
              

City, University of London Institutional Repository

Citation: Rubio y Degrassi, L. (2016). On hochschild cohomology and modular 

representation theory. (Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/18406/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


On Hochschild cohomology and Modular
representation theory

Lleonard Rubio y Degrassi

Doctor of Philosophy

City, University of London

Department of Mathematics

December 2016



Contents

1 Introduction 8

2 Background and first results 11

2.1 Basics facts on algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Idempotents and Blocks of an Algebra . . . . . . . . . . . . . 11

2.1.2 Symmetric algebras . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Some concepts from homological algebra . . . . . . . . . . . . . . . . 16

2.2.1 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Ext functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Hochschild cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Gerstenhaber and BV algebras . . . . . . . . . . . . . . . . . 28

2.3.3 Hochschild cohomology of the tensor product of two algebras . 32

2.3.4 Restricted Lie algebra structure on Hochschild cohomology . . 33

2



2.4 Transfer map and Hochschild cohomology . . . . . . . . . . . . . . . 34

2.4.1 Adjoint functors . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Transfer maps in Hochschild cohomology . . . . . . . . . . . . 37

2.4.3 Compatibility between transfer and p-power map . . . . . . . 39

2.4.4 Transfer and p-power maps need not commute . . . . . . . . 43

2.4.5 The p-power map and BV-operator . . . . . . . . . . . . . . . 44

3 Invariance and properties of r-integrable derivations 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Integrable derivations of degree r . . . . . . . . . . . . . . . . . . . . 53

3.3 The p-power map on r-integrable derivations . . . . . . . . . . . . . . 61

3.4 A cohomological interpretation of r-integrable derivations . . . . . . . 63

3.5 Invariance theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Structure on r-integrable derivations . . . . . . . . . . . . . . . . . . 71

3.6.1 Vector space structure of pa-integrable derivations . . . . . . 71

3.6.2 Filtrations of r-integrable derivations . . . . . . . . . . . . . . 73

3.7 Other properties of r-integrable derivations . . . . . . . . . . . . . . . 75

3.7.1 Invariance of the Jacobson radical under integrable derivations 75

3.8 Integrable derivations of quantum complete intersections . . . . . . . 76

3



4 Block algebras with HH1 a simple Lie algebra 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Block theory background . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 The G-Algebra Structure and the Trace Map . . . . . . . . . . 81

4.2.2 The Brauer Homomorphism . . . . . . . . . . . . . . . . . . . 83

4.2.3 Defect Groups of a Block . . . . . . . . . . . . . . . . . . . . . 85

4.2.4 Brauer Pairs and Nilpotent blocks . . . . . . . . . . . . . . . . 87

4.3 Basic algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Uniserial algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Bounds and simplicity of HH1 for elementary abelian p-groups . . . . 94

4.6 Further results on derivations . . . . . . . . . . . . . . . . . . . . . . 96

4.7 Proofs of main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 98

4



Acknowledgments

I would like to extend my thanks to:

First and foremost my supervisor Markus Linckelmann for his intellectual support, for
his enthusiasm, for his many valuable comments and his incredible patience.
City, University of London for the financial support.
The staff of the Maths department: in particular Chris Bowman, Radha Kessar and Maud
De Visscher for helpful advice.
My office mates: in particular Karan for the many hours of life conversations in the de-
partment and in the pub, Niamh for sharing hard moments and victories, maths problems
and solutions, Laura for the nice motivational coffee breaks and Malte for the awesome
moments and discussions.

I am also deeply grateful to:

My dear friends: Lisa, Fabienne, Myriam and Damien for the epic adventures in Fair-
bridge Road.
My dear old best friends: Riccardo, Agustin, Pancho and Helena for being always present.
My girlfriend Gloria for her love and immense support in every moment.
My brothers: Jordi for the short but intense moments we spend each time together and
Gustav for his support as an older brother.

This work is based on my passion for mathematics and would have never been possible
without the incredible support of my parents: Marina and Eduardo.

5



Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied
in whole or in part without further reference to me. This permission covers only single
copies made for study purpose, subject to normal conditions of acknowledgement.

6



ABSTRACT

The aim of this thesis is to study local and global invariants in representation theory of
finite groups using the (restricted) Lie algebra structure of the first degree of Hochschild

cohomology of a block algebra B as a main tool. This lead to two directions:
In the first part we investigate the global approach. In particular, we prove the

compatibility of the p-power map under stable equivalence of Morita type of subclasses
of the first Hochschild cohomology represented by integrable derivations. Further results

in this aspect include an example showing that the p-power map cannot generally be
expressed in terms of the BV operator. We also study some properties of r-integrable

derivations and we provide a family of examples given by the quantum complete
intersections where all the derivations are r-integrable.

