCUMENTS
4,922,432 5/1990 Kobayashi et al. ......ccoeevvnnne 364/490
4,924,408 5/1990 Highland .............. ... 364/513
5,197,016  3/1993 Sugimoto et al. ... 364/490
5,276,881 1/1994 Chan et al. ..... .. 395/700
5,347,614  9/1994 Yamada et al. .....ccccoevveveeeecencne 395/75
5,359,539 10/1994 Mitsumoto et al. . ... 364/489
5,381,417 1/1995 Loopik et al. ....... .. 371/15.1
5,304,347  2/1995 Kita et al. ... ... 364/578
5,448,740 9/1995 Kiri et al. woveeeeeeeeerrererresrerenne 395/700
5,488,573  1/1996 Brown et al. .....ccceeveruenenes 395/500.42

10\

ARCHITECTURE MODEL
AND
TESTING KNOWLEDGE

>0 EXTRACTOR

FOREIGN PATENT DOCUMENTS

0413133A2  2/1991 European Pat. Off. .

OTHER PUBLICATIONS

Fourth International Conference on Industrial & Engineer-
ing Applications of Artificial Intelligence & Expert Systems;
Jun. 2-5, 1991; pp. 99-104; Dingankar, et al.; “VLSI Logic
Verification Program Generator.”

MIDCON/88 Conference Record, Dallas, TX; Aug. 30—Sep.
1, 1988; pp. 70-73; Rim et al.; “Rule-Based Evaluation
Methodology of Multi—Cache System.”

Allred et al.; “Agatha: An Integrated Expert System to Test
and Diagnose Complex PC Boards.”

IBM Systems Journal, 1991; vol. 30, No. 4, pp. 527-538;
Abharon et al.; “Verification of the IBM RISC System/6000
by a Dynamic Biased Pseudo—Random Test Program Gen-
erator.”

Primary Examiner—Paul R. Lintz
Attorney, Agent, or Firm—Steven W. Roth

[57] ABSTRACT

An architecture-independent test program generator for pro-
ducing test programs for checking the operation of a hard-
ware processor design comprises means for storing data
representing the processor instruction set and resources, and
logic for generating, for subsequent storage or processing,
test programs from said stored data, characterized in that the
data is a separate declarative specification, the generator
comprising logic for extracting said data from the storage
means, and in that the relationships between the processor
resources and semantic entities associated with each instruc-
tion are modelled in said declarative specification.

15 Claims, 6 Drawing Sheets

ARCHITECTURE
SIMULATOR

USER

TEST
INTERFACE | ™)

GENERATOR

&

/ v

40

TEST PROGRAMS



U.S. Patent Dec. 21, 1999 Sheet 1 of 6 6,006,028

10+
ARCHITECTURE MODEL 20~ ARCHITECTURE
AND SIMULATOR
TESTING KNOWLEDGE

B I R R

0 ExtracTor
30
/
USER || TEST e
INTERFACE GENERATOR
w0 v

TEST PROGRAMS

FIG. |



U.S. Patent Dec. 21, 1999 Sheet 2 of 6 6,006,028
ROOT ()

INSTRUCTION DOMAIN()

INSTRUCTION(opcode,format,operands,cond codes,
exceptions,restrictions,generation_functions)

OPERAND(data_type,address,length,resource,
alignment,sub operands,generation functions)

FIELD(mnemonics.data type)

EXCEPTION(validation functions,generation_
functions)

DATA DOMAIN(length,alignment,bounds,values,
validation functions.generation functions)

ADDRESS ()

SCALAR()

RESOURCE DOMAIN(size)

REGISTER(name, type,array bounds,bit bounds,
synonyms)

MEMORY (address _ranges)

FUNCTIONS DOMAIN(prototype.source code)

GENERATION(input parameters,output parameters)

VALIDATION()

FIG. 2



U.S. Patent Dec. 21, 1999 Sheet 3 of 6 6,006,028
130 60 70
ﬁEngRCE 90\ oF
ALLOCATOR GENERATION INVOKER A
SCHEME CONTROL mE
VF
RMA )
80
100 110 120
\ 3 Y
ADDRESS LENGTH DATA
CONSTRAINT | | CONSTRAINT | | GENERATOR
SOLVER SOLVER

FIG. 3



.~

.~

6,006,028

Sheet 4 of 6

Dec. 21, 1999

U.S. Patent

v Old

(91)

(INVY3d0
-dns

(ZT)

INVY3d0
-ans

(£)

¢ (NVY3d0

(¢£)

ANVY3d0
-ans

(8)

(INVY31d0
-ans

(¢)
[ (ONVY3dO



6,006,028

Sheet 5 of 6

Dec. 21, 1999

U.S. Patent

000800010000 001800010000
J/16V3ST d91ve6ds
6 9 0010 - ¢ f VA U



6,006,028

Sheet 6 of 6

Dec. 21, 1999

U.S. Patent

9 9l

SOWSJIXJUTFPaUB T SUNILLIAUIY

SSTW1 IH91Be43Uay

MO JJ9AQSSaIPpY
~9A1129]}391e19U39

SJoPPYPJIOMITEHNI3Y)
MyJ040J97WNS91e13Ua9



6,006,028

1
TEST PROGRAM GENERATOR

FIELD OF THE INVENTION

The invention relates to a test program generator for
generating programs for use in checking hardware processor
designs for computers.

BACKGROUND OF THE INVENTION

The goal of processor verification is to ensure equivalence
of a processor and its architectural specification. This goal
can be achieved either by a formal proof or by exhaustive
simulation. However, the complexity of processors renders
the formal approach impractical for most industrial appli-
cations and the size of the test space makes exhaustive
simulation impossible.

Typically, the architecture specification is an informal
description of the processor’s resources, the instruction
repertoire and the effect of instruction execution on the
processor state. It also describes the main hardware mecha-
nisms such as address translation, interrupt handling or
multi-tasking. Computer architectures are complex. A typi-
cal architecture includes hundreds of instructions; a few
dozens of resources, such as main memory, general-purpose
registers, special-purpose registers, and complex functional
units, e.g. floating point, address translation, external inter-
rupt mechanism. A typical architecture description is a few
hundred pages long.

In practice, design verification of hardware processors is
generally, but not exclusively, carried out by simulating the
operation of sets of assembly level test programs using a
hardware simulator with a particular set of design param-
eters and comparing the results with the output predicted by
a behavioral simulator.

The hardware simulator may take as input a design model
written in a hardware description language, such as the IEEE
standard VHDL (IEEE standard 1076-1987). Of course, if
prototype hardware is available the test programs may be
run directly on that. The behavioral simulator is normally
written for software development purposes prior to having
the actual hardware and represents the expected behavior of
the hardware given the architecture specification.

Traditionally, these test programs are written manually.
First, a list of test requirements is compiled; then tests are
written to cover this list. Requirements derived from the
architecture specification usually call for the testing of every
instruction, under normal, boundary and exception condi-
tions. The tests written to satisfy these requirements are
called Architecture Verification Programs (AVP), and are
required to run correctly on any realization of the architec-
ture. The design work-book, which defines major design
details, such as clock cycle and cache size, and the actual
HDL design are used to construct a second list of require-
ments and the Implementation Verification Programs (IVP).
The latter typically test the functionality of caches, pipelines
and units like a Carry Look Ahead adder or a bit-rotator.

Design verification by manually written tests is not cost
effective. Using this approach a substantial proportion of the
processor design effort must be dedicated to verification.
Furthermore, many of these tests are too simple, as test
engineers find it difficult to define complex situations.

