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Photoreceptor cells have high energy demands and suffer significantly with age. In aged rodents both
rods and cones are lost, but in primates there is no evidence for aged cone loss, although their function
declines. Here we ask if aged primate cones suffer from reduced function because of declining metabolic
ability. Tau is a microtubule associated protein critical for mitochondrial function in neurons. Its phos-
phorylation is a feature of neuronal degeneration undermining respiration and mitochondrial dynamics.
We show that total tau is widely distributed in the primate outer retina with little age-related change,
being present in both rods and cones and their processes. However, all cones specifically accumulate
phosphorylated tau, which was not seen in rods. The presence of this protein will likely undermine cone
cell function. However, tau phosphorylation inhibits apoptosis. These data may explain why aged primate
cones have reduced function but appear to be resistant to cell death. Consequently, therapies designed to
remove phosphorylated tau may carry the risk of inducing cone photoreceptor cell death and further
undermine ageing visual function.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Retinal function declines with age and this is associated with
progressive inflammation and extra-cellular deposition including
that on Bruch's membrane that restricts outer retinal metabolic
supply. The consequence is progressive outer retinal cell loss
(Bonnel et al., 2003; Xu et al., 2009; Pauleikhoff et al., 1990). In
rodents there is early cone photoreceptor loss followed by re-
ductions in rod photoreceptor numbers (Cunea and Jeffery, 2007;
Cunea et al.,, 2014; Kolesnikov et al., 2010). But these patterns are
not seen in humans and non-human primates. Here aged decline is
apparent in both rod and cone mediated visual function (Birch and
Anderson, 1992) and significant rod loss in the central retina is
established by around 70 years of age. However, there is no evi-
dence for age related cone loss not even among short wavelength
sensitive cones that show the greatest functional vulnerability
(Curcio et al., 1993; Weinrich et al., 2017). Even with the develop-
ment of aged retinal disease, such as age-related macular degen-
eration, central cones show marked resistance to apoptosis even
when the rod population around them has been lost due to
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geographic atrophy and their own function has declined (Curcio
et al., 1996).

Photoreceptor cells have very high energy demands
(Linsenmeier and Padnick-Silver, 2000). Their mitochondria that
are a key intra-cellular energy source suffer functional decline
resulting in reduced adenosine triphosphate (ATP) production,
which is the currency of cellular function (Calaza et al., 2015).
Within the ageing process, it is also known that mitochondria play a
critical role in signaling cell death via the permeabilisation of their
outer membrane, the release of cytochrome C and the initiation of
caspase activation (Tait and Green, 2013). Tau is a microtubule
protein critical for normal mitochondrial dynamics and whose
phosphorylation is associated with reduced cellular function but
also with protection from apoptosis (Wang and Mandelkow, 2016;
Wang et al., 2010; Li et al., 2007). Here we show that primate cones
specifically accumulate phosphorylated tau, potentially explaining
their reduced function but also their survival in ageing.

