
              

City, University of London Institutional Repository

Citation: Pattni, K. (2017). Evolution in finite structured populations with group 

interactions. (Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/18246/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Evolution in Finite Structured

Populations with Group

Interactions

Karan Hitesh Pattni

Doctor of Philosophy

City, University of London

Department of Mathematics

April 2017



2



Contents

1 Introduction 23

1.1 Classical Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Evolutionary Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Evolutionarily Stable Strategy (ESS) . . . . . . . . . . . . . . . . . . . . . 26

1.2.2 The Replicator Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Evolutionary Game Theory in a Finite Population . . . . . . . . . . . . . . . . . 28

1.3.1 Games in finite populations . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Evolutionary Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.1 Games on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Multiplayer Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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Abstract

The study of an evolutionary process has traditionally considered a population with a homo-

geneous structure where each pair of individuals is equally likely to interact with one another.

Later studies have considered heterogeneous structures implemented using evolutionary graph

theory, and other studies have considered group interactions of fixed size. This work builds upon

these later studies by implementing a set of evolutionary dynamics that can be used to study

more complex evolutionary processes consisting of a population with a heterogeneous structure

where individuals interact in groups of varying size.

This research begins by analytically studying simple evolutionary processes using a set of

standard evolutionary dynamics. Results are derived that identify the structures for which

an evolutionary process is identical to a Moran process, which has a homogeneous population

structure, for each of the evolutionary dynamics. These results form a basis for the work that

follows by providing a better understanding of evolutionary dynamics.

Before considering more complex evolutionary processes, a class of multiplayer games called

social dilemmas are defined for variable group sizes. The two main types of social dilemmas are

identified, namely public goods dilemmas and commons dilemmas, and examples of each type

of dilemma are given whose characteristics are visually illustrated.

More complex evolutionary processes are then studied based on the framework of Broom-

Rychtář that provides the mathematical tools to model group interactions in mobile individuals.

First, the evolutionary dynamics that can be used within this framework are developed. The

updated version of the framework is then used to demonstrate how it can applied to study

various kinds of behaviour in an evolutionary setting.

The first application is the territorial raider model. It considers territorial behaviour where

each individual has their own territory that overlaps with those of other individuals. Interactions

take place between groups of individuals when they meet in the overlapping parts of their

territories. Two kinds of social dilemmas are studied in this model: a multiplayer hawk-dove

game and a multiplayer public goods game. It is shown that the temperature, which measures

how often an individual is likely to be replaced, plays an important role in determining the

success of a given strategy.

A generalized version of the territorial raider model is also considered where subpopulations

rather than individuals share the same territory. A multiplayer public goods game is used to

study the evolution of cooperation, which is a suboptimal strategy at the individual level but

an optimal strategy at the group level. The structure and dynamics are shown to be critical in

the evolution of cooperation where an extension of the temperature, called the subpopulation

temperature, dictates the relative success of cooperators.
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Finally, a model where individual move base upon their previous interactions is considered

called the Markov movement model. A multiplayer public goods game is used to study the

evolution of cooperation. It is shown that cooperators can benefit by staying with one another

provided that there is a movement cost that slows down their competitors, the defectors. In

this case, the dynamics play a less critical role in the evolution of cooperation.
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Chapter 1

Introduction

Population evolution is a fascinating subject that has been studied both theoretically and practi-

cally. In simple terms, evolution is the process though which the genetic makeup of a population

changes over time. To explain how evolution works, Charles Darwin proposed the idea of natural

selection in his 1859 book The Origin of Species. Natural selection acts on individuals and states

that they are more likely to pass on their genetic makeup through their offspring if it gives them

a survival and reproductive advantage. This is because an individual with a survival and re-

productive advantage is more likely to produce more offspring than one who does not. Instead,

the genetic makeup of individuals with a survival and reproductive disadvantage is likely to

eventually vanish. Mutation also plays an important role in the evolutionary process. Through

mutation the genetic makeup that is passed on to an offspring can change. The mutated genetic

makeup may or may not give the offspring a survival and reproductive advantage but through

natural selection this mutation will either spread or die out. On the other hand, the mutation

could be neutral, that is, it is neutral to natural selection because it is neither beneficial nor

disadvantageous. In this case neutral drift comes into play which means that the change in

this mutated genetic makeup in a population is random. The population in question could be

a humans, animals or even cells, though, the mechanism of evolution can also be applied to

non-biological phenomena like language evolution.

The study of population evolution through evolutionary game theory has proven to be a

popular approach. It is a powerful mathematical modelling tool that has shown its versatility in

terms of modelling different kinds of interactions between individuals. Whilst a lot of the work

on evolutionary game theory focuses on interactions between pairs of individuals, considering

the interactions between multiple individuals is now more common presenting room for further

development in this area.

This chapter introduces the basics of evolutionary game theory. The starting point is game
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theory itself followed by bridging the connection to evolution giving rise to evolutionary game

theory. Various developments to evolutionary game theory over the years are then highlighted,

like the Moran process and evolutionary graph theory. These developments in the context of

multiplayer models are then considered. Finally, the comprehensive evolutionary game theory

framework of Broom-Rychář is introduced and this chapter ends by outlining the work contained

in this thesis.

1.1 Classical Game Theory

Game theory is a mathematical theory used to study the interaction between individuals that

involve strategic decisions. It was developed by John von Neumann and Oskar Morgenstern

[63], and has been widely applied in various fields of study. We start by defining a game before

looking at at how it is applied to population evolution.

In the games that will be considered, called symmetric normal form games, interactions

take place between a finite number of individuals. The actions that individuals take against one

another is determined by their strategy. A strategy is a plan of action for all possible scenarios

an individual can find themselves in. A strategy is pure if there is only one specific action for

all possible scenarios. Mixed strategies on the other hand combine pure strategies such that

each pure strategy is played with a given probability. Note that one can consider an infinite

population composed of different proportions using pure strategies or every individual using a

mixed strategy composed of those pure strategies. The former is considered here. The outcome

of an interaction is determined by the payoff function that represents the motivation of the

players to play a strategy. In symmetric games all players have the same set of pure strategies

and payoff function.

In general, for two player symmetric games with N strategies, labelled S1, . . . , SN , the payoffs

can be represented using a payoff matrix as follows

S1 S2 · · · SN

S1 E(1, 1) E(1, 2) · · · E(1, N)

S2 E(2, 1) E(2, 2) · · · E(2, N)
...

...
...

. . .
...

SN E(N, 1) E(N, 2) · · · E(N,N)

(1.1)

where each entry E(i, j) is the payoff to an individual using strategy Si against an opponent

using strategy Sj . Much of the theory that follows with regards to matrix games will involve

multiple strategies, however, for simplicity, the examples given have two strategies A and B
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with payoff matrix

A B

A a b

B c d

(1.2)

The entries a, b, c, d give the payoffs where, for example, b is the payoff to an individual using

strategy A with opponent using strategy B.

Games are analysed in terms of the best possible strategy an individual should take against

their opponent. A best response to a particular strategy is one that gives the highest possible

payoff to all the other set of strategies. A Nash equilibrium [62] is where every individual is

using a strategy that is a best response. In this case, no individual can improve their payoff

by using another strategy. A Nash equilibrium strategy is one that is a best response to itself,

in general, strategy i is a Nash equilibrium if E(i, i) ≥ E(j, i) for all j. For example, for the

game defined by payoff matrix (1.2), strategy A is a Nash equilibrium if a ≥ c and a strict Nash

equilibrium if a > c. Similarly, strategy B is a Nash equilibrium if d ≥ b and a strict Nash

equilibrium if d > b.

1.2 Evolutionary Game Theory

One of the first published works in evolutionary game theory was by Hamilton [34]. The ap-

plication of game theory to population evolution was later considered in more detail by John

Maynard Smith and George Price [56]. Classical game theory considers isolated interactions

between players where the strategy used by each player remains fixed therefore, assuming that

players behave rationally, we analyse what is the best strategy for each individual to play by

finding the Nash equilibria. Evolutionary game theory considers multiple isolated interactions

over time in a constantly changing population where the players can replicate, i.e. make copies

of themselves. In this case, the objective is find the evolutionary equilibria, which are points

where the strategic composition of the population remains constant.

In evolutionary game theory the payoff a player receives is assumed to contribute to their

fitness, which in turn determines how likely an individual is to replicate itself. The forces of

evolution come into play in the replication stage. In particular, a player with a higher fitness

is more likely to be selected to replicate itself thereby increasing the number of players in the

population playing that strategy. However, a mutation during the replication process may result

in the replicated player playing a different strategy. When studying evolutionary games, it is

assumed that individuals have either constant or frequency-dependent fitness. In the latter case,

the fitness of the individuals depends upon the frequencies of the strategies in the population.
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Overall, the number of individuals in the population playing a more successful strategy should

increase.

1.2.1 Evolutionarily Stable Strategy (ESS)

One of the traditional approaches to analysing evolutionary games is the Evolutionarily Stable

Strategy (ESS) [56]. An ESS is a strategy that, if adopted by the population, can prevent

invasion from any alternative strategy used by a small fraction of the population. The ESS con-

siders a snapshot in time where the invading strategy is already introduced into the population

through mutation and does not consider the replication process. We are interested in finding the

condition that will oppose the invading strategy from being selected. In particular, this is the

case when individuals using the invading strategy have a lower fitness than the residents of the

population. This means that the invading strategy will die out in the subsequent generations of

the population.

For an infinite population with two-player interactions where every individual is equally

likely to meet each other, the condition is given as follows. Suppose that 1 − ε proportion of

individuals are using strategy i and ε proportion of individuals are using some other strategy

j 6= i. The fitness of individuals using strategy i is given by (1− ε)E(i, i) + εE(i, j) and that of

the individuals using strategy j 6= i is (1 − ε)E(j, i) + εE(j, j). For the population to prevent

invasion from the individuals using strategy j 6= i we require that

(1− ε)E(i, i) + εE(i, j) > (1− ε)E(j, i) + εE(j, j).

As ε → 0, we can ignore the terms with ε, which give E(i, i) > E(j, i). However, if E(i, i) =

E(j, i) then the terms with ε should satisfy E(i, j) > E(j, j). This means that strategy i is

evolutionarily stable against strategy j whenever

E(i, i) > E(j, i) or E(i, i) = E(j, i) and E(i, j) > E(j, j).

Furthermore, if this is true for all strategies j 6= i, strategy i is an ESS. For example, for the

two strategy game defined by payoff matrix (1.2), strategy A is an ESS if

a > c or a = c and b > d.

1.2.2 The Replicator Equation

The other traditional approach to analysing evolutionary games involves defining the replica-

tion process using a deterministic equation and solving that equation to find the evolutionary

equilibria of the population. The replicator equation [38, 39, 40, 101] is defined as follows

ẋi = xi[Fi − φ] (1.3)
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where xi is the frequency of individuals using strategy i, Fi is the fitness of individuals using

strategy i and φ is the average fitness of the population. The replicator equation says that the

frequency of individuals using a strategy will increase if their fitness is higher than the average

fitness of the population and will decrease if it is lower.

We can find the evolutionary equilibria for the two strategy payoff matrix (1.2), by solving

equation (1.3). Assuming the frequency of individuals playing strategy A is x and B is 1 − x,

we have that

FA = xa+ (1− x)b and FB = xc+ (1− x)d.

The average fitness of the population is given by

φ = xFA + (1− x)FB .

The change in frequency of type A individuals is then given by

ẋA = x [FA − φ]

= x [FA − xFA + (1− x)FB ]

= x [(1− x)FA − (1− x)FB ]

= x(1− x) [FA − FB ]

= x(1− x) [x(a− b− c+ d) + b− d]

The equilibrium points x∗ are found by solving ẋA = 0, giving the following equilibrium points

x∗ = 1, x∗ = 0, x∗ =
d− b

a− b− c+ d
.

Whether these equilibrium points are stable or not depends upon the payoff values. We have

the following cases:

1. x∗ = 1 stable: in this case we have that a > c and b > d. Regardless of the starting

frequency x of type A individuals, we always end up at the equilibrium point where there

are only type A individuals. This is because strategy A is a strict Nash equilibrium strategy

and therefore dominates strategy B.

2. x∗ = 0 stable: in this case we have that c > a and d > b, which is the exact opposite of

the previous case.

3. x∗ = 0 and x∗ = 1 are both stable: in this case we have that a > c and d > b. This

means that both A and B are best responses to themselves. The equilibrium point we

converge to depends upon the starting frequency x. In particular, if x > d−b
a−b−c+d then

the population converges to x∗ = 1, and x∗ = 0 otherwise.
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4. x∗ = d−b
a−b−c+d is stable: in this case a < c and d < b. This means that A is a best response

to B and vice versa. Both types can stably coexist with each other and will converge to

this equilibrium.

1.3 Evolutionary Game Theory in a Finite Population

Finding the ESS and using the replicator equation to find the equilibrium points are based

on models that assume that the population is infinite. While this gives us an idea about how

successful a given strategy is, in reality populations are finite and we therefore have to con-

sider analysing strategies in such conditions. In finite populations capturing relevant biological

phenomena, like genetic drift, requires that stochastic dynamics are used. A classical model of

evolution in a finite population with stochastic dynamics is the Moran process [58, 59].

The Moran process considers a population of size N where there are n type A individuals and

N − n type B individuals. Type A individuals have fitness FA(n) = r and type B individuals

have fitness FB(n) = 1 for all n i.e. there is constant fitness where r can be thought of as the

relative fitness of type A with respect to type B. Note here that the fitness does not depend on n,

that is, it is not frequency dependent. The individuals are homogeneous in every other respect

and, in particular, are equally likely to meet each other. The Moran process uses stochastic

dynamics with the property that the population size remains constant, that is, the population

size is always N . This means that for every birth there is a death in the population. These

replacement events are assumed to be asynchronous, which means that there is only one birth

and one death per replacement event. An individual is chosen to replicate proportional to its

fitness, in particular, for type A and B individuals the probability of being selected for birth

are respectively given by

bA(n) =
FA(n)

nFA(n) + (N − n)FB(n)
, bB(n) =

FB(n)

nFA(n) + (N − n)FB(n)
. (1.4)

An individual’s offspring then randomly replaces another individual in the population with

probability 1
N−1 . Note that the birth event affects the death event because the individual that

gives birth is excluded, that is, there is simple random sampling without replacement. This

means that the individual that gives birth is excluded before selecting an individual for death

from the population. The order of the birth and death events therefore matters, and the Moran

process uses birth-death with selection on birth (BD-B) dynamics.

It is assumed that there are no mutations in the population. This implies that one of the types

will eventually fixate in the population, which means that only one of the types, A or B, will

persist. Note that this does not mean that mutation is ignored, rather, we start by considering

a population of only type B individuals and a mutation takes place that introduces a type A
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individual into the population. It is at this point that the following question is asked, ‘what is

the probability of type A fixating?’. More specifically, the probability of 1 type A individual

fixating in a population of N − 1 type B individuals is called the fixation probability of type

A, denoted ρA. In other words, this is the probability that all individuals in the population

have this 1 type A individual introduced into the population as their ancestor. To calculate the

fixation probabilities, we need to define the state transition probabilities Pn,k of transitioning

from a state where there are n type A individuals to a state where there are k type A individuals.

These are defined as follows

Pn,k =


nbA(n)× N−n

N−1 k = n+ 1

(N − n)bB(n)× n
N−1 k = n− 1

1− Pn,n+1 − Pn,n−1 k = n

(1.5)

The evolution of the population is therefore described as a discrete time absorbing Markov chain

with N + 1 states. The solution to the fixation probability is given by [41] as follows

ρA =
1

1 +

N−1∑
j=1

j∏
k=1

Pk,k−1
Pk,k+1

. (1.6)

Substituting in the transition probabilities gives

ρA =
1

1 +

N−1∑
j=1

j∏
k=1

1

r

=


1− 1

r

1− 1
rN

r 6= 1,

1

N
r = 1.

(1.7)

This solution to ρA is referred to as the Moran probability. Ideally, we should observe that in

a finite population the success of type A is subject to random drift because of the stochastic

evolutionary dynamics and, therefore, there is no guarantee that type A will fixate. In the case

where r = 1 the fixation probability of type A is ρA = 1/N and there is said to be neutral drift.

Here, the type A mutant has an equal chance of fixating to any other of the N − 1 type B

individuals and selection neither favours type A or B individuals. On the other hand, selection

favours the type A mutant when r > 1 since ρA > 1/N and favours the type B individuals

when r < 1 since ρA < 1/N . Note that the fixation probability is not the only measure for

evolutionary success and the fixation time [12, 27] can be looked at as well.

1.3.1 Games in finite populations

The Moran process is extended to the case where fitness is frequency dependent as in [69, 99].

The individuals are assumed to be playing a game whose payoff matrix is given by equation (1.2)
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and, therefore, all that changes from the constant fitness case is the fitness of the individuals.

In particular, the fitness of the individuals needs to calculated with respect to equation (1.2) so

that the state transition probabilities can be plugged into equation (1.6). Then, under certain

assumptions, a rule stating when selection favours type A individuals fixating is obtained.

The fitness of a type A individual in the state where there are n type A individuals is given

by

FA(n) = 1− w + w

[
a(n− 1) + b(N − n)

N − 1

]
. (1.8)

The terms inside the square brackets gives the average payoff to a type A individual when it is

equally likely to interact with all members of the population, that is, the probability of meeting

a type A (B) individual is n−1
N−1 (N−nN−1 ), which gives a payoff of a (b). The background fitness

is 1. The intensity of selection is controlled by w ∈ [0, 1]. With w = 1, selection with respect

to this game is strong as it determines a substantial part of the fitness with the background

fitness being negligible. With w → 0, selection is weak with respect to this game as the fitness

is dominated by the background fitness and the game contributing only a small portion. With

w = 0, there is neutral drift. Similarly, we obtain the fitness of a type B individual as follows

FB(n) = 1− w + w

[
cn+ d(N − n− 1)

N − 1

]
(1.9)

where the probability of meeting a type A (B) individual is n
N−1 (N−n−1N−1 ), which gives a payoff

of c (d). Using these fitness values we can calculate the state transition probabilities and plug

them into equation (1.6).

After plugging in the appropriate state transition probabilities, the following Taylor expan-

sion of equation (1.6) is obtained for w → 0

ρA ≈
1

N

1

1− (αN − β)w/6
(1.10)

where α = a+ 2b− c− 2d and β = 2a+ b+ c− 4d. We know that selection favours the type A

individuals if 1/N < ρA, which is the same as saying that β < αN . Plugging in the values of α

and β gives

c(N + 1) + d(2N − 4) < a(N − 2) + b(2N − 1). (1.11)

Assuming that N is large, we only need to consider the terms multiplied by N and, therefore,

the following is obtained

c+ 2d < a+ 2b⇒

2d− 2b < a− c⇒

3d− 3b < a− c+ d− b⇒
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d− b
a− b− c+ d

<
1

3
. (1.12)

This is known as the rule of 1/3 [99] and states that selection favours type A fixating if the

internal equilibrium point is less than 1/3. Note that it was previously shown that that d−b
a−b−c+d

is an internal equilibrium point using the replicator equation.

1.4 Evolutionary Graph Theory

Evolutionary graph theory was introduced by [52] and used graphs to describe the structure of

the population. In the Moran process as we have seen that the population is homogeneous such

that the offspring of an individual can replace any individual in the population. However, in

reality populations are generally structured in the sense that certain individuals are more likely

to interact with one another than others, for example scientific collaboration networks seem to

be scale-free [64]. Representing the individuals as nodes on a graph, as done in [52], is one way

of describing the structure such that only individuals who are connected to one another can

interact with/ replace one another, see figure 1.1.

A

B

B

B

A

A

A

A

(a)

A

B

B

B

A

A

A

A

(b)

Figure 1.1: The figures shows two populations with type A and B individuals. Figure (a)

represents an unstructured population where all individuals can interact with one another.

Figure (b) shows a structured population represented using a graph. Each node represents an

individual such that only connected individuals can interact with one another.

A graph represented by an N×N weighted adjacency matrix W = (wij) is used to define the

structure of a population. Each vertex represents an individual such that there exists an edge an

edge (i, j) when wij > 0 that gives the probability that the offspring of individual i can replace

individual j. The BD-B dynamics used in the Moran process can be adapted to be used on an

evolutionary graph such that an individual i will be selected to reproduce proportional to its

fitness as before but its offspring will replace individual j with probability wij . The temperature

then measures how often an individual is likely to be replaced and is given by

Tj =

N∑
i=1

wij . (1.13)
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Like for the Moran process, it is possible to calculate the fixation probability of a type A mutant

in a population of type B individuals for an evolutionary graph, in some cases the exact formula

has been given [15] otherwise it can be calculated numerically. There are several important

results with regards to this for the constant fitness case. One of these is the isothermal theorem

[52] that states if the evolutionary graph is isothermal, which means that every individual has

the same temperature, then the fixation probability of a type A mutant ρA is equal to the Moran

probability. This is an important result because it helps identify those structures that have no

effect on the selection of individuals.

A more general way of describing the structure of the population is using weights that are

not probabilities. In this case, individual i would replace individual j proportional to Fiwij

where Fi is the fitness of individual i and wij ≥ 0. Once again for the constant fitness case, the

fixation probability of a type A mutant in a population of type B individuals can be calculated.

In this case, the circulation theorem [52] states that if the evolutionary graph is a circulation,

which means that the incoming weights and outgoing weights for all individuals are the same,

that is,

N∑
j=1

wkj =

N∑
j=1

wjk ∀k = 1, . . . , N, (1.14)

then ρA is equal to the Moran probability. This result is more general and includes isothermal

graphs as well. In addition to showing what kind of graphs have no effect on the selection of

individuals, certain graphs can be shown to have an amplifying or suppressing effect on the

selection of individuals. For example a star graph [52], where all vertices are connected to one

central vertex, amplifies the effect of selection such that the fixation probability of a type A

mutant in a population of type B individuals is greater (less) than the Moran probability if

r > 1 (r < 1).

There has been a lot of interest in evolutionary graph theory where different evolutionary

dynamics have been studied. In [15] obtained analytical results for the fixation probability of

a mutant type on a line graph and compared it to that of a circle graph. It was found that

that average fixation probability of a fitter mutant type was larger on a line graph than a circle

graph. In [54, 55] it was shown that for directed degree-correlated small-world networks the

global connectivity plays an important role in the fixation probability of a mutant type for three

different update rules. [103] also studied directed graphs and found that there is correlation

between the vertex in-degree variation and the difference between the fixation probabilities for

a given graph and a complete graph. The implicit assumptions made when calculating the

fixation probability was investigated by [53] and it was shown that, given the heterogeneity of

the population, mutations were more likely to appear in certain locations, for example, in a star
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graph where all vertices are connected to one central hub a mutant is more likely to appear in

the hub for death birth dynamics.

1.4.1 Games on Graphs

In this section frequency-dependent fitness is considered in the context of evolutionary graph

theory. As opposed to traditional evolutionary game theory that mainly considers infinite well-

mixed populations, the use of graphs to model population structure on standard games enables

finite inhomogeneous populations to be studied [32, 70, 88]. This follows earlier work considering

finite and/or spatial populations such as [67, 68] that studied the prisoner’s dilemma on an

n × n square lattice of patches such that each patch is occupied by one individual and games

are played between immediate neighbours. Other games in this kind of setting were studied in

[46]. To motivate the idea of games on graphs, a public goods game that requires its players

to cooperate in order to reach the optimal outcome is studied. In particular, [65] outlined 5

different mechanisms for cooperation to evolve of which network reciprocity will be focused on

here. This idea of network reciprocity was studied in [70] where a two-player public goods game

was studied on evolutionary graphs with degree k, that is, each vertex is connected to k other

vertices such that each edge has weight 1/k.

The two-player public goods game used in [70] has payoff matrix

A B

A b− c −c

B b 0

. (1.15)

Here, type A individuals are cooperators because they are willing to pay a cost c so that they

can provide a public good to the individual they are interacting with. On the other hand, type

B players are called defectors because they do not pay a cost to provide a public good but

receive one if they are present with a cooperator. The evolutionary graph is used to determine

the payoff an individual receives such that two individuals who are connected to each other on

the evolutionary graph will play a game with one another. Note that it is possible to define

another interaction graph instead of using the evolutionary graph as demonstrated in [73]. The

payoff to a cooperator connected to k individuals, of which i are cooperators, is given by bi−ck.

The payoff to a defector connected to j cooperators is given by bj. The fitnesses of cooperators

and defectors are respectively given by

FA(k, i) = R+ w − w(bi− ck), FB(j) = R+ w − wbj

where R is the background fitness and w controls of the intensity of selection. For small w there

is weak selection, which means that there are other factors other than this game that determines
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their overall fitness, which is captured by the background fitness R. The background fitness also

ensures that the fitness does not go negative because the fitnesses are used in the dynamics,

which are stochastic so negative fitnesses would not make sense.

For the weak selection limit and large population size, it was shown for BD-B dynamics that

selection favours defection because ρA < 1/N < ρB . To see why this is the case, consider a

circular graph where each vertex is connected to two other vertices such that it forms a closed

chain. Consider a sequence of cooperators within this circular graph. A cooperator at the end

of the sequence interacts with a cooperator who is inside the sequence and a defector at the

border of this sequence giving a payoff of b − 2c. The defector at the border of the sequence

has payoff b and, therefore, a higher fitness. With BD-B dynamics, this defector is more likely

to be selected for reproduction than the cooperator at the end of the sequence. This leads to

the sequence of cooperators shrinking as the defectors at the border of the sequence will get

more chances to replace the cooperator at the end of the sequence with their offspring. On the

other hand, death-birth with selection on birth (DB-B) dynamics can be used. In this case, an

individual randomly dies and is replaced by the offspring of one of its k neighbours proportional

to their fitness. With DB-B dynamics, selection favours cooperators, that is, ρB < 1/N < ρA,

if

b/c > k. (1.16)

Once again we consider what happens at the border of a sequence of cooperators in a circular

graph for the DB-B dynamics. Note that the payoffs remain the same as the interactions are

the same between the individuals. A cooperator at the end of the sequence, randomly chosen

for death, is more likely to be replaced by its neighbouring cooperator inside the sequence, who

has payoff 2b − 2c, than its neighbouring defector at the border, who has payoff b, whenever

b/c > k, where k = 2 in this case. This is because 2b−2c > b whenever b/c > 2. The probability

of cooperators reducing is therefore lower. A defector at the border who is randomly chosen for

death is more likely to be replaced by its neighbouring cooperator who has payoff b − 2c > 0,

since b/c > 2, than its neighbouring defector who has payoff 0. The probability of cooperators

increasing is therefore higher.

Evolutionary graph theory with games has been studied quite extensively. [71] derived the

replicator equation for evolutionary graphs using various evolutionary dynamics. [8] studied the

average time to fixation for a Moran process and found that, independent of the payoff matrix

elements and population size, the fixation time for two strategies is identical. [100] used an

alternative method to predict the fixation probabilities for the cooperation game on graphs.

For games on regular graphs [72] derived the ESS conditions. [12] gave the exact fixation

probabilities for a general two player game on certain non-directed graphs, and [32] considered
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the star graph where they calculated the exact fixation probability for various evolutionary

dynamics and games. A [93] lists a set of open problems in evolutionary graph theory that are

related to game theoretic extensions together with various other developments like evolutionary

graphs that change over time.

1.5 Multiplayer Games

The games we have considered up to this point are based on interactions between two players.

However, many interactions in reality include interactions between multiple individuals. In par-

ticular, many multiplayer interactions cannot be obtained from aggregating the corresponding

pairwise interactions. Consider two types A and B and suppose that a type A individual is

interacting with a and b other type A and type B individuals, respectively, in a group. The

payoff to this individual can be obtained by aggregating the pairwise interactions between the

individuals in this group if the payoff function is linear in a and b. However, non-linear payoff

functions are more common in biology [9]. For example, cooperative hunters share the prey

evenly amongst themselves regardless of the effort they put in, some examples include Harris’

hawks [10], lions [75, 97] and African wild dogs [21].

Determining the payoffs for multiplayer games involves complexities that are not present

in 2-player games. Multi-player games were introduced into biology in [76] and the theory

developed by [11], see also [19]. The games considered in [11] are symmetric. This means that

the payoff an individual receives depends upon the strategy it uses and the combination of

strategies used by its opponents rather than each opponent’s strategy. To elaborate, consider

3 players playing a multiplayer game where players 1, 2, 3 use strategies A,A,B or A,B,A.

For symmetric games, player 1 would receive the same payoff regardless of whether the first or

the second set of strategies is used, however, for asymmetric games the two payoffs could be

different. The order of the players matters in asymmetric games and examples of biological

interactions of this kind include hunting in lioness packs [98] where the position taken by each

lioness during the hunt matters. Since the ordering does not matter, a power notation can be

used when writing the payoffs to account for identical strategies. For example, the payoff to a

type A individual playing against n type A and k type B individuals is written E[A;An, Bk].

The multiplayer games considered in this thesis will not consider the order of the players. For

a comparison between multiplayer payoffs and pairwise payoffs see Figure 1.2.

For multiplayer games the group sampling also needs to be determined. In [11] a population

of infinite size is considered where groups of fixed size m are randomly chosen to play a game.

This simplifies the analysis of the multiplayer games. The complete randomness in which the

groups are picked implies that here symmetric and asymmetric games are essentially the same
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Figure 1.2: This figure shows two graphs where each node represents a type A or B individual

and only connected individuals can interact with one another. In figure (a), the payoffs are

obtained by aggregating the pairwise interactions between the individuals such that E[A,B]

is the payoff to a type A individual interacting with a type B individual. In figure (b), the

payoffs are given by a multiplayer payoff function in which the ordering of the players does not

matter, that is, E[A;Ai, Bj ] is the payoff to a type A individual interacting with i other type

A individuals and j other type B individuals.

[29]. With these assumptions the ESS of m-player games can be defined [11, 19, 76], as well as the

replicator equation [85]. In particular, the ESS for an m-player game can be naturally extended

from the a two-player game as follows. Strategy A in an m-player game is evolutionarily stable

against strategy B if there exists εB ∈ (0, 1] such that for all ε ∈ (0, εB ]

m−1∑
k=0

(
m− 1

k

)
(1− ε)kεm−1−kE[A;Ak, Bm−1−k] >

m−1∑
k=0

(
m− 1

k

)
(1− ε)kεm−1−kE[B;Ak, Bm−1−k]

(1.17)

such that this is derived using the fact that the population is infinite and groups are formed with

complete randomness so that the probability of a group forming in contests with two strategies

follows a binomial distribution. Now, A is called an ESS if, for every B 6= A, there exists εB > 0

such that equation (1.17) holds for all ε ∈ (0, εB ], for more details see [17] Chapter 9. In finite

populations, [29, 48] adapted the Moran process for m-player games with two strategies and

extended the 1/3 law for multiple players, which was further studied by [50].