In the second part our attention is focused on the local invariants. More precisely, we
fully characterise blocks B with unique isomorphism class of simple modules such that
the first degree Hochschild cohomology HH1(B) is a simple as Lie algebra. In this case

we prove that B is a nilpotent block with an elementary abelian defect group P of order
at least 3 and HH1(B) is isomorphic to the Witt algebra HH1(kP ).
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Chapter 1

Introduction

Modular representation theory seeks to understand the representations of a finite group

when the group algebra is not semisimple. The group algebra can be decomposed into

indecomposable algebras called blocks such that for every simple module there is exactly

one block that does not annihilate it. This leads to the strategy of investigating the

structure of the blocks and the interaction between them.

There are two types of invariants associated with block algebras: those related to

the algebra structure and those related to the group structure. The first family includes

module categories, stable categories, numbers of isomorphism classes of simple modules

and the Hochschild cohomology, for instance. The second family contains defect groups,

fusion systems and some of their cohomological invariants.

In this context Hochschild cohomology plays a crucial role. It is shown in [26] that

the Hochschild cohomology HH∗(B) of a block algebra B of a finite group G over an alge-

braically closed field k of prime characteristic p and the corresponding block cohomology

H∗(B) are isomorphic modulo nilpotent ideals. Hence Hochschild cohomology can be seen

as a bridge between the local and the global worlds - and there are not many of these
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bridges.

With this in mind, my thesis aims to analyse the interplay between the local and

the global invariants with a focus on the first Hochschild cohomology HH1(B) of a block

algebra B. It is worth noting that HH1(B) is a restricted Lie algebra. This rich algebraic

structure points to analysing HH1(B) in two directions: first, we investigate the extent to

which the restricted Lie algebra structure of HH1(B) is preserved under stable equivalences

of Morita type; and, secondly, we investigate the connections between the local structure

of a block B and the Lie algebra structure of HH1(B).

Chapter 2 contains the background material and some results for the global approach.

In particular, we give an example showing that the p-power map cannot generally be

expressed in terms of the BV operator. Furthermore, we provide an example showing that

p-power maps do not necessarily commute with transfer maps.

Chapter 3 continues with global invariants. In particular, it is devoted to the study of

the invariance of the properties of p-power maps under stable equivalences. We define the

notion of r-integrable derivation which are derivations that are induced by automorphisms

on A[[t]] such that induce the identity on A[[t]]/trA[[t]]. Using transfer maps as main tool,

we show in Theorem 3.5.2 that the p-power map, restricted to the classes of r-integrable

derivations, commutes with stable equivalences of Morita type between finite-dimensional

selfinjective algebras. We also study some properties of r-integrable derivations and we

provide a family of examples given by the quantum complete intersections where all the

derivations are r-integrable.

In the last chapter we consider the second aspect. We prove that, if HH1(B) is a simple

Lie algebra such that B has a unique isomorphism class of simple modules, B is nilpotent

with an elementary abelian defect group P of order at least 3 and HH1(B) is isomorphic
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to the Witt algebra HH1(kP ). In particular, no other simple modular Lie algebras arise

as HH1(B) of a block B with a single isomorphism class of simple modules.
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Chapter 2

Background and first results

2.1 Basics facts on algebras

The background for this section can be found in [2] and [4].

2.1.1 Idempotents and Blocks of an Algebra

Let k be a field. Let A be a finite dimensional associative unitary k-algebra. An idempotent

i of A is a nonzero element of A such that i2 = i. Two idempotents i, j of A are said

to be orthogonal if ij = ji = 0. A decomposition of an idempotent i of A is a finite set

J of pairwise orthogonal idempotents of A such that i =
∑

j∈J j. An idempotent i of A

is called primitive if the only decomposition of i is given by i. A decomposition of an

idempotent i ∈ A consisting of primitive idempotents is called a primitive decomposition

of i.

Let A be a finite-dimensional k-algebra. Recall that, if I is a primitive decomposition

of 1 in A, we have a direct sum decomposition

A = ⊕i∈IAi.
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Two summands Ai,Ai
′

in this sum are isomorphic if and only if the corresponding prim-

itive idempotents i, i
′

are conjugate. Thus, if we choose a set of representatives J of the

conjugacy classes of elements in I, then

A = ⊕i∈J(Ai)ni

for some positive integers ni, equal to the number of idempotents in I which are conjugate

to i. Dividing by the radical yields a direct sum

A/J(A) = ⊕i∈J(Ai/J(A)i)ni

and this is a direct sum of simple modules. More precisely, if we set Si = Ai/J(A)i then

{Si}i∈J is a set of representatives of the isomorphism classes of simple A-modules. The

proof of Wedderburn’s theorem yields an algebra isomorphism

A/J(A) ∼=
∏
i∈J

Mni(Di)

where Di = EndA(Si)
op. If k is algebraically closed, then

A/J(A) ∼=
∏

Mni(k) ∼=
∏

Endk(Si).