The primate retinae used were from healthy young and old
Macaca fascicularis from an established colony maintained by
Public Health England (PHE). All animals were housed in compat-
ible social groups, in accordance with the Home Office (UK) Code of
Practice for the housing and Care of Animals Bred, Supplied or Used
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for Scientific Purposes, December 2014, and the National Com-
mittee for Refinement, Reduction and Replacement (NC3Rs),
Guidelines on Primate Accommodation, Care and Use, August 2006
(NC3Rs, 2006). All animal procedures were approved by PHE
Ethical Review Committee, Porton Down, UK, and authorised under
an appropriate UK Home Office project license. Eyes were retrieved
at death following sedation with ketamine and overdose of intra-
venous sodium pentobarbital. The primary purpose of animal us-
age was different from the aims of this study. Eyes were removed
and placed in 4% paraformaldehyde in phosphate buffer (PB) for
approximately 24 h with only one eye being used for each animal.
Following fixation, eyes were washed in PB. The anterior eye was
removed and the retina and retinal pigmented epithelium were
dissected free as a whole mount. These were dissected into defined
regions and cryoprotected in 30% sucrose in PB and embedded in
optimum cutting temperature compound (Agar Scientific Ltd)
before sectioning in a cryostat at 10 um. Sections were thaw
mounted on slides and air dried and stored at —80C. Sections from 6
eyes were stained, 3 from 3 year old animals and 3 from 15 year old
animals. Sections were then blocked in 5% NDS in PBST for 1 h then
incubated overnight with mouse monoclonal to T-46 with dilution
1:1000 (1:1000. Thermoscientific, UK) for total tau or mouse anti
tau (AT8; 1:100, Thermoscientific, UK) for phosphorylated tau. They
were then washed and exposed to 0.3% H,0, in PBS for 30 min to
quench endogenous peroxidase. Sections were incubated with
biotin-SP conjugated secondary antibodies; donkey anti mouse
(1:1000, Jackson ImmunoResearch Laboratories, UK) diluted in 1%
NDS in PBST. Sections were then incubated in horseradish peroxi-
dase solution (Vector Laboratories, Peterborough, UK) for 30 min.
Chromogenic  visualization = was  achieved with  3,3-
diaminobenzidine as peroxidase substrate by incubation for
1 min (Dako, USA). Antibody specificity was confirmed using
Western blot. Tissues were washed and cover slipped with glycerol
(100% graded molecules). Tissue was examined at a wide range of
retinal locations, but here the data presented were from the mac-
ular region. Cones were clearly identified on the basis of their
distinct morphology that separates them from rod photoreceptors,
and this was apparent in all sections.

In all stained sections, irrespective of retinal location or age,
total tau was present in both rods and cones including their inner
segments and their processes running through the outer nuclear
layer. In the photoreceptor cell inner segment, label was commonly
present towards the base and at the tip, just under the outer
segment. Label at the tip was clearly located in the ellipsoid region
of the inner segment, however the location of the second band was
relatively ambiguous. Associated label was also present in the outer
plexiform layer. No staining was apparent in the outer segments or
in the retinal pigmented epithelium or the choroid (Fig. 1). The
patterns shown in the figure which were from the macular regions
were representative of all retinal regions.

Patterns of staining for phosphorylated tau were very different.
Fig. 2 shows a representative image of the outer retina from the
macular region. However, staining patterns were similar in other
regions of the outer retina. In every region where a cone was
identified morphologically, phosphorylated tau was present in the
inner segment. Further, in each case it accumulated predominantly
in the myeloid region, although in many cones it also appeared to
encroach upon the ellipsoid region. In each case there appeared to
be more phosphorylated tau in aged primate cones compared to
that in the younger animals (Fig. 2A and B). Within each group the
density of label was similar between individual cones and across
animals. This label was granular (Fig. 1C). However, patches of label
were also present in the corresponding cone photoreceptor ter-
minals in the outer plexiform layer. No such label was identified in
structures similar to rods at any retinal location, nor was there any

Fig. 1. Patterns of labelling for total tau. A. in a 3 year old primate and B. in a 15 year
old primate. In both label is present in rod and cone photoreceptors. It is also present in
processes running through the ONL and in terminals in the OPL. In cone inner seg-
ments it was commonly present in two patches located at the proximal and distal
regions, which are indicated by the arrows in A. No label was seen in outer segments.
Tissue integrity in retinae in the older group was poorer than in the younger animals
and this is reflected in the general quality of the histology between them. Abbrevia-
tions: Outer nuclear layer: ONL. Outer plexiform layer: OPL. Scale bar = 10 um.

label in process running through the outer nuclear layer as seen for
total tau. There were no obvious systematic changes in the distri-
bution of phosphorylated tau in the inner retina. Attempts were
made to quantify age related changes in phosphorylated tau in the
outer retina using Western blot. However, it was not possible to
target specifically the tissue of interest. Hence in whole retinal
preparations changes in this signal were lost in the wider signal
originating from other regions.