The automatic generation of such test programs for the
verification of processor architectures is known from A.
Abharon, et al. ‘Verification of the IBM RISC System/6000
By a Dynamic Biased Pseudo-Random Test Program
Generator’, IBM Systems Journal, April 1991 referred to

10

15

20

25

30

35

40

45

50

55

60

65

2

hereinafter as R11 and from EP-A-453394. The automation
of test program generation has increased productivity and in
recent years has also provided better quality.

Typically, such a test program generator is a complex
software system. An example described in R1 written in the
programming language ‘C’ spans about 150,000 lines of
code. The complexity of processor architectures, which
nowadays can include hundreds of instructions and around
ten functional units, and their informal description are
reflected in the complexity of the test generation system.

These known test program generators suffer from the
drawback that a new test program generator has to be
developed and implemented for each architecture for which
the process is to be used. In other words, the generator is
architecture dependent.

Furthermore, changes in the architecture or in the testing
requirements require subtle modifications to be made to the
generator’s code. Since design verification gets under way
when the architecture is still evolving, a typical test genera-
tion system undergoes frequent changes.

Typically, there are two levels of changes: within an
architecture version and between versions. Within a version
there are normally hundreds of changes, many of them
subtle. When the architecture is relatively stable, an archi-
tecture version is declared. It may be substantially different
from the previous version. The changes in both levels are
described informally, are often difficult to identify, and their
consequences for the test program generator are not always
clear. Furthermore, many of the changes required in the test
generator are due to the evolving testing knowledge accu-
mulated through the validation process itself. New testing
needs rise frequently as a consequence of previous testing
results and uncovering of design errors.

In the prior art, features of the architecture and knowledge
gained from testing are modelled in the generation system.
The architecture is needed to generate legal instructions and
tests. Testing knowledge is used to generate interesting,
smart or revealing instructions and tests. This knowledge is
embedded in the generation procedures of the prior art
systems. Modelling of both architecture and testing knowl-
edge is procedural and tightly interconnected. Its visibility is
thus low. This worsens the effects of the complexity and
changeability.

SUMMARY OF THE INVENTION

The present invention seeks to improve upon the known
state of the art by providing a test program generator which
is architecture independent. This is achieved in part by
separating the knowledge from the control. In other words
an architecture-independent generator is used which extracts
data stored as a separate declarative specification in which
the processor architecture is appropriately modelled.

However, formulating an appropriate external architec-
tural model is not easy. One way of doing so would be to let
the model follow the syntax of the instructions specified by
the architecture. This level of modelling does not include
enough information to enable useful or revealing test pro-
grams to be generated. The other extreme would be to model
the complete semantics of the architecture including the
effect of execution of instructions as found in an architec-
tural simulator. This level of modelling is extremely com-
plex and a generator which can use this level of detail would
be extremely difficult to implement.

According to the invention a test program generator is
provided for producing test programs for checking the
operation of a hardware processor design, comprising means



6,006,028

3

for storing data representing the processor instruction set
and resources, and logic for generating, for subsequent
storage or processing, test programs from said stored data,
characterized in that the data is a separate declarative
specification, the generator comprising logic for extracting
said data from the storage means, and in that the relation-
ships between semantic entities associated with each instruc-
tion and/or between said semantic entities and the processor
resources are modelled in said declarative specification.

A model of the relationships between semantic entities
associated with an instruction includes a precise definition of
the relationship between semantic entities without having to
describe the effect of executing that instruction. This may be
done in two parts—a definition of the semantic entities and
a description of the relationship between the entities. There
is no need to include a description of the effect of execution
of the instruction on the entities.

The inventors have found that modelling in this way gives
enough power to generate useful test programs whilst at the
same time keeping the complexity of the generator and the
model reasonable and the computing time needed for test
program generation within reasonable limits.

Thus, the invention provides an architecture independent
test generator and the external architectural model that
drives it.

The separate declarative specification is preferably in the
form of a database external to the generating logic, but
could, for example, reside on internal files of the system and
still be separate from the generator and declarative, ie not a
set of procedures but a set of data structures.

In one embodiment, in the separate declarative
specification, the representation of each instruction is stored
in the form of a tree structure, the first level of the tree
comprising the syntax of the instruction and the last level of
the tree comprising the possible values of and the relations
between the semantic entities. In this case the generator
comprises means for generating instances of the instruction
and means for traversing the tree structure in a depth first
order and generating an instance of each semantic entity in
accordance with the choices made at previous traversal steps
and to keep the consistency of the instruction instances. In
other words, consistency is achieved by committing to
decisions made at an earlier stage of tree traversal.

Preferably, testing knowledge relevant to the generation
of useful test programs is modelled in the stored data. This
is achieved through procedural modelling in a preferred
embodiment by the means for generating the semantic entity
instances comprising generation functions which are defined
before the generation process, the generation functions
being tailorable by the user so that desired types of test cases
can be generated.

The generator can also, advantageously, comprise means
for testing generated semantic entity instances in accordance
with one or more validation criteria, which can also be
tailorable by the user, the generation of the semantic entity
instances being repeated if the generated instance does not
satisfy the, or each, validation criteria.

In such embodiments, the users who populate the external
database can then write generation and validation functions
to embody their evolving testing knowledge, and to generate
desired types of test programs.

Viewed from another aspect, the invention enables a
method to be provided for producing such test programs, the
method comprising: storing data representing the processor
instruction set and resources in a separate declarative speci-
fication in which declarative specification the relationships

10

15

20

25

30

35

40

45

50

55

60

65

4

between semantic entities associated with each instruction
and/or between said semantic entities and the processor
resources are modelled; extracting said data from storage;
and generating test programs from said extracted data.

The invention removes the need to reimplement a gen-
erator for each architecture as testing requirements evolve.
Thus it greatly reduces the cost of developing a generator for
a new architecture. As the model is external to the generator,
the effort required to introduce changes to the architecture or
the testing knowledge is also reduced.

The architecture-independent generation process may be
viewed as an interpreter of the external database. The
complexity problem of the prior art is thus lessened by the
strong separation between database and control.
Furthermore, keeping the architectural simulator separate
from the generator removes a major source of system’s
complexity. The invisibility is decreased by the formal and
declarative modelling of the architecture and the testing
knowledge. Confining most changes to the database consid-
erably alleviates the changeability problem.

The external database serves as a heuristic knowledge
base by representing testing knowledge, the heuristics rep-
resenting the expertise of testing engineers. The model
allows experts to add knowledge in a local and relatively
simple way. It enables the cumulative experience of users to
be incorporated into the system, and enables the generator to
follow the progress of the testing process. The model-based
test-generation approach allows this incorporation of com-
plex testing knowledge into the systems. The model can thus
be used both for defining the architecture and describing
ways of generating important test-cases. Furthermore, it
allows migration of testing knowledge from one architecture
and design to another.

The approach of the present invention has the further
advantages that it can be utilized at an early stage of
processor development, when only parts of the design are
available and that the generation technique and the model-
ling can be used in developing generators for non-traditional
processors such as graphic engines and I/O controllers.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the invention will now be described,
with reference to the accompanying drawings, wherein:

FIG. 1 is a schematic diagram showing the system com-
ponents and interrelations;

FIG. 2 shows a class hierarchy skeleton,

FIG. 3 is a schematic diagram showing the structure of the
test generator,

FIG. 4 shows an example of an ADD WORD instruction
tree;

FIG. § shows an example of an ADD WORD instruction
instance;

FIG. 6 shows an example of ADD WORD generation
functions.

DETAILED DESCRIPTION

Referring to FIG. 1, the system comprises an architectural
model 10, architecture simulator 20, architecture indepen-
dent generator 30 and user-interface 40. The generator 30
and user-interface 40 have been implemented in C, each
spanning about 30,000 lines of code.

