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Abstract

The gravity model of |Dowd et al. (2011) was introduced in or-
der to achieve coherent projections of mortality between two related
populations. However, this model as originally formulated is not well-
identified since it gives projections which depend on the arbitrary
identifiability constraints imposed on the underlying mortality model
when fitting it to data. In this paper, we discuss how the gravity
model can be modified to give well-identified projections of mortality
rates and how this result can be generalised to more complicated mor-
tality models.
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1 Introduction

Hunt and Blake (2015b]) and [Hunt and Blake| (2015¢) discussed the issue of
identifiability in single population age/period/cohort (APC) mortality mod-
els, and in particular how to obtain projections of mortality rates which do
not depend upon the arbitrary identifiability constraints imposed.

Issues with identifiability in projections also exist if we project mortal-
ity for multiple populations rather than just one. Such multi-population
projections are vital in order to allow for the correlations and dependencies
between related populations that are influenced by similar biological and
socio-economic drivers of changing mortality. It is essential that, in such a
model, our projections do not depend on the arbitrary identifiability con-
straints imposed when fitting the model, but only on the underlying drivers
of mortality evolution.

Many multi-population mortality models go beyond merely allowing for
covariation between the stochastic evolution of mortality in different popula-
tions, and instead impose the stronger assumption of “coherence”; i.e., that
mortality rates in different populations should not diverge with time. Such
an imposition is popular and intuitively appealing; however, we find that it
usually cannot be imposed on a model in a fashion which does not depend
on the arbitrary identifiability constraints. In addition, it can often lead to
overriding the evidence from the historical data in order to impose our pre-
conceptions on projected mortality rates in a manner which we consider to
be unscientific.

One model designed to achieve coherent projections of mortality between
two populations is the “gravity model” of |Dowd et al.| (2011). This model
adopted a cointegration framework to project the period and cohort terms
from the classic APC model fitted to each population. However, as originally
formulated, the model is not well-identified, since the projections from it de-
pend on the identifiability constraints imposed when fitting the classic APC
model. Later work by Zhou et al.|(2014) applied the framework of the grav-
ity model to the period terms from the Lee-Carter model (Lee and Carter
(1992)) and avoided some of the issues present in the original model of Dowd
et al.| (2011). However, this new form of the model is still not well-identified,
since it gives projections dependent upon the identifiability constraints im-



posed by the user.

In this study, we discuss the issue of identifiability in cointegration models
and apply this to the specific context of the gravity model in order to obtain
a well-identified model. Section Pl discusses the classic APC model which was
used in |Dowd et al.| (2011) to fit mortality rates in both populations. Section
outlines the gravity model introduced in |Dowd et al,| (2011) and places
it in the context of more general cointegration models. Section {4 discusses
why the gravity model is not well-identified and how it can be modified to
give well-identified projections. Section [5| discusses the model of Zhou et al.
(2014)), how it differs from the gravity model of Dowd et al.| (2011) and the
issues with identifiability which are still present. Finally, Section [6] generalises
these results to a broader class of mortality models and Section [7] concludes.

2 Identifiability in the classic APC model

The simplest APC model (referred to here as the “classic APC model”) has
a long history and is widely used in the fields of medicine, epidemiology and

sociology as well as in demography and actuarial science. It has the form in
Equation [If]

hl(,ua:,t) = Qp + Kt + Vi—a (]->

The parameters in the classic APC model cannot be estimated uniquely
by reference to the data alone. A model is fully identified when all the pa-
rameters in it can be uniquely determined by reference to the available data.
In contrast, the classic APC model is not fully identified because there exist
different sets of parameters which will give the same fitted mortality rates
and consequently the same goodness of fit for any data set.

We can see that this model is not fully identified, since if we use the
transformations in Equations [2], [3] and [] to obtain new sets of parameters, we
do not change our fit to the data (we call such transformations “invariant”

In this paper, we assume that ages, x, are in the range [1, X] and periods, t, are in
the range [1,7T] and therefore that years of birth, y, are in the range (1 — X) to (T — 1).



for this reason)
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Because different sets of parameters give the same fit to the data, we
cannot use the data to choose between them. Typically, we impose iden-
tifiability constraints on the parameters in order to specify them uniquely.
For instance, a commonly used set of identifiability constraints is ), x; = 0,
Doy Yy = 0and >0 nyy(y — ) = 0E| We refer to these identifiability
constraints as “natural”, since they allow us to impose our interpretation of
the demographic signiﬁcancdﬂ of the parameters onto the model. For exam-
ple, the first two of these constraints mean that «, can be interpreted as an
“average” level of mortality at age = over the period, with ; and -, repre-
senting deviations from this average level. The third constraint requires that
there are no deterministic linear trends within the fitted cohort parameters,
since any linear trend has been arbitrarily assigned to the age and period
effects. This is in line with the demographic significance we assign to the
cohort parameters in Hunt and Blake| (2015€), namely that the cohort pa-
rameters should be centred around zero and should not show any long term
trends. This means that cohort effects are interpreted as deviations in the
mortality experienced by one cohort relative to that of adjacent years of birth.