This shows that if k is algebraically closed, then the integer ni is both equal to dimk(Si)

and to the multiplicity of Ai as a direct summand of the regular A-module A.

Definition 2.1.1. Let A be a finite-dimensional k-algebra and let I be a set of repre-

sentatives of the conjugacy classes of primitive idempotents in A. The Cartan matrix of

A is the square matrix of non negative integers C = (cij)i,j∈I where cij is the number of

composition factors isomorphic to the simple A-module Si = Ai/J(A)i in a composition

series of the projective indecomposable A-module Aj .
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An idempotent i of A which lies in the center, Z(A), of A is called a central idempotent

of A. A primitive idempotent i of Z(A) is called a primitive central idempotent , or a block

of A. If 1A has a primitive decomposition B in Z(A), we have a decomposition of algebras

A =
∏
j∈B

Aj

where each Aj is an indecomposable algebra. Such Aj is called the block algebra of the

block j.

Proposition 2.1.2. Let A be a finite dimensional algebra over a field k. Then A has only

finitely many blocks.

Let U be a finite dimensional A-module. If B is a primitive decomposition of 1A in

Z(A), then U = ⊕b∈BbU not only as vector spaces but as A-modules:

Proposition 2.1.3. Let A be a finite-dimensional k-algebra, let B be the set of block

idempotents of A, and let U be an A-module. We have a direct sum decomposition of U

as an A-module of the form

U = ⊕b∈BbU.

In particular, if U is an indecomposable or simple A-module, then there is a unique

b ∈ B such that bU = U and such that b
′
U = 0 for all b

′ ∈ B for all b
′ 6= b . We then say

that M belongs to the block b or to the block algebra Ab.

The next propositions will be useful later:

Proposition 2.1.4 (Rosenberg’s Lemma). Let A be a finite dimensional algebra over a

field k. Let i be a primitive idempotent of A. If i ∈
∑

I∈∆ I where ∆ is a set of ideals of

A, then i ∈ I for some I ∈ ∆.
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Theorem 2.1.5 (Wedderburn-Malcev). Let k be an algebraically closed field and let A be

a finite dimensional k-algebra. Then there is a semisimple subalgebra S ∼= A/J(A) of A

such that A ∼= S ⊕ J(A), where the direct sum is a direct sum of vector spaces, and where

S is a subalgebra of A.

Proposition 2.1.6 (Idempotent Lifting Theorem). Let k be a field. Let A,B be finite

dimensional k-algebras with ideals I, J , respectively. Let f : A→ B be a k-algebra homo-

morphism such that f(I) = J . Then

• If i is a primitive idempotent of A contained in I, then either f(i) = 0 or f(i) is a

primitive idempotent of B.

• If j is a primitive idempotent of B contained in J , then there exists a primitive

idempotent i of A contained in I such that f(i) = j.

• Let i, i
′

be primitive idempotents of A contained in I such that f(i) 6= 0 6= f(i
′
).

Then i and i
′

are conjugate in A if and only if f(i) and f(i
′
) are conjugate in B.

Blocks are particular examples of symmetric algebras. In the next section introduce

them.

2.1.2 Symmetric algebras

During this section we denote by k a unitary commutative ring unless otherwise specified.

Let A, B be two k-algebras and let M be an A-B-bimodule. Then the k-dual M∨ =

Homk(M,k) has a structure of a B-A-bimodule given by (b · α · a)(m) = α(amb) for all

a ∈ A, b ∈ B, m ∈ M and α ∈ Homk(M,k). In particular A∨ is again an A-A-bimodule.

An element t ∈ A∨ is called symmetric if t(ab) = t(ba) for all a, b ∈ A.

14



Definition 2.1.7. Let A be a k-algebra. We say that A is symmetric if A is finitely

generated projective as a k-module and if A ∼= A∨ as A-A-bimodules. The image of 1 ∈ A

under such isomorphism is called a symmetrising form and denoted by s : A→ k.

Equivalently we can define a symmetric algebraA by requiring there is a non-degenerate

bilinear form
〈
−,−

〉
: A×A→ k. In this case the isomorphism is defined as φ : A→ A∨

which sends a to
〈
a,−

〉
. Conversely, given the isomorphism, hence the symmetrising form,

the bilinear form is obtained by letting
〈
a, b
〉

= s(a · b).

