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Abstract 

In this paper we investigate shifts in Twitter network topology resulting from the type of 

information being shared. We identified communities matching areas of agricultural expertise 

and measured the core-periphery centralization of network formations resulting from users 

sharing generic versus specialized information. We found that centralization increases when 

specialized information is shared and that the network adopts decentralized formations as 

conversations become more generic. The results are consistent with classical diffusion models 

positing that specialized information comes with greater centralization, but they also show that 

users favor decentralized formations, which can foster community cohesion, when spreading 

specialized information is secondary. 
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Highlights 

• Twitter agriculture social web is modelled with the core-periphery profile approach 

• Network centralization increases when Twitter users share specialized information 

• Network shifts from centralized to decentralized as conversations turn more generic 

• Results identify when Twitter is an information diffusion system or a social network 

• The agriculture social web replicates the top-down model from government to growers 
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Core-periphery or decentralized? Topological shifts of specialized information on Twitter 

 

In this paper we investigate how Twitter networks can shift from a centralized topology, 

characterized by a high core-periphery profile, to a decentralized topology characterized by low 

core-periphery estimates. Classical diffusion models (Rogers, 2010; Schon, 1971) posit that 

centralized networks are more efficient in spreading specialized information to specific 

communities of interest. On the other, recent studies have foregrounded the role of decentralized 

networks in disseminating behavior and facilitating the development of social norms that 

reinforce learning in local networks (Centola, 2010; Centola and Baronchelli, 2015). Centralized 

networks are particularly salient in sectors relying on a small number of specialists who engage a 

highly diverse and continuously expanding body of potential stakeholders, a diffusion system in 

which experts constitute the network core feeding information to the peripheral audience. 

Decentralized systems, on the other hand, facilitate the emergence of new ideas growing out of 

practical experience. Such systems lack a clear core or periphery as the information is more 

widely sourced and shared by all members of the network. 

Twitter is an atypical social network in which the topological characteristics of both 

centralized and decentralized diffusion systems are present (Gabielkov et al., 2014; Kwak et al., 

2010). The basic proposition of this study is that communities of interest assume different 

network formations that optimize the information diffusion from an active core to a relatively 

passive periphery; or inversely, allow the horizontal sharing of information that can be tailored to 

fit with users’ needs where individual decisions on which source to seek information from are 

relatively free, thus facilitating adaptation and implementation by local users. We explore this 

proposition by isolating subsets of generic and specialized tweets posted by several communities 

of users involved in agriculture and subsequently measuring the core-periphery profile of their 

multiple, comparable subgraphs. For the purposes of this study, we refer to subgraphs as a 

defined set of nodes and arcs of the original Twitter graph selected on the basis of specific 

characteristics of the message. 

Agriculture and the more specialized field of sustainable agriculture are an important and 

useful setting in which to study the diffusion of specialized information. Modern agricultural 

systems are experiencing a revolution in how knowledge is disseminated and exchanged among 

networks of outreach professionals, farmers, consumers, and community stakeholders. The 



traditional approach to agricultural extension is highly centralized and relies on a top-down, 

continuum model going from university researchers to cooperative extension agents and finally 

to farmers (Rogers, 2010; Van den Ban and Hawkins, 1996). With internet penetration rates 

growing in rural communities (USDA, 2015), stakeholders are increasingly adopting social 

media and other online forms of communication to share agricultural information across local, 

national, and global networks. Notwithstanding these major developments, the impact of network 

technologies to the diffusion of specialized information remains relatively uncharted, with only a 

handful studies exploring the use of social media within the agriculture and food sectors 

(Chowdhury et al., 2013; Rhoades and Aue, 2010). 

Although agricultural extension services in the United States are historically associated 

with centralization (Rogers, 2010), sustainable agriculture comprises a subset of agricultural 

extension that can benefit from decentralized diffusion systems, with stakeholders increasingly 

adopting digital strategies to complement more traditional outreach systems (Lubell et al., 2014). 

Agricultural extension and outreach remains rooted in specialized information about agricultural 

practices, economic conditions, and other relevant decision-making parameters. This specialized 

information must be applicable at the local level to individual farms and agricultural 

communities, but more general ideas need to be developed at the global level by upscaling 

multiple local experiences and then downscaling information to catalyze local learning. Thus, the 

diffusion of specialized information about sustainable agriculture requires a capacity to 

continuously facilitate a recursive flow of local and global information, a dynamic that can 

benefit from both centralized and decentralized diffusion systems (Valente and Rogers, 1995). 

As a consequence of this duality in communicating specialized agricultural information, 

the different strategies surrounding agricultural extension and sustainable agriculture outreach 

offer an ideal case study to investigate the diffusion of specialized information on social media. 

Sustainable agriculture is a quintessential example of a community where knowledge networks 

must spread information across specialized sub-communities that are concerned with different 

aspects of the complex global food system (Klerkx et al., 2015; Klerkx and Proctor, 2013). The 

overall knowledge network not only has to deal with internal components of the system, for 

example understanding climate change and water management, but must also link the specialized 

system to the broader global culture represented by social media platforms like Twitter. 

Sustainable agriculture is not unique in this way―we expect similar dynamics may apply to 



other broad epistemic communities, e.g. social media users discussing “energy independence,” 

“national defense,” and other similarly specialized topics (Lubell et al., 2011; Lubell et al., 

2014).  

However, sustainable agriculture is a particularly useful domain in which to study the 

dynamics between network structure and knowledge specialization because there is an important 

tradition of knowledge extension among the education and outreach professionals involved with 

agriculture (Clark et al., 2016). The traditional approach to knowledge extension was to deliver 

research findings from universities to farmers and other interested stakeholders via personal 

communication and networks of local extension agents. With the advent of new information and 

communication technology (ICT) and social media, extension professionals involved with 

agricultural knowledge systems (Hermans et al., 2015) are increasingly experimenting with 

online forms of communication and continue to contend with general ideas such as network 

centralization and knowledge specialization that may apply to the specific topics of interest for 

agriculture. 

In the following, we briefly review the literature on diffusion of innovations and detail an 

approach to core-periphery analysis that returns a continuous measurement of the centralization 

observed in the network. In the later sections of the paper we present the results of this study and 

discuss the more general policy implications of our findings. 