However, it is important to note that these additional identifiability con-
straints, although having a natural interpretation, are arbitrary and ad hoc.
While they might allow us to interpret the parameters in terms of their de-
mographic significance, this interpretation nevertheless depends entirely on
the user’s judgement rather than on the underlying data. Of specific impor-
tance in the context of this study, Dowd et al.| (2011)) used the constraints
Yo ke =0, Zy nyY, = 0 and a third constraint described in terms of minimis-
ing a tilting parameter ¢, which can be written as th@ —Z)Y— = 0. The

2Here n, is the number of observations of cohort y in the data and so Doy My Yy =
> wtVt—z, and a bar denotes the arithmetic mean of the variable over the relevant data
range, e.g., §j = ﬁ 2, y=05X+T).

3Demographic significance is defined in Hunt and Blake| (2015€) as the interpretation of
the components of a model in terms of the underlying biological, medical or socio-economic
causes of changes in mortality rates which generate them.

4



impact of using either the “natural” or the [Dowd et al. (2011)) identifiability
constraints when making projections is assessed in Section |4.3]

Since the identifiability constraint we choose to impose are arbitrary and
do not affect the historical fitted mortality rates, they should also not affect
the future projected mortality rates either. In consequence, we should obtain
the same projected mortality rates for any set of identifiability constraints,
including but not limited to the two discussed above. We say that models
with this property are “well-identified”.

3 The gravity model

The “gravity” model was introduced in Dowd et al. (2011) in order to ob-
tain mortality projections for two different populations which do not diverge
with timeﬁ This model might be appropriate for a small population, such
as the lives in an annuity book or pension scheme, which is a subpopulation
of a much larger population, such as a national population. The analogy the
authors use is of the smaller population being like a planet in orbit around
a star (the larger population).

The gravity model requires that the classic APC model of Equation [} is
fitted to two populationﬂ and the period functions projected using
/ﬁil) =D 4 /@EZ + eEI)

1 11 4 u "
/-i,g ) — D Fog—f + ¢(“§—)1 - “§—1)> + Eg ) (5)

The parameter ¢ € [0, 1) is designed to ensure that the difference, REI) — KEH),

is stationary and, therefore, the period functions in the different populations

4This model is functionally equivalent to the model in Cairns et al. (2011), which differs
only in the presentation of the model and the techniques used to fit it to data. Therefore,
the comments made in this note for the gravity model are also applicable to the model of
Cairns et al.| (2011).

°In Dowd et al.| (2011]), these were referred to as populations 1 and 2, with the period
and cohort functions numbered accordingly. To avoid confusion with the different period
functions ng” for models with more than one age/period term fitted to a single population,
we shall refer to the populations as I and I1 and label the period functions KEI) and /{gll)
respectively.



do not diverge.

We can rewrite Equation [5] as

() m 0 () ()

K v K €
Al | = +() 1) (A 6
<n§”)> (V(”)) D ARAV L) RA VL )

This model is just a special case of a more general cointegration model,
although this interpretation was not commented upon in Dowd et al. (2011)).
A number of papers have suggested or implemented cointegration as a means
of projecting the period parameters of mortality models for different popu-
lations. Cointegration was first suggested in the work of Carter and Lee
(1992), but was more recently used in the modelling of |Li and Hardy| (2011)
and Yang and Wang| (2013)).

Cointegration between the period functions requires that we model the
vector of time series processes as

p—1
AK,t = VXt + Z FiAl‘u'/t_i + Hlﬁ'/t_p + € (7)

=1

The rank of the matrix II is then tested in order to identify the number of
cointegrating relationships between the period functions in the model. If it
is of rank r < N (the number of period functions in k), then II can be
decomposed as II = afB', where o and 3 are N x r matrices to give the
interpretation that the rows of 3"k, represent r stationary cointegrating
relationships between the different period functions. In order to use cointe-
gration robustly, we need to ensure that any statements we make about the
rank of II are independent of our choice of identifiability constraints.

We can therefore see that the gravity model in Equation [6] has the same
form as Equation , with p = 1, X, = (1), r=1 a = (O, Qﬁ)T and
b= (1, —1)T. The prescribed form for 5 imposes that there is a station-
ary cointegrating relationship of the form /@EI) — /@gm = Z,;, and so ensures
that relative mortality rates will not diverge between the two populations,
whilst the prescribed form for « allows the interpretation that population [/
is dominant and so has no dependence on population 1.



A related process was used in Dowd et al. (2011)) to project the cohort
parameters from the model. This can be written as

() (I (I 0 (1) 0 ()
g p a Ty Vg1
A = + Al YA+ 1 1) vt ]+
(%5”)> <N(H)> < 0 Oé(H)) (7&?) (Cb) ( ) i £

We can therefore see that this is also similar to the cointegration relationship
in Equation E]E]

4 Identifiability in the gravity model

4.1 Period functions

The values of /4;,@ and /@EH) are not uniquely identifiable by the classic APC
model, but instead depend upon our choice of identifiability constraints.
Equations [2] and [] give us the freedom to add linear trends in time to ei-
ther or both time series independently, i.e.