A symmetrising form s of a symmetric k-algebra A is automatically symmetric, in fact,

if φ : A ∼= A∨ is an A-A-bimodule isomorphism such that s = φ(1A), then for any a ∈ A,

we have a ·1A = a = 1A ·a. Applying φ on both sides, yields a ·s = s ·a, which is equivalent

to s(ab) = s(ba) for all a, b ∈ A.

Note that if k is a field and A is symmetric, then this implies that A is finite-

dimensional.

Definition 2.1.8. Let k be a field and let A be a finite dimensional k-algebra. Let {ui}

be a basis for A. We define {vj} to be the dual basis with respect to the bilinear form

〈−,−〉 if 〈ui, vj〉 = δij .

Example 2.1.9. Let G be a finite group. We have an isomorphism of kG-kG-bimodules

(kG)∨ ∼= kG sending any k-linear map µ : kG → k to µ0 =
∑

x∈G µ(x−1)x in kG. The

symmetrising form s : kG → k is given by s
(∑

x∈G λxx
)

= λ1 where λx ∈ k for x ∈ G.

Let {g}g∈G be the group basis of kG. Then {g−1}g∈G is the dual basis.

Example 2.1.10. Let n be a positive integer. The matrix algebra Mn(k) is symmetric with

symmetrising form the trace map tr : Mn(k)→ k. In fact for 1 ≤ i, j ≤ n denote by Ei,j

the matrix whose coefficient at (i, j) is equal to 1 and zero otherwise. The set{Ei,j}1≤i,j≤n

15



is a k-basis of Mn(k); in particular, Mn(k) is finitely generated projective as a k-module.

The isomorphism is constructed by sending Ei,j to Ei,j where Ei,j is the dual basis element

in Mn(k)∨ sending Ei,j to 1 and Ei′ ,j′ to 0 for (i, j) 6= (i
′
, j
′
). Under this isomorphism the

identity matrix is mapped to the trace map.

The following proposition will be useful in the last chapter:

Proposition 2.1.11. Let A be a symmetric k-algebra with symmetrising forms s ∈ A∨.

For any idempotent e ∈ A, the algebra eAe is symmetric with symmetrising form s|eAe.

Proof. Clearly eAe is finitely generated projective as k-module because it is a direct sum-

mand of A as k-module. Any bimodule isomorphism A ∼= A∨ restricts to a bimodule

isomorphism eAe ∼= e ·A∨ ·e, and any element in e ·A∨ ·e can be identified with an element

in (eAe)∨, whence the statement.

2.2 Some concepts from homological algebra

In the following two sections we follow [39] and [4].

2.2.1 Homotopy

In this section we recall some classical results on chain homotopy categories.

Let C be an abelian category. We denote by Ch(C) the category of chain complexes

over C. We denote by Gr(C) the category of graded objects over C with graded morphisms

of degree zero.

Definition 2.2.1. Let C be an abelian category and let X ∈ Ch(C). Then X is acyclic if

H∗(X) = {0}.
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Definition 2.2.2. Let C be an abelian category and let X,Y ∈ Ch(C). A chain map

f : X → Y is a quasi -isomorphism if the induced map on homology, say H∗(f) : H∗(X)→

H∗(Y ), is an isomorphism in Gr(C).

Definition 2.2.3. Let C be an additive category and let X,Y ∈ Ch(C) with differentials

ε, δ respectively. A (chain) homotopy from X to Y is a family of morphisms hn : Xn →

Yn+1 in C, for any n ∈ Z. Two chain maps f, f
′

: X → Y are called homotopic , written

f ∼ f ′ , if there is a homotopy h : X → Y such that

f − f ′ = h ◦ δ + ε ◦ h,

or equivalently if fn − f
′
n = hn−1 ◦ δn + εn+1 ◦ hn for any n ∈ Z. Similarly, we define a

cochain homotopy for cochain complexes X,Y but in this case hn : Xn → Y n−1 for any

n ∈ Z.

Definition 2.2.4. Let C be an additive category and let X,Y ∈ Ch(C). A chain map

f : X → Y is a homotopy equivalence if there is a chain map g : Y → X such that

g ◦ f ∼ IdX and f ◦ g ∼ IdY ; in that case, g is called a homotopy inverse of f , and the

complexes X,Y are said to be homotopy equivalent , written X ' Y . If X ' 0, then X is

called chain contractible or simply contractible.

Proposition 2.2.5. Let C be an additive category and let X ∈ Ch(C). Then X is con-

tractible if and only if the identity on X is homotopic to the zero chain map on X that is,

IdX ∼ 0.