The architecture model 10 contains a specification of
instructions, resources and data types as defined below. This
information is stored in an object-oriented database for



6,006,028

5

which a hierarchy of classes has been designed. Classes for
instructions, operands, fields, resources, data types, genera-
tion and validation functions are defined. The attributes
defined for a class hold the data for each object and the
relation between objects of different classes. Generation and
validation functions written in C embody procedural aspects
of the architecture and testing knowledge; they are a part of
the class hierarchy. In addition to the functions and instruc-
tion trees described below representing operands and fields
of the instructions, some other architectural aspects are
modelled in the database. A skeleton of the class hierarchy
of the database is shown in FIG. 2.

The definition of generation functions allows the incor-
poration of testing knowledge into the model and user
control over the application of testing knowledge during the
generation process. A generation function object includes a
specification of the input and output parameters of the
function. A combination of values for input parameters
corresponds to elements of the testing knowledge the func-
tion represents.

The population of the database can, for example, be
carried out by a person familiar with the specific architec-
ture. The informal architecture specification is used as a
source for the architecture model. The testing knowledge
could, for example, be either written by the database main-
tainer or by experienced test engineers who are familiar with
the modelling scheme.

The data required by the user interface and the test
generator is retrieved by an extraction program 50. The
extractor 50 transforms the data into internal data structures
used by the generator and user interface. In addition, it
checks the validity of the database and reports missing or
inconsistent data. This report is used by the database main-
tainer while populating the database.

The system uses an appropriate separate architecture
simulator 20. Such a simulator is generally designed for
software development before the processor is available in
hardware. For example, the simulator is used in the devel-
opment of the operating system and language compilers.
Such an architectural simulator typically spans 20,000-50,
000 lines of high level language code. The interface between
the simulator and the generator consists of procedures for
accessing registers and memory; procedures for executing a
single instruction and providing a list of resources that have
been thus modified; and a capability to undo the effects of
the execution of an instruction.

The Motif-based user interface 40 enables a user to have
extensive control over the generation process. Apart from
the ability to determine the number of instructions in each
test and to initialize resources, the user can direct the
generation at three levels: Global, Local and Specific. These
levels are characterized by the scope of the control they
offer. Global selections pertain to the generation process as
a whole; local selections apply to every instance of an
instruction whenever it is generated; finally, at the specific
level selections bear on particular instances of generated
instructions.

The generator 30 interprets many user directives as selec-
tion of generation functions and values for their input
parameters. In this manner, the user controls the generation
functions invoked in the Generate procedure described
below.

At the global level, the user can select resource allocation
policies, mark the instructions to be generated, enable
selected interrupts and assign generation functions to data
types to be used whenever a datum is needed. At the local

10

15

20

25

30

35

40

45

50

55

60

65

6

level, the user is offered many semantic selections that
follow the traversal of the instruction tree. At the instruction
level these include interrupts, condition codes and genera-
tion functions for results of special interest; data and address
generation functions are included at the operand level.

The specific level, constituting a special generation mode,
enables the user to define a specific sequence of instructions-
together with related selections. This sequence is to be
followed by the generator to produce the corresponding test.
A superset of the semantic selections of the local level is
offered separately for each instruction in the sequence,
including the setting of specific values to each operand’s
length, address or data instances. In addition, it is possible
to make syntactic selections, assigning values to fields of the
instruction. Using the specific level the user can actually
write test scenarios leaving any desired amount of details
unspecified, to be completed by the tool’s randomness
according to selections made at other levels.

The test generator 30 produces a test file containing a
number of test programs. As described below, each program
is generated separately, and uses a single-instruction gen-
erator repeatedly. In addition generating a program involves
a complex overall control and the use of several modules.
For example:—User selections received from the user inter-
face are imbedded into the data structures used by the
instruction generator;,—The architecture simulator is used to
initialize resources, simulate instructions and obtain
expected results;—A backtracking support mechanism is
used to allow the program generator to ignore a generated
instruction element;—A set of routines is available for the
use of generation functions, obtaining information about the
instruction being generated, making random selections,
accessing architectural resources, etc.

FIG. 3. is a schematic diagram showing the structure of
the test generator 30. It comprises generation scheme control
logic 60. Generation functions and validation functions 80
are invoked by the generation scheme control logic 60
through an invoker 90. The generation scheme control
comprises three constraint solvers: one for address 100, one
for length 110 and one for data. Since the data constraints are
trivial, this data constraint solver is designated a data gen-
erator 120.

Resource manager and allocator 130 is responsible for
keeping track of the state of resources and their allocation.
It comprises three main components as shown in FIG.
3—register modelling R, memory modelling M and attribute
mechanism A. The address and length constraint solvers 100
and 110 communicate with the resource manager 130.

The operation of the resource manager and the constraint
solvers are described below.

The resource manager maintains the information about
registers and memory. This information, in conjunction with
allocation policies, which can be user-specified or internal,
is used in the allocation of resources.

The resource manager 130 holds static as well as dynamic
information. For registers, static information includes the
spatial relations between registers ie a register may be a
synonym of a part of another register, and the allocation
policy selected by the user, eg use-new-registers or use-a-
register-that-was-a-target-in-the-last-instruction. The
dynamic information kept for registers is a set of attributes
representing the usage of the register, eg initialized, target-
in-last-instruction, result. Both static and dynamic informa-
tion is used by the register allocator to put into effect the
desired policy when replying to requests for register allo-
cation. The instruction generator may request to use a single
register or an array of registers.



6,006,028

7

Memory is characterized by the address ranges allowed
for instructions and data, and by the selected memory
allocation policy, eg NEW, USED-IN-RECENT-
ACCESSES. Dynamically, information is kept about the
usage of memory in the test program, taking into account the
huge size of memory that may be involved.

Answering the memory allocation requests made by the
generator, several characteristics of the desired memory
segment must be taken into consideration: the length
required, type of memory, intended use, ie source or target,
an alignment requirement and complex restrictions in par-
ticular a request for a range relative to a given base address.

Great importance is attributed to the efficiency of auto-
matic test generation. Therefore, measures have been taken
in the design of the instruction generator in order to make it
efficient. Constraint solvers are used to avoid superfluous
backtracking, due to violation of relations between values of
leaves in the instruction tree as specified by length and
address expressions. A solver is activated at appropriate
internal nodes of the instruction tree and simultaneously
assigns values to the leaves such that the relations are not
violated.

Each of the solvers is specialized in solving a particular
subset of the expression languages. A solver must cope with
relevant user selections, the state of the machine and data
from the model of the architecture. For example, solving the
expression ADDRESS=CONTENTS(REGISTER(B2))+
VALUE(D2) (in the Add-Word instruction tree described
below) involves selecting a register index, contents for that
register, the displacement field, such that the above address
expression is satisfied. This solver takes into account user
selections of syntactic nature, ie values for the displacement
and register index fields, and selections of semantic nature,
ie the address and the data that should reside there.
Furthermore, the solver must consider the state of the
resources involved (a register and a memory location), and
the definition of the displacement data-type.

Verification Tasks

Verification tasks are described using terms from two
domains. The first is the domain of operands, instructions
and sequences of instructions called the operation domain.
The hardware domain is that of hardware facilities including
resources and functional units, eg registers, memory,
Address Translation, cache, pipeline. Some tasks specify
attributes or instances of elements in the operation domain;
others associate between resources or special events related
to functional units and elements of the operation domain as
shown below. Verification task descriptions use enumeration
and combination as basic operators on sub-tasks. For
example, a sub-task may be an alignment requirement, while
a combination may be an alignment requirement for both
operands, and enumeration may require all alignments for an
operand to be tested. The discussion below is sectioned
according to the elements of the operation domain in the
following order: operands, instructions, sequences of
instructions.