AN (R (M) . <c<f> ) .
/%gn) ﬁgu) e e
Ri=kKi+a+ct 9)

However, this transformation, despite leaving the fitted mortality rates un-
changed if we make the appropriate offsets to the static age functions and co-
hort parameters, fundamentally alters the cointegration relationship in Equa-

6 There is a slight difference between Equation 8| and the standard form of the coin-
tegration relationship in Equation [7] in that Equation [§] involves a stationary term in

T
Vyo1= (7151_) 1 ryéI_Il)) rather than v, _,. This could be solved by rearranging Equation

using AAvy, 4 —&-aﬂ—'—'y?ﬁ1 = (A—l—aBT)A'yyA - aBT'y?ﬁQ and redefining the matrix A.
However, this solution involves losing the particular structure imposed upon A in [Dowd
et al.| (2011)).



tion [@ since

Akt = Al‘&t +c
=V + OéﬂTK',tfl + € +c
=v+c—af(a+tct)+aB ki1t e
=0 —af'ct+aB ki1 + €
The transformed time series has a deterministic linear term, a3'ct, which
was not present in the original parameterisation. This means that the time
series structure in Equation [6]is not well-identified. In practice, this has the

consequence that the gravity model can be difficult to fit to historical time
series and may give implausible values.

We might conjecture that a solution to this problem would be to allow
for deterministic trends up to linear order in the cointegrating relationship,
i.e., using v + vt in place of v in Equation [f] to give

(1) (1) (I) (1) (I)
K 1 v 0 K €
Al Gyl =)+ i |t+ ( ) T =) [ "5A )+
(Rgn)) (VO(H)) (41[)) ¢ ( ) /{gfl) 67EH)
Ak =vo+uvit+af ki) + & (10)

Such a model is well-identified as it does not change form under the
transformation in Equation [9]

ARy =vo+rvit+c— aﬂT(a +ct) + af ki1 + €
= 190 + 1>1t + OéﬁTl%tfl + €

v=vo+c—af'a

>

191 =V — Oé,BTC

However, because we have the first difference of the time series on the
left-hand side of Equation [10, when we integrate this equation, we obtain
quadratic trends in the levels of the period functions. This is undesirable as
we do not generally observe quadratic trends in the fitted parameters and
they might change direction when projected into the future with near cer-
tainty for no compelling biological reason. Therefore, the model in Equation



conflicts with our desire for biologically reasonableﬂ projections.

There is, however, a way to obtain both biological reasonableness and
identifiability under the transformations in Equation [d] This is to restrict
the linear deterministic trend in Equation by imposing v; = af; where
(1 is an arbitrary constant. This will ensure that the relevant deterministic
trend is present in K;, but is constrained within the stationary cointegrating
relationships and is not present in the non-stationary part of the relationship.

This means that we need to include constrained deterministic linear trends
in the cointegrating relationship, but leave an unconstrained constant term,
i.e.

Aky =vo+abit+af ki1 + &
=vo+a(B ki1 + Git) + & (11)

To see that this structure is well-identified under the transformations in
Equation [4] let us transform the parameters using Equation [J] to obtain

Ak =vyg+c—af'a+a (BTFLt_I + (81 — BTc)t) + €
= l)() + o (ﬁTI%t_l + Blt) + €
where Dy = vy + ¢ — af8"a, as previously, and Bl = 3 — BTe. This model
also gives biologically reasonable values for ¢ which do not depend upon the

identifiability constraints imposed when fitting the models, as demonstrated
in Section (4.3

4.2 Cohort parameters

As with the period parameters, the values of %SI) and %(JH) are not uniquely
identifiable in the classic APC model, but instead depend upon our choice
of identifiability constraints. Equations [3| and [4] give us the freedom to add

"Introduced in |Cairns et al. (2006) and defined as “a method of reasoning used to
establish a causal association (or relationship) between two factors that is consistent with
existing medical knowledge”



linear trends in time to either or both time series independently, i.e.

(11 I
%(/H) = %SU) + (b(III)) + (C(III)) Y
,AY?S ) %5 ) pI1) cUn
Y, =7, Tb+tecy (12)
Rewriting Equation [§ in the form
Ay, =p+ ANy,  +aB’v, | +e,

we see that this is also not well-identified as it changes form under the trans-
formation in Equation

Ay, =p+c—Ac—aB' (b+cy)+ ANy, +aB'd, , +e,

as the transformed drift term, i = p+c— Ac—aB’ (b + cy), is now a linear
function in year of birth, y.

However, in the same manner as used for the period parameters above, we
can introduce a constrained linear trend into the cointegrating relationship
in order to give well-identified projections which are biologically reasonable

A’Yy = “ + AA’nyl + Q <5T’7y*1 + Bly> + €y (13)

This can be shown to be well-identified by transforming the cohort parame-
ters in a similar fashion.