Let A be an algebra over a commutative ring k. During this section we let C = Mod(A)

denote the category of left A-modules. We denote by HomCh(Mod(A))(X,Y ) the k-module

of chain maps from X to Y in Ch(Mod(A)).

17



Proposition 2.2.6. Let X,Y ∈ Mod(A). The relation ∼ on the set of HomChMod(A)(X,Y )

is an equivalence relation, compatible with sums and compositions of chain maps.

Let us denote by Hom0
Ch(Mod(A))(X,Y ) the k-submodule of all chain maps f : X → Y

satisfying f ∼ 0, or equivalently, f = h ◦ δ + ε ◦ h for some homotopy h from X to Y .

Then Proposition 2.2.6 leads to the following definition:

Definition 2.2.7. The homotopy category of complexes over Mod(A) is the category

K(Mod(A)) whose objects are the same as in Ch(Mod(A)) and whose morphisms are the

homotopy equivalence classes of chain maps; that is,

HomK(Mod(A))(X,Y ) = HomCh(Mod(A))(X,Y )/Hom0
Ch(Mod(A))(X,Y ).

Proposition 2.2.8. Let f : X → Y be in HomCh(Mod(A))(X,Y ). If f is a homotopy

equivalence, then f is a quasi-isomorphism.

Corollary 2.2.9. Let X be a complex of A-modules. If X is contractable then X is

acyclic.

Proof. If X is contractable, then X is quasi-isomorphic to zero by Proposition 2.2.8, which

is equivalent to H∗(X) = 0.

There is a deep connection between the homology and cohomology of complexes and

homotopy classes of chain maps. This is given by the following two propositions:

Proposition 2.2.10. Let X be a complex of A-modules and let n be an integer. Let A[n]

be the complex equal to A in degree n and zero in all other degrees. Then there is a natural

isomorphism

Hn(X) ∼= HomK(Mod(A))(A[n], X).
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Let X in Ch(Mod(A)) and let V be an A-module. Applying the contravariant functor

HomA(−, V ) to X yields a cochain complex HomA(X,V ) of k-modules defined by

HomA(X,V )n = HomA(Xn, V )

with differential

δn : HomA(Xn, V )→ HomA(Xn+1, V )

given by δn(α) = α ◦ δn+1 for any α ∈ HomA(Xn, V ). The cohomology of this cochain

complex can be expressed as a family of morphisms in the homotopy category:

Proposition 2.2.11. Let X be a chain complex of A-modules, and let V be an A-module.

For any integer n we have a natural isomorphism of k-modules

Hn(HomA(X,V )) ∼= HomK(Mod(A))(X,V [n]).

The right hand side of the isomorphism in Proposition 2.2.11 depends only on the

homotopy category K(Mod(A)).Therefore any homotopy equivalence preserves the left

side, that is

Corollary 2.2.12. Let A be an algebra over a commutative ring k. Let n ∈ Z and let

V be an A-module. Let f : X → Y be a homotopy equivalence of chain complexes of

A-modules. Then f induces an isomorphism:

Hn(HomA(Y, V )) ∼= Hn(HomA(X,V )).

This interpretation in terms of the homotopy category will allow us to introduce extra

structure on cohomology.

2.2.2 Ext functor

Definition 2.2.13. LetA be an algebra over a commutative ring k. A projective resolution

of an A-module U is a pair (P, µ) consisting of a complex P of projective A-modules such
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that Pi = 0 for i < 0 and a quasi-isomorphism µ : P → U . If we view U as a chain

complex concentrated in degree zero then a projective resolution of U can be written as:

. . . // P2

��

δ2 // P1

��

δ1 // P0

µ

��

// 0

��

// . . .

. . . // 0 // 0 // U // 0 // . . .

Equivalently, we define a projective resolution (P, δ) of an A-module U as an exact bounded

below chain complex of the form:

. . . // P2
δ2 // P1

δ1 // P0
µ
// U // 0

where all Pi are projective. The exactness of the above sequence is equivalent to the

chain map being a quasi-isomorphism. In fact, the homology of both rows of the previous

diagram is concentrated in degree zero, which is isomorphic to P0/Im(δ1) = P0/ker(µ) ∼=

U . If µ is clear from the context, then we simply denote the projective resolution by P .

Definition 2.2.14. Let A be an algebra over a commutative ring k and let U , V be

A-modules. Let (P, δ) be a projective resolution of U with differentials denoted by δn.