Operand tasks are related to the data, address or length of
the operand. This is exemplified by the following tasks: *
Use all possible lengths of an operand; * Access an operand
address that is either aligned to or crosses a page boundary;
* Access an operand address such that a page fault occurs;
* Access an operand address such that a cache hit occurs; *
Access an operand that ends on a cache line end, such that
a cache miss occurs; * Use specific data values (e.g.,
ZERO,MINIMUM,MAXIMUM); * Use invalid data values
causing exceptions (e.g., non-decimal digit in a decimal
operand).

10

15

20

25

30

35

40

45

50

60

65

8

Instruction tasks are characterized as specifying operand
combinations. The specification may be implicit, describing
a set of combinations or explicit, imposing restrictions on
each of the operands.

Implicit specifications are related either to exceptional
conditions caused by the execution of an instruction or to
results of special importance it computes. An exception
often results in a program interrupt; some results cause
Condition Code bits to be set. Consequently, verification
tasks of instructions are mostly related to exceptions, con-
dition codes and other special results, requiring the occur-
rence of these events.

Moreover, the set of instruction verification tasks is
partitioned into the so called exception-path and non-
exception-path sub-sets. Examples of such tasks are:

Cause a division by zero exception;

Cause an illegal storage operand overlap exception;

Set every condition code bit;

Compute result equal to the MAXIMAL possible value
(no exception or condition code set).

Explicit specifications of the relation between the oper-
ands are mainly derived from two sources: the relation
between the instruction components and the hardware
domain, and the semantics of the operator the instruction
embodies. Examples of such specifications are:

Use given pairs of values for the data of the operands;

Use a value of one for the divisor on a divide instruction;

Use all alignment combinations of two operands;

Use specific operand length relations (e.g., L1>L2,
L1=L2),

Use specific operand length relations and various data
values, eg L.1>L.2 and the data of the first operand
smaller than that of the second operand;

Use operands that overlap, ie have some storage in
common, on a certain storage partition boundary.

Sequence verification tasks typically specify a short
sequence of two or three instructions. Although a task may
specify as little as the instructions involved, it may require
a deeper relation between the instructions.

Such a relation originates from hardware domain ele-
ments executing instructions in parallel eg pipeline
mechanism, or multiple computation units. Often, these
tasks require that resources are shared between operations
executed in parallel. For example, floating point instructions
may be executed concurrently with other instructions; a
floating point instruction that uses the ALU may be executed
in parallel to another floating point instruction that does not
use it.

The following exemplifies sequences of size two—
(‘inst1’,‘inst2’):

Every instruction followed by any other instruction;

Load a register in ‘instl’ and then use its value to access
storage in ‘inst2’;

Both ‘instl’ and ‘inst2’ are floating point instructions
using a single ALU;

‘inst1’ ends on a page boundary and the next page is
non-resident ie pre-fetching ‘inst2’ yields a page fault;

‘inst2’is a branch instruction and ‘inst1’ causes conditions
that perturb the timing of the execution of the branch.

Short sequences encapsulate a short interdependency
chain between instructions. Long sequence verification tasks
can be classified according to the length of the interdepen-
dency chains they require. Long sequences with short inter-
dependency chains are actually an extension of the short



6,006,028

9

sequences described above, and thus serve only as a mix of
these verification tasks. Long sequences with a long inter-
dependency chain are required for complex verification
tasks. Such tasks are related to Input/Output, multi-tasking,
etc., and are considered to be a separate class of tasks. For
example, an I/O verification task would consist of instruc-
tions to initialize the operation, the I/O instruction itself and
a delay to allow the operation to complete before the
contents of the facilities involved can be inspected.

Test programs can be classified according to the com-
plexity of the interdependencies imbedded in them. These
dependencies can be ordered in increasing complexity as
follows: within-operand, inter-operand and inter-instruction.
The latter can in turn be ordered as short and long sequences.
Thus, considering testing knowledge, the complexity of the
dependencies included in a test determines the complexity of
the test itself.

The verification tasks described above indicate that it is
necessary to model resources and instructions. Many of the
verification tasks use terms as the address of the operand and
terms related to different aspects the computation carried out
by the instruction. Therefore, an instruction must be mod-
elled semantically rather than syntactically.

The tasks also unveil important attributes of elements of
the operation domain. For example, length, address and data
are important for operands; exceptions, condition codes and
special results are pertinent to instructions. Also, the notion
of a data-type for the data values an operand can take is
implied.

The verification tasks are defined to test the different
notable cases from the architecture book. The modelling
allows sufficient expressibility to support the testing of a
diverse set of such cases. Thus, considering the verification
task description to be testing knowledge, it is modelled to
allow an open knowledge base. Furthermore, the testing
knowledge is complex and procedural, thus there is a
trade-off between the openness and the simplicity of the
solution, which limits the expressiveness of the testing
knowledge to some extent.

BASIC MODELLING AND GENERATION

Test programs are sequences of instruction instances
which use the architecture resources. This section describes
the model of both resources and instructions and explains
the basic generation scheme. The next section completes the
modelling details and describes the full generation proce-
dure. The model is depicted in an informal way; in
particular, the semantics of the address, length and data
expressions are described but not formally defined and the
consistency of operand instances is explained but not
defined. An elaborate example of an instruction model and
the generation of an instruction instance is given in these two
sections.

1. Resources

Memory and register resources are described by an ISPS
memory declaration. Such declarations are described in M.
R. Barbacci, An Introduction to Instruction-Set Processor
Specification, in ‘Computer Structures: Principles and
Examples’, by D. P. Siewiorek, C. G. Bell, A. Newell,
McGraw-Hill, 1982. They include the memory name, the
size of memory cells, and the range of addresses. Several
memory resources are possible.

Definition: A ‘resource’ is a quintuple NAME i LOWER
ADDRESS: UPPER ADDRESS I<LOWER-BIT: UPPER-
BIT>.

10

15

20

25

30

35

40

50

55

60

65

10

An ‘address’ of the resource NAME is an integer in the
range iLOWER-ADDRESS,UPPER-ADDRESSI.

For example, a main memory may be 248 addressable
bytes: Main-Memoryi0x000000000000:0x
FFFFFFFFFFFF1<0:7>.

Note that Ox prefices hexadecimal numbers, and that in
IBM architectures bit indices are marked from left to light,
e.g., 0 to 7. Word registers, as a second example, may be an
array of sixteen four-bytes storage units: Word-Register
10:151<0:31>.

Resources may overlap each other; this relation is con-
sidered part of the processor specification and is taken into
account while testing the architecture. Following ISPS,
resource overlapping is defined by a pair of resource dec-
larations. For example, halfword registers may be defined
over the word registers: Halfword-Register
10:151<0:15>:=Word-Registeri0:151<16:31>.

2. Instructions

Instructions are modelled as trees at the semantic level of
the processor architecture. However, as this embodiment is
targeted towards automatic test generation of Complex
Instructions Sets Computers (CISC), further elaboration of
the trees is needed. An instruction is described by a tree with
a format and a semantic procedure at the root, operands and
sub-operands as internal nodes and length, address and data
expressions as leaves.

The following is an informal bottom up description of the
instruction model. A set of unique literals (or identifiers) is
assumed; literals are used as field and data-type names, as
well as to denote field values.