4.3 Application to England & Wales and CMI Assured
Lives data

In order to illustrate how the original gravity model gives projections of mor-
tality which depend upon the identifiability constraints chosen, we apply the
gravity model to the same data used in Dowd et al.| (2011), i.e., the dom-
inant population is the combined populations of England & Wales and the
subordinate population is that of assured lives in the UK as recorded by
the Continuous Mortality Investigation, i.e., those people who purchase life
assurance policies with UK insurance companies. In both cases, we use data

10



for ages 50 to 90 and years 1947 to 2006 f]

We start by fitting the classic APC model to the dataﬂ In doing so, we
have a choice over the identifiability constraints imposed on the models for
England & Wales and the CMI Assured Lives. We investigate four different
sets of identifiability constraints, which were used for the classic APC model
in [Hunt and Blake| (2015¢)), i.e.,

Case 1: >, ry = 0, X5 nyyy = >, Y- = 0 and >° nyy(y — 9) =
dowi Vi—a((t —1) — (. — 7)) = 0.

Case 2: ), r;=0,> v =0and > v(y—9y) =0.
Case 3: > k=0, Va=0and > v .(z—2)=0.
Case 4: >, ki =0,> Ve o=0and ), , v .(t—1) =0.

We investigate the constraints shown in Case 1 and Case 3 as they are the
“natural” constraints and the constraints used in|Dowd et al. (2011)), respec-
tively, as discussed in Section The constraints in Case 2 are similar to
those in Case 1, except that the summations are taken over each year of
birth rather than over all ages and years in the dataset. This has the effect
of moving from a weighted average of the cohort parameters being equal to
zero (with the weights determined by the number of observations for each
cohort) in Case 1 to a simple arithmetical average in Case 2, and similarly
for the linear trend. Although not used for the classic APC model, similar
constraints were imposed on the cohort term in Model M6 in
and so have been included for comparison. As discussed in Section
[2, the logic underpinning the selection of the Case 3 constraints in

®Data for England & Wales is taken from Human Mortality Database (2014) and we,
are indebted to the Continuous Mortality Investigation for providing providing the CM
Assured Lives dataset.

YTo do this, we use a two-step procedure to fit the model for simplicity, i.e., we fit
[the classic APC model to the data first, and then fit the time series process to the fitted
parameters using a least squares approach. This is in contrast with the approach used
in Dowd et al.| (2011)), where a one-step method is used. However, Dowd et al.| (2011)
introduce additional parameters into the one-step method in a Bayesian-type approach
[whose purpose appears to be to constrain the value of ¢ and prevent it taking values whichl
lare not biologically reasonable. However, as discussed later, this issue arises because the|
lgravity model is not well-identified and therefore should not be necessary in a well specified|
model. |




et al.| (2011)) was that the static age function in the model should explain all
the observed linearity across ages. We can apply similar logic to the period
function in the classic APC model, i.e., that the period function, x; should
explain all of the observed linearity across time, to give the constraints in
Case 4.

It is important to note that all four sets of constraints were developed to
give the same demographic significance to the cohort parameters, i.e., that
they should be centred around zero and the other functions in the model
should capture any linear trends. Because of this, these four sets of con-
straints give very similar sets of fitted parameters when these are plotted.
These sets of parameters also give identical fitted mortality rates, since they
can be transformed into each other using Equations and [l However, the
different sets of parameters are not identical. We therefore see that demo-
graphic significance, whilst helpful in selecting an appropriate set of identifi-
ability constraints, does not specify a single, unique set of constraints to use.
Model users with the same interpretation of the parameters can reasonably
choose to impose different constraints and obtain different fitted parameters
when using the same model with the same data. Furthermore, the fact that
demographic significance is subjective and, in practice, different model users
adopt a range of interpretations for the different parameters highlights the
fact that we must take care to ensure that the projected mortality rates
are independent of the arbitrary choice of constraints made when fitting the
model, and underscores the extent to which the identifiability constraints we
choose is arbitrary.

In each case, we apply the same identifiability constraints to both pop-
ulations. Figure |1/ shows the fitted values of /@ED — /f,EH) using the Case 1
constraints. [Dowd et al| (2011) assumed that these differences are station-
ary, however, Figure [1| shows that they have a clear linear trend which would
bias the estimation of ¢ in the original specification of the model. Since the
magnitude and direction of this trend is dependent upon the identifiability
constraints imposed, the degree of this bias is dependent upon our choice of
identifiability constraints. However, the modified gravity model allows for
the potential presence of a linear trend in the cointegrating relationship and

therefore any estimates for ¢ will not be biased by such a trend.
To demonstrate this numerically, for each set of fitted period parameters,
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Figure 1: Difference between the period functions

we then first fit the original gravity model in Equation [6] and then the mod-
ified model in Equation We pay particular attention to the estimated
value of ¢ found, as this will determine the rate at which divergence between
the two populations mean reverts.