Then the Ext functor is defined by:

ExtnA(U, V ) = Hn(HomA(P, V ))

where HomA(P, V ) is the cochain complex :

HomA(P0, V )
δ0 // HomA(P1, V )

δ1 // HomA(P2, V ) // . . .

with differentials δn : HomA(Pn, V ) → HomA(Pn+1, V ) given by δn(α) = α ◦ δn+1. By

Proposition 2.2.11 we have an interpretation of the Ext functor as

ExtnA(U, V ) ∼= HomK(Mod(A))(P, V [n]).
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Proposition 2.2.15. Let A be an algebra over a commutative ring k and let V be an

A-module. Then ExtnA(U, V ) does not depend on the choice of the projective resolution,

that is, for any two projective resolutions (P, µ), (P
′
, µ
′
) of U we have

Hn(HomA(P, V )) ∼= Hn(HomA(P
′
, V )).

In order to prove this we recall the following two propositions:

Proposition 2.2.16. Let A be an algebra over a commutative ring k. Let P be a complex

of projective A-modules, and let

0 // X
f
// Y

g
// Z // 0

be a short exact sequence of complexes of A-modules. Suppose that g is a quasi-isomorphism

and that one of P, Y is bounded below. The map

HomCh(Mod(A))(P, Y )→ HomCh(Mod(A))(P,Z)

given by composition with g induces an isomorphism

HomK(Mod(A))(P, Y ) ∼= HomK(Mod(A))(P,Z).

Proposition 2.2.17. Let A be an algebra over a commutative ring k. Let (P, µ), (Q,µ
′
)

be projective resolutions of A-modules U, V , respectively. We have canonical isomorphisms

HomA(U, V ) ∼= Ext0
A(U, V ) ∼= HomK(Mod(A))(P,Q).

The isomorphism sends α : U → V to the homotopy class of a chain map φ : P → Q such

that α ◦ µ ∼ µ′ ◦ φ as chain maps from P to V .

Proof. With the notation of Definition 2.2.14 we have Ext0
A(U, V ) = ker(δ0). This is

the family of all A-homomorphisms α : P0 → V such that α ◦ δ1 = 0, that is, all A-

homomorphisms α such that Im(δ1) ⊆ ker(α). Any such homomorphism factors uniquely
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through the canonical surjection P0 → P0/Im(δ1). Since µ : P → U is quasi-isomorphism,

this implies µ is determined by a surjective A-homomorphism, still denoted µ, from P0

to V such that ker(µ) = Im(δ1). Thus ker(δ0) can be identified with the space of A-

homomorphisms from P/ker(µ) = U to V . This shows the first isomorphism. To show

the second isomorphism we use the fact that the projective resolution Q comes with a

quasi-isomorphism µ
′

: Q→ V . By Theorem 2.2.16 composition with µ
′
is an isomorphism

HomK(Mod(A))(P,Q) ∼= HomK(Mod(A))(P, V ) = Ext0
A(U, V ).

The compatibility with µ and µ
′

follows from the explicit descriptions of these two iso-

morphisms.

Proof of Proposition 2.2.15. We claim that for any two projective resolutions (P, µ), (P
′
, µ
′
)

of an A-module U there is a homotopy equivalence β : P → P
′

such that µ
′ ◦ β = µ. By

Corollary 2.2.12 we deduce the result.

We now prove the claim. Applying Proposition 2.2.17 with U = V and P
′

= Q

shows that IdU corresponds to the homotopy class of a chain map φ : P → P
′

satisfying

µ
′ ◦ φ ∼ IdU ◦ µ = µ. Exchanging P and P

′
yields a chain map ψ : P

′ → P satisfying

µ ◦ ψ = µ
′
. Thus µ ◦ ψ ◦ φ = µ. But also µ ◦ IdP = µ. Now, by Proposition 2.2.16,

composition with µ induces an isomorphism HomK(Mod(A))(P, P ) ∼= HomK(Mod(A))(P,U),.

Therefore, ψ◦φ and IdP should be the equal in the homotopy category, that is ψ◦φ ∼ IdP .

A similar argument shows that φ ◦ ψ ∼ IdP ′ , and hence that P ∼= P
′

as stated.

Theorem 2.2.18. Let A be an algebra over a commutative ring k. Let U, V be A-modules

with projective resolutions P , Q, respectively, and let n ≥ 0 be an integer. We have a

natural k-linear isomorphism

ExtnA(U, V ) ∼= HomK(Mod(A))(P,Q[n])
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Proof. Let µ
′

: Q→ V be the quasi-isomorphism associated with Q. Then µ
′
[n] : Q[n]→

V [n] is a quasi-isomorphism and hence, by Proposition 2.2.16, induces an isomorphism

HomK(Mod(A))(P,Q[n]) ∼= HomK(Mod(A))(P, V [n]) = ExtAn (U, V ) as stated. The naturality

is an easy verification.