A substantial part of the literature considers mutliplayer games between a fixed group size of

m individuals, for example, in [9] groups of size m form in an infinite and well mixed population,

[74] considers a finite population, [81, 83] considers a spatially structured population with groups

of fixed size and [102] considers a specific structure, the cycle, where an unbroken sequence of

m players play a game. One advantage of doing this is that group structure can be easily

incorporated using regular graphs [80]. However, group heterogeneity plays an important role,

for example, [86, 90] showed that group heterogeneity between individuals helps the evolution
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of cooperation, similarly, cooperation was shown to dominate in scale-free networks where the

few highly connected individuals are also directly interconnected [87]. In [91] a multiplayer

public goods game was studied on a complex network. In the multiplayer public goods game

each cooperator pays a contribution c towards a public good and defectors contribute nothing.

The total contribution that is received is multiplied by a synergy factor r and evenly shared

between all players. Each individual i plays ki + 1 games, where ki is the degree of player i on

the complex network, such that 1 game is played with its neighbours and another game with

each of its ki neighbours in their neighbourhood. It was shown that with heterogeneous groups

selection favoured cooperation.

Group formation is important when there are heterogeneous group size and has to be ac-

counted for. In [91], the individuals that can interact with each other are connected to each

other. However, there are many ways in which these groups can be formed where the method

used, as described in the previous paragraph, is just one of the possibilities. One solution to

resolve this ambiguity is to use bi-partite graphs to preserve the pairwise connections and the

group structure [30, 31]. With these bi-partite graphs one set of nodes represents the individuals

and another the groups. Individuals can interact in a group if they are connected to the same

group node, which also implies that they are connected to each other on a graph. For these

kinds of bi-partite graph, it was shown that the actual group structure plays an important role

in the evolution of cooperation in a multiplayer public goods game. In particular, [82] showed

that the driving force behind the evolution of cooperation was the degree of overlap between

the groups.

There are various other ways group structure has been modelled in multiplayers games. In

[104] a hierarchical structure was considered where individuals are part of different groups at

multiple levels such that groups at higher levels are larger than those at a lower level. Another

way to allow groups to form is to allow individuals to be mobile and there are several ways in

which one can model this. For example, [20] considered the random movement of individuals in

a continuous two-dimensional plane such that the group structure is determined by a random

geometric graph with constant radius, which means that individuals that are within a certain

radius of each other are connected to each other and, therefore, interact in a group. With mobile

agents the group structure is always changing. Other ways in which this can be achieved is by

updating the group structure depending upon the payoffs individuals receive [105]. The idea

behind this kind of mechanism is to strengthen beneficial ties between individuals, which helps

cooperation evolve in a multiplayer public goods game. There are many more examples in which

group structure can be accounted for, in particular, [84] gives several different examples. The

material in this thesis is predominantly based on multiplayer interactions between individuals.
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Notation Description

N Population size

I1, . . . , IN Individuals in population

M Number of places in habitat

P1, . . . , PM Places in habitat

X(t) Matrix representing population distribution at time t

Xn,m(t) Indicates presence of In in Pm at time t

x Current distribution of X(t)

xn,m Indicates presence of In in Pm for current distribution

x<t Entire history of the system

pn,m,t(x<t) Probability of In being in Pm at time t given x<t

Pn Home range or territory of In

R(n,x, t,x<t) Reward function

Rn Mean reward

Table 1.1: Notation used in the framework of Broom-Rychtar [16].

The models used are constructed using the comprehensive mutliplayer evolutionary game theory

framework of Broom-Rychtář [16].

1.6 The Framework of Broom-Rychtář

The framework of Broom-Rychtář [16] forms the basis for the work done in this thesis. The

motivation behind this framework is to incorporate group interactions that take place in real

life, for example, in African wild dogs [28] and roadrunners [43]. The framework is based on

the premise that there are N individuals distributed over M places and group interactions take

place whenever two or more individuals are present in the same place at the same time. Varying

degrees of complexity can be achieved depending upon the exact assumptions made about the

movement of individuals, for example, the movement of the individuals can be defined in such

a way that resembles a metapopulation [51]. The framework consists of several building blocks

that are described below. The notation used is summarised in Table 1.1.

1.6.1 Structure

The structure of a population is given by the number of places, the number of individuals and

the probability of these individuals being present in these places.
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Population Distribution

The location of every individual in the population at time t is given by the N×M binary matrix

X(t) = (Xn,m(t)) such that

Xn,m(t) =

1 if In is in Pm at time t

0 otherwise.

(1.18)

The current distribution of the population is x = (xn,m) and the entire history of the population

distributions is x<t = (x1,x2, . . . ,xt−1). In the most general case, the current distribution of the

population is conditional on the entire history of the population distributions which is denoted

as

P(X(t) = x)(x<t) = P(X(t) = x|X(1) = x1, . . . ,X(t− 1) = xt−1). (1.19)

There is a unique distribution of the values of X(t) because at any time t an individual has to

be present at exactly one place which means that every system must satisfy the property∑
x

P(X(t) = x)(x<t) = 1 ∀ t,x<t. (1.20)

Focal Individual

In addition to being able to describe the population as a whole, the characteristics of a particular

individual in a population need to be described as well. This individual is referred to as the

focal individual. The presence of the focal individual In in place Pm at time t conditional on

the history x<t is given by the probability

P(Xn,m(t) = 1)(x<t) = pn,m,t(x<t). (1.21)

The focal individual can be present at one place only at any given time therefore every system

should satisfy the property ∑
m

pn,m,t(x<t) = 1 ∀ n, t,x<t. (1.22)

The subset of all the places the focal individual can visit is called its home range or territory

and is defined as follows

Pn = {Pm : pn,m,t(x<t) > 0} (1.23)

History Dependency

Depending upon the movement behaviour being modelled, varying levels of dependency on the

historical distributions can be considered. Examples of history dependency include the following
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• Dependence on entire history: This is an extreme case such that the current distribution

depends upon all historical population distributions. It is also the most general case and

was introduced earlier as follows

P(X(t) = x)(x<t) = P(X(t) = x|X(1) = x1, . . . ,X(t− 1) = xt−1). (1.24)

• Markov: This is an intermediate case where the current distribution depends upon the

previous historical population distribution only. The population distribution simplifies to

P(X(t) = x)(x<t) = P(X(t) = x|X(t− 1) = xt−1) (1.25)

• History independent: This is the simplest case of all where the the current distribution is

independent of all historical population distributions, and the population distribution is

given by

P(X(t) = x)(x<t) = P(X(t) = x) (1.26)

Time homogeneous structure

In general, the movement of individuals can depend upon time to take into account, for example,

seasonal movement patterns. With time homogeneity, the movement of individuals does not

change with time, and, therefore, the population distribution that is independent of time satisfies

the following

P(X(t) = x)(x<t) = P(X(s) = x)(x<s) ∀ s, t ≥ 1. (1.27)

Row independent structure

Row indpendence is the assumption that individuals move independently of what others are

doing at time t. For any In1
, In2

in such a structure who are moving to Pm1
, Pm2

respectively,

the following holds

P(Xn1,m1
(t) = 1 & Xn2,m2

(t) = 1)(x<t) = pn1,m2,t(x<t)pn1,m2,t(x<t). (1.28)

Independent and fully independent structures

An independent structure is history independent and row independent. The subset of indepen-

dent structures that are also time homogeneous are known as fully independent structures. The

fully independent structures are the simplest to work with.
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1.6.2 Fitness

The fitness of individuals will be determined by the game played. The reward the focal individual

receives for playing a game is determined by the reward function

R(n,x, t,x<t). (1.29)

The mean reward is the average reward over all possible population distributions at time t

conditional on the historical distributions that is

Rn =
∑
x

P(X(t) = x)(x<t)R(n,x, t,x<t). (1.30)

In general, the mean reward is the preferred way of calculating the fitness because it is more

natural.

1.7 Outline

An outline of the work contained in the following chapters in given. All the work is new and

where a paper has been published, the details are provided.

In chapter 2, evolutionary graphs are identified where a fixed fitness evolutionary process

is identical to the Moran process for different types of dynamics. The work of [52] identified

such evolutionary graphs for the Link and BD-B dynamics in the form of the circulation and

isothermal theorems. This is extended to a whole set of standard dynamics used in the literature.

Even though this work focuses on the fixed fitness case, it provides a better understanding of

evolutionary dynamics in general, especially in the context of evolutionary graphs. The work in

this chapter was published in Royal Society Proceedings A article [79]. For this paper I developed

the original concept in discussion with my supervisor, M. Broom, and carried out the majority

of the analysis and writing.

In chapter 3, social dilemmas with variable group sizes are mathematically defined. Social

dilemmas are essentially mutliplayer games where the optimal strategy for an individual is not

the best for the group. In the literature, such multiplayer interactions between individuals have

considered groups of fixed size. However, the framework of Broom-Rychtář is suited to groups

of variable size and, hence, this work is a logical precursor to work involving this framework.

This work has not been published, though, at the time of writing, the material in this chapter

is a subset of a yet to be completed article.

In chapter 4, the framework of Broom-Rychtář is developed further to allow the consideration

of a dynamic evolutionary process. A bulk of the work involved defining the evolutionary

dynamics and describing how they can be derived based on the assumptions in the framework.
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This was influenced by the work in chapter 2, whose focus is predominantly on the dynamics.

The notation used was also changed from the original framework to allow for a more coherent

description of the complete framework. The framework of Broom-Rychtář is then used to model

territorial behaviour in what is called the territorial-raider model. This work is the first instance

in which a dynamic evolutionary process is illustrated within the framework. The success of

a mutation in a population of 3 and 4 individuals with different territories is considered for

two types of multiplayer interactions based on social dilemmas. Here, the temperature of the

individuals, or how often individuals are replaced, plays a key role in determining the success

of a mutation. This work was published in the Journal of Mathematical Biology article [14].

For this paper I helped construct the dynamics used in the model and carried out part of the

analysis.

In chapter 5, the territorial-raider model of the previous chapter is generalized to allow a

subpopulation to occupy a territory rather than just a lone individual. This generalization

increases the frequency of interactions between individuals and, therefore, may help or hinder

a mutation. As in the territorial raider model, the subpopulation temperature, or how often

one subpopulation replaces another, plays a key role in predicting the success of a mutation.

This work also considers a full set of dynamics as opposed to just the BD-B dynamics in the

territorial raider model. This work was published in the Journal of Theoretical Biology article

[77]. For this paper I helped develop the original concept through joint discussions with my

supervisor, M. Broom, and carried out the majority of the analysis and writing.

In chapter 6, the framework is used to model movement behaviour that is characterized by

Markov history dependence known as the Markov movement model. Individuals would make a

choice of where to go next depending upon whether their current group interaction was ben-

eficial or not. The group interactions are characterized by a social dilemma that involves the

production of a public good. A beneficial interaction would therefore involve cooperators who

contribute towards the production of this public good as opposed to defectors who do not.

Given that movement is Markov, several new variables are introduced to deal with this. In

particular, the movement cost and exploration time play important roles in helping cooperative

behaviour spread. This work had been accepted by the journal Discrete and Continuous Dy-

namical Systems Series B (DCDS-B) article [78]. For this paper I helped develop the original

concept through discussions with the other authors, M. Broom and J. Rychtář, and carried out

the majority of the analysis and writing.

In chapter 7, the final chapter, different variations of the dynamics that can be used with

the framework are discussed. To illustrate how these variations differ from one another the

territorial raider model of chapter 4 is used. The dynamics used shown in this chapter resulted
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from the investigations that went into the development of the dynamics for the framework. The

main aim is to demonstrate the flexibility of the dynamics used within the framework. This

work has not been published but forms a basis for a lot of the work in the previous chapters

and is therefore included to give a complete picture of the work in this thesis.
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Chapter 2

When is an evolutionary process

equivalent to the Moran process?

2.1 Introduction

This chapter considers a model of population evolution based on the evolutionary graph theory

framework of [52], which was a development of the classical Moran population model [58]. The

model population has a finite size that is fixed at all times and is allowed to evolve through

replacement events that occur at successive discrete time points. The replacement events are

stochastically determined by the fitness of the individuals and the structure of the population.

The individuals are assumed to have fixed fitness, i.e. there are no game-theoretic interactions,

rather, two types of individuals are considered whose fitness are given relative to each other.

The structure is given by a weighted digraph where each node represents an individual with the

directed edges indicating where an individual’s offspring can be placed. For the replacement

events, several different dynamics are considered that depend upon whether birth or death is

the first event and whether selection, i.e. fitness, acts on the first or second event. In particular

the single most important property of such a process is the fixation probability, the probability

that a randomly placed mutant individual of one type will eventually completely replace the

population of the other type.

The objective of this chapter is to expand on the central theme of the classic paper [52] that

identified the circumstances in which the dynamics and structure of the population interact in

such a way that the fixation probability is equivalent to that of the Moran model, that is, it

behaves just as if the population was homogeneous. The reason for doing this is to be able

to identify population structures that neither amplify or suppress the effect of selection. Two
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important results, the circulation theorem and the isothermal theorem, were developed that

addressed this question (see also [94] for related work). In this chapter, six different dynamics

are considered of which two were originally considered in [52]. The circulation theorem and

isothermal theorem are expanded by showing that they apply to four of these dynamics, including

the two original ones. For the two remaining dynamics, a proposition is given to classify the

population structures that are equivalent to a homogeneous population. All the results given in

this chapter apply to graphs with general weights.

2.2 The Model

The population model used in this chapter is of [52] as described in Section 1.4 (pg. 31), which

generalises the model of [58] by incorporating a replacement structure. The notation used is

summarised in Table 2.1. The main assumptions of the model are as follows.

The population has a constant size N ∈ Z, N ≥ 2, consisting of individuals I1, . . . , IN . Every

individual is either of type A or B.

This implies that there are 2N different states of the population given by the combination

of type A and B individuals. Each state is represented by a set S such that n ∈ S if an

individual In is of type A. It is easier to revert to using the number of type A individuals, |S|,

if the population is homogeneous. The states ∅ and N = {1, 2, . . . , N} have only type B and A

individuals respectively.

Individuals have a constant fitness that may depend upon their type.

The fitness of individuals in state S is thus given by the vector F(S) = (Fn(S))n=1,2,...,N

where

Fn(S) =

1 n /∈ S,

r ∈ (0,∞) n ∈ S,

is the fitness of In. Here the fitness r of a type A individual is given relative to the fitness of a

type B individual assumed to be 1.

During a stochastic replacement event (that happens in an instant) an exact copy of an individual

Ii replaces an individual Ij.

This information is summarised by the N ×N weighted adjacency matrix W = (wij), which

is called the replacement matrix, such that Ii can replace Ij if and only if wij > 0. Note that

wii > 0 is allowed and therefore Ii can replace itself.

The replacement events are stochastic which means that there is a probability rij = rij(F(S),W)

associated with (a copy of) Ii replacing Ij . There are several potential evolutionary dynamics

on graphs that govern how the probability is determined. There three main types of dynamics
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Notation Definition Description

N ∈ Z+ \ {0, 1} Population size.

A,B The two types of individuals in population.

In Individual n.

S = {n : In of type A} State of the population.

N = {1, 2, . . . , N} State in which all In of type A.

r ∈ (0,∞) Fitness of a type A individual.

Fn(S) ∈ {1, r} Fitness of In in state S.

wij ∈ [0,∞) Edge weight such that wij > 0 if and only if (i, j) ∈ E.

W = (wij) Replacement matrix: N ×N weighted adjacency matrix.

T+
n =

∑N
j=1 wnj Out temperature: Sum of all outgoing weights.

T−n =
∑N
i=1 win In temperature: Sum of all incoming weights.

bi ∈ [0, 1] Probability Ii chosen for birth.

dij ∈ [0, 1] Probability a copy of Ii replaces Ij , given that Ii chosen for birth.

dj ∈ [0, 1] Probability Ij chosen for death.

bij ∈ [0, 1] Probability a copy of Ii replaces Ij , given that Ij chosen for death.

rij ∈ [0, 1] Probability a copy of Ii replaces Ij .

PSS′ ∈ [0, 1] State transition probability.

S = (PSS′) State transition matrix.

E∗,W,r Stochastic process using ∗ dynamics, W and r.

ρAS ∈ [0, 1] Fixation probability of type A individual from initial state S.

W Set of all strongly connected replacement matrices.

WC {W : T+
n = T−n ∀n} Replacement matrices that are circulations.

WI {W : T+
i = T−j ∀i, j} Replacement matrices that are isothermal.

WR {W : T+
n = 1 ∀n} Right stochastic replacement matrices.

WL {W : T−n = 1 ∀n} Left stochastic replacement matrices.

CN Set of W that are cycles of length N .

fR (wij) 7→ (wij/
∑
n win) Map from W to WR.

fL (wij) 7→ (wij/
∑
n wnj) Map from W to WL.

f ′ (wij) 7→ (wij/
∑
n,k wnk) Map from W to W .

M∗ Set of W where E∗,W,r is ρ-equivalent to a Moran process.

Table 2.1: Notation used in this chapter.

that are summarised below, see also [93]. The convention that Ii is chosen for birth and Ij is

chosen for death is used.
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1. Birth-Death (BD): Ii is chosen first then Ij . In particular, i ∈ V is chosen with probability

bi and then (i, j) ∈ Ei is chosen with probability dij , where Ei are all edges starting in

vertex i. dij is used to signify that there is ‘replacement by death’. Finally, rij = bidij .

2. Death-Birth (DB): Ij is chosen first then Ii. In particular, j ∈ V is chosen with probability

dj and then (i, j) ∈ Ej is chosen with probability bij , where Ej are all edges ending in

vertex j. bij is used to signify that there is ‘replacement by birth’. Finally, rij = djbij .

3. Link (L): Ii and Ij are chosen simultaneously. In this case (i, j) ∈ E is simply chosen with

probability rij .

For each type of these dynamics, the natural selection can, through the fitness parameter,

influence either the choice at birth (resulting in adding “B”) or at death (adding “D”). It yields

6 kinds of evolutionary dynamics on graphs summarized in Table 2.2. These dynamics have

been extensively studied, in particular, see [54] for a detailed comparison of them. Of these, the

BDB and LB dynamics were used in [52].

2.2.1 The fixation probability

The fixation probability, ρAS = ρAS (∗,W, r), is the probability that the population with initial

state S is absorbed in N where ∗ is the dynamics being used.

Given that the replacement events are random, the transitions between the states of the popu-

lation are described by a stochastic process, which is denoted E . The properties of E can be inves-

tigated once the state transition probabilities of moving from state S to S′, PSS′ = PSS′(∗,W, r),

are calculated using the replacement probabilities as follows:

PSS′ =



∑
i/∈S

rij(F(S),W) if S′ = S \ {j} for some j ∈ S,

∑
i∈S

rij(F(S),W) if S′ = S ∪ {j} for some j /∈ S,

∑
i,j∈S
∨i,j /∈S

rij(F(S),W) if S′ = S.

The transition probabilities, PSS′ , satisfy the Markov property because they only depend upon

the state S, that is, the probability of transitioning from the present state to another state is

independent of any past and future state of the population. The stochastic process E∗,W,r with

state transition matrix S = S(∗,W, r) = (PSS′)S,S′⊂{1,2,...,N} is therefore a Markov chain. The

Markov chain E∗,W,r is part of the class of evolutionary Markov chains described in [5].

The absorbing states of E∗,W,r are ∅,N , which means that if the population is in either one

of these states then it remains there indefinitely. This property of E∗,W,r can be used to measure
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the success of a type A individual by calculating the probability that it fixates, that is, everyone

in the population is of type A. The fixation probability is then given by solving

ρAS =
∑

S′⊂{1,2,...,N}

PSS′ρ
A
S′ (2.1)

with boundary conditions ρA∅ = 0 and ρAN = 1.

As demonstrated in [54], LB and LD dynamics may differ in time scale but they yield the

same fixation probabilities when fitness is constant (which is the case here). Thus, for purposes

in this chapter the dynamics are the same. They will be considered together and denoted by L.

2.2.2 The Moran Process

The Moran process [58] can be reconstructed as EBDB,WH,r for a constant replacement matrix

WH = (1/N)i,j . (2.2)

For any r ∈ (0,∞) and any S ⊂ {1, . . . , N}, the fixation probability for this process, or Moran

probability, is given by

ρAS =


1− r−|S|

1− r−N
if r 6= 1,

|S|/N if r = 1.

The objective is to characterize graphs (and evolutionary dynamics) that yield the same fixation

probabilities as the homogeneous matrix WH given in (2.2). Note that for this matrix all of

the transition probabilities rij take the same value independent of i, j or the dynamics, and

consequently the fixation probability under each of the dynamics is the same.

2.2.3 Classes of Graphs/ Matrices

The set of all admissible replacement matrices is defined as follows

W = {W : for every i, j, there is n such that (Wn)i,j > 0}.

This definition means that W is strongly connected as for any pair of vertices i and j, there is

a path (of length n) going from i to j. Unless specified otherwise, only admissible replacement

matrices will be considered.

As in [52], for any W (admissible or not) the in temperature of In, T−n , and the out temper-

ature of In, T+
n , is defined by

T−n =

N∑
j=1

wjn and T+
n =

N∑
j=1

wnj .
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W is called a circulation if T+
n = T−n , for all n ∈ V and it is called isothermal if T+

i = T−j ,

for all i, j ∈ V . W is called right stochastic if T+
n = 1, for all n ∈ V and it is called left

stochastic if T−n = 1, for all n ∈ V . The sets of all circulations, isothermal matrices, right

stochastic matrices, and left stochastic matrices, respectively are denoted by WC ,WI ,WR, and

WL respectively.

The set CN denotes the sets of matrices representing cycles of length N , more specifically,

when (wij) ∈ CN then wii = 1/2 for i = 1, 2, . . . N , wi1i2 = · · · = winin+1
= · · · = wiN−1iN =

wiN i1 = 1/2 for some permutation i1, i2, . . . , iN of the sequence 1, 2, . . . , N , and wij = 0 other-

wise.

The maps fR : W →WR, fL : W →WL, and f ′ : W →W are respectively defined by

fR ((wij)) =

(
wij∑
n win

)
, fL ((wij)) =

(
wij∑
n wnj

)
, and f ′ ((wij)) =

(
wij∑
n,k wnk

)
.

Note that fR preserves right stochastic matrices and fL preserves left stochastic matrices. More-

over, fR(W) = fL(W) for all W ∈ WI . Also, since f ′ simply involves multiplying W by the

constant 1/
∑
n,k wnk, it implies that W ∈WC ⇔ f ′(W) ∈WC.

When the dynamics ∗, matrices W1 and W2, and fitness r are given, it will be said that

an evolutionary Markov chain E∗,W1,r is ρ-equivalent to E∗,W2,r if for every S ⊂ {1, . . . , N},

ρAS (∗,W1, r) = ρAS (∗,W2, r), in which case it will be written W1 ∼∗,r W2.

This chapter is specifically interested in finding matrices equivalent to the Moran process.

For a dynamics ∗, the following is defined

M∗ = {W : W ∼∗,r WH for all r > 0}.
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Table 2.2: List of dynamics used in this chapter together with their definition of M∗.

Process P(Ii replaces Ij) Order chosen P(Chosen first) P(Chosen second) Definition of M∗ Illustration of M∗

BDB

[7, 15, 52, 70,

71, 95, 103]

rij = bidij Ii then Ij bi =
Fi(S)∑
n

Fn(S)
dij =

wij∑
n

win

MBDB = {W : fR(W) ∈WC}

= f−1R (WC)

BDD

[54]
rij = bidij Ii then Ij bi =

1

N
dij =

wij/Fj(S)∑
n

win/Fn(S)

MBDD = {W : fR(W) ∈ {WH} ∪

CN}

= f−1R ({WH} ∪ CN )
DBD

[6, 7, 60, 95]
rij = dibij Ij then Ii dj =

1/Fj(S)∑
n

1/Fn(S)
bij =

wij∑
n

wnj

MDBD = {W : fL(W) ∈WC}

= f−1L (WC)

DBB

[61, 67, 70,

71, 86]

rij = dibij Ij then Ii dj =
1

N
bij =

wijFi(S)∑
n

wnjFn(S)

MDBB = {W : fL(W) ∈ {WH} ∪

CN}

= f−1L ({WH} ∪ CN )
LB

[7, 52, 95]
rij =

wijFi(S)∑
n,k

wnkFn(S)
Simultaneous N/A N/A

MLB = {W : f ′(W) ∈WC}

= f ′−1(WC) = WC

LD

[55]
rij =

wij/Fj(S)∑
n,k

wnk/Fk(S)
Simultaneous N/A N/A

MLD = {W : f ′(W) ∈WC}

= f ′−1(WC) = WC

Key for Illustration of M∗:
W

W8

W1

W2

W3

W4

W5

W6

W7

W1 = WI ∩ f−1
R ({WH} ∪ CN )

= WI ∩ f−1
L ({WH} ∪ CN )

W2 = WI \ f−1
R ({WH} ∪ CN )

= WI \ f−1
L ({WH} ∪ CN )

W3 = WC \WI

W4 =
(
f−1
R (WC) \WC

)
∩ f−1

R ({WH} ∪ CN )
W5 =

(
f−1
R (WC) \WC

)
\ f−1

R ({WH} ∪ CN )
W6 =

(
f−1
L (WC) \WC

)
∩ f−1

L ({WH} ∪ CN )
W7 =

(
f−1
L (WC) \WC

)
\ f−1

L ({WH} ∪ CN )

W8 = W \⋃7
i=1 Wi

The key on the left gives the definition of partitions W1,W2, . . . ,W8 of W . The

partitions Wi that make up M∗ are highlighted for each of the dynamics in the last

column. The partition of W where E is ρ-equivalent to a Moran process regardless of

the standard dynamics being used is given by ML∩MBDB∩MBDD∩MDBD∩MDBB ≡

MBDD ∩MDBB ≡W1.
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2.3 Results

The map fR preserves the equivalence classes of BDB and BDD dynamics, fL preserves the

equivalence classes of DBB and DBD dynamics and f ′ preserves the equivalence classes for link

dynamics. Specifically, as one can see from the proofs in Section 2.5, for any W and any r > 0

W ∼BDB,r fR(W), (2.3)

W ∼BDD,r fR(W),

W ∼DBD,r fL(W),

W ∼DBB,r fL(W),

W ∼L,r f
′(W).

The following results are thus obtained, which completely specify the graphs which are equivalent

to the homogeneous matrix WH for each of the evolutionary dynamics considered here.

Proposition 1 (Link). ML = WC . More precisely, the following statements are equivalent:

(a) W is a circulation.

(b) For all r > 0, W ∼L,r WH.

(c) There is r > 0 such that W ∼L,r WH.

Note that WC = f ′−1(WC) = {W : f ′(W) ∈ WC} and thus, similarly to Proposition 2

below, Proposition 1 can be written as ML = f ′−1(WC).

Proposition 2 (BDB and DBD). MBDB = f−1R (WC) and MDBD = f−1L (WC). More precisely,

the following statements are equivalent:

(a) fR(W) is a circulation.

(b) For all r > 0, W ∼BDB,r WH.

(c) There is r > 0 such that W ∼BDB,r WH

The equivalent conditions for DBD are similar to the above for BDB but fR is replaced by fL.

Proposition 3 (BDD and DBB). MBDD = f−1R ({WH}∪CN ) and MDBB = f−1L ({WH}∪CN )

. More precisely, the following statements are equivalent:

(a) fR(W) = WH or fR(W) ∈ CN .

(b) For all r > 0, W ∼BDD,r WH.

The equivalent conditions for DBB are similar to the above for BDD but fR is replaced by fL.
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In particular, MBDD ⊂MBDB and MDBB ⊂MDBD. The sets M∗ are illustrated in Table 2.2.

Note that unlike in Propositions 1 and 2, Proposition 3 does not contain “any r implies all

r”. In fact, when r = 1, there is no selection and thus the dynamics BDB and BDD are the

same (and also the dynamics DBB and DBD are the same). Consequently, by Proposition 2,

W ∼BDD,1 WH ⇔ fR(W) ∈WC ⇔W ∈MBDB,

W ∼DBB,1 WH ⇔ fL(W) ∈WC ⇔W ∈MDBD.

2.3.1 Results here in the context of known results

For the LB dynamics, Proposition 1 was stated and proved in [52] as the Circulation theorem.

For the LD dynamics, Proposition 1 follows from the Circulation theorem and the result of [54]

that the fixation probabilities for LB and LD are the same.

As shown in Section 2.5.1, BDB is the same as the LB dynamics for right stochastic matrices

(in particular, for BDB dynamics, Proposition 2 can be seen as the Isothermal theorem from

[52]). Proposition 2 thus follows from Proposition 1 thanks to (2.3). The natural symmetries

between fR and fL and BDB and DBD dynamics allow us to extend the Isothermal theorem to

DBD dynamics as well (see also [42]).

Overall, Propositions 1 and 2 and the occurrence of WC within them are consistent with the

claim made in [52] that the circulation criterion completely classifies all replacement matrices

where E∗,W,r is ρ-equivalent to a Moran process. Figure 2.1 shows two graphs with the same

number of edges, but one is a circulation and the other is not, i.e. a circulation graph can be

constructed by changing the edge weights.

1(a) 2 3

2

2

1

1

1(b) 2 3

3

5

1

4

Figure 2.1: Two graphs are shown that have the same number of edges but different weights.

Figure (a) is a circulation since the in temperature and out temperature is the same for each

vertex, i.e. T+
1 = T−1 = 4, T+

2 = T−2 = 3 and T+
3 = T−3 = 2. Figure (b) shows that by changing

the edge weights the graph is no longer a circulation. It suffices to check that only one edge

does not satisfy the circulation criterion, i.e. T+
1 = 3 6= T−1 = 5.

The most important new result is Proposition 3. It shows that the BDD and DBB dynamics
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require very strict conditions to yield the Moran process. Either the population structure

is homogeneous, or it is a directed cycle. This latter structure is an interesting theoretical

example, but is unlikely to apply to real populations, meaning that the homogeneous population

is practically the only way to get the Moran process for a realistic population.

2.3.2 The importance of self-loops in BDD and DBB dynamics

Proposition 3 by definition requires that wii > 0 ∀i = 1, 2, . . . , N . Without such self-loops,

EBDD,W,r, EDBB,W,r cannot ever be ρ-equivalent to the Moran process. The ability of an in-

dividual to replace itself therefore plays an important role in the replacement structure of the

population and cannot be discounted. For BD dynamics, when increasing the diagonal weights

of W, the fixation probability decreases for BDB and increases for BDD. For DB dynamics,

the increase in fixation probability DBB is greater than that for DBD. For LB dynamics, the

fixation probability remains the same.

With BDD and DBB evolutionary dynamics on graphs one may encounter the following

problems if there are no self-loops. For DBB dynamics, a type A individual with almost infinite

fitness still has a fixation probability bounded away from 1 because even type A individuals

can be randomly picked for death and replaced by type B individuals [17, page 245]. With self-

loops, however, a type A individual will almost always be replaced by itself (or another type A

individual) and therefore has a fixation probability approaching 1. Similarly, for BDD dynamics,

a type A individual with almost zero fitness does not have near probability 0 of fixating as type

A individuals can be randomly picked for birth and replace type B individuals [17, page 245].