Definitions: A ‘field’ is a triplet<NAME, VALUES,
REGISTER>, where NAME is a literal (referred to as the
field’s name), VALUES is a set of literals, and REGISTER
is either the reserved literal NONE or a register name (as
defined above). A ‘format’ is a finite set of field names.
Using formats as alphabets, two languages representing the
possible addresses and lengths of operands are defined as
follows:

Definitions: An ‘address expression’ over a format F is
described syntactically by the following grammar:

(1) address-expression = in-field(field-name1) ]

2 value(field-name1) ]
(©)] register(field-name2) |
€] specific-register(register-name,integer) |
O] contents(address-expression) |
) address-expression '+ address-expression.
Restrictions:
(1) field .1, and field , 2 are in F;
(2) for<field_,,,,..1, Values, Register>Register is NONE;
(3) for<field_,,,,.2, Values, Register>Register is not

NONE.

(4) register-name is a resource name.

The semantic domain of address expressions consists of
addresses as defined above. Rule (1) denotes data which
resides directly in the corresponding field (also known as an
immediate field). Rules (2) and (3) denotes the values of the
corresponding fields: rule (2) denotes the field values which
are interpreted as memory addresses. Rule (3) denotes the
field values which are interpreted as registers. Rule (4)
denotes a specific register, eg word register number 9 is
denoted by specific-register(Word-Register,9). Rule (5)
denotes the contents of the address indicated by the (inner)
address-expression. The semantics of rule (6) is the standard
one.



6,006,028

11

Definition: A ‘length expression’ over a format F is
described syntactically by the following grammar:

(1) length-expression = integer ]

2 maximum(integer) ]

(©)] value(field-name1) ]

€] contents(address-expression) |

O] length-expression "+ length-expression |
(6) length-expression **” length-expression.
Such that:

(1) field_namel is in F;

(2) for<field namel, Values, Register>Register is None;

The semantic domain of length expressions consists of the
positive integers. The meaning of rules (1), (5) and (6) is the
standard one. Rule (2) denotes any length smaller or equal
to the given integer. Rule (3) denotes the values of the
corresponding field. Rule (4) denotes the contents of the
addresses denoted by the address-expression.

Definition: A ‘data expression’ is a literal denoting a
data-type.

The semantic domain of data expressions is strings of
data, in this embodiment either decimal or hexadecimal
digits. A data-type describes such a set of data strings by
their length, either fixed or variable under limits, and struc-
ture.

Address, length and data expressions collectively model
the basic semantic entity of our model, the sub-operand.
Sub-operanids are grouped into operands. Formats, semantic
procedures and operands form the instruction model.

Definition: A ‘sub-operand’ over a format F is a triplet
holding a length expression over F , an address expression
over F and a data expression.

An ‘operand’ over format F is a finite set of sub-operands
over F. A semantic procedure is a procedure which manipu-
lates the architecture resources and represents the operation
performed by the instruction. An ‘instruction tree’ is a triplet
holding a format F, a semantic procedure, and a finite set of
operands over F.

The semantic procedure is included here for the sake of
completeness; in the actual system semantic procedures are
part of a separate architecture level simulator. While sub-
operands and operands represent the semantic entities, the
semantic procedure represents the actual meaning of the
instruction. The relation between operands are thus repre-
sented in two ways. Dynamic relations are a result of the
instruction execution; they are modelled by the semantic
procedure. Structural relations are modelled by address,
length and data expressions. These relations have the char-
acteristic that they exist prior to the execution of the instruc-
tion; thus they are central to the automatic generation of tests
and are modelled declaratively.

Declarative modelling of the full semantics of instructions
has been ruled out because of its complexity. Furthermore,
the relationships between semantic entities are static (i.e.,
they do not change; they are the same before and after the
execution of the instruction), while the semantics is dynamic
(it must be defined in terms of ‘before’ and ‘after’ the
instruction execution).

Modelling the full semantics would have made automatic
generation too complex to be practical. The approach
employed here gives enough power to generate useful and
revealing test programs whilst at the same time keeping the
complexity of the generator and the model reasonable and
the time needed for generation revealing tests within accept-
able limits.

10

15

20

25

30

35

40

45

50

55

60

65

12

The resulting instruction model is called an instruction
tree, as it may be viewed as a four level tree. The root (first
level) includes both the syntax of the instruction (format)
and its semantics (semantic procedure). Internal nodes are
the semantic constituents of the instruction—operands at the
second level of the tree and sub-operands at the third level.
The leaves describe the possible values of, as well as the
relations between, the semantic entities. These leaves, ie
Address, length and data expressions, constitute the fourth
level of the tree.

3. Example

An ADD WORD Instruction Tree

ADD WORD is one of the simplest instructions in a
typical CISC architecture. Informally, the meaning of this
instruction is to add the second operand to the first one and
to place the sum at the first operanid’s location. The instruc-
tion tree is depicted by FIG. 4. The resources assumed are
a main memory, base-registers and word-registers.

Instruction:

Semantic procedure: ADD-WORD( ).
Format: AW-OPCODE W1, D2, B2.
Where the fields are:

<AW-OPCODE, (AW), None>,

<W1, (0,1,2, . . . ,E,F), Word-Register>,

<D2, (00,01,02, . . . ,FE,FF), None>, and

<B2,(0,1,2, . . . ,E,F), Base-Register>.

In this case the semantic entities are:

1. The Word-Register whose symbolic name for the

purpose of describing this instruction is “W1”. The possible
values for “W1” are 1,2, 3, ..., 16.
By “Word-Register” is meant that there is a set of registers
defined as part of the resources of the processor under
consideration; every time we refer to this set (both while
defining resources and instructions) we call them Word
Registers. By the possible values for “W1” are 1, . . ., 16,
is meant that there are 16 such registers, and an instance of
the Add Word instruction must choose one of them.

Note that the name of the entity “W1” is taken from the
syntax of the Add Word instruction, i.e., the format of the
instruction.

2. The Base-Register whose symbolic name for the pur-
pose of describing this instruction is “B2”. The possible
values for “B2” are 1, 2, 3, ..., 16.

3. The field whose symbolic name for the purpose of
describing this instruction is “D2”. The possible values for
“D2” 00, 01, 02, . . ., FF.

By “a field” is meant that there is no resource correspond-
ing to this entity; an instance of the instruction Add Word
includes a value (two hexadecimal digits between 00 and
FF) associated with this field.

4. A word (4-bytes) in the memory. This entity is not
directly named (i.e., there is no item in the format of the
instruction which points to this entity).

The relationships between the semantic entities: Only one
such relation exists in the Add Word: entity number 4 is
related to entities 2 and 3 as follows: the memory word
(which is entity 4) is pointed by the contents of entity 2
(“B2”) plus the value of entity 3 (“D2”).

In the Address-Expression this is expressed as follows:
address _ 4=contents(register(B2))+value(D2)

Note that this relationship exists before the execution of
the instruction as well as after it.

The semantics of the Add Word instruction is not mod-
elled declaratively. Its model is procedural as described in



6,006,028

13

the semantic procedure ADD-WORD( ) mentioned in the
instruction tree’s root (as well as being part of the behavioral
simulator). Had a declarative model of the semantics of the
ADD-WORD instruction been included in the instruction
tree, it could have been expressed as follows:

The contents of the memory word (entity number 4) after
execution of instruction equals the sum of the value of that
memory word before the execution of the instruction plus
the contents of entity 1 (“W1”). The contents of all other
entities do not change.

Note that even for the this simple example the seimantics
is much more complex than the relationship between enti-
ties.

Thus the lower levels of the tree structure contain the
following:

First operand: represents the storage used both as a source
and target of the Add Word instruction.—Sub-operand:
points to the register used as the first operand. * Length
expression: 4 (i.e., a word—four bytes); * Address
expression: register(W1) (i.e., the word register
denoted by the field W1); * Data expression: Signed-
Binary (i.c., data of the data type Signed-Binary).