2.3 Hochschild cohomology

In this section we let A be an algebra over a commutative ring k which is projective over

k. We denote by Aop the opposite algebra, that is, Aop = A as k-module but the product

is defined as a · b = ba where the first product is in Aop and the second in A. The tensor

product A ⊗k Aop over k is simply denoted by A ⊗ Aop. We will work in the category of

A-A-bimodules or equivalently in the A ⊗ Aop-module category. We can regard A as an

A⊗Aop-module by left and right multiplication on itself.

Definition 2.3.1. Let M be a A-A-bimodule. The Hochschild cohomology of A with

coefficients in M is

HH∗(A;M) = Ext∗A⊗Aop(A,M)

and the Hochschild cohomology of A is

HH∗(A) = HH∗(A;A) = Ext∗A⊗Aop(A,A).

A fundamental feature of Hochschild cohomology is that there is a canonical projective

resolution which is constructed as follows:

We denote by A0 = k. We regard A⊗n as an A⊗Aop-module where A acts on the left

on the first copy of A and A acts on the right on the last copy of A. Note that A⊗n+2 is a

projective A⊗Aop-module for every n ≥ 1. Here the assumption of A being projective as

a k-module is crucial. In fact, since A is projective, A⊗n is projective as a k-module for
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any n ≥ 1. If n ≥ 0, then A⊗n+2 = A⊗ A⊗n ⊗ A is a summand of a direct sum of copies

of k, i.e A⊗n+2 is projective as an A⊗Aop-module. Hence a projective resolution of A as

A⊗Aop-bimodules is given by

. . .
d2 // A⊗A⊗A d1 // A⊗A d0 // A // 0

where dn : A⊗n+2 → A⊗n+1 is defined as

dn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =
n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1. (2.3.1)

We denote by X the complex above, that is, for n ≥ −1 set Xn = A⊗n+2 and for n ≥ 0

denote by dn : Xn → Xn−1 the A⊗k Aop-homomorphism given by Equation 2.3.1 and set

Xn = 0 for n ≤ −2 and dn = 0 for n ≤ −1. The last step left in order to prove that

X is a projective resolution is to show that it is exact. Hence it is enough to show that

it is contractible as a complex of right and left A-modules (by Corollary 2.2.9). In the

first case, using Proposition 2.2.5, it is equivalent to show that there exists an homotopy

h : X → X such that IdXn = dn+1 ◦ hn + hn−1 ◦ dn for all n ∈ Z. The homotopy h is

defined as hn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an+1for all n ∈ Z. Similarly for

the second case.

This resolution is called the bar resolution of A and we denote it by PA. It can

be used to explicitly calculate the Hochschild cohomology of A with coefficients in any

A⊗k Aop-module M as

HHn(A;M) = Hn(HomA⊗kAop(PA,M)).

The differentials are given by δn(f) = f ◦ dn+1. In particular, the Hochschild cohomology

of A can be written as:

HHn(A) = Hn(HomA⊗Aop(PA, A)) =
Ker(δn)

Im(δn−1)
(2.3.2)
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In order to work more explicitly with this cohomology, especially in lower degrees, we use

the following canonical isomorphism:

Proposition 2.3.2. There is a canonical isomorphism

Homk(A
⊗n,M) ∼= HomA⊗Aop(A⊗n+2,M)

for any n ≥ 0. The isomorphism sends a k-linear map ψ : A⊗n →M to a unique A⊗Aop-

homomorphism φ : A ⊗ A⊗n ⊗ A → M such that φ(a0 ⊗ c ⊗ an+1) = a0ψ(c)an+1 for any

a0, an+1 ∈ A and c ∈ A⊗n.

Proof. To show that this is an isomorphism, we explicitly construct the inverse map:

an A ⊗ Aop-homomorphism φ : A ⊗ A⊗n ⊗ A → M is sent to a unique k-linear map

ψ : A⊗n →M by ψ(c) = φ(1⊗ c⊗ 1). It is easy to check that the given maps are inverse

to each other.

Hence we define

Definition 2.3.3. Let M be an A ⊗ Aop-module. We define k-modules Cn(A,M) for

n ≥ 0 by

Cn(A,M) = Homk(A
⊗n,M).

We define the cochain maps δn : Homk(A
⊗n;M)→ Homk(A

⊗n+1;M) by

δn(f)(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0f(a1 ⊗ · · · ⊗ an)

+

n∑
i=1

(−1)if(a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ an)

+ (−1)n+1f(a0 ⊗ a1 ⊗ · · · ⊗ an−1)an

(2.3.3)

for any f ∈ Homk(A
⊗n,M).