Original gravity model | Modified gravity model
Case 1 0.0706 0.3234
Case 2 0.0702 0.3234
Case 3 0.0701 0.3234
Case 4 0.0700 0.3234

Table 1: Values of ¢ for different identifiability constraints

The results shown in Table [1l indicate that the rate of mean reversion
(and therefore the distribution of projected mortality rates) is dependent
upon the identifiability constraints using the original gravity model, whereas
this is not the case for the modified model. The differences between the cases
for the original model appear relatively small. However, this is because the
four sets of identifiability constraints used were selected on the basis of the

13



same demographic significance for the parameters and therefore the fitted pa-
rameters were broadly comparable. This will not necessarily always be the
case, as demographic significance is subjective and different model users may
have very different understandings as to the interpretation of the parameters.

The most important point is not how small the differences are but that
they are different at all. The identifiability constraints made no difference
to the the fitted mortality rates for the different cases - they were identical.
However, the distribution of the projected mortality rates depends upon ¢,
which varies between the four cases in the original specification of the model.
Therefore, the projected mortality rates would depend upon the choice of
identifiability constraints. This is inconsistent with the fitting stage, where
the choice of identifiability constraints made no difference to the fitted mor-
tality rates. By contrast, the modified gravity model avoids this, as shown
by the fitted value of ¢ being identical in all four cases in Table [1]

In particular, we note that it is possible that some sets of identifiability
constraints for the classic APC model would give values of ¢ in the original
gravity model which were greater than unity or less than zero. Therefore, the
arbitrary choice of identifiability constraint may lead to diverging projections
of mortality in the original gravity model, despite having the same historical
fitted mortality rates as the cases shown. This is clearly something which
should be avoided by use of the modified gravity model.

It is also interesting to note that the modified gravity model gives values
for ¢ which are considerably larger than in the original model. This is be-
cause the parameter now captures the genuine reversion between the period
functions (i.e., the saw-tooth pattern in Figure|l|) without additionally trying
to capture the linear trend.

These modifications make a significant difference to the projected param-
eters when using the gravity model, as shown in Figure |2 using the Case 1
identifiability constraints.

As can be seen in Figure 2a], the original specification of the gravity
model adjusts the central trend so that there is a sharp change of trend in
the CMI population at the point where the projections begin. In contrast,
the modified gravity model in Figure 2b| allows the trends observed in either

14
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(a) Original gravity model (b) Modified gravity model

Figure 2: Projected period parameters

population to continue in future.

The change in trend exhibited by the period parameters in the original
gravity model is explained by the transition between the past, where the
linear trends are diverging in the period parameters fitted to the histori-
cal data, and the future, where the gravity model is forcing them together.
Since the linear trends in the fitted period parameters were unidentifiable
and, hence, entirely dependent upon the identifiability constraints imposed
upon the model, the magnitude of the trend change also depends solely upon
the arbitrary identifiability constraints. Therefore, the existence of such a
trend change is not well-identified and leads to projected mortality rates
which depend upon the identifiability constraints chosen, unlike the fitted
mortality rates.

Furthermore, the existence of such a trend change leads to inconsistencies
between the past and the future. This is not compatible with the extrap-
olative approach to projecting mortality, as discussed in |Hunt and Blake
(2015a)). Although there might be insufficient evidence in the historical data
to support the existence of changes in trend in the fitted period parameters,
the original gravity model imposes a trend change, precisely at the transition
between the historical data and the projected mortality rates. The implica-
tion of this is that the data has been collected at a unique point in time
that is qualitatively different from the periods before or after it. We do not

15



believe that such an assumption is tenable.

In contrast, the modified gravity model does not predict a change in trend
at the transition between past and future. As discussed in Hunt and Blake
(2015¢), the linear trends in the classic APC model are unidentifiable and
depend entirely upon the identifiability constraints, whereas the variation
around those trends is identifiable. Therefore, the modified gravity model
leaves the linear trend in both populations unchanged, but allows the vari-
ation around these trends to be cointegrated. This means that decreases in
mortality which are faster than expected in England & Wales are correlated
with faster than expected declines in mortality rates in the CMI Assured
Lives population. Capturing this correlation is vital in the measuring of ba-
sis risk between populations, as in |Li and Hardy| (2011) and Coughlan et al.
(2011), and when modelling liabilities and securities which depend upon mor-
tality in multiple populations, as discussed in [Hunt and Blake| (2015d).

Not only is the modified gravity model well-identified, we also believe
that it gives projections which give greater consistency between the past and
the future. The behaviour of the fitted parameters has been analysed and
projected into the future, without assuming a priori that this behaviour will
change. Such an approach is far more consistent with the extrapolative ap-
proach to projecting mortality rates discussed in Section 2 of Hunt and Blake
(2015a) than the assumption of a trend change present in the original gravity
model.

