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Beat induction is the perceptual and cognitive process by which humans
listen to music and perceive a steady pulse. Computationally modelling
beat induction is important for many Music Information Retrieval (MIR)
methods and is in general an open problem, especially when processing
expressive timing, e.g. tempo changes or rubato.

A neuro-cognitive model has been proposed, the Gradient Frequency
Neural Network (GFNN), which can model the perception of pulse and
metre. GFNNs have been applied successfully to a range of ‘difficult’ music
perception problems such as polyrhythms and syncopation.

This thesis explores the use of GFNNs for expressive rhythm percep-
tion and modelling, addressing the current gap in knowledge for how to
deal with varying tempo and expressive timing in automated and interac-
tive music systems. The cannonical oscillators contained in a GFNN have
entrainment properties, allowing phase shifts and resulting in changes to
the observed frequencies. This makes them good candidates for solving the
expressive timing problem.

It is found that modelling a metrical perception with GFNNs can im-
prove a machine learning music model. However, it is also discovered that
GFNNs perform poorly when dealing with tempo changes in the stimulus.

Therefore, a novel Adaptive Frequency Neural Network (AFNN) is in-
troduced; extending the GFNN with a Hebbian learning rule on oscilla-
tor frequencies. Two new adaptive behaviours (attraction and elasticity)
increase entrainment in the oscillators, and increase the computational ef-
ficiency of the model by allowing for a great reduction in the size of the
network.

The AFNN is evaluated over a series of experiments on sets of sym-
bolic and audio rhythms both from the literature and created specifically
for this research. Where previous work with GFNNs has focused on fre-
quency and amplitude responses, this thesis considers phase information
as critical for pulse perception. Evaluating the time-based output, it was
found that AFNNs behave differently to GFNNs: responses to symbolic
stimuli with both steady and varying pulses are significantly improved,
and on audio data the AFNNs performance matches the GFNN, despite its
lower density.

The thesis argues that AFNNs could replace the linear filtering methods
commonly used in beat tracking and tempo estimation systems, and lead
to more accurate methods.
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Chapter 1

Introduction

This thesis explores a new model of machine perception of expressively

timed rhythms, based on a cognitive model of human perception. This in-

troduction outlines key concepts, defines specific research questions and

objectives, and details the structure of the thesis. Section 1.1 introduces

the key phenomenon that is modelled in this thesis; metrical flux: a chang-

ing dynamic feedback loop of metre perception, expectational prediction, and

rhythmic production. Section 1.2 sets this phenomenon within the context

of computer science research, and in doing so defines the problem space

addressed in this thesis. Section 1.3 motivates the method of the enquiry

through a description of entrainment: a synchronisation process between

oscillations. Section 1.4 details the specific research questions and objec-

tives tackled in this thesis, and Section 1.5 gives an overview of the con-

tributions made. Finally, a list of the author’s publications and academic

achievements is given and the structure of the remaining thesis is outlined.

1.1 Metrical Flux

When we listen to or perform music, a fundamental necessity is to under-

stand how the music is organised in time (Honing, 2012). Musical time is

often thought of in terms of two related concepts: the pulse and the metre of

the music. The pulse is the periodic structure we perceive within the music
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Chapter 1. Introduction

that we can tap along to. According to Lerdahl and Jackendoff (1983), the

metre extends the pulse to a multi-level hierarchical structure. Lower met-

rical levels divide the pulse into smaller periods and higher levels extend

the pulse into bars, phrases, and even higher order forms.

This gives the impression that rhythm is all about dividing or combin-

ing periods together, perfectly filling time with rhythmic events. However,

in performance this is rarely the case; musicians have been shown to devi-

ate from this abstract clock-quantified pulse in subtly complex ways, often

employing this as an expressive device (Räsänen et al., 2015; Clarke, 2001).

Examining expressive qualities of music performance has been ongoing

since the Ancient Greeks (Gabrielsson and Lindström, 2010). Today if a per-

formance is too well-timed it is often viewed as being ‘robotic’, lacking in

expressive temporal variation (Kirke and Miranda, 2009). Some genres of

music, marches for instance, are designed to induce a strong beat percep-

tion. However, it is well known that humans can successfully identify metre

and follow the tempo of more expressive rhythms (Epstein, 1995). One re-

cent study on human beat induction found that subjects were able to adapt

to relatively large fluctuations in tempo resulting from performances of pi-

ano music in various genres (Rankin, Large and Fink, 2009). Skilled per-

formers are able to accurately reproduce a variation from one performance

to the next (Todd, 1989a), and listeners are also able to perceive meaning in

the deviations from the implied metrical structure (Epstein, 1995; Clarke,

1999).

Electronic music pioneer Curtis Roads mused that the composer has the

power to provide a subjective experience of time to the listener, via their

perception of rhythmic events (Roads, 2014). Roads considers mainly com-

puter music, where a composer has direct control over the timing of these

events, but it is quite possible to extend this view on to every genre of music

performed by human or machine.

Listening to and/or performing music forms a dynamic feedback loop

of pulse and metre perception, expectational prediction, and possibly rhyth-

mic production in the case of a performing musical agent.
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1.2. Expressive Music Modelling

As the performer expressively varies the tempo, the perceived metrical

structure is perturbed. Even when the larger scale of the metrical structure

remains consistent (e.g. time signature, strong and weak beats), which is

often the case, the listener’s perception of musical time is affected, along

with any expectation of rhythmical events. The endogenous sense of pulse

and metre is always in flux throughout the listening process. In this thesis,

this is what is referred to as metrical flux.

1.2 Expressive Music Modelling

Automatically processing an audio signal to determine pulse event onset

times (beat tracking) is a mature field, but it is by no means a solved prob-

lem. Analysis of beat tracking failures has shown that beat trackers have

great problems with varying tempo and expressive timing (Grosche, Müller

and Sapp, 2010; Holzapfel et al., 2012).

Creating formal systems for music theory and composition has a long

history, and connectionist machine learning models are a well established

approach. Todd’s (1989) neural network model, for instance, was trained

to predict melody and rhythm. In the network, the problem of melody

modelling was simplified by removing timbre and velocity elements, and

discretising the time dimension into metrically windowed samples.

More recently the term Music Metacreation (MUME) has emerged

to describe contemporary computational approaches to automatic music

tasks (Eigenfeldt et al., 2013). MUME systems utilise artificial intelligence,

artificial life, and machine learning techniques to develop software that au-

tonomously creates music. Such software is said to be a metacreation if it

behaves in a way that would be considered creative if performed by hu-

mans (Whitelaw, 2004).

It is still rare for generative music systems to produce temporal varia-

tions in their timing and tempo outputs, but a generative system that out-

puts an quantised symbolic rhythm could always have that rhythm ‘played’
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by a computer system for expressive music performance (CSEMP; Kirke

and Miranda, 2009).

Some holistic approaches have been made, most notably from IRCAM

in Omax (Assayag et al., 2006) and ImproteK (Nika et al., 2014). These sys-

tems are both generative improvisation systems, designed to play with hu-

man musicians. Omax’s design is to ignore the pulse entirely by restructur-

ing the audio input. ImproteK uses a beat-tracker to detect tempo, which is

then fixed for the remainder of the improvisation.

Sometimes the application of expressive articulation is left to human

performers. One example of this is Eigenfeldt’s An Unnatural Selec-

tion (2015) in which human musicians played machine generated phrases,

side-stepping the need for any expression to be generated by the system

itself.

One MUME goal is the creation of an intelligent musical agent that

could perform alongside a human performer as an equal. This is a diffi-

cult task, and if it is ever to be achieved, the expressive timing problem

must be overcome.

1.3 From Rhythmic Expression to Entrained

Oscillation

When Dutch physicist Huygens first built the pendulum clock in 1657, he

noted a curious phenomenon: when two pendulum clocks are placed on

a connecting surface, the pendulums’ oscillations synchronise with each

other. As one pendulum swings in one direction, it exerts a force on the

board, which in turn affects the phase of the second pendulum, bringing

the two oscillations closer in phase. Over time this mutual interaction leads

to a synchronised frequency and phase. He termed this phenomenon en-

trainment (Huygens, 1673) and it has since been studied in a variety of disci-

plines such as mathematics and chemistry (Kuramoto, 1984; Strogatz, 2001;

Pantaleone, 2002).

6



1.3. From Rhythmic Expression to Entrained Oscillation

An entrainment process may be mutual or one-sided, which denotes a

difference in the way the oscillators interact. A mutual process is one such

as two connected pendulums; they each interact with one another to syn-

chronise frequency and phase. A one-sided entrainment process consists

of a master oscillator and a slave oscillator: the master influences the slave,

but there is no way for the slave to influence the master. Thus only the slave

oscillation adapts its frequency and phase. An example of this is the human

sleeping cycle which is entrained to the sun’s daily rise and set period. We

have no influence on how fast the earth spins on its axis, and so this circa-

dian rhythm is a slave oscillator in a one-sided entrainment process.

Connecting two oscillators together like Huygens’ pendulums is termed

coupling and can apply to populations of more than two oscillatory pro-

cesses. What is often observed as one oscillation may transpire to be a

nested population of oscillators, which collectively exhibit a synchronised

oscillation. An example of this in biology is the human heartbeat, which

is controlled by networks of pacemaker cells (Michaels, Matyas and Jalife,

1987).

In general terms, entrainment occurs whenever temporally structured

events are coordinated through interaction, so that two or more periodic

signals are coupled in a stable relationship. From this description it is clear

to see how entrainment seems particularly relevant to describing the act of

musicking (Small, 2011). For instance, an area of music where entrainment

has been applied is in the study of how pulse and metre is inferred. When

we listen to music, there are entrainment processes taking place that form

an endogenous perception of time and temporal structure (the metre) in the

piece.

The process through which humans (and other animals, see Patel et al.,

2009) perform beat induction is one of entrainment. When we tap our foot

to music we are able to synchronise our actions to an external rhythm in

such a way that a foot tap coincides with the pulse of that rhythm. By doing

so we are entraining to that rhythm. In addition, when we play music,

either as a group or solo activity, the entrained periodicity is generated via
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a concurrent production process, and is mutual between the participating

players (Huron, 2006).

According to Large (2010), the endogenous sense of pulse and metre

arises from patterns of neural oscillation activity. Our nervous system liter-

ally resonates to rhythm, just as a hollow body resonates to the harmonics of

a stimulus. Large, Almonte and Velasco (2010) introduced a canonical oscil-

lator model to study this phenomenon in the brain. The resonant response

of the oscillators creates rhythm-harmonic frequency resonances, which can

be interpreted as a perception of pulse and metre. The model has been ap-

plied successfully to a range of music perception problems including those

with syncopated and polyrhythmic stimuli (Angelis et al., 2013; Velasco

and Large, 2011). The cannonical model also exhibits entrainment proper-

ties, allowing it to shift its phase and resulting in changes to its observed

frequency. This makes nonlinear resonance a good candidate for solving

the expressive timing problem.

1.4 Research Goal

The main objective of this research was to develop methods for improving

the modelling and processing of rhythm, pulse, and metre to address the

current gap in knowledge for how to deal with varying tempo and expres-

sive timing in automated and interactive music systems.

This thesis explores a machine learning approach to expressive rhythm

perception, addressing all of the aspects above, with a basis in cognitive

models of metre perception. The systems studied and developed here op-

erate in continuous time, meaning there is no prior or external knowledge

of tempo or metre beyond a single time-series input; there is no filling or

dividing time.

1.4.1 Research Questions

This thesis has been driven by the following research questions:
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1. Can a neural resonance based cognitive model of human metre per-

ception (GFNN; Large, 2010) improve machine learning music mod-

els of melody? This question is explored in Chapter 3.

2. Can GFNNs form a machine learning music model of expressive

rhythm production? This question is explored in Chapter 4.

3. How well does a GFNN capture tempo change? This is explored in

Chapter 5.

4. Can a similar neural resonance based cognitive model improve the

GFNN’s response to tempo change and expressive timing? Such a

model is developed and evaluated in Chapter 6.

5. How would such a model compare with previous perceptual mod-

els and on real-world audio datasets? This question is answered in

Chapters 6 and 7.

1.5 Research Contributions

The following are the key contributions of the work presented in this thesis:

1. Development and evaluation of a novel combination of a GFNN with

a Recurrent Neural Network (RNN) as two hidden layers within one

holistic system.

2. The first evaluation of a GFNN with audio data as input and the first

expressive timing study with a GFNN.

3. The first analysis of a GFNN’s performance when dealing with chang-

ing tempo.

4. Proposal of a new phase-based evaluation metric for pulse percep-

tion: weighted phase output (WPO).

5. Extension of the GFNN to a novel neural network model, the Adap-

tive Frequency Neural Network (AFNN), modelling changing peri-

odicities in metrical structures with a new Hebbian learning rule.
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6. An open source Python implementation of the GFNN and AFNN

models, provided on the author’s GitHub repository1.

7. An evaluation of GFNNs and AFNNs on expressive audio data from

standard beat tracking datasets.

1.6 Publications

Parts of this thesis have been published in the following research papers

written during the course of the PhD:

1. Andrew J. Elmsley, Tillman Weyde and Newton Armstrong (2017).

‘Generating Time: Rhythmic Perception, Prediction and Production

with Recurrent Neural Networks’. In: Journal of Creative Music Systems

1.2. DOI: 10.5920/JCMS.2017.04

2. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2016e).

‘Metrical Flux: Towards Rhythm Generation in Continuous Time’. In:

4th International Workshop on Musical Metacreation, held at the Seventh

International Conference on Computational Creativity, ICCC 2016. Paris,

France

3. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2016a).

‘Adaptive Frequency Neural Networks for Dynamic Pulse and Metre

Perception’. In: Proceedings of the 17th International Society for Music

Information Retrieval Conference (ISMIR 2016). New York, NY, pp. 60–6

4. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2015b).

‘Perceiving and Predicting Expressive Rhythm with Recurrent Neural

Networks’. In: 12th Sound & Music Computing Conference. Maynooth,

Ireland, pp. 265–72

5. Andrew Lambert and Florian Krebs (2015). ‘The Second International

Workshop on Cross-disciplinary and Multicultural Perspectives on

1https://github.com/andyr0id/PyGFNN
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1.6. Publications

Musical Rhythm and Improvisation’. In: Computer Music Journal 39.2,

pp. 97–100

6. Andrew Lambert, Tillman Weyde and Newton Armstrong (2014b).

‘Studying the Effect of Metre Perception on Rhythm and Melody

Modelling with LSTMs’. In: Proceedings of the Tenth Artificial Intel-

ligence and Interactive Digital Entertainment Conference. Raleigh, NC,

pp. 18–24

7. Andrew Lambert, Tillman Weyde and Newton Armstrong (2014a).

‘Beyond the Beat: Towards Metre, Rhythm and Melody Modelling

with Hybrid Oscillator Networks’. In: Proceedings of the Joint 40th In-

ternational Computer Music Conference and 11th Sound & Music Comput-

ing Conference. Athens, Greece, pp. 485–90

1.6.1 Awards

1. Cognitive Music Informatics Research Symposium (2016). Best Poster:

Adaptivity in Oscillator-based Pulse and Metre Perception.

2. Worshipful Company of Information Technologists (2016). Outstand-

ing Information Technology Student Award, Silver Prize.

3. City University Graduate Symposium (2016). Best Paper: An Adaptive

Oscillator Neural Network for Beat Perception in Music.

4. New York University Abu Dhabi (2014). Travel bursary: NYUAD

Rhythm Workshop.

1.6.2 Other Academic Activities

The author has made several academic contributions during the course of

the PhD, listed below:

1. Andrew J. Lambert (2014a). A Fractal Depth for Interactive Music Sys-

tems. Music Research Seminar. London, UK. (Talk).
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2. Andrew J. Lambert (2014c). MUME Methodologies: Presentation, Pro-

motion and Appraisal. 3rd International Workshop on Musical Metacre-

ation (MUME 2014). Raleigh, NC. (Panel Chair).

3. Andrew J. Lambert (2014d). Towards Metre, Rhythm and Melody Mod-

elling with Hybrid Oscillator Networks. City Informatics Research Sym-

posium. London, UK. (Talk).

4. Andrew J. Lambert (2014b). Beyond the Beat: Towards an Expressive

Depth in Generative Music. NYUAD Rhythm Workshop. Abu Dhabi,

UAE. (Talk).

5. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2014c).

Deep Rhythms: Towards Structured Meter Perception, Learning and Gener-

ation with Deep Recurrent Oscillator Networks. DMRN+8. London, UK.

(Poster).

6. David Coleman (2014). 2014 Christmas Lectures - Sparks will fly: How to

hack your home. London, UK. (TV appearance).

7. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2015a).

Generating Time: An Expressive Depth for Rhythmic Perception, Prediction

and Production with Recurrent Neural Networks. Study Day on Com-

puter Simulation of Musical Creativity. Huddersfield, UK. (Talk).

8. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2015c).

Rhythmic Perception, Prediction and Production with Recurrent Neural

Networks. UVA Music Cognition Group. Amsterdam, Netherlands.

(Talk).

9. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2015d).

Tracking Expressive Timing with Gradient Frequency Neural Networks.

City University Graduate Symposium. London, UK. (Poster).

10. Andrew J. Lambert (2015). Machine Perception and Generation of Metre

and Rhythm. Music Research Seminar. London, UK. (Talk).
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11. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2016d).

An Adaptive Oscillator Neural Network for Beat Perception in Music. City

University Graduate Symposium. London, UK. (Talk).

12. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2016b).

Adaptive Frequency Neural Networks for Dynamic Pulse and Metre Percep-

tion. Workshop on Auditory Neuroscience, Cognition and Modelling.

London, UK. (Poster).

13. Andrew J. Lambert (2016b). Creative Music Systems: Current Capaci-

ties and Future Prospects. 1st Conference on Computer Simulation of

Musical Creativity. Huddersfield, UK. (Talk).

14. Andrew J. Lambert (2016a). Creative Music Systems: Bridging the Divide

Between Academia and Industry? 1st Conference on Computer Simula-

tion of Musical Creativity. Huddersfield, UK. (Panelist).

15. Andrew J. Lambert, Tillman Weyde and Newton Armstrong (2016c).

Adaptivity in Oscillator-based Pulse and Metre Perception. CogMIR. New

York, NY. (Poster).

16. Andrew J. Elmsley (2016). Modelling Metrical Flux: Adaptive Oscillator

Networks for Expressive Rhythmic Perception and Prediction. Queen Mary

University of London Cognitive Science Group. London, UK. (Talk).

1.7 Conventions in Figures

Throughout this thesis, abstract symbols are used to represent architectural

components of neural networks. Table 1.1 details the various symbols used.

1.8 Thesis Outline

The thesis is structured in two parts. Part I provides some background in-

formation and explores existing systems and neural network architectures
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A nonlinear activation function

A weighted connection

A network layer

An oscillator

A frequency gradient

An LSTM block

TABLE 1.1: A list of symbols used in figures.

with new experiments. Chapter 2 provides a comprehensive literature re-

view. Chapter 3 studies the problem of metre perception and melody learn-

ing in musical signals, proposing a multi-layered GFNN-RNN approach.

Chapter 4 presents a machine learning study of the modelling and process-

ing of expressive audio rhythms. Chapter 5 presents the results of an ex-

periment with GFNNs and dynamic tempos.

Part II introduces and explores a new neural network model and eval-

uates this model over several new experiments. Chapter 6 introduces the

AFNN, a novel variation on the GFNN, and the experiment in Chapter 5 is

repeated and compared with the previous result. Chapter 7 further evalu-

ates AFNNs with more realistic, human generated audio data. Chapter 8

draws the thesis together, discussing the contributions of the AFNN and

the benefits of incorporating the model into an expressive timing rhythm

generator and interactive system. Finally, Chapter 9 concludes the thesis

and suggests future avenues of research.
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Chapter 2

Related Work

2.1 Introduction

This thesis draws together work from many disciplines, each with its own

long history of research. In this chapter the previous work is summarised

and the gaps in current knowledge are identified. Section 2.2 explores the

music theory and analysis literature on pulse and metre. Section 2.3 re-

views the dynamical systems and neuroscientific literature on entrainment

and oscillation, focussing on theories relating to perception of music. De-

velopments and open problems within beat tracking in Music Information

Retrieval (MIR) are described in Section 2.4, and in Section 2.5 the focus is

brought to expressive timing and the current modelling approaches in com-

puter science. Section 2.7 summarises computational music modelling and

system evaluation approaches, focussing on connectionist machine learn-

ing approaches. Finally, Section 2.8 points to the areas this thesis addresses.

2.2 Rhythm, Pulse and Metre

2.2.1 Generative Theory of Tonal Music

In 1983, Lerdahl and Jackendoff laid out their Generative Theory of Tonal Mu-

sic (GTTM), a detailed grammar of the inferred hierarchies listeners per-

ceive when they listen to and understand a piece of music (Lerdahl and
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Jackendoff, 1983a). The theory is termed generative in the sense of gener-

ative linguistics (Chomsky, 1957) whereby a finite set of formal grammars

generate an infinite set of grammatical statements. Their novel psycholog-

ical approach laid the foundations for much of the recent literature on the

analysis, cognition, and perception of music.

Central to GTTM is the notion of hierarchical structures in music which

are not present in the music itself, but perceived and constructed by the lis-

tener. The theory is in fact explicitly limited to perceived structures which

are hierarchical in nature. Here a hierarchical structure is defined as a struc-

ture formed of discrete components that can be divided into smaller parts

and grouped into larger parts in a tree-like manner.

Lerdahl and Jackendoff define four such hierarchies in tonal music (Ler-

dahl and Jackendoff, 1983b):

1. grouping structure: the segmentation of music into various phrases

2. metrical structure: the hierarchy of periodic beats the listener infers in

the music

3. time-span reduction: the importance of pitch events in relation to rhyth-

mic phrases

4. prolongational reduction: melodic stability in terms of perceived tension

and relaxation

These four elements of GTTM are interrelated and have complex inter-

actions, however this thesis is mainly concerned with grouping structure

and metrical structure, considering the other GTTM structures in relation

to these.