With self-loops, such an individual will almost always pick itself (or another type A) to replace

and therefore its fixation probability is near 0. Thus the inclusion of self-loops removes some

problematic features of the BDD and DBB dynamics, and makes them more attractive dynamics

to use in models.

2.4 Discussion

This fixation probability depends upon the fitnesses of the two types of individuals, but can also

be heavily influenced by the population structure as given by the weights, and by the evolu-

tionary dynamics used. These effects are commonly observed, although in some circumstances

evolution proceeds as if on a well-mixed population as from the original work of [58], dependent

only upon the fitnesses of the two types, and some important results in this regard were already

given in [52]. The aim of this chapter was to provide a generalised set of conditions for when

this would be the case.
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By defining what is meant by fixation-equivalence to the Moran process, a general result

was provided which, independent of the specific dynamics used, helps identify graphs that

do not affect the fixation probability. With respect to each of the standard dynamics, sets

of evolutionary graphs were classified that have the same fixation probability as the Moran

process (or well mixed population). These sets include graphs that are circulations and therefore

generalises the work of [52].

An important new result shows that the set of weights for which fixation equivalence to the

Moran process is obtained for the BDD and DBB dynamics is very restricted, and so that for

most populations with any structure this equivalence will not hold for these dynamics. Note

also that the inclusion of non-zero self weights wii eliminates some problematic features of these

two dynamics (i.e. that individuals with 0 fitness could fixate or those with infinite fitness could

be eliminated) and so improves the applicability of these dynamics.

Presenting evolutionary dynamics on graphs in the way done here allows one to incorporate a

variety of dynamics in their analysis, both of standard type and other definitions. This improves

the understanding of dynamics on graphs in general. Note that the list of dynamics in Table 2.2

is not exhaustive. For example, [71] used imitation dynamics, which is a class of DBB dynamics

with an additional requirement wii > 0 ∀i, and [106] consolidates the BDB and DBD dynamics

such that one is chosen with a given probability.

In general the inclusion of non-zero self weights, in contrast to many earlier evolutionary

graph theory works, allows for a greater flexibility of modelling. Note that this is consistent

with the original work of [58], which allowed self-replacement as an integral part of the process.

For well-mixed populations it does not matter much whether this possibility is included or not

(at least for sufficiently large populations with intermediate fitness values), and it is likely that

it has often been excluded for reasons of convenience because of this without the ramifications

being fully considered in many later works. It is thus important to consider whether to include

such self weights when modelling spatial structure using evolutionary graph theory.

2.5 Proofs

2.5.1 BDB is the same as LB for right stochastic matrices

For BDB dynamics we have rij = bidij . By definition
∑
ij bidij = 1, we can therefore write this

as rij = bidij

/∑
n,k bndn,k . Substituting bi = Fi

/∑N
m=1 Fm gives

rij =
dijFi

/∑N
m=1 Fm∑

n,k

(
dnkFn

/∑N
m=1 Fm

) =
dijFi∑
n,k dnkFn

.
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If W is right stochastic, i.e.
∑N
n=1 win = 1 for all i = 1, 2, . . . N , for BDB dynamics we have

that dij = wij

/∑N
n=1 win = wij giving rij = wijFi

/∑
n,k wnkFn which is the LB dynamics as

required. We also have that DBD is the same as LD for left stochastic matrices. The explanation

follows the same procedure as above.

2.5.2 Lemma 1 (Forward Bias)

The key Lemma 1 stated below is used in the proofs of all propositions and it relies heavily on

the notion of forward bias of state S which is then given by the ratio of the probabilities of a

forward transition to a backward transition from S. A forward and backward transition from S

occurs when the number of type A individuals increase and decrease by one respectively, which

happen with probability

P+
S =

∑
n/∈S

PS,S∪{n} and P−S =
∑
n∈S

PS,S\{n}.

Lemma 1 (Constant Forward Bias). Let E be an evolutionary process on states S ⊂ {1, 2, . . . , N}

with transition probabilities PS,S′ that satisfy

• PS,S′ > 0 only if S and S′ differ in at most one element

• for every S 6= ∅, {1, . . . , N}, there are S+ and S− such that |S+| = |S|+1 and |S−| = |S|−1

and PS,S+ > 0, PS,S− > 0.

Then, the following are equivalent

a) There is a constant c > 0 such that for all S ⊂ {1, 2, . . . , N}

ρAS =


1− c−|S|

1− c−N
if c 6= 1,

|S|/N if c = 1

b) E has constant forward bias, that is, there is a constant d such that for all S ⊂ {1, 2, . . . , N}

P+
S

/
P−S = d.

Moreover, if either (a) or (b) hold, then c = d.

Note that a similar result is given in [4, 52] where the forward bias is explicitly defined as

r
∑
a∈S

∑
b/∈S

wab

/∑
a∈S

∑
b/∈S

wba ,

which is what one gets when using Link dynamics, or BDB dynamics if W ∈WR. Note that in

Lemma 1 the forward bias is defined independent of the dynamics and therefore applies to all

dynamics that satisfy the assumptions.
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Proof. “(a) ⇒ (b)”: Take any S ⊂ {1, 2, . . . , N}. It is known that

ρAS =
∑
S′

PS,S′ρ
A
S′ = PS,Sρ

A
S +

∑
n/∈S

(
PS,S∪{n}ρ

A
S∪{n}

)
+
∑
n∈S

(
PS,S\{n}ρ

A
S\{n}

)
and using PS,S = 1− P+

S − P
−
S gives

0 =
∑
n/∈S

(
PS,S∪{n}

(
ρAS∪{n} − ρ

A
S

))
+
∑
n∈S

(
PS,S\{n}

(
ρAS\{n} − ρ

A
S

))
. (2.4)

For c 6= 1, equation (2.4) simplifies to

0 =
1− c−|S|−1 − 1 + c−|S|

1− c−N
P+
S +

1− c−|S|+1 − 1 + c−|S|

1− c−N
P−S ⇒

P+
S

/
P−S =

c−|S| − c−|S|+1

c−|S|−1 − c−|S|
=

1− c
c−1 − 1

= c.

For c = 1, equation (2.4) simplifies to

0 = (|S|+ 1− |S|)P+
S + (|S| − 1− |S|)P−S ⇒ P+

S

/
P−S = 1.

“(b) ⇐ (a)”: The state transition matrix S = (PS,S′) can be scaled to give S′ = (P ′S,S′) such

that P ′S,S = 0 and P ′S,S′ = PS,S′/(1 − PS,S) = PS,S′/(P
+
S + P−S ) where S is a non-absorbing

state. The fixation probability ρAS will be the same whether S′ or S is used. This is because

equation (2.1) can be rearranged as follows

ρAS =
∑
S′

PSS′ρ
A
S′ ⇒ ρAS = PSSρ

A
S +

∑
S′:S′ 6=S

PSS′ρ
A
S′ ⇒

ρAS (1− PSS) =
∑

S′:S′ 6=S

PSS′ρ
A
S′ ⇒ ρAS =

∑
S′:S′ 6=S

PSS′

P+
S + P−S

ρAS′ .

Let {S0,S1, . . . ,SN} be a partition of the states S such that S ∈ Si if |S| = i. The probability

Pi,j(S) of transitioning from state S ∈ Si to lumped state Sj with respect to S′ is

Pi,j(S) =


0 j 6= i± 1,

1/(d+ 1) j = i− 1,

d/(d+ 1) j = i+ 1

for i = 1, 2, . . . , N − 1. (2.5)

This can be easily verified, for example, take j = i− 1 then

Pi,i−1(S) =
∑

S′∈Si−1

P ′S,S′ =
∑

S′∈Si−1

PS,S′

P+
S + P−S

=
P−S

P+
S + P−S

=
1

1 + d

since the forward bias is equal to d. Equation (2.5) satisfies the necessary and sufficient condition

for the Markov chain with state transition matrix S′ to be lumpable with respect to the partition

{S0,S1, . . . ,SN} (Theorem 6.3.2 page 124, [44]). Let Ŝ = (Pi,j) be the state transition matrix
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for this lumped Markov chain then the probability Pi,j of transitioning from lumped states Si
to Sj is given by

Pi,j = Pi,j(S).

The state transition matrix Ŝ describes a random walk with absorbing barriers and therefore

the probability ρAi of type A individuals fixating when the population starts in lumped state Si
is calculated using the methods in [41] to give

ρAi = 1 +

i−1∑
j=1

j∏
k=1

Pk,k−1
Pk,k+1

/
1 +

N−1∑
j=1

j∏
k=1

Pk,k−1
Pk,k+1

.

In this case,

ρAi =


1− d−i

1− d−N
d 6= 1,

i/N d = 1

since Pk,k−1/Pk,k+1 = 1/r for k = 1, 2, . . . , N − 1. By definition, ρAS = ρAi where i = |S| as

required.

2.5.3 Proposition 1 (Link)

The following statements are equivalent:

(a) W is a circulation.

(b) For all r > 0, W ∼L,r WH.

(c) There is r > 0 such that W ∼L,r WH.

(d) For all r > 0 and for all S ⊂ {1, 2, . . . , N}, the forward bias of EL,W,r is r, i.e.

P+
S

/
P−S = r.

(e) There is r > 0 such that for all a ∈ {1, 2, . . . , N}, the forward bias of the one element set

S = {a} is r, i.e. ∑
b6=a

P{a},{a,b}

Pa,∅
= r.

Proof. For LB dynamics the forward bias is given by

P+
S

P−S
=

∑
a∈S

∑
b/∈S

wabFa∑
n,k

wnkFn

∑
a∈S

∑
b/∈S

wbaFb∑
n,k

wnkFn

=

r
∑
a∈S

∑
b/∈S

wab∑
a∈S

∑
b/∈S

wba
.
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For LD dynamics the forward bias is given by

P+
S

P−S
=

∑
a∈S

∑
b/∈S

wab/Fb∑
n,k

wnk/Fk

∑
a∈S

∑
b/∈S

wba/Fa∑
n,k

wnk/Fk

=

r
∑
a∈S

∑
b/∈S

wab∑
a∈S

∑
b/∈S

wba
.

“(a) ⇒ (d)”: W is a circulation i.e. T+
n = T−n for all n ∈ {1, . . . , N} and thus

∑
a∈S

∑
b/∈S

wab =
∑
a∈S

(∑
n

wan −
∑
k∈S

wak

)
=
∑
a∈S

(
T+
a −

∑
k∈S

wak

)
⇒

∑
a∈S

∑
b/∈S

wab =
∑
a∈S

(
T−a −

∑
k∈S

wka

)
=
∑
a∈S

(∑
n

wna −
∑
k∈S

wka

)
⇒

∑
a∈S

∑
b/∈S

wab =
∑
a∈S

∑
b/∈S

wba.

Note that
∑
a∈S

∑
b/∈S wab 6= 0 because W is admissible and represents a strongly connected

graph. Thus, the forward bias for both LB and LD is equal to r.

“(d)⇒(e)” is trivial as (d) is much stronger than (e).

“(e)⇒(a)” Let a and r is fixed. By above calculations of the forward bias, we have

∑
b/∈S={a}

wab =
∑

b/∈S={a}

wba ⇒ −waa +

N∑
i=1

wai = −waa +

N∑
i=1

wia ⇒
N∑
i=1

wai =

N∑
i=1

wia

therefore W is a circulation.

“(d)⇒(b)” follows from Lemma 1.

“(b)⇒(c)” is trivial.

“(c)⇒(e)” follows from Lemma 1.

2.5.4 Proposition 2 (BDB and DBD)

More precisely, the following statements are equivalent:

(a) fR(W) is a circulation.

(b) For all r > 0, W ∼BDB,r WH.

(c) There is r > 0 such that W ∼BDB,r WH

(d) For all r > 0 and for all S ⊂ {1, 2, . . . , N}, the forward bias of EBDB,W,r is r, i.e.

P+
S

/
P−S = r.
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(e) There is r > 0 such that for all a ∈ {1, 2, . . . , N}, the forward bias of EBDB,W,r of the one

element set S = {a} is r, i.e. ∑
b6=a

P{a},{a,b}

Pa,∅
= r.

Proof. Let U = (uij) = fR(W) = (wij/
∑
n win) then for BDB dynamics the forward bias of

EBDB,W,r is given by

P+
S

P−S
=

∑
a∈S

∑
b/∈S

Fa∑
n

Fn

wab∑
n

wan∑
a∈S

∑
b/∈S

Fb∑
n

Fn

wba∑
n

wbn

=

r
∑
a∈S

∑
b/∈S

uab∑
b/∈S

∑
a∈S

uba

and therefore the forward bias of EBDB,W,r is the same as forward bias of EBDB,U,r.

Similarly, with almost identical working as above, when V = fL(W), the forward bias of

EDBD,W,r is the same as forward bias of EDBD,V,r and is given by

P+
S

P−S
=

∑
a∈S

∑
b/∈S

1/Fb∑
n

1/Fn

wab∑
n

wnb∑
a∈S

∑
b/∈S

1/Fa∑
n

1/Fn

wba∑
n

wna

=

∑
a∈S

∑
b/∈S

vab

1

r

∑
a∈S

∑
b/∈S

vba

.

and the proof of the Proposition for DBD closely follows the one for BDB given below with U

and fR appropriately replaced by V and fL.

“(a)⇒ (d)”: If U = fR(W) ∈ WC, i.e. if U is doubly stochastic, then the forward bias (for

S 6= ∅,N ) is equal to

P+
S

P−S
=

r
∑
a∈S

(∑
n

(uan)−
∑
k∈S

(uak)

)
∑
a∈S

(∑
n

(una)−
∑
k∈S

(uka)

) =

r

(
|S| −

∑
a∈S

∑
k∈S

uak

)
|S| −

∑
a∈S

∑
k∈S

uka
= r

“(d)⇒(e)” is trivial as (d) is stronger than (e).

“(e)⇒(a)” Let a and r is fixed. By above calculations of the forward bias, we have∑
a∈S

∑
b/∈S

uab =
∑
a∈S

∑
b/∈S

uba.

Consider the states S = {a} in which there is only one individual of type A then

∑
b/∈S

uab =
∑
b/∈S

uba ⇒ −uaa +

N∑
i=1

uai = −uaa +

N∑
i=1

uia ⇒ 1 =

N∑
i=1

uia
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is true for all a = 1, 2, . . . , N and therefore U is doubly stochastic and thus fR(W) is a circula-

tion.

“(d)⇒(b)” follows from Lemma 1.

“(b)⇒(c)” is trivial.

“(c)⇒(e)” follows from Lemma 1.

2.5.5 Proposition 3 (BDD and DBB)

The following statements are equivalent:

(a) fR(W) = WH or fR(W) ∈ CN .

(b) For all r > 0, W ∼BDD,r WH.

Proof. The replacement probabilities rij(F(S),W) for BDD dynamics can be rewritten as

rij(F(S),U) where U = (uij) = fR(W) = (wij/
∑
n win) by multiplying the numerator and

denominator with
∑
n win as follows

rij(F(S),W) =
1

N

wij/Fj(S)∑
n win/Fn(S)

=
1

N

wij/ (Fj(S)
∑
n win)∑

n win/ (Fn(S)
∑
n win)

⇒

uij/Fj(S)∑
n uin/Fn(S)

= rij(F(S),U)

and therefore we have that W ∼BDD,r U, for all r > 0. The forward bias using U for state S is

given by

P+
S

P−S
=

∑
a∈S

∑
b/∈S

1

N

uab/Fb∑
n

uan/Fn∑
a∈S

∑
b/∈S

1

N

uba/Fa∑
n

ubn/Fn

=

∑
a∈S

∑
b/∈S

uab∑
n

uan/Fn

1

r

∑
a∈S

∑
b/∈S

uba∑
n

ubn/Fn

. (2.6)

Similarly, let V = (vij) = fL(W) = (wij/
∑
n wnj). Then for DBB dynamics we have

bij =
wijFi∑
n wnjFn

=
wijFi/

∑
n wnj∑

n wnjFn/
∑
n wnj

=
vijFi∑
n vnjFn

and therefore the forward bias when using V is given by

P+
S

P−S
=

∑
a∈S

∑
b/∈S

1

N

vabFa∑
n

vnbFn∑
a∈S

∑
b/∈S

1

N

vbaFb∑
n

vnaFn

=

r
∑
a∈S

∑
b/∈S

vab∑
n

vnbFn∑
a∈S

∑
b/∈S

vba∑
n

vnaFn

.

The proof of the Proposition for DBB closely follows the one for BDD given below with U and

fR appropriately replaced by V and fL.
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If U ∈ CN , then U ∼BDD,r WH

If U ∈ CN then there are only two nonzero elements in each row. In particular, in row i of U

we have that uii, uiki = 1/2 for some ki 6= i. In the numerator of equation (2.6) for a ∈ S, b /∈ S

and ka 6= a we have that for all S

uab∑
n

uan/Fn(S)
=

uab
uaa/Fa(S) + uaka/Fka(S)

=

0 if b 6= ka,

1/2
1/2r+1/2 if b = ka.

Similarly, in the denominator of equation (2.6) for a ∈ S, b /∈ S and kb 6= b we have that for all

S

uba∑
n

ubn/Fn(S)
=

uba
ubb/Fb(S) + ubkb/Fkb(S)

=

0 if a 6= kb,

1/2
1/2+1/2r if a = kb.

This means that equation (2.6) for all S can be written as

x/2

1/2r + 1/2

/
1

r

y/2

1/2 + 1/2r
= rx/y

where x (y) is the number of nonzero uab (uba) terms in the numerator (denominator). If we

partition the vertices of the graph of U into any two sets V1, V2 then the number of edges e(i, j)

and e(j, i) for i ∈ V1 and j ∈ V2 are by definition the same because it is a cycle. This means that

for a ∈ S and b /∈ S the number of nonzero uab, uba terms in the numerator and denominator

respectively are the same hence x = y and rx/y = r as required. As per Lemma 1, EBDD,U,r is

ρ-equivalent to the Moran process.

If U ∼BDD,r WH for all r > 0, then U = WH or U ∈ CN

By Lemma 1, the forward bias (2.6) is equal to r for all S ⊂ {1, . . . , N} giving∑
a∈S

∑
b/∈S

uab∑
n

uan/Fn
=
∑
a∈S

∑
b/∈S

uba∑
n

ubn/Fn
⇒

∑
a∈S

∑
b/∈S

uab

∑
j /∈S

uaj +
1

r

∑
i∈S

uai

=
∑
b/∈S

∑
a∈S

uba∑
j /∈S

ubj +
1

r

∑
i∈S

ubi

. (2.7)

Note that if r = 1, (2.7) holds for all U ∈ WC . From now, we will consider r 6= 1 only. For

clarity, the remainder of this section of the proof is broken down into the following six steps.

Step 1: Derivation of general state dependent row-sum equation

Let U(a, S) =
∑
i∈S uai, i.e. 1− U(a, S) =

∑
j /∈S uaj . Equation (2.7) thus becomes∑

a∈S

1− U(a, S)

1− U(a, S) + U(a, S)/r
=
∑
b/∈S

U(b, S)

1− U(b, S) + U(b, S)/r
⇒
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∑
a∈S

1

1 + U(a, S)(1/r − 1)
=

N∑
n=1

U(n, S)

1 + U(n, S)(1/r − 1)
. (2.8)

Equation (2.8) can be written as a Taylor series as follows

∑
a∈S

∞∑
k=0

(−1)k(1/r − 1)k [U(a, S)]
k

=

N∑
n=1

U(n, S)

∞∑
k=0

(−1)k(1/r − 1)k [U(n, S)]
k ⇒

∑
a∈S

∞∑
k=0

(1− 1/r)k [U(a, S)]
k

=

N∑
n=1

∞∑
k=0

(1− 1/r)k [U(n, S)]
k+1

(2.9)

For equation (2.9) to hold for all r the coefficients of (1−1/r)k should be same, that is, for all k

∑
a∈S

[U(a, S)]
k

=

N∑
n=1

[U(n, S)]
k+1

. (2.10)

Step 2: The diagonal of U consists of non-zero elements

Consider the state S = {a} then equation (2.10) gives

ukaa =

N∑
n=1

uk+1
na . (2.11)

If uaa = 0 or 1 then (2.11) implies that all off-diagonal terms in column n are zero which is a

contradiction with W (and thus also U = fR(W)) being strongly connected, which means that

0 < uaa < 1.

Step 3: The nth column of U contains mn nonzero elements, all equal to 1/mn

Since 0 < uaa < 1, we can divide equation (2.11) by ukaa giving

1 =

N∑
n=1

una

(
una
uaa

)k
. (2.12)

We have that

lim
k→∞

(
una
uaa

)k
=


∞ una > uaa,

1 una = uaa,

0 una < uaa,

and therefore (2.12) implies that 0 ≤ una ≤ uaa. There must be n 6= a such that una = uaa as

otherwise, by (2.12), we would have uaa = 1. Let Ca = {i : uia = uaa}. (2.12) becomes

1 =

( ∑
i∈Ca

uaa

)
+

( ∑
j /∈Ca

uk+1
ja

ukaa

)
= |Ca|uaa +

( ∑
j /∈Ca

uk+1
ja

ukaa

)
. (2.13)

As k →∞, (2.13) implies that uaa = 1/|Ca|. Thus, again by (2.13), uja = 0 for all j /∈ Ca. This

means that in column n of U there should be mn = |Cn| with 2 ≤ mn ≤ N nonzero elements,

including unn, that are all equal to 1/mn.
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Step 4: mn is the same for all n

Considering state S = {i, j} and using uaa = 1/ma, (2.10) can be written as follows

(uii + uij)
k + (uji + ujj)

k =α
1

mk+1
i

+ β
1

mk+1
j

+ γ

(
1

mi
+

1

mj

)k+1

(2.14)

where α, β, γ are the number of rows where 1/mi is adjacent to 0, 0 is adjacent to 1/mj , and 1/mi

is adjacent to 1/mj in columns i and j respectively. More precisely, α is the cardinality of the set

Ki
ij = {n : uni = 1/mi, unj = 0}, β is the cardinality of the set Kj

ij = {n : uni = 0, unj = 1/mj}

and γ is the cardinality of the set Kij
ij = {n : uni = 1/mi, unj = 1/mj}.

Since Ci = Ki
ij ∪K

ij
ij and Cj = Kj

ij ∪K
ij
ij , we have that mi = α+ γ and mj = β + γ. Since

Ki
ij ,K

j
ij ,K

ij
ij are disjoint, we have α + β + γ ≤ N . Now, consider the different possibilities we

can have on the left-hand side of equation (2.14).

Case 1:

uii = 1/mi, uij = 0 in row i and uji = 1/mi, ujj = 1/mj in row j. Thus α, γ ≥ 1 and therefore

equation (2.14) gives

1

mk
i

+

(
mi +mj

mimj

)k
=

α

mk+1
i

+
β

mk+1
j

+ γ

(
mi +mj

mimj

)k+1

⇒

1

(α+ γ)k
+

(
α+ β + 2γ

(α+ γ)(β + γ)

)k
=

α

(α+ γ)k+1
+

β

(β + γ)k+1
+ γ

(
α+ β + 2γ

(α+ γ)(β + γ)

)k+1

⇒

(β + γ)k + (α+ β + 2γ)k

[(α+ γ)(β + γ)]k
=
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

[(α+ γ)(β + γ)]k+1
⇒

(β + γ)k + (α+ β + 2γ)k =
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

(α+ γ)(β + γ)
⇒

(β + γ)k + (α+ β + 2γ)k =
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
+

(αγ + βγ + 2γ2)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
⇒

γ(β + γ)k

α+ γ
=
β(α+ γ)k

β + γ
+

(γ2 − αβ)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
.

As k →∞, we get (β + γ)k 6= (α+ γ)k ± (α+ β + 2γ)k since α+β+2γ > β+γ, α+γ hence we

want γ2 = αβ to get rid off (α+β+2γ)k. This implies that β+γ = α+γ ⇒ α = β ⇒ α = β = γ

giving mi = mj .

Case 2:

uii = 1/mi, uij = 1/mj in row i and uji = 0, ujj = 1/mj in row j. This case is symmetrical

to Case 1 and therefore we get that α = β = γ giving mi = mj .

Case 3:

uii = 1/mi, uij = 1/mj in row i and uji = 1/mi, ujj = 1/mj in row j. Thus γ ≥ 2 and

therefore equation (2.14) gives

2

(
mi +mj

mimj

)k
=

α

mk+1
i

+
β

mk+1
j

+ γ

(
mi +mj

mimj

)k+1

⇒
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2

(
α+ β + 2γ

(α+ γ)(β + γ)

)k
=
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

[(α+ γ)(β + γ)]k+1
⇒

2 (α+ β + 2γ)
k

=
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

(α+ γ)(β + γ)
⇒

2 (α+ β + 2γ)
k

=
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
+

(αγ + βγ + 2γ2)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
⇒

(2αβ + αγ + βγ)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
=
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
.

As k →∞, we get (α+ β + 2γ)k 6= (β + γ)k + (α+ γ)k since α+β+ 2γ > β+ γ, α+ γ hence

we want 2αβ + αγ + βγ = 0⇒ α, β = 0 giving mi = mj .

Case 4:

uii = 1/mi, uij = 0 in row i and uji = 0, ujj = 1/mj in row j. Thus α, β ≥ 1 and therefore

equation (2.14) gives

1/mk
i + 1/mk

j =
α

mk+1
i

+
β

mk+1
j

+ γ

(
mi +mj

mimj

)k+1

⇒

1

(α+ γ)k
+

1

(β + γ)k
=

α

(α+ γ)k+1
+

β

(β + γ)k+1
+ γ

(
γ + β + 2γ

(α+ γ)(β + γ)

)k+1

⇒

(β + γ)k + (α+ γ)k

[(α+ γ)(β + γ)]k
=
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

[(α+ γ)(β + γ)]k+1
⇒

(β + γ)k + (α+ γ)k =
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

(α+ γ)(β + γ)
⇒

(β + γ)k + (α+ γ)k =
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
+

γ(α+ β + 2γ)k+1

αβ + αγ + βγ + γ2
.

As k → ∞, we get 0 6= (α + β + 2γ)k since α, β ≥ 1 hence we require that γ = 0 to get an

equality.

Conclusion from all the cases above

We see that mi 6= mj is potentially possible only in Case 4. However, U is strongly connected.

If one connects i and j by a path i = i0, i1, i2, . . . in = j, then one has mik = mik+1
as ik and

ik+1 must fall into Case 1, Case 2 or Case 3 above. Thus mi = mj . This implies that every

column of U has 2 ≤ m ≤ N nonzero elements, including unn, that are all equal to 1/m. This

is also true for every row of U because it is right stochastic by definition.

Step 5: There exists state S such that Ca = Ca′ for all a, a′ ∈ S

We can define the state Rx = {n : uxn = uxx} then, by definition, x ∈ Rx and |Rx| = m since

there are m nonzero elements in row x of U. Consider the state S = Rx \ {y} for y ∈ Rx \ {x}.

For this S (as well as any other state), we have that

if n ∈ S then 1/m

if n /∈ S then 0

 ≤ U(n, S) ≤ min(m, |S|)
m

.
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We can therefore write equation (2.10) in the form

min(m,|S|)∑
i=1

λS(i)

(
i

m

)k
=

min(m,|S|)∑
i=0

λ′S(i)

(
i

m

)k+1

(2.15)

where λS(i) is the number of U(n, S) terms equal to i/m for n ∈ S and λ′S(i) is the number

of U(n, S) terms equal to i/m for n ∈ N , which means that λ′S(i) ≥ λS(i) for i 6= 0. The

ratio of the left-hand side and right-hand side of equation (2.15) should always be equal to one.

Therefore, as k →∞, we require that

λS(imax) = λ′S(imax)
imax

m

where imax is the largest i such that λS(i) > 0.

We have that imax = m− 1 in equation (2.15) because |S| = m− 1 so U(x, S) = (m− 1)/m.

This means that for state S, as k →∞, we require that

λS(m− 1) = λ′S(m− 1)
m− 1

m
.

Since λS(m− 1) is an integer, λ′S(m− 1) has to be a multiple of m and the only possible value

that satisfies this criteria is λ′S(m− 1) = m hence λS(m− 1) = m− 1.

Since λ′S(m− 1) = m there exist m rows j1, j2, . . . , jm such that U(jn, S) = (m− 1)/m, that

is, ujna = 1/m ∀a ∈ S. This means that Ca = {j1, j2, . . . , jm} ∀a ∈ S hence Ca = Ca′ for all

a, a′ ∈ S.

Step 6: m = 2 or m = N

By contradiction, assume that 2 < m < N . We can consider another state S′ = Rx \ {z} such

that z ∈ Rx \ {x, y}. We then have that imax = m− 1 in equation (2.15) because |S′| = m− 1

so U(x, S′) = (m− 1)/m. As before, this means that Ca = Ca′ for all a, a′ ∈ S′. Since x ∈ S, S′

and Rx = S ∪ S′ we have that Ca = Ca′ for all a, a′ ∈ Rx. For 2 < m < N this implies that

vertices i ∈ Rx are disconnected from j ∈ N \ Rx and we therefore have disconnected graphs,

a contradiction.
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Chapter 3

Social Dilemmas with Variable

Group Size

3.1 Introduction

This chapter defines and classifies different multiplayer games that are social dilemmas. In social

dilemmas the group as a whole faces faces a dilemma because, collectively, unselfish behaviour,

i.e. cooperating, would benefit the entire group but, individually, selfish behaviour, i.e. defecting,

would leave the individual better off. A model of population evolution is not used to classify

these games and, instead, the payoff for variable group sizes are calculated and compared to one

another. Therefore, the structure of the population and dynamics (i.e. births and deaths) are

not required. For a focal individual in a group, changing the group composition, by adding or

removing a cooperator or defector, may or may not be beneficial in terms of the payoff received.

By looking at this behaviour, we get a better understanding of the social dilemma being studied.

In a social dilemma, there are several different interpretations of cooperative behaviour

[45]. The one we want to focus on in this chapter is the one considered in [83] that is a

slight variation of the individual-centered interpretation of [45] where the effect of cooperation

is measured through the change in payoff of individuals rather than the group. In particular,

this interpretation compares the payoff an individual receives when interacting in groups of

the same size and is therefore quite restrictive. The objective of this chapter is to extend this

interpretation to interactions in groups of variable size. Overall this will give us a more general

idea of what is meant by cooperative behaviour.

In chapter 2, the model considered worked with fixed fitness but the models considered later

have multiplayer game-theoretic interactions. Therefore, this chapter provides a preview of
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these kinds of multiplayer interactions before they are considered in the context of a population

evolution model.

3.2 Conditions for Cooperation

The social dilemmas considered involve two strategies called cooperate (C) and defect (D).

The games considered are symmetric [11], which means that only the combination of strategies

matters rather than the strategy used by each individual player. In particular, the payoff to

a cooperator (defector) in a group with c other cooperators and d other defectors is written

as RC(c, d) (RD(c, d)). When the type of the focal individual does not need to be specified,

R∗(c, d) will be used instead.