 

Specialization and Network Centralization 

Classical diffusion models posit that innovation originates from expert sources and then diffuses 

uniformly to potential adopters who either accept or reject the innovation. The source of 

information is situated at the center of the communication network and adoption is mostly a 

passive act of imitation of the source behavior. This classical model was successfully applied to 

agricultural extension services and the underlying model is derived from Ryan and Gross (1943) 

seminal study that tracked the diffusion of hybrid corn throughout the Midwest. The original 

study identified diffusion agencies, commercial channels, and neighbors as key actors that 

informed farmers of the new seed and affected their rate of adoption. Much agricultural diffusion 

in the United States emerged from this centralized model, in that key decisions about how to 

diffuse them, and to whom, were left to a small number of technical experts (Rogers, 2010). 



 Schon (1971) called into question this seminal model by exploring the reality of 

emerging diffusion systems and criticizing the classical diffusion theory, which he referred to as 

the “center-periphery model.” According to Schon (1971), the assumption that innovations 

originate from a centralized source and then diffuse to users fails to capture the complexity of 

decentralized diffusion systems in which innovations originate from numerous sources, are 

shared among individuals, and evolve as they diffuse via horizontal networks. In such 

decentralized systems, innovations pop up from users at the operational levels (as opposed to the 

core) and new ideas can spread horizontally via peer networks, with a high degree of re-

invention occurring as innovations are modified by users to fit their conditions. The topology of 

decentralized systems shares a remarkable resemblance with social networks, which allow 

information diffusion to be widely shared by adopters who also serve as their own change agents 

(Centola, 2010; Gibbons, 2007). 

Diffusion of innovation theories thus comprehend a spectrum from centralized, 

information diffusion systems to decentralized, horizontal networks. Rogers (2010) argued that 

centralized diffusion systems were defined by a top-down diffusion from governmental agencies 

and technical experts to local users and often displayed a low degree of local adaptation and 

sharing of innovation among adopters, whereas decentralized diffusion systems were 

characterized by peer diffusion through horizontal networks and a high degree of local 

adaptation and sharing among adopters. These models of diffusion of innovations were 

subsequently revised and applied to the diffusion of new communication technologies, with 

Valente (1996) presenting a threshold concept to provide a social network formulation to the 

diffusion of innovations and Rice (1987) arguing that computer networks facilitated the diffusion 

of information to organizations’ environments. 

Based on this history, it is apparent that literature exploring the link between network 

structure and knowledge distribution is centered on the extent to which decentralized networks 

are more effective at distributing information, specialized or otherwise. The relationship between 

network structure and task performance was found to be dependent on the type of task performed 

within organizations (Ahuja and Carley, 1999; Cummings and Cross, 2003), with non-routine 

tasks performing better in less hierarchical networks compared with more routine or simpler 

tasks which benefit from hierarchy, in line with the postulates of classical diffusion of 

information theory. Transposed to our empirical study, we hypothesize that as the proportion of 



specialized information being shared increases, the more likely Twitter communities will be to 

display centralized network formations. 

 

Twitter: Centralized Information System or Decentralized Social Network? 

Diffusion of innovation theories have offered a fertile ground for the study of “influentials” and 

the spread of novel information on social media, with a range of studies exploring potential 

metrics to assess users’ influence and passivity based on their information-forwarding activities 

(Bakshy et al., 2011; Romero et al., 2011; Wu et al., 2011). These seminal theories also echoed 

the literature of social networks and the formal definition of small-world networks. Watts and 

Strogatz (1998) and Newman (2000) designed a mechanism to investigate interpersonal 

influences through high clustering coefficient and small path length. Such a network topology 

deviates from centralized networks that are mostly optimized for information diffusion from a 

clearly-defined core to a large periphery of nodes. Compared with decentralized, well-structured 

small-world networks, diffusion of innovations was found to be slow in regular networks and 

fast but sporadic in random networks (Delre et al., 2007). 

Decentralized networks proved particularly useful in the propagation of rumor and the 

spread of diseases (Valente, 1995). Albrecht and Ropp (1984) found that workers were more 

likely to report talking about new ideas with colleagues with whom they also discussed personal 

matters, as opposed to following prescribed channels based on hierarchical role relationships. 

This body of scholarship led to developments such as targeted advertising directed at cohesive 

subgroups who were next in the line of innovation adoption. It also contributed to the theoretical 

debate by suggesting that social network characteristics which influence the diffusion of 

innovations include centrality, density, and particularly reciprocity; a feature markedly absent of 

Twitter social networks, in which network topology presents characteristics typical both of social 

networks and of highly centralized diffusion systems (Wu et al., 2011). 

Social media literature has long debated whether Twitter is an information diffusion 

system, characterized by a skewed distribution of links and low rate of reciprocal ties (Bakshy et 

al., 2011; Wu et al., 2011), or a social network, structured around social relations, with a higher 

incidence of reciprocal ties and a distribution of outgoing links similar to that of incoming links 

(Newman and Park, 2003). The debate hinges on the overall network structure observed on 

Twitter and is relevant to organizations and users seeking to optimize the reach of their message 



in the social network. If an outreach organization uses Twitter primarily as an information 

diffusion system, then to be effective, it is imperative for the community to identify 

“influentials”—i.e., users that belong to a central core and perform the role of hubs relaying 

information to the periphery of the network. On the other hand, if it is being used primarily as a 

social network, then outreach strategies should involve the development of many local 

relationships and dense network structures with reciprocal ties and transitive triangles will be 

beneficial. 

 

Metrics of Centralization: Core-Periphery Analysis 

The definition of core-periphery is intuitive and comprehends the union of a dense core with a 

sparsely connected periphery. More nuanced approaches tend to contrast, at one extreme, one 

homogeneous group with a large set of undifferentiated actors, and at the other, a two-class 

partition of nodes with one class being the core and the other being the periphery (Boyd et al., 

2006). The core-periphery structure was only relatively recently given a formal definition by 

Borgatti and Everett (2000) and the bulk of the scholarship remains rooted on economics 

research, social inequality, and power dynamics between elites and non-elites (Csermely et al., 

2013; Holme, 2005; Rombach et al., 2014). Core-periphery analysis has also been applied to the 

structural patterns of Usenet groups (Choi and Danowski, 2002), dynamics of protest movements 

(Barberá et al., 2015), the spatial distribution of ties in social networks (Volkovich et al., 2012), 

and knowledge networks of wine producers (Giuliani, 2005). While these studies rely on 

blockmodeling and k-shell decomposition (Dorogovtsev et al., 2006; Žnidaršič et al., 2017), we 

rely on the core-periphery profile approach (Della Rossa et al., 2013) which returns a global 

network measure of “core-peripheriness”—i.e., an indicator of network centralization. 

