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Abstract 10 

An explicit density-based solver of the compressible Euler equations suitable for cavitation 11 

simulations is presented, using the full Helmholtz energy Equation of State (EoS) for n-12 

Dodecane. Tabulated data are derived from this EoS in order to calculate the thermodynamic 13 

properties of the liquid, vapour and mixture composition during cavitation. For determining 14 

thermodynamic properties from the conservative variable set, bilinear interpolation is 15 

employed; this results to significantly reduced computational cost despite the complex 16 

thermodynamics model incorporated. The latter is able to predict the temperature variation of 17 

both the liquid and the vapour phases. The methodology uses a Mach number consistent 18 

numerical flux, suitable for subsonic up to supersonic flow conditions. Finite volume 19 

discretization is employed in conjunction with a second order Runge-Kutta time integration 20 

scheme. The numerical method is validated against the Riemann problem, comparing it with 21 

the exact solution which has been derived in the present work for an arbitrary EoS. Further 22 

validation is performed against the well-known Rayleigh collapse of a pure vapour bubble. It 23 

is then used for the simulation of a 2-D axisymmetric n-Dodecane vapour bubble collapsing 24 

in the proximity of a flat wall placed at different locations from the centre of the bubble. The 25 

predictive capability of the incorporated Helmholtz EoS is assessed against the widely used 26 

barotropic EoS and the non-isothermal Homogeneous Equilibrium Mixture (HEM). 27 

 28 

Keywords: Bubble dynamics, cavitation, Helmholtz equation of state, exact Riemann solver 29 

 30 

Nomenclature 31 

 32 

U Conservative variable vector 33 

F r-flux vector 34 

G z-flux vector 35 

S Geometric source vector 36 

ρ Density (kg/m
3
) 37 

ur Velocity in the r-direction (m/s) 38 

uz Velocity in the z-direction (m/s) 39 

p Pressure (Pa) 40 

e Internal energy (J/kg) 41 

eliq Internal energy of the liquid (J/kg) 42 

evap Internal energy of the vapour (J/kg) 43 

E Total energy (J/kg) 44 

s Geometric source term, unity for cylindrical symmetry and two for spherical 45 

             symmetry (-) 46 
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r Distance from the axis/point of symmetry, needed in the geometric source term (m) 47 

n Normal surface vector 48 

a Molar Helmholtz energy (J) 49 

a
0 

Ideal gas contribution to the Helmholtz energy (J) 50 

a
r
 Residual Helmholtz energy, responsible for the influence of Intermolecular forces (J) 51 

α
0
 Dimensionless ideal gas contribution to the Helmholtz energy (-) 52 

α
r
 Dimensionless residual Helmholtz energy (-) 53 

pc Critical pressure (Pa) 54 

ρc Critical density (kg/m
3
) 55 

psat Saturation pressure (Pa) 56 

ρsat,L Liquid density at saturation (kg/m
3
) 57 

ρsat,V Vapour density at saturation (kg/m
3
) 58 

B Liquid bulk modulus (Pa) 59 

C Speed parameter (Pa·kg/m
3
) 60 

n Tait equation parameter, equal to 7.15 for weakly compressible liquids (-) 61 

T0 Initial temperature (K) 62 

Cvl Specific heat at constant volume for the liquid (J/(kg·K)) 63 

Cvv Specific heat at constant volume for the vapour (J/(kg·K)) 64 

el0 Internal energy at reference temperature T0 (J/kg) 65 

Lv Latent heat (J/(kg·K)) 66 

R Specific gas constant (J/(kg·K)) 67 

γ Ratio of specific heats (-) 68 

Nmn Finite element nodal shape function of node n, evaluated at node m (-) 69 

 70 

1. Introduction 71 

Many studies deal with the dynamics of vapour bubbles, both computationally and 72 

experimentally, due to the implications they have in a number of physical conditions and 73 

technological applications. Up to now, different approaches have been proposed for 74 

simulating bubble collapse dynamics, such as potential flow solvers with dynamic boundary 75 

conditions on the bubble surface, homogeneous mixture models and interface 76 

tracking/capturing methods.  77 

Methodologies based on potential flow solvers have been among the first employed to 78 

simulate the collapse of bubbles. For example, Plesset and Chapman (1971) were the first to 79 

study cavitation bubble collapse close to a solid surface. A potential flow solver was used for 80 

the liquid phase and a Marker-and-Cell technique was developed for tracking the bubble 81 

interface. A similar flow solver was employed by Zhang et al. (1993), (1994) but a Boundary 82 

Element Method was incorporated for predicting the shape of the bubble and the pressure 83 

profile on the wall. In an extension of the BEM method, Wang (2014) employed a 84 

combination of compressible and incompressible potential flow for the simulation of a bubble 85 

collapse in the vicinity of a wall, aiming to describe the energy loss due to pressure waves 86 

radiated during the bubble collapse. The advantage of the BEM methodology is that only the 87 

bubble interface is discretized and resolved, transforming the 3D problem to a 2D one. 88 

However, mesh handling is problematic when topological changes of the bubble interface 89 

have to be taken into consideration, e.g. during bubble jet formation or impact on walls. For 90 

that reason, Chahine (2014) used a coupling between an incompressible BEM potential flow 91 

solver and a multiphase compressible flow solver based on the Euler equations for simulating 92 

the growth and collapse of a bubble in the vicinity of (deformable) walls. Each solution 93 

strategy was employed at different stages of the bubble development; for the violent growth 94 
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and collapse of the simulated bubble the compressible multiphase approach was used, 95 

whereas the BEM method was employed at intermediate stages where flow velocities are 96 

small.  97 

Adams and Schmidt (2013) used a single fluid model and simulated the collapse of a 98 

bubble cluster consisting of 125 bubbles. The model was based on the Equation of State 99 

(EoS) for the pure phases, and thus, no empirical parameters and tuning were needed. The 100 

main assumption in this model is that the two-phase regime is in thermodynamic and 101 

mechanical equilibrium. Although this assumption may not be valid in metastable 102 

thermodynamic states, the model is accurate enough for medium and large scale simulations 103 

of cavitating flows. A similar work by Schmidt et al. (2008) emphasized on the detection of 104 

the shock formation and propagation in three dimensional cloud cavitation. Despite the 105 

limitation of not explicitly defining the bubble interface, such models are still widely used due 106 

to their simplicity; this limitation has been proved not to be important, since the bubble 107 

interface can be estimated by the density variation when using an adequate cell resolution. 108 

Since the bubble interface may be somewhat diffuse, surface tension is commonly neglected. 109 

In any case the effect of this assumption is minor, since surface tension plays a minor role 110 

during bubble collapse, which is mainly governed by inertia. 111 

Overcoming the limitation of the previous methods, front tracking methods, which 112 

have been originally developed by Glimm et al. (1985) and a follow-up study by Unverdi and 113 

