
              

City, University of London Institutional Repository

Citation: Jones, P. R. & Dekker, T. M. (2018). The development of perceptual averaging: 

learning what to do, not just how to do it. Developmental Science, 21(3), e12584. doi: 
10.1111/desc.12584 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/18362/

Link to published version: https://doi.org/10.1111/desc.12584

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Developmental Science. 2017;e12584.	 wileyonlinelibrary.com/journal/desc	 | 	1 of 11
https://doi.org/10.1111/desc.12584

Received:	29	June	2016  |  Accepted:	24	April	2017
DOI: 10.1111/desc.12584

S H O R T  R E P O R T

The development of perceptual averaging: learning what to do, 
not just how to do it

Pete R. Jones1,2  | Tessa M. Dekker1,3

1Institute of Ophthalmology, University 
College London (UCL), UK
2NIHR Moorfields Biomedical Research 
Centre, London, UK
3Psychology and Language 
Sciences, University College London (UCL), UK

Correspondence
Pete R. Jones, Institute of Ophthalmology, 
University College London, 11–43 Bath Street, 
London EC1V 9EL, UK.
Email: p.r.jones@ucl.ac.uk

Abstract
The mature visual system condenses complex scenes into simple summary statistics 
(e.g., average size, location, orientation, etc.). However, children, often perform poorly 
on perceptual averaging tasks. Children’s difficulties are typically thought to represent 
the suboptimal implementation of an adult- like strategy. This paper examines another 
possibility: that children actually make decisions in a qualitatively different way to 
adults (optimal implementation of a non- ideal strategy).
Ninety children (6–7, 8–9, 10–11 years) and 30 adults were asked to locate the middle 
of randomly generated dot- clouds. Nine plausible decision strategies were formulated, 
and each was fitted to observers’ trial- by- trial response data (Reverse Correlation). 
When the number of visual elements was low (N < 6), children used a qualitatively dif-
ferent decision strategy from adults: appearing to “join up the dots” and locate the 
gravitational center of the enclosing shape. Given denser displays, both children and 
adults	used	an	ideal	strategy	of	arithmetically	averaging	individual	points.	Accounting	
for this difference in decision strategy explained 29% of children’s lower precision. 
These findings suggest that children are not simply suboptimal at performing adult- like 
computations, but may at times use sensible, but qualitatively different strategies to 
make perceptual judgments. Learning which strategy is best in which circumstance 
might be an important driving factor of perceptual development.

RESEARCH HIGHLIGHTS

• Children (6–11 years) combined sparse visuospatial information  
(N < 6 elements) in a qualitatively different manner from adults. When 
asked to “find the middle”, children’s responses were best predicted 
by the gravitational center of a minimum-bounding shape, whereas 
adults responded to the arithmetic mean of the observed locations.

• With denser visual displays (N > 6 elements), children and adults 
responded in a qualitatively similar, statistically optimal manner: 
 responding to the arithmetic mean of the visual information.

• Part (~29%) of children’s poorer performance in sparse displays was 
accounted for by their use of a different decision strategy. However, 
even after accounting for this, children exhibited substantially 
lower precision than adults. The reasons for this difference remain 

 unaccounted for, but could reflect greater/correlated internal noise, 
individual differences in decision strategy, or slower learning of 
task-relevant information in children.

• Consistent with previous findings, responses were faster when 
arithmetically averaging displays with more visual elements. This 
was true for both children and adults, and indicates that summary 
statistics are subserved by efficient, potentially parallel-distributed, 
neural processes.

1  | INTRODUCTION

The sensory world is stochastic and highly complex. To help separate use-
ful signals from background noise, the mature visual system computes 
summary statistics that describe central tendencies in the environment 
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(Haberman	 &	 Whitney,	 2012;	 Hubert-	Wallander	 &	 Boynton,	 2015;	
Peterson	&	Beach,	1967).	For	example,	when	presented	with	multiple	
visual objects, adults can rapidly and accurately extract their average 
location	(Alvarez	&	Oliva,	2008;	Badcock,	Hess,	&	Dobbins,	1996;	Baud-	
Bovy	 &	 Soechting,	 2001;	 Bulatov,	 Bertulis,	 Gutauskas,	 Mickiene,	 &	
Kadziene,	2010;	Hess,	Dakin,	&	Badcock,	1994;	Hess	&	Holliday,	1992;	
Morgan	&	Glennerster,	1991;	Vos,	Bocheva,	Yakimoff,	&	Helspe,	1993;	
Ward,	 Casco,	 &	 Watt,	 1985;	 Whitaker,	 McGraw,	 Pacey,	 &	 Barrett,	
1996;	 Whitaker	 &	 Walker,	 1988)	 (Figure	1),	 orientation	 (Attarha	 &	
Moore,	2015;	Dakin,	Bex,	Cass,	&	Watt,	2009;	Dakin	&	Watt,	1997;	
Jacoby,	Kamke,	&	Mattingley,	2013;	Morgan,	Chubb,	&	Solomon,	2008;	
Parkes,	Lund,	Angelucci,	Solomon,	&	Morgan,	2001),	size	(Ariely,	2001;	
Chong	 &	 Treisman,	 2005;	 Gorea,	 Belkoura,	 &	 Solomon,	 2014;	 Im	 &	
Halberda,	2013;	Marchant,	Simons,	&	de	Fockert,	2013;	Price,	Kimura,	
Smith,	&	Marshall,	2014;	Simons	&	Myczek,	2008;	Solomon,	Morgan,	&	
Chubb,	2011),	brightness	(Bauer,	2009),	speed	(Watamaniuk	&	Duchon,	
1992),	or	direction	of	motion	(Amano	et	al.,	2012;	Burr,	1981;	Rocchi,	
Ledgeway,	 &	Web,	 2013;	 Snowden	 &	 Braddick,	 1989;	Watamaniuk,	
Sekuler,	&	Williams,	1989;	Williams	&	Sekuler	1984).1