Drawing from this body of scholarship, we hypothesize that the observed networks will 

exhibit increasingly higher estimates of core-periphery structure as users relay more specialized 

information (i.e., agriculture-related information) compared with the baseline of generic, non-

agriculture-relevant information shared by the same set of users. In short, we expect the network 

topology to display structural shifts depending on the type of information that is shared among 

its users. Specifically, we suggest that the more specialized the information, the more diffusion 

will rely on core users surrounded by brokers who export information to the broader public. This 

framework describes a process of information diffusion that often deviates from patterns 



observed in social networks, as the network behaves much like a broadcast system with 

pronounced amplification effects for information dissemination (Myers et al., 2014). Compared 

with decentralized systems, it stresses the diffusion of information from experts and elite users 

towards ordinary users, foregrounding classical diffusion models and underplaying the potential 

for horizontal information sharing allowed by social networks. 

Lastly, a growing body of scholarship has explored the role of brokers in spreading 

innovation between Twitter communities (Frahm and Shepelyansky, 2012; Mantzaris, 2014), 

particularly in reference to nodes that do not belong to any community but that may bridge 

different groups (Shore et al., 2016; Takaguchi et al., 2014). Within this line of inquiry, 

Grabowicz et al. (2012) explored the relationship between weak, intermediary, and strong ties on 

Twitter and found it to be largely structured around groups, with personal interactions more 

likely to occur on internal links to the groups, and new information more likely to be channeled 

through links connecting different groups. While these studies have advanced the understanding 

of information diffusion across Twitter communities, they are largely focused on information 

diffusion between non-specialized communities. With this new analysis, we seek to understand 

how communities of interest interact with specialized and generic information. We explore how 

network formations within these communities are affected by the type of information being 

shared. As such, we do not consider brokerage across communities or inter-community 

information diffusion, but only the relationship between information diffusion and the type of 

content transmitted within communities. 

 

Hypotheses 

With this study we test the hypothesis that the topology of Twitter network becomes increasingly 

more centralized as communities share more specialized information. We start by calculating the 

core-periphery score of the entire network and move forward towards the ten largest 

communities of interest within this network identified with the Walktrap community detection 

algorithm implemented in igraph, a max-modularity method based on random walks to find 

communities of densely connected vertices (Csardi and Nepusz, 2006; Pons and Latapy, 2005). 

These endogenous communities reflect areas of agricultural expertise with limited overlap across 

each topical subnet. Each community also presents a common group of users that tweeted both 



agriculture and non-agriculture-relevant tweets, thus allowing for estimating the core-periphery 

structure of the network in the absence or presence of specialized information. 

Our substantive research questions are informed by the literature on social media and 

diffusion of innovations and inquire about the process by which specialized information spreads 

on Twitter. Does it spread from user to user in a decentralized fashion? Does it depend on 

influential users positioned at the center of the network? To observe these effects, we modelled 

and estimated the core-periphery profile of multiple, comparable subgraphs of the network that 

included the same set of users but resulted from messages that were either specialized (i.e., 

agriculture-relevant) or generic (i.e., non-agriculture-relevant). For the purposes of this study, the 

variation in core-periphery estimates are only meaningful if they refer to the same set of users 

but are generated by substantively different sets of information. By calculating the core-

periphery profile of multiple subgraphs resulting from the exchange of specialized and generic 

information, and testing the significance of each test against a set of 100 randomized comparable 

networks, we test the following hypotheses to advance our understanding of how sharing 

specialized information on Twitter alters its network topology: 

H1. The network structure of the Twitter agricultural social web is centralized and displays 

strong patterns of core-periphery; 

H2. The network structure of Twitter agricultural social web becomes more centralized when 

users share specialized as opposed to generic information; 

H3. Specialized, hashtag-based subnetworks are more centralized than generic, hashtag-based 

subnetworks. 

 

Data Sampling, Representation, and Generalizability  

The goal of our research design was to identify the agricultural network centered on the 

University of California Division of Agricultural and Natural Resources (UCANR), which is the 

organizational unit that coordinates Cooperative Extension in California comprising extension 

faculty, extension specialists, and extension agents dedicated to outreach activities related to 

agricultural and natural resources. UCANR and the University of California system comprise 

one of the largest, most sophisticated, and most experienced agricultural outreach systems in the 

world. On that basis, the UCANR provides an excellent case study to investigate the diffusion of 

specialized information. 



We relied on a census-based approach to collect data, starting with 153 Twitter users 

identified by UCANR as important sources of information on the topics of agriculture and 

environment which are central to the mission of the organization. This purposeful research 

design seeks to begin with an exogenously determined community focused on specialized 

agricultural topics and related subfields of agricultural expertise. We believe this approach is 

appropriate to isolate an initial segment of the Twitter user base that is of interest for the 

purposes of this study. This initial set of users formed the seed nodes from which we snowballed 

data collection to the larger group of users following or being followed by these users, rendering 

a population of 59,761 Twitter accounts that tweeted a total of 285M (285,628,862) messages 

since first joining Twitter.  

This sample is intended to capture a specific group focused on California Agriculture 

where notions of expertise and communities of interest play a pivotal role. From the 59,761 

accounts in the population, we managed to retrieve the timelines of 91% of the population 

(54,422 accounts) and geographic information from 73%. These users denote the networks nodes 

we explore in this study. The results reported in the next sections are limited to our sampling 

strategy, focused on the ANR-centered community of 153 users and their immediate network of 

followers and followees. Although limited to the University of California Division of 

Agricultural and Natural Resources, we believe this approach provides a defensible and relevant 

sampling of a knowledge network dedicated to the distribution of specialized information. 

From the total of 5352 users left out of the network, we found that 501 accounts have yet 

to tweet a single message and 4894 accounts were protected or have been deactivated. Finally, 

43 accounts were both protected and had not tweeted any message at the time of data collection. 