Tryggvason (1992), offer higher accuracy in resolving the exact bubble shape. For example, 114 

the Lagrangian method of Hawker and Ventikos (2009), (2012) used a marker to track the 115 

liquid-gas interface; the computational mesh was divided in two regions, with different EoS 116 

applied for the two phases. In addition, Popinet et al. (2002) used a front-tracking approach 117 

while free surface boundary conditions were imposed for simulating bubble flows near solid 118 

boundaries. The main advantage of this methodology is that it allows for smear-free 119 

interfaces, resulting in sharp interfaces for large scale problems and can model diffuse 120 

interfaces in smaller scales. Another feature of the front-tracking method is that it can be 121 

applied to complex geometries while it allows for large deformations of the surface to be 122 

simulated. The main drawback of front-tracking methods is their complexity, since the 123 

interface grid must be dynamically reconstructed, either adding or removing nodes in areas of 124 

stretched or compressed cells, respectively (Unverdi and Tryggvason, 1992). 125 

Interface capturing schemes based on the VOF methodology have been also employed 126 

to the simulation of cavitation bubbles. For example, Li et al. (2014) investigated the bubble 127 

collapse near a conical rigid boundary, formulating an extension to the classical Rayleigh 128 

collapse time, incorporating the wall stand-off distance and the cone angle. Koukouvinis et al. 129 

(2016b), (2016c) investigated the effect of asymmetries (e.g. pressure gradient and free 130 

surfaces) affecting the bubble collapse, using the VOF technique, and demonstrating jetting 131 

effects and bubble shape at collapse stages. Hu et al. (2006) developed a conservative 132 

interface method based on the level set technique for solving compressible multiphase flows, 133 

maintaining a sharp liquid-gas interface. The methodology was tested in fundamental shock 134 

tube cases, bubble-shock wave interactions and underwater explosions. In connection to the 135 

previous work, Lauer et al. (2012) used a Level-Set method for bubble dynamics, including 136 

non-equilibrium thermodynamic effects and finite mass transfer based on the Hertz-Knudsen 137 

relation, while exploring the effect of the wall distance on the bubble shape during collapse; 138 

this methodology is also discussed in Adams and Schmidt (2013). While admittedly the 139 

discussed interface capturing methodologies can provide a sharp interface, the concept of 140 

"interface capturing" is questionable when pressures reach close to the critical point, since 141 
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liquid and vapour densities become similar and surface tension diminishes, preventing a clear 142 

distinction between the two phases.  143 

In the previous studies, thermal effects are typically ignored or are considered utilising 144 

simplified EoS. In two-fluid models that utilise interface capturing methods, the common 145 

assumption is to prescribe a finite mass transfer rate across the bubble interface, describing 146 

the evaporation and condensation processes. On the other hand, in single-fluid models 147 

mechanical and thermal equilibrium is assumed and the mass transfer is assumed to be 148 

infinite. A subcategory of the latter is the barotropic cavitation model, where the pressure is 149 

linked to density only, ignoring the effect of temperature; such models have been successfully 150 

used for the prediction of cavitation either on macroscopic (e.g. hydrofoils (Dular and 151 

Coutier-Delgosha, 2009), venturi (Decaix and Goncalvès, 2013), or high pressure throttle 152 

flows (Koukouvinis and Gavaises, 2015)), or single bubble collapses (Koukouvinis et al., 153 

2016a).  154 

The current study expands the previous work of Koukouvinis et al. (2016a) where 155 

central upwind schemes were used for bubble dynamics simulations, following an isentropic 156 

process assumption and using a 2 step barotropic EoS. Comparing with the aforementioned 157 

study, in the current work we aim to examine heating effects during the collapse of a 158 

vaporous bubble, which have been omitted or simplified in previous studies. The 159 

thermodynamic closure used is based on the Helmholtz energy EoS from NIST Refprop 160 

databases (Lemmon and Huber, 2004), which can provide thermodynamic properties at 161 

subcritical and supercritical conditions in a consistent framework. It is highlighted that in 162 

reality bubbles contain an amount of non-condensable gases, which in the present study has 163 

been omitted. However, our interest is to examine the temperature changes of the dodecane 164 

liquid, due to the extreme pressurisation during bubble collapse.  165 

The homogeneous equilibrium model (HEM) approach is used, where each 166 

thermodynamic property can be expressed as a function of density and internal energy. 167 

Following the methodology of Dumbser et al. (2013), tabulated EoS are employed in the 168 

present explicit density-based algorithm; the low Mach number problem is tackled by the 169 

hybrid flux model of Schmidt et al. (2008). By using the Helmholtz EoS, a complex 170 

thermodynamic model is incorporated in the finite volume solver, while the tabulated data 171 

algorithm is proved to be more efficient than using iterative property calculation methods for 172 

each time step. To the author’s best knowledge, this is the first work implementing the Mach 173 

consistent numerical flux in connection with real fluid properties for n-Dodecane, 174 

demonstrating heating effects in bubble collapse cases; the only relevant work is that of 175 

Dumbser et al. (2013), who focused instead on water/vapour behaviour in benchmark (e.g. 176 

shock tube, explosion/implosion, forward step) and macroscopic (e.g. hydrofoil) cases. 177 

The paper is organized as follows. In section 2 the numerical method is presented, 178 

including the EoS representing the thermodynamic properties of n-Dodecane and time/space 179 

discretization methods employed. In section 3 the results are presented and discussed. 180 

Validation of the numerical method is performed against the exact solution of the Riemann 181 

problem for the EoS under consideration. Further validation is performed against the 182 

benchmark Rayleigh vapour bubble collapse. Then several bubble configurations of vapour 183 

bubble collapse near a solid boundary are examined utilizing three different thermodynamic 184 

models (barotropic, non isothermal HEM and Helmholtz EoS). The most important 185 

conclusions are summarised in section 4. Finally, in the Appendix section, the methodology 186 

for deriving the exact solution for an arbitrary EoS where pressure is a function of both 187 

density and internal energy is discussed. This methodology was used to obtain the exact 188 
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solution for the benchmark Riemann problem; however it may be applied in general for any 189 

applicable EoS.  190 

 191 

2. Numerical Method 192 

 193 

Since bubble growth and collapse is an inertial phenomenon, the viscosity and surface 194 

tension are neglected in the present study (Zhang et al., 1993). The 2D Euler equations in r-z 195 

cylindrical coordinates with a geometric source term in order to take into account cylindrical 196 

symmetry (Toro, 2009) are: 197 

 198 

t r z( ) ( ) ( ),in Ω  U F U G U S U        (1) 199 

 200 

where t, r, z subscripts indicate differentiation with respect to time, r direction and z direction 201 

respectively. U is the conserved variable vector, F(U) and G(U) are the fluxes at the radial (r) 202 

and axial (z) directions respectively and S(U) is the geometric source term, to take into 203 

account axial symmetry. Ω represents the volume of the computational domain, while  the 204 

boundary of the domain. The vectors of eq. 1 are: 205 

 206 

, ( ) , ( ) , ( )

( ) ( ) ( )

r z r

2 2

r r z rr

2

r z z r zz

r z r

u u u

u p u u uu s

u u u p u uu r

E p u E p u u E pE

  

  

  

  

      
      


          
       
      

         

U F U G U S U  (2) 207 

 208 

where ρ is the fluid density, ur and uz the radial and axial velocity components respectively, p 209 

is the pressure, E is the total internal energy, equal to   euu zr 
22

2
1 , e is the internal energy 210 

of the fluid and s is the geometric source term. For cylindrical symmetry, s is equal to unity. 211 