Summary	statistics	confer	two	advantages.	First,	they	can	improve	
sensitivity	 (Alvarez,	 2011;	 Swets,	 1959).	Noise—both	 external	 noise	
in	the	environment	and	internal	noise	within	our	own	visual	system—
means that any perceptual estimate of an object’s properties is subject 
to	random	error.	Averaging	across	multiple	estimates	causes	random	
errors to cancel out,2 resulting in a single overall estimate that is more 
precise than any individual estimate. Second, summary statistics can 
reduce key computational demands. Thus, rapidly computing of the 
“gist” of a scene may help bypass the processing limits imposed by 
finite	 memory	 and	 attentional	 resources	 (Alvarez,	 2011;	 Alvarez	 &	
Oliva,	2008;	Awh,	Barton,	&	Vogel,	2007;	Luck	&	Vogel,	1997).

While adults are highly adept at computing summary statistics, 
children	 appear	 to	 struggle.	 For	 example,	 Manning	 and	 colleagues	
(Manning,	 Dakin,	 Tibber,	 &	 Pellicano,	 2014)	 asked	 5–11-	year-	old	

children to perform a global motion processing task, in which observ-
ers were required to estimate the average direction of multiple visual 
elements, each moving in a slightly different direction. The authors 
analyzed their data using an Equivalent Noise	 model	 (Lu	 &	 Dosher,	
1999). In short, when the amount of external noise (Gaussian direc-
tion jitter) was low, performance was assumed to be determined solely 
by internal noise. When the amount of external noise was high, per-
formance was assumed to be determined solely by under- sampling. 
By observing how accuracy declined as external noise increased, the 
authors inferred that approximately half of the children combined 
information from more than one element, but that children tended 
to use fewer elements than adults. Similarly, Sweeny and colleagues 
(Sweeny,	Wurnitsch,	 Gopnik,	 &	Whitney,	 2015)	 asked	 4–5-	year-	old	
children to perform a size discrimination task, in which the observer 
must determine which of two arrays was drawn from a distribution 
with	a	larger	average	size	(sample	discrimination;	Jesteadt,	Nizami,	&	
Schairer,	 2003).	 Following	 Bernoulli’s	 theorem	 (Feller,	 1968),	 as	 the	
number of samples increases, response accuracy should improve, at a 
rate of 

√
N.	Accordingly,	children	became	more	accurate	as	the	num-

ber of samples increased, but the improvement was smaller than for 
adults, or than would be predicted by an ideal observer.

In short, both studies observed suboptimal integration in chil-
dren, and in both cases the authors attributed this to children ignor-
ing some of the available information, perhaps due to immaturities in 
selective	attention	(Jones,	Moore,	&	Amitay,	2015;	Ristic	&	Kingstone,	
2009)	 or	 memory	 (Cowan,	 AuBuchon,	 Gilchrist,	 Ricker,	 &	 Saults,	
2011; Simmering, 2012). Effectively, they suggested that children 
attempted to respond in the same way as adults (mean- averaging 
the information presented), but that their implementation was imper-
fect. In this case, development can be seen as a form of parametric 
learning, that is, learning the optimal values of the various “variables” 
involved	 in	 a	 computational	 process—such	 as	 the	 optimal	 “weight”	
to give each source of information (e.g., see Equation 3). In machine 
learning terms, children are struggling with a problem of optimization.

However, there exists a second class of explanation that also fits 
the existing data: it may be that children use qualitatively different 
strategies	to	summarize	sensory	information.	For	example,	in	the	case	
of size judgments, instead of arithmetically averaging independent esti-
mates of sizes, children may be responding based on the total surface 
area of the display, the size of the largest single element, the density of 
the elements, or so forth. These strategies may not be what the exper-
imenter intended/expected when they designed their task, and may be 
suboptimal given the demands of the current task. But nonetheless, 
such strategies are often quite rational, and enable the participant to 
operate at a better- than- chance level. In this case, development can be 
seen	as	a	form	of	structural	learning	(Wolpert	&	Flanagan,	2010),	that	
is, learning what is the best overall “equation” to solve the task in the 
first place, including what the sources of information are, and how best 
to map these sensory inputs to a final decision. In machine learning 
terms, children are struggling with a problem of model selection.

That observers may employ different strategies to solve basic psy-
chophysical tasks has been known for as long as experimental psy-
chology has been practiced. Indeed, Sweeney et al. (2015) explicitly 

F IGURE  1 Experimental setup. Observers viewed stimuli 
consisting of circles (radius 1.1 mm, ~0.11 degrees visual angle), 
drawn randomly from a symmetric Gaussian distribution (shown 
here by green isocontours, but not visible to participants). Observers 
made responses by pressing on an LCD Optical touch- screen (Prolite 
T2452MTS; Iiyama Electric Co Ltd, Iiyama, Japan)
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controlled for two such explanations by equating each array of cues 
for total surface area and density. However, this does not rule out an 
infinite number of other response strategies. Nor, by treating alterna-
tive response strategies as confounds to be controlled for, are we able 
to assess how important this potential source of inefficiency may be in 
children’s everyday lives.

Previous studies are unable to distinguish between these two 
classes of explanation (parametric vs. structural learning) because they 
rely on traditional, “molar” measures, such as d′, percent correct, or 
psychophysical threshold. Such measures are computed by averaging 
response- data across multiple trials. They show how well observers are 
performing, but provide no insights into why performance may vary. To 
discriminate between parametric and structural hypotheses, the pres-
ent study therefore employed a trial- by- trial (“molecular”; Berg, 2004) 
method of analysis, designed to reveal systematic differences in how 
children and adults average visual stimuli.