The cooperate and defect strategies depend upon the exact interpretation of cooperation

used, which imposes conditions on the payoffs received by a focal individual. In particular,

the conditions restrict how the payoffs to a focal individual should change when the group it

is present in changes. The change in payoff for three different scenarios are considered: the

composition of the group changes but its size remains the same; the number of defectors in the

group changes; and the number of cooperators in the group changes.

3.2.1 Conditions for groups of fixed size

For groups of fixed size where the composition of the group changes, the conditions that specify

the change in payoff to a focal individual are given by [83] and is based on the premise that

the focal individual, regardless of its own strategy, prefers group members who cooperate. For

groups of size m+ 1, this condition is given by

R∗(c,m− c) ≤ R∗(c′,m− c′) for 0 ≤ c < c′ ≤ m, (3.1)

which states that the payoff to a focal individual may increase if defectors are replaced by

cooperators in a group of fixed size. To ensure that cooperation has a chance to evolve, the

following additional condition is imposed by [83]

RC(m, 0) > RD(0,m). (3.2)

This condition says that a cooperator in a group of cooperators strictly has a higher payoff that

a defector in a group of defectors, i.e. the best possible situation for cooperators yields a higher

reward than the worst possible situation for defectors. However, this additional condition is not

required for cooperation.
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An equivalent way of expressing condition (3.1) without m and, therefore, more suitable

when talking about groups of variable size is the following

R∗(c, d) ≤ R∗(c+ 1, d− 1) c ≥ 0, d > 0. (3.3)

Note here that the group size remains the same because adding a cooperator is compensated for

by removing a defector. This equation can then be rewritten in either one of the following ways

R∗(c− 1, d) ≤ R∗(c, d− 1) c > 0, d > 0 (3.4)

or

R∗(c, d+ 1) ≤ R∗(c+ 1, d) c, d ≥ 0. (3.5)

This says that a focal individual, regardless of its type, prefers replacing a defector in the group

by a cooperator for groups of the same size. As will be seen later, both (3.4) and (3.5) are used

when making comparisons with R∗(c, d).

3.2.2 Conditions for changing the number of defectors

In the context of variable groups sizes, the conditions for cooperation when the number of

defectors changes has not been specified before and will therefore be specified here as follows.

A focal individual, regardless of its type, prefers not to add a defector to the group. This can

be written as

R∗(c, d+ 1) ≤ R∗(c, d) c, d ≥ 0 (3.6)

or, by induction,

R∗(c, d) ≤ R∗(c, d− 1) c ≥ 0, d > 0. (3.7)

Combining equations (3.6) and (3.7) gives the following condition

R∗(c, d+ 1) ≤ R∗(c, d) ≤ R∗(c, d− 1) c ≥ 0, d > 0. (3.8)

This is the condition required for cooperation when the number of defectors changes. This

condition is specified in this way in order to be able to clearly differentiate between defectors

and cooperators. In particular, a defector cannot benefit a focal individual but, as is specified

later, a cooperator can. In general, if a defector could benefit a focal individual, there would be

no pure defectors or cooperators, rather each individual’s behaviour would be determined by a

continuum of strategies with both cooperative and defective elements. So whether an individual

is a defector or not is relative to the behaviour of others. This is not what is wanted here, hence,

the condition used clearly separates defectors from cooperators.
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R∗(. . .) ≤ R∗(. . .) ≤ R∗(. . .) ≤ R∗(. . .) ≤ R∗(. . .)

c, d+ 1 c, d c− 1, d c, d− 1 c+ 1, d

c, d+ 1 c, d c− 1, d c+ 1, d c, d− 1

c− 1, d c, d+ 1 c, d c, d− 1 c+ 1, d

c, d+ 1 c− 1, d c, d c, d− 1 c+ 1, d

c− 1, d c, d+ 1 c, d c+ 1, d c, d− 1

c, d+ 1 c− 1, d c, d c+ 1, d c, d− 1

c, d+ 1 c− 1, d c+ 1, d c, d c, d− 1

c− 1, d c, d+ 1 c+ 1, d c, d c, d− 1

c, d+ 1 c, d c+ 1, d c− 1, d c, d− 1

c, d+ 1 c+ 1, d c, d c− 1, d c, d− 1

c, d+ 1 c+ 1, d c− 1, d c, d c, d− 1

Table 3.1: Possible payoff rankings for a cooperation game.

3.2.3 Conditions for changing the number of cooperators

The conditions required for cooperation when the number of cooperators changes are left open.

This means that, for the interpretation of cooperation used here, a focal individual may or

may not prefer adding a cooperator to the group. This interpretation of cooperation is more

general and allows many more cooperative strategies to be considered. For example, suppose

that cooperators provide a shared resource such that adding another cooperator increases the

shared resource. If the amount provided by each additional cooperator diminishes, a point will

be reached where adding another cooperator results in a fall in the share that each individual

receives. In this case, cooperators provide a benefit to the focal individual up to a certain point.

If cooperators always benefited the focal individual, this kind of behaviour would be excluded.

Therefore, conditions given by equations (3.4), (3.5) and (3.8) are all that is required for the

interpretation of cooperation used here.

3.2.4 Combining the conditions

By combining the conditions given by equations (3.4), (3.5) and (3.8), the payoffs where there

is one more cooperator (c+ 1, d), one more defector (c, d+ 1), one less cooperator (c− 1, d) and

one less defector (c, d− 1) can be ranked with respect to the group (c, d) for a focal individual,

regardless of its type. All the possible payoff rankings are given in Table 3.1.
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3.3 Types of Social Dilemmas

There are two broad categories of social dilemmas that identified in [47] that are described here

in relation to the conditions identified above.

3.3.1 Public Goods Dilemmas

This dilemma involves the production of a public good that can be enjoyed by all group members

whether or not they have contributed towards its production. This means that public goods are

non-excludable and, in additions to this, they may also be non-rival whereby its consumption

by one individual does not diminish its availability to another individual. A pure public good

is both entirely non-exludable and non-rival, however, in general public goods have a varying

degree of both non-excludability and non-rivalry. For public goods dilemmas, the cooperators

are assumed to always contribute towards the production of the public good and defectors do

not.

For the public goods dilemmas considered here, the payoffs are of the form

RC(c, d) = pC(c) · uC(c, d) · V − kC(c) ·K (3.9)

RD(c, d) = pD(c) · uD(c, d) · V (3.10)

where p∗(c) is the production function that determines how much of a public good V is produced

when a focal individual is present with c other cooperators, u∗(c, d) is the share of the public

good a focal individual gets when present with c (d) other cooperators (defectors), kC(c) is the

cost function that determines the share of the cost K paid by a focal cooperator present with

c other cooperators. The public good V > 0 and cost K > 0 are used as universal parameters

for the different public goods games. Note that since the defectors do not contribute to the

production of a good, the defector production function will be set to pD(c) = pC(c − 1). Also,

for the same reason, the defectors do not have a cost function.

In [47], several different forms of production functions are identified. Let ∆pC(c) = pC(c)−

pC(c− 1) then the production function can take the following forms:

• Convex (accelerating or increasing returns to scale):

∆pC(c+ 1) > ∆pC(c) > 0 ∀c.

• Linear (constant returns to scale):

∆pC(c+ 1) = ∆pC(c) ∀c.

• Concave (decelerating or decreasing returns to scale):

0 < ∆pC(c+ 1) < ∆pC(c) ∀c.

71



• Step function: In this case no public good is produced if the number of cooperators is

below some threshold L, for example, pC(c) = 1c+1≥L where

1c+1≥L =

1 c+ 1 ≥ L,

0 c+ 1 < L.

The public good sharing function u∗(c, d) can be interpreted in two different ways. First,

they can be constant such that uC(c, d) = uD(c, d) = x > 0. This implies that the public good is

pure, i.e. non-excludable and non-rivalrous, and all group members get the same amount of the

public good. Second, it is some non-constant function that represents a public good exhibiting

excludability or rivalry (or both). The cost function kC(c) behaves in the same way.

In Table 3.1, all the inequalities can appear within a public goods dilemma. For the inequal-

ities where R∗(c − 1, d) ≤ R∗(c + 1, d), this seems consistent because cooperators contribute

towards the production of a public good. The inequalities where R∗(c − 1, d) ≥ R∗(c + 1, d)

may at first seem inconsistent, however, they do appear in public goods dilemmas particularly

when the production function is decelerating. In this case, adding another cooperator may not

increase the payoff to the focal individual.

Examples of Public Goods Dilemmas

The public goods dilemmas considered are summarized in Table 3.2. An explanation of each

one is given in what follows.

Prisoner’s Dilemma [33] The public good is non-excludable but rivalrous such that it is

shared equally amongst all group members and grows linearly with the number of cooperators.

The cost is not shared amongst the cooperators in the group who each pay K. The payoffs are

given by

RC(c, d) =
c+ 1

c+ d+ 1
V −K, (3.11)

RD(c, d) =
c

c+ d+ 1
V. (3.12)

In Figure 3.1, the vector field for the prisoner’s dilemma is shown. The way in which the

vector field is constructed is explained in Section 3.4 (pg. 81). Each vector gives the direction

in which an increase in payoff to the focal individual can be achieved. Given that the x-axis (y-

axis) indicates the number of cooperators (defectors) present with the focal individual, a vector

pointing to the right (left) indicates that the payoff can be increased by adding (removing) a

cooperator and a vector pointing downwards indicates that an increase in payoff can be achieved

by removing a defector. Note that there are no vectors pointing upwards as adding a defector
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pC(c) uC(c, d) uD(c, d) kC(c)

Prisoner’s Dilemma c+ 1 1
c+d+1

1
c+d+1 1

Prisoner’s Dilemma

with variable pro-

duction function

∑c
k=0 ω

k 1
c+d+1

1
c+d+1 1

Stag Hunt (c+ 1)1c+1≥L
1

c+d+1
1

c+d+1 1

Fixed Stag Hunt 1c+1≥L
1

c+d+1
1

c+d+1 1

Charitable Pris-

oner’s Dilemma

c+ 1


c
c+1

1
c+d c > 0

0 c = 0


1
c+d c > 0

0 c = 0

1

Volunteer’s

Dilemma

1 1 1 1

Threshold Volun-

teer’s Dilemma

1c+1≥L 1 1 1

Snowdrift 1 1 1 1
c+1

Threshold Snow-

drift

1c+1≥L 1 1 1c+1<L

L +
1c+1≥L
c+1

Table 3.2: Summary of public goods dilemmas used in this chapter. In each case PD(c) =

PC(c− 1).
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cannot increase the payoff. A vector pointing diagonally right (left) and downwards indicates

that a payoff can be increased by either adding (removing) a cooperator and removing a defector.

However, if it biased more the the right (left) than downwards, adding (removing) a cooperator

is more effective than removing a defector.
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Figure 3.1: Vector field for prisoner’s dilemma where V = 5/2, K = 4/3. The construction of

the vector fields is explained in Section 3.4 (pg. 81). The direction of each vector indicates the

change in group composition required to increase the payoff to a focal individual. For example, a

vector pointing diagonally right indicates that an increase in payoff can be achieved by adding a

cooperator or removing a defector. If the vector has more rightward bias, adding a cooperator is

more effective that removing a defector, and, if the vector has more downward bias, the opposite

is true.

Prisoner’s dilemma with variable production function [9] Similar to the Prisoner’s

Dilemma but the public good can grow at a varying rate with respect to the number of cooper-

ators. The payoffs are given by

RC(c, d) = −K +
V

c+ d+ 1

c∑
n=0

ωn ω > 0 (3.13)

RD(c, d) =
V

c+ d+ 1

c−1∑
n=0

ωn ω > 0 (3.14)

The production function is convex for ω > 1, concave for ω < 1, and linear for ω = 1 (this gives

the original prisoner’s dilemma).
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(a) Accelerating production function ω = 1.5.
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(b) Decelerating production function ω = 0.5.

Figure 3.2: Vector field for prisoner’s dilemma with variable production function where V =

5/2, K = 4/3.

Stag Hunt [74] This is a prisoner’s dilemma where the production function is a step function

such that at least L > 1 cooperators are required for the public good to be produced. The

cooperators always pay a cost K whether the threshold is met or not. The payoffs are given by

RC(c, d) =


c+1
c+d+1V −K c+ 1 ≥ L

−c c+ 1 < L

(3.15)

RD(c, d) =


c

c+d+1V c ≥ L

0 c < L

(3.16)
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Figure 3.3: Vector field for stag hunt with threshold L = 5 where V = 5/2, K = 4/3.

Fixed Stag Hunt[74] Similar to the stag hunt but the public good is of a fixed size, i.e. it

does not grow with the number of cooperators. The payoffs are given by

RC(c, d) =


V

c+d+1 −K c+ 1 ≥ L

−c c+ 1 < L

(3.17)

RD(c, d) =


V

c+d+1 c ≥ L

0 c < L

(3.18)

0 2 4 6 8 10
Number of Cooperators c

0

2

4

6

8

10

N
u
m

b
e
r 

o
f 

D
e
fe

ct
o
rs

 d

Payoff to Cooperator RC (c,d)

0 2 4 6 8 10
Number of Cooperators c

0

2

4

6

8

10

N
u
m

b
e
r 

o
f 

D
e
fe

ct
o
rs

 d

Payoff to Defector RD (c,d)

Figure 3.4: Vector field for fixed stag hunt with threshold L = 5 where V = 5/2, K = 4/3.

Charitable Prisoner’s Dilemma [14] This is an extension of the prisoner’s dilemma where

the public good is now excludable so that a cooperator cannot consume its own contribution

to the public good. In other words, the cooperators behave charitably by giving away their
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contribution to the other members of the group. Furthermore, it is assumed that a cooperator

will still pay the cost K when alone but not receive the public good. The payoffs are then given

by

RC(c, d) =


c
c+dV −K c > 0

−K c = 0

(3.19)

RD(c, d) =


c
c+dV c > 0

0 c = 0

(3.20)
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Figure 3.5: Vector field for charitable prisoner’s dilemma where V = 5/2, K = 4/3.

Volunteer’s Dilemma [22] The public good is pure and of fixed size; it is provided if at

least one cooperator pays a cost K, which all cooperators do. The payoffs are given by

RC(c, d) = V −K (3.21)

RD(c, d) =

V c > 0

0 c = 0

(3.22)
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Figure 3.6: Vector field for volunteer’s dilemma where V = 5/2, K = 4/3.

Threshold Volunteer’s Dilemma [9] Volunteer’s dilemma with threshold production func-

tion such that L > 1 cooperators are required to provide the public good. The cooperators

always pay cost K regardless of whether the threshold is met or not. The payoffs are given by

RC(c, d) =

V −K c+ 1 ≥ L

−K c+ 1 < L

(3.23)

RD(c, d) =

V c ≥ L

0 c < L

(3.24)
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Figure 3.7: Vector field for threshold volunteer’s dilemma with L = 5 where V = 5/2, K = 4/3.
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Snowdrift [9] Volunteer’s dilemma where the cost is shared equally between all cooperators

in the group. The payoffs are given by

RC(c, d) = V − K

c+ 1
(3.25)

RD(c, d) =

V c > 0

0 c = 0

(3.26)
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Figure 3.8: Vector field for snowdrift where V = 5/2, K = 4/3.

Threshold Snowdrift [96] Snowdrift game with a threshold production function such that

at least L > 1 cooperators are required to produce the public good. The cost is shared equally

between the cooperators if the threshold is met, otherwise, each cooperator pays K/L. The

payoffs are given by

RC(c, d) =

V −
K
c+1 c+ 1 ≥ L

−KL c+ 1 < L

(3.27)

RD(c, d) =

V c ≥ L

0 c < L

(3.28)
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Figure 3.9: Vector field for threshold snowdrift with threshold L = 5 where V = 5/2, K = 4/3.

3.3.2 Commons Dilemmas

Commons dilemmas were popularized by [36], who gave an example of herders with access to

a common parcel of land. Each herder is interested in putting as many of their cows on that

land because they receive the benefit of each additional cow but the damage to the commons

is shared by the group. However, if all the herders chose this option, the commons will be

damaged irreparably and all will suffer. In an evolutionary biology context, consider the example

of parasitic viruses residing in a bacterial cell host [23]. A virus can be more competitive and

use up more resources resulting in a larger number of direct progeny. If all the viruses did this,

the host will die faster and the total number of progeny will be smaller. On the other hand,

the viruses can be less competitive and use less resources. In this case, the number of direct

progeny would be smaller, but the total number of progeny would be larger. These examples are

representative of commons dilemmas in general, in particular, they involve the use of commons

that are readily available resources freely available for any group member to consume. However,

commons are rivalrous, therefore, its consumption by one individual diminishes its availability

for another individual. The dilemma here is that the group is better off if a common is used in

an equitable manner but the individual is better off being greedy and having the entire common

to itself.

For commons dilemmas it will be assumed that cooperators consume a common in an equi-

table manner and defectors do not. In Table 3.1, the inequalities where R∗(c+1, d) ≤ R∗(c−1, d)

are the only ones that appear in commons dilemmas. This is because the focal individual is

better off having a common to itself and therefore prefers removing a cooperator to adding a

cooperator. The following is an example of a commons dilemma.
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Hawk-Dove [16] A group of cooperators share a common V equally, however, they flee if

there is a defector present getting no share of the common. A defector chases away cooperators

and fights other defectors for the common. Each defector has an equal chance of winning the

entire common V , with the losers incurring a cost K. The payoffs are given by

RC(c, d) =


V
c+1 d = 0

0 d > 0

(3.29)

RD(c, d) =
V − dK
d+ 1

(3.30)
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Figure 3.10: Vector field for hawk-dove commons dilemma where V = 5/2, K = 4/3.

3.4 Constructing the vector fields

This section explains how the 2-dimensional vector fields are constructed where the vectors

indicate the direction in which an increase in payoff can be achieved. The number of defectors

will be plotted on the y-axis and cooperators on the x-axis such that the following quantities

δ∗,C+(c, d) = max(R∗(c+ 1, d)−R∗(c, d), 0)

δ∗,C−(c, d) = max(R∗(c− 1, d)−R∗(c, d), 0)

δ∗,D−(c, d) = max(R∗(c, d− 1)−R∗(c, d), 0)

will be used to determined the vector at some point (c, d). In particular, if δ∗,C+(c, d) > 0, the

vector

v∗,C+(c, d) =

(
δ∗,C+(c, d)

δ∗,C+(c, d) + δ∗,D−(c, d)
,

−δ∗,D−(c, d)

δ∗,C+(c, d) + δ∗,D−(c, d)

)
(3.31)
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is drawn, which indicates that an increase in payoff can be achieved by either adding a cooperator

or removing a defector. However, it is more effective to add a cooperator than remove a defector

if δ∗,C+(c, d) > δ∗,D−(c, d). Also, if δ∗,C−(c, d) > 0, the vector

v∗,C−(c, d) =

(
δ∗,C−(c, d)

δ∗,C−(c, d) + δ∗,D−(c, d)
,

−δ∗,D−(c, d)

δ∗,C−(c, d) + δ∗,D−(c, d)

)
(3.32)

is drawn, which indicates that an increase in payoff can be achieved by either removing a

cooperator or removing a defector. However, if δ∗,C+(c, d) = δ∗,C−(c, d) = 0, neither v∗,C+(c, d)

nor v∗,C−(c, d) are drawn and only the vector

v∗,D−(c, d) =

(0, 0) δ∗,D−(c, d) = 0,

(0,−1) δ∗,D−(c, d) 6= 0

(3.33)

is drawn, which indicates whether removing a defector increases the payoff or not. Note that

only the cases where the payoff can be increased are considered, therefore R∗(c, d + 1) is not

considered since R∗(c, d+ 1) ≤ R∗(c, d) by equation (3.8).

3.5 Discussion

Two main categories of social dilemmas were identified: public goods dilemmas and commons

dilemmas. The key difference between these two dilemmas is that the former involves the

production of a joint good and the latter does not. In public goods dilemmas, the dilemma faced

by a focal individual within a group is whether or not to contribute towards the production of

a public good because, regardless of what it does, it can still enjoy its benefits. However, if

all individuals decide not to contribute, the entire group is worse off as there will be no public

good to consume. In commons dilemmas, a common is a freely available resource that can be

consumed by the entire group, however, it is rivalrous thereby diminishing in availability as

more individuals consume it. A focal individual faces the dilemma where consuming as much

of the commons leaves itself better off but the group worse off. These characteristics of public

goods and commons dilemmas are captured in the conditions given.

Several examples of games of public goods and commons dilemmas are given. A bulk of

the examples given are public goods games because of the diversity of the production function.

In particular, multiplayer public goods games have been considered in a number of papers:

[37, 48, 49, 57, 89, 91, 96, 102]; where as the multiplayer Hawk-Dove has only been considered

in [16]. In order to visualize the behaviour found within these games, a vector field for each

of the games is plotted. The vectors indicate the direction of a preferred group change for the

focal that results in an increase in its payoff. The vector fields act a visual substitute for the

conditions given in Table 3.1. Some of the games are sensitive to the reward V , cost K and
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other parameters specific to the game, like the threshold L, and it here that the vector fields are

quite effective at spotting the changes that arise, for example, see Figure 3.2. In the following

chapters, some of these games will be investigated in the context of models where interactions

between individuals take place in groups of variables sizes.
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Chapter 4

Developments in the

Broom-Rychtář framework and

the Territorial Raider Model

4.1 Introduction

This chapter serves two purposes, the first part develops the Broom-Rychtář (BR) framework

[16], which was introduced in Section 1.6 (pg. 38), so that it can be used to create population

evolution models. The second part applies the BR framework to create a population evolution

model called the territorial raider model.

4.2 Developments in the Broom-Rychtář framework

When the BR framework was first introduced in [16], it described the structure of the population

in terms of individuals distributed over places and how this distribution changes over time. The

change in the population distribution could depend upon various different things, for example,

there could be history and time dependency. It was shown how this changing distribution affects

the interaction between individuals thereby provided a mechanism with which to determine

the fitness of the individuals. What was missing is how this changing distribution affects the

dynamics of the population, that is, the births and deaths. The developments discussed here

aims to address this and, to achieve this, the notation is slightly changed from that of the

original paper with some new terminology being introduced.

The objective of the BR framework is to provide a cohesive solution to developing population
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evolution models. Alternative approaches, for example, [73] uses two graphs, one called the

‘interaction’ graph to determine the fitness of individuals and another called the ‘replacement’

graph to determine the births and deaths of individuals. With this approach there is no clear link

between the two graphs that can be explained by some common population-derived factors. The

development of the BR framework therefore improves on this kind of approach by providing a way

of deriving both the fitness and dynamics from the same set of factors, which is the movement

of individuals. There is therefore a clear link between the interactions and replacements that

happen in the population.

The following sections describe the main components of the framework: structure, fitness,

and evolutionary dynamics. Notation used in this chapter is summarised in Table 4.1.

Notation Definition Description

mn,t ∈ {1, . . . ,M} Place where In is at time t.

mt = [mn,t]
N
n=1 Population distribution at time t.

m<t = (mt−1, . . . ,m0) Population distribution history.

pt(m|m<t) ∈ [0, 1] Probability population has distribution m at time t given m<t.

πt ∈ [0, 1] Population distribution probability function (PDPF).

P (m<t) ∈ [0, 1] Probability that population has history m<t.

πn,t ∈ [0, 1] Individual distribution probability function (IDPF).

fn,t ≥ 0 Fitness contribution of In at time t.

Fn,t > 0 Fitness of In at time t.

Gn ⊂ {1, 2 . . . , N} Direct group: group that In is in.

wi,j,t ≥ 0 Replacement weight that Ii replaces Ij at time t.

Wt = [wi,j,t]i,j=1,...,N Weighted adjacency matrix of evolutionary graph.

ui,j,t ≥ 0 Replacement weight contribution that Ii assigns to Ij at time t.

Table 4.1: New notation used in this chapter.

4.2.1 The population: structure and distribution

The population structure describes the restrictions placed on the interactions between the mem-

bers of the population. In [16], restrictions originate from the movement of individuals in the

population, which is considered to be stochastic. The structure of the population is mathemat-

ically described using the population distribution that gives the position of every individual in

the population. Let In represent individual n in the population and Pm represent place m in the

population. In a population of N individuals who can move around M places, the population
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distribution at time t is given in [16] by an N ×M binary matrix Xt = (X
(t)
n,m) where

X(t)
n,m =

1 if In is in Pm at time t,

0 otherwise.

(4.1)

In this chapter an alternative matrix representation of the population distribution is presented

as it is more convenient to use when considering the models in the later chapters. Here, the

population distribution at time t will be denoted by the matrix Mt = [Mn,t]n=1,...,N , where

Mn,t = m if individual In is in place Pm at time t.

The framework assumes that the movement of individuals is probabilistic such that there is

dependence upon time and the current and past movements of individuals in the population. In

particular, the transition probability function denoted pt(m|m<t) gives the probability that the

movement of individuals at time t results in a population distribution m given the population

distribution history m<t = (mt−1, . . . ,m1,m0). The transition probability function is defined

as follows

pt(m|m<t) = P(Mt = m|Mt−1 = mt−1, . . . ,M0 = m0) (4.2)

whose exact form will depend upon the model being used but will always satisfy

1 =
∑
m

pt(m|m<t) ∀ t,m<t. (4.3)

The population distribution probability function (PDPF) πt(m) gives the probability that the

population distribution is m after t time steps regardless of the population distribution history.

The PDPF is expressed using the transition probabilities as follows

πt(m) =P(Mt = m) =
∑
m<t

pt(m|m<t)P (m<t) (4.4)

where P (m<t) denotes the historical PDPF that gives the probability that the population

distribution history is m<t, that is,

P (m<t) =P(M0 = m0,M1 = m1, . . . ,Mt−1 = mt−1)

=pt−1(mt−1|m<t−1) · · · p1(m1|m0)π0(m0) (4.5)

assuming that the initial population distribution, π0(m0), is known.

Individual movement model

In general, [16] assume that the movement of individuals could depend on each other. This can

be simplified by considering the individual movement model where individuals are assumed to

move independently of each other. The PDPF can is then given by

πt(m) =
∏
n

πn,t(mn) (4.6)
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where πn,t(mn) is the individual distribution probability function (IDPF) that gives the probabil-

ity of individual In being present in place Pmn at time t regardless of the history of the process.

The expression for πn,t(mn) will depend upon whether the movement of In is dependent upon

the whole population distribution history or just its own individual history.

Dependence on the population distribution history

When the movement of individual In depends upon the distribution history of the whole popu-

lation, the individual transition probability function pn,t(mn|m<t) gives the probability that In

moves to place mn at time t given the population history m<t, that is,

pt(mn|m<t) = P(Mn,t = mn|Mt−1 = mt−1, . . . ,M0 = m0). (4.7)

The IDPF is then given by

πn,t(mn) =
∑
m<t

pn,t(mn|m<t)P (m<t). (4.8)

Dependence on the individual distribution history

When the movement of individual In depends only upon its own distribution history

mn,<t = (mn,t−1, . . . ,mn,0), which is independent from the history of the other individuals,

then the individual transition probability function is given by

pt(mn|mn,<t) = P(Mn,t = mn|Mn,t−1 = mn,t−1, . . . ,Mn,0 = mn,0). (4.9)

The IDPF is then given by

πn,t(mn) =
∑
mn,<t

pn,t(mn|mn,<t)Pn(mn,<t) (4.10)

where Pn(mn,<t) denotes the individual history distribution, that is,

Pn(mn,<t) = pn,t−1(mn,t−1|mn,<t−1) · · · pn,1(mn,1|mn,0)π0(mn,0) (4.11)

assuming the initial IDPF, π0(mn,0), is known.

The fully independent movement model

The fully independent movement model assumes that individuals move independently of each

other, history and time. This means that the probability that individual In is in place Pm is

always the same so the individual transition function will be denoted by pn,m. The IDPF is

therefore the same as the individual transition function, that is,

πn,t(m) = pn,m

1︷ ︸︸ ︷∑
mn,<t

Pn(mn,<t) = pn,m (4.12)
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and therefore the PDPF can simply be written

πt(m) = p(m). (4.13)

4.2.2 Fitness

In [16] the contribution to an individual’s fitness depends upon the time t, the current population

distribution m and historical population distributions m<t. The fitness contribution of In is

denoted

fn,t(m|m<t) (4.14)

where the exact form will depend upon the assumptions about the factors that contribute to an

individual’s fitness. The mean fitness contribution at time t is then given by

f̄n,t =
∑
m

∑
m<t

fn,t(m|m<t)pt(m|m<t)P (m<t). (4.15)

It is assumed that the fitness of an individual at time t is given by averaging the mean fitness

contribution across all time periods up to and including t. The fitness of individual In at time

t is then given by

Fn,t =
1

t

t∑
k=1

f̄n,k. (4.16)

Note that there are other definitions of the fitness function that one can use instead of the

one given here, for example, one could use a weighted average of the mean fitness contribution

instead.

In the fully independent movement model, the mean fitness contribution simplifies to

f̄n,t =
∑
m

∑
m<t

fn,t(m|m<t)p(m)P (m<t). (4.17)

In [16], a further simplifying assumption made is that the fitness contribution of individual

In only depends upon itself and the individuals that it can directly interact with. The set of

individuals that individual In is present with in the same place, given population distribution

m, is called the direct group (or simply the group) of individual In and is given by

Gn(m) = {i : mi = mn}. (4.18)

The fitness contribution is then denoted by fn(Gn(m)). In this case, the mean fitness change is

constant over time and therefore the fitness is equal to the mean fitness contribution, that is

Fn = f̄n =
∑
m

fn(Gn(m))p(m). (4.19)

89



4.2.3 Evolutionary Dynamics

This section develops the evolutionary dynamics and is crucially important in completing the

development of the framework. In [16], where the dynamics were not defined, only static analysis

of an evolutionary process was carried out, though, one of the main goals of the framework is

to be able to carry out dynamic analysis. When developing the dynamics, consistency with the

framework was essential, thereby, the notions of dependency on population members, history

and time was carried forward to the dynamics. However, whether replacement is synchronous

or not is independent of the framework and needed to be decided.

Evolutionary graph theory has proved to be a popular approach for implementing dynamics

in a structured population. The framework can benefit by incorporating evolutionary graph

theory into its dynamics as its knowledge base is quite mature. It also makes it easier to

understand for those who are already accustomed to evolutionary graph theory, i.e. there will be

some continuity. To incorporate evolutionary graph theory, the two key assumptions required are

the population size remains constant and that there is only one birth and death per replacement

event, that is, the replacements are asynchronous. Note that a completely different approach

could have been used, in particular, where replacement events are synchronous, but, for the

aforementioned reasons, the dynamics were actively developed to incorporate evolutionary graph

theory.

As seen in section 1.4 (pg. 31), an evolutionary graph controls the replacement events that

take place, which is independent of time. In the framework the time t at which the replacement

event takes place has to be taken into account. A replacement event at time t is then governed by

an evolutionary graph defined using an N×N weighted adjacency matrix Wt = [wi,j,t]i,j=1,...,N

where the replacement weight wi,j,t gives the weight of the edge from node i to node j in the

evolutionary graph that represent individuals Ii and Ij respectively. Note that the time subscript

indicates that the evolutionary graph can change over time.