2.2.2 Rhythm

Arriving at a complete definition of the complex and multi-faceted notion

of ‘rhythm’ could be a PhD thesis in itself. The concept pervades through

all the above GTTM hierarchies.
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2.2. Rhythm, Pulse and Metre

Even though Lerdahl and Jackendoff stress that rhythmic induction

must not be over-simplified, it can be first incorporated into a grouping

structure, which can then be subsumed into the other hierarchies.

In GTTM, the most basic definition of rhythm is any sequence of events

in time. To create a valid rhythm at least two events with durations must

be made, but rhythms can be arbitrarily long and are limited only by the

cognitive abilities of the perceiver. These events may optionally have asso-

ciated pitches, in which case one would refer to the combined structure as

a melody.

Long-form rhythms may be perceptually grouped into motifs, themes,

phrases and so on, referred to as grouping structure in GTTM. Pulse and

metre are two examples of such higher-level rhythmic structures formed

on top of rhythm, and are discussed in the next sections.

2.2.3 Pulse

A natural and often subconscious behaviour when we listen to music is that

we tap our feet, nod our heads, or dance along to it. By doing so, we are

reducing the music we hear into a singular periodic signal. This signal can

sometimes be present in the music, but is often only implied by the heard

musical events and is constructed psychologically in the listener’s mind.

This process is known as beat induction; it is still an elusive psychological

phenomenon that is under active research (Madison, 2009; London, 2012),

and has been claimed to be a fundamental musical trait (Honing, 2012).

Although there are sometimes differences, humans often choose a common

period to tap to, Lerdahl and Jackendoff (1983) explain this selection as a

preference rule.

This preferred period goes by many names. In general it is referred to

as the beat, but this term is problematic as there is often confusion and am-

biguity surrounding it: a beat can also refer to a singular rhythmic event

or a metrically inferred event. The technical term used in GTTM is bor-

rowed from the Renaissance, tactus, but in this thesis a term is used that has

recently grown in popularity in music theory: pulse (Grondin, 2008).
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Metre

Pulse

FIGURE 2.1: A metrical analysis of a musical fragment,
showing a metrical hierarchy of ‘strong’ and ‘weak’ beats.

In this work, the pulse of music is defined as the series of psychologi-

cal rhythmic events, or beats, that are inferred by the listener. Pulse is also

related to tempo, which is defined as the frequency of the pulse, often ex-

pressed in beats per minute (bpm). During performance there may be tem-

poral fluctuations in the pulse (see Section 2.5), but the pulse is generally

periodic in nature.

2.2.4 Metre

In Section 2.2.3 pulse was defined as a series of psychological rhythmic

events inferred by a musical signal. There is usually more than one can-

didate for it, so within the GTTM model a selection process is required to

obtain the pulse. In fact, there are several candidates existing in a hierarchi-

cal relationship to the pulse, and possibly others in metrically ambiguous

rhythms. These candidates are referred to in GTTM as metrical levels and

together they form a hierarchical metrical structure (see Figure 2.1).

Each metrical level is associated with its own period, which divides a

higher level into a certain number of parts. GTTM is restricted to two or

three beat divisions, but in general terms, the period can be divided by

any integer. The levels can be referred to by their musical note equivalent,

for example a level containing eight beats per bar would be referred to as

the quaver level (or eighth note level). It is important to note here that in

GTTM beats on metrical levels do not have a duration as musical notes do,

but exist only as points in time. Still, it is useful to discuss each level using
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the names of their corresponding musical note durations.

The beats at any given level can be perceived as ‘strong’ and ‘weak’.

If a beat on a particular level is perceived as strong, then it also appears

one level higher, which creates the aforementioned hierarchy of beats. The

strongest pulse event in a given bar is known as the downbeat. Figure 2.1

illustrates four metrical levels, from crotchet (quarter note) to semibreve

(whole note). Theoretically, larger measures, phrases, periods, and even

higher order forms are possible in this hierarchy.

2.2.5 Inner Metric Analysis

Metrical structure analysis in GTTM provides a good basis for theoretical

grammars and notations of metre and beat saliency. However, it does not

adequately describe hierarchical metrical levels with respect to metric sta-

bility and change.

In notated music, the time signature suggests that metrical inferences

are constant throughout the piece, or at least throughout the bars in which

that time signature is in effect. However, the experience of many musicians

indicates that the degree to which any metre is being expressed in the music

can change throughout a piece. This is known as metricity (Volk, 2003). Met-

ric hierarchies can vary, shift, conflict, and complement as the piece moves

forward, which leads to changes in the perceived metrical structure. This

is what Krebs (1999) refers to as metrical dissonance, an example of which

can be seen in Cohn’s (2001) complex hemiolas, where 3:2 pulse ratios can

create complex metrical dynamics throughout a piece. This is not to claim

that GTTM does not acknowledge metrical dissonance, indeed metrical dis-

sonance links back to GTTM’s time-span reduction and prolongational re-

duction elements. Nevertheless GTTM does lack the formal means to de-

scribe these metrical shifts and to distinguish pieces based on their metrical

dissonance.

Inner Metric Analysis (IMA) (Nestke and Noll, 2001; Volk, 2008) forms a

structural description of a piece of music in which an importance value, or

‘metrical weight’, is placed on each note in the piece. This metrical weight
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is similar to GTTMs dot notation, where more dots denote stronger beats,

but it is sensitive to changes in the metrical perspective and so provides a

means to analyse shifting metrical hierarchies in a piece of music.

IMA takes note onset events as the primary indicator of metre, and ig-

nores other aspects often said to be important for metre perception, such as

harmony and velocity. The inner part of the name relates to this; it is the

metric structure inferred by the onsets alone, ignoring the other metrical

information available in the notated score. For example, elements such as

the time signature are denoted as outer structures in that they are placed

upon the music and may not arise from the music itself. This makes IMA

a perceptual model. Despite the basis on a musical score, it concerns only

rhythmic events as observed by a listener. With IMA, metrical dissonance

can be expressed as a relationship between inner and outer metrical struc-

tures. At the two extremes, when the inner and outer structures concur the

metre is coherent, and when they do not the metre is dissonant.

IMA works with the notion of a local metre, as defined by Mazzola and

Zahorka (1993). A local metre is a series of at least three onsets that are

equally spaced in time, creating at least two inter-onset-intervals (IOIs) of

equal length. These three onsets can occur anywhere within the piece and

do not have to be adjacent. The metrical weight is then calculated by col-

lecting all the local metres in a piece, and then iterating through each event,

counting how many local metres each event appears within. A local metre

with more events within it is considered to be more stable and as such will

contribute more weight than a shorter local metre.

Wl,p(o) =
∑

m∈M(l):o∈m
lpm (2.1)

Equation 2.1 shows the general metric weight,W of an onset, o, whereM(l)

is the set of all local metres (m) of length at least l in a piece, and lm is the

length of local metre m. p is a parameter which controls how the weight

varies with longer and shorter local metres; the higher the value of p, the
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greater the contribution of long local metres to the metrical weight. By in-

creasing p or l in Eq. 2.1, one can analyse the longer, and therefore more

perceptually stable, local metres. However, these metrical weights are still

only effective as long as the local metre is active, and therefore offer a lim-

ited, local perspective.

Nestke and Noll introduced another technique of IMA to provide a rela-

tion on onsets to a local metre even if the local metre is not occurring during

that beat. Such a weighting is called a spectral weight and leads from Krebs’

argument that once a local metre has been established, one can still relate

new material to that level (Krebs, 1999). A spectral weight therefore extends

any local metre into the future (and even the past), offering a more global

perspective on the metric shifts in the piece. Furthermore, spectral weights

consider not only onsets, but also rests within the metrical grid.

SWl,p(t) =
∑

m∈M(l):t∈ext(m)

lpm (2.2)

Equation 2.2 shows the spectral weight, SW , of an onset or silence, t, where

l, lm, p and M(l) are the same as in Eq. 2.1, and ext(m) is a local metre that

has been extended in time to fill the whole piece. Thus, spectral weights

can provide a more global perspective on the metrical weight of an onset.

The comparison between these local (metrical weight) and global (spectral

weight) perspectives offers a way to analyse how metrical dissonance is

constructed within a piece.

IMA has been empirically shown to be suitable for the description of the

metricity of compositions and how the structural aspects of a composition

are transferred to listeners (Volk, 2003).
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2.3 Oscillation, Entrainment, and Expectation

2.3.1 Oscillator Entrainment Models

Entrainment has been a particularly useful concept in the field of biology

where it has helped to explain natural biological rhythms such as circa-

dian rhythms and some animal organisational and communicational be-

haviours (Strogatz and Stewart, 1993; Ancona and Chong, 1996; Clayton,

Sager and Will, 2005). Swarms of fireflies, for example, are able to flash

their abdomens in synchrony. Knoester and McKinley (2011) conducted

an artificial evolution experiment to study this behaviour and found that a

phase shifting interaction had evolved that was similar to Huygens’ (1673)

first recorded observations of entrainment.

Kuramoto (1984) formalised entrainment in oscillators in a mathemati-

cal model centred around a generalised oscillator as a basic functional unit.

dϕi
dt

= ωi + ζi +
K

N

N∑
j=1

sin(ϕj − ϕi) (2.3)

Equation 2.3 shows this model, where dϕi
dt is the change in phase of the

ith oscillator, ωi is its natural frequency, ζi is a noise term, ϕi, ϕj are the

phase values of the ith and jth oscillator, and K is a coupling constant. The

model describes a population of oscillators that are globally coupled via a

sine interaction function. The output of the interaction function is greatest

when the oscillators are in an anti-phase relationship (when they differ by

π
2 ), and is weakest when the phases are identical, or differ by π. This way,

the population is drawn to a mutual phase-locked synchronised state.

Whilst the Kuramoto model is a somewhat elegant encapsulation of the

entrainment process, other models exist which combine periodic behaviour

and innate entrainment properties. One such example is the Van der Pol

oscillator (VDPO), which has its origins in electronics and has been used

to model biological rhythms (Van der Pol and Mark, 1928; Camacho, Rand
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and Howland, 2004).

d2x

dt2
− ε(1− x2)dx

dt
+ x = y (2.4)

Equation 2.4 shows the second order differential equation that defines a

forced VDPO, where x is the output of the oscillation. It is a relaxation

oscillator, which means that energy builds up slowly, and is then released

quickly. The single parameter, ε, is termed the nonlinearity or damping coef-

ficient and controls this energy flow and therefore the frequency. As ε ap-

proaches 0, the oscillation becomes more sinusoidal, as can be seen in Fig-

ure 2.2. When ε > 0 the model obeys a limit cycle, which means that en-

ergy will steadily grow or deplete in the model until it reaches a stable

amplitude. y is a forcing term. VDPOs can be unforced by setting y = 0, or

forced by providing a periodic driving term, y = f(t). When this occurs, the

VDPO entrains to the forcing frequency. Complex rhythmic dynamics can

be created by coupling a population of VDPOs with a forcing term (Cama-

cho, Rand and Howland, 2004; Lambert, 2012).
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FIGURE 2.2: Two unforced (y = 0) VDPOs with ε = 0.001
and ε = 5 respectively.
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2.3.2 Expectation and Attentional Dynamics

Jones (1976) was among the first to propose an entrainment theory for the

way we perceive, attend, and memorise temporal events. The psychologi-

cal theory addresses how humans are able to track, attend, and order tem-

poral events by embracing the notion of time in the definition of stimulus

structure. Jones posits that rhythmic patterns such as music and speech

potentially entrain a hierarchy of attentional oscillations, forming an atten-

tional rhythm. These attentional rhythms inform an expectation of when

events are likely to occur, so that we are able to focus our attention at the

time of the next expected event. In doing so, expectation influences how a

temporal pattern is perceived and memorised. Thus, entrainment assumes

an organisational role for temporal patterns and offers a prediction for fu-

ture events, by extending the entrained period into the future.

Large and Jones (1999) extended this initial theory with the theory of

attentional dynamics. The aim of attentional dynamics was to explain how

listeners respond to systematic change in rhythmic events while retaining

a general sense of their structure. Temporal and structural modulations oc-

cur as the pattern reveals itself, but we are still able to perceive, attend, and

memorise these rhythms. Similar to Jones (1976), the model uses entrained

attending oscillators which target attentional energy at expected points in

time. The oscillators interact in various ways to enable attentional tracking

of events with complex rhythms. Large and Jones validated the dynamic at-

tending model by conducting several listening tests and comparing the re-

sults with simulated predictions of the model. They found that the model’s

predictions matched that of the human listeners, providing an indication

that the model may be capturing some aspects of human behaviour.

24



2.3. Oscillation, Entrainment, and Expectation

2.3.3 Entrainment and Music

Ethnomusicologists are increasingly becoming aware of the importance of

entrainment processes in understanding music making and music percep-

tion as a culturally interactive process (Clayton, Sager and Will, 2005). En-

sembles are able to mutually synchronise with one another using complex

visual and audio cues (Vera, Chew and Healey, 2013). The theory of at-

tentional dynamics (see Section 2.3.2) was motivated in part by questions

about music perception, and has an entrainment model at its core.

Large and Kolen (1994), Large (1995), and McAuley (1995) argue that the

perception of metrical structure is a dynamic entrainment process between

an external musical stimulus and internal processing mechanisms. They

put forward differing oscillator models which entrain their frequency and

phase to a single periodic component of a rhythmic stimulus, and thus infer

the pulse of that stimulus.

So far the focus has been placed on entrainment as a process in which

two periodic signals are brought into frequency and phase synchrony, but

many relationships are possible in entrained signals. A 1:1 ratio of frequen-

cies, exact synchronisation, is only one case of entrainment; other ratios

such as 1:2, 3:2, 2:3 etcetera can still be said to be entrained as long as the

ratio between the two signals remains reasonably consistent.

Large and Kolen’s oscillator model hints at the ability to connect net-

works of oscillators, to entrain themselves at different ratios to the pulse.

The network’s response pattern can be interpreted as a hierarchical metri-

cal structure.

Nonlinear Resonance

The phenomenon of nonlinear resonance (Large and Kolen, 1994) has been

applied to metre perception and categorisation tasks. Large, Almonte and

Velasco (2010) have introduced the Gradient Frequency Neural Network

(GFNN), which is a network of oscillators whose natural frequencies are

distributed across a spectrum. When a GFNN is stimulated by a signal,
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the oscillators resonate nonlinearly, producing larger amplitude responses

at certain frequencies along the spectrum. This nonlinear resonance can

account for pattern completion, the perception of the missing fundamental,

tonal relationships and the perception of metre.

When the frequencies in a GFNN are distributed within a rhythmic

range, resonances occur at integer ratios to the pulse. These resonances can

be interpreted as a hierarchical metrical structure. Rhythmic studies with

GFNNs include rhythm categorisation (Bååth, Lagerstedt and Gärdenfors,

2013), beat induction in syncopated rhythms (Velasco and Large, 2011) and

polyrhythmic analysis (Angelis et al., 2013).

Equation 2.5 shows the differential equation that defines a Hopf normal

form oscillator with its higher order terms fully expanded. This form is re-

ferred to as the canonical model, and was derived from a model of neural

oscillation in excitatory and inhibitory neural populations (Large, Almonte

and Velasco, 2010). z is a complex valued output, z̄ is its complex conjugate,

and ω is the driving frequency in radians per second. α is a linear damping

parameter and also a bifurcation parameter: when α < 0 the model be-

haves as a damped oscillator, and when α > 0 the model oscillates sponta-

neously. β1 and β2 are amplitude compressing parameters, which increase

stability in the model. δ1 and δ2 are frequency detuning parameters, and

ε controls the amount on nonlinearity in the system. Coupling to a stimu-

lus is also nonlinear and consists of a passive part, P (ε, x(t)), and an active

part, A(ε, z), controlled by a coupling parameter k, producing nonlinear

resonances.

dz

dt
= z(α+ iω + (β1 + iδ1)|z|2 +

(β2 + iδ2)ε|z|4

1− ε|z|2
) + kP (ε, x(t))A(ε, z) (2.5)

P (ε, x(t)) =
x

1−
√
εx

(2.6)

A(ε, z) =
1

1−
√
εz̄

(2.7)

By setting the oscillator parameters to certain values, a wide variety of

behaviours not encountered in linear models can be observed (see Large,
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FIGURE 2.3: A cannonical oscillator without stimulus, and
with the following parameters, ω = 2π, α = −0.1, β1 =

0, β2 = −0.1, δ1 = 0, δ2 = 0, ε = 0.5, c = 0, x(t) = 0

2010). In general, the model maintains an oscillation according to its param-

eters, and entrains to and resonates with an external stimulus. Figure 2.3

shows the waveform of a simplified canonical model (with the parameters

β1, δ1 and δ2 set to 0); it is a sinusoid-like waveform whose amplitude is

gradually dampened over time. This gradual dampening of the amplitude

allows the oscillator to maintain a temporal memory of previous stimula-

tion.

GFNNs typically consist of a number of canonical oscillators, and the

frequencies are usually logarithmically distributed to match the nature of

octaves in pitch and rhythm. Performing a Fourier transform on the GFNN

output reveals that there is energy at many frequencies in the spectrum,

including the pulse (Figure 2.4). Often this energy is located at integer ratios

to the pulse, implying a perception of the metrical structure.

Furthermore, oscillators within a network can be connected to one an-

other with a connection matrix as is shown in Eq. 2.8,

dz

dt
= f(z, x(t)) +

∑
i 6=j

cij
zj

1−
√
εzj

.
1

1−
√
εz̄i

(2.8)

where f(z, x(t)) is the right-hand side of Eq. 2.5, cji is a complex number

representing phase and magnitude of a connection between the ith and jth

oscillator, zj is the complex state of the jth oscillator, and z̄i is the complex
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FIGURE 2.4: An example magnitude spectrum of a summed
GFNN output.

conjugate of the ith oscillator.

Velasco and Large (2011) connected two GFNN networks in a pulse de-

tection experiment for syncopated rhythms. The two networks modelled

the sensory and motor cortices respectively. In the first network, the os-

cillators were set to a bifurcation point between damped and spontaneous

oscillation (α = 0, β1 = −1, β2 = −0.25, δ1 = δ2 = 0 and ε = 1). The sec-

ond network was tuned to exhibit double limit cycle bifurcation behaviour

(α = 0.3, β1 = 1, β2 = −1, δ1 = δ2 = 0 and ε = 1), allowing for greater

memory and threshold properties. The first network was stimulated by a

rhythmic stimulus, and the second was driven by the first. The two net-

works were also internally connected in integer ratio relationships such as

1:3 and 1:2. The results showed that the predictions of the model match

human performance, implying that the brain may be adding frequency in-

formation to a signal to infer pulse and metre.

The internal connections were hand-coded for Velasco and Large’s ex-

periment, however Hebbian learning can be incorporated on these connec-

tions. Hebbian learning is a correlation-based unsupervised learning ob-

served in neural networks (Kempter, Gerstner and Hemmen, 1999). In a

similar way to Hoppensteadt and Izhikevich’s (1996) model, resonance re-

lationships between oscillators can form strong bonds.
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showing connections formed at high-order integer ratios.

The GFNN’s Hebbian rule is shown in Eq. 2.9 and 2.10,

dcij
dt

= cij(λ+ µ1|cij |2 +
εcµ2|cij |4

1− εc|cij |2
) + f(zi, zj) (2.9)

f(zi, zj) = κ
zi

1−√εczi
.

zj
1−√εcz̄j

.
1

1−√εczj
(2.10)

where λ, µ1, µ2, εc and κ are all canonical Hebbian learning parameters.

The Hebbian rule is similar in form to the canonical oscillator model itself

(see Eq. 2.5), but without a driving frequency of its own. λ acts as a bifurca-

tion parameter, while µ1, µ2, and εc affect the amount of nonlinearity in the

matrix. zi and zj are the complex states of the ith and jth oscillators, and

z̄j is the complex conjugate of the jth oscillator. κ is a coupling coefficient

controlling the strength of the interactions between these oscillators and the

learning rule.

Figure 2.5 shows a connection matrix after Hebbian learning has taken

place. The Hebbian parameters are set to the following: λ = .001, µ1 =

−1, µ2 = −50, εc = 16, κ = 1. In this example the oscillators have learned

connections to one another in the absence of any stimulus due to the oscil-

lators operating in their limit cycle behaviour, meaning that they oscillate

spontaneously at a stable amplitude. The connections can then learn ratios
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of 1:1, 2:1 and 1:2, 3:1 and 1:3, 3:2 and 2:3, 4:3 and 3:4, and even higher order

integer ratios.

Adding a connection matrix to a GFNN and activating Hebbian learn-

ing can strengthen and stabilise the entrainment and nonlinear resonance

phenomena, reducing noise in the network from non-resonant frequencies.

It also has the effect of reducing the amount of time required for resonances

to appear in the network, which can sometimes take several seconds for

frequencies in the rhythmic range (<=16Hz). Changes to the nonlinear res-

onance patterns in the GFNN over time and the learned connection matrix

enables a similar analytical method to IMA (see Section 2.2.5), but is open

for use with both symbolic and audio data.

2.4 Beat Tracking

In Music Information Retrieval (MIR), automatically processing an audio

signal to determine pulse event onset times is known as beat tracking. It

falls into a branch of MIR known as automatic rhythm description (Gouyon

and Dixon, 2005). Beat tracking is useful for many MIR applications, such

as tempo induction, which describes the rate of the pulse (Gouyon et al.,

2006); rhythm categorisation, which attempts to identify and group rhyth-

mic patterns (Bååth, Lagerstedt and Gärdenfors, 2013; Dixon, Gouyon and

Widmer, 2004); downbeat tracking and structural segmentation, which aim

to meaningfully split the audio into its temporal fragments such as bars and

phrases (Levy, Sandler and Casey, 2006; Krebs, Böck and Widmer, 2013);

and automatic transcription, which aims to convert audio data into a sym-

bolic format (Klapuri, 2004).

Davies and Plumbley (2007) list four desirable properties for a beat

tracking system:

1. both audio and symbolic data can be processed

2. no a priori knowledge of the input, such as genre information, is re-

quired
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3. the system is efficient and can operate in realtime where necessary

4. changes in tempo can be followed and pulse fluctuation due to ex-

pression can be tracked

Beat tracking is still an active research topic, with many approaches

taken. Yet, writing in 2007, Davies and Plumbley state that a beat track-

ing system meeting all of these requirements is non-existent, despite the

long history of research dating back to 1990 (Allen and Dannenberg, 1990).