In the present study, children (6–11 years) and adults were asked 
to “find the middle” of a cloud of dots sampled from a 2D Gaussian 
distribution	(Figure	1;	Gaussian-	jittered	spatial	information).	Crucially,	
unlike traditional methods of analysis, we did not score responses as 
“correct” or “incorrect”. Instead, we formulated a range of plausible 
algorithms that observers might employ, and determined which of 
these best predicted the empirical, trial- by- trial response- data (irre-
spective of whether these responses were accurate or not). Perhaps 
surprisingly, a large number of strategies can be devised to perform 
this	simple	spatial	averaging	task	(Figure	2a).	For	example,	an	observer	
might (i) mean- average the Cartesian coordinates of each individual 
dot, (ii) fit a shape to the dot cloud and locate its center of gravity, 
or (iii) try to determine the smallest surface that would enclose the 
observed dots and locate the center of that (see Table 1). Notably, 
each of these strategies predicts a quantitatively different response 
(Figure	2b,	 though	 cf.	 Figure	2c).	 The	 difference	 between	 observed	
and predicted behavior on each trial can therefore be used to deter-
mine the best- fitting model of decision- making.

Participants received points for hitting a target centered on the 
arithmetic mean of the underlying distribution. Given this reward- 
structure, the statistically optimal (“maximum likelihood”) strategy is 
to compute the arithmetic mean of the observed locations. Based on 
previous	data	(Morgan	&	Glennerster,	1991),	we	predicted	that	adults	

F IGURE  2  (a) The nine possible 
decision strategies for integrating spatial 
information considered in the present 
study. See Table I for text descriptions. 
(b) The predictions of each strategy, for 
a single representative trial (raw data not 
shown). (c) The mean Euclidean difference 
(± 1 SD) between the predictions of the 
convex hull and arithmetic mean strategies, 
as a function of the number of data points, 
determined using 20,000 simulated 
trials. Note that when N = 3 (fewest N 
Dots tested), the predicted responses for 
both	strategies	are	identical—becoming	
increasingly distinct as N increases

(a) (b)

(c)

TABLE  1 The nine possible decision strategies that were 
considered	in	the	present	study.	See	Figure	2	for	graphic	examples	of	
each

Name Description

Minbound circ Centroid of the minimum radius bounding 
circle (the smallest circle that encloses all 
<x,y> points)

Minbound triang Centroid of the minimum area bounding 
triangle

Minbound rect Centroid of the minimum area bounding 
rectangle

Convex hull Centroid of Convex hull (the smallest 
convex polgyon that encloses all <x,y> 
points)

Geometric mean The geometric mean of all <x,y> points

Arithmetic	mean The arithmetic mean of all <x,y> points

Mean of subset (N) The arithmetic mean of at most N <x,y> 
points, excluding the most distant outliers

Fitcircle	geometric Centroid of the best fitting circle, 
minimizing residual geometric error (sum 
of squared distances between the 
observed <x,y> points and the fitted 
circle), fitted using nonlinear least squares 
(Gauss Newton).

Fitcircle	algebraic Centroid of the best fitting circle, 
minimizing residual error (sum of 
distances between the observed <x,y> 
points and the fitted circle), fitted 
algebraically.
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would respond in this way. In contrast, it was unknown how children 
would behave. If children use suboptimal decision strategies (struc-
tural inefficiency), then we would expect to see systematic differences 
in	their	preferred	decision	strategy.	Alternatively,	children	may	average	
spatial information in a qualitatively similar manner to adults, but may 
only attend to a subset of the information available (i.e., fail to “weight” 
every	 cue	 appropriately—parametric	 inefficiency).	 In	 this	 case,	 we	
would predict no systematic differences in preferred decision strategy 
but only an increase in response variability.

2  | METHODS

2.1 | Participants

Ninety children (6–7, 8–9, 10–11 years; N = 30 per group) and 30 
adults (19–42 years; μ = 24 years) participated. Written consent was 
obtained from all participants (adults), or from a responsible caregiver 
(children), and children gave verbal assent to participate. The study 
was conducted in accordance with UCL Research Ethics Committee 
approval (#2280/001). Participants were reimbursed for their time 
(£7.50 for adults, small toys for children).

2.2 | Stimuli and procedure

Participants were asked to find the middle of a cloud of dots (see 
Figure	1),	using	a	stimulus	design	developed	and	described	previously	
by	Juni	and	colleagues	(Juni,	Gureckis,	&	Maloney,	2015).	Each	dot	was	
an anti- aliased circle, 1.1 mm in radius (~0.11 degrees visual angle), 
generated	in	Matlab	(Mathworks,	Natick,	USA)	using	Psychtoolbox-	3	
(Brainard, 1997), and presented on an LCD optical touch- screen 
(Prolite T2452MTS; Iiyama Electric Co. Ltd, Iiyama, Japan). On each 
trial, N dots (see below) were randomly sampled from a randomly 
located symmetric bivariate Gaussian distribution, and participants 
were asked to locate the middle of the dots by pressing on the screen. 
The location of each dot was therefore a noisy (Gaussian jittered) but 
unbiased estimate of the center of the underlying distribution. The 
center of the underlying distribution varied randomly between tri-
als, and was constrained such that 98% of the distribution fell inside 
the visible screen area. Participants were given feedback after each 
trial: scored correct if within 12.8 mm of the arithmetic mean of the 
underlying sampling distribution3. The ideal strategy was therefore to 
respond to the arithmetic mean of the observed dots (see Juni et al. 
2015).	For	60	participants	(N = 45 children) the standard deviation of 
the bivariate Gaussian sampling distribution, σxy,	was	12.5	mm.	For	the	
other 60 participants, σxy = 27.5 mm. This difference was not perti-
nent to the present study (NB: the data reported here formed part of 
a wider dataset, additional data from which are reported elsewhere; 
Jones et al., under review), and the results did not differ qualitatively 
between the two conditions (NB: participants did tend to be less accu-
rate in noisier conditions, but did not appear to differ in terms of their 
preferred response strategy). Data from both conditions were there-
fore analyzed together. Participants completed approximately 150 tri-
als on average (the exact number of trials varied between participants: 

μ = 154,, σ = 34). Trials were randomly distributed across six N Dot 
conditions: 〈3, 4, 5, 6, 7, 15〉, for a total of approximately 4500 trials 
per age group.