To construct Wt, an approach similar to calculating the fitnesses of the individuals is used.

In particular, Wt is made up of replacement weight contributions that depend upon the time t

the replacement takes place, the current population distribution m and the historical population

distributions m<t. The replacement weight contribution that individual Ii assigns individual Ij

is denoted by

ui,j,t(m|m<t). (4.20)

The exact form will depend upon the assumptions made about the replacement weight contri-

butions. The mean replacement weight contribution is given as follows

ūi,j,t =
∑
m

∑
m<t

ui,j,t(m|m<t)pt(m|m<t)P (m<t). (4.21)
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Dynamics

BDB bi,t =
Fi,t∑
n Fn,t

, di,j,t =
wi,j,t∑
n wi,n,t

BDD bi,t =
1

N
, di,j,t =

wi,j,tF
−1
j,t∑

n wi,n,tF
−1
n,t

DBD dj,t =
F−1j,t∑
n F
−1
n,t

, bi,j,t =
wi,j,t∑
n wn,j,t

DBB dj,t =
1

N
, bi,j,t =

wi,j,tFi,t∑
n wn,j,tFn,t

LB ri,j,t =
wi,j,tFi,t∑
n,k wn,k,tFn,t

LD ri,j,t =
wi,j,tF

−1
j,t∑

n,k wn,k,tF
−1
k,t

Table 4.2: Dynamics defined using the evolutionary graph Wt and fitnesses Fn,t.

In is assumed that the replacement weight at time t is chosen to be the mean replacement weight

contribution at time t, that is,

wi,j,t = ūi,j,t (4.22)

but, as for the fitness function, there are other definitions that one can use. The reason why

this approach is chosen here is that it alludes to the fact that the more individuals interact with

one another the more likely they are likely they are to replace one another. The key observation

here is that the evolutionary graph is derived from the interactions between the individuals,

thereby, if the interactions between individuals change, so should the evolutionary graph.

Now that it known how Wt is constructed, the next step is to calculate the probability that

the offspring of individual Ii replaces individual Ij at time t, denoted ri,j,t. Since Wt is an

evolutionary graph, an analogue of the standard dynamics given in Table 2.2 (pg. 51) suitable

for Wt can be used to calculate ri,j,t. These definitions of the replacement probabilities are

given in Table 4.2.

In the fully independent movement model the mean replacement weight contribution simpli-

fies to

ūi,j,t =
∑
m

∑
m<t

ui,j,t(m,m<t)p(m)P (m<t). (4.23)

Furthermore, it can be assumed that the replacement weight contributions are independent of

time and history, and depend only on Ii, Ij and the group interactions between them. This

implies that the mean replacement weight is invariant over time and is given by

wi,j = ūi,j =
∑
m

ui,j(Gi,j(m))p(m) (4.24)

where Gi,j(m) = {k : mk = mi ∧mk = mj}. Note that Gi,j(m) = ∅ if Ii and Ij are not present

in the same place for a population distribution m.
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Note on the dynamics

In this chapter the development of the framework of [16] is completed by defining the dynamics

that can be used with the framework. It is now possible to carry out dynamic analysis of

an evolutionary process in a population with mobile individuals. The dynamics developed here

incorporate evolutionary graph theory and can therefore readily use its vast knowledge base that

includes the material in Chapter 2. In particular, the known behaviour of the standard dynamics

in evolutionary graph theory can be leveraged to get an understanding of their behaviour in a

different context. This is particularly true in the next few chapters where models are developed

using the framework in its fully developed form.

In the classic metapopulation framework [51], it is assumed that there are discrete patches

with extinction-prone populations. This means that it is possible for a population to colonise

an unoccupied patch and a subpopulation within a patch to go extinct, allowing the total

population size to fluctuate. This is different from the Broom-Rychtář (BR) framework because

the dynamics used specify that the offspring of an individual immediately replaces another

individual, keeping the population size fixed. Since every birth and death is a replacement event,

the population cannot go extinct, instead, different types within the population can go extinct

but the population itself persists. Furthermore, a patch in the metapopulation framework is a

‘fixed’ location in space that an individual and its offspring can occupy. This idea of a patch

is not the same as in the BR framework. Instead, a patch is simply thought of as a place that

an individual can move to, however, its offspring must take the place of another individual. To

bring the BR framework in line with the metapopulation framework would require a different

definition of the dynamics. A possible solution would be to have dynamics with separate birth

and death rates such that an offspring can be placed in an immediate neighbourhood patch.

This way a patch can be colonised by a population and also a population in a patch can go

extinct through death and individuals moving away.

4.3 The Territorial Raider model

The territorial raider population evolution model is a simple application of the BR framework.

It is assumed that each individual has their own unique territory that overlaps with other

individuals. Where these territories overlap, individuals can meet and interact with one another.

Meetings between individuals can take place in groups and, therefore, multiplayer Hawk-Dove

and public goods games, see chapter 3, are used to determine the payoffs an individual receives.

Each individual has a unique home within their territory and the proportion of time that an

individuals spends at home is controlled by a global home fidelity parameter that is the same
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for all individuals. The higher this home fidelity parameter, the more time individuals spend at

home and less time interacting with one another. Furthermore, it is assumed that individuals

are allowed to make one movement within their territory before returning home. Replacement

events are assumed to happen at discrete time intervals. Between these intervals individuals

are assumed to meet with one another in order to determine their fitness. Dynamics where

birth happens first followed by death with selection acting on birth (BDB) are considered such

that an individual’s offspring replaces another individual proportional to how often they meet.

The quantity that will be calculated to measure the evolutionary success of a strategy is the

fixation probability. Special cases of small graphs where all of the population states can be

identified allowing exact analyses to be carried out are considered. Interesting general features

of the model are identified by comparing the fixation probability value for both games on several

graphs under different parameter values and assumptions. The new notation used in this chapter

is given in Table 4.3.

The motivation behind the territorial raider model is the territorial behaviour of animals.

Animals of many species live alone or in distinct groups on a certain territory. Although animals

generally forage for food within their territory, it can happen that the territory size varies

considerably over time. In some cases, it can expand and overlap with other territories, when

food becomes rarer, or for the purpose of mating for example. Thus the same place is used

by two or more individuals that will interact and sometimes compete when some major items

of food are at stake. The territorial raider model incorporates these more general types of

interaction, therefore, allowing multi-player games to be played among the population.

In comparison to the population evolution model considered in chapter 2, the territorial raider

model determines the fitness of individuals through multiplayer game-theoretic interactions that

depends upon the movement structure of the individuals. Whilst both models consider an

evolutionary graph to determine the replacement events, the evolutionary graph for the latter

model is derived from the movement structure of the population. Therefore, studying the

evolutionary graph on its own is not sufficient to understand what is happening in the territorial

raider model. In particular, factors that affect the movement structure of the population are

also studied.

4.3.1 The population structure and distribution

The territorial raider model (see Figure 4.1) was developed by [16] and is used to represent

interactions within a population with overlapping territories. The territorial raider model con-

siders a population of N individuals I1, . . . , IN (see also Section 4.3.3 for an interpretation of In

in relation to the evolutionary dynamics) who can move and eventually interact in N different
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Notation Definition Description

pnm ∈ [0, 1] Probability of In being at Pm.

h ∈ [0,∞) Home fidelity : likelihood of individual staying in its home vertex.

d ∈ Z+ \ {0} Number of neighbours.

G ⊂ {1, 2, . . . , N} Group of indiviuals.

χ(m,G) ∈ [0, 1] Probability of group G meeting at Pm.

RA(a, b) ∈ [0,∞) Payoff to type A individual present with a (b) other type A (B).

R ∈ [0,∞) Background payoff that individuals start with.

V ∈ [0,∞) Reward.

K ∈ (0,∞) Cost.

v = V/K Reduced parameter.

r = R/K Reduced parameter.

Tj =
∑
i 6=j wij Temperature of Ij .

Table 4.3: New notation used in this chapter.

places P1, . . . , PN , see Figure 4.1(a). The individual In lives in a place Pn and can also move to

neighbouring places.

The population is represented using a graph where vertices represent individuals as well

as places of interaction. The graphs studied are representations of territorial raider models.

Therefore, it is important to bear in mind that they relate to a more general representation

where places and individuals are disconnected as shown in Figure 4.1(b). In other words, the

graphs shown here stands for the kind of models in Figure 4.1(a). All of the three and four

vertex connected undirected graphs shown in Figure 4.2 are considered.

It is assumed that there is fully independent movement, that is, individuals move indepen-

dently of each other, history and time (see Section 4.2.1 on Page 88). In general each individual

could have a different probability of movement, but a natural model where all movements are

governed by a single parameter is selected. It will be assumed that an individual with d neigh-

bours will stay with probability pn,n = h/(h + d) and move to one of its neighbouring places

with probability 1/(h+ d). Thus h is a measure of the preference of an individual to stay on its

home vertex, and will be called its home fidelity. In each case setting h = 1 gives the natural

parameters of each individual visiting all allowable places (including its home vertex) with equal

probability. Note that, for a given value of h, an individual is more likely to move away if it has

a larger number of neighbouring places d. The probability that an individual In is at place Pm,
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Figure 4.1: The territorial raider model from [16]. (a) Individual In lives in place Pn but can

visit neighbouring places. The territory of I1 consists of all places P1, P2, P3 and P4, the territory

of I2 consists of P1 and P2, the territory of I3 consists of P1 and P3, the territory of P4 consists

of P1 and P4. (b) An alternative visualization as multi-player interactions on a bi-partite graph

where individuals and places are clearly separated. The vertices I1, . . . In will be called the

I-vertices.

i.e. the IDPF, will be given by

pn,m =


h/(h+ d) n = m,

1/(h+ d) n 6= m and vertices n,m connected,

0 otherwise.

(4.25)

4.3.2 Fitness

To calculate the fitness of individuals it is assumed that the fitness contribution only depends

upon itself and the group of individuals that it interacts with. The fitness of an individual is

therefore given by equation (4.19, pg. 89) that is rewritten more simply as follows

Fn =

N∑
m=1

∑
G
n∈G

χ(m,G)fn(G), (4.26)

where G is a group of individuals and

χ(m,G) =
∏
i∈G

pi,m
∏
j 6∈G

(1− pj,m) (4.27)

gives the probability that group G forms in place m. The fitness contribution, fn(G), will be

determined by the payoff received in a multi-player game. It is assumed that there are two types

of strategies, A and B, that individuals can choose from. The payoff to an individual of type A

present with a (b) other type A (B) will be denoted RA(a, b) and, similarly, RB(a, b) for a type
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Figure 4.2: The population structures and movement probabilities for small graphs on 3 and 4

vertices. An individual moves to a neighbouring vertex with probability 1/(h+ d) and stays at

home with probability h/(h+d) where d is the number of neighbours. (a) The line of 3 vertices,

which in this case, is also the star. (b) the triangle. (c) the square with both diagonals, the

complete graph for four vertices. (d) the “circle” graph, or a square with no diagonals. (e) the

star graph with 4 vertices. (f) the diamond, a square with one diagonal. (g) the line with 4

vertices. (h) the paw.
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B individual. The fitness contribution is then given by

fn(G) =

RA(|G|A − 1, |G|B) In type A,

RB(|G|A, |G|B − 1) In type B

(4.28)

where |G|A (|G|B) is the number of type A (B) individuals in group G.

The charitable prisoner’s dilemma (see Section 3.3.1, pg. 76), which is referred to as the

public goods game in the remainder of this chapter and thesis, and the Hawk-Dove game (see

Section 3.3.2, pg. 80) are considered. The payoffs for the fixed fitness case are also introduced,

which can be seen as a limiting case in this model. The payoffs for each case are given below

where a background payoff R has been added. The background payoff R has no effect in static

games, but is important for the dynamics. In general for discrete dynamics, including the one

considered here, the larger the value of R, the weaker the effect of evolution [17, Chapter 2].

Here, it will be always assumed that R is sufficiently large that no fitness can ever go negative.

Furthermore, scaling all payoffs by a constant has no effect on the game outcomes. All payoffs

have therefore been divided by the cost K so that the reduced background payoff is given by

r = R/K, which is fixed to 10, and the reduced reward is given by v = V/K.

• The Public Goods game: A stands for a Cooperator and B for a Defector. Both types

start with a reduced background payoff r. A Cooperator (always) pays a cost of 1 so that

other individuals in the group share the the reduced reward v and Defectors do nothing.

The payoffs are given by

RA(a, b) =

r − 1 a = 0, b = 0,

r − 1 + a
a+bv otherwise,

(4.29)

RB(a, b) = r +
a

a+ b+ 1
v. (4.30)

• The Hawk-Dove game: A stands for a Hawk, and B for a Dove. They both start with a

background payoff r and compete for a single reduced reward v. If all individuals in the

group are Doves, they split the reward so that each one gets the same share. If there is

at least one Hawk then all the Doves concede. The Hawks fight so that the winner gets

the reduced reward v while the other Hawks incur a cost of 1 such that each Hawk has an

equal chance of winning. The payoffs are given by

RA(a, b) = r +
v − a
a+ 1

, (4.31)

RB(a, b) =

r if a > 0,

r + v
b+1 if a = 0.

(4.32)
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• Fixed fitness case: In this game, the individuals do not really interact with each other but

rather receive a constant payoff depending on their type and irrespective of the groups

size or types of the other group members. The payoffs are given by

RA(a, b) = r + v, (4.33)

RB(a, b) = r. (4.34)

4.3.3 Evolutionary dynamics

It will be assumed that the replacement weight contributions depend only the birth individual

Ii, the death individual Ij and the group interactions between them. This means that the

replacement weights, which are used in the evolutionary dynamics, are given by equation (4.24,

pg. 91), which is rewritten more simply here as follows

wij =

N∑
m=1

∑
G

i,j∈G

uij(m,G). (4.35)

An individual Ij can be replaced by a copy of individual Ii if and only if Ii and Ij could

meet in the spatial structure (which here means that Pi and Pj are at most two edges apart

from each other). Thus the types of the individuals change through time, and so Ii is more

properly thought of as a position in our structure which has a particular relationship to the

places P1, . . . , PN , rather than an actual individual. The relationship between the position Ii

and the potential individuals that can be thought of as similar to that between a gene and its

possible alleles. The positions In will be called the I-vertices of this structure, but will often

simply be referred to as “individuals”, unless this distinction needs to be emphasised (see Figure

4.1(b)).

For the replacement weight contribution uij(G), it is assumed that each individual Ij in

group G contributes equally except Ii. This represents the fact that individual Ii can replace

any one of the other individuals in a group G that it is present in. Therefore, the contribution of

each individual Ij in group G will be set to 1/(|G|− 1). However, when Ii is alone, it is assumed

that it can replace itself and so contributes 1. The replacement weight contribution for all G

such that i, j ∈ G is then given by

uij(m,G) =


0 i = j ∧ |G| > 1,

χ(m,G) i = j ∧ |G| = 1,

χ(m,G)
|G|−1 i 6= j.

(4.36)

With this definition of the replacement weight contribution, the replacement weights have the
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Figure 4.3: The average temperatures as given by (4.37) for small graphs on 3 and 4 vertices. The

average temperature for Line(3), Star(4) and paw monotonically decrease with h, the average

temperature for other graphs peaks around h ≈ 1 for other graphs.

property that wi,j = wj,i. Also, the quantity

Tj =
∑
i 6=j

wij (4.37)

could be regarded as the temperature [52] of the I-vertex Ij as it is proportional to the frequency

of an individual Ij being replaced by another individual (if all individuals are equally likely to

produce an offspring). Note that in this setting, the (mean) temperature depends not only on

the graph but also on the parameter h, see Figure 4.3.

4.3.4 The fixation probability of A

To calculate the fixation probability of type A among B individuals at a given spatial structure,

the first step is to list all the states that describe all the possible distributions of individuals of

both types on the different places throughout the evolutionary process, from the insertion of one

individual from type A in a population made up of B individuals until its fixation or elimination.

Not accounting for the symmetries, a given population structure with N individuals yields a

transition graph with 2N different states that can be indexed by subsets S ⊂ {1, 2, . . . , N}.

State ∅ will be used to represent a population composed entirely of B individuals, and state

N a population of A individuals only. Let PSS′ denote the transition probability from state

S to state S′ in the dynamic process. Figure 4.4 shows the transition graphs (when all graph

symmetries are taken into account) for the corresponding graphs from Figure 4.2.

Having previously defined the replacements weights wij , the appropriate definition from

Table 4.2 (pg. 91) can be chosen to give the replacement probabilities rij . Using the replacement
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probabilities, for S 6= S′, the transition probabilities are given by

PSS′ =



∑
i6∈S

rij ; if S′ = S \ {j} for some j ∈ S

∑
i∈S

rij ; if S′ = S ∪ {j} for some j 6∈ S

0; otherwise

(4.38)

and, therefore,

PSS = 1−
∑
S′ 6=S

PSS′ . (4.39)

The probability ρAS that type A fixates from state S is given by

ρAS =
∑

S′⊂{1,2,...,N}

PSS′ρ
A
S′ (4.40)

with boundary conditions

ρA∅ = 0, (4.41)

ρAN = 1. (4.42)

The mean fixation probability of type A, ρA, will be an appropriately weighted average of the

fixation probabilities from all states including exactly one individual of type A. Following [5],

the mean fixation probability is defined

ρA =
∑
i

Ti∑
j

Tj
ρA{i}. (4.43)

The temperature weighted mean fixation probability assumes that a new type of individual is

more likely to appear at a place whose inhabitants are replaced more often (relative to others).

Note, however, that the difference between ρA and the uniformly weighted average
∑
i

1
N ρ

A
{i} is

negligible for all the small graphs considered here. In fact, the latter quantity is never less than

ρA which is in agreement with results from [3].

4.4 Results

For the Hawk-Dove game, the results for the fixation probabilities of Hawks on small graphs are

shown in Figure 4.5. The fixation probabilities of Doves on small graphs are shown in Figure

4.6. For the Public Goods game, the results for the fixation probabilities of Cooperators on

small graphs are shown in Figure 4.7 and the fixation probabilities of Defectors are shown in

Figure 4.8. The fixation probability ρA, depends on the underlying graph structure, the home
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.4: The transition graphs for small graphs on 3 and 4 vertices. (a) The line of 3 vertices.

(b) the triangle. (c) the square with both diagonals, the complete graph for four vertices. (d)

the “circle” graph, or a square with no diagonals. (e) the star graph with 4 vertices. (f) the

diamond, a square with one diagonal. (g) the line with 4 vertices. (h) the paw.
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Figure 4.5: The fixation probabilities of a single Hawk in a population of Doves for small graphs

on 3 and 4 vertices.
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Figure 4.6: The fixation probabilities of a single Dove in a population of Hawks for small graphs

on 3 and 4 vertices.
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Figure 4.7: The fixation probabilities of a single Cooperator in a population of Defectors for

small graphs on 3 and 4 vertices.
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Figure 4.8: The fixation probabilities of a single Defector in a population of Cooperators for

small graphs on 3 and 4 vertices.
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Figure 4.9: The mean temperature versus the

mean group size for graphs with 4 vertices (as h

varies from 0 to 100). For complete graphs, the

line with 4 vertices and the diamond, i.e. the

graphs where the mean temperature peaks at

h ≈ 1, there is a spike in the correlation figure

corresponding to the fact that the mean tem-

perature and the mean group size increase (de-

crease) at different speeds as h < 1 (or h > 1).

Note that Star(4) has the largest possible mean

group size.

fidelity parameter h, the game and the parameters of the game v (the parameter r was fixed at

10), as well as the type of the invading individual/ resident population.

There are a number of features common to both games, and both types of invading mutant

within the Hawk-Dove game. The fixation probability in each case naturally depends upon the

size of the reward, and the strength of this dependency itself depends upon h. For low values of

h, which have a high mean temperature, there is a wide spread of values of fixation probability

depending upon the value of v. For high h, corresponding to low mean temperature, the fixation

probability depends very little upon v. This can be seen from Figure 4.10, where the biggest

differences between fixation probabilities are for the highest temperatures. In the Hawk-Dove

game, a large v is good for Hawks, and a small v is good for Doves (since Hawks still pay costs

against other Hawks) and the effect of changing v is most profound when the temperature is

highest. In general, it is observed that low temperatures suppress the effect of fitness and thus

suppress selection, whereas high temperatures enhance it.

4.4.1 Fixation probability, temperature and mean group size

The mean size of an individual’s group (the group size from the individual’s perspective) is

studied in [16, 18], whose definition is given by

G =
∑
m

∑
G

χ(m,G)|G|2∑
m

∑
G
χ(m,G)|G|

. (4.44)

Note the distinction between (4.44) and the mean group size from an observer’s perspective as,

here, the groups are weighted by the numbers of individuals within a group. For example, if half

of groups are of size 6 and half are of size 12, from the observer’s perspective the mean group
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size is 9, but from the individual’s perspective this is 10, as 2/3 of individuals are in the larger

groups.

In [16] it was observed that the mean group size was an important factor affecting the fitness,

and thus it was expected that this would be the case for the fixation probability too. In fact

this is so, but it turns out that the mean temperature and the mean group size are strongly

correlated, see Figure 4.9. The effect of the mean group size on the fixation probability is less

strong than that of the mean temperature, hence, the mean temperature will be focused on in

the discussion of the results. It is observed in Figure 4.10 that ρA strongly correlates with the

mean temperature for the underlying graphs. The correlation is negative for the Public Goods

game and ranges from positive to negative as v decreases for Hawks or increases for Doves in

the Hawk-Dove game.

4.4.2 High home fidelity h

For low temperatures, the relationship between mean temperature and fixation probability is

effectively linear, although this linear dependence breaks down for high temperatures, and breaks

down fast for larger or more heterogeneous graphs like the star with 7 vertices, see Figure 4.10.

For example consider the case of the complete graph, where every I-vertex has the same

temperature, which will be simply denoted by T . In this case the fixation probability is given

by equation (1.6, pg. 29), rewritten here as follows

ρA =
1

1 +
∑N−1
j=1

∏j
k=1 γk

, (4.45)

where γk is the ratio of the probability of a decrease in the number of type A individuals and the

probability of an increase in that number (given there are currently k type A individuals). Since

dij = dji, in this case γk = bA,k/bB,k = FA,k/FB,k, where the latter expressions are the ratios

of the birth probabilities of types B and A and the fitnesses of types B and A (that depends on

k but does not depend on position).

For both games this is the ratio of two terms that are approximately linear in the I-vertex

temperature, when this temperature is low, as is shown below. Any individual is only likely

to be with at most one other individual, and a payoff above the baseline will only occur if

this is a cooperator (each with probability roughly 1/h). The temperature at each I-vertex is

approximately (N − 1)/h. Recalling that the (reduced) background fitness and reward values

are denoted by r and v, respectively, if type A is a Cooperator in the Public Goods game, the

following is obtained

FA,k ≈ r − 1 +
(k − 1)v

h
≈ r − 1 +

k − 1

N − 1
vT, (4.46)
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FB,k ≈ r +
kv

h
≈ r +

k

N − 1
vT. (4.47)

For sufficiently small temperatures, it is thus clear that γk is approximately linear in the

mean temperature, and so consequently it is seen that the fixation probability will also be

approximately linear in the mean temperature, although this linearity breaks down as soon as

the temperature becomes sufficiently large.

For the fixed fitness case, the situation can actually be seen from the point of view of

classical evolutionary graph theory [52]. No matter what the underlying population structure,

an evolutionary graph W can be constructed with the vertices given by the set of I-vertices

{Ii; i = 1, . . . N} and the edges between Ii and Ij weighted by wij = dij corresponding to

the fact that Ij is being replaced by Ii with probability dij . Since dij = dji, the resulting

evolutionary graph W is a circulation [52, Appendix]. Consequently, type A, having a relative

fitness (r + v)/r when compared to type B, will fixate with the Moran probability [58]

ρA = PMoran

(
r + v

r

)
=

1− r
r+v

1−
(

r
r+v

)N . (4.48)

The above results hold for any graph and the fixed fitness case; and it holds approximately for

any graph and any game where the payoffs of different types of individuals are nearly constant.

Within the framework here, this happens if h → ∞ because then the individuals rarely move

and thus rarely interact. For the Public Goods game, it also happens if v → 0. In this case,

Cooperators receive payoff r − 1 while Defectors receive payoffs r, resulting in

ρA = PMoran

(
r − 1

r

)
=

1− r
r−1

1−
(

r
r−1

)N . (4.49)

When r = 10 and N = 4, then PMoran ≈ 0.2119 which corresponds to the results for h → ∞

or v → 0 as seen in Figure 4.11. For the Hawk-Dove game, as h→∞, the fitnesses of both the

Hawk and the Dove tend to r as the individuals rarely meet. Thus, the fixation probability of

either Hawk or a Dove tends to 1/N as h→∞ as seen in Figures 4.5 and 4.6.

Note that for the Hawk-Dove game, when v → 0 but h is not too large, the fixation probability

of Hawks and Doves is not 1/N . This is caused by the fact that Hawks still interact and thus have

a disadvantage over Doves. The disadvantage grows with growing mean group size (i.e. with

growing mean temperature). Consequently, the fixation probability is not the Moran probability

if h�∞.

4.4.3 Effects of the graph and the game

The fixation probability also depends upon the population structure more generally over and

above the mean temperature. For low h in particular the heterogenous star graph, and to a

108



Figure 4.10: The fixation probability as a function of the mean temperature for various graphs.

For all small graphs, the correlations look similar and depend primarily on the game played.
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lesser extent the paw, have a wider range of fixation probabilities for differing values of v than

any of the other graphs. Note, however, that the line is less variable than the homogeneous

well-mixed population. This may be the effect of the temperature (note that the star has the

highest mean temperature as well as the widest range of fixation probabilities), or the variance

in the group size, or possibly both effects working in conjunction.

A second observation that can be made on these graphs is that the ordering of fixation

probabilities for different graphs can change as the parameters vary. For example, for the

Hawk-Dove game with three vertices, whatever the value of the reduced gain v, the fixation

probability of the triangle and the line cross for h ≈ 0.66 ≈ 10−0.18. Note that this approximately

corresponds to the point where the mean temperature gets higher on the triangle than on the line.

Similar observations are true for some (but not all) of the graphs (and other games considered

here), see Figure 4.12.

There are some features specific to the particular game in question. For the Hawk-Dove

game, the highest fixation probabilities can occur for intermediate values of log(h) ≈ 0, both

for Dove invaders and for Hawk invaders. This is particularly the case for the square and the

line. This occurs when the reward value v is high for Hawk invaders, and the effect disappears

for low v. The figures are noticeably different for different graphs, and it can thus be said that

there is a significant graph effect for the Hawk-Dove game. For the Public Goods game these

features do not appear, and eight broadly similar figures are seen. Thus for the Public Goods

game, we can say that there is not a significant graph effect, at least for the small graphs that

have been considered. The main features where the graphs differ is in the broader spread on the

star as mentioned above, and the dip in the fixation probability for intermediate values of v.

4.5 Discussion

In this chapter the modelling framework of Broom-Rychtář is used to consider interactions of

individuals in a non-homogeneous environment. A birth-death dynamics is used so that dynamic

analysis can be carried out. The dynamics of some simple games on different spatial structures

were analysed and compared to try to determine some general features. In particular the

fixation probability was shown to be strongly correlated with the mean temperature. Within the

population, individuals play games, and each game as well as being distinct, has specific features

(in this case reward, cost and baseline reward) which govern how well individuals do. The value

of the reward v was shown to have a potentially significant effect on the fixation probability;

the size of this effect depended upon aspects of the population structure. In particular, a high

mean temperature made the effect of this parameter much more critical, and the effect will be

stronger when the graph is highly heterogeneous, on the star for example.
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Figure 4.11: Dependence of the fixation probability on v for h = 1.
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Figure 4.12: Dependence of the fixation probability on the graph.

The territorial raider model is set up in a way that given any graph structure and any

multi-player game, one can automatically generate a system of linear equations yielding fixation

probabilities. The results for graphs on 3 and 4 vertices are shown in this chapter. The results

for graphs on more vertices can theoretically be obtained in a similar fashion. For some highly

symmetrical classes of graphs (such as complete graphs, or stars), the analysis can still be

performed even for large graphs. However, the system of linear equations grows exponentially

with the number of vertices [see 13, for similar scenario] and the number of possible graphs

grows even faster [35, p. 240]. It is difficult to say where the exact limits of these brute force

numerical methods lie, however, the methods we used seemed to manage around 10 vertices

before becoming cumbersomely slow. Rewriting the code underlying the numerical methods

more efficiently should push this limit higher. The alternative to using brute force numerical

methods would be to run multi-agent simulations. For this approach, [92] showed that, in the

fixed fitness case, for a 100 vertex graph it took around 4000 seconds to compute the fixation

probability. In the territorial raider model, due to the extra computation required for calculating

the fitness, it would be reasonable to assume that it would take around this much time for a

25 to 30 vertex graph. With more efficient and advanced programming methods this should

reduce the time even further thereby allowing larger populations sizes to be considered. Using

multi-agent simulations would help understand how these results generalise to more general

networks. Due to the small size of the current networks considered, it is difficult to say whether

a given strategy would do better or worse on a larger network. However, we expect certain

fundamental relationships such as that between the fixation probability and mean temperature,

and the fixation probability and the game parameters to hold. This is in particular due to the

consistency shown by these relationships for the different graphs considered.

The two games consider here, Hawk-Dove and the Public Goods game, can be said to repre-

sent cooperative dilemmas, with the cooperative strategies being Dove and Cooperate, respec-
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tively. In the territorial raider model, for the cases shown, the cooperative strategies generally

do poorly. For the Public Goods game, the fixation probability of a single Cooperator (Defector)

is always less (more) than 1/N . Similarly, for the Hawk-Dove game, the fixation probability for

a single Hawk is often greater than 1/N , although it can fall below this value for small v. The

fixation probability of a single Dove is often less than 1/N , although it can climb above this

value for small v. One reason for this is that the Invasion process, like birth-death processes in

general, does not favour cooperation [see e.g. 70]. Thus it may be that cooperation is generally

disfavoured in the Public Goods game. For the Hawk-Dove game, an important factor could be

the small size of the graphs used, which means that in turn the groups formed remain small.

Large groups will tend to disfavour Hawks, as all but one Hawk in any group incurs a cost.

Thus for larger graphs, more cooperative behaviour may be obtained, in the form of relatively

higher fixation probabilities for Doves as opposed to Hawks.

The territorial raider model illustrates how to calculate the fitness of an individual receives

more realistically in comparison to, for example, games on graphs [70] that simply aggregates

the pairwise payoffs to calculate the fitness. The problem with the latter approach is that it

assumes an individual spends the same amount of time with all the individuals it can interact

with. The territorial raider model addresses this issue by accounting for the proportion of time

that individuals spend in the same place i.e. individuals only interact with one another if they

are present in the same place at the same time. Furthermore, it also highlights the fact that

individuals can be alone and, therefore, this situation needs to be accounted for. Note that

this approach used by the territorial model is only one possibility that is available within the

Broom-Rychtář framework.