Furthermore, we believe that an assumption whereby projections main-
tain the same trends in each population but allow for correlated variation
around these trends is more justified in terms of biological reasonableness
than assuming that the period parameters converge in future. The fac-
tors impacting deviations in mortality rates from trend in one population
are likely to be common across populations, leading to correlated variation
around the trend in the two populations. In contrast, the differing trend
rates of mortality improvement are likely to be generated by more fundamen-
tal socio-economic causes, which will remain unchanged for the foreseeable
future.

In summary, we find that the modified gravity model gives projected
mortality rates for England & Wales and the CMI Assured Lives popula-

16



tions which are well-identified and have variation which is correlated in a
biologically reasonable fashion. However, the modified gravity model does
not induce the trends present in either population to change sharply at the
transition point between past and future, which is a feature of the original
gravity model and which was imposed to ensure that mortality rates in the
two populations are “coherent”.

4.4 Coherence

The term “coherence” was introduced in Li and Lee| (2005)), and was defined
formally in Hyndman et al.| (2013) in terms of the relative mortality rates
between populations, i.e.,

pry

2

a function of age only. This means that relative mortality rates are stationary,
and so the mortality rates projected in the two populations do not diverge
with time. Coherence is a stronger requirement for a multi-population mor-
tality model than simply allowing the covariation observed in the past to
continue into the future, as discussed in Section above[l]

E

— R, (14)

The original gravity model was introduced in part to ensure that mor-
tality rates in the England & Wales and CMI Assured Lives populations are
coherent. The original gravity model has coherence built into it, since

(1)

o 2 I II I II
o [L55| — (af =) + (= ) + (512, =+4"2)

x,t

= (a0~ a) + 87 (me+,..)

which is stationary in time by constructionﬂ

10Coherence is a potential feature of the projected mortality rates and can result from
a number of different techniques for projecting mortality, rather than it being a technique
in itself. For instance, the original and modified gravity models both involve the technique
of cointegration, but one gives coherent projected mortality rates, whilst the other does
not. Conversely, the original gravity model and the SAINT model of [Jarner and Kryger

(2011) both give coherent mortality rates, but use different techniques to achieve this.
n
"UHowever, the long-run distribution of %, and specifically R,, will depend upon the
Mo ¢

arbitrary identifiability constraints imposed when fitting the model.
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However, when the gravity model is modified to ensure projections are
well-identified, coherence no longer necessarily holds, since we can have differ-

ent linear trends in both populations (i.e., 3" (nt + Bt + v, + B (t — x))

is stationary, whilst 87 (k¢ + 7,_,) is not). The level of divergence will be set
by the observed divergence between the populations in the historical dataset,
i.e., we will project mortality rates that will continue to diverge if they have
been observed to do so in the past. Such an approach gives greater consis-
tency between the historical data and projected mortality rates.

Therefore, we see that there is the potential for conflict between the de-
sire for coherent projections and the need for projections of the model to
be well-identified. In general, we believe that obtaining projected mortality
rates that do not depend on arbitrary choices made when fitting the model to
data is more important than a desire to prevent divergence between popula-
tions, for the reasons discussed below. However, we note that identifiability
issues in mortality models are features of the parameters in mortality mod-
els, whereas coherence is a property of the projected mortality rates, which
should be independent of these issues. If coherence is desired, we therefore
believe that methods of imposing it should focus on constraining the pro-
jected mortality rates themselves, rather than specific features of the model
parameters, which will depend on the identifiability constraints imposed.

However, we would often go further and question the desire to impose
coherence a priori on projected mortality rates. Much of the work discussing
coherent projections of mortality rates has been based on the idea that mor-
tality rates should not diverge indefinitely in future between related popu-
lations. For instance, Li and Lee (2005) stated that “Obviously, mortality
differences between [closely related] populations should not increase over time
indefinitely if the similar socio-economic conditions and close connections
were to continue.” We believe that there are two problems with this conjec-
ture.

First, whilst it might be true that projecting divergences indefinitely into
the future may be unrealistic, we would point out that extrapolating any
model indefinitely into the future is likely to give nonsensical results sooner
or later. For example, the Lee-Carter model will tend to give mortality rates
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arbitrarily close to zero at all ages if projected far enough into the future.
However, such a phenomenon is more the fault of a modeller misusing the
model to make inappropriate forecasts than it is the fault of the model it-
self. A general rule of thumb is that a model should not be projected for
a longer period than the data used to estimate it. Given this, the question
becomes why we should believe that mortality differences cannot diverge for
another 50 years (say) if we have observed mortality differences diverging for
the previous 50 years. Assuming that the evolution of mortality rates in the
future will be qualitatively different from the past is inconsistent with the
extrapolative approach.