2.3 | Potential observer strategies for locating the 
“middle” of a cloud of dots

Nine potential decision strategies were considered.4 These are shown 
graphically	in	Figure	2a,	and	are	detailed	in	Table	1.	The	set	of	strate-
gies was not exhaustive, but included all plausible strategies that we 
were able to devise, and was representative of the types of strategies 
observers anecdotally reported using when questioned.

2.3.1 | Centroid of a minimum bounding polygon

In the minimum- bound approaches (Table 1; R1–R3), the observer vis-
ualizes the smallest shape (circle, triangle, or rectangle) that encloses 
the set of observed points, and then computes the centroid of this 
shape. Here we define “smallest” shape as the shape with least area. 
Smallest could also be defined in terms of perimeter. However, mini-
mizing area of perimeter yields identical predictions in most cases, and 
negligible differences in the remaining cases. The centroid (“geometric 
center”) of a two- dimensional region is the arithmetic mean position 
of all the points in the shape, which can be computed from the verti-
ces of the minimal bounding polygon as follows:

where (x1,y1), (x2,y2), …, (xn,yn) are the vertices of the n- sided polygon, 
arranged in clockwise order around the perimeter and with the first 
vertex repeated at the end to close the shape (i.e., x1 = xn+1, and y1 = 
yn+1). The variable A is the signed area of the polygon: 

2.3.2 | Centroid of a convex hull

The convex hull is the smallest polygon that encloses the set of observed 
points. It can be thought of a rubber band around all of the observed 
points. It is a generalization of the “minimum bound” approaches 
described above. However, with a convex hull strategy the observer is 
not constrained to visualize a shape of any particular geometric form.

2.3.3 | Arithmetic mean

The arithmetic mean was defined as per usual, and was computed 
independently for the x and y	 coordinates.	As	detailed	 in	 the	 intro-
duction, this is the ideal strategy for computing the central tendency 
of independent observations of a random variable, and it was the 
expected	strategy	of	adults	(Morgan	&	Glennerster,	1991).

(1)

Cx=
1

6A

n∑
i=1

(xi+xi+1)(xiyi+1−xi+1yi)

Cy=
1

6A

n∑
i=1

(yi+yi+1)(xiyi+1−xi+1yi)

(2)A=
1

2

n∑
i=1

(xiyi+1−xi+1yi)
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2.3.4 | Mean of subset (N)
This was the same as the arithmetic mean, but was based on a subset 
of N dots. When the number of dots presented was greater than N, 
the most outlying dots were excluded. In practice this is only one of 
an infinite number of ways to partition the data, but ignoring outliers 
seemed a reasonable approximation for how an observer might pick 
out a subset of points. Outliers were determined by the median dis-
tance	between	each	point	and	every	other	point	(Rousseux	&	Croux’s	
“Sn	factor”;	Rousseeuw	&	Croux,	1993).	In	the	reported	data,	N was set 
to four, as this was the number of samples that Sweeny and colleagues 
reported children use when performing size- averaging (Sweeny et al., 
2015). Other values of N (3, 5, 6, 7) were also analyzed, but these 
results are not reported as they were qualitatively identical to N = 4.

2.3.5 | Geometric mean

The geometric mean is analogous to the arithmetic mean, but uses 
multiplications and root instead of additions and division. It is equiva-
lent to the arithmetic mean of the logarithm- transformed location val-
ues (with the product then returned to the original, unlogged scale). 
The geometric mean might be appropriate, therefore, if spatial infor-
mation in the brain is distributed along a logarithmic decision axis.

2.3.6 | Centroid of a fitted circle
In the fitted circle approach, the observer mentally fits a circle to the 
observed points, and responds to its centroid. Unlike the minimum- 
bounding approaches, the circle passes through the points, rather 
than enclosing them. One way to fit such a circle is to algebraically 
specify a circle in a plane, and then determine analytically the coef-
ficients a, b, and c, that provide the best linear fit to the data (see 
Gander,	Golub,	&	Strebel,	1994):

An	 alternative	 (“geometric”)	 approach	 uses	 an	 iterative	 algorithm	
to minimize the sum of the squared distances from the circle to the 
observed	 points.	 As	 discussed	 by	 previous	 authors	 (Gander	 et	al.,	
1994), geometric fitting often provides different results from algebraic 
fitting, and is liable to produce fits that are in greater accord with our 
intuitions.

2.4 | Analysis

All	analyses	were	performed	using	the	data	from	all	participants	within	
each age group. Concatenating data across observers was necessary to 
constrain the models adequately, given the relatively small amount of 
trials per participant (μ = 25, per N-dots condition). However, it meant 
that we could not examine individual differences in decision strategies 

(Haberman,	Brady,	&	Alvarez,	2015).	Responses	time	data	were	log10 
transformed prior to statistical analyses to ensure normality.

2.5 | Evaluating observer strategies

To evaluate how well each strategy predicted the observer’s behavior 
we computed mean error: the mean Euclidean distance between the 
predicted and observed response for each trial (i.e., the residual error). 
More predictive strategies should exhibit lower mean error, and for 
the ideal observer mean error is zero. Non- parametric bootstrapping 
was used to compute 95% confidence intervals around mean error 
values.