The different graphs in the model here can be considered to represent different ways in which

biological territories overlap. Alternatively the graphs can represent distinct social relationships

within a group. As mentioned above, mean temperature seems to be a more important factor

than the specific structure. In the biological context, this represents a measure of interaction

between the individuals within the population. High mean temperature corresponds to highly

mobile individuals which interact potentially in larger groups than when the mean temperature

is low. This provides a natural measure of the strength of the effect of a particular game in a

population. In addition to that, temperatures can be estimated in real populations, as long as

the meetings between individuals in groups can be reliably recorded, so that the frequency of

the formation of different groups can be estimated. It would be of great interest to work out the

temperatures in various real population scenarios, and to ascertain how accurate our general

conclusions are.
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Chapter 5

Generalized Territorial Raider

Model

5.1 Introduction

The generalised territorial raider model is a population evolution model based on the BR frame-

work and is an extension of the territorial raider model of chapter 4. In this model individuals

are allowed to share the same territory and home, as opposed to each individual having a unique

territory and home as seen in chapter 4. Individuals who have the same territory are said to

be a subpopulation. The movement of the individuals are as before, such that they are allowed

one movement within their territory before returning home and the proportion of time spent

at home is controlled by the home fidelity parameter. The fitness and dynamics are also de-

termined as before. For fitness, the individuals have multiplayer interactions, though, the only

game considered here is the public goods game. These interactions take place between replace-

ment events that occur between discrete time points. For the dynamics, the complete set of

standard evolutionary dynamics given in Table 4.2 (pg. 91) are considered, before, only the BDB

dynamics was considered. For each of these dynamics, the fixation probability is calculated to

measure the relative success between cooperators and defectors in the multiplayer public goods

game that takes place on various different population structures.

This chapter uses the generalized territorial raider to study whether cooperation can evolve,

i.e. cooperators have a higher fixation probability than cooperators. It was previously shown,

in the territorial raider model, that the defectors always did better than the cooperators. One

of the reasons could be due to the structure. In [66], several rules were identified that allow

cooperation to evolve, one of which was a population structure that allows cooperators to have
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more frequent interactions, particularly when hubs or clusters of cooperators can form [91]. This

in turn made them resistant to exploitation by defectors [70, 86]. Considering subpopulations

within the context of the territorial raider model will allow such hubs or clusters to form.

Another reason could be the dynamics used. In [70] showed that death-birth or birth-death

dynamics with selection on the second event, i.e BDD or DBB, promotes cooperation but not

when selection happens in the first event. Therefore, in this chapter all the standard dynamics

are considered to see which ones allow cooperation to evolve. Any new notation used in this

chapter is given in Table 5.1.

The main difference between the territorial raider model and the generalised territorial raider

model is that the latter allows individuals to share the same territory. In the former case,

increasing the home fidelity parameter implied that individuals spent more time alone. In the

latter case, this would now mean that individuals spend more time interacting with individuals

who are part of the same subpopulation. It is this effect that is investigated to see whether it

can help the evolution of cooperation.

Notation Definition Description

Qm ⊂ {1, 2, . . . , N} Subpopulation of individuals.

TQm =
∑
i∈N\Qm

∑
j∈Qm wij Strict subpopulation temperature.

Table 5.1: New notation used in the chapter.

5.2 The Model

5.2.1 The population structure and distribution

In this section the territorial raider model (Chapter 4) is generalised to include subpopula-

tions, based upon their movement distributions. A subpopulation of individuals in the fully

independent model is defined as a division of individuals from the main population that is

well-mixed [16], which simply means that all of these individuals have an identical distribution

over the places. In particular, for a subpopulation Q we have that pim = pjm ∀ i, j ∈ Q and

m = 1, . . . ,M .

For simplicity it will be assumed that individuals move as they do in the territorial raider

model. Thus a population of N individuals is divided into M non-overlapping subpopulations

Q1, . . . ,QM where |Qm| ≥ 0 such that N =
∑
m |Qm|. The individuals in subpopulation Qm

are assumed to treat place Pm as their home place, so that there is a one-to-one correspondence

between subpopulations and places. However, subpopulations are allowed to be empty and,

therefore, places in which no individuals reside can exist. As in the territorial raider model, the
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movement probabilities of the individuals are governed by the home fidelity h (see Section 4.3.1

pg. 93). In particular, a subpopulation Qm that can visit d neighbouring places will stay in home

place Pm with probability h/(h+ d) or move to one of its neighbouring places with probability

1/(h+ d). Note that when there is one individual in each subpopulation, that is |Qm| = 1 ∀m,

the territorial raider model is obtained. This information can be visually represented in two

different ways as shown in Figure 5.1, which includes a graph whose vertices represent both

subpopulations and places.

I1, I2 I3, I4 I5

(a)

I1 I2 I3 I4 I5

P1 P2 P3

(b)

Figure 5.1: The territorial raider model with subpopulations. (a) Individuals that are members

of subpopulation Qm live in place Pm but can visit neighbouring places. The territory of

subpopulation {I1, I2} consists of places P1 and P2, the territory of subpopulation {I3, I4}

consists of places P1, P2 and P3, the territory of subpopulation {I5} consists of P2 and P3. (b)

An alternative visualization as multiplayer interactions on a bi-partite graph where individuals

and places are clearly separated.

In this chapter only complete graphs will be considered. To indicate the number of nodes and

size of each subpopulation at each node, one of the following naming conventions will be used.

If there are subpopulations of different sizes, then a list with the size of each subpopulation will

be used. For example, 2-2-2-0 implies that there are 3 subpopulations of size 2 and 1 of size 0;

and 6-6-3-1 implies that there are 2 subpopulation of size 6, 1 of size 3 and 1 of size 1. On the

other hand, if all the subpopulations are of the same size then (M, δ) will be used where M , as

mentioned earlier, is the number of subpopulations and δ is the size of each subpopulation.

5.2.2 Fitness

The fitness will be calculated as in the territorial raider model and focuses on the multiplayer

public goods game as defined using the reduced parameters (see Section 4.3.2 pg. 95). This

means that the fitness contribution only depends upon the individual itself and the group of

individuals that it is interacting with.
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5.2.3 Evolutionary dynamics

The replacement weights are calculated as in the territorial raider model (see Section 4.3.3

pg. 98). That is, the replacement weight contributions depend only on the the birth individual,

the death individual and the group interactions between them.

In this chapter, all the standard dynamics as defined in Table 4.2 (pg. 91) have been consid-

ered. However, in terms of presenting the results, only DB dynamics have been used. This is

because the results for BDB and DBD are identical (as are those for BDD and DBB), because

the replacement structure W is symmetric and doubly stochastic, so whether birth or death

occurs first is irrelevant. Furthermore, the LB and LD dynamics are equivalent to the BDB and

DBD dynamics, respectively, because W is isothermal (see Section 2.5.1 pg. 55).

Concepts of temperature

In the territorial raider model the concept of the temperature of an individual was given as the

likelihood of an individual being replaced. This is developed further here.

The original definition given in [52] states that the temperature of a vertex of an evolutionary

graph measures how likely an individual occupying a particular vertex is to be replaced by an-

other individual’s offspring. [54] extended this definition and introduced the out temperature of

a vertex of an evolutionary graph to measure how likely the offspring of the individual occupying

that vertex will replace another individual. These definitions of the in and out temperatures of

individual In for an evolutionary graph W are respectively defined as follows

T−n =
∑
i

win and T+
n =

∑
i

wni. (5.1)

In general, the in and out temperatures can be different. However, W is doubly stochastic and

symmetric and, therefore, the in and out temperatures are identical. Thereby, the definition of

the in temperature is used and is simply referred to as the temperature.

An alternative version of the definition of temperature is the strict temperature that measures

how often an individual is likely to be replaced by other individuals excluding itself. The strict

temperature of individual In for an evolutionary graph W is given by

Tn =
∑
i 6=n

win = 1− wnn. (5.2)

The definition of strict temperature can be extended to subpopulations to give the strict

subpopulation temperature. This measures how likely an individual in subpopulation Qm is to

be replaced by an individual in another subpopulation. Clearly all individuals in a subpopulation

have the same temperature (for any of the temperature definitions), since they all have the

same movement distribution. The strict subpopulation temperature is calculated by summing
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all weights wij such that Ii is not part of subpopulation Qm and Ij is part of subpopulation

Qm giving

TQm =
∑

i∈N\Qm

∑
j∈Qm

wij . (5.3)

This means that if there is only one subpopulation then its strict subpopulation temperature is

0 by definition, that is, TQm = 0 if Qm = N .

A strategy introduced in one subpopulation can spread throughout the population because

W is strongly connected. This implies that if there is more that one non-empty subpopulation

then the strict subpopulation temperature is non-zero for all non-empty subpopulations, that

is, TQm > 0 if |Qm| > 0. The mean strict subpopulation temperature is used to measure the

likelihood of the individuals in a subpopulations being replaced by an individual from another

subpopulation. The definition of the means strict subpopulation temperature is given by

〈TQm〉 =
1

N

M∑
m=1

|Qm|TQm . (5.4)

Note that the means strict subpopulation temperature also indicates how connected the sub-

populations are with one another.

5.2.4 Fixation probability

The fixation probability is calculated as in the territorial raider model (see Section 4.3.4 pg. 99).

However, an arithmetic mean of the fixation probabilities is taken instead of using the temper-

ature weighted fixation probabilities as the difference between the two means is insignificant.

5.3 Results: Cooperation in generalized territorial raider

models

This section studies the effect that different model parameters have on the evolution of coop-

eration. For models investigating the evolution of cooperation using evolutionary graph theory,

both the evolution and interaction of individuals are dictated by a fixed structure, following

games with a fixed number of players (almost always two). In the generalized territorial raider

model the replacement structure emerges from the interactions between individuals, involving

games with a varying number of players, and therefore gives a different perspective on the

evolution of cooperation.
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Figure 5.2: Comparing different complete structures for the public goods game. Each number

indicates a subpopulation of a certain density e.g. 6-0 is a complete structure with 2 subpopu-

lations of size 6 and 0 respectively. In each case the parameters are r = 30, v = 10 and h = 30.

It is seen that in the first figure for the DBD dynamics, cooperators perform poorly in all cases.

In the second figure, cooperators do better for small groups (greater than one). Increasing the

number of empty places is beneficial for defectors.
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Figure 5.3: Public goods game plot for the

complete graph with 4 subpopulations each

having size (or density) δ. The game pa-

rameters are set to r = 30 and v = 11, the

movement parameters are set to h = 30

and dynamics used are DBB. As in Fig-

ure 5.2, cooperators evolve better in small

groups (larger than 1), namely groups of

size two and three, with a small advantage

for groups of size four.
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5.3.1 The effect of the dynamics

For evolutionary graph theory models, cooperation is favoured when using DBB or BDD dy-

namics, but not DBD or BDB dynamics, if the structure allows a cluster of cooperators to form

(see [70]). This is consistent with territorial raider model (Chapter 4) that studied the effect

of BDB dynamics on the public goods game and cooperators generally performed poorly. It

was shown that defectors dominate regardless of the structure of the population and the game

parameters. The public goods game can now be revisited with more flexibility both in terms of

the dynamics and the structure of the population.

For DBD dynamics, the defectors do better than cooperators regardless of the population

structure. However, for DBB dynamics, cooperators are favoured over defectors for certain pop-

ulation structures. In particular, these structures that favour cooperators contain small sub-

populations, ideally of two individuals. This is seen in Figure 5.2, where the fixation probability

is plotted against different complete population structures for the DBD and DBB dynamics.

For example, for the complete structure 2-2-2 where there are 3 subpopulations of size 2, the

cooperators outperform defectors by a large amount.

To understand why this is the case, consider a population of two individuals where one

individual is of type A and the other type B. Within such a population, the cooperative type

A will be less fit than the selfish type B. For DBD dynamics, the least fit individual is most

likely to be chosen for death and the fixation probability is proportional to the fitness of the

individual. This means that a type A individual has a low fixation probability compared to a

type B individual. However, when using DBB dynamics, one of the two individuals is randomly

chosen for death and immediately replaced by the offspring of the other individual. This means

that regardless of the fitness of the individual, each type will fixate with probability 1/2. For

sufficiently high home fidelity parameter h, individuals primarily interact with their groupmates.

Therefore, in such a population where there exists a subpopulation of two individuals, a cluster

of two cooperators is more likely to form when using DBB dynamics. This cluster of cooperators

has a fitness larger than that of a cluster of defectors, provided that v > 1, thereby establishing

a stronghold against defectors. In fact, a subpopulation of larger than two individuals can

establish a stronghold against defectors as shown in Figure 5.3. Here the fixation probability is

plotted against a complete structure with four subpopulations that each have size ranging from

1 to 6. Subpopulations of size two are best for cooperation, with their advantage over defectors

declining as the size of the subpopulation decreases. Given the parameters used, subpopulations

of two to four cooperators can successfully resist invasion, but larger subpopulations cannot.
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Figure 5.4: The figure on the left hand side plots the mean subpopulation temperature against

the home fidelity h for a complete population structure with 3 subpopulations of size 2 each.

The figure on the right then plots the fixation probabilities against these values of the mean

subpopulation temperature where r = 30 and v = 10 for the public goods game, and the

dynamics used are DBB. In particular, notice that the fixation probability of the cooperators is

decreasing with the mean subpopulation temperature.
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Figure 5.5: Comparing different population

structures for the public goods game with

various complete graphs for a population

size of 12 where (1,12) means there is 1 sub-

population with 12 individuals, (2,6) means

there are 2 subpopulations with 6 individ-

uals and so on. The parameters are set to

r = 30 and v = 10, the dynamics used are

DBB and for home fidelity h = 30.
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5.3.2 The effect of the temperature

In the territorial raider model, the strict temperature and mean group size were both shown to

be strongly correlated with the fixation probability, with the effect of the former shown to be

stronger (see Figure 4.9 pg. 106). This chapter therefore focuses on the temperature, namely

the strict subpopulation temperature. Note that in the territorial raider model there is one-to-

one correspondence between individuals and places, which implies that the strict temperature

and strict subpopulation temperature are identical, but this is not the case for the generalized

territorial raider model.

The individual temperature is a measure of how often an individual interacts with other

individuals including those who are part of the same subpopulation; thus an individual may

have a high temperature but that does not mean it is interacting with individuals from other

subpopulations. In particular whenever individuals are not alone very often, this temperature

does not vary so much between different individuals, and so is not a useful concept for when there

are non-trivial subgroups. The strict subpopulation temperature, on the other hand, considers

interactions with individuals only from other subpopulations, and thus can be very variable. It

will be shown that this temperature is a good predictor of important population properties.

The mean strict subpopulation temperature decreases when home fidelity increases as shown

on the left hand side plot in Figure 5.4. This is because the individuals are more likely to remain

on their home place than visit another place as home fidelity increases, therefore reducing

interactions with other subpopulations, and in particular the probability that a member of one

subpopulation replaces a member of another at any given time.

In the territorial raider model it was shown that for BDB dynamics for structures where each

subpopulation is of size one, there was a linear relationship between the strict (subpopulation)

temperature and the fixation probability, with the higher the temperature, the stronger the

effect of selection (see Figure 4.10 pg. 109). This was investigated for DBB dynamics and found

that there is an opposite linear effect, which is consistent with [54] who showed that the DBB

dynamics suppresses the effect of selection the most for the complete graph. Note that this

relationship only holds for relatively weak selection, and we can reverse the relationship (and

make it non-linear) by increasing the value of the reward.

To promote cooperation a structure involving a subpopulation of size at least two is required.

However, whether these structures promote cooperation or not also depends upon the base fitness

and reward, and so it is assumed that the base fitness and reward are sufficiently large for this to

be the case (this is further investigated in Section 5.3.4). In this case, decreasing the temperature

by increasing the home fidelity promotes cooperation. In particular, the relationship between

the mean fixation probability of cooperators and the mean strict subpopulation temperature
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Figure 5.6: The figure on the left shows the effect of compensating for empty places by increasing

the home fidelity such that the probability of staying in their home place, pnn, remains the same.

We start at h = 30 for the 3-3 and 2-2-2 structures. As an empty place is added, h is increased

so that pnn = 30/31 for the 3-3-0, . . . , 3-3-0-0-0-0 structures and pnn = 30/32 for 2-2-2-0, . . . ,

2-2-2-0-0-0 structures. In all cases r = 30 and v = 10. We can see that after compensating

for the above effect, the influence of introducing empty places is both reversed and weakened.

The figure on the right shows the mean strict subpopulation temperature dropping off when

we compensate for the empty places by increasing the home fidelity such that pnn remains the

same.

is negative and nonlinear as shown in Figure 5.4. The nonlinearity arises not only from the

nonlinear payoff function of the public good game, but also from the fact that there exists a

subpopulation that has size at least two. For cooperators, the mean fixation probability is

negatively correlated with the mean strict subpopulation temperature because the mean strict

subpopulation temperature is highest when home fidelity is lowest, when cooperators cannot

separate themselves from the population and form clusters, consequently defection evolves. On

the other hand, for low mean strict subpopulation temperature, and so high home fidelity, it is

easier to form clusters of cooperators that allows cooperation to evolve. This kind of behaviour

is also evident in Figures 5.2 and 5.5.
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5.3.3 The effect of the number of places

In the territorial raider model, each individual had their home place and there were no empty

places (non home places) that individuals could visit (see Figure 4.1 pg. 95). In the generalized

territorial raider model, individuals can visit non home places and therefore the effect this has

on the evolution of cooperation is investigated.

As seen in Figure 5.2, increasing the number of empty places that subpopulations can visit

reduces, whilst keeping all other parameters constant, makes it more difficult for cooperation

to evolve. In particular, this effect is prominent for structures where cooperators were initially

doing well. For example, for the structure 2-2-2 where the cooperators do best, increasing the

number of places significantly reduces their fixation probability whilst increasing that of the

defectors. Here increasing the number of places acts in the same way as decreasing the home

fidelity, decreasing the amount of time an individual spends in its home place with members

of its subpopulation. Thus the amount of time an individual spends alone or with individuals

not from its subpopulation increases, so that the overall fitness of a cooperative subpopulation

will decrease (they still pay a cost but do not receive a benefit when alone). In terms of

the dynamics, spending more time alone would increase the effect of selection in DBB dynamics

because an individual with higher fitness randomly chosen for death is more likely to be replaced

by its own offspring, which affects the cooperators adversely. A cooperative subpopulation will

also have lower fitness because its members are more likely to interact with individuals from

other subpopulations, therefore exposing them to defectors. The increased interaction between

individuals will also increase the effect of selection in DBB dynamics because an individual with

higher fitness randomly chosen for death is less likely to be replaced by an individual with lower

fitness in the same subpopulation.

The increase in the number of places can be compensated for by increasing the home fidelity,

so that individuals stay in their home place with the same probability. This has the effect of

decreasing the mean strict subpopulation temperature as individuals are more likely to spend

time with members of their subpopulation. This is shown in Figure 5.6, where it is seen that

the effect of adding empty places is now reversed, although the strength of this reverse effect is

weak.

5.3.4 The effect of a large home fidelity

Consider a well-mixed population of M subpopulations each containing L individuals, so that

N = ML, as described in Section 5.2.1, where h is very large. Consequently, the probability

of group G forming, χ(m,G), is approximately 1 if G = Qm, and is approximately 0 otherwise.

Thus the fitness of an individual can be evaluated assuming that we have a group containing
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precisely all individuals from its subpopulation with probability 1. Due to the symmetric nature

of a population in the generalized territorial raider model, the weights for any two individuals in

the same subpopulation will be the same, as will the weights for any two members of different

subpopulations. Denoting the latter as wO, which will be small, such that wij = wO when Ii

and Ij are not in the same subpopulation, and wij = wI ≈ [1− (M −1)LwO]/(L−1) otherwise,

with the probability of self-replacement negligible.

It follows that only replacements within subpopulations will happen, except very rarely.

Thus it can be assumed that the battle within any mixed subpopulation of type A and type

B individuals will be resolved with fixation of one type or the other before any new mixed

subpopulation appears.

A two stage process is considered. Firstly, a new mixed group appears. This occurs rarely,

through the invasion of a type A cooperator into a defector subpopulation, or a type B defector

into a cooperator subpopulation. Assuming that there are currently MA(MB = M −MA) type

A (B) subpopulations, such a transition happens with probability

pAI =
MB

M

MALwOFL(A)

(L− 1)wIFL(B) +O(wO)
(5.5)

of a type A into a type B subpopulation, or

pBI =
MA

M

MBLwOFL(B)

(L− 1)wIFL(A) +O(wO)
(5.6)

of a type B into a type A subpopulation. The terms FL(A) and FL(B) are the fitnesses of type

A and B individuals within their own subpopulations, and the terms O(wO) are of the order of

wO, and so small. Let x = v/[r(L− 1)] then the ratio of the two expressions in equations (5.5)

and (5.6), and thus the relative frequency that the new invasions happen, is thus

pAI
pBI
≈
(
FL(A)

FL(B)

)2

=

(
1 +

v − 1

r

)2

≈ (1 + (L− 1)x)2 (5.7)

for large v and r.

The second process considers fixation within a well-mixed group of size L. Following [41],

this is given by

xi =
1 +

∑i−1
j=1

∏j
k=1

δk
βk

1 +
∑L−1
j=1

∏j
k=1

δk
βk

, (5.8)

where xi is the fixation probability of i type A individuals within a population of size L. Here

βk (δk) is the probability that the next event is the replacement of a type B (A) by a type A

(B), when the number of type A is k. These probabilities are given by

βk =
k(L− k)

L

r + (k−1)v
L−1 − 1

(L− 1)r + ((L− k − 1)k + k(k − 1)) v
L−1 − k

. (5.9)
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δk =
k(L− k)

L

r + kv
L−1

(L− 1)r + ((L− k)k + (k − 1)2) v
L−1 − (k − 1)

, (5.10)

For sufficiently large r, the following is obtained

δk
βk
≈ 1 + kx

1 + (k − 1)x
fk(x), (5.11)

where

fk(x) =
L− 1 + (L− 2)kx

L− 1 + ((L− 2)k + 1)x
< 1. (5.12)

The fixation probability of a single type A individual in a group of type Bs is given by ρA,L = x1,

and the fixation probability of a single type B individual in a group of type As is ρB,L = 1−xL−1.

This gives

ρB,L
ρA,L

=

L−1∏
k=1

δk
βk

=

L−1∏
k=1

1 + kx

1 + (k − 1)x
fk(x) = (1 + (L− 1)x)

L−1∏
k=1

fk(x). (5.13)

This implies that

pAI
pBI

>
ρB,L
ρA,L

. (5.14)

Following our assumptions, the population evolves following a succession of invasions of

subpopulations either of type A cooperators by type B defectors or defectors by cooperators.

The probability that the next such event will be the invasion of a defector by a cooperator is

simply

pAIρA,L
pAIρA,L + pBIρB,L

=
rS

1 + rS
, (5.15)

where rS = pAIρA,L/pBIρB,L is the forward bias (see Section 2.5.2 pg. 56) of cooperative groups

within our population. For a single type A to fixate in the population it must first fixate within

its group with probability ρA,L, after which, there is a competition between groups proceeding

precisely as in a Moran process, so this gives

ρA = ρA,L
1− 1/rS

1− (1/rS)M
, (5.16)

with the equivalent expression for ρB ,

ρB = ρB,L
rS − 1

rMS − 1
. (5.17)

It is clear from equation (5.14) that rS > 1, so that ρA is greater than ρA,L(1−1/rS) for any M .

Letting M become large means that 1/N = 1/ML will be less than ρA, but larger than ρB , so

that ρB < 1/N < ρA holds. This means that for sufficiently large h, r and v, cooperation evolves

for any given subpopulation size L. Thus cooperation can potentially evolve for arbitrarily large

subpopulations, although as shown previously, it is easier for smaller subpopulations.
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5.4 Discussion

The territorial raider model has been developed to incorporate subpopulations. This is beneficial

because the territorial raider model, represented in the bipartite graph in Figure 4.1 pg. 95, would

require a vertex for every individual as well as an additional vertex for every available place.

Now only a vertex per subpopulation is required, potentially allowing a small number of very

large subpopulations to be considered, which would not have been possible previously.

This type of structure has been considered in a slightly different context, for example, the

island- or community-structured populations of [104]. In this model interactions occur at mul-

tiple levels, interactions between community members being more common than those with

non-community members where interaction occurs at multiple levels. Members of one com-

munity first play a public goods game and then join the members of another community and

play a public goods game such that, at the highest level, the entire population plays a public

goods game. This is in contrast to the generalized territorial raider model, where individuals

only play a game if they are present in the same place at the same time. In the community

structured populations, it was shown that cooperation can evolve when DBB dynamics are used

and selection is weak within communities, which is consistent with the results in this chapter.

There are some differences between the generalized territorial raider model and a metapopu-

lation model [51]. In the territorial raider model, each place is either a home to a subpopulation

or not. This means that an individual can place its offspring in a place if there is already a sub-

population present there by replacing an individual in that subpopulation. In a metapopulation

model, an offspring can be placed in a place regardless of whether a subpopulation is already

present there or not, unless that place has reached peak capacity. Furthermore, individuals

are allowed to migrate in a metapopulation model but not in the generalized territorial raider

model. In the latter case, individuals are allowed to move to places in their territory but always

return home, i.e. they do not migrate.

It is shown that the choice of dynamics is crucial, and that DBD (and BDB) dynamics would

not allow cooperation to evolve, but that DBB (and BDD) would, which is consistent with [70].

Further, using the latter dynamics, the size and the level of isolation of the subpopulations is

important, with the smaller the subpopulations and the greater the isolation, the greater the

chance for cooperation to evolve. Unsurprisingly, the larger the level of reward v, the better the

cooperators do. In particular, the larger the subpopulations, the larger the reward v required

for cooperation to evolve; note that this is similar to the requirement that the benefit-to-cost

ratio exceeds the average number of neighbours an individual has from [70].

The generalized territorial raider model improves on the territorial raider model in chapter

4 by allowing multiple individuals to have the same territory, who are then said to be part of
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the same subpopulation. This idea played a crucial role in the evolution of cooperation, which

could not be achieved before, by allowing more effective cooperation between cooperators when

they are part of the same subpopulation. Previously, individuals had their own unique territory

and it was difficult to get two cooperating individuals to spend enough time with each other.

Reducing the home fidelity parameter meant that individuals spent more time with one another

but it was difficult to control with whom this time was spent with. However, in the generalized

territorial raider model, increasing the home fidelity parameter means that individuals that

are part of the same subpopulation spend more time with one another. Consequently, with

either DBB or BDD dynamics, a cooperative subpopulation can form that allows cooperators

to propagate throughout the population.

The results in this chapter only apply to complete graphs where each node represents a place

where a subpopulation can reside. Heterogeneity was considered in terms of the size of each

subpopulation present on each node, and it was shown that for large home fidelity cooperation

can evolve for arbitrarily large subpopulations. In order to generalise these results to more

general graphs, further study will have to be carried out on more heterogeneous graph structures.

However, as is seen from Figure 5.4, the idea that strict subgroup temperature is important in

explaining the level of cooperation that evolves, would hold for graphs in general. In particular,

low (high) temperature helps promote the invasion of cooperators (defectors) such that higher

temperatures allow cooperators to cluster more strongly and benefit more from cooperating

with one another. The reason for this is that, with higher strict subgroup temperatures, the

individuals are likely to interact locally within their subpopulation and, therefore, the global

structure of the population will have a less substantial effect on the overall fixation probability.

129



130



Chapter 6

Markov Movement Model

6.1 Introduction

The Markov movement population evolution model is based on the BR framework. As the name

suggests, the movement of the individuals is Markov such that they would decide to stay where

they are or move depending upon the current interaction they had. The likelihood of staying is

larger for a beneficial interaction. It is assumed that individuals have a unique home and are

allowed to make a finite number of movements before returning home, called the exploration

time. The topology of the places that individuals can visit is represented by a complete graph and

therefore individuals can directly move from one place to another. The fitness of the individuals

is impacted by the amount they move such that a cost is incurred for each movement made. In

addition to this, the individuals have multiplayer interactions as governed by the multiplayer

public good game. Movement and interactions are assumed to take place between successive

discrete time points at which replacement events take place. The dynamics considered for the

replacement events are the complete set of standard evolutionary dynamics given in Table 4.2

(pg. 91). The success of the cooperate and defect strategy in the multiplayer goods game will be

studied by calculating the fixation probability of each type under various different assumptions

and parameter values. Any new notation used in this chapter is given in Table 6.1.

The motivation behind the Markov movement model is to study whether cooperation can

evolve in the mutliplayer public goods game, if individuals are allowed to make strategic move-

ments. In this case, individuals make strategic movements by staying where they are if it is

beneficial and moving away if not. Similar strategic movement was considered by [1, 2] but

multiplayer interactions were not accounted for. Therefore, the Markov movement model aims

to better understand how strategic movement can help cooperation evolve in the context of

multiplayer interactions.
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In the generalized territorial raider model of the previous chapter, the problem being stud-

ied is similar, i.e. the evolution of cooperation, but the mechanisms available to achieve this are

different. In the generalized territorial raider model, the mechanism required is quite straightfor-

ward and requires subpopulations of individuals to spend more time with one another allowing

clusters of cooperators to form. However, this mechanism is quite sensitive to the dynamics

being used because a subpopulation cannot be colonized by cooperators if selection happens in

the first event of birth-death or death-birth dynamics. On the other hand strategic movement

is more realistic, and its superiority can be tested by checking its robustness to the dynamics

being used.

Notation Definition Description

hn ∈ [0, 1] Probability that In stays.

αn ∈ [0, 1] Staying propensity : probability of In staying when alone.

C (D) Cooperator (Defector) interactive strategy.

βC (βD) ∈ R Benefit of being with cooperator (defector).

S ∈ (0, 1) Sensitivity shown to group members.

Rn ≥ 0 Payoff to In.

λ ∈ [0,min(Rn)) Movement cost.

T ∈ Z+ Exploration time.

Cα (Dα) Cooperator (defector) with staying propensity α.

γ (δ) ∈ [0, 1] Nash equilibrium staying propensity of cooperator (defector).

Table 6.1: New notation used in this chapter.

6.2 The model

6.2.1 The population structure and distribution

The (generalized) territorial raider model is a special case of the fully independent movement

model, i.e. individuals move independently of time, history and the population. The move-

ment of individuals is limited to their neighbourhood and exogenously controlled by the home

fidelity parameter that measures how likely the individual is to remain in their home. A natural

extension to this is to allow individual distributions to vary with time. A Markov model is

considered based on the assumption that history dependence is Markov, that is, the current

population distribution is only dependent upon the previous population distribution. In par-

ticular, the population distribution probability function (PDPF) given in equation (4.4, pg. 87)
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will simplify to

πt(m) =
∑
m<t

pt(m|mt−1)P (m<t). (6.1)

Individual movement with dependence only upon individual history

Assuming that an individual moves independently of the other individuals in the population

but its current position is dependent upon its previous position, the individual distribution

probability function (IDPF) given in equation (4.8, pg. 88) would then simplify to

πn,t(m) =
∑
mn,<t

pn,t(m|mn,t−1)P (mn,<t). (6.2)

This expression can be rewritten using the M ×M probability matrix pn,t = [pn,t(mn|mn,t−1)]

for mn,mn,t−1 = 1, . . . ,M as follows

πn,t = πn,0

t∏
k=1

pn,k (6.3)

where πn,t = [πn,t(m)]m=1,...,M . Furthermore, if it is assumed that there is time homogeneity,

that is pn,t = pn for all t, then this simplifies to

πn,t = πn,0p
t
n. (6.4)

In this case, assuming that pn is irreducible and aperiodic for all n, then as t → ∞ the IDPF

πn,∞ is stationary for all n. Essentially, this model is then equivalent to the fully independent

movement model, which was considered in the models in the (generalized) territorial raider

model and therefore will not be used in this chapter.