Second operand: represents the storage used as a source of
the Add Word instruction.—Sub-operand: represents
the actual storage used as the second operand (other
sub-operands are used in addressing this memory stor-
age word): * Length expression: 4; * Address expres-
sion: contents(register(B2))+value(D2) (ie the memory
location pointed to by the sum of the contents of a base
register (denoted by the field B2) and a displacement
(denoted by the field D2)); * Data expression: Signed-
Binary.

Sub-operand: represents the offset used for addressing the
second operand: * Length expression: 2; * Address
expression: in-field(D2). * Data expression:
Displacement-Data-Type.

Sub-operand: represents the base register used for
addressing the second operand: * Length expression :
6; * Address expression: register(B2) (ie the base
register denoted by the field B2); * Data expression:
Address-Data-Type.

4. Example

A MOVE CHARACTER LONG Instruction Tree

To further illustrate the inter-operand relationships and
the complexity of instructions, consider the MOVE CHAR-
ACTER LONG instruction which is a complex CISC
instruction. Informally, the effect of this instruction is to
place the contents of the second operand in the storage
location of the first one. If the second operand is shorter then
the first, the data of the third operand will be appended to fill
in the storage of the first operand. The addresses and lengths
of the first and second operands are given in storage loca-
tions. These indirection structures are pointed to by base
registers and displacement fields. The instruction operation
may be interrupted; if so, the address and length representing
the partial operation will be recorded in the indirection
structures. The resources assumed are a main memory, and
base-registers.

* Instruction:
- Semantic procedure: Move-Character-Long().
- Format: MVCL-OPCODE D1,B1,D2,B2,I3.

10

15

25

35

40

45

50

55

60

65

14

-continued

* First operand:
- Sub-operand:
* Length expression : contents(contents(B1)+value(D1) );
* Address expression: contents(contents(B1)+value(D1)+2 );
* Data expression: Unsigned-Binary.
- Sub-operand:
* Length expression : &;
* Address expression: contents(B1)+value(D1);
* Data expression: MVCL-Indirection-Data-Type.
- Sub-operand:
* Length expression : 2;
* Address expression: in-field(D1);
* Data expression: Displacement-Data-Type.
- Sub-operand:
* Length expression : 6 ;
* Address expression: register(B1)
* Data expression: Address- Data-Type.
* Second operand: similar to the first one, with B2 and D2
* Third operand:
- Sub-operand:
* Length expression : 1 ;
* Address expression: in-field(I3);
* Data expression: Unsigned- Binary.

Note that both length and address of the first sub-operand
are related to the contents or data of the second sub-operand.
The address of the second sub-operand is related to the data
of the remaining sub-operands. MOVE CHARACTER
LONG exemplifies a CISC instruction: its structure is rela-
tively complex; some of its data obeys non-standard data-
types (e.g., MVCL-Indirection-Data-Type); its execution
may be long and is interruptible.

Both examples show that this modelling approach copes
well with the complexity of the CISC repertoire. Clearly, the
approach is suitable also for RISC architectures which
involve lower instruction complexity.

5. Generation

An instruction tree describes a set of instruction instances.
The length, address and data expressions of the model are
replaced by length, address, and data instances to form an
instruction instance. This replacement must be consistent
with the relations described by the expressions. Namely, if
fields and resources are shared by several sub-operands, the
values selected for them must be identical. The following
section describes consistent instances and the process of
generating them from instruction trees.

Definitions: A ‘field instance’ of a field<NAME,
VALUES,REGISTER> is a literal V, such that V is in
VALUES. A ‘format instance’ of format<FIELD1, . . .
,.FIELDn>, is <INST1, . . . ,INSTn>, such that for all i,
INSTi is a field-instance of FIELDi.

Definitions: An ‘address instance’ of an Address Expres-
sion AE is a resource address in the semantics of AE. A
length instance of a Length Expression LE is an integer in
the semantics of LE. A data instance of a Data Expression
DE is data of the data-type denoted by DE.

Definitions: A ‘sub-operand instance’ of the sub-operand
<LE,AE,DE> is a triplet <LLLALLDI>, such that LI is a
Length Instance of LE, Al is an Address Instance of AE, and
DI is a Data Instance of DE. An operand instance of the
operand <SUB1, . . . ,SUBn>, is <INST1, . . . ,.INSTn>,
such that for all i, INSTi is a consistent sub-operand-instance
of SUBI. An instruction instance of the instruction tree
<FORMAT, SEMANTICS, OPERANDs> is a pair
<FORMAT-INST, OPERAND-INSTs> such that FORMAT-
INST is an instance of FORMAT and all OPERAND-INSTs
are consistent instances of OPERAND:s.



6,006,028

15

The instruction tree is traversed in a depth first order. At
the root and internal nodes, no action is taken. At the leaves,
length, address and data instances are either already set by
previous selections or are randomly selected from the
semantics of the corresponding expressions. This scheme
ensures consistency of the generated instruction instances.

6. Example

An ADD WORD Instruction Instance

The instruction tree is traversed in depth first order. An
instance of such an ADD WORD instruction is depicted by
FIG. §, in which the node labels denote the generation order,
and the following list.

* Instruction instance:
* First operand:
- Sub-operand instance:
* Length instance: 4;
* Address instance: 7 (i.e., word register number 7);
* Data instance: SFO3A16B.
* Second operand instance:
- Sub-operand instance:
* Length instance : 4 ;
* Address instance: 000010008100 (ie main memory address);
* Data instance: 1SEA917C. - Sub-operand instance:
* Length instance : 2 ;
* Address instance: none (as the data resides in the D2 field);
* Data instance: 0100 .
- Sub-operand instance:
* Length instance : 6 ;
* Address instance: 9 (fe base register number 9);
* Data instance: 000010008000.

This instruction instance sets both the syntax and the
semantic entities of the ADD WORD instruction. The syntax
is a format instance (AW 7, 0100, 9). The semantic domain
includes the contents of word register number 7
(5F93A16B), the contents of base register number 9,
(000010008000), and the contents of the main memory word
000010008100 (15EA917C).

Further Modelling and Generation

The basic model described above lacks the ability to
describe complex aspects of the architecture and to incor-
porate testing knowledge. Furthermore, the basic generation
scheme does not clarify how consistency is kept in selecting
length, address and data instances. The modelling and gen-
eration details which provide for these needs are described
below.

1. Generation and Validation Functions

Generation and validation functions are used as basic
blocks of the generation scheme. These functions implement
a generate-and-test strategy alongside the traversal of
instruction trees.

Definition: A ‘Generation Function’ is a triplet <NODE,
FUNCTION,OUTPUTS>, such that: 1) NODE is a node in
an instruction tree; 2) FUNCTION is a function which
generates length, address and data instances for OUTPUTS.
3) OUTPUTS are a set of length, address and data expres-
sion leaves in the sub-tree rooted by Node; Generation
functions are used by the generation scheme, while travers-
ing an instruction tree. When a node becomes current all the
generation functions associated with it are invoked. The
outputs of these functions are used to generate the instances
of the current sub-tree. Generation functions serve various
purposes:

10

15

20

25

30

35

40

50

55

60

65

16
Modelling Condition Codes (inter-operand verification
tasks):

An instruction execution may result in the setting of
condition code bits. This effect is part of the instruction’s
specification and is modelled by the semantic procedure.
Moreover, the condition codes partition the input domain of
the instruction. As it is a common testing knowledge to use
this input partitioning, a generation function may bias the
data of operands to exercise all condition codes.
Modelling Program Exceptions (inter-operand):

Program exceptions are exceptional conditions raised by
instruction execution. They are modelled by the semantic
procedure and may be viewed as input partitioning.
Modelling Procedural Aspects of Resources (inter-
instruction):

The resource model as described above is too simplistic
for an actual architecture. In particular address translation
and cache mechanisms are common in computer architec-
tures. Generation functions are used to incorporate inputs
which test these mechanisms into test programs.