Subjects may not rely on one single perceptual averaging strategy, 
but may instead shift between two or more depending on the stim-
ulus condition. We quantified this by computing a relative decision 
weight for each strategy using the reverse correlation method (Lutfi, 
1995;	Richards	&	Zhu,	1994).	 In	brief,	 a	multiple	multivariate	 linear	
regression was performed, containing: (i) x and y error terms, (ii) two 
independent variables per strategy 〈xpredicted, ypredicted〉, and (iii) two 
dependent variables 〈xobserved, yobserved〉. The x and y slope coefficients 
were then averaged within each strategy, and normalized so that their 
magnitudes summed to one. This yielded one relative weight value, 
ω, per strategy, indicating the relative degree to which that strategy 
determined the observer’s responses. More predictive strategies 
exhibit higher weight values, with the maximum being ω = 1.

2.6 | Characterizing performance

To investigate the effect of preferred summarizing strategy on perfor-
mance, we computed traditional measures of precision, accuracy, and 
response latency.

2.6.1 | Precision

Response precision was quantified as the reciprocal of standard dis-
tance deviation (1/SDD). SDD is the two- dimensional equivalent of 
standard deviation, and is computed as:

where N is the total number of trials, and di is the residual error on 
trial i (the distance between predicted and observed response, in 
millimetres):

where <Rx,Ry> are the participant’s response coordinates, and ⟨x̄,ȳ⟩ are 
the arithmetic mean of the observed dots. Note that implicit in this 
formula is an assumed decision strategy, since errors are computed 
relative to the arithmetic mean of the observed points. This is prob-
lematic, since an ideal observer who does not respond to the arithme-
tic mean of the data will exhibit SDD > 0 (despite, by definition, having 
infinitely	high	precision).	Alternatively	then,	distance	can	be	computed	
by replacing the terms ⟨x̄,ȳ⟩ with the target coordinates predicted by 

(3)

N∑
i=1

�ixi where�i=
1

N

(4)

(
N∏
i=1

xi

)1∕N

(5)F(x)=axTx+bTx+c=0

(6)
SDD=

√√√√ N∑
i=1

d2
i

N−2

(7)d=

√
(Rx− x̄)2+ (Ry− ȳ)2
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a	different,	more	appropriate	decision	strategy.	For	example,	given	an	
observer who computes the geometric mean of the observed data, 
the appropriate measure of residual error can be derived by combining 
Equations 4 and 7, thus:

In the present analysis, we therefore began by using the simple (“tra-
ditional”) measure of response error given Equation 7, but went on 
to consider more appropriate measures, given observers’ empirically 
estimated decision strategies.

2.6.2 | Accuracy

Response bias (accuracy) was quantified as the mean signed deviation 
of responses to the arithmetic mean of observed points:

In an unbiased observer, βxy = 0.

2.6.3 | Response latency

Response latency was quantified as the lag between stimulus presen-
tation and the observer’s response, in seconds. Note, however, that 
responses were not speeded, and participants were instructed only 
to be as accurate as possible. To ensure statistical normality, reaction 
time data were log- transformed prior to analysis (Whelan, 2008).

2.7 | Analyzing age differences using bootstrapping

To evaluate differences in SDD between different age groups (e.g., 
6–7- year- olds vs. adult controls) a bootstrapping procedure was used. 
Samples were randomly drawn, with replacement, from each of the 
two age groups, and the difference in mean SDD was computed. This 
procedure was repeated 20,000 times. The p- value was defined as 2P, 
where P was the proportion of these 20,000 differences that had the 
opposite sign from the observed difference in SDD. This procedure 

is fundamentally similar to performing traditional hypothesis test  
(t test, Mann- Whitney U test), or to graphically comparing boot-
strapped confidence intervals.

3  | RESULTS

To characterize overall performance, precision (1/SDD) and bias (βxy) 
were	computed	for	each	age	group.	As	shown	in	Figure	3,	no	signifi-
cant	response	bias	was	present	in	any	group	(Figure	3a),	but	precision	
was	 significantly	 lower	 for	 children	 than	adults	 (Figure	3b).	The	dif-
ference in precision between children and adults was confirmed by 
using bootstrapping to perform group comparisons, as described in 
the Methods (p	<	.01	for	Children	vs.	Adults,	for	all	combinations	of	
Age Group × N Dots).

To investigate which decision strategy children and adults used 
to	perform	 the	 task,	 each	of	 the	nine	 algorithms	 shown	 in	Figure	2	
was fitted to the trial- by- trial response data from each age group, and 
mean	error	computed.	As	shown	 in	Table	2,	adults	responded	based	
on the arithmetic mean of the observed data, irrespective of number 
of visual elements. By contrast, children of all ages only computed the 
arithmetic mean when the number of dots was large (N = 15). When 
there were fewer dots, children appeared to mentally draw a shape 
around the dots, and responded to its centroid. In the case of N = 3, 
this shape tended to be a circle. With intermediate numbers of dots (N 
= 4 or 5) children drew a more general convex hull. Children’s change 
in decision strategy with number of elements is shown graphically in 
Figure	4.	By	inspection,	it	can	be	seen	that	the	transition	in	strategy	
occurred in children at approximately N = 6–7 elements. This change 
was	 confirmed	 statistically	 using	 bootstrapping	 (Figure	4,	 shaded	
markers). Thus, with children of all ages, their responses were signifi-
cantly better predicted by the convex hull centroid when N = 4 or 5 (all 
p < .01), and by arithmetic mean averaging when N = 15 (all p	<	.01).	At	
intermediate numbers of dots (N = 6 or 7) there was no clear pattern, 
with some age groups showing no significant preference for one strat-
egy or the other. Note, crucially, that even if noise was added to the 
arithmetic mean model, this could not, by definition, improve its pre-
dictive power. These data therefore demonstrate unambiguously that 
children are not simply computing the mean- average position (i.e., but 
noisily), when N ≲ 6. Other strategies (e.g., geometric mean, averaging 
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a subset, minimum bounding square, best- fitting circle, etc.) gave poor 
accounts of how children or adults responded in any condition (see 
Table 2).