Individual movement with dependence on population history

Assuming that the individuals move to a new position independently of each other but dependent

upon the current distribution of the whole population, the IDPF is then given by

πn,t(m) =
∑
m<t

pn,t(m|mt−1)P (m<t). (6.5)

In this chapter, this type of IDPF with the assumption that the individual transition probabilities

are time homogeneous but dependent upon the previous group and previous position of the

individuals, that is

pn(m|mn,t−1,Gn(mt−1)) =

hn(Gn(mt−1)) m = mn,t−1

1−hn(Gn(mt−1))
d m 6= mn,t−1

(6.6)
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where hn(Gn(mt−1)) denotes the staying probability of individual In and N − 1 is the number

of neighbouring places that an individual can move to in a complete graph where each node

represents a place. The population is assumed to be of size N where each individuals has a

home that they can return to such that every place is home to precisely one individual.

The staying probability hn(Gn(mt−1)) will depend upon the staying propensity αn of indi-

vidual In and the attractiveness of remaining in group Gn(mt−1). The staying propensity αn

measures the likelihood that individual In will stay where it is, in particular, hn(Gn(mt−1)) = αn

when In is alone (Gn(mt−1) = {n}). The staying propensity is assumed to be one of the

characteristics that makes up the type of an individual. However, when present in a group

(|Gn(mt−1)| > 1), individual In would take into account the benefit of remaining in that group.

The benefit βi of group member Ii to others depends upon its interactive strategy, the second

characteristic that makes up the type of an individual. It will be assumed that there are two

interactive strategies, cooperate (C) and defect (D). The benefit function, βi is then defined as

follows

βi =

βC if Ii is a cooperator,

βD if Ii is a defector

(6.7)

where βC and βD are the benefits of being with a cooperator and defector, respectively. The

benefit of group Gn(mt−1) to individual In is then defined as follows

βGn(mt−1)\{n} =
∑

i∈Gn(mt−1)\{n}

βi. (6.8)

Finally, combining the effects of the staying propensity and the group benefit, in the rest of

the chapter the staying probability is expressed as the following sigmoid function

hn(Gn(mt−1)) =
αn

αn + (1− αn)SβGn(mt−1)\{n}
(6.9)

where 0 < S < 1 is the sensitivity shown to group members. So, for example, S → 0 implies that

In shows great sensitivity and would move away immediately if remaining in group Gn(mt−1)

is unattractive, which is the case when βGn(mt−1)\{n} < 0. An alternative way of representing

the S → 0 limit involves the staying probability being defined using the following step function

hn(Gn(mt−1)) =


0 |Gn(mt−1)| > 1 and βGn(mt−1)\{n} < 0,

αn |Gn(mt−1)| = 1,

1 |Gn(mt−1)| > 1 and βGn(mt−1)\{n} ≥ 0.

(6.10)

For example, if αn = 0 ∀n, βC = 0 and βD < 0 then the attractiveness of a group is completely

determined by the presence or absence of defectors. An individual would therefore leave with

probability 1 if a defector is present in the group. This was referred to as the ‘walk away’

strategy in [1].
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6.2.2 Fitness

For the Markov movement model the mean fitness contribution given by equation (4.15, pg. 89)

simplifies to

f̄n,t =
∑
m

∑
m<t

fn,t(m|m<t)pt(m|mt−1)P (m<t) (6.11)

It will be assumed that the fitness contribution fn,t(m|m<t) of an individual depends upon

(direct) group interactions and whether a movement has been made.

For the group interactions, the multiplayer public goods game as in Section 4.3.2 (pg. 95)

will be considered. However, instead of dividing the payoffs by the cost K, they will be dividing

by the background payoff R such that the reduced reward is given by v = V/R and the reduced

cost is given by c = K/R. This means that the base payoff has been normalised to 1 and the

reward v and cost c are multiples of the base payoff. The cost cannot exceed 1 in order to

prevent the fitness contribution from going negative (this is done for convenience of calculation;

it is important that total fitness is not negative, and large costs could be dealt with, if necessary,

by truncating the resulting total fitness at 0). The direct group interaction payoff functions are

then defined as follows

Rn(Gn(m)) =



1 + |Gn(m)|C−1
|Gn(m)|−1 v − c In cooperator and |Gn(m)| > 1,

1− c In cooperator and |Gn(m)| = 1,

1 + |Gn(m)|C
|Gn(m)|−1v In defector and |Gn(m)| > 1,

1 In defector and |Gn(m)| = 1

(6.12)

where |G|C is the number of cooperators in group G.

An individual will pay a cost of λ for every movement that it makes. The movement cost

is chosen so that it does not exceed the direct group interaction payoff an individual receives

(for the same reasons as for the cooperative cost c, and large movement costs could be similarly

accommodated if necessary), that is 0 ≤ λ < min(Rn(Gn(m))). The fitness contribution is then

given by

fn(m,Gn(m)|mt−1) =

Rn(Gn(m))− λ m 6= mt−1,

Rn(Gn(m)) m = mt−1.

(6.13)

6.2.3 Evolutionary dynamics

For the Markov movement model the mean replacement weight contribution given by equation

(4.21, pg. 90) simplifies to

ūi,j,t =
∑
m

∑
m<t

ui,j,t(m|m<t)pt(m|mt−1)P (m<t). (6.14)
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It will be assumed that the replacement weight contribution will only depend upon the direct

group. As in the territorial raider model (see Section 4.3.3 pg. 98), the replacement weight

contribution will depend upon the amount of time spent with each individual. In particular, it

is assumed that an individual spends an equal amount of time with each individual in the group

excluding itself. However, if the individual is alone, then it effectively allocates all the time to

itself. The replacement weight contribution function is then defined as follows

ui,j(Gi(m)) =



1/|Gi(m) \ {i}| i 6= j and j ∈ Gi(m),

0 i 6= j and j /∈ Gi(m),

1 i = j and |Gi(m)| = 1,

0 i = j and |Gi(m)| > 1.

(6.15)

6.2.4 The evolutionary Markov chain

The evolution of the population can now be described in terms of a Markov chain. It will be

assumed that there are only two types of individuals in the population, which are labelled A and

B. What exactly makes a type A or B individual would depend upon its interactive strategy

and staying propensity. For example, setting A = C0.1 and B = D0.5 means that type A is a

cooperator with a staying propensity of 0.1 and type B is a defector with staying propensity 0.5,

or setting A = C0.1 and B = C0.2 means that both types have the same behavioural strategy

but different staying propensities. However, the important thing to note is that, at any one

time, there are only two unique types A and B in the population. Since there are only two

types in the population, the fixation probability is calculated in the same way as described in

section 4.3.4 pg. 99. However, in this chapter an arithmetic mean of the fixation probabilities

is used because there is an insignificant difference to the temperature weighted mean.

Simulating the evolutionary Markov chain

The method used in this chapter to calculate the fixation probability is a semi-analytic one

where the fitnesses of individuals are found by simulation, and these results are then used to

evolve the population using the evolutionary Markov chain, which results in a more accurate

solution than simulating the whole process (the movement process is too complex to allow for a

fully analytic solution).

In this model an exploration time T is selected, which is the number of steps an individual

takes moving around the region before returning to its home place. Individuals start on their

home place and are then allowed to move T times such that their fitness contribution is calculated

for each of these movements; the total of these T fitness contributions gives their fitness for one
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simulation. The position of the individuals is then reset, that is, they return to their home place

before the next simulation is run. Their average fitness for 10,000 simulations is used in the

evolutionary Markov chain.

To calculate the replacement weights, individuals start on their home place and move only

one time to determine their replacement weight. This represents individuals returning to their

home place to reproduce, with individuals being replaced according to the corresponding local

connections. This counts as one simulation and, before the next simulation is run, the position

of the individuals is reset so they all start in their home place. The replacement weights are

calculated exactly because they comprise only one movement. This involves calculating the

probability that an individual is alone, which gives the self-replacement weight. The other

replacement weights are simply 1 minus the self-replacement weight divided by N − 1 because

the probability of replacing the other individuals is the same for a complete graph.

The fitnesses and the replacement weights are all that is required to construct the transition

probabilities of the evolutionary Markov chain. The transition probabilities are substituted into

equation (1.6, pg. 29), given in its more general form here, to give the fixation probability of i

type A mutants in a population of N − i type B residents as follows

ρAi =
1 +

∑i−1
j=1

∏j
k=1

P−k
P+
k

1 +
∑N−1
j=1

∏j
k=1

P−k
P+
k

(6.16)

where P−k (P+
k ) is the backward (forward) transition probability for a state with k type A

individuals. Note that this formula can easily be modified to find the fixation probability of

type B individuals.

The advantage of such an approach is that the fixation probability can be calculated relatively

quickly starting from any state. However, this approach necessarily requires that the population

being modelled has individuals who can differ only in terms of their type. This is ensured by

assuming that there is a complete population structure with N places such that each individual

has their own home place.

6.3 Results

In this section the effect of the model parameters on the fixation probability are investigated.

In particular, how the model parameters affect assortment is investigated, which is the mecha-

nism that allows cooperation to evolve as shown in [26]. There is positive assortment between

cooperators if they are more likely to interact with other cooperators than defectors. In the

model considered here, this occurs due to an increase (decrease) in the time it takes for defec-

tors (cooperators) to find cooperators. According to [24] the time to find cooperators should
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depend upon the density of the population and an individual’s movement speed. In their model,

N individuals pair up with one another to form a coalition such that the probability of a pair

forming is exponentially distributed with rate µ, which is a function of N and the population

density. The time to find cooperators in their model is essentially determined by the rate µ.

There is a one-to-one correspondence between individuals and places and therefore the density

remains constant; on the other hand, since a complete graph is considered, the movement speed

is high as individuals can directly get from one place to another. Therefore, the time it takes

to find cooperators is mostly determined by the staying propensity of the individuals’, however,

this relationship is not so straightforward as it is not globally controlled and the individuals

may have different staying propensities (which are subject to the evolutionary process). This

means that some individuals may find cooperators faster than others. The parameters used in

the simulations are summarised in Table 6.2.

Apart from an individual’s interactive strategy and staying propensity, all other parameters

are considered to be fixed. Each individual inherits these two characteristics from its parent, and

different interactive strategies or staying propensities are introduced into the population through

mutations. Staying propensities can take any value 0.01m for m = 1, . . . , 99; this means that

no individual moves all the time or never, and so makes some adjustment to their behaviour

depending upon the group they are in. In particular, max(α) = 0.99; some movement is a

necessary requirement otherwise the replacement weights would be zero and there would be no

evolution within the population. In a real world setting, a minimum movement requirement can

be explained by, for example, foraging behaviour where an individual searches its environment

to find food and therefore needs to move in order to survive.

The mutations of these characteristics are sufficiently infrequent that the population is as-

sumed to consist of a maximum of two types; resident and mutant, whose competition will

result in fixation of one of the types before a new mutant appears. Two different scenarios are

considered to account for the different mutation rates of each characteristic.

6.3.1 Scenario A: Interactive strategy mutations are rare

As previously stated, it is assumed that fixation happens much faster than new mutations arise.

A mutation can result in a change of the interactive strategy and/ or the staying propensity.

In this scenario, the mutation rate of an individual’s interactive strategy is much slower than

the rate of mutations that involve their staying propensity. Since it is much more likely that

the staying propensity mutates than the interactive strategy does, once one of the interactive

strategies (cooperate or defect) is removed from the population, it will be a long time before

a new mutant involving this strategy appears. During this time, there will be a sequence of
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Parameter Set 1 2 3 4 5 6

N 10 10 10 20 10 10

T 10 5 25 10 10 10

λ Variable Variable Variable Variable 0.20 0.20

c 0.04 0.04 0.04 0.04 0.04 0.09

v 0.40 0.40 0.40 0.4 Variable Variable

Table 6.2: Parameters used for the simulations. The other parameters are fixed such that

the population has a complete structure with each individual having its own home, βC = 1,

βD = −1, S = 0.03 and the dynamics used are BDB.

contests among individuals with the same interactive strategy but different staying propensities

and the population will eventually evolve to the point where all individuals have the same

interactive strategy and are using a (strict) Nash equilibrium staying propensity (a strict Nash

equilibrium propensity is one where the fixation probability is maximised and changing the

staying propensity is disadvantageous). Eventually, a mutant with a different interactive strategy

and staying propensity will appear, and the quantity of interest at this point is the fixation

probability of this mutant type. It will be assumed that the staying propensity of the mutant

can be different from the Nash equilibrium staying propensity of the resident population it is

invading. The resident population will therefore be stable if it can resist invasion from a mutant

using any staying propensity. Rather than considering any arbitrary mutant, the focus will be

on the mutant most likely to invade, i.e. one maximising its fixation probability.

Cooperator residents are of the type CγR where their Nash equilibrium staying propensity

γR is the staying propensity where a = b in the set{
(a, b) : ρCa,Cb1 = max

(
ρCc,Cb1 : c ∈ (0, 1)

)
and b ∈ (0, 1)

}
.

In this set all the points (a, b) are identified where a is the best response staying propensity of

1 individual of type Ca when playing against N − 1 individual of type Cb, who are using some

arbitrary staying propensity b. Therefore, at the point where a = b, Ca is a best response to

itself, i.e. a Nash equilibrium.

A defector mutant is of the type DδM where the staying propensity δM satisfies

ρ
DδM ,CγR
1 = max

(
ρ
Dc,CγR
1 : c ∈ (0, 1)

)
.

Defector residents are of the type D0.99 (i.e. in the equivalent terminology to the above

δR = 0.99) where their Nash equilibrium staying propensity is max(α) = 0.99 whenever the

movement cost is greater than 0 because the only way for them to maximize their fixation

probability is by moving as little as possible.
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A cooperator mutant is of the type CγM where the staying propensity γM satisfies

ρ
CγM ,D0.99

1 = max
(
ρCc,D0.99

1 : c ∈ (0, 1)
)
.

The Nash equilibrium staying propensity of the resident cooperators γR is calculated as

follows. The fixation probability of one individual of the type Ca against N − 1 residents of the

type Cb is calculated for all values of a in the range [max(0.01, b − 0.09),min(b + 0.09, 0.99)],

and the value of a that gives the highest fixation probability is picked. Note that using a wider

range of values for a gives the same result so this range is used for efficiency. The N−1 residents

then use the staying propensity a that was picked and this process is repeated several times.

After around 20 repetitions, the staying propensity that gives the maximum fixation probability

remains the same, that is, it is a (strict) Nash equilibrium because it is a best response to itself

and any other strategy will be disadvantageous. Therefore, γR is set to the value of a obtained

after 20 repetitions. It is hypothesized that there is only one solution to the Nash equilibrium

staying propensity. The reason for this is that, as seen in Figure 6.1, the Nash equilibrium

staying propensity of one type Ca against N − 1 type Cb is relatively flat. This means that

the Nash equilibrium staying propensity is predominantly determined by the movement cost λ

regardless of what the other players are doing. Therefore, there is only one intersection point

with the line a = b as shown in Figure 6.1, which gives the Nash equilibrium staying propensity

γR of resident cooperators.

The effect of the movement cost

In Figure 6.2 the effect of the movement cost is shown. In particular, it increases the time it

takes to find cooperators by increasing the staying propensity, that is, γR, γM , δM are positively

correlated with movement cost; the (partial) exception is resident defectors, which have a staying

propensity of max(α) = 0.99 regardless of the movement cost.

For very low movement cost, both mutant types have a significantly lower staying propensity

than the resident population that they are invading. They can therefore invade the resident

population because they take less time to find cooperators.

For higher, but still low, movement costs, whilst mutant cooperators can still invade, mutant

defectors cannot. Here the resident cooperators are better at preventing invasion even when

δM < γR for some values of the movement cost. This is because the movement cost impacts

the invading mutant defector more adversely than the resident cooperators, who on average

leave and regroup less often than a defector who will be repeatedly deserted by its cooperator

groupmates.

For intermediate movement costs, neither mutant type can invade. At this point, since

δM > γR, a mutant defector is slower at finding cooperators than the resident cooperators and
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Figure 6.1: This plot shows the Nash equilib-

rium staying propensities for 1 type Ci indi-

vidual playing against N − 1 type Cj individ-

uals. Parameter set 1 is used with λ = 0.2 and

i, j ∈ {0.01, 0.02, . . . , 0.99}. The intersection

point of the plots gives the cooperator resident

Nash equilibrium staying propensity γR, which

is somewhere between 0.3 and 0.4. This value

is similar to the one obtained using the itera-

tive method (see Figure 6.2). The values from

the current figure are approximate only because

of the jagged nature of the lines; these occur

because of the very large number of simulations

that would be necessary to obtain a smooth ver-

sion (the figure uses 10000 simulations for each

combination). The figure is used to illustrate

the uniqueness of the solution only.

therefore cannot take advantage of them. For a mutant cooperator, γM becomes much larger

thereby diminishing their advantage over the resident defectors, in particular, not only are they

paying a higher movement cost but it takes longer to find the other cooperators, which in turn

reduces the amount of time that they can spend with them.

For high movement costs, defecting mutants can invade, but cooperator mutants cannot. At

this point all types have a large staying propensity and therefore do not interact much with one

another. However, a mutant defector is helped by the fact that the resident cooperators always

pay a cooperating cost that they now find difficult to recoup because they are moving very little

and also paying a very large movement cost whenever they do so.

The effect of the exploration time

The exploration time T plays an important role in the evolution of cooperation. Changing the

exploration time has a minimal effect on the time it takes to find cooperators because it will not

alter the speed of movement of the individuals. This is because a complete graph is used and

individuals can directly get from one place to any other. However, increasing the exploration

time has a positive effect on the coalition time, that is, the amount of time that cooperators

spend cooperating with one another. [24] showed that increasing the coalition time helps with
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Figure 6.2: These plots show the effect of movement cost on the evolution of cooperation using

parameter set 1. The left (centre) plot shows the staying propensities δR = 0.99 (γR) for

resident defectors (cooperators) and γM (δM ) for a mutant cooperator (defector) used to invade

the resident population. The right plot shows the fixation probability of a mutant cooperator

CγM (defector DδM ) against N − 1 resident defectors D0.99 (cooperators CγR).

the evolution of cooperation. In the model considered here, one explanation for this is that the

fitness of the individuals, which is the average reward over the exploration time, will naturally

have a higher value the larger the coalition time.

In Figure 6.3 reducing the exploration time T from 10 to 5 steps decreases the coalition

time which adversely affects the cooperators. One of the key differences is that the resident

cooperators now find it much more difficult to prevent invasion from a mutant defector. The

shape of the plot for a mutant cooperator is largely the same but with a consistently lower

fixation probability. In Figure 6.4 increasing the exploration time T from 10 to 25 steps benefits

the cooperators. Not only does it help the resident cooperators prevent invasion from a mutant

defector but it also increases the success of an invading mutant cooperator. This again has to

do with the increased coalition time that allows the cooperators to increase their fitness.

The effect of population size

Increasing the population size has a positive impact on the evolution of cooperation because

it increases the time it takes to find cooperators. Note that it is assumed that there is a one-

to-one correspondence between individuals and places and therefore increasing the number of

individuals also increases the number of places. Even though the density remains the same, there

would be more places for the individuals to search in order to find cooperators thereby increasing

the overall time it takes to find cooperators. In particular, an individual that is currently not

in a cooperating group will have to search N − 1 places to find one, therefore, the probability of
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Figure 6.3: Plots created using parameter set 2. The exploration time T has been decreased

from 10 to 5.
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Figure 6.4: Plots created using parameter set 3. The exploration time T has been increased

from 10 to 25.

a defector finding a cooperating group decreases as N gets larger. This means that cooperators

would do better, which is indeed the case as seen in Figure 6.5 where the population size has

been doubled from 10 to 20. One of the key differences to the previous plots is that a mutant

defector cannot invade even for very low movement cost in a large population.

The effect of reward and cost

The reward to cost ratio v/c is important because, even if other external factors favour cooper-

ation, cooperation will not evolve if the reward to cost ratio is too low. This is seen in Figure

6.6 where the cost is set to 0.04 with the reward written as a multiple of the cost. When v/c is

low, a mutant cooperator cannot invade but a mutant defector can. This is simply because the
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Figure 6.5: Plots created using parameter set 4. The population size has been increased from

10 to 20.

value of v/c is too low to promote cooperation. Increasing v/c makes cooperation more viable

and, in particular, it allows a mutant cooperator to reduce the time it takes to find cooperators

by reducing its staying propensity. It becomes more difficult for a mutant defector to invade

because, on average, resident cooperators move less than the mutant defector as they are more

in number and the larger v/c helps them quickly recoup any movement cost they incur whilst

evading the mutant defector. This is the case even when δ < γR, that is, a mutant defector

takes less time to find cooperators. For comparison with a different value of v/c, in Figure 6.7

the cost is set to 0.09. However, there is no fundamental change in what happens and the figure

is very similar to the one where c = 0.04.
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Figure 6.6: Plots have been created using parameter set 5. The plots here are against the reward

to cost ratio v/c such that c = 0.04.
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Figure 6.7: Plots have been created using parameter set 6. The plots here are against the reward

to cost ratio v/c such that c = 0.09.

6.3.2 Scenario B: Interactive strategy mutation is not rare

In this scenario, the mutation rate of an individual’s interactive strategy is not much slower

than that of their staying propensity. Since the staying propensity would take a number of

mutations to reach the right level for any scenario, any successful strategy will have to repeatedly

face individuals of both types. The (strict) Nash equilibrium staying propensity will then be

determined in a mixed population, i.e. there are individuals of both types. For simplicity only

one mixed state is chosen to determine the Nash equilibrium staying propensity which is the

one where there are N/2 individuals of each type. The Nash equilibrium staying propensity for

each type is therefore the one in which the fixation probability from the mixed state of each

type is maximised.

Resident and mutant defectors are of the same type Dδ. Similarly, resident and mutant

cooperators are of the same type Cγ . The Nash equilibrium staying propensities δ and γ are

determined by the intersection of the following two sets{
(a, b) : ρCa,DbN/2 = max

(
ρCc,DbN/2 : c ∈ (0, 1)

)
and b ∈ (0, 1)

}
,{

(a, b) : ρDb,CaN/2 = max
(
ρDc,CaN/2 : c ∈ (0, 1)

)
and a ∈ (0, 1)

}
.

In the first set the Nash equilibrium staying propensity a is found for N/2 type Ca playing

against N/2 type Db, where b is some arbitrary staying propensity. In the second set the Nash

equilibrium staying propensity b is found for N/2 type Db playing against N/2 type Ca, where

a is some arbitrary staying propensity. The point at which these two sets intersect is (γ, δ), that

is, both types will be using their Nash equilibrium staying propensities.

To calculate γ and δ a similar iterative procedure from scenario A is used. To initialise the

iterative procedure some staying propensities a0 and b0 are arbitrarily chosen, and the iterative
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step is as follows. The fixation probability of N/2 type Ca individuals against N/2 type Db0 is

calculated for all values of a in the range [max(0.01, a0−0.09),min(a0+0.09, 0.99)]. The staying

propensity a that gives the maximum fixation probability is picked, which is labelled a1. The

fixation probability of N/2 type Db individuals against N/2 type Ca1 is then calculated for all

values of b in the range [max(0.01, b0−0.09),min(b0 +0.09, 0.99)]. The staying propensity b that

gives the maximum fixation probability is picked, which is labelled b1. Note that using a wider

ranges for a and b gives the same result so these ranges were used for efficiency. After around

20 repetitions of the iterative step, the staying propensities a20 and b20 remain the same. Note

that any other values would be disadvantageous and, therefore, for these values the population

is at a (strict) Nash equilibrium. The values of γ and δ are then set to a20 and b20 respectively,

i.e. γ = a20 and δ = b20.

It is hypothesized that γ and δ are unique. For cooperators, their Nash equilibrium staying

propensity is relatively stable because it is predominantly determined by the movement cost

regardless of what the defectors are doing. As seen in Figure 6.8, the plot for this is a roughly

vertical line. For defectors, their Nash equilibrium staying propensity is negatively correlated

with the staying propensity of the cooperators given that the movement cost is not too large,

otherwise it would be max(α). In Figure 6.8, the plot for this slopes downwards as the staying

propensity of the cooperators increases. There is therefore only one intersection point of the

two curves that gives γ and δ.
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Figure 6.8: This plot shows the Nash equilib-

rium staying propensities for N/2 cooperators

and N/2 defectors. Parameter set 1 is used

with λ = 0.2 and the staying propensities are

chosen from the set {0.01, 0.02, . . . , 0.99}. The

Nash equilibrium staying propensities cross at

one point only where γ ≈ 0.7 and δ ≈ 0.5.

These values are similar to those obtained us-

ing the iterative method described earlier (see

Figure 6.9). As before, the values from the cur-

rent figure are approximate only because of the

jagged nature of the lines; the figure is used to

illustrate the uniqueness of the solution only.
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The effect of movement cost

As in scenario A, the movement cost increases the staying propensity of the individuals and,

therefore, increases the time it takes to find cooperators. As seen in Figure 6.9, what happens in

this case is quite different to the situation in scenario A. Here, the mutant cooperator does not

benefit from the fact that the resident defectors have a very high staying propensity as in scenario

A. In this case, δ changes with the movement cost in a similar way that γ changes. Therefore,

the key difference here is that a mutant cooperator cannot invade for very low movement cost

because the resident defectors have a very low staying propensity, which means that they take

much less time to find cooperators.
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Figure 6.9: These plots show the effect of movement cost λ on the evolution of cooperation and

are created using parameter set 1. The plot on the left shows the Nash equilibrium staying

propensity γ for cooperators and δ for defectors in a mixed population where there are N/2

individuals of each type. The plot in the centre shows the fixation probability of each type from

the mixed state with N/2 individuals of each type. The plot on the right shows the fixation

probability of a mutant cooperator Cγ (defector Dδ) in a population of N − 1 resident defectors

Dδ (cooperators Cγ).

The effect of exploration time

As in scenario A, the cooperators do worse when the exploration time is lower; this is shown in

Figure 6.10 where T is decreased from 10 to 5, and in Figure 6.11 where T is increased from 10

to 25. The explanation is as in scenario A where the coalition time is lower when the exploration

time is lower and the coalition time increases, since, as previously seen, increasing the coalition

time helps the cooperators do better.
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Figure 6.10: Plots created using parameter set 2. Plots are as in Figure 6.9 with exploration

time T decreased from 10 to 5.
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Figure 6.11: Plots created using parameter set 3. Plots are as in Figure 6.9 with exploration

time T increased from 10 to 25.

The effect of population size

Similarly to scenario A, increasing the population size helps cooperators as shown in Figure 6.12,

where N is increased from 10 to 20. As before, increasing the population size increases the time

it takes to find cooperators because there is a one-to-one correspondence between individuals

and places. Increasing the population size therefore increases the number of places that need to

be searched to find cooperators. Furthermore, as in scenario A, a mutant defector can no longer

invade resident cooperators for a very small movement cost.
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Figure 6.12: Plots created using parameter set 4. Plots are as in Figure 6.9 with population size

N increased from 10 to 20.

The effect of reward and cost

For a mutant defector, the effect of the reward to cost ratio v/c is the same as in scenario A.

However, a mutant cooperator does not do better with increasing v/c. In this scenario, the

fixation probability of a mutant cooperator peaks, then starts dropping, as v/c is increased.

This is because the resident defectors have a very low staying propensity, and are therefore

faster at finding cooperators, making it difficult for a mutant cooperator to invade because it

cannot avoid the defectors. This is shown in Figure 6.13 where c = 0.04. Increasing the cost

c though, makes it even more difficult for the cooperators regardless of v/c. In Figure 6.14, a

mutant cooperator cannot invade for any v/c. This is because a larger c reduces the cooperators’

background fitness by a larger amount, increasing the handicap that the cooperators already

have.

6.3.3 The effect of other parameters

The effects of other parameters are not shown using plots but will be explained in this section.

Making the individuals more sensitive to their group members by decreasing the sensitivity

parameter S improves the chances of cooperation evolving. In equation (6.9), it can be seen

that decreasing S will increase the size of the denominator if the group benefit is negative,

thereby increasing the probability that an individual moves away from its current position if it

is undesirable to stay. Therefore, as S → 0 the more sensitive individuals become, which helps

the evolution of cooperation because it reduces the exploitation of cooperators (cooperators are

now more likely to move away if the group they are in becomes undesirable).

Another way in which the group member sensitivity can be changed is by choosing βA > 0
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Figure 6.13: Plots created using parameter set 5. Plots are as in Figure 6.9 but λ is fixed and

reward to cost ratio v/c varied such that c = 0.04.
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Figure 6.14: Plots created using parameter set 5. Plots are as in Figure 6.9 but λ is fixed and

reward to cost ratio v/c varied such that c = 0.09.

and βB < 0 such that βB/βA → −∞. As seen in equation (6.9), this will cause the group benefit

to become negative very quickly in the presence of a defector, even if there are significantly more

cooperators present. Once again, this reduces the exploitation of cooperators by defectors, hence,

improving the chances that cooperation evolves.

In all of the plots shown, only BDB dynamics is used because the effect of a change to

other dynamics is quite small. The reason for this is that the evolutionary graph is always

complete, that is, whilst the replacement weights change, all individuals can still replace one

other. For example, in the case of DBB dynamics, to make a significant difference a defector

randomly chosen for death should be more likely to be replaced with the offspring of a cooperator.

However, this is not the case here and, in particular, the only way the evolutionary graph can
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be changed is by changing the staying propensity such that increasing the staying propensity

increases the probability that an individual replaces itself. Therefore, the dynamics overall have

a small effect. Note that this would not be the case for some other underlying structure that

was not complete.

6.4 Discussion

In this chapter the framework of Broom-Rychtar (Chapter 4) is used to model the evolution of

a mobile population in which the movement of the individuals is Markov such that the place an

individual moves to next depends upon their current position. In the (generalized) territorial

raider model (Chapters 4 and 5), individuals moved independently of their current position so

the Markov movement model in this chapter gives a different perspective on the movement of

individuals in relation to the evolution of cooperation.

The Markov movement model considers the movement of individuals that depend upon

population history. Here, individuals make a decision of whether they should stay or leave their

current position depending upon the other individuals present with them in the same place.