Dixon (2001) and Goto (2001) have both created agent-based beat track-

ers. Dixon’s system was designed with time-varying tempo and rhythmic

expression in mind. Several agents predict beat locations and the agent

which predicts the beat most accurately is then used as the output of the

system. Goto’s system performs best when the audio input remains at a

fixed tempo and is in a 4/4 metre, but is able to accurately track beats in

realtime, at three metrical levels.

Scheirer’s (1998) system takes a more perceptual approach by using lin-

ear comb filters, which operate on principles similar to Large and Kolen’s

(1994) nonlinear resonance model. The comb filter’s state is able to repre-

sent the rhythmic content directly, and can track tempo changes by only

considering one metrical level. Klapuri, Eronen and Astola’s (2006) more

recent system builds from Scheirer’s design by also using comb filters, but

extends the model to three metrical levels. Both Scheirer’s and Klapuri,

Eronen and Astola’s (2006) systems perform well but struggle with com-

plex rhythms such as polyrhythmic or syncopated stimuli.

Taking a machine learning approach, Böck and Schedl (2011) use a par-

ticular type of Recurrent Neural Network (RNN) called a Long Short-Term

Memory Network (LSTM, see Section 2.7.2). The LSTM predicts a frame-

by-frame beat activation function and does not rely on a separate onset de-

tection step, but instead takes spectral features as input. The LSTM model

used here is known as a bidirectional LSTM (BLSTM), and deals with input

both forward and backward in time simultaneously. This increases the ac-

curacy of the model as it has data from the future, but it also means that the

31



Chapter 2. Related Work

system is not ready for real-time input. Böck and Schedl propose two beat

tracking systems: one which is better at steady tempos, and one which is

able to track tempo changes. The only difference between the two systems

is the post-processing step where the peaks in the BLSTM output are used

for predicting beats.

The MIR Evaluation eXchange (MIREX)1 project runs a beat tracking

task each year, which evaluates several submitted systems against various

datasets. This provides an easy way to determine what the current state-of-

the-art of beat tracking systems is. In MIREX 2016 the best performing beat

tracker was Böck and Schedl’s BLSTM system, with probabalistic extraction

of beat times (Korzeniowski, Böck and Widmer, 2014).

2.4.1 Beat Tracking with Nonlinear Oscillators

In Section 2.3.3, several entraining oscillator models were introduced which

have been used in cognitive science, psychology, and neuroscience to model

human beat induction and metre perception. Attempts have also been

made to apply these models practically in a beat tracker.

Large (1995) used an early version of the nonlinear resonance model

to track beats in performed piano music. The pianists played a selection

of monophonic children’s songs and a number of monophonic improvisa-

tions, and a single nonlinear oscillator was tasked with inferring a pulse at

any metrical level. The oscillator performed fairly well, with most of the

errors occurring due to the oscillator synchronising to the pulse in an anti-

phase relationship. However, in cases when the performer was making

heavy use of rubato (see Section 2.5), the beat tracker failed. Large suggests

that this problem may be overcome by using networks of oscillators instead

of the singule one used here. If the oscillator had been attempting to track

a different metrical level then no rubato would have been encountered.

Large and Kolen’s (1994) nonlinear resonance model uses an oscillator

model of their own design. Eck and Schmidhuber (2002), by comparison,

used an oscillator model from neurobiology named a FitzHugh-Nagumo

1http://www.music-ir.org/mirex/

32



2.4. Beat Tracking

oscillator (FHNO) (FitzHugh, 1961; Nagumo, Arimoto and Yoshizawa,

1962) and applied it to the task of beat induction. FHNOs are relaxation

oscillators with natural entrainment properties, much like the VDPO dis-

cussed in Section 2.3.3. After somewhat successfully tracking the down-

beats in a series of rhythmic tests devised by Povel and Essens (1985), Eck

(2001) then connected several oscillators in a network. Eck found that there

were several advantages to the networked approach, including increased

stability and the ability to track multiple periodic elements in parallel.

Eck, Gasser and Port (2000) used a network of FHNOs in a robotic sys-

tem that taps beats with a robotic arm. This embodied approach utilises

a feedback loop with the robot’s actuators, which provided an additional

periodic input to the oscillator network, and was able to further stabilise

the system. This experiment provides further evidence for the potential of

entrained dynamic models such as oscillators for beat induction tasks, and

is similar in principle to Velasco and Large’s (2011) two-network model of

the sensory and motor cortices.

2.4.2 Where Beat Trackers Fail

As mentioned in Chapter 1, Section 1.2, beat tracking in MIR is generally

considered an open problem. Many systems have been proposed over the

years, and the current state-of-the-art beat trackers do a relativity good job

of finding the pulse in music with a strong beat and a steady tempo, yet

we are still far from matching the human level of beat induction. There has

been a recent surge in new beat-tracking systems (see for example, Davies

and Plumbley, 2007; Dixon, 2007; Böck and Schedl, 2011), but little im-

provement over Klapuri, Eronen and Astola’s (2006) system. This has lead

Holzapfel et al. (2012) to hypothesise that the development of suitable beat

tracking datasets with suitable features had become stagnant and unfit for

purpose.

Holzapfel et al. claim that datasets do not contain enough excerpts
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where beat trackers fail. Instead these challenging cases are treated as out-

liers and often ignored in discussions of results. This is not to say that stud-

ies of musical properties which make beat trackers fail have not been under-

taken. Dixon (2001) has conducted one such study and proposed two mea-

sures to gauge the beat tracking difficulty of a given signal: the rhythmic

complexity, and the amount of expressive variations in tempo and timing

in performance.

Rhythmic complexity can be estimated via the Rhythmic Complexity In-

dex (RCI) metric, which measures rhythmic syncopation as a proportion of

pulse events without onset events, and onset events which do not fall on

pulse events.

RCI =
pu + ou
p+ ou

(2.11)

Equation 2.11 shows the formula to calculable RCI where p is the total num-

ber of pulse events, pu is the number of pulse events without matching on-

set events, and ou is the number of onset events without matching pulse

events. RCI is a number between 0 and 1, with higher values indicating

higher rhythmic complexity.

For a measure of timing variability, Dixon proposes the use of the stan-

dard deviation of the inter-beat intervals as a simple indicator. This can

be expressed relative to the average beat interval to give a number that is

comparable across excerpts in different tempos.

Grosche et al. have also performed an in-depth analysis of beat track-

ing failures on the Chopin Mazurka dataset2 (MAZ) (Grosche, Müller and

Sapp, 2010). MAZ is a collection of audio recordings comprising on average

50 performances of each of Chopin’s Mazurkas. Grosche and Müller tested

three beat tracking algorithms on a MAZ subset and looked at consistent

failures in the algorithms’ output with the assumption that these consistent

failures would indicate some musical properties that the algorithms were

struggling with. They found that properties such as expressive timing and

ornamental flourishes were contributing to the beat trackers’ failures.

2http://www.mazurka.org.uk/

34



2.5. Expressive Timing

To contribute a solution to the problem, Holzapfel et al. (2012) selected

excerpts for a new beat tracking dataset by a selective sampling approach.

Rather than comparing one beat tracker’s output to some ground truth an-

notation, several beat trackers’ outputs were compared against each other.

If there was a large amount of mutual disagreement between predicted beat

locations, the track was assumed to be difficult for current algorithms, and

was selected for beat annotation and inclusion in the new dataset. This

resulted in a new annotated dataset, now publicly available as the SMC

dataset3.

The SMC excerpts are also tagged with a selection of signal property

descriptors. This allows for an overview of what contributes to an excerpt’s

difficulty. There are several timbral descriptors such as a lack of transient

sounds, quiet accompaniment and wide dynamic range, but most of the

descriptors refer to temporal aspects of the music, such as slow or varying

tempo, ornamentation, and syncopation. Over half of the dataset is tagged

with the most prominent tag: expressive timing.

2.5 Expressive Timing

From the beat tracking literature it is clear that being able to track expressive

timing variations in performed music is one area in which there is much

room for improvement (see Section 2.4.2). This is especially true if one is at-

tempting to achieve a more human-like performance from the beat tracking

algorithms. This has been attempted in many cases, most notably in Dixon

(2001) and Dixon and Goebl’s (2002) work, which lead to the Beatroot sys-

tem (Dixon, 2007). However, Beatroot does not perform well on today’s

standard datasets, scoring poorly on the SMC dataset in recent MIREX re-

sults. Solving this issue in MIR could also lead to better segmentation tech-

niques, such as phrase extraction where tempo and loudness curves are

key indicators (Chuan and Chew, 2007; Cheng and Chew, 2008; Stowell

and Chew, 2012).
3http://smc.inescporto.pt/research/data-2/
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According to Gabrielsson and Lindström (2010), the examination of the

expressive qualities of music has been ongoing since the Ancient Greeks,

with empirical research starting around one century ago. The research field

looks at what emotional meanings can be expressed in music, and what

musical structures can contribute to the perception of such emotions in the

listener. These structures can be made up of multi-faceted musical parame-

ters such as dynamics, tempo, articulation, and timbre. Often these aspects

have complex interactions, and a change in one can influence a perception

of another (Chew, 2016). In this thesis, the focus is placed on the temporal

aspects of expression.

Performers have been shown to express the metrical structure of a piece

of music by tending to slow down at the end of metrical groupings. The

amount a performer slows down correlates to the importance of the met-

rical level boundary (Clarke, 2001). It is well known that humans can suc-

cessfully identify metre and follow the tempo based off such an expressive

rhythm (Epstein, 1995). Rankin, Large and Fink (2009) conducted a study

on human beat induction and found that we are able to adapt to relatively

large fluctuations in tempo resulting from performances of piano music

in various genres. The participants could successfully find a pulse at the

crotchet or quaver metrical level. Skilled performers are able to accurately

reproduce a variation from one performance to the next (Todd, 1989a), and

listeners are also able to perceive meaning in the deviations from the im-

plied metrical structure (Epstein, 1995; Clarke, 1999).

Chew and Callender (2013) have proposed an analytical approach that

simultaneously considers tempo and log(tempo) changes in terms of score

time and performance time. log(tempo) analysis supports the ability to pro-

portionally and relatively describe changes in much the same way as pitch.

For example, Large’s nonlinear resonance (see Section 2.3.3) can be consid-

ered to be a log(tempo) representation, since the distribution of frequencies

are usually logarithmic.

By linking tempo markings on the score and its rendering in perfor-

mance, one is able to consider tempo change in a similar manner to IMA’s
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2.5. Expressive Timing

metrical dissonance (see Section 2.2.5). However, Chew and Callender’s

concept of score time and performance time is a step beyond Nestke and

Noll’s inner and outer meters, in that score time and performance time can

help inform one another.

However, computer systems for expressive music performance

(CSEMPs) have received little attention from both academia and the in-

dustry at large. According to Kirke and Miranda (2009), the introduction

of built-in sequencers into synthesizers in the early 1980s contributed to a

new, perfectly periodic timing, which sounded robotic to the ear. Rather

than look for ways to make this timing model more human-like, artists

embraced the robotic style to produce new genres of music such as synth

pop and electronic dance music, which soon dominated the popular music

scene.

One of the most common expressive devices when performing music is

the use of rubato to subtly vary the tempo over a phrase or an entire piece.

Todd (1989) produced a model of rubato implemented in Lisp which is able

to predict durations of events for use in synthesis. The original model was

based on Lerdahl and Jackendoff’s ideas on time span reduction in GTTM

(see Section 2.2.1). However, this was deemed psychologically implausible

as it places too high a demand on a performer’s short-term memory. In a

similar way to IMA’s spectral weight (see Section 2.2.5), the model consid-

ers all events regardless of time differences.

Todd’s improved model incorporates a hierarchic model for timing

units from a piece-wise global scale to beat-wise local scale. It works

by looking at a score and forming an internal representation via GTTM’s

grouping structures. This internal representation is then used in a map-

ping function, outputting a duration structure as a list of numbers. Even

though the model makes predictions about timing and rubato, it forms an

analytical theory of performance rather than a prescriptive theory.

Today, research into CSEMPs is a small but important field within Com-

puter Music. Widmer and Goebl (2004) have published an overview of ex-

isting computational models, and Kirke and Miranda (2009) have produced
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FIGURE 2.6: A simplified excerpt from Beethoven’s Für
Elise, showing (A) the score, (B) the rhythm, (C) the metrical

structure, and (D) performed tempo.

a survey of available CSEMPs and an outline of a framework that most (but

not all) CSEMPs adhere to. In this framework, the main kernel of the sys-

tem is its ability to generate expressive performances, and is referred to

as performance knowledge. Performance context and music / analysis processes

feed into the kernel, along with an adaptation process, which can either be an

automatic or manual way of controlling the performance knowledge. The

adaptation process may also rely on performance examples, a corpus of music

from which the adaptation process can learn. The performance knowledge

kernel outputs audio or symbolic data via an instrument model, which is

then fed back to the adaptation process.

2.6 Understanding Metrical Flux

In Chapter 1, Section 1.1 the notion of metrical flux was defined as a con-

stant change in a listener’s perception of musical time and expectation of

rhythmical events. In the above sections some more background literature

was discussed, unpacking the various aspects of metrical flux: rhythm,

pulse, metre and expressive timing. In this section, these aspects are put

together through an example of metrical flux in action.

Figure 2.6 shows a simplified excerpt of the opening bars from Ludwig

van Beethoven’s famous composition, Für Elise. The first row, (A), shows

the main melody line in music notation, where we learn that the piece is in

a 3/8 time signature and is in an A minor key. In row (B) the melody line
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2.7. Music Metacreation

has been reduced to a rhythm-only representation; that is, an event and

duration. One can see that the rhythm consists of mainly semi-quaver (16th

note) durations, and is punctuated by dotted quavers (8th notes) occurring

on the downbeats of bars 3, 4, 5, 7, and 8. A final dotted crotched completes

the phrase. Furthermore, there is an anacrusis of one quaver in bar 1.

Row (C) displays the metrical structure of the piece. The pulse has not

been highlighted as there are two equally valid choices: the quaver level or

the dotted crotchet level. Musicians will generally choose their preferred

metrical level to tap along to as the pulse. The anacrusis has offset the

downbeats, and so the piece begins on a weakly perceived beat. This syn-

copation continues throughout the phrase, with the aforementioned dotted

crotchets providing a sense of pace and higher-level structure.

When playing this piece on a piano, for instance, it is extremely com-

mon for the performer to add expressive flourishes in dynamics and tempo,

to accentuate sub-phrases in the metrical structure. Row (D) indicates one

such performance with an abstract tempo curve. Here the tempo remains

fairly steady in the first two bars, before slowing at the sub-phase bound-

aries in bars 3, 4, and 5. In bar 5 there is a more pronounced ritardando,

which extends into the next sub-phrase, before resuming the same tempo

curve pattern as in earlier bars.

This combination of rhythm, pulse, metre, and expressive timing affects

a listener’s perception of musical time. Any future predictions of rhythmic

events by the listener are also affected. The general aim of this thesis is to

model this process of metrical flux.

2.7 Music Metacreation

Creating formal systems for music composition has a long history dating

back around one thousand years when Guido d’Arezzo invented a way

to automatically convert text into melodic phrases. There are numerous

works throughout history that employ formalism in their creation, includ-

ing Bach’s The Art of Fugue, Schönberg’s twelve-tone compositions, and
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Cope’s EMI compositions (Nierhaus, 2009; Cope, 1992). Boden and Ed-

monds (2009) place such systems within the broad field of Generative Art,

stating that these generative techniques could include any rule-based sys-

tem.

Over the years the notion has taken on many names such as auto-

mated composition, algorithmic composition and generative music (Collins

and Brown, 2009), but recently the term music metacreation (MUME)

has emerged to describe contemporary computational approaches to the

field (Eigenfeldt et al., 2013). MUME as a term stems from Whitelaw’s no-

tion of metacreation; that is, the use of artificial intelligence, artificial life,

and machine learning techniques to develop software that autonomously

creates (Whitelaw, 2004). Such software is said to be a metacreation if it be-

haves in a way that would be considered creative if performed by humans.

MUME is not concerned with if a computer can be creative, as that ques-

tion has already been answered with a resounding yes with systems such

as Colton’s The Painting Fool (Colton, 2012) and the aforementioned EMI

which received critical acclaim. Instead MUME examines how these sys-

tems are built and evaluated, and how artists and scientists can collaborate

within the interdisciplinary field (Eigenfeldt et al., 2014).

Eigenfeldt et al. (2014) claim that there are two general approaches in

MUME research: the cognitive approach which uses models based on hu-

man cognitive theories; and the black box approach, which does not seek to

mimic human processes, but to produce some kind of new machine creativ-

ity. The latter approach is the route most taken within MUME practitioners;

however, there have been relatively few attempts taking a perceptual and

cognitive approach to music generation (Maxwell et al., 2012).

2.7.1 Evaluating MUME Systems

When considering metacreation software, validating the work both in terms

of the computational system and the output it creates is still a challenge for

the community at large. A system may generate the same output no matter

how many times it executes, or it may produce wildly varying outputs on

40



2.7. Music Metacreation

each execution. However, both these systems may be perceived as equally

‘creative’. The way these systems and their outputs can be compared is an

ongoing problem facing the MUME community.

According to Jordanous (2011), this is a widespread issue for all com-

putational creativity research. Evaluation of creative systems is not being

carried out in a systematic or standardised manner, with many researchers

even failing to detail how the presented creative system was evaluated. She

argues for a standardised approach, which still allows for flexibly dealing

with the inherently different types of outputs for such systems: a Standard-

ised Procedure for Evaluating Creative Systems (SPECS) (Jordanous, 2012).

The SPECS methodology consists of three steps:

1. Identify a definition of creativity that the system is aiming to satisfy

2. Clearly define what standards are used to define said creativity

3. Test the system against said standards and report the results

Step 1 is encouraged to incorporate both a general and a domain-specific

definition of creativity, with the latter showing how the former is mani-

fested. SPECS provides several aspects of creativity to examine a creative

system within step 2, which helps to identify the aspects of the system that

can be considered to be ‘creative’, and how the system’s creativity could

be improved. Finally, step 3 is left open to each researcher’s specific prob-

lem area, with encouraged emphasis on aspects of creativity that are more

important to the investigation. By following the SPECS methodology, re-

searchers are able to systematically evaluate both the output of their sys-

tems and the system itself.

Eigenfeldt et al. (2013) have also contributed towards a solution to the

evaluation problem by proposing a MUME taxonomy to facilitate discus-

sions around measuring metacreative systems and works. The taxonomy

is based around the agency or autonomy of the system in question, since in

MUME the computational system is an active creative agent. By focussing
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on the system’s autonomy, one is able to distinguish between the com-

poser’s (system designer’s) influence on the system and the performance

elements, which may change from execution to execution. This is not to

say that the taxonomy only works for interactive or online systems; offline

systems such as score composition systems also have a degree of interac-

tivity and influence of the creator in their process. For instance a system

may generate its own structures completely autonomously, or rely on user

inputs to guide the generative process.

Rather than restrict the taxonomy to only online or offline systems, as

some researchers have done in their definitions (see Collins, 2008; Pearce,

Meredith and Wiggins, 2002), the MUME taxonomy places the metacreation

of the system on a gradient through the following seven levels of creativity:

1. Independence: there is some process on a gesture that is beyond the

control of the composer

2. Compositionality: the system determines relationships between two or

more gestures

3. Generativity: the system creates new musical gestures

4. Proactivity: the system decides when to initiate a new gesture

5. Adaptability: the system’s behaviour changes over time via interaction

with itself or other agents

6. Versatility: the system determines its own content or gestural style

7. Volition: the system decides for itself what, when, and how to com-

pose/perform

The levels are intended to facilitate a comparison between MUME sys-

tems, by assigning the highest possible level to each system based on their

process. A system on level 4, for example, may exhibit properties of the

lower levels, but it cannot exhibit behaviours from level 5 and above. Fur-

thermore, a system on level 5 does not imply either objective nor subjective
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superiority to a level 3 system, but solely provides terms to examine each

system. According to Eigenfeldt et al., no existing system has yet been clas-

sified at level 7, meaning that as composers become close to creating such

systems, more levels may be needed to adequately describe the differences.

Both SPECS and the MUME taxonomy provide methodologies for eval-

uating MUME systems that go some way towards solving the evaluation

problem. By utilising both systems, research into creativity can rigorously

and systematically be examined and compared to other such systems.

2.7.2 Neural Network Music Models

Todd (1989) and Mozer (1994) were among the first to utilise a connectionist

machine learning approach to MUME. One of the major advantages of this

approach is that it replaces rule-based systems, which can be brittle, lack

novelty, and tend not to deal with unexpected inputs very well. Instead, the

structures of existing musical examples are learned by the network and gen-

eralisations are made from these learned structures to compose new pieces.

Both Todd’s and Mozer’s systems are recurrent networks that are

trained to predict melody. They take as input the current musical context

as a pitch class and note onset marker and predict the same parameters at

the next time step. In this way the problem of melody modelling is sim-

plified by removing timbre and velocity elements, and discretising the time

dimension into windowed samples.

Whilst Todd and Mozer were mainly concerned with predicting pitch

sequences over time, Gasser, Eck and Port (1999) have taken a connection-

ist approach to perceive and produce rhythms that conform to particular

metres. Their neural network model SONOR is a self-organising network

of adaptive oscillators that uses Hebbian learning to prefer patterns similar

to those it has been exposed to in a learning phase. A single input / output

(IO) node operates in two modes, perception and production. In the per-

ception mode, the IO node is excited by patterns of strong and weak beats,

conforming to a specific metre. Hebbian learning is used to create connec-

tions between the oscillators in the network. Once these connections have
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been learned, the network can be switched to production mode, reproduc-

ing patterns that match the metre of the stimuli.

Recurrent neural networks (RNNs) such as those used in the above sys-

tems can be good at learning temporal patterns.