The foregoing indicated that children differed from adults in how 
they localized small numbers of dots (N ≲ 6). To what extent can this 
qualitative difference in strategy explain children’s failure to average 
information efficiently? That is, to what extent can differences in strat-
egy explain the difference in localization precision between children 
and	adults	 shown	previously	 in	Figure	3b?	To	address	 this	question,	
response precision (1/SDD) was recomputed for each condition, using 
the expected ⟨x̄,ȳ⟩ values for the best fitting strategy for that age- 
group/dot- condition. Once these adjustments for decision strategy 
were performed, observed precision within children improved sub-
stantially	 (Figure	5).	 For	 example,	 in	 the	N = 3–5 conditions, use of 
a different strategy accounted on average for 29% of the apparent 
difference between children and adults.5 This indicates that some, but 
not all, of children’s immaturities are due to their use of qualitatively 
different decision strategies.

To further examine age differences in decision strategy with dif-
ferent N dots, response latency was also analyzed (although note 
that responses were not speeded, and participants were instructed 
only	to	be	as	accurate	as	possible).	The	results	are	shown	in	Figure	6.	
Adults	were	on	average	faster	to	respond	than	children	(independent	
t test comparison of log10 data; p ≪	 .001,	 for	 all	 three	Age	Group	
comparisons). More importantly, the pattern of response latency 
varied between children and adults. In adults, median response 
time decreased linearly with N Dots (least- squares linear regression; 
F4 = 28.66, p = .006, r2 = 0.88), indicating that they took less time 
to average more visual elements. By contrast, children’s response 
times increased for small numbers of dots, but decreased for larger 
N	 (Figure	6,	 red	 curves),	 and	 these	 variations	 in	 log-	transformed	
response times correlated strongly with the changes in decision strat-
egy	shown	previously	in	Figure	4	(Figure	6b;	r13	=	−0.66,	p = .007). In 
particular,	a	post	hoc	test	(between-	subjects	ANOVA	of	N dots (two 
levels:	5,	7)	versus	Age	Group	(three	levels:	6–7,	8–9,	10–11))	found	
that children’s response times decreased significantly between N = 
5 and N = 7 dots across all age groups (Main effect of N	Dots:	F(1,	
4492) = 31.61, p < .001, ηp2 = 0.01; No interaction effect between N 
Dots	and	Age	Group:	F(2,	4492)	=	1.15,	p	=	.318,	ns). Thus, children’s 
responses became faster around the point at which they appeared to 
switch between convex hull and arithmetic mean averaging strategies 
(see	Figure	4c).

4  | DISCUSSION

Adults,	and	children	aged	6	to	11	years	were	able	to	combine	visuospatial	
information, in order to locate the center of a set of elements. Children 
exhibited higher response variance (lower precision) than adults. This 
was shown to partially reflect structural learning: children used a quali-
tatively different strategy from adults when the number of dots was 
low, opting to “join the dots” and respond to the center of the smallest 
geometric shape that enclosed the observed points (decision- strategy 4, 

TABLE  2 Mean Euclidean error between observed responses and 
the predicted responses given each of eight putative decision 
strategies (see Supplemental Material for analogous assessments 
based on relative weights and percent best). Bold figures indicate the 
best fitting model for each N Dots condition. The difference between 
the arithmetic mean and convex hull strategies is also shown 
graphically	in	Figure	4