In addition to these silent accounts, Twitter Rest API limits access to a maximum of 3200 

statuses (tweets) per user. The target population of 59,761 users includes 13,112 accounts that 

tweeted over this limit. This technical limitation imposes considerable challenges to retrieving 

complete sets of messages posted within a specified time-frame. As a result, we managed to 

retrieve only 65M (65,294,710) tweets from 54,422 users, as opposed to 285M potential tweets. 

These limitations are not only to be expected, but also experienced by most Twitter research and 

our conclusions are conditional on these constraints (Liang and Fu, 2015). 

The temporal series is subject to variations as only a portion of the timelines violated 

Twitter restriction of 3200 tweets per user. We addressed this problem by identifying the average 



cut-off date for users that posted over 3199 tweets and removed messages posted prior to this 

date. We resorted to this procedure to filter the 65M tweets collected from Twitter API and 

ended up with a total of 43M messages. We subsequently removed messages that were not 

retweets or @-mentions—messages from which network edges are later drawn as proxies for 

information diffusion—and further reduced the dataset to 26M messages. 

Figure 1 shows a histogram of messages binned by month, with a cut-off date at the end 

of 2013 (Figure 1a) that includes the complete set of messages tweeted both by filtered users 

(>3200 tweets) and unfiltered users (<3200 tweets). Although the period from the end of 2013 to 

2015 includes a comprehensive set of tweets posted by this community, we found inconsistencies 

in the temporal distribution of tweets. Kernel estimation shows that the data drops off artificially 

at the upper end of the time series. This is likely a result of user’s timelines being collected 

sequentially and thus at different points in time. In addition to that, we anticipated that older 

messages would fare relatively better in terms of retweets compared with newer messages, as 

they would have benefitted from a longer period to spread throughout the network. 

 

 

Figure 1: Messages retrieved binned by month (a) and sampled data binned by week (b) 

 

We addressed this issue by selecting an intermediate period that was unaffected by variations 

resulting from data collection (Figure 1b). This period comprises the entire year of 2014 and 

includes a total of 3.7M (3,691,342) tweets. Our resulting dataset includes messages posted in 

2014 and the analysis reported in this paper refers to this subset of tweets. The frequency of 

tweets binned by week is shown in Figure 1b, with similar frequency distributions across filtered 



and unfiltered users. We expect these procedures to have addressed the restrictions imposed by 

Twitter REST API and to have provided a comprehensive set of messages posted by our 

population in 2014. In summary, our data collection is informed by Liang and Fu (2015) and 

relies on a purposive sample of Twitter users (egos) extended to accounts listed as their followers 

and/or followees. 

The last step in data collection consists of obtaining the profiles and the timelines of the 

selected users (egos and alters) and processing the data to generate a network with various edge 

and node properties. We expect this approach based on sampling of users, rather than sampling 

of tweets, to provide a more reliable and replicable approach to analyzing individual and 

community-level social media behavior. We relied on the sampled data to graph a network of @-

mentions and retweets connecting users, with AB when B retweets A and AB when A 

mentions B (thus following the directionality of the information flow). In both cases, we draw an 

@-mention or retweet edge connecting two accounts that have posted at least one message with 

specialized information at some point in the year of 2014. These sampling processes rendered a 

network of 4.4M edges and 32K nodes. Figure 2 details the process of data collection, 

processing, and analysis, and describes the resulting network. 

This approach to data collection is thus based on a specifically selected community of 

users, with the subgraphs generated for hypothesis testing being not only of comparable size, but 

resulting from patterns of interaction across regular communities of users. Specialized, 

agriculture related subgraphs are often less dense compared with their generic counterparts, but 

they result from patterns of information exchanged between the same set of users and observed 

during the same timeframe. This represents a considerable departure from hashtag-based studies, 

which necessarily filter information on contextual markers and thus include entirely different 

populations. In short, we expect this approach to data collection to allow us to better understand 

how Twitter network structure changes as users discuss different sets of topics. This is only 

possible once we can draw from the same population, with network nodes remaining unchanged 

over the multiple iterations of hypothesis testing.  

 



 

Figure 2: Data collection, mining, and network analysis 

 

 

 



Methods: The Core-Periphery Profile 

In this work we rely on the approach introduced by Della Rossa et al. (2013) to estimate the 

core-periphery structure of a network. By elaborating the dynamics of a random walker, a curve 

(the core-periphery profile) and a numerical indicator (the core-periphery score) are derived. The 

approach measures the extent to which the network is organized in core and periphery or, 

inversely, in an homogeneous structure. Simultaneously, a coreness value is attributed to each 

node, qualifying its position and role. This approach is fully applicable to directed and weighted 

networks and provides improvements over methods that define a global indicator of core-

periphery based on core nodes having high closeness centrality. It also avoids explicit and 

artificial partitions in subnetworks (e.g., blockmodeling or k-shell decomposition) and issues 

related to arbitrarily defining a notion of shortest-path distance in weighted networks. 

Compared with other methods that also explore core-periphery in networks quantitatively 

(Verma et al., 2016; Zhang et al., 2015), the core-periphery profile approach provides an 

estimate of core-periphery at the global network level—the “cp-score”—which can be leveraged 

to study shifts in the network topology. This approach relies on the notion of persistence 

probability αS of a subnetwork S, which is the probability that a random walker currently in any 

of the nodes of S remains in S at the next time step (Della Rossa et al., 2013; Piccardi, 2011). 

Naturally, αS=0 when S is a single node (provided no self-loop exists) and αS=1 when S is the 

entire network. In an ideal core-periphery structure (Borgatti and Everett, 2000), peripheral 

nodes are not connected to each other but are only linked to core nodes. Thus, αS=0 for any S 

composed of peripheral nodes only. However, in real-world networks such as the one 

investigated in this study a weak (but non-zero) connectivity exists among the peripheral nodes. 

This suggests a heuristic strategy for ranking the nodes from the periphery to the core of the 

network. 

We start by the node i with minimal strength, since typically peripheral nodes are the 

least connected ones. Then we generate a sequence S1 ⊂ S2 ⊂ ⋯ ⊂ Sn of subnetworks, where 

S1={i} is the initial node and Sn = {1, 2, …, n} is the whole network, by adding at each step k the 

node attaining the minimal possible value of the persistence probability αk of the subnetwork Sk. 