The following initial and boundary conditions are used for the PDE system: 212 

 213 

Initial condition:   
0= ( ),r,z,t 0 r,z in ΩU( ) = U    (3) 214 

Dirichlet type boundary condition: 
D , Don ΩU = U     (4) 215 

Neumann type boundary condition: N , Non Ω





U
= U

n
    (5) 216 

 217 

2a.Helmholtz energy equation of state for n-Dodecane 218 

In this section, the derivation of properties of n-Dodecane from the Helmholtz energy, 219 

is discussed. The Helmholtz energy is calibrated within the temperature range 220 

263.6 T 700K  , for maximum pressure 
maxp =700MPa  and maximum density 221 

3

maxρ =771.62 kg / m (Lemmon and Huber, 2004). Due to the violent bubble collapses to be 222 

examined later on, local conditions may exceed the aforementioned limits. Thus, the 223 

Helmholtz equation was applied to derive thermodynamic properties beyond the 224 

aforementioned calibration; even though there is no guarantee that the calibration of 225 

the Helmholtz equation is valid in this regime, the derived properties have been checked for 226 

consistency (e.g. increasing density as pressure increases, for given temperature) and were 227 

found to behave in a reasonable manner, i.e. no inflexion or stationary points were found, 228 

indicating a monotonic behaviour of the property functions. 229 
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The EoS for calculating the thermodynamic properties of n-Dodecane fuel can be 230 

expressed using the Helmholtz energy, having as independent variables density and 231 

temperature (Lemmon and Huber, 2004): 232 

 233 
0 ra a a(ρ,T) (ρ,T) (ρ,T)          (6) 234 

The above in dimensionless form becomes: 235 

 236 

a 0 r(ρ,T)
α(δ,τ)= α (δ,τ)+α (δ,τ)

RT
        (7) 237 

where 
cδ = ρ / ρ , 

cτ =Τ / Τ . 238 

The dimensionless Helmholtz energy of the ideal gas can be written in the form: 239 

 240 

 0

1 2a a
5

k
0 k

k=1 c

u τ
lnδ+ c -1 lnτ + c ln 1- exp -

T
 

  
     

   
      (8) 241 

where 
1a , 

2a  are arbitrary values set by the reference state. The residual Helmholtz energy is 242 

written in the following non-dimensional form: 243 

 244 

2 2

3 3

r 0.32 1.23 1.5 2 1.4 3 0.07 7 0.8

1 2 3 4 5 6

2 2.16 -δ 5 1.1 -δ 4.1 -δ 4 5.6 -δ

7 8 9 10

3 14.5 -δ 4 12.0 -δ

11 12

α (δ,τ)= n δτ +n δτ +n δτ +n δ τ +n δ τ +n δ τ

+n δ τ exp +n δ τ exp +n δτ exp +n δ τ exp

+n δ τ exp +n δ τ exp

    (9) 245 

Equation 7 may be manipulated to obtain all important thermodynamic properties, like 246 

pressure p, internal energy e, enthalpy h, entropy s and speed of sound c as a function of 247 

density ρ and temperature T; the interested reader is addressed to (Lemmon and Huber, 2004) 248 

for the manipulations needed and the coefficients of eq. 9. Saturation conditions are identified 249 

using the Maxwell criterion, i.e. the pressure for which the Gibbs free energy of the liquid and 250 

vapour phases are equal. Upon identifying the saturation pressure as a function of 251 

temperature, the saturation dome may be identified; within the saturation dome fluid 252 

properties are determined using the mixture assumption based on the volume fraction a, i.e.: 253 

 254 

   

sat,L sat,V

sat,L sat,L sat,V sat,V

sat,L sat,L sat,V sat,V

sat,L sat,L sat,V sat,V

ρ= (1- a)ρ +aρ

ρe= (1- a)e ρ +ae ρ

ρh= (1- a)h ρ +ah ρ

ρs= (1- a)s ρ +as ρ

       (10) 255 

Mixture speed of sound is determined using the Wallis speed of sound formula (Brennen, 256 

1995): 257 

 258 

 2

,,

2

,,

2

11

VsatVsatLsatLsat c

a

c

a

c 



        (11) 259 

In eq. 10 and 11, the sat,L index indicates the relevant property at saturation conditions for 260 

liquid and sat,V for vapour.  261 

The aforementioned procedure can be performed on the fly, during code execution. 262 

However, in practice it requires root finding of non-linear equations, since the Helmholtz 263 

equation (and consequently all derived properties) is naturally expressed as a function of 264 
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density ρ and temperature T, whereas the flow solver calculates density ρ and internal energy 265 

e. In other words, at each time step the conservative variables (ρ, ρΕ) must be transformed to 266 

(ρ, T) and then used to derive pressure and speed of sound for the next calculation step. This 267 

can be done, using e.g. the Newton Raphson method, however it is very time consuming and 268 

inefficient.    269 

Instead of solving the aforementioned EoS for each time step (using for example the 270 

Newton-Raphson method or similar), a similar technique as the one employed by Dumbser et 271 

al. (2013) has been used. In the present work, an unstructured thermodynamic table has been 272 

used (instead of the Cartesian used in Dumbser's work et al. (2013)), constructed prior to the 273 

simulations andcontaining the thermodynamic properties derived from the Helmholtz EoS. 274 

Static linked lists have been used in order to split the thermodynamic table into smaller 275 

groups of data and search only the group that has the desired values within its range. The 276 

resulting algorithm is much more efficient than the on-the-fly calculation of the Helmholtz 277 

EoS, by almost one order of magnitude of the computational time.  278 

The unstructured thermodynamic table is built by selecting an appropriate range for the 279 

density and the internal energy: 
min max     and 

min maxe e e   that define a 2-D table 280 

[ , ] [ ]min max min maxΣ e ,e   , which should enclose the expected conditions of the simulation. 281 

Then this table Σ is discretized with quadrilateral elements. An unstructured grid of 282 

approximately 40,000 elements was created (Figure 1). The grid was refined around the 283 

saturation line in order to accurately capture the large variation of the thermodynamic 284 

properties in this area (e.g. for speed of sound or internal energy). Indicatively, the three 285 

dimensional phase diagram derived from the above Helmholtz energy EoS for the n-286 

Dodecane, expressing pressure, internal energy and speed of sound as a function of density 287 

and temperature, is shown in Figure 2. 288 

During the algorithm execution, after calculating the conservative vector in the time 289 

loop, and hence the density and the internal energy are known, the element of the 290 

thermodynamic table in which each cell of the computational domain belongs may be 291 

determined, using the linked list algorithm. Then using a Finite Element bilinear interpolation, 292 

any thermodynamic property φ in the space Σ can be calculated as: 293 

 294 

   
nodes

n

, ,n ne N e b            (12) 295 

where φ can either be pressure, temperature or speed of sound, which are needed for the 296 

calculation of the fluxes (see section 2d) or post-processing results. The unknown coefficients 297 

of φ are notated by b and N is the shape function of node n: 298 

 299 

 n n n n nN ρ,e =1+(e - e )+(ρ - ρ )+(e - e )(ρ - ρ )       (13) 300 

The b coefficients of the property φ for each element are calculated by solving the following 301 

equation: 302 

 303 

 N

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

Ν Ν Ν Ν b φ

Ν Ν Ν Ν b φ
=

Ν Ν Ν Ν b φ

Ν Ν Ν Ν b φ

     
     