Mean Error, mm

N Dots

3 4 5 6 7 15

6- 7 years

mindbound circ 6.0 8.2 7.9 8.1 9.2 10.1

minbound triang 6.6 7.8 6.9 6.8 7.3 8.9

minbound rect 6.7 8.9 7.9 8.0 8.7 9.1

convex hull 6.6 7.0 6.0 6.0 6.5 7.5

geometric mean 6.7 7.6 6.7 6.9 6.6 6.4

arithmetic mean 6.6 7.5 6.6 6.6 6.3 6.2

mean of subset (4) 6.6 7.5 10.9 12.3 11.7 10.0

non- lin fit circ 19.3 16.6 15.8 16.1 17.7 13.5

linear fit circ 19.3 15.2 11.4 10.3 10.4 9.3

8- 9 years

mindbound circ 5.7 6.9 7.8 10.4 9.8 10.1

minbound triang 5.7 7.1 7.6 8.7 7.9 8.8

minbound rect 6.3 7.8 8.2 10.0 9.0 9.2

convex hull 5.7 6.2 6.6 8.0 7.0 7.4

geometric mean 5.9 7.0 7.5 8.3 6.8 6.4

arithmetic mean 5.7 6.8 7.2 8.1 6.7 6.0

mean of subset (4) 5.7 6.8 12.9 13.3 11.8 9.8

non- lin fit circ 17.1 14.4 15.4 18.8 17.6 14.5

linear fit circ 17.1 11.4 10.7 12.3 11.3 9.5

10- 11 years

mindbound circ 4.9 6.0 8.0 10.0 8.8 9.9

minbound triang 5.1 6.1 7.7 9.3 7.7 8.2

minbound rect 5.7 6.6 8.5 10.4 8.7 9.0

convex hull 5.1 5.2 6.5 8.0 6.4 7.0

geometric mean 5.3 5.9 7.7 8.9 6.6 6.1

arithmetic mean 5.1 5.7 7.6 8.8 6.5 5.9

mean of subset (4) 5.1 5.7 13.7 16.9 12.8 9.8

non- lin fit circ 17.4 15.8 16.7 17.2 17.6 13.8

linear fit circ 17.4 11.0 11.6 12.0 10.8 9.4

Adults

mindbound circ 6.0 6.7 7.6 8.7 9.4 9.9

minbound triang 4.7 5.1 5.9 6.8 7.5 8.4

minbound rect 6.3 6.6 7.3 8.3 8.7 8.8

convex hull 4.7 4.8 5.4 6.0 6.6 7.1

geometric mean 5.0 4.9 5.3 5.7 5.8 5.7

arithmetic mean 4.7 4.6 5.0 5.3 5.5 5.3

mean of subset (4) 4.7 4.6 9.4 10.7 10.6 9.0

non- lin fit circ 18.5 17.4 17.2 18.0 17.9 14.2

linear fit circ 18.5 13.4 11.5 11.6 11.5 9.3
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Table 2). Such strategies may be perfectly sufficient in some contexts, 
but were suboptimal for the present task. In contrast, adults responded 
in the statistically optimal manner, by computing the arithmetic mean of 
the elements; and they did so consistently, irrespective of the number 
of	elements.	Accounting	for	this	difference	in	strategy	explained	29%	
of the difference in precision between children and adults. This finding 
is analogous to a recent study in audition, which showed that devel-
opmental difference in the slope of a psychometric functions can be 
explained by taking into account differences in decision strategy (Jones 
et al., 2015).

In the past, poorer performance on perceptual- averaging tasks 
has been attributed solely to the inefficient implementation of an 

ideal	strategy	(parametric	learning).	For	example,	Sweeny	et	al.	(2015)	
interpreted immature size- averaging as indicating that children pool 
information across fewer objects than adults. Similarly, Manning et al. 
(2014) interpreted immature motion- averaging as indicating that older 
children “are able to [effectively] average across more local motion 
estimates”. The present study expands upon this prior work by show-
ing that children are additionally limited by their use of altogether dif-
ferent response strategies. In this light, development may take place 
at a qualitatively different level of decision- making than previously 
proposed: namely through children learning how to identify the “form” 
of a task and how best to approach the problem (structural learning), 
rather than by learning how best to optimize their implementation of a 
particular solution (parametric learning).

Of course, these two types of development are not mutually exclu-
sive, and even in the present work much (71%) of children’s increased 
error remained unaccounted for. This may indicate that children are 
further limited by how efficiently they are able to implement their pre-
ferred strategy, as has been suggested previously by others (Manning 
et al., 2014; Sweeny et al., 2015) (i.e., they might under-  or over- 
”weight”	some	of	the	available	cues).	Alternatively/additionally,	it	may	
be that children are limited by sources of random inefficiency (“internal 
noise”), either at the sensory level, or in terms of high- level inatten-
tiveness. Given the nature of the present task, internal noise at the 
motor level may also have limited children’s ability to respond precisely. 
Finally,	it	may	be	that	some	of	the	remaining	developmental	difference	
can be explained by deterministic factors that we were unable to exam-
ine in the present work, such as how response strategies differ across 
individuals,	or	vary	with	practice	(Jones,	Moore,	Shub,	&	Amitay,	2014;	
i.e., with children being slower to learn the ideal response strategy). 
With the present data, we are unable to test these various hypotheses, 
and in future it would be interesting to collect larger and more nuanced 
datasets	that	could	do	so.	For	example,	one	could	repeat	certain	stim-
uli configurations throughout the course of the experiment, and use 
the inconsistency of observers’ responses as an index of internal noise 
(Green,	1964;	Jones,	Shub,	Moore,	&	Amitay,	2013).	Notably	though,	
none of these explanations can explain the systematic differences in 

F IGURE  4 Reliance on convex hull versus arithmetic mean decision strategies, as assessed using relative weights. Other strategies were also 
included in the model, but are not shown here as they were generally given close to zero weight. (a–b) Individual weights for each individual 
strategy: higher ω indicates more predictive of observed behavior. (c) Direct comparison between the two strategies (Δω = ωmean – ωcvxhull). Values 
greater than zero indicating that observers’ responses were better predicted by the arithmetic mean strategy. Values less than zero indicating 
that observers’ responses were better predicted by the convex hull strategy. Error bars indicate 95% Confidence Intervals, derived using 
bootstrapping (N = 20,000). Values significantly different from zero have been shaded grey. These data essentially confirm graphically what can 
also be seen in Table 2, using a different method of analysis

(a) (b) (c)

F IGURE  5 Response precision, when (left) residual error is 
computed based on the arithmetic mean of the data, and (right) when 
residual error is computed using the best- fitting decision strategy for 
that age group / dot condition (as shown in Table 2). See Methods 
2.6 for further details. Bold horizontal lines show mean precision 
for the N = 3–6 conditions (i.e., where children’s strategies differed 
from adults’). Dashed horizontal lines show mean precision for all 
dot conditions, averaged within adults and children. By comparing 
between panels, one can see how much of the difference in response 
variability (% SDD) between children and adults was explained by 
differences in decision strategy
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responses that were observed in the present study (e.g., no source of 
random error would cause one response strategy to consistently predict 
observers’	 responses	more	accurately	 than	another).	Accordingly,	 the	
present findings show unambiguously that at least part (29%) of the dif-
ference in performance between adults and children is explained by the 
use of qualitative different algorithms (structural learning) rather than 
quantitative differences in response efficiency (parametric learning).

Perhaps surprisingly, children switched to using the ideal, adult- 
like decision strategy when the number of dots was high (N ≳ 6). This 
demonstrates that children are liable to vary their decision strategy 
depending on the stimulus parameters. In this respect, it is interest-
ing to note that many studies that have reported immaturities in cue 
integration have tended to use very small numbers of cues (Gori, 
Del	Viva,	Sandini,	&	Burr,	2008;	Nardini,	Jones,	Bedford,	&	Braddick,	
2008;	Petrini,	Jones,	Smith,	&	Nardini,	2015;	Sweeny	et	al.,	2015).	In	
the present work, children actually performed relatively poorly with 
such sparse inputs, and became faster and more accurate when view-
ing more complex stimuli, presumably because with increasing com-
plexity, non- ideal strategies became increasingly costly. One corollary 
of this is that at times, by simplifying psychophysical experiments 
for children, we may actually be underestimating their perceptual 
abilities.