Second, we believe that it is simply untrue that differences in mortality
rates cannot persist for prolonged periods between ostensibly related popu-
lations. For example, life expectancy at age 65 varies considerably between
areas in the same city[T_?] in a pattern which has been stable for decades, let
alone between different socio-economic groups within the same country (see
Harper et al| (2007) and |Villegas and Haberman| (2014))) or between coun-
tries. Whilst coherence does not impose the requirement that these long-
established differences decrease, it does assume that they are not expected
to grow beyond their current level, which we do not believe is supported by
the evidence. It also raises the question as to what is so special about the
currently observed differences in mortality that they should act as a barrier
beyond which further divergence is not possible.

Therefore, we do not believe that coherence is a desirable property to im-
pose upon an extrapolative multi-population mortality model. As scientific
investigators, we should allow the data to speak for itself rather than impose
any prior views onto the models that we use. This is consistent with the
extrapolative approach discussed in Section 2 of Hunt and Blake (2015a)),
where analysis of historical data, rather than subjective opinions and biases,
is used to project mortality rates. If the data supports our beliefs, that is
encouraging. If the data does not, then we need to examine either our pre-
conceptions to determine whether they need to be revised or re-examine the
model we are using to analyse and project the data.

Ultimately, many of the preconceptions which lead to a desire for co-

12Source: http://data.london.gov.uk/dataset/life-expectancy-birth-and-age-65-ward
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herence between different populations have a basis in our knowledge of the
specific populations under consideration and the specific factors causing the
divergence in these populations. For example, the observed divergence be-
tween mortality rates in the England & Wales and CMI Assured Lives popu-
lations could be attributed to the selective nature of the CMI Assured Lives
dataset, which consists of individuals who are likely to be wealthier than the
average citizen of England & Wales. In addition, this selective population
may adopt different lifestyles, with less smoking and a better diet than the
wider population, for example, leading to a differing pattern of mortality. We
might reasonably feel that such differences will get less important with time
and the wider population adopts the same lifestyle as the sub-population,
and therefore that mortality rates in the two population should stop diverg-
ing in future.

However, this kind of argument for imposing coherence on a model makes
use of additional information regarding the causes of any divergence, infor-
mation that was not used when fitting the model. We therefore believe that,
rather than imposing coherence on a model to obtain the results we want,
it would be better to incorporate into our model the additional information
that justifies our desire for coherence in the first place. Such information
may include economic and lifestyle variables, for instance, as in [Reichmuth
and Sarferaz| (2008)), Wang and Preston| (2009) and French/| (2014)). This may
help explain any observed divergence in the past and potentially allow for
coherent projections which are still well founded in a rigorous analysis and
extrapolation of the data.

5 Identifiability in the cointegrated Lee-Carter
model

Zhou et al.| (2014) applied a similar cointegration framework as developed
for the gravity model to the period parameters of the Lee-Carter model

In(pe) = + Buky (15)

for multiple populations. The period parameters are projected using a time
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series process of the form
AKlt =V + FAK,t_l + Oéﬁ—rf{t_l + €; (16)

which is a cointegrated relationship of the form in Equation H As in [Dowd
et al.| (2011), 8 was constrained so that § = (1, —1)T in order that rel-
ative mortality rates do not diverge in the two populations. However, no
assumption is made regarding the dominance of one population over the
other, and therefore no constraint is made on «, unlike the gravity model

where a = (O, gb)T was used to impose the condition that population [/
dominates population 1.

As discussed in |Lee and Carter| (1992) and Hunt and Blake (2015b),
the Lee-Carter model is also not well-identified and possesses the invariant
transformations

{0, B ik = o, B} (17)
{6z, Boy it} = {0 — BBy, Bo, e + b} (18)

which are used to impose identifiability constraints in a similar fashion to the
classic APC model. These invariant transformations can be applied indepen-
dently to the two populations without affecting the fitted mortality rates,
and so we can write

Re=A(k:+b) (19)

. a®). 0

If we apply this transformation to the time series process in Equation
we obtain

ARy = Av — Aaf b+ ATA T AR + AafT ARy + A€
=D+ TAR1 + 6B Rt + &

13 Again, the form of Equation [L6| differs from the form of Equation [7| due to the sta-
tionary cointegrating term, af ' k;_1, as opposed to a3 k,_o required by Equation
However, this can be resolved in the manner outlined in footnote @
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which is of the same form as Equation (16| if we redefine the terms appropri-
ately. In particular, this involves setting

B=A"p
()0
0 —m) \—1
_ (L __ 1T
- (a(f)’ a(H))

i.e., if the time series process is well-identified, S cannot be restricted to have
any particular form, since these restrictions will only apply for one set of
identifiability constraints. We also see that we are free to set & = Aa, since
« is not constrained to any particular form initially. Therefore, in order for
the model of [Zhou et al.| (2014) to be well-identified, the restriction on [ as
well as the restriction on a must also be relaxed. This was commented upon
in Nielsen and Nielsen| (2014)).