     
     
     
     

b =       (14) 304 

where φ are the values of the property at the nodes of the quadrilateral element and Nmn is: 305 

 306 
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mn m n m n m n m nN =1+(e - e )+(ρ - ρ )+(e - e )(ρ - ρ )      (15)
 307 

The most efficient way to find the coefficients b, is to calculate in advance and store the 308 

inverse of the mass matrix [N] for all elements before time advancement begins. That way, 309 

the coefficients b for each property φ can be found: 310 

 
1

N


b =            (16) 311 

After finding the conservative vector in the time loop, each thermodynamic property φ can be 312 

approximated from equation (12). 313 

 314 
Figure 1: Unstructured thermodynamic grid of 40,000 finite elements, refined near the saturation line. 315 

 316 

317 

 318 
Figure 2: Three dimensional phase diagrams for the n-Dodecane, where the dashed line is the 319 

saturation line. The properties have been derived from the Helmholtz energy EoS. 320 
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2b. Barotropic approach 321 

A two-step barotropic equation of state, which has been validated and used in previous 322 

studies (Koukouvinis et al., 2016a), has been used for comparison with the Helmholtz 323 

equation of state. In the former, the modified Tait equation of state for the liquid part and an 324 

isentropic-resembling relation (Egerer et al., 2014) for the mixture are given: 325 

,

,

sat,L

sat,L

n

sat

sat,L

sat

sat,L

ρ
B - 1 + p

ρ
p(ρ)

1 1
p +C -

ρ ρ

 

 

   
           
  

   
  

      (17) 326 

In this approach, the saturation properties have been calculated assuming constant 327 

temperature at 300 K. The energy equation is not solved and thus, after solving the continuity 328 

and momentum equations, the above formula is used for calculating the pressure. This method 329 

is robust and efficient but it lacks in the prediction of the temperature field. 330 

 331 

2c. Homogeneous equilibrium mixture with temperature effects 332 

Finally, the third thermodynamic model which has been utilized, is a more 333 

sophisticated extension of the previous barotropic model, since the saturation properties 334 

depend on temperature (Koop, 2008; Schmidt et al., 2006). In this case, the modified Tait 335 

equation is used for the liquid, the ideal gas EoS for the vapour and the Wallis formula for the 336 

mixture. This model is based on the assumption that the latent heat is constant and it is 337 

calculated based on the initial temperature T0=300 K, which is valid only for a small variation 338 

of the temperature. Moreover, it cannot predict transcritical to supercritical transitions. The 339 

pressure is given by the following three-step equation as a function of density and 340 

temperature: 341 

  ,

,

,

sat,L

sat,V sat,L

sat,V

n

sat,L sat

sat

B ρ / ρ (T) - 1 + p (T) (T)

p(ρ,T) p (T) (T) (T)

RT (T)

 

  

  

   
 


  





   (18) 342 

and the internal energy is given by the following equation: 343 

 344 

 

,

,

,

sat,L

sat,V sat,L

sat,V

vl 0 l0

sat,V vap sat,L liq

vv 0 v 0 l0

C (T -T )+e (T)

e(T) αρ (T)e (T)+(1- α)ρ (T)e (T) / ρ (T) (T)

C (T -T )+ L (T )+e (T)

 

  

 




  




  (19) 345 

where evap and eliq stand for the internal energy of the vapour and liquid from the third or the 346 

first step of the equation respectively. After calculating the solution vector and thus the total 347 

energy is known, the Newton-Raphson method has been employed for the following function 348 

in order to calculate the temperature: 349 

 2 21
F(T)= e(T) - E(T)+ u +v = 0

2
       (20)

 
350 

Once the Newton-Raphson algorithm has converged, the pressure and the volume fraction are 
351 

calculated and then the algorithm advances to the next time step.
 352 

For each Newton-Raphson iteration, the saturation properties are calculated since they 353 

depend on the temperature and they are given by the following formulas: 354 
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 355 

ˆi

7
αsat c

i

i=1c

p (T) T
ln = α θ

p T

 
 
 

         (21) 356 

ˆ
i

7
bsat,L

i

i=1c

ρ (T)
= bθ

ρ
          (22) 357 

î

7
csat,V

i

i=1c

ρ (T)
ln = c θ

ρ

 
 
 

          (23) 358 

where 
cθ=T / T  and the coefficients are given in Table 1 and ρc=226.55 kg/m

3
, pc=1817000 359 

Pa, γ=1.03. It must be mentioned here that the previous equations are valid as long as the 360 

temperature is within the range: [ ]r cT T = 273.15,T =658.1 . The coefficients in equations 361 

21-23 have been calculated in order to give the same saturation conditions as the Helmholtz 362 

energy EoS. 363 

 364 

Table 1: Parameters needed in Equations 19, 20 and 21 for the n-Dodecane. 365 

Index a
i

 â
i
 b

i
 b̂

i
 c

i
 ĉ

i
 

1 -0.03359 0 1.37610 0 -0.39275 0 

2 -8.54218 1 11.88513 1 -19.73929 1 

3 3.20579 3 -69.63935 2 78.72869 2 

4 11.27780 4 297.58733 3 -361.4296 3 

5 7.66350 5 -717.4947 4 779.84876 4 

6 -7.09773 6 888.91121 5 -899.4366 5 

7 0 0 -438.5464 6 331.66738 6 

 366 

This method is efficient but not so robust as the barotropic model and it suffers from 367 

limitations in the temperature range relative to the Helmholtz EoS. 368 

 369 

2d. Space and time discretization 370 

In cavitation phenomena there is large variation in the speed of sound and thus in the 371 

Mach number, making it difficult to apply a unified discretization method. The flow can be 372 

considered incompressible in the liquid regime and the Mach number can even be of the order 373 

of 10
-2

. On the other hand, in the vapour regime and during the collapse of the cavity 374 

structures where shock waves are created, the flow is highly compressible and Mach number 375 

can be of the order of 10
2
 or even higher, due to the small speed of sound of the two-phase 376 

mixture (Van der Heul et al., 2000). When using density-based solvers for low Mach number 377 

flows, slow convergence and incorrect solutions have been noticed (Guillard and Viozat, 378 

1999; Meister, 1999; Munz et al., 2003). To overcome this, the Mach consistent numerical 379 

flux of Schmidt et al. (2008) has been implemented, which is based on the HLLC flux and the 380 

AUSM flux (Meng-Sing, 2006). The numerical flux in the x direction at the i+1/2 interface 381 

takes the following form: 382 

hybrid

i 1/2 facep
L / R

L / R face

L / R

faceL / R

01

1u
u

0v

uE



  
  
   
  
    

   

F        (24) 383 
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where 384 

L R L R
face L L R R face face L R

L R face

p - p p + p1
u = ρ u + ρ u + , p = , c =max(c ,c )

ρ + ρ c 2

 
 
 
 

  (25) 385 

and ρL/R, u L/R, v L/R and E L/R depend on the sign of uface, the value of the left cell is taken when 386 

the sign of uface is positive and vice versa. In order to achieve 2nd order of accuracy in space, 387 

the MUSCL-Hancock (Toro, 2009) reconstruction is employed to determine conservative 388 

variables at cell interfaces, which in turn are used for the flux estimation (eq. 24).  389 