Recently work on modelling symbolic melodies as sequences of infor-

mation tuples (multiple viewpoints; see Conklin and Witten, 1995; Pearce,

2005), was further extended by Cherla et al. (2013), and Cherla, Weyde and

Garcez (2014). It was demonstrated in the latter that a set of six connection-

ist architectures could perform on par with, or better than state-of-the-art

n-gram models previously evaluated in an identical setting on a musical

pitch prediction task. Among the connectionist architectures, those relying

on recurrent connections to model temporal information showed greater

prediction accuracy. This work eventually led to the proposal of a new

model known as the Recurrent Temporal Discriminative Restricted Boltz-

mann Machine (Cherla et al., 2015), which was found to outperform the

rest of the five connectionist models, and also the n-grams considered in

their study.

However, as noted by Todd (1989) and Mozer (1994), RNNs often lack

global coherence due to the lack of long-term memory. This results in se-

quences with good local structures, but long-term dependencies are often

lost. One way of tackling this problem is to introduce a series of time lags

into the network input, so that past values of the input are presented to the

network along with present values.

y(t) = f(y(t− 1), ..., y(t− l)) (2.12)

Equation 2.12 shows a simple time-series predictor where y represents a

variable to be modelled, t is time and l is the number of lag steps in

time. Kalos (2006) used a model of this type known as a Nonlinear Auto-

Regression model with eXtra inputs (NARX) to generate music data in sym-

bolic MIDI format. One advantage of this method is that it performs well on

polyphonic music, but the time lag method still does not capture long-term
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FIGURE 2.7: A single LSTM memory block showing (A) in-
put, (B) output, (C) CEC, (D) input gate, (E) output gate, (F)

forget gate and (G) peephole connections.

structure very successfully.

Long Short-Term Memory (LSTM) networks were specifically designed

to overcome the problem of modelling long-term structures. Introduced

by Hochreiter and Schmidhuber (1997), they noted that whilst RNNs could

theoretically learn infinitely long patterns, in practice this was difficult due

to the vanishing gradient problem. This is where the gradient of the total

output error with respect to previous inputs quickly vanishes as the time

lags between relevant inputs and errors increase. It can take as little as five

time steps for this problem to occur in an RNN (Gers and Schmidhuber,

2001). A self-connected node known as the Constant Error Carousel (CEC)

ensures constant error flow back through time, meaning that LSTMs can

bridge time lags in excess of 1000 time steps (Hochreiter and Schmidhuber,

1997).

A simplified diagram of an LSTM memory block can be seen in Fig-

ure 2.7. The input and output gates control how information flows into

and out of the CEC, and the forget gate controls when the CEC is reset.

The input, output, and forget gates are connected via peepholes. For a full

specification of the LSTM model the reader is referred to Hochreiter and

Schmidhuber (1997) and Gers, Schmidhuber and Cummins (2000).

LSTMs have already had some success in music applications. Eck (2002)

trained LSTMs which were able to improvise blues chord progressions,
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Franklin (2006) found that LSTMs can learn long songs and generate new

improvisations when given new harmonic inputs, and more recently Coca,

Correa and Zhao (2013) used LSTMs to generate melodies that fit within

user specified parameters. LSTMs continue to be used within deep learn-

ing (Bengio, 2009) systems, such as Sturm et al.’s (2016) automatic tran-

scription and composition systems.

2.8 Conclusions

This chapter summarised the literature relevant to this thesis. The con-

cepts of pulse and metre were unpacked from music-theoretical, music-

analytical, and neuroscientific perspectives. It was shown that there is a

current open problem in MIR when it comes to automatically tracking ex-

pressively timed rhythms. Beat trackers and current CSEMPs may benefit

from modelling metre and metrical change as nonlinear resonance. The

entrainment properties of the oscillators may be able to directly model

tempo fluctuations in these cases. Implementing this into an LSTM melody

model may increase the rhythmic accuracy of the system, and allow for

continuous-time, non-metrically quantised output.
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Chapter 3

Metre and Melody Modelling

3.1 Introduction

This chapter studies the problem of metre perception and melody learning

in musical signals. A multi-layered neural network model is presented,

consisting of a nonlinear oscillator network and a recurrent neural network

(RNN).

The network consists of two different neural network models, con-

nected as hidden layers within one system. The first is a Gradient Fre-

quency Neural Network (GFNN; Large, Almonte and Velasco, 2010), a type

of nonlinear oscillator network. It acts as an entrained resonant filter to the

musical signal and serves as a metre perception layer. It ‘perceives’ me-

tre by resonating nonlinearly to the inherent periodicities within the signal,

creating a hierarchy of strong and weak periods. The second layer is a Long

Short-Term Memory network (LSTM; Hochreiter and Schmidhuber, 1997),

a RNN, which is able to learn the kind of long-term temporal structures

required in music signal prediction (Eck, 2002).

The aim is to support melody and rhythm modelling in an LSTM by

using the GFNN for metre perception. The investigation questions whether

a music prediction task produces better results when utilising this model

of metrical structure. The network is evaluated in different configurations

and with different note representations on a melody prediction task. It is
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shown that this network outperforms previous approaches of single layer

recurrent neural networks in a melody and rhythm prediction task.

3.1.1 Contributions

This is the first time an oscillator network (GFNN) has been combined with

an RNN (LSTM). In this thesis, the combined model is referred to as a

GFNN-LSTM.

This chapter explores the following hypothesis: the GFNN-LSTM can

make better musical predictions since it is enabled to make use of the rela-

tively long temporal resonance in the GFNN output, and therefore model

more coherent long-term structures with the LSTM. A system such as this

could be used in a multitude of analytic and generative scenarios, including

live performance applications.

Part of this chapter has been published in (Lambert, Weyde and Arm-

strong, 2014a) and (Lambert, Weyde and Armstrong, 2014b).

3.2 Models

3.2.1 GFNN

The GFNN consisted of 128 canonical oscillators defined by a simplified

form of the equation show in Eq. 2.5. The following defines the simplifica-

tion, derived by setting β1, δ1, and δ2 to zero, and expanding P (ε, x(t)) and

A(ε, z):
dz

dt
= z(α+ iω +

βε|z|4

1− ε|z|2
) +

x

1−
√
εx
.

1

1−
√
εz̄

(3.1)

The parameters and variables in Eq. 3.1 are as described in Chapter 2 Sec-

tion 2.3.3, except β, which is the equivalent of β2 in Eq. 2.5.

For all experiments in this chapter, parameter values were fixed as fol-

lows: α = −0.1, β = −0.1, ε = 0.5. This gives a sinusoid-like oscillation

whose amplitude is gradually dampened over time (see Figure 2.3).

The oscillator frequencies in the network were logarithmically dis-

tributed from 0.25Hz to 16Hz. The GFNN was stimulated by rhythmic
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FIGURE 3.1: Example note onset time-series data.

time-series data in the form of a decay envelope on note onsets, synthe-

sised from the symbolic data. All sequences in the corpus were synthe-

sised at a tempo of 120bpm (2Hz), meaning that the metrical periodicities

in the GFNN ranged from a demisemiquaver (32nd note) to a breve (double

whole note).

3.2.2 LSTM

All experiments used the standard LSTM model with peephole connec-

tions enabled and the number of hidden LSTM blocks fixed at 10, with

full recurrent connections. The number of blocks was chosen empiri-

cally as it provided reasonable prediction accuracy with plenty of poten-

tial for improvement, whilst minimising the computational complexity of

the LSTM. Training was done by backpropagation through time (Werbos,

1990) using RProp- (Igel and Hüsken, 2000). During training, k-fold cross-

validation (Kohavi, 1995) was used. In k-fold cross validation, the dataset

is divided into k equal parts, or folds. A single fold is retained as the test

data for testing the model, and the remaining k - 1 folds are used as train-

ing data. The cross-validation process is then repeated k times, with each

of the k folds used exactly once as the test data. For our experiments k was

fixed at 4. A maximum of 2500 training epochs was set per fold, but never

reached as the training was halted early if no validation error improvement
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was made in 20 epochs. An evaluation on the training data was also done,

and found a mean percentage increase across all metrics of no more than

4.4%, indicating a good generalisation without over-fitting.

3.3 Experiments

3.3.1 Experimental Setup

The following experiments operate on monophonic symbolic music data. A

corpus of 100 German folk songs from the Essen Folksong Collection (Schaf-

frath, 1995) was used.

All experiments were conducted in two steps, implementing the GFNN

in MATLAB1 using the fourth order Runge-Kutta integration method to

solve the differential equations. The fourth order Runge-Kutta method pro-

vides a more accurate integration than the simpler Euler method by calcu-

lating a weighted average of four smaller integration steps. The LSTM in

Python using the PyBrain2 library.

3.3.2 Experiment 1: Pitch Prediction

The first experiment was designed to investigate the effect of adding met-

rical data from the GFNN to a pitch prediction task. Three LSTMs were

designed, all of which were tasked with predicting pitch in the form of

time-series data.

The absolute pitch values were abstracted to their relative scale degrees

to keep the model simple in these initial experiments. Accidentals were

encoded by adding or subtracting 0.5 from the scale degree and rests were

encoded as 0 values. First, scale degree numbers, their onsets and offsets

were inserted into the data stream and then the data was re-sampled us-

ing the zero-order hold method, such that one sample corresponded to a

demisemiquaver. An example data stream can be seen in Figure 3.2.

1http://www.mathworks.co.uk/
2http://pybrain.org/
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FIGURE 3.2: Example scale degree time-series data.

Since melody modelling with LSTMs alone has been well studied

(see Eck and Schmidhuber, 2002; Franklin, 2006; Sturm et al., 2016), the

first network (LSTM1a) was designed as a baseline to measure the impact

of adding the GFNN as an input. Thus LSTM1a took no input from the

GFNN, consisting solely of single input containing the time-series scale de-

gree data from the corpus. Two further networks were constructed, one

with 128 inputs (one for each oscillator in the GFNN; termed LSTM1b), and

one with 8 inputs consisting of a filtered GFNN output (LSTM1c). LSTM1a,

LSTM1b, and LSTM1c are illustrated in Figures 3.3 and 3.4.

As shown in Figure 2.4, a GFNN signal has relatively few resonant

peaks of energy, therefore many oscillators would be irrelevant to the

LSTM. Thus, it was hypothesised that the filtered output would make learn-

ing easier. The input to LSTM1c was filtered to retain the strongest resonant

oscillations in the GFNN. The signal was averaged over the corpus and the

oscillators with the greatest amplitude response over the final 25% of the

piece were found. A spread of frequencies was ensured by ignoring fre-

quencies if another near frequency was already included. The selected os-

cillators were then used for all sequences.
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FIGURE 3.3: Network diagram for LSTM1a showing (A)
scale degree sequence, (B) LSTM, and (C) scale degree pre-

diction.
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FIGURE 3.4: Network diagram for LSTM1b and LSTM1c
showing (A) note onset sequence, (B) scale degree sequence,

(C) GFNN, (D) LSTM, and (E) scale degree prediction.

Results

Networks were evaluated by activating each of them with the sequences in

the corpus (ground truth). The networks were activated with the ground

truth throughout the sequence, and for the last 75% of inputs the network

output was compared to the target data.

The results have been evaluated using several metrics. Firstly the mean

squared error (MSE) is reported, which is what the networks were opti-

mised for during training. This provides a view of how close the output

was to the target, with a lower number meaning higher accuracy. The next

three results refer to the position of pitch changes using standard precision,

recall, and F-measure. The following equations define how these metrics

are calculated:
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Network MSE Precision Recall F-measure Accuracy

LSTM1a 0.75836 0.12154 0.34366 0.17425 0.67107

LSTM1b 0.74115 0.18644 0.78908 0.29838 0.47756

LSTM1c 0.68866 0.22852 0.70196 0.34137 0.69459

TABLE 3.1: Results of the pitch only experiment.

precision =
correctly predicted onsets

all predicted onsets
(3.2)

recall =
correctly predicted onsets

ground truth onsets
(3.3)

F = 2 · precision · recall
precision+ recall

(3.4)

Finally a pitch only metric is used, named “Accuracy". This has

been calculated as a proportion of samples where the output scale degree

matches the target value, where again higher is better. Output values were

rounded to the nearest half before this comparison was made.

Pitch and rhythm are highly related, but have been singled out here to

more fully understand the GFNNs effect on the network. The MSE and

accuracy metrics represent timing and value, whereas the onset metrics of

precision, recall, and F-measure represent timing only.

Table 3.1 shows the results tested against the validation data. The val-

ues shown are the mean values calculated over the 4 folds in the cross-

validation.

The results show that the filtered input from the GFNN (LSTM1c) per-

formed the best at predicting pitch and rhythm. However, there is a striking

imbalance between the precision and recall scores for all networks, suggest-

ing a chaotic output from the LSTMs, with too many events being triggered.

This led to results that were not impressive overall, with pitch prediction

improved, but rhythmic prediction performing poorly.
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B C

DA

FIGURE 3.5: Network diagram for LSTM2a and LSTM2b
showing (A) note onset sequence, (B) GFNN, (C) LSTM, and

(D) note onset prediction.

Network MSE PCC Precision Recall F-measure

LSTM2a 0.01277 0.79400 0.82362 0.82769 0.82265

LSTM2b 0.01380 0.77395 0.79411 0.81157 0.79564

TABLE 3.2: Results of the onset only experiment.

3.3.3 Experiment 2: Onset Prediction

The next experiment was designed to investigate if the GFNN did indeed

contain useful rhythmic information for the LSTM to learn. A simpler task

was designed where the LSTM had to predict the onset pattern used to

stimulate the GFNN from the GFNN data only.

Two networks were created for this task: LSTM2a and LSTM2b.

LSTM2a had a full GFNN input, and LSTM2b had the same filtered input

from the previous experiment. Both networks had one output and were

trained to reproduce the GFNN stimulus seen in Figure 3.1. A network

diagram can be seen in Figure 3.5.

Results

Table 3.2 shows the results when the networks are tested against the vali-

dation data.

All networks were evaluated as in experiment 1, except there is no
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A

B D

C

FIGURE 3.6: Network diagram for LSTM3a showing (A)
scale degree sequence, (B) LSTM, (C) note onset prediction,

and (D) scale degree prediction.

longer an accuracy metric and instead the Pearson product-moment corre-

lation coefficient (PCC) is included. This gives a relative rather than abso-

lute measure of how close the target and output signals match, with higher

values representing closer matches. LSTM2a performed the best at this task

in all metrics, however it is clear from the results that both LSTM2a and

LSTM2b perform the tasks well.

The fact that LSTM2a outperformed LSTM2b shows that the LSTM net-

work was able to train itself to ignore the noise produced by the GFNN. It

also shows that the GFNN data contains useful information in the weaker

resonances that the filtering process removed. The filtering process may

have been too aggressive in this respect. However, having noted this,

LSTM2b did not completely fail at the task, therefore a more permissive

filtering technique may still produce better results than even LSTM2a.

3.3.4 Experiment 3: Onset and Pitch Prediction

Experiment 2 showed that the GFNN output can be used to reconstruct

onsets. Experiment 3 was designed to investigate if tasking the network to

directly predict the onsets could aid the prediction of pitch data. Therefore

the tasks from experiments 1 and 2 were combined, resulting in LSTMs with

two outputs: one for pitch and one for onsets.

Three LSTMs were constructed to conduct this experiment, following

the same pattern as experiment 1: no GFNN input, full GFNN input, and
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C D
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FIGURE 3.7: Network diagram for LSTM3b and LSTM3c
showing (A) note onset sequence, (B) scale degree sequence,
(C) GFNN, (D) LSTM, (E) note onset prediction, and (F)

scale degree prediction.

Network MSE PCC Precision Recall F-measure Accuracy

LSTM3a 7.26251 0.23253 0.35655 0.06368 0.10233 0.64459

LSTM3b 7.34243 0.58499 0.71622 0.60717 0.65110 0.58371

LSTM3c 7.32129 0.62905 0.70480 0.76750 0.72589 0.65755

TABLE 3.3: Results of the pitch and onset experiment.

filtered input. Network diagrams can be seen in Figures 3.6 and 3.7.

Results

All networks were evaluated in the same way as experiments 1 and 2. The

MSE metric was calculated for both outputs, PCC, precision, recall, and F-

measure were only calculated for the onset pattern output, and accuracy

was calculated only for the pitch output. Table 3.3 shows the results against

the validation data.

The results show that LSTM3c was the best overall network. Whilst

LSTM3a did score a better MSE, it scored very poorly on the onset predic-

tion task. This shows that MSE may not be the best optimisation target

during training. This may be due to the fact that the MSE is dominated

by the scale degree error, as it has a greater numerical range than the onset

error.
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In experiment 1, all LSTMs suffered from poor precision scores. Judg-

ing by the onset scores for LSTM3b and LSTM3c, providing a GFNN input

and directly modelling onsets through a predictive output led to a great

improvement here.

In experiment 2, the fully connected LSTM2a outperformed the filtered

LSTM2b on onset prediction, whereas in this experiment the reverse is true.

This could be due to the increased complexity of the problem. The introduc-

tion of pitch modelling may have prevented the LSTM learning from the

GFNN data as effectively, so that the filtering process was beneficial. Data

from experiment 1 suggests that an improved filtering method may further

improve results. Increasing the number of hidden LSTM blocks may also

improve results for both LSTM3b and LSTM3c, as the network would be

able to model more nonlinearities.

The accuracy scores for all networks are somewhat worse in this ex-

periment when compared to experiment 1. However, the improved onset

prediction indicates that LSTM3b and LSTM3c are more stable. More work

is needed to investigate the behaviour of the pitch prediction to sequence

accuracy and stability.

LSTM3c outperformed LSTM3a on the pitch prediction task, whilst also

predicting stable onset patterns. This provides evidence that melody mod-

els can be improved by modelling metre.

3.4 Conclusions

In this chapter, a multi-layered network consisting of a metre perception

layer (GFNN) and a temporal prediction layer (LSTM) was presented. The

GFNN output, with its strong and weak nonlinear resonances at frequen-

cies related to the pulse, can be interpreted as a perception of metre. The

results show that providing this data from the GFNN helped to improve

melody prediction with an LSTM. This supports the hypothesis that the

LSTM is able to make use of the relatively long temporal resonance in the

GFNN output, and therefore model more coherent long-term structures.
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In all cases GFNNs improved the performance of pitch and onset pre-

diction. Given the improvements to the onset prediction, modelling pitch

and onsets can be seen to be the best overall approach. Additionally, the

best results were achieved by filtering the GFNN output. However, experi-

ment 2 showed that there is important information in the full GFNN signal

which is lost through the filtering method adopted here. In addition, this

filtering method may not be a good solution when dealing with varying

tempos or expressive timing, as it introduces an assumption of a metrically

homogeneous corpus. Thus, two tasks for future work are to develop fil-

tering that improves performance and supports tempo variation as well as

exploring representations and learning methods that combine stable onset

prediction with sequence accuracy.

Both Eck and Schmidhuber’s (Eck, 2002) and Coca et al.’s (Coca, Correa

and Zhao, 2013) LSTMs either operate on note-by-note data, or quantised

time-series data. By inputting metrical data, our system can be extended to

work with real time data, as opposed to the metrically quantised data used

in this chapter. These initial experiments give some indication that better

melody models can be created by modelling metrical structures.

By using an oscillator network to track the metrical structure of perfor-

mance data, a move towards real-time processing of audio signals can be

made. Furthermore, the loop in the GFNN-LSTM can be closed, creating an

expressive, metrically aware, and generative real-time model.
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Chapter 4

Expressive Rhythm Modelling

4.1 Introduction

As previously discussed in Chapter 2, human musical performance rarely

contains perfectly periodic metre. Musicians employ many expressive de-

vices including deviate from the ideal pulse in subtly complex ways (Räsä-

nen et al., 2015; Clarke, 2001). However, automatically tracking varying

tempo and expressive timing is still an open problem within MIR (Grosche,

Müller and Sapp, 2010; Holzapfel et al., 2012).

In this chapter, this issue is addressed through a machine learning study

of the modelling and processing of expressive rhythms. The GFNN-LSTM

model developed in Chapter 3 is adapted for use with an audio signal in

a time-series prediction task. GFNNs have been applied successfully to a

range of music perception problems including those with syncopated and

polyrhythmic stimuli (see Angelis et al., 2013; Velasco and Large, 2011).

The GFNN’s entrainment properties allow each oscillator to phase shift,

resulting in changes to their observed frequencies. This makes them good

candidates for solving the expressive timing problem.

4.1.1 Contributions

This chapter presents the first study of a GFNN with audio data and the

first expressive timing study with a GFNN.
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A B

C D

E

υ

FIGURE 4.1: An overview of the GFNN-LSTM system
showing (A) audio input, (B) mid-level representation, (C)
GFNN, (D) LSTM, and (E) rhythm prediction output. The
variable ν can be a mean field function or full connectivity.

The following hypothesis is explored: a GFNN-LSTM is enabled to

make use of the entrainment properties in the GFNN output, and therefore

model rhythmic expectation with the LSTM, and thus the system makes

better rhythmic predictions. A system such as this could be used in a mul-

titude of analytic and generative scenarios, including live performance ap-

plications.

Part of this chapter has been published in (Lambert, Weyde and Arm-

strong, 2015b) and (Elmsley, Weyde and Armstrong, 2017).

4.2 Models

4.2.1 Overview

The results from the Chapter 3 gave some indication that better melody

models can be created by modelling metrical structures with a GFNN.

The system presented here is a significant step beyond this. For the first

time audio data is incorporated, which opens the system up for a much

wider set of live and off-line applications, but comes with its own set of

new problems to solve. Unlike the metrically quantised data used in the

experiments in Chapter 3, this data contains varying tempos, and is sam-

pled at an arbitrary sample rate. Furthermore, this system experiments

with enabling Hebbian learning within the GFNN in the hope this will en-

able stronger metric hierarchies and faster entrainment responses to emerge

from the nonlinear resonance.
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4.2. Models

The aim of the experiment detailed below was to train a GFNN-LSTM

to predict expressive rhythmic events. The system takes audio data as input

and outputs an event activation function. It operates in a number of stages

which are detailed below, and a schematic is provided in Figure 4.1.