The reason for the difference between the models of Zhou et al.| (2014)
and [Dowd et al. (2011]) arises because of the differences in the underlying
APC mortality models used in either study. In the Lee-Carter model used
in |Zhou et al.| (2014)), the “scale” of the period functions is defined by an
identifiability constraint on (3,. This scale is arbitrary, and we can change
it without affecting the fitted mortality rates from the model. Therefore the
projected mortality rates from the model of |Zhou et al.| (2014) also need to
also be invariant to changes in this scale. In contrast, the scale of the pe-
riod functions is defined by the parametric age function in the classic APC
function, and not by an identifiability constraint. Therefore, it cannot be
changed in the model, and so we do not have to ensure that the projected
mortality rates are invariant to changes in its scale.

Conversely, the Lee-Carter model does not have unidentifiable linear
trends, unlike the classic APC model. Therefore the model of [Zhou et al.
(2014) does not require a linear drift term, i.e., 8¢, in the cointegrating re-
lationships. The classic APC model does contain unidentifiable linear trends
in the parameters, which can be varied in the historic parameters without
affecting the fitted mortality rates. It is, therefore, essential that the pro-
jected mortality rates from the model of Dowd et al. (2011) are invariant to
changes in the linear trend in the period an cohort functions, which is ensured
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by the presence of the linear drift term, (¢, in the cointegrating relationships.

We see, therefore, that the form the gravity model needs to take in order
to be well-identified depends on the underlying APC mortality model being
used and the identifiability issues within that particular model. It is therefore
essential that these identifiability issues are fully analysed and understood,
as discussed in Hunt and Blake| (2015b.c|). In general, we see that it is best
to avoid making any impositions on the structure of a and 3, and so use
the most general form of cointegrating relationship, in order to avoid any
potential identifiability issues and avoid constraining the form of the model
unnecessarily and, potentially, inappropriately.

6 Extending the cointegration model

For the general cointegration model in Equation [7], our approach generalises
naturally to models where there are unidentifiable higher-order polynomial
deterministic trends in the parameters. If the period functions of a model
have unidentified deterministic trends which are polynomial of order M, then
in order to be well-identified under the corresponding invariant transforma-
tions, we will need to allow for unconstrained deterministic trends up to
polynomial order M — 1 and constrained deterministic trends of order M.

For instance, the model of [Plat| (2009)

(pf)) = o + w7+ (@ =) + (=) 17 (20)
has unidentifiable quadratic trends, as discussed in Hunt and Blake| (2015¢).
If the Plat| (2009) model were fitted to two populations, we would have six pe-

S’” LD with unidentified quadratic trends,

D 1) With

riod functions in total - & and mﬁ
(271) (2711) ] 1 ] ] (37
Ky and Ky with unidentified linear trends and &,

unidentified constants.

and /<;§

We could look for a cointegration model involving all six period functions.
Cointegration, by its nature, involves interactions between the different pe-
riod functions. We therefore are unable to allow for deterministic trends
of different order in different period functions. Allowing for cointegration
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between all six time series would therefore mean allowing for constrained
quadratic trends and unconstrained linear trends in all six period functions,
which may lead to projections which are not biologically reasonable for each
population.

It is more biologically reasonable to consider each pair of period func-
tions separately based on their shared demographic significance. This would
mean looking for cointegrating relationships with constrained quadratic (and
unconstrained constant and linear) trends for the two f#’p ) functions, rela-
tionships with constrained linear trends for the K,EQ’p ) functions, and so on.
That is, we use

A = 4 4 a® (BT, - a02) 1) (1)
AR = 9 4 0 (3R, 4 4) 1 e @
AR® = a® (BOTkD, +50) + Y 23)

to project the period functions. This approach is used in [Hunt and Blake
(2015d), albeit in a model with unidentified cubic (as opposed to merely
quadratic) trends.

7 Conclusions

Cointegration can be a powerful tool for projecting mortality rates in related
populations. However, it is a tool which must be used with care to ensure
that we have identifiability under any invariant transformations which allo-
cate unidentifiable polynomial trends between the parameters. In the case
of the gravity model of |Dowd et al.| (2011) and the model of |Zhou et al.
(2014)), we have shown how to adapt the process used to project the period
functions so that it gives well-identified projections that do not depend on
the arbitrary identifiability constraints imposed. We have also shown how
this can be generalised to more complicated APC mortality models.

Further, we have shown that we cannot also impose the condition that
mortality rates are coherent and do not diverge in future. Not only does
imposing coherence mean that the projected mortality rates will depend upon
the arbitrary identifiability constraints selected, it is also incompatible with
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an extrapolative approach to modelling mortality. An extrapolative approach
must, first and foremost, take its lead from the evidence of the historical
data. While, in many circumstances, a belief in coherence is quite natural,
we believe we should test for its existence in the historical data statistically
using well-identified models, rather than assume its existence beforehand
as an article of faith. If we do not find any evidence for coherence in the
historical data, this should be considered a puzzle to explain using more data
and better models, and not just an error to be corrected by an ad hoc fix
which overrides the evidence of the data to obtain the results we anticipated
in advance. Such an approach is not only more rigorous and more scientific,
but can also give new insights into the factors which govern the evolution of
mortality rates and enhance our understanding of longevity risk.
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