Since the cavitation phenomena which are simulated are unsteady, a four stage Runge-Kutta 390 

(RK) method, 2
nd

 order in time has been implemented. Let an initial value problem be defined 391 

by the following differential equation and its initial condition: 392 

0 0(t, ), (t )
t


 



U
R U U U         (26) 393 

The numerical solution of this differential equation is given by the following steps, where the 394 

coefficients were chosen in order to improve stability (Schmidt, 2005): 395 

 396 
1 n n0.11 ( ) U U R U          (27) 397 

2 n 10.2766 ( ) U U R U         (28)
 

398 

3 n 20.5 ( ) U U R U          (29) 399 

n 1 n 3( )  U U R U          (30) 400 

This specific RK method was selected since it has low storage requirements and only the 401 

solution vectors from time n and n+1 need to be stored, which is important for large scale 402 

simulations. 403 

 404 

3. Results 405 

In this section, the numerical model is firstly validated against the exact solution of the 406 

Riemann problem and the Rayleigh collapse test case and then a numerical experiment of 407 

bubble collapse is performed. The Riemann problem was chosen in order to validate the 408 

spatial accuracy of the algorithm and to examine if it is feasible to capture the correct wave 409 

pattern. On the other hand, the Rayleigh collapse test case was chosen to investigate the time 410 

advancement of the Runge-Kutta implementation, as well as the source terms. Once the 411 

algorithm is validated with these cases that exact or semi-analytical solutions exist, bubble 412 

collapse simulations in the vicinity of a wall have been performed for various configurations. 413 

It has to be mentioned here that although in the literature many bubble collapse simulations 414 

have been made, there has not been an investigation on the effect of accurate thermodynamics 415 

of the fluid involved. Therefore, the present model is accessed against the barotropic model 416 

and the HEM with temperature effects. 417 

 418 

3a. Riemann problem 419 

The first benchmark case is the Riemann problem in the computational domain 420 

[ ]x -2,2  with initial conditions for the left state: ρL=752.5 kg/m
3
, TL=289 K and for the 421 

right state: ρR=717.5 kg/m
3
, TR=350 K. Comparison between the exact and the numerical 422 

solution is shown in Figure 3 at time t=0.5 μs. First order of spatial accuracy with 800 equally 423 

spaced cells in the x direction was used. Wave transmissive boundary conditions have been 424 

used for the left and the right side of the shock tube, that is U
n+1

(x=L)=U
n
(x=L) and 425 

U
n+1

(x=0)=U
n
(x=0). As it can be seen in Figure 3, the exact solution of the Riemann problem 426 
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and the computed one are in satisfactory agreement and the wave pattern has been correctly 427 

captured. The exact solution of the Riemann problem is not trivial for an arbitrary EoS and it 428 

has been derived following the Appendix section of the present paper. 429 

 430 

  431 
Figure 3: Validation of the solver in the Riemann problem. Comparison of the density (upper left), 432 

temperature (upper right), pressure (lower left) and x-velocity (lower right) between the exact and the 433 
numerical solution. 434 

 435 

3b. Rayleigh bubble collapse 436 

The second test case examined is the Rayleigh bubble collapse, where a vapour sphere 437 

of radius R 400 m  is under compression owing to the higher pressure of the surrounding 438 

liquid. The bubble collapse velocity is given by Franc and Michel (2005): 439 

 440 

3

vap 0

liq

p - p RdR 2
= - - 1

dt 3 ρ R


  
  
   

        (31) 441 

and the characteristic Rayleigh time τ of the bubble is: 442 

 443 

liq

0

vap

τ =0.915R
p p



 
         (32) 444 

Here, the vapour pressure is vapp = 19.64 Pa , the liquid density is 3

liq 744.36 kg / m  and the 445 

far-field pressure is p 0.1MPa  . 446 
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An one-dimensional solver was employed for this simulation, taking advantage of the 447 

spherical symmetry. The total computational domain is 20 times the size of the initial vapour 448 

radius in order to minimize the interference of the boundaries. The mesh is refined in the 449 

bubble region, where 1000 equally spaced cells have been used and a stretching ratio of 1.05 450 

with 150 cells has been used outside the bubble. Wave transmissive boundary condition has 451 

been used on the far-field right side and symmetry condition was selected for the left side. 452 

Comparison with the semi-analytical solution gives satisfactory results (Figure 4), since the 453 

current methodology is able to predict the correct curve of the bubble radius with respect to 454 

time. In Figure 4, the radius has been divided by the initial radius R0 and the time has been 455 

non-dimensionalized by the Rayleigh time which is τ=31.5 μs for the current configuration. 456 

 457 

 458 
Figure 4: Comparison between the Rayleigh collapse solution and the numerical one. The bubble 459 
radius and the time are expressed in non-dimensional form, in reference to the initial radius R0 and 460 

Rayleigh collapse time τ respectively. 461 

 462 

3c.n-Dodecane bubble collapse 463 

The collapse of a n-Dodecane vapour bubble in the vicinity of a wall has been 464 

investigated next. Following Lauer et al. (2012) and Koukouvinis et al. (2016a), the same 465 

configuration is tested for the numerical scheme presented in section 2, which takes into 466 

account temperature effects. The radius of the bubble is R=400 μm and its centre has been 467 

placed at distance d=416, 140 and -140 μm from the horizontal wall (x-axis) and on the axis 468 

of symmetry (y-axis), as it can be seen in Figure 5. The properties of the n-Dodecane in liquid 469 

form which is surrounding the bubble are pl=12.144 MPa, Tl≈300 K and the vapour bubble 470 

properties are pv=19.64 Pa, Tv≈300 K. The computational domain is 20 times the bubble 471 

radius; 200 equally spaced cells were used for describing the initial radius of the bubble. After 472 

distance 2.5R from the origin, the mesh is coarsened with ratio 1.05 in both directions. Zero 473 

gradient boundary condition has been used for the right and the upper side, slip wall for the 474 

lower side, whereas for the y-axis of symmetry, the normal velocity component is zero. 475 

 In Figures 6, 7 and 8 there are two columns of images. In the first column the pressure 476 

field is shown on the left and the velocity field on the right. Similarly, in the second column 477 

the temperature field is shown on the left and Schlieren is depicted on the right. In all images, 478 

iso-lines of density 380 kg/m
3
 are shown as well. In Figures 9, 10 and 11 wall pressure (left) 479 

and wall temperature (right) combined with the density iso-surface of 380 kg/m
3
 are shown. 480 

The units are in SI or their submultiples and multiples of the SI units. The simulation time 481 
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indicated in the next Figures is non-dimensional and it is divided by the Rayleigh collapse 482 

time τ=2.88 μs. 483 

 484 
Figure 5: Bubble configurations for the three different positions. 485 

 486 

In all three configurations, there is slow shrinking of the bubble initially, until the jet is 487 

formed and after that the bubble is collapsing rapidly. Of course, the direction of the jet 488 

depends on the configuration, as it will be explained below. 489 

In Figure 6 the evolution of the bubble collapse is shown for the configuration where 490 

its initial centre is placed at d=416 μm from the x-axis. At the beginning of the collapse, a 491 

rarefaction wave expands from the bubble. The interaction of the rarefaction wave with the 492 

wall causes local depressurisation and vaporisation in the vicinity of the wall (Koukouvinis et 493 

al., 2016a). As the collapse proceeds, the bubble shape departs from spherical, due to the 494 

interaction with the wall boundary (x-axis). A micro-jet is formed on the top of the bubble 495 

and the heart-like-shape is noticed, which is in accordance with previous results reported 496 