A subset of the Chopin Mazurka dataset1 (MAZ) was used. MAZ is

a collection of audio recordings comprising on average 50 performances

of each of Chopin’s Mazurkas. The pieces are all expressively performed

by various performers and vary in tempo and dynamics throughout each

performance. However, the pieces are all within the same genre and are all

performed on the piano, making drawing conclusions about the rhythmic

aspects more valid. A subset of 50 excerpts, each 40 seconds long, was

made by randomly choosing annotated excerpts of full pieces and slicing

40 seconds worth of data.

4.2.2 Mid-level representation

When processing audio data for rhythmic events, it is common to first trans-

form the audio signal into a more rhythmically meaningful representation

from which these events can be inferred. This representation could be ex-

tracted note onsets in binary form, or a continuous function that exhibits

peaks at likely onset locations (Scheirer, 1998). These functions are called

onset detection functions and their outputs are known as mid-level representa-

tions.

Since expressively rich audio is used here, an onset detection function

which is sensitive both to sharp and soft attack events is needed. From

Bello et al.’s (2005) tutorial on onset detection in music signals, the complex

spectral difference (CSD) onset detection function was selected. This detec-

tion function emphasises note onsets by analysing the extent to which the

spectral properties of the signal at the onset of musical events are chang-

ing. The function operates in the complex domain of a frequency spectrum

where note onsets are predicted to occur as a result of significant changes in

the magnitude and/or phase spectra. By considering both magnitude and

1http://www.mazurka.org.uk/
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FIGURE 4.2: An example complex spectral difference out-
put.

phase spectra, CSD can capture soft changes in pitch and hard rhythmic

events.

Figure 4.2 displays an example output of CSD. Here the output range

has been scaled to a 0 to 0.25 scale for input into the GFNN. This con-

tinuous function output can be converted into binary onset data by using

suitable threshold levels for peak picking. A sample rate of 86.025Hz was

used, which has been found to yield accurate detection results (Davies and

Plumbley, 2007).

4.2.3 GFNN layer

The GFNN was implemented in MATLAB using the GrFNN Toolbox (Large

et al., 2014). It consisted of 192 oscillators, logarithmically distributed with

natural frequencies in a rhythmic range of 0.5Hz to 8Hz. The GFNN was

stimulated by rhythmic time-series data in the form of the mid-level repre-

sentation the audio data.

Two parameter sets were selected for the oscillators themselves, ob-

tained from the examples in the GrFNN Toolbox. These different param-

eters affect the way the oscillators behave. The first parameter set puts the

oscillator at the bifurcation point between damped and spontaneous oscil-

lation. This is hereby termed ‘critical mode’, as the oscillator resonates with
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input, but the amplitude slowly decays over time in the absence of input:

α = 0, β1 = β2 = −1, δ1 = δ2 = 0, ε = 1. By setting δ1 = 1, the second pa-

rameter set is defined: ‘detune mode’. δ1 affects the imaginary plane only,

which is the oscillator’s inhibitor. Since the driving frequency parameter

(ω) is also in the imaginary plane, δ1 allows the oscillator to change its nat-

ural frequency more freely, especially in response to strong stimuli. As a

result, this could allow for improved tracking of tempo changes.

Hebbian Learning

Three different approaches to performing the Hebbian learning in the

GFNN layer have also been selected. The baseline system simply has no

connectivity between oscillators and therefore no learning activated at all.

This is included so that the effect (if any) that learning in the GFNN layer

has on the overall predictions of the system can be measured.

The first Hebbian approach is to activate online learning with the fol-

lowing parameters: λ = 0, µ1 = −1, µ2 = −50, εc = 4 and κ = 1. Under

these parameters, the network should learn connections between related

frequencies as they resonate to the stimulus. The second approach is to

once again activate the online learning, but starting from an initial state

in the connection matrix. The reasoning for including this approach is ex-

plained below.

Figure 4.3a shows an example connection matrix that is learned from

one particular excerpt. Taken together, the behaviour of the GFNN over

time and the learned connection matrix enables a similar analytical method

to Inner Metrical Analysis (IMA) (Nestke and Noll, 2001; see Chapter 2 Sec-

tion 2.2.5), but is a continuous-time model, whereas IMA uses discrete, met-

rically quantised time steps.

Figure 4.3a shows that high order hierarchical relationships have been

learned by the oscillators. However, these relationships are only valid for

the particular excerpt with which they have been learned: they are localised

to specific fixed frequencies rather than being a generalisation. This has

both positive and negative aspects. On the positive side, the connection
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FIGURE 4.3: GFNN connection matrix and oscillator ampli-
tudes with online learning.

matrix can be used as a way of analysing the frequency responses of the

network. However, applying this connection matrix in a prediction task

would not be that useful, as any rhythm outside this particular tempo with

different local metres would not exhibit predictable behaviour.

By activating the learning rule when the oscillators are set to operate in

limit cycle mode (a spontaneous oscillation in the absence of input), the in-

ternal connections can be learned in the absence of any stimulus. The result-

ing connection matrix is shown in Figure 4.4a. This provides a much more

general state for the connection matrix to be in and potentially overcomes

the limitations of the fixed frequency connections learned in Figure 4.3a.

However, in the network response (Figure 4.4b) it can be seen that fixing

the connections at this state results in a much noisier output of the GFNN.

Resonances do build up very quickly, but the resulting oscillator output

does not resemble the structured hierarchy found in Figure 4.3b. Essentially

there are too many connections in the GFNN, leading to a cascade effect

where a strong resonant response to the stimulus is transferred down the

frequency gradient in a wave. This amounts to a GFNN output which is

too noisy to be used for any subsequent machine learning tasks.

This can be counteracted by keeping online learning activated and also

setting the initial connectivity state with that learned in limit cycle mode.

The resulting connection matrix can be seen in Figure 4.5a. The matrix ex-

hibits strong local connections at frequencies specific to the excerpt, but
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FIGURE 4.4: GFNN connection matrix learned in limit cycle
mode and oscillator amplitudes with fixed connections.
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FIGURE 4.5: GFNN connection matrix and oscillator am-
plitudes with online learning and an initial state from Fig-

ure 4.4a.

more general high order connections are still present in the matrix. The

amplitude response of the network (Figure 4.5b) shows a clear hierarchy of

frequencies whilst also displaying a fast resonance response and less noise.

This is the third approach to Hebbian learning taken in this chapter, which

is termed InitOnline.

In some initial experimentation it was found that with Hebbian learn-

ing activated, the differential equations that drive the connection matrix can

become unstable and result in an infinite magnitude. To ensure greater sta-

bility in the system, the connections in the connection matrix were limited

to have a magnitude less than 1√
εc

(0.5 in these experiments). All stimuli

was also rescaled to be in the range 0 <= x(t) <= 0.25.
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4.2.4 LSTM layer

The LSTM was implemented in Python using the PyBrain library (Schaul

et al., 2010). For each variation of the GFNN, two LSTM topologies were

trained. The first had 192 linear inputs, one for each oscillator in the GFNN,

which took the real part of each oscillator’s output. This is termed the Full

LSTM. The real part of the canonical oscillation is a representation of exci-

tatory neural population; by discarding the imaginary part, a meaningful

representation of the oscillation is still retained, the simplicity of the input

to the LSTM is increased (Large, Herrera and Velasco, 2015). The second

topology took only one linear input, which consisted of the mean field of

the real-valued GFNN. The mean field reduces the dimensionality of the in-

put whilst retaining frequency information within the signal. This is termed

the Mean LSTM.

All networks used the standard LSTM model with peephole connec-

tions enabled. The number of hidden LSTM blocks in the hidden layer

was fixed at 10, with full recurrent connections. The number of blocks was

chosen based on previous results which found it to provide reasonable pre-

diction accuracy, whilst minimising the computational complexity of the

LSTM (see 3.2.2).

All networks had one single linear output, which serves as a rhythmic

event predictor. The target data used was the output of the onset detection

algorithm, where the samples were shifted so that the network was predict-

ing what should happen next. The input and target data was normalised

before training.

As in Chapter 3, training was done by backpropagation through

time (Werbos, 1990) using RProp- (Igel and Hüsken, 2000). k-fold cross-

validation was used (Kohavi, 1995), where k was fixed at 5. A maximum of

350 training epochs was set per fold. Training stopped when the total error

had not improved for 20 epochs, or when this limit was reached, whichever

came sooner.

66



4.3. Results

4.3 Results

4.3.1 Evaluation

This experiment was designed to discover whether the GFNN-LSTM is able

to make good predictions in terms of the rhythm. Therefore the system

was evaluated on its ability to predict expressively timed rhythmic events,

whilst varying the parameters of the GFNN and connectivity. An explicit

evaluation of the system’s production of expressive timing is not made

here, but an implicit evaluation of the tracking and representation of ex-

pressive timing is made, as it is reasonable to assume that a meaningful

internal representation of metrical structure is needed for accurate predic-

tions.

The results have been evaluated using several metrics. The first three

results refer to the binary prediction of rhythmic events of pitch changes

using the standard information retrieval metrics of precision, recall, and

F-measure, where higher values are better. Events are predicted using a

gradient threshold of the output data. The threshold looks for peaks in the

signal by tracking gradient changes from positive to negative. When this

gradient change occurs, an onset has taken place and is recorded as such.

These events were subject to a tolerance window of ±58.1ms. This

means that an onset can occur within this time window and still be deemed

a true positive. At the sample rate used in this experiment, this equates

to 5 samples either side of an event. It was also insured that neither the

target nor the output can have onsets faster than a rate of 16Hz, which is

largely considered to be the limit of where rhythm starts to be perceived

as pitch (Large, 2010). These are limitations to the evaluation method, but

since the prediction of rhythmic structures is of primary interest, not the

production of expressive micro-timing, they are acceptable concessions.

The mean squared error (MSE) and the Pearson product-moment cor-

relation coefficient (PCC) of the output signals are also provided, which

provide overall similarity measures.
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For all metrics the first 5 seconds of output by the network are ignored,

making the evaluation only on the final 35 seconds of predictions.

4.3.2 Results

Table 4.1 and Table 4.2 display the results of the experiment, Figure 4.6

shows example outputs from various trained networks over time. The top

figures show the continuous output set against the training data, whereas

the bottom figures show extracted events after the gradient-based threshold

detailed in the previous section has been applied.
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(A) Critical, NoLearn, Full.
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(B) Detune, NoLearn, Mean.

23 24 25 26 27 28
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
u

tp
u

t

Output

Target

23 24 25 26 27 28
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

T
h

re
sh

o
ld

e
d

 O
u

tp
u

t

(C) Critical, Online, Full.

5 6 7 8 9 10
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

O
u

tp
u

t

Output

Target

5 6 7 8 9 10
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

T
h

re
sh

o
ld

e
d

 O
u

tp
u

t

(D) Detune, Online, Mean.
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(E) Critical, InitOnline, Mean.
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(F) Detune, InitOnline, Mean.

FIGURE 4.6: Example outputs from various trained net-
works over time.

These numerical metrics and visual figures provide some indication of

how well the system is capturing the rhythmic structures. However, this in-

formation may be better understood by listening to the predicted rhythms.

To this end, the reader is invited to visit this chapter’s accompanying web-

site2, where a collection of audio examples has been assembled for each

network’s target and output data.

2http://andyroid.co.uk/research/gfnn_lstm_rhythm_prediction
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4.3.3 Discussion

The best overall GFNN-LSTM for expressive rhythm prediction incorpo-

rates detune oscillators, online learning with initial generic connections in

the GFNN layer, and mean field connections.

From the results it can be seen that the mean field networks always out-

performed the GFNN-LSTM with a full connection. This could be due to

the mean field being able to capture the most resonant frequencies, whilst

filtering out the noise of some less resonant frequencies. The resulting sig-

nal to the LSTM would therefore be more relevant for predicting rhythmic

events. However, this may also be due to the limited number of LSTM

blocks in each network forming a bottleneck in the fully connected net-

works. Increasing number of hidden LSTM blocks may mitigate this limi-

tation.

One downside of the mean field networks is that drastically reducing

the dimensionality in this way could cause either over or under-fitting. It

can be seen in the results that whilst performance improved in all cases us-

ing the mean field, the standard deviation also increased. This means there

was a greater range of performances between the folds and could possibly

indicate some networks being trained to local optima. During training it

was observed that the mean field networks took many more epochs for er-

rors to converge. This could possibly be addressed by using sub-band mean

fields, or some other method to reduce the dimensionality between layers.

In all cases, the detune oscillators outperformed the critical oscillators.

In most cases the standard deviation was also decreased by using detune

oscillators. This can be attributed to the greater amount of change in the

imaginary part of the oscillator (inhibitory neural population). Tempo

changes can be tracked as an entrainment process between a local popu-

lation of oscillators in the network. Where there is a local area of strong

resonance the oscillators will take on frequencies very near to one another.

As the stimulus frequency changes, this local area will be able to follow it,

moving the local resonance area along the frequency gradient.
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4.3. Results

When the results of this experiment were initially calculated, higher F-

measures were observed than are reported here. Upon closer inspection a

large discrepancy between the precision and recall scores was found, indi-

cating a large number of false positives. It is important to choose a sensible

threshold to control the number of events being output by the system. An

overwhelming number of emitted events will result in a high recall and low

precision. The recall value may be so high as to dominate the F-measure,

falsely inflating it. Thus threshold values were chosen that optimise the

balance between precision and recall values, resulting in a fairer, if a little

lower, F-measures. This gives an indication that evaluating on F-measure

alone does not always give the best overall score.

It is interesting to note that applying online learning to the network

did improve the overall MSE of the signal, but the F-measure actually per-

formed worse in all cases. Perhaps an adaptive threshold may be the solu-

tion to this problem, as the GFNN signal changes in response to previous

inputs and the connections begin to form.

In Chapter 3, the best GFNN-LSTM achieved a rhythm prediction mean

F-measure of 82.2%. Comparing this with the 71.4% mean achieved here

may at first seem a little underwhelming. However, these new results rep-

resent a significant change in the signal input, and reflect the added diffi-

culty of the task. In Chapter 3 symbolic data was used at a fixed tempo and

without expressive variation, whereas this study is undertaken on audio

data performed in an expressive way. The overall best single fold (Detune

oscillators, InitOnline connections, and Mean input) was achieving an F-

measure of 77.2%, which is extremely promising.

This approach to rhythm prediction is a novel one, which makes a com-

parative statement difficult to make. However, similarities can be drawn

between this system and an MIR beat tracker; both are processing audio

systems to extract rhythmic predictions. The best MIREX beat tracker in

2016 scored an F-measure of 73.9% (see Korzeniowski, Böck and Widmer,

2014) on the same dataset used above. This system has a similar design to

the GFNN-LSTM: spectrogram change information is input into an LSTM
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Chapter 4. Expressive Rhythm Modelling

which, is trained to predict beat events. These predictions are processed

with a bank of resonating comb filters to help smooth the output. Whilst

a direct comparison cannot be made, as expressive rhythm events are pre-

dicted not pulse events, a comparison with this system is helpful for two

reasons. Firstly it shows a similar method is producing state-of-the-art re-

sults in a field where comparisons are easier to make, and secondly it hints

that the system is performing well on this dataset.

4.4 Conclusions

This chapter detailed a multi-layered recurrent neural network model for

expressively timed rhythmic perception and prediction. The model consists

of a perception layer, provided by a GFNN, and a prediction layer provided

by an LSTM. The GFNN-LSTM was evaluated on a dataset selected for its

expressive timing qualities and it was found to perform at a comparable

standard to a previous experiment undertaken on symbolic data.

The system’s performance is comparable to state-of-the-art beat track-

ing systems. For the purposes of rhythm generation, the F-measure results

reported here are already in a good range. Greater values may lead to too

predictable and repetitive rhythms, lacking in the novelty expected in hu-

man expressive music. On the other hand, lower values may make the

generated rhythms too random and irregular, so that they may even not be

perceived as rhythmic at all. To make any firm conclusions on this, formal

listening tests would need to be conducted, based on the generated rhythms

from the system. This is left for future work.

Another interesting avenue for future analysis is to explicitly evaluate

the system’s production of expressive timing. To achieve this, the tolerance

window can be removed and time differences between the target and out-

put events with a steady idealised pulse can be analysed.

By using an oscillator network to track the metrical structure of expres-

sively timed audio data, processing the metrical structures of audio signals

is enabled in realtime.
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Chapter 5

Perceiving Dynamic Pulse with

GFNNs

5.1 Introduction

Previous work on utilising GFNNs in an MIR context has shown promising

results for computationally difficult rhythms such as syncopated rhythms

where the pulse frequency may be completely absent from the signal’s

spectrum (Velasco and Large, 2011; Large, Herrera and Velasco, 2015), and

polyrhythms where there is more than one pulse candidate (Angelis et al.,

2013).

In previous chapters, GFNNs were used as part of a machine learn-

ing signal processing chain to perform rhythm and melody prediction.

In Chapter 4, an expressive rhythm prediction experiment showed com-

parable accuracy to the state-of-the-art beat trackers. However, it was not

clear from this experiment how well the GFNN was capturing changing

metrical structures when the pulse frequency fluctuates.

The exact contribution of the GFNN to the holistic GFNN-LSTM model

is unknown, as an explicit evaluation of that layer was not done in pre-

vious chapters. To address this, the investigation of this thesis will now

move away from predicting rhythm, as was the case in previous chapters,

towards analysing the pulse prediction capabilities of the GFNN alone. The
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Chapter 5. Perceiving Dynamic Pulse with GFNNs

hypothesis behind this move is that any improvements that can be made in

the GFNN layer will have a direct and measurable impact of the accuracy

of the LSTM layer’s predictions.

In this chapter, the results of an experiment with GFNNs are presented,

partially reproducing the results from Velasco and Large’s (2011) last major

MIR application of a GFNN, and Large, Herrera and Velasco’s (2015) more

recent neuroscientific contribution. Also included is a new class of rhythms

where tempos are changing.

There is one major difference between the results presented here and

those presented in the past. Previous studies have placed a focus on the

frequencies contained in the GFNN’s output, often reporting the results in

the form of a magnitude spectrum, and thus omitting phase information.

When dealing with pulse and metre perception, phase is an integral part

as it constitutes the difference between entraining to on-beats, off-beats, or

something in-between. This is especially true when dealing with changing

tempo. Therefore in this chapter a greater evaluation focus is placed on

phase accuracy. A new quantitative evaluation metric is introduced here,

named the Weighted Phase Output (WPO), which enables direct compar-

ison between different GFNNs of different dimensions, stimulated by dif-

ferent rhythm datasets.

5.1.1 Contributions

This chapter contributes the first analysis of a GFNN’s performance when

dealing with changing tempo, and an extended evaluation of syncopated

rhythms previously studied in the literature. In the literature, the evalua-

tion of GFNNs’ pulse finding predictions in terms of phase has never been

attempted. To achieve this, a new way to evaluate GFNNs is introduced,

based on a new type of GFNN output named here as weighted phase output

(WPO).
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FIGURE 5.1: Amplitudes of oscillators over time. The
dashed line shows stimulus frequency. The stimulus itself
is shown in Figure 5.2. There is an accelerando after approx-

imately 25s.

This chapter also uses the open source PyGFNN1 library for all its exper-

iments, a newly developed python library containing a GFNN and Runge-

Kutta integrators implemented, maintained, and released by the author.

Part of this chapter has been published in (Lambert, Weyde and Arm-

strong, 2016a).

5.2 Phase Based Evaluation

Thus far in the literature, evaluation of GFNNs has not considered phase

information. The phase of oscillations is an important output of a GFNN;

in relation to pulse it constitutes the difference between predicting at the

correct pulse times, or in the worst-case predicting the off-beats. In music

with many off-beat events this evaluation may miss important aspects of

the music.

Phase and frequency are interlinked in that frequency can be expressed

as a rate of phase change and indeed the canonical oscillators’ entrainment

properties are brought about by phase shifts. Since the state of a canonical

oscillator is represented by a complex number, both amplitude and phase

1https://github.com/andyr0id/PyGFNN
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FIGURE 5.2: WPO of the GFNN over time. The stimulus is
the same as Figure 5.1.

can be calculated instantaneously by taking the magnitude (r = |z|), and

angle (ϕ = arg(z)) respectively. Eq. 5.1 defines WPO (Φ), and Figure 5.2

shows the WPO over time.

Φ =
N∑
i=0

riϕi (5.1)

In Figure 5.2, it can be seen that the WPO signal is a fairly complex

signal, this is due to the high-dimensionality and frequency spread of the

oscillators in a GFNN. However, the signal does contain some clear indi-

cators of pulse perception; the dips in the signal do tend to occur at pulse

positions.

To achieve a clearer quantitative measure of how much the WPO is

matching the pulse, one further step is required: a comparison of WPO

with a ground truth signal. To create the ground truth, a phase signal simi-

lar to an inverted beat-pointer model (Whiteley, Cemgil and Godsill, 2006)

is used.

While a beat-pointer model linearly falls from 1 to 0 over the duration

of one beat, the inverted signal rises from 0 to 1 to represent phase growing
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FIGURE 5.3: An example of the inverted beat-pointer data
used as the correlation target in WPO correlation.

from 0 to 2π in an oscillation. An example can be seen in Figure 5.3. The

entrainment behaviour of the canonical oscillators will cause phase shifts

in the network, therefore the phase output should align to the phase of the

input.

To make a quantitative comparison the Pearson product-moment corre-

lation coefficient (PCC) of the two signals is calculated. This gives a rela-

tive, linear, mean-free measure of how close the target and output signals

match. A value of 1 represents a perfect correlation, whereas -1 indicates an

anti-phase relationship. Since the GFNN operates on more than one met-

rical level, high levels of correlation cannot be expected, and even a small

positive correlation would be indicative of a good frequency and phase re-

sponse, as some of the signal represents other metrical levels.