Data Type Special Values (within operand):

The domain of (typed) data instances may also be parti-
tioned. Again, it is common to require that representatives of
all data-type partitions be tested.

Modelling Design Implementation:

Various aspects of the hardware design are usually taken
into consideration in the verification process.

Although these aspects are not considered part of the
architecture, their testing is important.

Definition:

A “Validation Function’ is a triplet <NODE,FUNCTION,
INPUTS>, such that: 1) NODE is a node in an instruction
tree; 2) FUNCTION is a function which reads the length,
address and data instances for INPUTS and returns either a
Reject or an Accept answer. 3) INPUTS are a set of length,
address and data expression leaves in the sub-tree rooted by
Node;

Validation functions are used by the generation scheme.
After generating a sub-instance-tree, the validation functions
associated with the corresponding sub-instruction-tree are
invoked. If any of them returns a Reject answer, the gen-
eration results of the sub-tree are retracted and the sub-tree
is traversed again.

Validation functions serve different purposes:

Imposing restrictions that are not modeled by the length,

address and data expressions on instruction instances;

Preventing instruction instances from causing program

exceptions;

Validating typed data instances.

Generation and validation functions provide for an open
system. The fact that generation functions are allowed to
produce only simple data-types, ie length-instance, address-
instance, data-instance, enables the user to express his
testing knowledge in a natural and local manner. Yet, the
ability to generate sets of such instances and to associate
functions with instructions, operands and sub-operands
gives these functions the desired expressiveness. Had gen-
eration functions allowed to create full instruction instances,
they would have been too complex to be written by users.
Their simplicity allows openness and make it possible to
model the evolving testing knowledge.

2. Example

ADD WORD Generation Functions

An example of the generation Functions for the ADD
WORD instruction are shown in FIG. 6. The ADD WORD



6,006,028

17

instruction tree is augmented with generation functions. This
illustrates the various objectives which may be achieved by
generation functions:

Modelling Condition Codes;

The execution of Add Word sets the condition code to
Sum is zero, Sum is less than zero or Sum is greater than
zero. The function Generate Sum Zero for AW is associated
with the root of the instruction tree. It generates two data-
instances for the appropriate sub-operands, such that their
sum is zero. To keep the generation as random as possible,
this function generates a random data-instance and its nega-
tion is given as the second data-instance. Furthermore, data
instances giving near-zero results may also be generated to
test that the condition code is not set to Sum is zero
inappropriately. Clearly, random generation would have
exercised this condition only rarely.

Modelling Program Exceptions;

ADD WORD may cause an Effective Address Overflow
exception; this happens when the contents of the base
register points to one memory segment, while the address
formed by the addition of that register and the displacement
points to a different segment. A generation function Generate
Effective Address Overflow is associated with the second
operand. It generates two data-instances for the appropriate
sub-operands which cause an Effective Address Overflow.

Random generation of addresses exercises such an excep-
tion quite rarely, and the biasing achieved by this generation
function is important in testing the instruction and the
program exception mechanism.

Modelling Procedural Aspects of Resources:

An address-instance may either be resident in the cache
(hit) or not (miss). Likewise, the address and length
instances of a sub-operand instance may render its least-
significant byte as either hit or miss. Sub-operand instances
which exercise the hit/miss combinations (for their most and
least significant bytes) are used to check a memory-cache
mechanism. The function Generate Hit Miss includes
knowledge about the cache mechanism and is associated
with the memory address of the second operand. It generates
address and length instances which randomly exercise one
of the hit/miss combinations.

Data Type Special Values:

The function ‘Generate Unsigned Binary Extremes’ is
associated with the two unsigned-binary data leaves. It
generates data instances, which are selected randomly from
the values OxFFFFFFFF, 0x00000000 and near values.
Modelling Design Information:

A generation function associated with the root may test
the carry-look-ahead mechanism. It produces data instances
for the unsigned binary leaves that result in different carry
patterns on the look-ahead boundaries. For example, in the
case of two half-word adders, the data values 0000FFFF and
00000001 exercise the carry passed between the two adders.
The function Check Half-Word Adders represents knowl-
edge about the implementation of the Arithmetic and Logic
Unit.

3. Generation

Test generation is divided into two procedures: Generate-
Test and Generate. The former uses a dynamic process
similar to that of RTPG, and the later is an elaboration of a
depth-first traversal of an instruction-tree with backtracking.

10

15

20

25

30

35

40

45

50

55

60

65

18

Generate-Test(N)
Initialize the minimal processor state
while number of instructions < N

Select an instruction; denote its model by Instruction-Tree

GEN: Instance = Generate(Instruction-Tree,Empty)

Simulate Instance by Instruction-Tree.Semantic- Procedure
if instruction-instance is executable

then write it to the test file increment number of instructions else
retract the instruction-instance; restore the processor’s previous state; if
retry limit not exceeded then go-to GEN else abort return Success
Generate(Node, Kept-Outputs) invoke generation functions associated with
Node add their outputs to Kept-Outputs if Node is internal then for each
of
the immediate descendants of Node

invoke Generate(Descendant, Kept-Outputs) if Reject is returned then
restore Kept-Outputs if retry limit not exceeded then invoke
Generate(Descendant, Kept-Outputs) else return Reject else return Accept
else (Node is a leaf): Select one of the Kept-Outputs associated with
Node.
if there is no such output then select randomly an instance from the
semantics of the expression of Node. if the instance does not satisfy the
expression of Node then return Reject else return Accept Invoke validation
functions associated with Node. if any of the validation functions returns
Reject then return Reject else return Accept

The resource manager exists in the background of the
generation process. It manages the state of the processor
which is important for the dynamic Genelate-Test algorithm.
It is also important in Generate-Test for resolving address
expressions. Generation and validation functions query the
resource manager about the allocation and contents of
resources. This information is used to select resources and
validate the instruction tree expressions.

Results

The embodiment of the invention has been used by the
inventors to generate test programs for several processor
architectures. Both CISC and RISC architectures have been
used, including two versions of the IBM AS/400 CISC
processor, a floating point unit of an IBM System/390
processor and three implementations of a RISC processor
(IBM, AS/400 and System/390 are trademarks of Interna-
tional Business Machines Corporation). Examples of test
programs generated by the embodiment of the invention
used by the inventors for CISC and RISC architectures are
given in Appendix A, to be found at the end of the descrip-
tion.

The architectures modelled differ by their instructions
repertoire and structure, inter-operand relations, resources
and functional units. All architectures are complex, consist-
ing of hundreds of instructions, specified in multi-volume
architecture books, and require costly and intricate verifi-
cation. The modelling of the RISC architecture includes over
300 instructions, 40,000 lines of C procedures representing
testing knowledge, and resides in a 3 mega-byte data-base.
A CISC architecture which was used as a basis for the
development of the system, included over 100 instructions,
13,000 lines of testing knowledge code, residing in a 4
mega-byte data-base.

Complex test programs corresponding to the verification
tasks described in above have been generated for the archi-
tectures modelled. Large tests (hundreds of instruction
instances), with large data (thousands of bytes) are generated
in seconds. However, the quality of these tests is considered
to be more important.

Verification tasks at instruction and operand levels, eg
representative data instances, different operand lengths and
all program exceptions, are fulfilled through generation
functions. Register and memory allocation policies produce



6,006,028

19

complex dependencies between instructions. Using these
functions in conjunction with the allocation policies to
generate long instruction streams, accomplishes inter-
instruction verification tasks.