(Koukouvinis et al., 2016a; Lauer et al., 2012). In addition, the propagating pressure wave 497 

after collapse is shown at time 1.18 in Figure 6. There is a significant rise in the temperature 498 

of the liquid, up to 1000 K, after the collapse of the bubble, due to vapor condensation and 499 

liquid compression, while there is a significant drop in the temperature above the bubble, to 500 

273 K, due to the large acceleration of the flow which causes a reduction in the internal 501 

energy. We highlight here, that the critical point for n-dodecane is Tc~658K and pc~18bar; 502 

this implies that in areas of collapse the fluid may transition to supercritical state.  503 

In Figure 7 instances of the bubble having initially its centre at d=140 μm from the x-504 

axis are shown. Again, a non-symmetric shape for the bubble and a micro-jet are created. A 505 

torus which is attached to the wall is formed and it collapses creating a pressure wave. In both 506 

cases, that is for d=416 μm and d=140 μm, the jet’s and the bubble collapse direction are 507 

towards the wall. In this specific case, a secondary jet is created when the primary jet, which 508 

is normal to the wall, is deflected at the wall and interacts with the remaining ring (time=1.09 509 

in Figure 7). 510 

In Figure 8 snapshots of the bubble having its centre in the lowest position (d=-140 511 

μm) are demonstrated. In comparison with the two previous positions, the shape of the bubble 512 

looks like a pin and the collapse direction is tangential to the wall. The jet which is formed is 513 

towards to the axis of symmetry, which was not the case in the previous positions. A 514 

propagating pressure wave at time 0.77 is shown in Figure 8. 515 
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516 

517 

518 

 519 
Figure 6: Instances during the vapour bubble collapse for d=416 μm. Time has been non-520 

dimensionalized with Rayleigh collapse time τ=2.88 μs. 521 
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 522 

523 

524 

 525 
Figure 7: Instances during the vapour bubble collapse for d=140 μm. Time has been non-526 

dimensionalized with Rayleigh collapse time τ=2.88 μs. 527 
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528 

529 

530 

 531 
Figure 8: Instances during the vapour bubble collapse for d=-140 μm. Time has been non-532 

dimensionalized with Rayleigh collapse time τ=2.88 μs. 533 
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Focusing on the iso-surfaces of Figures 9, 10 and 11, the different collapse pattern is 534 

clearly visible. The justification for the collapse shape is related to the local angle between the 535 

liquid/vapour interface and wall, at the closest point or point of contact to the wall; this has 536 

been discussed in more detail in (Koukouvinis et al., 2016a), but the main mechanism will be 537 

briefly discussed here as well. When the local angle is below 90
o
, flow in the vicinity of the 538 

wall tends to detach, reducing the pressure and preventing further acceleration of the collapse, 539 

thus near wall velocities are small and the collapse is mainly directed in the form of a micro-540 

jet towards the wall on the axis-of-symmetry. On the other hand, when the local angle is 541 

higher than 90
o
 the flow tends to move towards the wall, leading to pressurization and further 542 

acceleration of the collapse. These effects underline the influence of boundary presence and 543 

pressure gradients to the bubble collapse, as demonstrated also in experimental (Obreschkow 544 

et al., 2006; Obreschkow et al., 2013) and numerical work (Hawker and Ventikos, 2009; 545 

Lauer et al., 2012; Plesset and Chapman, 1971). 546 

The collapse time of the bubbles is reasonable and comparable to the Rayleigh collapse 547 

time. In the previous configurations the collapse time is also proportional to the initial volume 548 

of the vapour which exists in the bubble. A more thorough study of the collapse times for the 549 

previous configurations and other thermodynamic models is shown next, where two different 550 

homogeneous equilibrium methods are implemented and compared to the above technique. 551 

The model parameters and the initial conditions have been chosen accordingly to match the 552 

conditions of the Helmholtz EoS bubble collapse, for consistency reasons.  553 

The configuration of the barotropic model was made using the following values: 554 

B=125.956 MPa, psat=40 Pa, ρsat=744.29 kg/m
3
, C=1100 Pa kg/ m

3
 and n=7.15. The initial 555 

density of the liquid was set to ρliq=753.91 kg/m
3
 and the density in the bubble was set to 556 

ρliq=74.0 kg/m
3
.  557 

For the HEM model with temperature effects, the initial density of the liquid was set to 558 

ρliq=752.3 kg/m
3
, the density in the bubble was ρliq=3.95 kg/m

3
 and the initial temperature was 559 

T0=300 K. In addition, B=168.638 MPa, n=7.15, R=48.9 J/(kg K), Cvl=1823 J/(kg K), 560 

Cvv=1593.3 J/(kg K), Lv=345739.0 J/(kg K) and el0=9450 J/kg have been set.  561 

In Figure 12 (left), vapour volume fraction with respect to time is shown for the three 562 

different thermodynamic models. It is obvious that the barotropic model predicts slightly 563 

earlier collapse time for all three positions of the bubble, because the pressure is expressed 564 

only as a function of the density, and the temperature effect is not taken into account. The 565 

other two models considering the temperature effects, predict the same collapse time and their 566 

curves coincide for all three positions of the bubble. However, for the highest position after 567 

the collapse, rebound is noticed for all three models but for the Helmholtz EoS this is more 568 

dominant. This rebound is caused due to the conservation of angular momentum; even if the 569 

solver employed is based on the Euler equations, the asymmetric near wall bubble collapse 570 

induces vorticity. This vorticity causes centrifugal force, which prevents the total collapse and 571 

disappearance of the bubble, at least until vorticity is dissipated by numerical diffusion. For 572 

more information on the rebound of cavitating vortices the interested reader is addressed to 573 

(Franc and Michel, 2005). In addition, if the EoS is expressed as a function of density and 574 

internal energy, baroclinic torque is predicted, due to the misalignment of pressure and 575 

density gradient vectors and as a result, more vorticity is generated (Pozrikidis, 2009). This is 576 

the case for the Helmholtz EoS, where the rebound is more dominant than the barotropic 577 

model. The HEM with temperature effects is weakly dependent on the temperature and thus, 578 

the rebound is the same as the barotropic model. 579 

 580 
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581 

582 

583 

 584 
Figure 9: Wall pressure (left) and temperature (right) combined with density iso-surfaces of 380 kg/m

3
 585 

during the vapour bubble collapse for d=416 μm. Time has been non-dimensionalized with Rayleigh 586 
collapse time τ=2.88 μs. 587 
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588 

589 

590 

 591 
Figure 10: Wall pressure (left) and temperature (right) combined with density iso-surfaces of 380 592 
kg/m

3
 during the vapour bubble collapse for d=140 μm. Time has been non-dimensionalized with 593 