5.3 Experiment

5.3.1 Method

A pulse detection experiment was performed to evaluate the GFNN output

with WPO. The aim of the experiment was to evaluate the GFNN’s ability

to track changing tempo.
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For comparison with previously published results, two of the same

rhythms used by Velasco and Large for use in this experiment have been

selected. The first is an isochronous pulse and the second is the more dif-

ficult ‘son clave’ rhythm. These rhythms were supplemented by rhythms

from the more recent Large, Herrera and Velasco (2015) paper. The rhythms

are in varying levels of complexity (1-4), varied by manipulating the num-

ber of events falling on on-beats and off-beats. A level 1 rhythm contains

one off-beat event, level 2 contains two off-beat events and so forth. Two

level 1 patterns, two level 2 patterns, two level 3 patterns, and four level 4

patterns were used.

To test dynamic pulses, two new stimulus rhythms were included ex-

hibiting accelerando and ritardando behaviour.

All these rhythms were tested at 20 different tempos, selected randomly

from a range 80-160bpm. None of the networks tested had any internal

connections activated, fixed or otherwise (cij = 0). An experiment to study

the effect of connections was left for future work.

Similar oscillator parameters to Velasco and Large’s (2011) experiment

were chosen (α = 0, β1 = β2 = −1, δ1 = δ2 = 0 and ε = 1). This is known as

the critical parameter regime, poised between damped and spontaneous os-

cillation. Velasco and Large’s GFNN density of 48opo was retained, but the

number of octaves was reduced to 4 (0.5-8Hz, logarithmically distributed),

rather than the 6 octaves (0.25-16Hz) used in their study. This equated to

193 oscillators in total. This reduction did not affect the results and is more

in line with Large’s later GFNN frequency ranges (see Large, Herrera and

Velasco, 2015).

In summary, the experiment consisted of 5 stimulus categories, 20 tem-

pos per category and 3 networks. There are two initial evaluations, one for

comparison with previous work with GFNNs, and the second is testing dy-

namic pulses with accelerando and ritardando. The experiment used the

open-source PyGFNN python library created by the author, which contains

a GFNN implementation.
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FIGURE 5.4: Box and Whisker plots of the PCC results.
Rhythms are as follows: A) Isochronous, B-E) Large, Her-
rera and Velasco (2015) levels 1-4, F) Accelerando, G) Ri-
tardando, and H) Son Clave. Boxes represent the first and
third quartiles, the red band is the median, and whiskers

represent maximum and minimum non-outliers.

5.4 Results

Figure 5.4 shows the results for the pulse detection experiment described

above in the form of a box plot.

The GFNN is found to be effective for tracking and predicting pulse

in isochronous rhythms (A), as it shows a good correlation against the

inverted beat-pointer. This suggests relevant resonances have enough

strength to dominate any interference from other oscillators in the network.

The first Large, Herrera and Velasco (2015) rhythm level (B) also per-

forms well, though it does not have as stronger correlation as (A), which is

to be expected for non-isochronous rhythms. Level 2 (C) shows the median

correlation fall by close to 0.1, however the upper quartile and maximum

bounds are still in a good range. Levels 3 and 4 (D and E) perform around

the same with medians hovering around the 0.1 range. This is not evidence

of a strong correlation and suggests that the extra syncopation present in

81
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these rhythms is causing the oscillators to phase shift and predict off-beat

pulse events rather than on-beats.

Both the tempo change rhythms accelerando (F) and ritardando (G) also

perform poorly. Since these rhythms are isochronous except for the tempo

change this indicates that interference is taking place in the network, caus-

ing the WPO to become noisy. An example of this effect can be seen in Fig-

ure 5.1, a memory of the previous resonance still persists and causes the

new growing resonance to be lost in the signal. Interestingly the ritardando

rhythms do perform better than accelerandos. This may be due to the oscil-

lator model having a frequency-dependant damping rate. It was found that

higher frequency oscillators lose amplitude faster than those with lower

frequency. This mitigates the interference effect slightly, causing a small

increase in performance.

In the Son Clave results (H) the network performs poorly, with only

a small positive correlation being reported. A poorer result here was ex-

pected due to the difficulty of this rhythm, but a result this low indicates

that the GFNN is not capturing the metrical structure of this rhythm effec-

tively.

5.5 Conclusions

In this chapter the GFNN’s ability to capture metrical structure under

changing tempo conditions was examined. Where previous work with

GFNNs focused on frequency and amplitude responses, the outputs were

evaluated here on their WPO, considering that phase information is critical

for pulse detection tasks. The experiment partially reproduced Velasco and

Large’s (2011) and Large, Herrera and Velasco’s (2015) studies for compari-

son, and added two new rhythm categories for dynamic pulses.

In terms of phase prediction, it was found that GFNNs are able to cap-

ture metrical structure in isochronous and simple steady rhythms fairly

well. However, when rhythms became more difficult or there was tempo

change, interference and anti-phase entrainment became an issue.
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Chapter 6

Adaptive Frequency Neural

Networks

6.1 Introduction

Beat induction, the means by which humans listen to music and perceive a

steady pulse, is achieved via a perceptual and cognitive process. Computa-

tionally modelling this phenomenon is an open problem, especially when

processing expressive shaping of the music such as tempo change.

In Chapter 4, a hypothesis was held that the GFNN’s entrainment prop-

erties, the ability for each oscillator to phase shift, would make them good

candidates for solving the expressive timing problem. However, in Chap-

ter 5 it was found that GFNN’s respond poorly to tempo change rhythms

due to problems of interference with other resonant frequencies. This

makes GFNNs, in their current guise, difficult to use for beat tracking ex-

pressively timed rhythms.

In order to improve upon the output of the GFNN for expressively

timed rhythms, the general level of interference must be drastically re-

duced. This could be done through extra dampening of the oscillators, so

that the amplitude of resonant frequencies that are no longer relevant can

die away faster. However, this can result in some instabilities within the

network and some long-term memory within the network will be lost.
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Chapter 6. Adaptive Frequency Neural Networks

Another approach would be to reduce the number of oscillators in the

network, thus clearing up any potential irrelevant oscillators. However,

when doing this one must ensure that the oscillators can still resonant to a

wide range of frequencies or else the network will not be able to provide

any meaningful information. The oscillators must therefore be modified so

that they are able to entrain to a greater range of frequencies.

This chapter presents a novel variation on the GFNN: the Adaptive Fre-

quency Neural Network (AFNN) which achieves this entrainment basin

increase. In an AFNN, an additional Hebbian learning rule is applied to

the oscillator frequencies within the network. The frequencies adapt to the

stimulus through an attraction to local areas of resonance. A secondary

elasticity rule attracts the oscillator frequencies back to their original val-

ues. These two new interacting adaptive rules are both weak forces, and

allow for a large reduction of the network’s density. This minimises inter-

ference whilst also maintaining a frequency spread across the gradient.

The results of an experiment comparing GFNNs with AFNNs are pre-

sented within this chapter, partially reproducing the results from Velasco

and Large’s (2011) last major MIR application of a GFNN, and Large,

Herrera and Velasco’s (2015) more recent neuroscientific contribution. As

in Chapter 5, a greater focus on phase accuracy is made in the evaluation

than shown in the aforementioned works. The results show that AFNNs

can produce a better response to stimuli with both steady and varying

pulses compared with GFNNs.

6.1.1 Contributions

This chapter contributes a novel neural network model: the AFNN. The

AFNN is evaluated with a comparative, quantitative study of previous

GFNN models in the literature, in tandem with a new set of dynamic

rhythms. An open source Python implementation is provided in the au-

thor’s GFNN library1.

1https://github.com/andyr0id/PyGFNN
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6.2. The Interference Problem

Part of this chapter has been published in (Lambert, Weyde and Arm-

strong, 2016a), and presented at the Cognitive Music Informatics Research

seminar (CogMIR) in 2016, for which it won best poster presentation.

6.2 The Interference Problem

Chapter 5 introduced the weighted phase output (WPO) of a GFNN. Fig-

ure 5.2 showed an example of WPO over time. Even though the amplitude

response to the same stimulus shows a clear corresponding metrical hierar-

chy (see Figure 5.1), the phase response remained noisy. This is due to the

high density of oscillators required in a GFNN.

Velasco and Large used 289 oscillators per layer in their experiment, a

density of 48 oscillators per octave (opo). These high densities are often

used in GFNNs to capture a wide range of frequencies, but can cause inter-

ference in the network. The term interference is used here to mean interact-

ing signals amplifying or cancelling each other when summed.

Since each oscillator can only entrain to a narrow range of frequencies,

the use of a lower density not only increases the likelihood of missing a

relevant frequency, but it also stops local frequency populations from re-

inforcing one another. An example of this can be seen in Figure 6.1, where

frequency information is not being captured as successfully in a low density

GFNN (LD-GFNN), with a resolution of 4opo.

In Chapter 4, this issue was addressed by using only the real part of the

oscillator as a single meanfield output. This retained a meaningful repre-

sentation of the oscillation, but ultimately removed important information.

A selective filter could also be applied, by comparing each oscillator

with the mean amplitude of the GFNN, and only retaining resonating os-

cillators. However, using a selective filter is not an ideal solution to the

interference problem as it requires an additional, non real-time, processing

step which cannot be easily incorporated into an online machine learning

chain. In addition, new frequencies would not be selected until they begin
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FIGURE 6.1: LD-GFNN (4opo) output. The dashed line
shows stimulus frequency.

to resonate above the selection threshold, meaning that new resonances in

changing tempos may be missed.

6.3 Adaptive Frequency Neural Networks

The AFNN model attempts to address both the interference within high

density GFNNs, and improve the GFNNs ability to track changing fre-

quencies, by introducing a Hebbian learning rule on the frequencies in the

network. The rule is an adapted form of the general model introduced

by Righetti, Buchli and Ijspeert (2006) shown in Eq. 6.1:

dω

dt
= − ε

r
x(t)sin(ϕ) (6.1)

Their method depends on an external driving stimulus (x(t)) and the state

of the oscillator (r, amplitude; ϕ, phase), driving the frequency (ω) towards

the frequency of the stimulus. The frequency adaptation happens on a

slower time scale than the rest of the system and is influenced by the choice

of ε, which can be thought of as a force scaling parameter. Since ε is divided

by r higher amplitudes are affected less by the rule (Eq. 6.1).

This method differs from other adaptive models such as McAuley’s
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(1995) phase-resetting model by maintaining a biological plausibility as-

cribed to Hebbian learning (Kempter, Gerstner and Hemmen, 1999). It is

a general method that has been proven to be valid for limit cycles of any

form and in any dimension, including the Hopf oscillators which form the

basis of GFNNs (see Righetti, Buchli and Ijspeert, 2006).

In an AFNN, Eq. 6.1 is modified to also include a linear elasticity, shown

in Eq. 6.2.
dω

dt
= −εf

r
x(t)sin(ϕ)− εh

r
(
ω − ω0

ω0
) (6.2)

The elastic force is an implementation of Hooke’s Law, which describes

a force that strengthens with displacement. The rule is introduced to en-

sure the AFNN retains a spread of frequencies (and thus metrical structure)

across the gradient. The force is relative to natural frequency, and can be

scaled through the εh parameter.

By balancing the adaptive (εf ) and elastic (εh) parameters, the oscillator

frequency is able to entrain to a greater range of frequencies, whilst also

returning to its natural frequency (ω0) when the stimulus is removed.

Figure 6.2 shows the frequencies adapting over time in the AFNN un-

der sinusoidal input. Frequency is on the y-axis and time is on the x-axis,

and each line represents on oscillator. The red dashed line shows the stim-

ulus frequency, which in this example is 2.5Hz. The oscillator closest to the

stimulus frequency quickly adapts its own frequency to the stimulus, reso-

nances and stabilises for the duration of the simulation. Other high and low

frequency oscillators find their own harmonic resonances and also remain

stable.

There are two interesting harmonics where the dynamics of the two

adaptive rules can be observed. Firstly an unstable resonance in the 2Hz

range can be observed. The adaptive rule is attracting this oscillator to the

stimulus, and the elastic rule is keeping it from straying too far from its nat-

ural frequency. This result in a frequency oscillation centring around 2Hz.

The same pattern can be observed in a more extreme form in the oscillator

around 3Hz. This oscillator is caught between the stimulus frequency and
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FIGURE 6.2: AFNN frequencies adapting to a sinusoidal
stimulus. The dashed line shows stimulus frequency.

the 5Hz resonance shared by two other oscillators. The adaptive rule can

be seen attractting the oscillator first to the stimulus, where it loses stability,

then to the 5Hz harmonic, where it loses stability again, before eventually

finding a stable resonance at an interesting harmonic ratio.

It can be seen that the AFNN preserves the architecture of the GFNN;

the main difference is the frequency learning procedure. Figure 6.3 shows

the WPO of an AFNN stimulated with the same stimulus as in Figure 5.2.

One can observe that a reduced level of interference is apparent.

6.4 Experiment

6.4.1 Method

A pulse detection experiment was conducted to test the performance of the

AFNN on both steady and tempo change rhythms. The experimental setup

was the same as was presented in Chapter 5: 5 stimulus categories, and 20

tempos per category. In this chapter three different networks are compared:

GFNNs, low density GFNNs and AFNNs.

The AFNN uses the same oscillator parameters and distribution as the

GFNN, but the density is reduced to 4opo, 16 oscillators in total. εf and
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FIGURE 6.3: WPO of the AFNN over time. Reduced inter-
ference can be seen compared with Figure 5.2.

εh were hand-tuned to the values of 1.0 and 0.3 respectively. For compar-

ison with the AFNN, a low density GFNN is also included, with the same

density as the AFNN but no adaptive frequencies.

In implementation, the adaptive rule in integrated in simultaneously to

the main oscillation deferential equation, within one fourth order Rung-

Kutta solver.

The evaluation method is the same as presented in Chapter 5.

6.4.2 Results

Figure 6.4 shows the results for the pulse detection experiment described

above in the form of Box and Whisker plots. A significance test has been

performed using a Wilcoxon signed rank test, due to the non-normal dis-

tribution of the results. An asterisk (*) denotes a statistical significance of

p < 0.05, compared against the GFNN result.

Figure 6.4a shows that the low density GFNN (B) performs significantly

worse than the GFNN (A), showing little positive correlation and some neg-

ative correlation. This indicates the importance of having a dense GFNN.

91



Chapter 6. Adaptive Frequency Neural Networks

The outliers seen can be explained by the randomised tempos: sometimes

by chance the tempo falls into an entrainment basin of one or more oscilla-

tors. Despite its low density, the AFNN (C) fairs as well as the GFNN (A),

showing a matching correlation to the target signal, especially in the upper

quartile and maximum bounds. Exploring more values for εf and εh may

yield even better results.
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FIGURE 6.4: Box and Whisker plots of the PCC results.
Boxes are as in Figure 5.4. *Denotes significance in a
Wilcoxon signed rank test (p < 0.05), compared with (A).

In the Large, Herrera and Velasco (2015) rhythms (Figure 6.4b) a simi-

lar pattern is observed: the low density GFNN is more or less random in

92



6.5. Conclusions

its response, with the high number of outliers denoting high performance

on that particular random tempo. The AFNN shows a significant improve-

ment over the GFNN.

The Accelerando and Ritardando rhythm results (Figure 6.4c and 6.4d)

show that the AFNN’s response is a significant improvement over the

GFNN, but still has low minimum values. This may be due to the fact that

the adaptive rule depends on the amplitude of the oscillator, and therefore

a frequency change may not be picked up straight away. Changing the os-

cillator model parameters to introduce more amplitude damping may help

here. Nevertheless the AFNN model still performs significantly better than

the GFNN, with a much lower oscillator density.

In the son clave results (Figure 6.4e) all networks perform poorly. A

poorer result in comparison to the other rhythms was expected due to the

difficulty of this rhythm. However, a significant improvement can be seen

in the AFNN, which may be due to the reduced interference in the network.

6.5 Conclusions

In this chapter, a novel Adaptive Frequency Neural Network model

(AFNN) was proposed. AFNNs extend GFNNs with a Hebbian learning

rule on the oscillator frequencies, attracting them to local areas of reso-

nance. Where previous work with GFNNs focused on frequency and am-

plitude responses, the outputs were evaluated on their weighted phase re-

sponse, considering that phase information is critical for pulse detection

tasks. An experiment was conducted, partially reproducing Velasco and

Large’s (2011) and Large, Herrera and Velasco’s (2015) studies for compar-

ison adding two new rhythm categories for dynamic pulses. When com-

pared with GFNNs an improved response was shown by AFNNs to rhyth-

mic stimuli with both steady and varying pulse frequencies.

AFNNs allow for a large reduction in the density of the network, which

can improve the way the model can be used in tandem with other machine

learning models, such as neural networks or classifiers. Furthermore the
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system functions fully online for use in real time. In the future this possi-

bility could be explored by implementing a complete beat-tracking system

with an AFNN at its core.

There is a lot of exploration to do with regard to the GFNN/AFNN

parameters, including the testing values for the adaptive frequency rule,

oscillator models and internal connectivity. The outcome of this exploration

may improve the results presented in this chapter.

The mode-locking to high order integer ratios, nonlinear response, and

internal connectivity set GFNNs apart from many linear filtering methods

such as the resonating comb filters and Kalman filters used in many signal

prediction tasks. Coupled with frequency adaptation, the AFNN model

provides very interesting prospects for applications in MIR and further

afield.

Before the model can be used in a complete beat-tracking system an

evaluation with more realistic MIR datasets must be performed.
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Chapter 7

Perceiving Performed

Expression with AFNNs

7.1 Introduction

In Chapter 6 a novel Adaptive Frequency Neural Network (AFNN) was

detailed, which lowers the dimensionality of Large, Almonte and Velasco’s

(2010) Gradient Frequency Neural Network (GFNN) model, allowing the

network to better track tempo changes. The network was quantitatively

evaluated using a dataset of symbolic rhythms with simulated tempo

changes. By doing so it was shown that AFNNs can match the performance

of GFNNs on isochronous rhythms, whilst also significantly improving per-

formance on dynamic tempos. However, since the evaluated rhythms were

all idealised, synthesised, and symbolic, this did not give an accurate pic-

ture of how such networks will perform with real-world data.

This chapter further evaluates AFNNs with more realistic, human-

performed datasets. Two audio datasets were selected for their expressive

timing properties. Once again the AFNN was evaluated on its ability to

perceive the pulse, and compared with the GFNN. An extensive grid search

was performed on the AFNN to optimise the oscillator and adaptivity pa-

rameters.
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Dealing with audio data creates additional complexities because it is

much noisier than symbolic datasets. For this reason the mid-level repre-

sentation approach presented in Chapter 4 is improved by utilising Böck

and Widmer’s (2013) SuperFlux onset detection function.

The results show that both systems perform poorly in comparison to the

results presented in Chapter 6; however, the AFNN performed just as well

as a GFNN, despite the lower dimensionality, and in some cases the AFNN

outperformed the GFNN.

7.1.1 Contributions

This chapter contributes a detailed evaluation and analysis of GFNNs and

AFNNs on expressive audio data.

7.2 Improving the Mid-level Representation

In Chapter 4 the complex spectral difference (CSD) mid-level representation

was used to transform an audio signal into a more rhythmically meaningful

representation. Figure 7.1a and 7.1b display example CSD outputs from the

Mazurka (MAZ) and SMC datasets. The top plots show CSD, scaled both

linearly and logarithmically.

From the above figures it can be seen that CSD can be noisy in the release

phase of an onset, possibly due to phase modulation on instruments during

a sustained note. It is also common to observe a low frequency modulation

of the signal, which can produce a baseline wander.

The GFNN responds best to peaky signals. Log-scaling the CSD signal

can increase the general peakiness by squashing the high amplitude peaks

and amplifying the low amplitude peaks. However, this also has an ampli-

fying effect on the high and low frequency noise within the signal.

To reduce the high frequency noise in the release phase and the low fre-

quency modulating noise, a band-pass filter can be applied. The middle

plots show the result of a band-pass filter application: a more waveform-

like signal rather than an the envelope-like CSD. Applying log-scaling can
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also help to increase peakiness, but it is not as effective as on the CSD di-

rectly.
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(A) A comparison of mid-level representations of an excerpt of Mazurka 06-1, per-
formance ID 9048-01.
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(B) A comparison of mid-level representations of an excerpt of SMC_003.

FIGURE 7.1: Mid-level representation comparisons from
two different excerpt examples.
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The bottom plots show the output of an alternative onset detection func-

tion, known as SuperFlux (Böck and Widmer, 2013). SuperFlux is able to

reduce the noisiness of CSD by tracking spectral trajectories with a max-

imum filter. Thus the effects of vibrato are reduced and number of false

positives can also be reduced. In the lower plot of Figure 7.1a the effect can

clearly be seen just before the 15 second mark and again around 20 seconds,

the release phase noise has been greatly reduced. Furthermore, SuperFlux

also reduces the low-frequency modulation, which can clearly be seen in

the lower Figure 7.1b. In general, the noise floor of the signal is reduced

and there is very little low frequency content.

Figure 7.2 shows the output of a standard GFNN (critical oscillators,

48opo) to the different onset detectors. The red dashed line shows the pulse.

In this example the pulse is two octave metrical levels below the strongest

resonant frequency in the network, due to the nature of the rhythm in this

excerpt. Figure 7.2a shows the CSD result, from which a clear resonance at

this aforementioned pulse-harmonic frequency can be seen, as can the effect

of the noisiness in the higher frequencies. An unstable pulse-harmonic is

also resonating at just above 2Hz.

Figure 7.2b shows the bandpass filtered CSD result. In can be observed

that resonances are in general much stronger in the same areas as the non-

filtered CSD, but the sinusoidal-like signal causes a wider band of reso-

nance in the network. This would make extracting the relevant frequency

information more difficult.

In Figure 7.2c, which is the output from the SuperFlux algorithm, a sim-

ilar pattern can be seen to the others, but the resonance band is more fo-

cused on the higher harmonic and the 2Hz harmonic appears more stable

throughout the excerpt. This provides evidence that the SuperFlux onset

detection function is more suitable for use with GFNNs than CSD.
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(A) GFNN response to unfiltered, log-scaled CSD.
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(B) GFNN response to filtered, log-scaled CSD.
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(C) GFNN response to unfiltered, log-scaled SuperFlux.