The testing knowledge model is currently used to specify
testing expertise which was previously described informally.
Informal test requirements are compiled first; generation
functions are then designed and implemented. In this sense,
the generation system is used as an expert system. All
verification tasks driven from the architecture, and many
that represent implementation aspects have been modelled
by generation functions. Using this knowledge, a set of tests
can be generated which gives a good coverage of the design.
In both examples the database serves as a knowledge base
capturing the expertise of the organization making it formal
and reusable.

Also, testing expertise accumulated during the verifica-
tion of three different implementations, spanning five years,
of the ANSI/IEEE standard for binary floating point arith-
metic has been incorporated into the model of the embodi-
ment used by the inventors. It is being used to generate tests
for a few current implementations of the same standard.

Although a specific embodiment along with some alter-
nate embodiments have been disclosed, it will be understood
by those skilled in the art that additional variations in form
and detail may be made within the scope of the following
claims.

APPENDIX A

Examples of Test Programs

A.1 A RISC Architecture

* INITIALIZATIONS

RIAR 0000000000200000

R CR 00000000

R XER 0000000000000020

R FPSCR 0000000000000000

R MSR 00000001

R G18 122BC71CEASC3B2B
R G6 SA2D606A18536A8B
R G1 9A639739A5F55A33
D 000000001173B7 33CA81E689516DC4
R G15 0000000000113D7B
R G7 SBD24F21A2D94CB6
R G8 267F09AF6415A9BD
R G20 1584B4CD8C3D09E0

* INSTRUCTIONS

1 00000000200000 7E460A15 * add. G18,G6,G1

1 00000000200004 48133104 * b 0x133104

1 00000000333108 ESEF363C * 1d G7,0x363C(G15)
1 0000000033310C 7E883C36 * srd G8,G20,G7

T 00000000333110

* RESULTS

R MSR 00000001

R IAR 0000000000333110

R G1 9A639739A5F55A33
R G6 SA2D606A18536A8B
R G7 33CA81E689516DC4
R G8 0000000000000000

R G15 0000000000113D7B
R G18 F490F7A3BE48C4BE
R G20 1584B4CD8C3D09E0
R FPSCR 0000000000000000

R XER 0000000008000020

R CR 80000000

D 000000001173B7 33CAS81E689516DC4
A.2 A CISC Architecture

* INITIALIZATIONS

R A0 100000000000004000000000
RIAR 00000000
R TSW 02000000

10

15

20

25

30

35

40

45

50

55

60

65

20

APPENDIX A-continued

Examples of Test Programs

D 10000000000000800000F811 BBCD8634230DAC615ADB20A9
R A3 10000000000000800000958A
D 10000000000000800000530E BD9COB

R A15 100000000000008000000385
R w10 47039CFD

R wi1 70COE376

R wi2 2DF087D7

R wi4 00006C74

R D14 TEE3FCD2108643A9

D 1000000000000080000084D4 C661E4B652DCEOA6
RA7 100000000000008000002787

* INSTRUCTIONS

I 100000000000004000000000 781F4F892C236287 * AUC
6287 X(C'X,A3),"4F89°X("3°X,A15)

I 100000000000004000000008 60CBA100
I 10000000000000400000000C 6BEOF820
I 100000000000004000006C74 E6E75D4D
T 100000000000004000006C78

* AUWR W10,W11,W12
* BR W14
* LD D14, *5D4AD’X(A7)

* RESULTS

R w10 9EB16B4D

R wi1 70COE376

R wi2 2DF087D7

R wi4 00006C74

R TSW 02000000

RIAR 00006C78

R H10 6B4D

R H11 E376

R H12 87D7

R H14 6C74

R D14 C661E4B652DCEOA6

R B10 4D

R B11 76

R B12 D7

R B14 74

R A0 100000000000004000000000
R A3 10000000000000800000958A
RA7 100000000000008000002787
R A15 100000000000008000000385

D 10000000000000800000530E BD9COB
D 1000000000000080000084D4 C661E4B652DCEOA6
D 10000000000000800000F811 BBCD8634230DAC615B98BCB4

What is claimed is:

1. A test program generator for producing test programs
for checking the operation of a hardware processor design,
said test program generator comprising:

storing means for storing data representing a processor

instruction set and resources, said stored data being
represented as a separate declarative specification, said
separate declarative specification being a representa-
tion of relationships between semantic entities associ-
ated with each instruction and between said semantic
entities and said processor resources;

extracting means for extracting said data from said stor-

age means and for transforming said data into internal
data structures; and

test program generating means for generating test pro-

grams from said internal data structures.

2. The test program generator of claim 1 wherein said
separate declarative specification is further organized into a
tree structure, a first level of said tree structure comprising
syntax describing an instruction and a last level of said tree
structure comprising possible values and relations between
said semantic entities.

3. The test program generator of claim 2 wherein said
generating means further comprises means for generating
instances of said instruction and means for traversing said
tree structure in a depth first order and generating an instance
of each semantic entity in accordance with choices made at
previous traversal steps.



6,006,028

21

4. The test program generator of claim 1 wherein testing
knowledge relevant to generation of useful test pro(grams is
modelled in said stored data.

5. The test program generator of claim 2 wherein genera-
tion functions are incorporated into said separate declarative
specification, said generation functions comprising testing
knowledge that is relevant to generation of useful test
programs.

6. The test program generator of claim 5 wherein said
generation functions are tailorable by a user so that desired
types of test cases can be generated.

7. The test program generator of claim 5 comprising
means for testing generated semantic entity instances in
accordance with validation criteria, said generation of said
semantic entity instances being repeated if a generated
instance does not satisfy said validation criteria.

8. The test program generator of claim 6 comprising
means for testing generated semantic entity instances in
accordance with validation criteria, said generation of said
semantic entity instances being repeated if a generated
instance does not satisfy said validation criteria.

9. The test program generator of claim 7 wherein said
validation criteria are tailorable by said user to prevent
undesired types of test cases from being generated.

10. The test program generator of claim 1 wherein said
separate declarative specification is in a database external to
said generating means.

11. A method for creating test programs for checking the
operation of a hardware processor design, said method
comprising the steps of:

10

15

20

25

22

storing data representing a processor instruction set and
resources in a separate declarative specification, said
declarative specification containing relationships
between semantic entities associated with each instruc-
tion and between said semantic entities and processor
resources;

extracting said data from storage; and

generating test programs from said extracted data.

12. The method of claim 1 wherein said separate declara-
tive specification is organized in a tree structure, a first level
of said tree structure comprising syntax of a instruction and
a last level of said tree structure comprising possible values
and relations between semantic entities.

13. The method of claim 12 wherein said generation step
further comprises the steps of:

generating instances of said instruction;

traversing said tree structure in a depth first order; and

generating an instance of each semantic entity according

to choices made at previous traversal steps.

14. The method of claim 13 wherein said storing step
further comprises the step of storing generation functions.

15. The method of claim 14 and wherein said generating
an instance step is performed under control of said genera-
tion functions, said generation functions being such that
desired types of test cases are generated.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,006,028
DATED :Dec. 21, 1999

INVENTOR(S) : Aharon Aharon, Yossi Malka and Yossi Lichtenstein

Itis certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Claim 4, Col. 21, Line 2, “pro(grams” should be -~programs--.

Claim 12, Col. 22, Line 9, “claim 1" should be --claim 11--.

Claim 12, Col. 22, Line 11, “a“ should be --an--.

Signed and Sealed this
Eighth Day of August, 2000

Q. TODD DICKINSON
Artesting Officer

Director of Patents and Trademarks