Rayleigh collapse time τ=2.88 μs. 594 
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595 

596 

597 

 598 
Figure 11: Wall pressure (left) and temperature (right) combined with density iso-surfaces of 380 599 
kg/m

3
 during the vapour bubble collapse for d=-140 μm. Time has been non-dimensionalized with 600 

Rayleigh collapse time τ=2.88 μs. 601 
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During the grid independence study, higher maximum pressure and temperature for the 602 

finer mesh have been noticed. This is reasonable in a way that more scales can be captured 603 

with the finer mesh. For example, if the vapour bubble size is smaller than the cell size, then it 604 

cannot be captured with the coarse mesh and neither can the collapse. Similar observations 605 

have been reached by Adams and Schmidt (2013). Furthermore, the collapse time was the 606 

same, regardless the resolution of the mesh that has been used. 607 

In Figure 12 (right) the maximum wall pressure is shown with respect to time, which is 608 

due to the impact of the jet to the wall. It can be noticed that all the models predict similar 609 

patterns for each position of the bubble and the wall pressure can even be of the order of 10
10

 610 

for the lowest position of the bubble, as it has also been shown by Koukouvinis et al. (2016a). 611 

The maximum wall pressure is predicted slightly earlier in the barotropic model, as a result of 612 

the earlier collapse time which was also noticed in this model. This pressure increase which is 613 

due to the re-entrant jet and the shock wave after the collapse of the bubble, can lead to 614 

erosion damage of materials. 615 

 616 
Figure 12: Volume of vapour decrease with respect to time (left) and maximum pressure on the wall 617 

(right) for the three different thermodynamic models. 618 

 619 

In Table 2, the number of the cells where extrapolation was used beyond the 620 

applicability range of the Helmholtz EoS is shown, as a percentage of the grid size. In 621 

addition, the minimum and maximum values of density are also shown in order to get an 622 

estimation of how extrapolation affects its value. As it can be seen, a small percentage of the 623 

total cells has been calculated beyond the calibration range of the Helmholtz EoS. In Figures 624 

13-15 the velocity vectors are shown and the supercritical cells (Tc=658.1 K, pc=1.817 MPa) 625 

are coloured in black, whereas the vapour (white) and liquid (grey) regions are distinguished 626 

by a red iso-line of density 380 kg/m
3
. 627 

 628 

Table 2: Percentage of the cells where the thermodynamic properties have been calculated 629 

using the Helmholtz EoS beyond its calibration limit for indicative time instances. 630 

d=416 μm d=140 μm d= -140 μm 

t/τ 
Cells beyond 

calibration 

min-max 

ρ (kg/m
3
) 

t/τ 
Cells beyond 

calibration 

min-max 

ρ (kg/m
3
) 

t/τ 
Cells beyond 

calibration 

min-max 

ρ (kg/m
3
) 

1.04 1.8 % 4-826 1.01 0.5 % 4-807 0.72 0 4-777 

1.13 4.2 % 3-864 1.09 0.1 % 2-890 0.75 1.2 % 4-852 

1.15 3.3 % 5-994 1.10 0.1 % 553-1014 0.76 0.7 % 751-1011 

1.18 1.9 % 550-916 1.14 0.9 % 388-843 0.77 0.5 % 554-868 



23 
 

631 

 632 
Figure 13: Depiction of the supercritical (black), vapour (white) and liquid (grey) regions, combined 633 
with velocity vectors for d=416 μm. Time has been non-dimensionalized with Rayleigh collapse time 634 

τ=2.88 μs. 635 
 636 

637 

 638 
Figure 14: Depiction of the supercritical (black), vapour (white) and liquid (grey) regions, combined 639 
with velocity vectors for d=140 μm. Time has been non-dimensionalized with Rayleigh collapse time 640 

τ=2.88 μs. 641 
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 642 

643 

 644 
Figure 15: Depiction of the supercritical (black), vapour (white) and liquid (grey) regions, combined 645 
with velocity vectors for d=-140 μm. Time has been non-dimensionalized with Rayleigh collapse time 646 

τ=2.88 μs. 647 

 648 

The system-cpu time required for each thermodynamic model is compared for 649 

simulating the bubble collapse case until time 6.5 μs. The user-cpu time for the Helmholtz 650 

model is almost 3.7 times the HEM time, whereas the barotropic simulations are 651 

computationally the most efficient, as the execution time is almost 52 times smaller than the 652 

HEM time. The main reason for the increased cpu-time of the HEM model is the iterative 653 

calculation of the temperature using Newton-Raphson method, which necessitates complex 654 

expressions, especially in the mixture regime. The energy equation, which is not solved in the 655 

barotropic model, has a minor effect on the computational cost of the HEM with temperature 656 

effects. 657 

 658 

4. Conclusions 659 

In the present work, an explicit density-based solver with real fuel thermodynamics 660 

using the Helmholtz energy EoS has been presented. A Mach consistent numerical flux has 661 

been implemented, able to handle low as well as high Mach number flows. The numerical 662 

scheme has been validated against two benchmark test cases (Riemann problem, Rayleigh 663 

collapse); following numerical experiments for a vapour collapsing bubble near the vicinity of 664 

a wall have been performed. Since there is no analytical solution for this case or any other 665 

reference, comparison with other models has been made and areas where the fluid transitions 666 

to supercritical state have been identified. The results are satisfactory and encouraging enough 667 

in order to further expand this methodology to more realistic geometries, such as injector 668 

nozzles and expand the formulation to include non-condensable gases. The temperature 669 

variation of the fuel inside the injector can dramatically change its properties and thus affect 670 
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the flow field, which is not feasible in barotropic models, where no temperature effects exist. 671 

The bilinear finite element interpolation which was chosen, is a good compromise between 672 

complexity and accuracy. A posteriori error estimation was performed and error was found to 673 

be less than 1% in all thermodynamic properties. 674 

Although no gas phase is included in the current model and thus the heating in the inner 675 

of the bubble cannot be predicted, real fluid thermodynamics are incorporated in the 676 

algorithm, with the potential of predicting supercritical transitions. The barotropic model is 677 

robust and can be used as a reference, but temperature effects are ignored. The HEM with 678 

simplified thermodynamics, is only applicable for a small range of temperatures. On the other 679 

hand, Helmholtz EoS is applicable for a wider range, as long as experimental data exist to 680 

calibrate the equation. While the trend of all thermodynamic models employed is similar, 681 

supercritical transitions are only possible to capture using the Helmholtz (or equivalent 682 

cubic/high order EoS, such as Peng-Robinson, see (Lacaze et al., 2015)), showing the 683 

importance of accurate thermodynamic modelling. 684 
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 692 

Appendix 693 

Derivation of the exact Riemann Problem solution for an arbitrary equation of state of the 694 

form p=f(ρ,e).  695 
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 696 
Figure A.1. Wave structure of the Riemann problem for the Euler equations for a general equation of 697 

state p=f(ρ,e). 698 

 699 

In this section, the methodology for finding the exact solution to the Riemann problem for 700 

the Euler equations, for an arbitrary equation of state of the form p=f(ρ,e) is derived. The 701 

equation of state may be provided in closed form, where simplifications as in Toro (2009) 702 

may be done, or in a general tabular form. The interested reader is also addressed to (Le 703 