FIGURE 7.2: GFNN responses to CSD, using different on-
set detectors and filters. The red dashed line represents the

pulse frequency.
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7.3 Experiment

7.3.1 Method

A pulse detection experiment was conducted to evaluate the performance

of AFNNs on discovering the pulse in realistic performed audio data.

Just as in Chapter 5 and 6, the AFNN’s result is compared with a GFNN

through the quantitative weighted phase output (WPO) correlation.

The AFNNs and GFNNs were evaluated on two datasets, the first of

these is the same Mazurka dataset (MAZ) used in Chapter 4. A subset of

80 excerpts have been selected, 40 seconds each in duration, ensuring an

even spread among mazurkas and performers. The second dataset used is

known as the SMC dataset (SMC; Holzapfel et al., 2012), a set of excerpts

from tracks identified as being difficult for the current state-of-the-art beat

trackers, partly due to the degree of expressive timing in the excerpts.

SMC excerpts have been previously tagged with classifications as to

why the annotation was difficult. In the experiments presented in this chap-

ter, an SMC subset of 80 tracks have been selected, based on two tags that

refer to dynamic tempos: ‘expressive timing’, and ‘gradual tempo change’.

For a full list of tags and the frequencies that they occur in the SMC dataset,

see (Holzapfel et al., 2012).

The two datasets provide different things to look out for in the eval-

uation result. Both datasets are polyphonic and audio-based, but MAZ

is mono-timbral (piano) and metrically homogeneous (3 beats in a bar)

whereas SMC can be multi-timbral and contains music from many genres

in many different metres. This means that the SMC excerpts are much more

difficult to process compared with MAZ.

In the experiment a total of 228 different models were tested in a grid

search. This included three different oscillator models: the damped oscil-

lators used in Chapter 3, the detune oscillators used in Chapter 4, and the

critical oscillators used in Chapter 4-6. The GFNNs were fixed at 48opo,

but the AFNNs were tested at 12, 6, and 3opo. Five values of the AFNN’s
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Dataset Oscillator Network WPO Abs. WPO

MAZ

Damped
GFNN 0.03239 (0.07448) 0.05950 (0.05529)

AFNN1 0.02859 (0.07381) 0.05820 (0.05364)

Critical
GFNN -0.01543 (0.04597) 0.03749 (0.03075)

AFNN2 -0.01117 (0.04935) 0.03946 (0.03168)

Detune
GFNN -0.01832 (0.05001) 0.04144 (0.03346)

AFNN3 -0.01272 (0.04839) 0.03965 (0.03051)

SMC

Damped
GFNN 0.02683 (0.06259) 0.04781 (0.04849)

AFNN4 0.02025 (0.06952) 0.05446 (0.04772)

Critical
GFNN -0.03155 (0.06043) 0.05026 (0.04606)

AFNN5 -0.02596 (0.06183) 0.04846 (0.04636)

Detune
GFNN -0.03462 (0.05648) 0.05073 (0.0426)

AFNN6 -0.03120 (0.06039) 0.04981 (0.04625)

TABLE 7.1: Results of the grid search. The values show the
mean results. The value in brackets denotes the standard

deviation.

adaptive (εf ) and elastic (εh) parameters were also tested: 1.0, 0.65, 0.3, 0.2,

and 0.1. The continuous-valued output of the SuperFlux function was used

as the input to all networks, at a sample rate of 86.15 Hz.

7.3.2 Results

Table 7.1 shows the results of the grid search, comprising the GFNN result

and the best of all the tested AFNNs. The first two numbers are the WPO

correlation and their standard deviation. For reasons that will be explained

below, an absolute WPO correlation was also calculated . The additional

AFNN parameters are listed in Table 7.2.

The results show that the AFNNs did not perform better than GFNNs

in this experiment. However, as seen in Table 7.3, no significant differences

were found between any of the models.

Both GFNNs and AFNNs show WPO correlations much lower than

those observed in Chapter 5 and 6. This was expected due to the extra
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Dataset Network Oscillator εf εh opo

MAZ

AFNN1 Damped 0.2 0.3 6

AFNN2 Critical 1.0 0.65 12

AFNN3 Detune 0.65 1.0 12

SMC

AFNN4 Damped 0.65 0.2 3

AFNN5 Critical 1.0 0.2 12

AFNN6 Detune 0.2 0.1 12

TABLE 7.2: AFNN parameters for Table 7.1.

Dataset Oscillator
p values

WPO Abs. WPO

MAZ

Damped 0.35567 0.46352

Critical 0.2218 0.36854

Detune 0.18055 0.97271

SMC

Damped 0.33813 0.47251

Critical 0.26517 0.65652

Detune 0.38169 0.81833

TABLE 7.3: p-values returned from a Wilcoxon signed rank
test between the GFNN and AFNN results. No significant

differences were found in any of the models (p >> 0.05).

noise that audio data introduces into the input and the fact that the audio

excerpts are expressively performed; however, it was not expected to affect

the result this severely. In the future, both models’ response to audio data

must be improved, this is discussed in Chapter 8, Section 8.4 but is out of

the scope of this thesis.

Despite the lower correlations several notable findings can still be ob-

served. Critical and detune oscillators tend towards negative correlations,

indicating that they are more likely to entrain to off-beats rather than on-

beats. This may be due to the complex syncopated rhythms often found

in both the MAZ and SMC excerpts, which may be exacerbated by tempo

change. In order to fully understand this, a detailed qualitative study of

the network’s dynamics should be performed. The tend towards negative
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correlations could be corrected for with a simple a phase offset on the net-

work’s output. By offsetting the phase value, an anti-phase relationship can

be moved to a phase-locked relationship.

The absolute WPO correlation (abs. WPO) in Table 7.1 indicates what

the mean correlation could be if all the negative phases were corrected with

an offset. The results do show the expected improvement over the standard

WPO, caused by negative values being reflected into a positive value and

therefore adjusting the mean. These improvements can more than double

the mean in cases where the network tended more towards the off-beat.

This suggests that implementing an automatic phase offset, or stronger self-

driven phase locking may prove a fruitful endeavour.

Damped oscillators perform the best across both datasets. As the name

suggests, the damped oscillator mode greatly increases amplitude damping

over time. Both the frequency adaptation rule and WPO rely on the oscil-

lator’s amplitude: greater amplitudes mean more stable frequencies, and

greater contribution to WPO. It therefore stands to reason that in datasets

where there is more tempo change, such as the ones investigated here,

the network would require more damping. There is a trade-off, however,

between long-term memory and forgetfulness in the network, especially

when considering long-term structures. This is discussed more in Chap-

ter 8, Section 8.3.

While GFNNs have outperformed AFNNs with damped oscillators in

MAZ, AFNNs have achieved a comparable (not significantly different)

score with 6opo compared with the 48opo of the GFNN. This represents

an 8x efficiency increase. In SMC, AFNNs outperform GFNNs with 3opo,

which is a 16x increase in efficiency compared with the GFNN. Computa-

tionally speaking then, an AFNNs still represents the better model choice.

When considering the AFNN’s adaptive (εf ) and elastic (εh) parameters

in Table 7.2, it seems that MAZ requires a balance between εf and εh. SMC

has a less clear relationship, but εf does tend to be stronger than εh. These

differences in balancing adaptivity and elasticity may be due to the nature

of the dataset’s respective contents. MAZ’s excerpts are all solo piano and
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tend to be performed with gentle tempo curves, but the tempo is relatively

stable. One can imagine the gentle pull and push of the adaptive forces

describing this behaviour well. SMC on the other hand contains data from

various genres and sometimes has more extreme tempo changes, step-wise

jumps, and gaps where there is no pulse. This not only makes SMC the

more difficult dataset to predict but also suggests that there is not one set

of parameters that will fit all excerpts. Again, a qualitative analysis of the

network’s dynamics in this case would be beneficial.

7.4 Conclusions

In this chapter, an evaluation of AFNNs with more realistic, human gen-

erated data was conducted. Two audio datasets were selected for their ex-

pressive timing properties and the AFNN was evaluated on its ability to

perceive the pulse.

An extensive grid search showed that both systems perform poorly in

comparison to the results presented in Chapter 6; however, the AFNN per-

formed just as well as a GFNN, with an up to 16x increase in efficiency and

no significant differences between the models. In some cases the AFNN

outperformed the GFNN. While this makes the case for an AFNN as a more

efficient GFNN, the evidence for tracking dynamic pulse with AFNNs is not

strong.

Closer inspection via a qualitative analysis of the output of the AFNN

could reveal potential opportunities for improvement but this is beyond the

scope of this thesis.
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Discussion

8.1 Introduction

In this chapter, the results of all the experiments are drawn together and

related back to the problem task and the wider literature.

The aim of this research was to improve computational models for ex-

pressive rhythm perception and prediction in automated and interactive

music systems. A cognitive machine learning approach was taken, utilising

the existing GFNN and LSTM models in Chapters 3 - 5, before introducing

and evaluating a proposed novel model: the AFNN in Chapters 6 and 7.

In several simulated experiments with the models, it was found that

modelling metrical perception with GFNNs improved the rhythmic pre-

dictions in an RNN music model. Furthermore, it was discovered that

adding a frequency adaptation rule to the GFNN (termed an AFNN) fur-

ther improved the oscillator network’s response to tempo change, both in

resonance clarity through an improved signal correlation, and network ef-

ficiency through a reduced dimensionality.

The AFNN was evaluated over a series of experiments on sets of sym-

bolic and audio rhythms, both from the literature and created specifically
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for this research. When evaluating the time-based output of symbolic stim-

uli with both steady and varying pulse frequencies, AFNNs showed signif-

icantly improved responses and entrainment correlation in the pulse fre-

quency. On two datasets of audio data, there was no significant differ-

ence in the performance of AFNNs against GFNNs. The AFNNs matched

the performance of GFNNs, despite their lower oscillator density. 48opo

GFNNs were reduced to 3opo AFNNs in the best case, 12opo AFNNs in

the worst case.

8.2 Expectational and Probabilistic Prediction

Chapters 3 and 4 utilised a two layer neural network model for rhythmic

and melodic modelling. The models were different in scope, with Chap-

ter 3 focusing on steady-tempo symbolic melody prediction, and Chapter 4

modelling expressively timed rhythmic predictions. The topologies of the

two models were similar in that they both incorporated a continuous-time

oscillator network paired with an RNN, and they both modelled time in se-

ries. In essence, the model incorporated two different layers of prediction:

expectational and probabilistic. An expectational prediction dictates when

one could take action; a probabilistic prediction dictates when one should

do so.

The GFNN captures expectational prediction. The summed activations

of the oscillators in the network at any point in time show an expectancy

of an event occurring at that time. This is achieved through the neural os-

cillation periods synchronising at certain ratios. Much like GTTM’s dot no-

tation, which denotes musical downbeat within a metrical structure, when

several oscillators are aligned in their activation, that denotes a ‘stronger’

beat. This not only harks back to Huron’s (2006) concept of musical antic-

ipation, but also Large and Jones’s (1999) theory of attentional dynamics: a

focusing of attention at the time of the next expected event. Attentional dy-

namics was the precursor to Large and Kolen’s (1994) nonlinear resonance

theory, upon which the GFNN is based.
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In certain ways, the AFNN can be seen as another layer upon the at-

tentional dynamics theory. Rather than interpreting the network as a rela-

tively small bank of oscillators with adapting frequencies, one can instead

view the changing frequencies within the network as attentional energy

across a wider spread, focusing in on relevant periodicities as well as time

windows. Unlike Large and Jones the AFNNs adaptation is completely

Hebbian-based and so also retains its biological plausibility.

The LSTM part of the networks used in Chapters 3 and 4 model a dif-

ferent kind of prediction: probabilistic. Reading expectational resonance

information from the oscillator network, the LSTM performs a complex

nonlinear calculation of its own, then transforms the output into a prob-

abilistic rhythm activation. This is an important step to take when creating

a predictive or generative model, as it forms a higher level of control over

the low-level expectational output of the GFNN. The LSTM captures subtle

information about how to read and interpret the GFNN’s signal. Higher

level musical features such as genre or performance style can be learned by

the model, producing an output that is not only a series of beats, but a set

of informed musical actions. Cognitively speaking this relates back to Con-

klin and Witten’s (1995) and Cherla, Weyde and Garcez’s (2014) multiple

viewpoint prediction models.

What sets the GFNN-LSTM apart from the models used in the afore-

mentioned works is the ability to move away from discrete-time models

to continuous-time, which gives the ability to model expressively timed

rhythms. An avenue of exploration in the future would be to explore

how multiple-viewpoint models and continuous-time expectational mod-

els could be further incorporated into one another. This would allow for

a continuous-time multiple viewpoint prediction rather than the discrete

timing used in the current model.
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8.3 Oscillator Network Comparisons

Large (1995) and Eck (2002) have previously theorised that a connected os-

cillator network alone could deal with rubato and tempo change within a

beat tracking system, but the results from Chapter 7 showed no evidence

to support that theory. When evaluated on their time-domain phase output

and correlated against a beat-phase signal, the results showed little positive

correlations.

However, this thesis did not take into account the two layer, multi oscil-

lator models used in Velasco and Large (2011) and Large, Herrera and Ve-

lasco (2015). In these studies, a layer of critical oscillators was paired with

a layer of ‘limit-cycle’ oscillators to represent the sensory and motor cor-

tices respectively. This simplification step was introduced to focus on the

primary research goals investigating a specific set of behaviours: namely

expressive time perception and frequency adaptation. To do this, only one

layer GFNNs and AFNNs were considered. Extending the study to mul-

tiple oscillator layers and models was deemed overly complex. This still

retained a fair enquiry as comparisons made between the two models were

always on a like-for-like basis. The comparative studies in this thesis con-

firm Velasco and Large’s findings that GFNNs formed of critical oscillators

do show beat induction properties, but the energy level of the pulse fre-

quency is fairly low. Even so, the results of Chapter 4 show that even this

output from the GFNN can be useful in an RNN prediction model.

It is reasonable to assume that the AFNN will indeed extend to multiple

layers and retain the same benefits. The adaptive rule was taken and mod-

ified from Righetti, Buchli and Ijspeert (2006), where it has been proven to

work with similar limit-cycle oscillators to those used in the Velasco and

Large’s motor cortex models.

Another simplification made in the experiments presented here is the

eventual exclusion of internal connections, fixed or learned, from the os-

cillator network. In Chapter 4, three connectivity states were investigated:

no connections, online connections, and online connections with an initial
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state. It was found that the third option produced the best results. How-

ever, following a personal communication from Large it was revealed that,

since the connection matrix is complex valued, phase offsets are introduced

between oscillators. This has the side effect of inter-oscillator entrainment

becoming more complex to model. One cannot rely on the phase output of

the oscillator itself without taking into account the various phase offsets in

the connection matrix. That, in turn, would affect the weighted phase out-

put of the system. For these reasons, the network evaluations from Chap-

ter 5 onwards did not activate the connection matrix.

One of the side effects of this decision was that lower frequencies in the

network took longer to resonate. This can be seen in Figure 7.2, where the

strongest resonances showed a two-octave error against the pulse. Oscilla-

tors with lower frequencies operate on longer time scales to the higher fre-

quencies, meaning that resonances took longer to build and required more

energy. Internal connections in the GFNN can help to mitigate this effect

and so one must be take another look at the connection matrix. This could

also mimic GTTM’s preference rule, by being tuned to prefer resonance in

certain bands. For example 2Hz, or 120bpm, is a typical tempo used in

many kinds of music. It is the beginning of the allegro tempo range and

is often the default setting of many electronic sequencers. Tuning the net-

work to these well-defined bands (and their harmonics) would provide an

immediate resonance boost.

If the connection matrix were to be reactivated, then the engineering

case for an AFNN would be made clearer as the algorithm is the most com-

putationally expensive part of the system at O(n2), where n is the number

of oscillators in the network. On the hardware used in this research, this

meant that GFNNs with a connection matrix were not able to operate in re-

altime. However, AFNNs were able to reduce n back to faster-than-realtime

speeds.

GFNNs have been criticised in the past for their plausibility as a cogni-

tive model of beat induction. One of the major criticisms is the length of
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time a clear resonance takes to build in the network, which is several sec-

onds on average. Since humans can seem to induce a beat after two or three

events, the canonical oscillator model within a GFNN can be called into

question. Unfortunately, AFNNs may make matters worse in this regard, as

the frequency adaptation rule operates on a long time scale to the oscillation

itself (Righetti, Buchli and Ijspeert, 2006), and therefore may take a while to

discover stable resonances. However, whilst resonance energy does build

slowly over time within a GFNN, oscillator entrainment does happen rel-

atively quickly, usually within four events. Perhaps another Hebbian rule,

similar to the way the connection matrix learns, can observe the entraining

phase shifts in the network in such a way to boost resonance gain. One av-

enue for exploration here could be the Kuramoto model (Kuramoto, 1984),

which utilises phase change as a coupling mechanism.

This may also prove to be beneficial for cases of expressive timing. In

expressively timed rhythms the sense of pulse and metre is constantly shift-

ing. This can cause oscillators in the network to lose energy, or in the

worst case become completely desynchronised. A learning rule that ob-

serves phase change could help oscillators when entrainment shifts occur,

by giving them a boost of additional amplitude.

8.4 Improving the AFNN’s Adaptivity to Audio

The results presented in Chapter 6 showed significantly improved WPO

correlations with an AFNN against a GFNN, but when the networks were

evaluated on audio data in Chapter 7, there was no significant difference

observed. Why is it that the audio data did not show the same improve-

ment?

One reason may be due to the frequency adaptation rule itself. In Chap-

ter 7, steps were taken to improve upon the onset detection function used

in Chapter 4. The SuperFlux algorithm was used to reduce the noise floor

and low frequencies from the signal, whilst also increasing the peakiness of

the detected onsets. This produced a clearer, cleaner response in the GFNN
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A B C D E F

FIGURE 8.1: An overview of the proposed model showing
(A) audio or symbolic input, (B) time-series rhythm repre-
sentation, (C) AFNN, (D) LSTM, (E) time-series rhythm pre-
diction, and (F) audio or symbolic output. An internal feed-

back loop connects E and B.

(see Figure 7.1 and 7.2). However, the ODF still contained a lot of low level

noise. The AFNN’s frequency adaptation rule is very sensitive to noise in

the input signal. Clean spiky signals such as those used in Chapter 6 or

pure sinusoidal signals work well. Consider the adaptive side of the rule:

−εf
r
x(t)sin(ϕ) (8.1)

this takes the input signal x(t) and directly multiplies it against the sin of

the phase ϕ. This means that any noise in the signal is amplified as the

phase rotates, and is at its peak when ϕ = π/2 or ϕ = 3π/2. Since the input

signal is continuous, this could be mitigated with an adaptive threshold on

the signal:

−εf
r
σ(x(t))sin(ϕ) (8.2)

where σ is an adaptive threshold activation function, such as a cubic spline

interpolation (Scardapane et al., 2016).

Passing an activation in this way could negate all low-level noise, and

provide a cleaner signal to the adaptive rule, whilst maintaining a continu-

ous signal to the oscillators themselves.

8.5 AFNNs for Continuous Time Rhythm Generation

In this thesis, two generative models have already been presented. Chap-

ter 3 presented a GFNN-LSTM model to predict both pitch and rhythm in
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metrically-quantised time-series data of folk melodies; and in Chapter 4 this

system was extended to expressive rhythm predictions. It would be trivial

to close the loop in this system, creating a feedback between input and out-

put. This would allow indefinite, self-driven generation of new rhythmic

structures which could be evaluated for their novelty.

It remains a rarity for generative music systems to produce expressive

variations in their output. A more common approach is for a generative

system to output an abstract symbolic rhythm to be ‘played’ by a com-

puter system for expressive music performance (CSEMP). Systems such as

Omax (Assayag et al., 2006) and ImproteK (Nika et al., 2014) can be said to

be holistic generative improvisation systems, designed to be played with a

human musician. Omax’s design is to ignore the pulse entirely by restruc-

turing the audio input. ImproteK uses a beat-tracker to detect tempo, which

is then fixed for the remainder of the improvisation.

Sometimes the application of expressive articulation is left to human

performers. For example, in Eigenfeldt’s An Unnatural Selection (2015), mu-

sical phrases were generated by a genetic algorithm in score form, which

were then sight read by eight human musicians. The musicians played

these generated phrases, side-stepping the need for expressive articulation

to be generated by the system itself.

The systems presented in this thesis use audio or symbolic data as input,

and the output is a new rhythm prediction signal. The rhythm output can

be easily used to produce a new audio or symbolic signal and exciting the

network with untrained data will produce novel outputs. This application

of a GFNN-LSTM is an expressive rhythm generative system.

Rather than separate rhythm generation into two distinct event creation

and expressive playback phases, the GFNN-LSTM represents a holistic ap-

proach based on cognitive models of metre perception. The system out-

puts in continuous time, meaning there is no prior or external knowledge

of tempo or metre beyond a single time-series input.

Figure 8.1 shows an overview of the proposed system. There is a singu-

lar input (A), which can be symbolic or audio data. This is converted into
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a time-series data signal (B), retaining only rhythmic onsets. A relatively

high sample rate should be chosen to minimise any metric quantisation

and retain timing variance. The sample rate of 86Hz used in this thesis

would make a good choice and is supported by previous findings (Davies

and Plumbley, 2007).

In (C) the GFNNs from Chapter 3 and 4 are replaced with the AFNN.

AFNNs address the interference within GFNNs, and improves the net-

work’s ability to track changing frequencies.

Before the AFNN stage, the model could still be described as a discrete

time model. However, integrating the AFNN’s system of differential equa-

tions through a time-step forms a continuous time model, from which val-

ues can be sampled at discrete time points. The resonances formed in (C)

are then used as inputs to an LSTM (D). The LSTM’s prediction (E) is used

to render a new audio or symbolic rhythm (F) and can be combined with a

pitch output to generate a complete melody. A feedback loop connects (E)

to (B) so the system can operate autonomously or as part of an ensemble.

Alternatively, a feedback loop can be made linking (F) to (A), which may be

more straightforward in an ensemble setting.

In terms of Kirke and Miranda’s (2009) CSEMP framework, the LSTM

fulfils several roles. It is the central kernel where performance knowledge,

context, and to a certain extent the instrument model can be captured, all

leaning from a corpus of performance examples. The AFNN mainly fulfils

the role of the music analysis and adaptation processes, but also contains

elements of performance knowledge and context.