This movement strategy is akin to the “walk away” strategy of [1, 2]. However, note that this

is only one interpretation that can be used for the Markov movement model. The framework

provides the tools to construct different kinds of Markov movement behaviour. For example,

in [25], individuals would study all surrounding areas before making a decision about where

to move to next. In terms of the framework, individuals would consider a larger subset of the

current population distribution rather than just the distribution of individuals that are currently

present with each other. Both simple and complex Markov movement behaviour provide useful

insight into the movement behaviour of individuals.

For cooperation to evolve, [26] showed that there should be assortment, in particular there

should be a mechanism that allows the cooperators to increase their preference for interacting

with other cooperators. Here, this mechanism is provided by the Markov movement of the indi-

viduals. The results presented here are in line with [2] who also modelled the Markov movement

of individuals where individuals would stay where they are if the payoff they received was above

some minimum threshold. However, the Markov movement model in this chapter uses a struc-

ture that is substantially different. A complete graph is used with one-to-one correspondence

between individuals and places instead of a two-dimensional array. This means that there is a

high potential movement speed as individuals can go directly from one place to another, which

is mitigated in the Markov movement model with the introduction of a movement cost. A higher

staying propensity slows down an individual because they are more likely to stay where they are.

Individuals use the staying propensity that maximises their fixation probability. Two different
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scenarios were considered where the staying propensity of an individual mutates very quickly or

slowly. The key difference between the two scenarios was that a mutant cooperator can invade a

resident population of defectors for very low movement cost if their staying propensity mutates

very slowly.

The BDB dynamics used here allows cooperation to evolve even though typically selection

does not favour cooperators with these dynamics [70]. Other dynamics that favour cooperators

showed little improvement over the results obtained for BDB dynamics. This shows that Markov

movement is quite effective in allowing cooperation to evolve. Its effectiveness is further backed

up by the fact that the structure of the evolutionary graph is complete, which is known to be

detrimental for cooperators [70]. In particular, in a complete evolutionary graph all individuals

can replace each other and, therefore, the individuals with the highest fitness are more likely to

be favoured by selection. This shows that conditional movement makes the choice of dynamics

being used less important.

The results of the generalized territorial raider model given in chapter 5 and the Markov

movement model are consistent with one another in that they both require cooperators to spend

more time with one another in order to allow cooperation to evolve. The territorial raider model

achieves this through stronger subpopulation interactions where as the Markov movement model

achieves this through strategic movement. Strategic movement is more realistic than the naive

approach used in the territorial raider model because it allows for the fact that individuals

move away from adversity. Furthermore, strategic movement is more robust in terms of the

dynamics used. The territorial raider model requires that BDD or DBB dynamics are used for

cooperation to evolve and, on the other hand, either BDB, DBD, BDD or DBB dynamics work

for the Markov movement model.

The results in this chapter apply to places whose connections between them represent a

complete graph. For more general graphs, further study will have to be carried out, though,

the current study on a complete graph does give some intuition in terms of what to expect.

For example, with the complete graph, it is possible for cooperators to escape defectors more

easily but, in a graph with less connections, there are fewer places a cooperator can escape to

and also fewer places for a defector to search for cooperators, which would adversely affect the

level of cooperation. Similarly, for graphs with hubs that individuals are forced to go through

would make it difficult for cooperators as they may have to go through these hubs, which may

be populated by defectors. Overall, the key difference that will be observed is that the starting

position of a cooperator or defector will play a crucial role in their success in heterogeneous

graph structures.
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Chapter 7

Alternative Dynamics

7.1 Introduction

This chapter utilizes the territorial raider population evolution model of chapter 4 to study

alternative dynamics that can be used. Whilst these dynamics are applied to the territorial

raider model, they are compatible with the fully independent movement model of the frame-

work of Broom-Rychtář. They are therefore compatible with the generalized territorial raider

model (Chapter 5) and, under certain assumptions, the Markov movement model (Chapter 6).

These alternative definitions are obtained by altering the definition of the replacement weight

contributions ui,j(m,G) in equation (4.24, pg. 91), reproduced here,

wi,j =
∑
m

∑
G

i,j∈G

ui,j(m,G)χ(m,G). (7.1)

Recall that wi,j are the replacement weights that represent the replacement graph, i.e. it deter-

mines which individual an offspring can replace. These newly defined replacement weights wi,j

can then be used with the standard dynamics given in Table 4.2 (pg. 91). However, some of the

alternative definitions given here cannot be used with the standard dynamics.

The objective of this chapter is not to provide an exhaustive list of dynamics that can be

used with the BR framework but to illustrate how they can be constructed. Analysis is carried

out for the alternative dynamics defined in order to better understand them and compare them

with those used in the previous chapters and, therefore, justify why they were used.

7.2 Standard Dynamics with Selection Bias

Before defining different replacement weights, a definition of the standard dynamics with a

selection bias parameter are given. The selection bias parameter, x, varies the bias that selection
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Standard dynamics with selection bias

BD bi =
F 1−x
i∑
n F

1−x
n

, di,j =
wi,jF

−x
j∑

n wi,nF
−x
n

DB dj =
F−1+xj∑
n F
−1+x
n

, bi,j =
wi,jF

x
i∑

n wn,jF
x
n

L ri,j =
wi,jF

1−x
i /F−xj∑

n wn,kF
1−x
n /F−xk

Table 7.1: Evolutionary dynamics rewritten using the selection bias parameter x. The selection

bias parameter x permits changing the bias that selection has towards the birth and death

processes.

has towards the birth process and death process. The standard dynamics with selection bias

are given in Table 7.1. In the case of the birth-death (BD) dynamics, x = 0 (x = 1) implies

that selection happens only in the birth (death) process. For x ∈ (0, 1), selection happens in

both processes, for example, when x = 0.5 selection is equally biased towards the birth and

death processes. The link dynamics are set up in a similar way to the BD dynamics. On the

other hand, for death-birth (DB) dynamics, x = 0 (x = 1) implies that selection happens only

in the death (birth) process and x ∈ (0, 1) implies that selection happens in both the death and

birth processes. Note that it is set up in this way because x = 0 (x = 1) implies that selection

happens in the first (second) process which is birth (death) for the BD and the opposite for DB.

With link dynamics, the ordering of birth and death is ambiguous so the same convention as

BD is used.

Defining the dynamics in this way generalises the standard dynamics by bridging the gap

between selection on the birth and death events making them more useful in the context of

evolutionary graph theory. One of the advantages is that they are now more suitable when

checking for sensitivity. For example, some of the results obtained hold for the extreme cases

where selection happens in the birth or death event, i.e. x = 0 or 1 in BD dynamics. By

weakening this assumption, it can be checked how sensitive the results are to it. The selection

bias parameter allows one to gradually weaken such assumptions. In particular, setting x = 0.5

implies that selection happens in both the birth and death events. Thereby, each event is given

equal importance and the results obtained should be less sensitive to either the the birth and

death events.
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7.3 Replacement weights that can be used with standard

dynamics

In this section various definition of the replacement weight contributions are given where the re-

placement weights generated are compatible with standard dynamics given in Table 4.2 (pg. 91).

In each case the replacement weight contribution ui,j(m,G) is some function proportional to the

probability of the birth individual Ii and death individual Ij meeting in place m in group G.

7.3.1 Definition 1

The replacement weight contribution is equal to the probability of Ii and Ij meeting in place

m in group G. This is a simple definition where the only feature of group G that matters is

whether Ii and Ij are in G, that is, they meet. Recall, that the probability of group G forming

in place m is χ(m,G), see equation (4.27, pg. 95). In the case of self-replacement, i.e. the birth

and death individuals are the same so i = j, the replacement weight contribution is χ(m,G) if

G = {i}, and 0 otherwise. This captures the notion that self-replacement should be proportional

to an individual being alone. The replacement weight contribution is then given by

ui,j(m,G) =

0 i = j ∧ |G| > 1,

χ(m,G) otherwise.

(7.2)

7.3.2 Definition 2

This is an extension of Def. 1, however, in this case χ(m,G) is divided by |G|, the size of group G.

The logic behind this is that Ii equally considers all the member of G including itself. Therefore,

smaller groups contribute more than larger groups, which makes sense because individuals Ii

and Ij would spend more time together in a smaller group than a larger group. In the case

of self-replacement, Ii is allowed to replace itself when present with other group members and

does not need to be alone, that is, there is in-group self-replacement. The replacement weight

contribution is then given by

ui,j(m,G) =
χ(m,G)

|G|
. (7.3)

Note that there is no need to account for whether Ii is alone or not because of in-group self-

replacement.

7.3.3 Definition 3

This definition is used in the previous chapters where it was first defined in Section 4.3.3 (pg. 98).

It has been included for continuity as it is an extension of Def. 2. The main difference here is
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that in-group self-replacement is not allowed. Therefore, χ(m,G) is divided by |G| − 1, the size

of group G excluding Ii, and self-replacement is allowed only when Ii is alone. The replacement

weight contribution is then given by

ui,j(m,G) =


0 i = j ∧ |G| > 1

χ(m,G) i = j ∧ |G| = 1

χ(m,G)

|G| − 1
i 6= j

(7.4)

Def. 1 does not take into account the effect of other members in the group G in which Ii and Ij

meet and was therefore not used in the previous chapters. Furthermore, Def. 3 was favoured over

Def. 2 because the latter overemphasizes self-replacement because of in-group self-replacement

and the former does not. Note that there are other implications of in-group self-replacement

that are highlighted later in this chapter.

7.3.4 Definition 4

This definition, as in Def. 1, assumes that the replacement weight contribution is equal to the

probability of Ii and Ij meeting in place m in group G, however, in addition to this, part of the

self-replacement weight contribution is assigned to the other individuals proportional to how

often they meet. This then reduces self-replacement and increases the likelihood of replacing

another individual by emphasizing the connection between individuals based on how often they

meet. The replacement weight is given by

ui,j(m,G) =

χ(m,G)χ(m,G) i = j ∧ G = {i},

χ(m,G) + χ(m,G)χ(m, {i}) otherwise.

(7.5)

This definition differs from the previous three in that the replacement weights are not symmetric,

i.e wi,j 6= wj,i ∀i, j, except when all individuals have the same probability of being alone and

meeting one another.

7.3.5 Comparing the different weights

The territorial raider model (see Chapter 4 pg. 85) is used to make the comparisons. The

population structures used are the 4-vertex complete, line and star graphs and the game used

is the multiplayer public goods game. For the game, the reduced background fitness is set to

r = 10 and the reduced reward to v = 2. The following plots show an arithmetic mean of the

fixation probabilities instead of the temperature weighted mean because there is no significant

difference. In each of the plots the selection bias is set to 0.5, that is, selection is equally biased

towards birth and death.
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Figure 7.1 compares the different definitions for the BD dynamics. It is observed that Defs. 1

and 3 and are quite similar to one another in the sense that the fixation probabilities closely

follow one another, especially for the line and star graphs. There is a clear ranking amongst

the four definitions in terms of favouring the defectors over the cooperators. Def. 2 favours the

defectors the most and Def. 4 the least, with Defs. 1 and 3 falling almost halfway in between.

This is to be expected because Def. 2 allows in-group self-replacement. This means if individual

In is chosen for death and it has a higher fitness than the individuals that can replace it, In

is more likely to replace itself and this is even more likely to be so in the case of in-group self-

replacement. Note that for the public goods game the defectors generally have a higher fitness

and are therefore favoured. In Def. 4, where the likelihood of self-replacement is diminished,

the advantage of defectors is significantly eroded, especially for low home fidelity. Figure 7.2

compares the different definitions for the DB dynamics. The observations here are very similar

to the BD dynamics. In particular, there is a clear ranking between the four definitions with

Def. 2 favouring defectors the most and Def. 4 the least.

Figure 7.3 compares the different definitions for the Link dynamics. Here, Defs. 1, 2 and 3

all behave in the same way, which is drastically different from what was observed in the BD and

DB dynamics. This is the case because for all three definitions the replacement weight matrix

W = (wi,j) is symmetric, i.e. wi,j = wj,i ∀i, j. This means that W is a circulation, see Section

2.2.3 pg. 49. In the case of circulations, the replacement graph does not impact the fixation

probabilities and only the fitness of the individuals matter. In the case of constant fitness, this

is shown by Proposition 1 pg. 52. Therefore, the differences seen between the complete, line

and star graph are due to the fitnesses of the individuals. However, Def. 4 behaves differently

because the replacement weight matrix is not symmetric and, therefore, the structure of the

population impacts the fixation probability. The overall shape of the fixation probability curves

for the different graph structures are quite similar though. In particular, for low home fidelity

the defectors do very well but this drops off as the home fidelity increases. This would be due

to the fact that the interactions between the individuals would not be vastly different for these

small graphs, though, for larger graphs there could be a more substantial difference.

Figure 7.4 compares the BD, DB and Link dynamics for Def. 1. It can be observed that

the BD and DB dynamics are almost identical because the replacement graph W for Def. 1 is

symmetric. This means that whether birth occurs first or death is irrelevant so both BD and

DB behave almost identically. However, for significantly heterogeneous graphs, like the star,

this behaviour seems to break down with BD being slightly more favourable to the defectors

than DB. The link dynamics behaviour is vastly different from the BD and DB dynamics, most

notably it slopes upwards whilst the other two dynamics slopes downwards. The figures in
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Chapter 4 (pg. 85) for BD dynamics essentially behave like the LD dynamics here, therefore,

the effect observed here is due to the selection bias. Indeed, the selection bias is set to x = 0.5,

which means that for the BD (DB) dynamics the first event, birth (death), is influenced less by

selection and, therefore, subject more to chance. As shown in Section 5.3.1 (pg. 121) this favours

the less fit type, in this case cooperators, especially when self-replacement is low. Note that

the probability of self-replacement is low when the home fidelity is low but increases when the

home fidelity is high, hence the upward slope. In the star graph, self-replacement is lowest when

home fidelity is low as a lot of the individuals converge in the center vertex. The cooperators

are therefore at a much lesser disadvantage than for the other two graphs, so much so, that the

difference between the fixation probability of cooperators and defectors is narrower than for the

LD dynamics. This means that the plots for the LD and the other two dynamics cross over for

the star graph. For the other graphs, there is no cross over and LD seems less favourable to the

defectors than the other two dynamics.

Figure 7.5 compares the three dynamics for Def. 2. It is observed that BD and DB dynamics

are identical and this relationship does not break down for heterogeneous graphs because, in

this case, W is symmetric and doubly stochastic. This means that W is isothermal, see Section

2.2.3 pg. 49. As mentioned before, the order of the birth and death events becomes irrelevant,

and is stronger in the case when W is isothermal. With in-group replacement, the upward slope

disappears. Instead, there is a peak around home fidelity h = 1 for the line graph and, more

clearly, for the star graph. Where as, in the case of the complete graph, it is now downward

sloping. This is expected as self-replacement increases even for low home fidelity with in-group

self-replacement. Figure 7.6 compares the three dynamics for Def. 3. Here, the observations are

similar to those in Def. 1. However, note that W in this case is doubly stochastic and symmetric

as well, so DB and BD are identical in their behaviour. Figure 7.7 compares the three dynamics

for Def. 4. The observations here are characteristically similar to those in Defs. 1 and 3, but

the identical behaviour of DB and BD breaks down, more so than Def. 1, due to the lack of

symmetry in W, particularly for the line and star graphs. The other difference is that the

advantage of the defectors is significantly diminished, especially for the DB and BD dynamics.

This means that DB and BD dynamics are more responsive to there being less self-replacement

than Link dynamics.

Figure 7.8 compares different values of the selection bias for BD Def. 3 dynamics. The values

of the selection bias used are 0, 0.5 and 1. The most noticeable feature is that for x = 0.5, the

fixation probabilities lie in the middle of the cases where x = 0 and x = 1. This was somewhat to

be expected as selection is equally biased towards the birth and death events. For the complete

graph, the effect of the dynamics is consistent regardless of the selection bias, i.e. the fixation
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Figure 7.1: Comparison between Definitions 1, 2, 3 and 4 for BD dynamics. For the game r = 10

and v = 2. The selection bias is x = 0.5.

probability of each type converges as the home fidelity increases. For the line and star graphs,

this is the case when x = 0. However, when x = 0.5 or 1, the fixation probabilities initially

diverge before starting to converge again in the line and star graphs. This shows that, for low

values of home fidelity, as selection shifts to the second event (death in this case), the cooperators

do better. This is because, for low values of home fidelity, there is subgrouping behaviour as

seen in Chapter 5. Note that, as the home fidelity increases and subgrouping behaviour reduces,

there is a point at which the fixation probabilities are identical for all values of the selection

bias.

7.4 Replacement weights that cannot be used with stan-

dard dynamics

The definition of the replacement weights given in this section are applied in a different way

to the ones given in the previous section. In particular, the replacement weight contributions

are functions of the fitnesses of the individuals whose effect is controlled by the selection bias

parameter x. This means that the replacement weights cannot be used with the standard

dynamics. In this case, the replacement weights are not symmetric, i.e. wi,j 6= wj,i ∀i, j, and

changes whenever the state of the population changes because the fitnesses of the individuals
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Figure 7.2: Comparison between Definitions 1, 2, 3 and 4 for DB dynamics. For the game r = 10

and v = 2. The selection bias is x = 0.5.
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Figure 7.3: Comparison between Definitions 1, 2, 3 and 4 for Link dynamics. For the game

r = 10 and v = 2. The selection bias is x = 0.5.
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Figure 7.4: Comparison between BD, DB and Link dynamics for Def. 1. For the game r = 10

and v = 2. The selection bias is x = 0.5.
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Figure 7.5: Comparison between BD, DB and Link dynamics for Def. 2. For the game r = 10

and v = 2. The selection bias is x = 0.5.
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Figure 7.6: Comparison between BD, DB and Link dynamics for Def. 3. For the game r = 10

and v = 2. The selection bias is x = 0.5.
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Figure 7.7: Comparison between BD, DB and Link dynamics for Def. 4. For the game r = 10

and v = 2. The selection bias is x = 0.5.
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Figure 7.8: Comparing different values of the selection bias for BD Def. 3 dynamics. For the

game r = 10 and v = 2.

change. Overall, this means that the replacement weights cannot be used with the standard

definition of the dynamics.

7.4.1 Alternative Birth-Death (Alt. BD) Dynamics

These dynamics follow the same logic as the standard birth-death dynamics. In particular, with

probability bi an individual Ii is chosen for birth who then replaces individual Ij with probability

di,j so ri,j = bidi,j . The probability that individual Ii is chosen for birth is given by

bi =
F 1−x
i∑
n F

1−x
n

. (7.6)

The replacement weights wi,j will still be used to determine the probabilities di,j . The replace-

ment weight contributions used to determine wi,j are an extension of Def. 3 above. In Def. 3,

individual Ii is equally likely to replace each member of the group it is present with, excluding

itself. Here, individual Ii is likely to replace a group member inversely proportional to their

fitness. This takes into account the fact that Ii is most likely to replace the weakest individual

163



it meets. The replacement weight contribution, for all G such that i, j ∈ G, is then given by

ui,j(m,G, x) =



0 i = j ∧ |G| > 1,

χ(m,G) i = j ∧ |G| = 1,

χ(m,G)F−xj∑
n∈G\{i}

F−xn
i 6= j.

(7.7)

Plugging the replacement weight contributions into equation (7.1) gives the replacement weights

wi,j . The probability di,j is then set to di,j = wi,j . Note that this is possible because W = (wi,j)

is right-stochastic, i.e. the rows sum to 1. The selection bias parameter x is used in both the

birth and death probabilities such that x = 0 (x = 1) implies that selection influences only the

birth (death) event. Note that for x = 0, Alt. BD. is identical to the standard BD with Def. 3.

7.4.2 Alternative DB (Alt. DB) Dynamics

These dynamics are defined in a similar fashion to the standard death-birth dynamics where

individual Ij is chosen for death with probability dj and is then replaced by individual Ii with

probability bi,j . The death probability is given by

dj =
F−1+xj

N∑
n=1

F−1+xn

. (7.8)

The birth probability is function of the replacement weights, which are defined using the re-

placement contributions that are an extension of Def. 3 given above. Rather than using an

equal weighting as in Def. 3, death individual Ij is most likely to be replaced by the fittest

group member and, therefore, the birth individual Ii is chosen proportional to its fitness. The

replacement weight contribution, for all groups G such that i, j ∈ G, is then given by

ui,j(m,G) =



0 i = j ∧ |G| > 1,

χ(m,G) i = j ∧ |G| = 1,

χ(m,G)F xi∑
n∈G\{j}

F xn
i 6= j.

(7.9)

The birth probability is then given by bi,j = wi,j where this is possible because W = (wi,j) is

left-stochastic, i.e. all columns sum to 1. The selection bias parameter x is once again used in

both the birth and death probabilities. For x = 0, selection only influences the death event,

which happens first, and Alt. DB is identical to standard DB with Def. 3. For x = 1, selection

only influences the birth event, which happens second.
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7.4.3 DB dynamics with no self-replacement (No self-rep. DB)

These dynamics are defined in the same way as Alt. DB with a slight adjustment replacement

weight contribution to prevent self-replacement. The self-replacement weight contribution is

set to zero, that is, uj,j(m,G, x) = 0 for j = 1, . . . , N . However, the probability that the

death individual Ij is alone, χ(m, {j}), still has to be accounted for. It is assumed that, when-

ever Ij is alone, Ii will replace Ij proportional to Ii, Ij meeting and the fitness of Ii, that

is, F xi
∑
m pi,mpj,m. This simply means that resampling takes place when Ij is alone. The

replacement weight contribution, for all G such that j ∈ G, is then given by

ui,j(m,G, x) =



0 i = j,

χ(m,G)F xi

M∑
m=1

pi,mpj,m

N∑
n=1
n 6=j

F xn

M∑
m=1

pn,mpj,m

i 6= j ∧ G = {j},

χ(m,G)F xi∑
n∈G
n 6=j

F xn
otherwise.

(7.10)

7.4.4 Comparing the different dynamics

Figure 7.9 compares the Alt. BD and standard BD Def. 3 dynamics. For Alt. BD the difference

between fixation probabilities converges even though its definition is derived from the standard

BD Def. 3 dynamics, where the fixation probabilities diverge. In particular, it was previously

mentioned that for the standard BD Def. 3 dynamics the fixation probabilities diverge because

the selection bias is set to x = 0.5. This implies that the first event, birth, is influenced more

by randomness with selection playing a smaller role. This gives the less fit cooperators a chance

to replace a fitter defector, especially when home fidelity is low and individuals are in groups

more often. The effect wears off as home fidelity increases, hence the divergence. However, for

Alt. BD dynamics the overall effect of selection gets muted the larger the value of the selection

bias gets. This is because, not only does selection take place in the second event, the effect of

fitness is concentrated within the groups that form. Note the difference between the fixation

probabilities is significantly narrower for Alt. BD than for standard BD Def. 3. However, when

the groups on average are large, as is the case with the star graph for low home-fidelity where

all individual converge to the center, it seems to match the standard BD Def. 3 dynamics.

Figure 7.9 compares the standard DB Def. 3 dynamics, Alt. DB and no self-rep. DB. Here,

standard DB Def. 3 dynamics and Alt. DB essentially behave in the same way as their BD

equivalents. The no self-rep. DB dynamics somewhat behaves like the Alt. DB dynamics since
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Figure 7.9: Comparison between Alt. BD and standard BD Def. 3. For the game r = 10 and

v = 2. The selection bias is x = 0.5.

the difference between the fixation probabilities is also compressed. For the complete graph, it

shows very little variability but for the star graph there is much more variation in its behaviour.

7.5 Discussion

In this chapter a generalised definition of the standard dynamics is given that uses a selection bias

parameter, which controls the extent to which selection acts on birth or death in a replacement

event. Several different definitions of the replacement weights that can be used with the fully

independent model of the Broom-Rychtář framework are also given. Whilst only one of these

definitions is used in the previous chapters, the objective is to demonstrate the flexibility with

which different definitions can be accommodated within the framework.

The key difference between the definitions of the replacement weights is whether or not

they can used with the standard dynamics. That is, whether the replacement weights can

be plugged directly into the formula for the replacement probabilities given by the standard

dynamics. Def. 1, 2, 3 and 4 are of this kind such that they are weights that associate each pair

of individuals in terms of the likelihood of one replacing the other, and vice versa. Where as

Alt. BD, Alt. DB and No self-rep. DB are nonstandard as they cannot be used with the standard

dynamics, instead, a separate definition of the replacement probabilities needs to be given that
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Figure 7.10: Comparison between standard DB Def. 3, Alt. DB and No self-rep. DB. For the

game r = 10 and v = 2. The selection bias is x = 0.5.

can accommodate them. In particular, the replacement weights in these cases are probabilities,

hence, they give the probability that one individual replaces another.

The nonstandard replacement weights compress the overall effect of selection. This is because

with these dynamics the fitness of the individuals is accounted for within the groups they meet,

therefore, if they meet less often, the fitness does not really play a major role. However, with

the standard replacement weights, the fitness plays a more significant role as it is accounted

for independently of the groups in which the individuals meet. This can therefore be used to

argue that the standard replacement weights are more superior in that they are more effective

at capturing the effect of selection. In particular, this is why Def. 3 was used in the previous

chapters as, not only is it standard, but it is effective at accounting for the groups in which the

individuals meet.
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Chapter 81

Conclusions and Future Work2

This research completes the development of the framework of Broom-Rychtář by implementing3

new evolutionary dynamics that can be used with this framework. The framework can now4

be used in its full capacity to model the evolution of a structured population consisting of5

mobile individuals who interact in groups. In order to implement the dynamics, a general6

understanding of evolutionary dynamics in a structured population was required that led to the7

study of evolutionary graph theory, which fits naturally in the case of structured populations.8

This culminated in a set of results that identify structured populations whose evolutionary9

process is a Moran process, which has homogeneous population structure, in the fixed fitness10

case for a set of standard evolutionary dynamics. A set of multiplayer interactions that can11

be used in the framework were then mathematically defined called social dilemmas, of which12

there are two kinds: public goods and commons dilemmas. Various models were then derived13

using the framework to illustrate its different applications, each of which give an insight into the14

evolutionary process. The territorial raider model showed that the mean temperature, i.e. the15

average likelihood an individual in a population is going to be replaced by another individual, is a16

better indicator of evolutionary success than the mean group size. Its extension, the generalized17

territorial raider model, included subpopulations to study the evolution of cooperation, where18

both the dynamics and structure were found to play a key role. Dynamics with selection second19

(DBB and BDD) and structures with, ideally, subpopulations of size two gave the cooperators20

a selective advantage. In this case, the subpopulation temperature was a better measure of21

the relative success of cooperators. The Markov movement model also studied the evolution22

of cooperation but, more importantly, made inroads into the development of history dependent23

models for added realism in modelling populations. It was found that slowing movement down24

using a movement cost and increasing the time allowed to interact helped cooperation evolve.25

Some of the results provided were analytical in the cases where the evolutionary process26

169



was quite simple. However, once more complex evolutionary processes were considered, a state27

transition matrix was constructed and numerically solved. This meant that results could be28

obtained quickly and accurately but the size of the population that could be considered was29

restricted. This was purposely done to be aligned with with the project’s main aim of developing30

the dynamics. Large population sizes was of lower priority and could be considered in future31

work. This would necessarily involve carrying out simulations as the number of states of the32

population would be very large. The results for larger population sizes can be checked for33

consistency using the results already available for the smaller population sizes.34

A strength of these models is that they all consider multiplayer interactions in groups of35

variables sizes, thereby allowing more general group behaviours to be considered. Furthermore,36

rather than arbitrarily forming groups of various size, the group formations are dependent on the37

underlying movement parameters of the individuals. This results in the possibility of individuals38

being alone and not interacting with anyone, bringing into light the question what an individual39

should do when alone. The lone behaviour of an individual plays an important role as it could40

potentially give it an advantage or hinder it. Another benefit of using the underlying movement41

parameters is that the time spent interacting with each individual is accounted for. Individuals42

would interact with each other as often as they meet with these meetings being controlled by the43

movement parameters and, for the same topographical structure, the results could be different44

if this is changed. On the other hand, models that use pairwise interactions commonly assume45

that an equal amount of time is spent interacting with each individual and, even though this46

could be changed, there is no obvious underlying parameters with which to do this. An extension47

that can be considered in terms of generating a more varied multiplayer interaction between the48

individuals would be to allow each individual control over their own movement. Whilst this49

would be more complicated, it would be interesting to see if individuals with similar interactive50

strategies end up with similar movement strategies. Alternatively, instead of having individual51

movement, i.e. individuals move independently of others, movement that depends upon other52

individuals would be interesting to consider as, for example, some animals move in groups.53

The models of population evolution considered do not take into account mutation during a54

replacement event. Instead, as is the case with many other models, it is assumed that mutation55

is a one of event in which a mutant type is introduced into a population. For very low mutation56

rates, the results presented here would hold because mutations would take a long time to appear,57

which is consistent with the assumptions made. For high mutation rates, the analytical results58

given would not hold. The way in which the results are presented would have to change as well59

since the population would now approach a stationary probability distribution that gives the60

amount of time the population stays in each state. For a highly beneficial mutation, it would61
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be expected that the population spends a significant amount of time in the states where the62

number of mutant types exceed the resident type. High mutation rates can be incorporated63

into models in this research that numerically solve for the fixation probability using the state64

transition matrix. This is because the number of states would remain the same and all that is65

required is that the state transition matrix is recalculated to allow for mutations, which means66

that the number of transitions between the states would increase. The expected observation in67

the case of high mutation rates is that strategies that require continued synergy over a period68

of time would be adversely affected, as is the case with cooperative strategies.69

A limiting feature in this research is that the replacement graphs considered remain constant70

throughout the evolutionary process. However, this is not a defining feature and the models71

can be altered to consider evolutionary graphs that evolve with the evolutionary process. For72

example, relaxing the time homogeneity assumption, implying that movement probabilities can73

change over time, allows the evolutionary graphs to evolve as they are a function of the indi-74

viduals’ movements. In this case it would be interesting to investigate the effect of individuals75

spending more or less time together on the evolutionary process. Certain strategies could po-76

tentially benefit if the amount of time spent together by certain groups of individuals increases,77

like cooperators.78

Another limiting feature of the models considered is their theoretical nature, that is, the79

findings have not been checked against data collected in the field. In terms of developing the80

framework, this does not necessarily pose a major weakness because a lot of the development81

work revolved around mathematically describing the components of the framework. The models82

considered were simple illustrations of what can be achieved using the framework. By fully83

developing the framework and demonstrating how it can be applied, the foundation have been84

laid for future work using the framework. Furthermore, it is now more clear what kind of real-life85

scenarios the framework can be used to model. This in turn informs the modeller what kind of86

data will be required to support the results.87

Overall, using the Broom-Rychtář framework, it has been shown how mathematics can be88

used to highlight the intricacies of an evolutionary process, by enabling the systematic con-89

struction of a population evolution model. This has led to an overall better understanding of90

population evolution with multiplayer interactions.91
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[77] Pattni, K., Broom, M. and Rychtář, J. [2017], ‘Evolutionary dynamics and the evolu-

tion of multiplayer cooperation in a subdivided population’, Journal of Theoretical Biology

429, 105–115.
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