The obtained sequence 0=α1≤ α2≤...≤ αn=1 is the core-periphery profile of the network and αk is a 

coreness measure of the node inserted at step k. By this procedure, we grow the peripheral set by 

adding one node at a time, trying to keep it as weakly connected as possible as the periphery 



should be. By keeping the persistence probability αk as small as possible, we leave the inclusion 

of the highly-connected nodes to the last steps, since they would otherwise sharply enhance 

connectivity. As a result, highly connected nodes are typically to be found at the core of the 

network.1

 

Figure 3: The core-periphery score C is the area between the core-periphery profile of a given 

network and that of the complete (all-to-all) network, as shown in the shaded area. The value is 

normalized to 0≤C≤1, so that C=0 for the complete network and C=1 for the star network. 

                                                           
1 Typically the measures αk and k-coreness are positively correlated and consistent for most nodes, but anomalous 

nodes may exist which reveal peculiar features: low k-coreness with high αk denote peripheral nodes acting as 

bridges among different network regions; high k-coreness with low αk denote central nodes (in the k-core sense) 

which however fail in connecting core to periphery. 



 

The complete (all-to-all) network and the star network are extreme cases for the core-periphery 

profile. The former has no core-periphery structure as all nodes are equivalent, so that αk=
(𝑘−1)

(𝑛−1)
 

grows linearly from 0 to 1, while the latter is the most centralized network and has α1= α2=...=αn-

1=0, αn=1. Any other network falls somewhere between these extremes, and with this procedure 

we quantify the extent to which the network is centralized by the core-periphery score C (cp-

score henceforth). C is the normalized distance of the core-periphery profile from that of the 

complete network, so that C=0 for the complete, all-to-all network, and C=1 for the star network. 

As shown in Figure 3, C becomes larger as we consider networks with more pronounced core-

periphery structure and stronger centralization. 

Core-periphery computations were performed in MATLAB and an implementation in R 

(2014) is being developed. The results of the core-periphery profile were paired with 

unsupervised content analyses of the text corpora. We introduced two lexicon-based classifiers to 

identify messages dedicated to agriculture and sustainable agriculture. As tweets often include 

URL links without which it is difficult to determine the topic addressed by each tweet, we 

retrieved the webpage title of each URL in the dataset and ran the dictionary-based classifiers 

over the combined corpus of tweet and webpage title (when available). The agriculture classifier 

is based on a set of 37 terms, while the sustainability classifier relies on a set of 30 keywords, 

bigrams, and tokens. Each classifier returns a score based on the concentration of such terms, 

bigrams, keywords, and tokens relative to the number of words in the tweet or the number of 

words in the tweet plus the webpage title (when a URL link was available). 

Results of the randomized cross validation of the classifier (Powers, 2011; Sing et al., 

2005) yielded a mean accuracy of 80 and an area under the ROC curve of .81 in distinguishing 

between agriculture and non-agriculture relevant tweets. We ran the classifiers on the set of 

9,627,146 tweets and found that only 12.09% (1,164,014 tweets) of the data was positively 

associated with agriculture and 5.48% (527,167 tweets) with sustainability. The classifier scores 

were subsequently combined and transformed into a logical (binary) vector. The resulting vector 

identifies agriculture relevant messages (specialized information) and allows for modelling 

subgraphs of the network based on specialized and generic information tweeted by the 

community. Even within such highly-specialized communities, communication about ordinary 

topics remains profuse, with sports being a common subject across communities. The tests are 



thus designed to identify shifts in the topology of the network as discussions within each 

community move from generic to specialized. 

The tests reported in the following section refer to sets of networks comprising 

specialized/non-specialized information in addition to 100 randomized networks for each 

subgraph. This step was necessary to evaluate the significance of the cp-scores measured. For 

each one of the 10×2 (specialized/non-specialized) or 10×4 (hashtags) networks, we first check 

the statistical significance of the cp-score with respect to randomization. For each test, we create 

and write a sample of 100 random networks with the same strength of each individual node (i.e., 

identical sum of the weights of the incident links). This null model, a standard approach in the 

literature and the basis of the definition of modularity (Newman, 2010), allows us to assess the 

significance of the cp-score with respect to randomization. We quantify the significance of the 

cp-score C by computing 𝑧 =
𝐶 − µ𝐶

𝑧𝐶
 where µC and zC are mean and standard deviation of the cp-

scores of the 100 random networks. A large z (e.g., z>2) indicates that the network has a 

significant, non-random core-periphery structure (i.e., it is self-organized in a more centralized 

form than its random counterparts). 

 

Results 

We started by categorizing the communities identified by the community detection algorithm 

into ten specialized topical subnetworks. These ten large modules account for 80% of the graph 

(32,152 users) and the remaining, more sparsely connected nodes, are not considered in the 

following analyses. Consistent with previous results (Bastos et al., 2013), we found that the 

communities tweeted dominant hashtags that could be leveraged to distinguish substantive 

thematic communities. We used our expert judgment, and the hashtags tweeted within each 

community, to identify their substantive topic of expertise subsequently labelled as the 

following: climate change, food policy, water management, agriculture, plant sciences, politics, 

international development, viticulture, gardening, and animal welfare. 

Next we computed the core-periphery profile of the entire network (32K users) and found 

that it presents a clear pattern of core-periphery, with cp-score C=.79. These results reject the 

null hypothesis of a decentralized network marked by strong peer-to-peer dynamic and support 

hypothesis H1: the network structure is centralized, displays clear patterns of core-periphery, and 

strongly departs from that of a complete (all-to-all) network, tending instead towards a star-like 



topology. To further test hypothesis H1, we subsequently ran the core-periphery test on each of 

the ten communities and found significant variations across groups. The variation is not 

dependent on community size and it is significant for each of the ten topical communities, which 

present a higher core-periphery estimate compared with a similar, randomly generated network. 