One variant approach would be to follow SONOR (Gasser, Eck and

Port, 1999) by using the AFNN for both metrical structure learning and

generation (see Chapter 2 Section 2.3.3). The input or learning phase could

be achieved by enabling the internal connectivity leaning. After input is

learned or stabilised, one could switch the oscillators to limit cycle mode

and fix the internal connections to enable a self-oscillating output. One

might also use the frequency adaptation of an AFNN to be more adaptive

than SONOR’s sinusoids. The AFNN output could be taken as the system
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output, as is the case with SONOR, but this would only provide the expec-

tational prediction layer. For a full probabilistic prediction, the LSTM or

similar model must be incorporated.

8.5.1 Generative Evaluation

This thesis presents evidence to suggest that the model outlined above is

viable as an online interactive generative rhythm system. However, in fu-

ture work the generative outputs of such a system must still be evaluated

and validated.

When considering generative software, validating the work both in

terms of the computational system and the output it creates is still a chal-

lenge for the community at large (Jordanous, 2011).

Adopting Jordanous’ (2012) Standardised Procedure for Evaluating Cre-

ative Systems (SPECS) methodology the following statements about the

above system as a generative system can be made:

1. The system is aiming to satisfy a definition of creativity as producing

novel rhythmic patterns, expressively timed to be in line with human

performers’ renditions of that same style of music.

2. The standards used to define said creativity are the annotated onset

times of a selected dataset.

3. The system has been tested against these standards through quantita-

tive and statistical metrics such as F-measure (see Chapter 4), which

considers the generated rhythms precision and recall. Further quali-

tative evaluation can take the form of an online listening test.

In a similar vein to a previous expressive rhythm prediction experiment

(see Chapter 4), the LSTM layer could be trained to predict rhythm onsets

based off the AFNN’s input. Once trained, the system would then be capa-

ble of generating new rhythms rendered in a similar expressive feel to the

training corpus. This would exhibit all of the features up to level 5 in Eigen-

feldt et al. (2013) MUME taxonomy:
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1. Independence: the pitch content and rhythmic output’s timing would

be beyond the control of the composer.

2. Compositionality: the system would determine relationships between

inputs and rhythm/pitch outputs.

3. Generativity: the system would create new musical gestures.

4. Proactivity: the system would decide when to initiate a new gesture,

reacting to the input.

5. Adaptability: the system’s behaviour would change over time via the

AFNNs internal frequency adaptation, or via the external feedback

loop, which incorporates other agents’ input.

The system would not exhibit versatility, as the gestural style would be

determined by the training data, and so it would not be able to produce

rhythms in any other style. Volition would also not be exhibited, as the

system would be driven by an external force.

8.6 Other Potential Applications for AFNNs

This thesis has been driven by an investigation into how to deal with vary-

ing tempo and expressive timing in automated and interactive music sys-

tems. The AFNN model was developed in order to improve upon Large,

Almonte and Velasco’s (2010) GFNN for expressive timing cases, and also

to improve the integration of an oscillator network into a connectionist ma-

chine learning music model. However, other applications besides rhythm

modelling and generation do exist in which the AFNN could prove useful.

Another use for AFNNs would be as an analytical tool. Ethnomusicol-

ogists are increasingly becoming aware of the importance of entrainment

processes as an approach to understanding music making and music per-

ception as a culturally interactive process (Clayton, Sager and Will, 2005).

The entrainment and frequency-adding properties of nonlinear resonance

can combine with the frequency adaptation in the AFNN to produce a new
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kind of spectrogram-like representation for continuous-time rhythmic de-

composition. A computational musicologist could look at the resonance

patterns, and how they change over time, as a metrical analysis similar to

IMA (Nestke and Noll, 2001; Volk, 2008). Uniquely, the AFNN has the abil-

ity to look at the frequency change derivatives, enabling the study expres-

sive tempo change properties such as rubato and groove. Such an analysis

can provide information on the dynamics of tempo and timing for which

there is no established way of extraction from decomposition techniques

such as Fourier analysis.

In terms of MUME categories, the AFNN is certainly classified as a cog-

nitive approach. It is a biologically plausible model of the way a human

neurological process may work. However, this thesis is not a cognitive

investigation in itself, but an application of the model for practical engi-

neering solutions. To use the model to develop and interrogate new cog-

nitive theories of behaviour and understanding is left to the cognitive sci-

entists and computational neuroscientists, such as those currently working

with Large. This would require a wholly different methodology than that

adopted in this thesis.

The field of MIR could see several uses for the AFNN. This thesis, and

indeed much of the literature on GFNNs in general, has focused on AFNNs

for rhythmic perception, but it is possible to extend the model to frequen-

cies above 16Hz, in the audio range. There have been attempts in the past,

most notably in Large (2010), but nothing that has yet had an impact on

the field of machine listening in MIR. Example applications for the use

of GFNNs/AFNNs include: chord recognition, timbre recognition, source

separation, f0-estimation, or simply just another audio analysis technique.

In this thesis, a case has been made for the AFNN as a rhythm generator.

Taking the generated frequencies into the audio domain may produce an

interesting harmonic oscillator synthesiser. The author, as a researcher and

musician, would be interested to hear what the changing audio-harmonic

resonances would sound like when sonified.
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8.7 On Deep Learning

Throughout this thesis the term deep learning has been avoided, however,

the recent advances in connectionist machine learning attributed to this no-

tion cannot be ignored. Deep learning models were first explored by Hin-

ton, Osindero and Teh (2006) and later the term was coined by Bengio

(2009). Deep learning referrs to any machine learning system with many

layers of nonlinear transformations.

A deep learning neural network, commonly referred to as a deep net-

work, is an example of a deep learning system, such as an LSTM with three

or more hidden layers of 200 nodes each. Such deep networks have made

improvements in the state-of-the-art of several pattern recognition tasks,

such as image classification (Krizhevsky, Sutskever and Hinton, 2012),

speech recognition (Dahl et al., 2012), and face recognition (Taigman et al.,

2014). Each transformation layer in the system is purported to represent

different abstractions of the input. For example, an image classifier may

take pixel values as its input, extract edges in the first layer, collections of

edges in the second, objects in the third, to form a classification in the out-

put layer. Deep learning systems can take raw data and learn their own

feature extractions for the task at hand. ‘Shallower’ networks must use

pre-extracted features, often reduced in dimensionality, which requires ex-

tra human design steps. They have even been applied to music generation

tasks (Sturm et al., 2016), including within Google’s Magenta project1.

One criticism of deep networks is their tendency to be easily fooled into

mislabelling images with high confidence as something they are clearly

not (Nguyen, Yosinski and Clune, 2015). This is a common problem and

may point to a wider issue with machines learning their own features. Re-

searchers are yet to understand exactly what the extracted features really re-

late to, or even if the learned features are anything more than quirks within

the learned dataset. Unexpected inputs such as those used in Nguyen,

Yosinski and Clune (2015) can output unexpected and invalid results.

1https://magenta.tensorflow.org/
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The neural networks in this thesis cannot be classified as deep networks.

The GFNNs used here and in the literature are not ‘deep’ enough to qualify,

and they cannot take raw data as input (i.e. PCM samples). In the GFNN

literature there has not been an instance of a network with more than two

layers and the highest reported density has been 128opo (768 total oscilla-

tors; Angelis et al., 2013). LSTMs are being used widely for deep networks,

but the LSTMs presented in this thesis are again far too small to be called

‘deep’, as they consist of only one hidden layer with 10 nodes.

Another difference between this work and the deep learning literature

is that the oscillator networks cannot be trained with supervised methods

such as backpropagation. GFNNs and AFNNs do perform a feature extrac-

tion, and this extraction is learned in terms of connectivity, but this is not

trained and then fixed like a standard RNN, it is always an online process.

Indeed, it was observed in this research that when GFNNs do have fixed

connections this can create unexpected behaviour, including noisy reso-

nance cascades down the frequency gradient (see Chapter 4 Section 4.2.3).

The features extracted can be likened more closely to a comb filter – a dig-

ital signal processing technique that emphasises bands of frequencies – al-

though GFNNs are more closely linked to biological systems.

Deep networks are computationally very expensive to train, requiring

large matrix calculations. This has led to the release of library abstrac-

tions such as Theano2 and TensorFlow3 to perform the calculation on GPUs,

which are optimised for such tasks and therefore can speed up the routine

by a significant amount. The dynamical, continuous time nature of the os-

cillator models make it difficult to implement in the graph-like paradigm

required by these libraries, but doing so would be worthwhile.

Despite the apparent shallowness of the networks presented in this

thesis, the results are often comparable to similar state-of-the-art systems.

This shows that performance improvements can be made without creating

deeper networks, but instead through making better models.

2http://deeplearning.net/software/theano/
3https://tensorflow.org/
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Chapter 9

Conclusions

9.1 Thesis Summary

A performing musical agent encapsulates a dynamic feedback loop of pulse

and metre perception, expectational event prediction, and rhythmic pro-

duction. When this occurs under changing tempo conditions the perceived

metrical structure is perturbed, the listener’s perception of musical time is

affected, and their internal sense of pulse and metre is in a state of flux. In

this thesis this process was referred to as metrical flux, and the research un-

dertaken was concerned with modelling this phenomenon for the purposes

of improving automatic and interactive music systems.

A cognitive machine learning approach was taken, utilising the ex-

isting Gradient Frequency Neural Network (GFNN; Large, Almonte and

Velasco, 2010) and Long Short-Term Memory recurrent neural network

(LSTM; Hochreiter and Schmidhuber, 1997) to first identify if nonlinear

resonance patterns could be useful for melody modelling tasks (see Chap-

ter 3), before attempting to predict expressive rhythm with these systems

(see Chapter 4), and evaluating the GFNN’s response to changing tempo

(see Chapter 5).

A novel model was introduced, termed the AFNN (see Chapter 6)

which introduced a new learning rule to the frequencies of the oscillators in

a GFNN. This allowed for a great dimensionality reduction in the network
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and was evaluated against the GFNN on pulse predicting tasks involving

symbolic and real-world audio recordings (see Chapter 7).

9.2 Outcomes

At the beginning of this thesis several research questions were posed which

can now be addressed.

1. Can a GFNN improve machine learning music models of melody?

To answer this question an experiment was performed comparing the

pitch and rhythm prediction performance of a standard LSTM model

against an LSTM with an added GFNN layer (GFNN-LSTM). This is re-

ported in Chapter 3. It was found that providing the metrical resonance

data from the GFNN did indeed help to improve melody prediction with

an LSTM. Since the symbolic melodies were metrically homogeneous and

all set at the same tempo, additional performance increases could be made

by filtering the oscillators in the GFNN down to only the most resonant.

Such a step would not be possible with changing tempo or differing genres

or performance styles. Despite the positive result here, it is not possible to

say in the general case whether GFNNs will improve any machine learning

model. However, since LSTMs perform well in time-series modelling tasks

including music, and are therefore widely used, this is still a useful result

to report.

2. Can GFNNs form a machine learning music model of expressive

rhythm production?

In Chapter 4 an experiment was performed to investigate this question.

Following the same GFNN-LSTM network topology from Chapter 3, the

network was trained to predict rhythm onsets, but this time on an audio

dataset of expressively timed piano music. The use of different oscilla-

tor models and internal connectivity states was investigated, and a new

meanfield filtering method was introduced. The best performing system
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achieved a mean prediction F-measure of 77.2% across the validation set.

According to the literature review conducted during this research, no sim-

ilar system was found that had ever been quantitatively evaluated and re-

ported before. Therefore it was not possible to directly compare the result to

existing systems. However, a comparison was drawn to the state-of-the-art

LSTM beat tracking systems using the same dataset and found the results

similar. As with the previous question, a general claim about the use of

GFNNs with any machine learning model cannot be made.

3. How well does a GFNN capture tempo change?

In order to answer this question the GFNNs were evaluated on a syn-

thesised dataset of symbolic rhythms with changing tempos and the re-

sults compared to other rhythms found in the literature. A new time-based

evaluation method was introduced, designed specifically to examine the

phase correlation of the GFNN to the pulse. In Chapter 5 it was reported

that GFNNs captured metrical structure in isochronous and simple steady

rhythms fairly well. However, when rhythms became more difficult or

where there was tempo change the correlations against the pulse became

very low.

4. Can a similar neural resonance based cognitive model improve the

GFNN’s response to tempo change and expressive timing?

To investigate this question a novel model was proposed, the AFNN,

that uses a Hebbian learning rule to directly alter frequencies of oscilla-

tors in a GFNN. The rule combined notions of attraction to resonance areas

and elasticity back to the natural frequency to ensure a spread of frequen-

cies across the network was still maintained. In Chapter 6 the new model

was evaluated under the same conditions as the previous experiment. It

was found that AFNNs had a significantly improved response to tempo

changes, and matched the performance of GFNNs on steady tempos.

5. How would such a model compare with previous perceptual models

and on real-world audio datasets?
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Two audio datasets were chosen to investigate this question. The first

was the same piano dataset used in Chapter 4, and the second was a beat-

tracking dataset specifically chosen for its high amount of expressively

timed excerpts. The audio data was transformed into a continuous onset

detection function and run through both GFNNs and AFNNs before be-

ing evaluated for their pulse correlations. Despite the promising results

shown in AFNNs reported in Chapter 6, there was no significant differ-

ence in the evaluation of metric scores between the GFNN and the AFNN

shown in Chapter 7. Therefore it was found that AFNNs can provide a

more computationally efficient solution compared with GFNNs. A discus-

sion of why the performance was poor on this audio data was conducted in

Chapter 8, Section 8.4, and a potential solution was put forward.

9.3 Limitations

The work presented in this thesis has several limitations.

Chapters 3 and 4 presented experimental neural network architectures

for perceiving and predicting rhythm, melody and expressive timing. The

results presented are based on very limited datasets of symbolic and audio

data consisting of 100 and 80 training examples respectively. These num-

bers were chosen to provide a dataset that is as coherent as possible, but

that also provides enough data to perform reliable cross-validation. For

instance, a subset of German folk songs were used in Chapter 3, as one can-

not assume that LSTMs are able to differentiate between culturally-specific

rhythms and melodies. Furthermore, the topologies were fixed and com-

parable to previous work, but no direct system comparison was made be-

tween the GFNN-LSTMs presented here and previous attempts in the lit-

erature. This was due to a lack of available information in the literature,

rendering it near impossible to reproduce an exact system. Since perform-

ing these experiments, more researchers have begun to share more details

about their experiments. Most notably with Sturm et al.’s (2016) work. It
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is hoped that enough information has been provided in this thesis to repro-

duce all experiments exactly.

It important to note also that all rhythm and melody modelling was re-

duced to a monophonic line for pitch and rhythm prediction, regardless of

the input data polyphony. This was done to simplify the network architec-

ture and evaluation routine. In Chapter 4, some qualitative examples are

also provided, however this still represents a significant limitation in the

applicability of the results.

In Chapter 7, it was found that GFNNs and AFNNs were extremely

sensitive (and not very resilient) to noisy input from an onset detection

function (ODF). Steps were taken to improve the GFNN/AFNN output by

choosing a different ODF to Chapter 4, yet a comparison of ODFs was not

provided and would have been useful for future researchers.

9.4 Future Work

Apart from addressing the limitations above, several recommended av-

enues of research are left open for further exploration. Firstly, more work

should be undertaken to improve the AFNN’s response to audio data. The

results presented in Chapter 7 were not as expected. While they make

the case for an AFNN as a more efficient GFNN, the evidence for tracking

changing tempo with AFNNs is not strong. Since that is that case, a qualita-

tive analysis of the output of the AFNN should be done in more detail. In a

similar manner to Grosche, Müller and Sapp’s (2010) study on beat-tracking

errors, one may look closely at examples from MAZ and SMC where the

AFNN performs particularly well or poorly. Comparisons between oscil-

lator models and GFNN models can be made to gain insight into the be-

haviour of the networks. A qualitative study such as this can improve the

frequency adaptation rule proposed in this thesis. One improvement has

been suggested here for investigation (see Chapter 8, Section 8.4).

Work should also be done to extend the AFNN to multi-layer oscilla-

tor networks with both inter-oscillator and inter-layer connections. Velasco
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and Large (2011) provide evidence that doing so could improve the pulse

responses reported in this thesis. However, this would not be a trivial un-

dertaking; as discussed in Chapter 8, Section 8.3 the connection matrix in-

troduced phase offsets into the oscillators which need to be accounted for.

Once these improvements have been made, the next obvious step for

creating an expressively timed interactive music system would be to repeat

experiment from Chapter 4 with the improved AFNN model. The replace-

ment of the GFNN with the AFNN could make the metrical signal clearer,

and therefore simplify the modelling required by the LSTM layer. Also

rather than using a real meanfield output, as was the case in Chapter 4,

one could adopt the weighted phase output (WPO) proposed in Chapter 5.

Perhaps the dimensionality of the AFNN would be reduced enough not to

require WPO or meanfield reductions at all.

This generative system may be incorporated into a multiple viewpoint

prediction model (Conklin and Witten, 1995), with the added improvement

of being continuously timed, rather than discretely timed.

After this has been built and quantitatively evaluated, the system can

be qualitatively evaluated as a generative system, following the steps dis-

cussed in Chapter 8, Section 8.5.

Other applications of the AFNN should be explored too. There is still

a clear need for a beat-tracking system that deals well with expressively

timed rhythm. Incorporating an AFNN into a beat tracker could be a worth-

while endeavour. Indeed there are several potential MIR applications, dis-

cussed in Chapter 8, Section 8.6.

For any researchers wishing to take these tasks on, an open source

Python implementation of the GFNN and AFNN models is provided on

the author’s GitHub repository1.

1https://github.com/andyr0id/PyGFNN
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9.5 Personal Experience

My PhD research began with two fundamental questions: Can musical be-

haviour arise out of synchronised oscillator networks? Can such a system be used

to explore the biological root of musical creativity? As you can tell it has been

quite a journey to get from these conjectural questions to the (hopefully)

more rigorous Computer Science (CS) thesis you have just read. However,

it has not been a complete shift, you can still see the traces of my original

interests scattered throughout the work.

My fascination with nonlinear dynamics, oscillation, and synchronisa-

tion began while reading my Masters in Creative Systems at the University

of Sussex. My first attempt at using neural networks to generate rhythm

was with a Continuous-time Recurrent Neural Network (CTRNN; Funa-

hashi and Nakamura, 1993) drum machine. The CTRNN was artificially

evolved with a fitness function that rewarded drum patterns fitting certain

distributions. Hilariously, the evolved behaviour was simply the drums be-

ing hit one after the other, steadily increasing in tempo. Was this evolved

expressive timing? Certainly not.

It was during an Adaptive Systems lecture that I was first introduced

to the Kuramoto model of oscillator synchronisation (Kuramoto, 1984),

and this inspired me to create Crickets: a self-synchronising oscillator net-

work for rhythm generation (Lambert, 2012). Unlike my CTRNN drummer,

Crickets had much more modest aims and allowed a user to interact with

the network to create some rudimentary rhythms.

At the start of the PhD I was coming from a cybernetics and dynam-

ical systems perspective. I was convinced that a continuous-time rhythm

generation system, facilitated by synchronised nonlinear oscillators like in

Crickets, could provide some insight into the biology of music.

I was already aware of Eck’s (2001) oscillator networks, but the real early

breakthrough came when I read Large’s Neurodynamics of Music (2010), and

first discovered the GFNN. Here was a network of oscillators, canonicalised
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from neurological models, that entrained and resonated in harmonic pat-

terns to rhythm and pitch. It was almost exactly the system I had envi-

sioned.

Shortly after, I identified a knowledge gap in modelling and generating

expressively timed rhythms. I hypothesised that the continuous-time na-

ture of the oscillators, along with their entrainment properties, may allow

expressive timing to be directly captured in the model as phase shifting res-

onance, much like the Kuramoto model. For me this was the perfect place

to make my CS contributions, and I became more interested in modelling

musical timing as a continuous flux. The AFNN was a natural extension

to this idea, using a Kuramoto-like frequency adaptation rule I was able to

extend the entrainment basin of the canonical oscillator, and directly repre-

sent changing tempo in the model.

My personal aim was to bring this around full-circle, back to rhythm

generation, within the time frame of my PhD. Unfortunately I was not able

to achieve this. The additional work in setting up and evaluating an ex-

periment of this nature with full scientific rigour would have required at

least another year to complete. Removing the word ‘generation’ from my

thesis title to focus on the perception and prediction aspects of the model

was very difficult for me, but ultimately it enabled me to write a stronger,

more coherent thesis. In my final year I was happy to receive a positive

peer-review and acceptance at the MUME workshop outlining the plan for

what the generative system may become (Lambert, Weyde and Armstrong,

2016e).

Looking back, I am more than happy with what I have achieved during

these last three and a half years. I have had some amazing experiences, met

some fantastic and inspiring people, and had the opportunity to work on

something that I truly love.
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9.6 Final Thoughts

The opening notion of ‘generating time’ (Roads, 2014) clearly refers to more

stochastic methods of rhythmic generation, relating to similar ideas in gran-

ular synthesis. The contextualised interpretation of this quote would lean

more towards the ability to generate ametric structures without a clearly

discernible pulse. Here it has been taken in a different direction: towards

envisioning musical time as a dynamic feedback loop of metre perception,

expectational prediction, and rhythm production. This loop was termed

metrical flux.

Throughout this thesis systems were described that holistically capture

and model metrical flux. Even though these systems operate in continuous

time, meaning there are no assumptions of tempo or metre, the model is

limited to a single time-series representation of rhythm and an indicator of

tempo change. In reality, musical time, rhythm, and time-varying expres-

sion is a complex, multi-faceted behaviour. Modelling just the rhythmic

onsets will only get us so far before incorporating ideas of other musical ex-

pectations, such as pitch, dynamics, and desired emotional response, which

all exist in a state of interactive flux. This thesis takes some steps along this

path, but there is much more work to be done if we are ever to create an

intelligent musical agent that could perform alongside a human performer

as an equal.
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