Children’s change in decision strategy was corroborated by their 
response time data, with children responding faster as they switched 
from a convex hull to an arithmetic averaging strategy (i.e., as the num-
ber of dots increased). The counter- intuitive finding that responses 
actually became faster as the visual scene became more complex is 
consistent	with	similar	previous	findings	in	adults	(Robitaille	&	Harris,	
2011), and supports the notion that summary statistics represent, in 
part, a computationally expedient mechanism for perceptual decision- 
making	(Haberman	&	Whitney,	2012).	Our	findings	suggest	that	it	may	
take the developing system many years to identify the most expedient 
summarizing strategy, but that even young children are capable of uti-
lizing adult-like strategies when stimulus complexity makes the use of 
more simple heuristics untenable.

In the present study, structural learning (i.e., children’s use of 
alternative response strategies) was shown to occur on a visual 

localization task. We have no reason to suppose that such devel-
opment does not further generalize across a wide range of other 
modalities and task domains. However, it should be noted that, from 
a practical perspective, some other domains may not be so easily 
studied. With 2D localization, it is straightforward and natural to 
think geometrically about different ways of solving the problem, 
for example, in terms of drawing a certain shape around a cluster 
of	 points,	 or	 mean-	averaging	 their	 locations.	 Furthermore,	 there	
exists an intuitive response for us to measure (pointing), which can 
be used to delineate between competing hypotheses. In contrast, 
with more complex stimuli such as faces, the decision space is hyper- 
dimensional,	 and	 it	 becomes	 considerably	more	difficult	 for	 us—as	
human	 experimenters—to	 formulate	 the	 various	 different	 mod-
els that observers might employ, or to visualize/interpret the data. 
Meanwhile, at the other end of the spectrum, some decision spaces 
are so simple that explanations may “come to an end” (Wittgenstein, 
2009).	For	example,	with	a	one-	dimensional	feature	space,	such	as	
size, one can imagine a number of plausible statistics observers might 
use (arithmetic mean, geometric mean, median, mode, robust aver-
ages, etc.). However, there is no obvious, straightforward method 
of collecting the response required to test the competing hypoth-
eses (i.e., method of adjustment is notoriously problematic; Wier, 
Jesteadt,	 &	 Green,	 1976),	 and	with	 the	 decision	 space	 containing	
only a single dimension, the observable differences in response may 
be too small to measure accurately in children.

5  | SUMMARY AND CONCLUSIONS

The current study demonstrates that children’s difficulties in comput-
ing summary statistics does not simply represent poor implementation 
of an adult- like algorithm. Instead, children are liable to be limited fur-
ther	by	the	use	of	qualitatively	different	decision	strategies—strate-
gies which may be sensible in themselves, but not ideal given the task 
context. This suggests that structural learning, the ability to select the 
most efficient problem- solving model for a task, is also a crucial factor 
in perceptual development.

F IGURE  6 Response	time	data.	(a)	Median	(±	95%	CI)	response	times,	as	function	of	Age	Group	and	condition	(N Dots). Confidence intervals 
were computed using bootstrapping (N	=	20,000).	(b)	Association	between	the	change	in	strategy	from	convex	hull	to	arithmetic	mean	(i.e.,	the	
data	points	from	the	rightmost	panel	of	Figure	4),	and	median	response	time.	A	higher	value	of	Δω indicates greater reliance on the arithmetic 
mean strategy. The line indicates the least- square geometric mean (“reduced major axis”) linear regression fit

(a) (b)



10 of 11  |     JONES aNd dEKKER

ACKNOWLEDGEMENTS

The	 authors	 would	 like	 to	 thank	 Xiaolu	 Xu,	 Linnea	 Landin,	 Aisha	
McLean, Church Hill Primary School, and Eleanor Palmer Primary 
School, for assistance with data collection. This work was supported 
by the Special Trustees of Moorfields Eye Hospital, and by the NIHR 
Biomedical Research Centre located at Moorfields Eye Hospital and at 
the UCL Institute of Ophthalmology.

ENDNOTES
1	Adults	 are	also	capable	of	 summarizing	higher-	order	perceptual	 features,	
such	as	 the	average	 identity	 (de	Fockert	&	Wolfenstein,	2009)	of	a	 face,	
the	heading	of	a	crowd	of	people	(Sweeny,	Haroz,	&	Whitney,	2013),	or	the	
average direction of illumination in a visual scene (Koenderink, van Doorn, 
&	Pont,	2004).	They	can	also	average	non-	perceptual	information,	such	as	
political approval ratings (Simonton, 1986), value for money (Levin, 1974), or 
moral	descriptors	(Leon,	Oden,	&	Anderson,	1973).

2	Assuming	 that	 noise	 samples	 are	 independently	 random	distributed	 (see	
Jones, 2016).

3 NB: this region was large enough that observers using any strategy would be 
predicted to receive positive feedback on the majority of trials: Minbound 
circ: 83.6%; Minbound triang: 92.1%; Minbound rect: 87.4%; Convex hull: 
97.0%;	Geometric	mean:	98.9%;	Fitcircle	geometric:	55.6%;	Fitcircle	alge-
braic: 72.9%.

4	Additional	strategies	were	considered,	but	can	be	discounted	a	priori.	For	
example, another intuitive decision strategy is to respond to the geomet-
ric centerpoint. This is a generalization of the median, and predicts that 
observers responded to the dot with greatest statistical depth (e.g., Tukey 
halfspace depth (Tukey, 1975)). Such a strategy can be ruled out prima facie, 
however, since participants seldom pointed directly at a location containing 
an observed dot, and in fact were instructed explicitly that the ‘middle’ of 
the dot- cloud did not necessarily contain a dot.

5 Unsurprisingly, in N > 6 conditions none of the age differences in response pre-
cision were explained by decision strategy, since in these conditions children 
and adults appeared to use the same strategy (arithmetic mean averaging).
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