Maximum and minimum core-periphery scores C across communities were .73 and .87 

(mean x̄=.78, median x̃=.77, and standard deviation σ=.04), compared with .60 and .72 for the 

randomized subgraphs (x̄=.67, x̃=.68, and σ=.03). While the average C core-periphery score 

observed across communities is similar to that observed on the entire network (C=.78 and 

C=.79, respectively), the variance observed across communities suggest that higher core-

periphery estimates are associated with the level of expertise attached to each of the 

communities, particularly in view of the high estimates observed in highly specialized 

communities like water management and viticulture (.80 and .82, respectively). This is in sharp 

contrast to more generic networks such as politics and gardening, in which core-periphery 

centralization scores range from .73 to .74. Although the difference between C core-periphery 

score in specialized topics and generic information appear small, they are significant with respect 

to randomization. Figure 4 summarizes these findings and shows the temporal distribution of 

hashtags across communities, with an indication of the number of nodes, the observed core-

periphery estimate, and the cp-score of a comparable, randomized network. 

We subsequently ran multiple core-periphery analyses to test the hypothesis that higher 

estimates of core-periphery structure are to be observed when, within each of the 10 

communities, the discussion shifts from specialized, agriculture-driven versus generic, non-

agriculture-related information (H2). For this test, we relied on the unsupervised text classifiers 

described above which ranked messages from 0 (generic) to 1 (specialized). Any message 

scoring above zero was identified as agriculture relevant, thus transforming the continuous scale 

to a binary one. Based on such classification, we generate two subgraphs of roughly comparable 

size (henceforth referred to as “aggie” and “non-aggie”) and calculate the core-periphery 

centralization for each of the communities and their comparable, randomly generated network.  



 

Figure 4: Temporal distribution of hashtags across communities. Labels show number of nodes, 

observed core-periphery estimate, and the randomized estimate for each subgraph 

 



The rationale of this procedure is to test hypothesis H2 that more specialized topics are likely to 

present more pronounced core-periphery centralization estimates. As mentioned above, for each 

iteration of our tests we first compare the observed values of core-periphery against the observed 

values of a random simulation. In the 10×2 specialized/non-specialized networks (aggie vs. non-

aggie), the results are consistently significant with respect to randomization, with z never falling 

below 5.2. On the basis that the twenty subgraphs generated during this iteration have presented 

significantly higher core-periphery estimates compared with their random counterparts, the 

results support Hypothesis H2 as each specialized, agriculture-defined subgraph also presented a 

higher estimate of core-periphery profile compared with its generic, non-agriculture defined 

subgraph.2  

While specialized subgraphs presented a mean C estimate of .81 (x̃=.80, σ=.04), the 

generic counterpart reported a mean C estimate of .78 (x̃=.77, σ=.04). The hypothesis that the 

two means are equal can only be rejected with mild significance (p=0.138, two-sample t-test), 

which is unsurprising given that the two distributions broadly overlap. However, when 

performing a cp-score pairwise comparison community by community (i.e., aggie vs. non-aggie), 

we found that the former is larger in 10 cases out of 10. In addition to that, we performed a 

binomial test to check the hypothesis that aggie and non-aggie subnetworks have the same 

probability of having a larger score. We believe the binomial test is a more appropriate for this 

case, chiefly because the pairwise comparison is performed over networks of comparable size. 

The results of the binomial test strongly rejected the hypothesis that the two means are equal 

(p=0.5^10). 

The difference in core-periphery estimates is indicative of the overall impact of 

specialized information to the network structure formed by the interaction of Twitter users. 

Figure 5 presents a detailed account of these results, with a higher core-periphery estimate for all 

ten aggie-relevant subgraphs compared with their generic subgraphs. Each subgraph is plotted 

over the geographic grid of continental USA for easy comparison between specialized, 

agriculture subgraphs and generic, non-agriculture bounded subgraphs. Many communities also 

featured substantial international linkages, which highlights the potential for social media to 

                                                           
2 The cp-scores of the 10 aggie and the 10 non-aggie networks are, respectively, A=[0.89, 0.80, 0.83, 0.78, 0.79, 

0.78, 0.83, 0.83, 0.74, and 0.80] and B=[0.87, 0.78, 0.80, 0.76, 0.76, 0.73, 0.79, 0.81, 0.73, 0.76]. 



increase the geographic range of specialized communication relative to traditional interpersonal 

outreach strategies. 

Lastly we test hypothesis H3 by generating a total of forty subgraphs. For each of the ten 

communities, we selected four hashtags that are particular to that community, two of which were 

judged to be very specialized and two very generic.3 Therefore, two of the hashtag-based 

subgraphs refer to specialized conversations and two refer to generic topics of conversation 

within that community. All hashtags selected for generating subgraphs were selected from the 

list of ten most frequently used hashtags within each community. We repeated the procedure for 

each community, hence rendering 10×4 subgraphs—twenty subgraphs of specialized 

conversations and twenty subgraphs of generic interactions. For each iteration of this test we also 

calculate the core-periphery profile of a set of 100 randomized, comparable network. Once again, 

a large z (e.g., z>2) indicates that the network has a significant, non-random core-periphery 

structure. In the 10×4 hashtag-based subgraphs, z is larger than 2 in 38 cases out of 40. This 

shares a resemblance with the previous reported experiment, but it was specifically designed to 

test hypothesis H3: that the network structure of specialized, hashtag-based subnetworks is more 

centralized and that the network is increasingly structured around a core and a periphery as the 

topic of conversation becomes more specialized. 

The results of this last experiment confirmed hypothesis H3, that increasing 

specialization of topics is associated with star-shaped network formation, with the specialized 

hashtag-based subgraphs exhibiting significantly higher centralization than their generic 

counterparts. Figure 6 unpacks these results, with the reference line in green indicating the core-

periphery estimate for the entire network. The core-periphery estimates for subgraphs of 

specialized conversation are shown in blue and present consistently higher core-periphery scores 

C compared with the subgraphs of generic conversations shown in magenta. Average core-

periphery estimates for generic subgraphs are equal to the core-periphery estimate of the entire 

network (x̄=.80, x̃=.79, σ=.05). In sharp contrast, this baseline value (C=.79) is the absolute 

minimum core-periphery estimate observed for specialized subgraphs, with much higher 

                                                           
3 We selected the following forty hashtags: Climate change: california, climatechange, ff, peoplesclimate; Food 

policy: edible2014, ff, gmo, recipe; Water management: cadrought, oakland, saveourwater, sfgiants; Agriculture: 

farmbill, ff, harvest14, organic; Plant sciences: ebola, entsoc14, ff, lamg14; Politics: environment, ferguson, ff, 

obamacare; International development: africa, climatechange, ff, globalag; Viticulture: ff, sonomachat, winelover, 

ww; Gardening: americangrown, ff, photography, plantchat; Animal welfare: dogs, ff, onehealth, veterinary. 



quartiles (Q1=.84 and Q3=.90, respectively) and an average of C=.87 across all communities 

(x̄=.88, x̃=.87, σ=.04).4 The pairwise comparison, community by community, of the mean of the 

two specialized cp-scores against the mean of the two generic cp-scores yields a larger value for 

the former in all 10 cases. 