Tau is a microtubule associated protein that promotes micro-
tubule polymerisation and stabilisation. Its hyperphosphorylation
induces its detachment form microtubules, thereby destabilising
them resulting in their depolymerisation. The hyper-
phosphorylation of tau in neurodegenerative disorders such as
tauopathies, is associated with disruption of the neuronal micro-
tubule tracks, which leads to deficits in mitochondrial mobility and
synaptic docking (Trinczek et al., 1999; Stamer et al., 2002; Thies
and Manddelkow, 2007; Dubey et al., 2008; LaPointe et al., 2009;
Stoothoff et al., 2009; Kanaan et al., 2011; Kopeikina et al., 2011;
Reddy, 2011; Shahpasand et al., 2012; Gilley et al., 2012). Mito-
chondrial function is also altered, with hyperphosphorylated tau
specifically affecting mitochondrial bioenergetics (Pajak et al.,
2016). But this can be a two way process as compromised mito-
chondrial function, particularly that of complex I can be associated
with pathological changes in tau (Hoglinger et al., 2005; Escobar-
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Fig. 2. Patterns of phosphorylated tau staining in primate retina. A. phosphorylated
tau in the outer retina of a 3 year old primate and B. phosphorylated tau in a 15 year
old primate. Patterns of labelling are very similar in both retinae in that they are largely
confined to inner segments of cones, but within this region label is heavier in the older
animals. Staining is also present in the corresponding outer plexiform layer (OPL).
There is also light staining in the cell body. C. Shows an aged primate retina at a higher
magnification. Arrows in A, B and C provide examples of labelled cones. Abbreviations:
Outer nuclear layer: ONL. IS: Inner segments. Scale bar A and B = 80 um. C = 10 pm.

Khondiker et al., 2007).

In addition to the reduced mitochondrial synaptic docking,
increased lipid peroxidation of the mitochondrial membrane is
thought to alter neuronal bioenergetics and contribute to synaptic
dysfunction. Interestingly, it has been shown that phosphorylated
tau can directly insert into the planar lipid bilayer of the mito-
chondrial membrane to form ion-permeable channels and impair
parkin-mediated mitophagy (DuBoff et al., 2012; Patel et al., 2015:
Hu et al., 2016). Conversely, mitochondrial dysfunction and the
resultant production of reactive oxygen species (ROS), by initiating
membrane lipid peroxidation, can promote the phosphorylation of
tau (Davis et al., 1997; Mattson et al., 1997; Zambrano et al., 2004;
Galas et al., 2006; Melov et al.,, 2007; lijima-Ando et al., 2012;
Kandimalla et al., 2016). Thus, a vicious cycle between mitochon-
drial function and integrity and tau phosphorylation would ensue.
The significance of the expression of hyperphosphorylated tau in

photoreceptors during normal ageing and in the absence of
photoreceptor degeneration is unclear, though it is possible it may
be related to the high-energy demands of photoreceptors and a
change in photoreceptor mitochondria-mediated bioenergetics
with age. However, reduced cellular energy, increased ROS and
changes in synaptic activity as seen in the cone end feet may all
contribute to declining function.

Neurons in chronic neurodegenerative diseases like Alzheimer's
accumulate hyperphosphorylated tau and contain neurofibrillary
tangles of which hyperphosphorylated tau is a major component,
but only a relatively small number of these cells die via apoptosis (Li
et al,, 2007; Jelling, 2001). Wang et al. (2010) and Li et al. (2007)
have shown that hyperphosphorylated tau has the ability to
antagonize apoptosis by stabilising p-catenin and increasing its
nuclear translocation to promote cell survival. Moreover, Wang
et al. (2010) reported that hyperphosphorylated tau reduced the
release of cytochrome C from mitochondria as well as caspase-9
and caspase-3 activity, rendering cells more resistant to
apoptosis. The data presented by Li et al. (2007) and Wang et al.
(2010) are the likely explanation why cones survive for long pe-
riods, albeit in a relatively dysfunctional state. In light of these re-
sults, a cautious approach to the removal of hyperphosphorylated
tau should be adopted if it comes at the price of increased proba-
bility of cone cell death. Further, these results highlight significant
differences between mice and primates in patterns of retinal ageing
that question the use of former as a model in the analysis of
mechanisms in the aged human.
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