Métayer et al., 2005; Menikoff and Plohr, 1989; Müller et al., 2009; Müller and Voss, 2006; 704 

Petitpas et al., 2009; Saurel et al., 2008; Saurel and Lemetayer, 2001). The form of the 705 

Riemann problem solved is: 706 
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 709 

where U(x,t) is the vector of conservative variables and F(U) is the flux vector, as shown 710 

below: 711 
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where euE  2

2
1  , with e the internal energy. The Jacobian matrix, A(U) is: 713 
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 715 

and the eigenvalues [λ1, λ2, λ3] are 716 
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The solution of the Euler equations (A.1) is self similar, with two genuinely non-linear 720 

waves, corresponding to λ1 and λ3 eigenvalues, that can be either shock waves or rarefaction 721 

waves (Figure A.1). These waves separate the solution of the Riemann problem to the Left 722 

state, the Right state and the Star state (denoted with '*' from now on) which is unknown; note 723 

that in the star region pressure and u velocity are the same, but density and internal energy are 724 

not. Density and internal energy change not only across the non-linear waves, but also along 725 

the contact discontinuity (corresponding to λ2).  726 

To find the solution to the Riemann problem, one needs to solve a non-linear algebraic 727 

equation for pressure: 728 

       0***  LRRL uupgpgpg  (A.2) 729 

 730 

Functions gL and gR depend on the type of non-linear wave. For shock wave the Rankine-731 

Hugoniot conditions are employed, eventually leading to:  732 
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for K=L or R state. Apart from A.3, energy conservation applies across the shock wave, thus: 734 
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To solve A.4 and A.3 an iterative procedure is required; initially one assumes an initial 737 

internal energy 
'

*,Ke  (e.g. equal to Ke ) which, combined with pressure p*, corresponds to a 738 

density ρ*,K. This density can be used to obtain the gK,shock function and the internal energy 739 

from the energy balance (A.4). Since Ke*, from (A.4) and 
'

*,Ke  are not necessarily the same, 740 

due to the guessed value of the latter, 
'

*,Ke  is corrected and the process is repeated till 741 

convergence.  742 

For the rarefaction wave, the calculation is more complicated, since it involves the 743 

Riemann invariants across an isentropic path. The Riemann invariants are shown below for 744 

the left rarefaction wave: 745 
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and for right rarefaction wave 747 
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Integration of these relations is not convenient to be done analytically for a general 749 

equation of state, which might be expressed in tabular form. It is rather convenient to perform 750 

the integration numerically on an isentropic path across the rarefaction wave, as follows for 751 

e.g. the left rarefaction wave: 752 
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One can split the integral as follows: 754 
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where ref is a reference state at e.g. at the minimum allowable density of the equation of state. 756 

In a similar manner one may derive the relation for the right rarefaction wave: 757 
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 and eventually, the function  759 
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Hereafter the integral 
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 will be referred to as IK(pΚ). 761 

Calculation of the isentropic integral IK(pK) may be done numerically. At first, one needs 762 

to calculate the states that have the same entropy, s, as the right (R) and left (L) state. 763 

Assuming that the thermodynamic properties are expressed in the form of f(ρ,e), the 764 

isentropic path may be calculated as follows: 765 

1. determine the entropy of the K state (K can be either L or R), as sK=s(ρΚ,eK) 766 

2. starting from a low reference density, ρref, and increasing by intervals dρ, the point that 767 

corresponds to sK is found by iteratively correcting internal energy, e, for the given path point 768 
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i. Internal energy correction may be done with the Newton-Raphson method, till a specified 769 

tolerance is reached. 770 

3. after reaching the tolerance, the rest thermodynamic properties (e.g. pressure, speed of 771 

sound etc.) for (ρi, ei) may be found. Speed of sound, c, is needed to evaluate the term inside 772 

the integral I. Pressure is needed in order to express the integral as a function of pressure; this 773 

is preferable, because pressure at the whole star region is the same. The integral may be 774 

calculated by using the trapezoid rule, or a more accurate Simpson method. Care should be 775 

taken in areas of large changes in the speed of sound, as e.g. near saturation lines.   776 

4. the procedure may be done till a high pressure pmax which should be greater than the 777 

pressure expected to appear in the rest calculations. 778 

Switching between rarefaction and shock wave is done based on pressure: 779 
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The solution for the star region can be achieved with the Newton-Raphson method: 781 
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where n is the number of the iteration, urf is an under-relaxation factor to enhance stability in 783 

case of highly non-linear EOS and g' is the derivative of eq. A.2. Note that for such equations 784 

it is preferable to resort to a numerically approximated value of the derivative, as: 785 
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where ε is a small positive number. 787 

For highly non-linear EOS, it might be preferable also to bound the maximum change of 788 

pressure from iteration to iteration, in order to prevent overshoots/undershoots and enhance 789 

stability, i.e.: 790 

)),,max(min( minmax pppp nn   791 

where pmax, pmin can be a percentage of density during the previous iteration, e.g. 120% and 792 

80% of pn-1 respectively. After determining p* within sufficient tolerance, determining 793 

velocity u* is trivial, though the following equation: 794 

     *** 5.0)(5.0 pgpguuu LRRL   (A.13) 795 

Identification of the type of waves is done depending on pressure at the star region 796 

comparing to the left and right states: if p*>pK then the wave between the star and K region is 797 

a shock wave, else it is a rarefaction wave. The type of wave determines the wave speed and 798 

the transition between the two states. For a shock wave the transition is sharp and the wave 799 

speed is given by: 800 
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Rarefactions, contrary to shocks, are gradual changes in density, pressure and velocity. Thus, 804 

they are associated with two speeds, one for the head of the rarefaction and one for the tail: 805 

 806 

 Left rarefaction, head: LLLH cuS   tail: LLT cuS *,* 
 (A.16) 807 

 Right rarefaction, head: RRRH cuS   tail: RRT cuS *,* 
 (A.17) 808 
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In order to find the conditions inside the rarefaction wave, the Riemann invariants shall be 809 

used. For a left rarefaction, one has to solve the following equation for the point i inside the 810 

rarefaction: 811 

      LLLiLi
i pIupIpc
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x
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Similarly, for the right rarefaction 813 
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x
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Solution of eq. A.18 and A.19 can be done numerically, solving for density, using 815 

Newton-Raphson method, applying under-relaxation and taking care during the updating of 816 

the density values. Experience has shown that it is better to apply a low under-relaxation 817 

factor of even 0.02.  818 

Assuming the dodecane Helmholtz EOS and assuming an initial discontinuity of the form 819 

ρL=752.5kg/m
3
 and temperature TL=289K for x<0, ρR=717.5kg/m

3
 and TR=350K for x≥0 820 

(which corresponds to pL~44330Pa and pR~109bar), one obtains that the solution of the 821 

Riemann problem at the star region is: 822 

p*= 6017572Pa, u*= -5.94m/s 823 

ρ*,L= 755.86kg/m
3
, ρ*,R= 713.48kg/m

3
  824 

T*,L= 290.02K, T*,R= 349.47K 825 

With rarefaction wave to the right STR=1125.13m/s, SHR=1162.62m/s and shock wave to left 826 

SL=-1336.49m/s. 827 
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