 

 

Figure 5: Core-periphery estimates for specialized (aggie) vs. generic (non-aggie) subgraphs. All 

values are significant with respect to randomization 

 

The few exceptions to this trend were found in the communities water management and 

gardening, where one of the selected generic hashtags (#sfgiants and #photography, respectively) 

scored higher than the one of the specialized hashtags (#cadrought and #americangrown, 

respectively). Other negative results include the hashtag #ff, which was selected only due to the 

lack of other large generic hashtags in the communities. Although #ff is in no way a specialized 

topic of conversation (it stands for “Follow Friday”), it is potentially problematic because it is 

designed to tell other users whom to follow every Friday, and therefore can constrain the 

network to a core-periphery structure. Yet, subgraphs based on #ff scored lower than specialized 

                                                           
4 The cp-scores of the 20 specialized networks are A=[0.83, 0.81, 0.89, 0.79, 0.97, 0.87, 0.90, 0.85, 0.84, 0.79, 0.87, 

0.86, 0.88, 0.83, 0.94, 0.92, 0.94, 0.90, 0.88, 0.83]. The cp-scores of the 20 generic networks are B=[0.78, 0.71, 

0.78, 0.78, 0.94, 0.82, 0.82, 0.73, 0.80, 0.78, 0.86, 0.81, 0.83, 0.78, 0.85, 0.75, 0.79, 0.78, 0.84, 0.78]. The two 

distributions are more differentiated compared to the previous test (H2) and the statistical hypothesis that the two 

means are equal can be rejected even at less than 1% significance level (p=8e-5). The difference of the two means is 

0.0690 and the 95% confidence interval of this difference is completely above zero [0.0374, 0.1006]. 



hashtags in seven out of the nine tests. Within the communities agriculture and politics, #ff 

outperformed one of the specialized hashtags (#harvest14 and #ferguson, respectively). 

Despite these caveats, from the forty tests based on subgraphs of generic (20) and 

specialized (20) hashtags, only four generic subgraphs exhibited a higher core-periphery score 

than their corresponding specialized subgraph. Some specialized subgraphs based on agriculture-

relevant subtopics presented extraordinarily high core-periphery estimates, particularly 

#saveourwater within the water management community, which presented a core-periphery 

profile of .97 and thus very close to a perfect star network. The results therefore confirm that 1) 

these networks are significantly structured around a core and a periphery; 2) specialized, 

agriculture-relevant subnetworks are more centralized than non-agricultural, generic 

subnetworks; and 3) specialized, hashtag-based subnetworks tend to give shape to more 

centralized networks compared with generic, hashtag-based subgraphs. 

 

 

Figure 6: Core-periphery C scores of specialized (blue) and generic (pink) hashtag-based 

subnetworks and the observed C scores of random simulations. The green dotted line shows the 

core-periphery C score of the entire network. All values are significant with respect to 

randomization 

 

 



Discussion 

The results reported herein indicate that the entire network shows strong patterns of core-

periphery shifts due to a dense, cohesive core and a large sparsely connected periphery (Borgatti 

and Everett, 2000). The communities providing specialized agricultural information become 

significantly more star-shaped as users tweet, retweet, or comment on messages relaying 

specialized information. The shift from more horizontal, decentralized topologies in which users 

interact and discuss generic topics (e.g., #sfgiants) towards a hierarchical, star-like structures in 

which information cascades from a few accounts to a large crowd of peripheral users is 

consistent with classical diffusion models, which posit that decentralized diffusion system are 

more likely to emerge when the innovations being diffused does not require high levels of 

technological expertise. 

As such, Twitter networks become more centralized and structured as an efficient 

information broadcast system when users change their conversation from generic to specialized 

topics. Consistent with classical diffusion models, this latter type of information originates 

mostly from mainstream media, individual specialists, government and non-government 

agencies, and research groups that appear prominently in the core of the network, but whose 

interaction is limited and mostly broadcast their information to large groups of users in the 

periphery of the network. The results also lend support to current attempts to establish whether 

Twitter is an information diffusion system with a skewed distribution of links and low rate of 

reciprocal ties or a social network structured around social relations. The structure of Twitter 

communities dedicated to agriculture seems remarkably flexible with the results indicating that 

patterns both associated with information diffusion system and with social networks may emerge 

as a function of the type of content transmitted within communities. 

 This study has important implications for policymakers and outreach professionals 

dedicated to the real-world diffusion of specialized information on Twitter. Firstly, our results 

indicate that Twitter is not much of an equalizer when it comes to the diffusion of specialized 

information, as the communities are not decentralized and instead tend towards a star-like, 

centralized network typical of broadcasting systems. Secondly, social media professionals 

managing Twitter accounts should consider the highly influential core through which most of the 

network flow passes and the hashtags used by these sources. Such professionals are faced with 

the challenge of monitoring and engaging with users from different sectors of society that play a 



critical role in shaping this diffuse, but effective core comprising both locally influential users 

and globally dominant players. Thirdly, although the seed nodes are prominently positioned in 

the core of the network, they are superseded by media outlets that are effectively the central 

actors driving the information flow. In view of that, social media-based outreach would benefit 

from pragmatically engaging with the mainstream media embedded to the network core. 

Outreach professionals might find these results unsurprising given the historically high 

level of centralization found in the agricultural extension services in the United States (Rogers, 

2010; Valente and Rogers, 1995) and the difficult task of establishing horizontal channels of 

information exchange against the backdrop of increasingly specialized information. This 

explains not only the high cp-score observed at the top level of the network, but the significant 

increase of core-periphery scores C observed in each of the communities as they turn their 

attention to specialized information. Nonetheless, these results offer important insights for 

agriculture outreach and extension seeking to optimize the reach of their message in the social 

network. Organizations resorting to Twitter primarily as an information diffusion system are 

likely to benefit from engaging with the central core that relays information to the periphery of 

the network. On the other hand, outreach professionals seeking community cohesion are likely to 

benefit from outreach strategies that seek to create new connections among their network of 

followers. 

These professionals can develop different strategies to engage with individual cores 

pertaining to each of the specialized communities. Given the context of specialization, core users 

are likely to require tailor-made tweets that suit their policy agenda to engage with the content. 

Outreach professionals can also minimize or refrain from using too many hashtags which can tire 

the core audience. As shown in Figure 4, conversations across communities are mostly 

fragmented across various hashtags and the divided public attention is a deterrent in actively 

engaging the core. A higher rate of success cases is found in communities using hashtags that 

have gained traction with the community (e.g., #wine for viticulture and #cawater for water 

management). Consequently, outreach and social media professionals are likely to benefit from 

using recognizable hashtags that route specialized conversations to and from the core, tailoring 

their messages to reach larger audiences by @-mentioning central users, including web links into 

their posts, and attaching images and multimedia features to the message. These simple practices 



can minimize the likelihood of the network falling back to highly centralized formations in 

which users interact little and contribute even less. 

 

Conclusion 

In this paper we analyzed the relationship between Twitter network structure and the diffusion of 

specialized information. We relied on a snowball-based census of the California agriculture 

social web to identify the boundaries of multiple communities invested in agriculture and 

retrieved a sample of tweets comprising both specialized and generic information shared by this 

population. After identifying ten endogenous communities organized around topical themes, we 

controlled for the type of information being shared by users and tested the hypothesis that the 

diffusion of specialized information leads to stronger patterns of core-periphery. The significant 

estimates of core-periphery have interesting implications on how the information flows among 

users, and when inducing the communities to 2×10 subgraphs of specialized versus non-

specialized networks, we found that in all instances a more pronounced core-periphery structure 

emerges from specialized, agriculture-related subgraphs. 

 We subsequently identified a set of 4×10 hashtags associated with specialized and 

generic conversations and defined forty subnetworks. In most instances, specialized subgraphs 

gave rise to a more pronounced core-periphery structure than generic subgraphs. This second 

experiment confirmed again the set of hypotheses laid out in this study, which proposes that 

specialization is linked to higher centralization, even in horizontal networks such as Twitter. 

These analyses were possible due to a census-based approach to Twitter communities that has 

both strengths and limitations. On the one hand, it is fully reproducible, free of cost, free from 

Twitter data reseller constraints, retrieves relevant Twitter @-mention and retweet networks 

beyond hashtag-based samples, and perhaps more importantly, it allows researchers to retrieve 

historical data. On the other hand, and given the stringent limits imposed by Twitter REST API, 

the process of data collection can be time consuming and the challenges in scaling up this 

approach can only to a certain extent be addressed with distributed computing. 

Consistent with classical diffusion models, the results show that Twitter network 

structure presents significantly higher degree of centralization when users are sharing specialized 

as opposed to generic information. The highly-skewed distribution of @-mentions and retweets, 

mostly concentrated on user accounts located in metropolitan areas, indicates that the core of the 



network is centralized around government agencies and news outlets, as opposed to farmers and 

growers who could benefit from sharing information and having direct access to new sources of 

agriculture information. Conversely, Figure 5 shows that messages on Twitter have the potential 

to reach a more diverse and geographically dispersed audience of peripherical followers, much in 

line with the advantages of decentralized networks to the diffusion of sustainable agriculture 

(Lubell et al., 2014). Despite these promising opportunities, the agricultural community on 

Twitter continues to replicate the top-down, continuum model in which information flows from 

government agencies and news organizations towards growers, with little reciprocal interaction 

between users in the periphery of the network when specialized information comes into play.  

These results are perhaps surprising given the multiple possibilities of horizontal 

propagation allowed by Twitter. They also highlight potential strategies that the agriculture 

extension could implement to improve their reach and effectiveness: if they can position 

themselves as brokers in online social networks, they may be able to facilitate a more distributed, 

horizontal, and efficient flow of information among the periphery which comprises the large 

majority of users in the network. The findings also shed light on the long-standing debate about 

whether Twitter is a centralized systems of information diffusion or a social network. The social 

media platform can rapidly shift between information diffusion and social network formations as 

users move from specialized to generic topics of conversation. In other words, Twitter 

communities are likely to adopt a centralized formation when spreading specialized information, 

but these communities will also favor more decentralized formations, which can foster 

community cohesion, when the diffusion of specialized information is not critical. 

Another conclusion of this study is that the strong patterns of core-periphery indicate that 

a few accounts source information to users which subsequently retweet this information to their 

communities of interest. This network topology of specialized communities is broadly consistent 

with the separations between topical experts and general public and speaks to the core of theories 

of two-step flow of information diffusion, a conceptualization that was originated prior to most 

diffusion research but that anticipates the central assumptions of diffusion theories. We found 

these results relatively surprising given that each iteration of our tests was applied to an organic 

community of users simultaneously discussing generic (e.g., #sfgiants) and specialized (e.g., 

#cawater) topics. In short, the tests were designed to ensure that the generic and specialized 

subgraphs were drawn from the same population and rendered graphs of comparable size, as 



shown in Figures 3 and 4. This control mechanism allowed us to run multiple iterations of the 

core-periphery calculations over subgraphs that vary only in terms of the type of information 

being shared at a given point in time. 

With this study, we sought to advance this scholarship by exploring the structure of 

network communities as they move to different topics of discussion. We believe this is an 

important contribution to the literature, as differences found at this level are not confounded by 

aggregate user behavior from substantively different subgraphs. In fact, by controlling for the 

pool of users comprising the network we can model dependencies between the information being 

shared and the network structures emerging from it beyond broad comparison of substantively 

dissimilar networks. The results also highlight the conditions under which Twitter behaves like a 

centralized systems of information diffusion or a social network. The social media platform 

continuously shifts back and forth as conversations move between the specialized-generic 

polarities. When a community of users is discussing ordinary topics, we can expect a more 

horizontal, all-to-all network typical of social conversations. As the topic of the conversation 

becomes more specialized, the network structure becomes more hierarchical with the large 

majority of users listening to experts, who are more likely to be @-mentioned and retweeted. At 

this point, the network behaves much like an information diffusion system with pronounced 

amplification effect for information, a topology broadly consistent with the original articulation 

found in classical diffusion theory. 
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