It is easy to prove that C∗(A;M) = (Cn(A,M), δn) is a cochain complex. By Propo-

sition 2.3.2 we can relate the cohomology of C∗(A;M) with the Hochschild cohomology.
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Theorem 2.3.4. Let M be an A ⊗ Aop-module. The cochain complex C∗(A;M) is iso-

morphic to HomA⊗Aop(PA,M). In particular the cohomology of this cochain complex is

the Hochschild cohomology of A with coefficients in M .

As we are mostly interested in the Hochschild cohomology of A from now on we will

focus on Cn(A,A) = Homk(A
⊗n, A). However some of these results can be generalised to

Cn(A,M). Let us study the degree zero of the Hochschild cohomology of A using Theorem

2.3.4.

Proposition 2.3.5. The degree zero term of the Hochschild complex can be identified as

HomA⊗Aop(A⊗A,A) ∼= C0(k;A) = Homk(k,A) ∼= A

where the first isomorphism is from Propositon 2.3.2 and the second sends the linear map

σ : k → A to σ(1). The composition of these two isomorphisms send a bimodule homomor-

phism ζ : A⊗A→ A to the element ζ(1⊗ 1) in A. The differential δ0 : A→ Homk(A,A)

sends an element b ∈ A to the map δ0(b) : A→ A given by δ0(b)(a) = ab− ba.

Consequently we have:

Proposition 2.3.6. We have a canonical isomorphism

HH0(A) ∼= Z(A).

Proof. By definition we have

HH0(A;A) = Ker(δ0) = {b ∈ A st ab− ba = 0 for all a ∈ A} (2.3.4)

Hence the result.

The following definitions allow us to provide an explicit interpretation of the degree 1

of the Hochschild cohomology:
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Definition 2.3.7. The k-linear map f : A → A is called a derivation if 0 = af(b) +

f(a)b− f(ab) for all a, b ∈ A. The set of all derivations is denoted by Der(A) .

Definition 2.3.8. Let [−,−] : A ⊗ A → A denote the additive commutator that is,

[a, b] = ab− ba for every a, b in A. Then [−, b] is a derivation, called an inner derivation,

and the set of them is denoted by IDer(A).

Proposition 2.3.9. We have a canonical isomorphism

HH1(A;A) ∼= Der(A)/IDer(A).

Proof. By definition we have HH1(A) = ker(δ1)/Im(δ0). Consequently we need to show

that ker(δ1) = Der(A) and Im(δ0) = IDer(A). Let f ∈ Homk(A;A). Then δ1(f) ∈

Homk(A ⊗k A;A) is defined by δ1(f)(a ⊗ b) = af(b) − f(ab) + f(a)b. Hence Ker(δ1) =

{f : A → A| f(ab) = af(b) + f(a)b} = Der(A). We have f ∈ Im(δ0) if and only if there

exists b ∈ A such that f = δ0(b), that is, if and only if f(a) = ab − ba for all a ∈ A. Or

equivalently, Im(δ0) = {f : A→ A| f(a) = ab− ba}. Hence the result.

In the few next sections we analyse some of the rich algebraic structure of Hochschild

cohomology. We begin with a recollection of gradings in different algebraic structures:

2.3.1 Grading

Definition 2.3.10. A graded algebra A over a commutative ring k is a k-algebra which

is a direct sum of k-modules Ai such that AiAj ⊂ Ai+j for all i, j ∈ Z. An element f ∈ Ai

is called homogeneous of degree i.

Definition 2.3.11. A graded -commutative algebra A over a commutative ring k is a

graded algebra such that for f, g homogeneous elements of degree m,n respectively, we

have fg = (−1)n+mgf .
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Similarly, we can define a graded version of a Lie algebra:

Definition 2.3.12. A graded Lie algebra of degree −1 is a Lie algebra L over a field k

endowed with a grading which is compatible with the Lie bracket. That is, as a graded

vector space L = ⊕i∈ZLi we have:

[Lm,Ln] ⊆ Lm+n−1.

For every f, g ∈ L of degree m,n respectively, we have

[f, g] = −(−1)(m−1)(n−1)[g, f ]

and for every f, g, h ∈ L of degree m,n, l respectively, we have

(−1)(m−1)(l−1)[[f, g], h] + (−1)(n−1)(m−1)[[g, h], f ] + (−1)(l−1)(m−1)[[h, f ], g] = 0.

2.3.2 Gerstenhaber and BV algebras

Using Proposition 2.2.18 we have

Proposition 2.3.13. Let A be an associative unital algebra over a commutative ring k.

Let U, V be A-modules. Then the graded k-module

Ext∗A(U,U) = ⊕n≥0ExtnA(U,U)

is a graded unital associative k-algebra through composition of chain maps.

Proof. Let P be a projective resolution of U . Given

ζ ∈ ExtnA(U,U) = HomK(Mod(A))(P, P [n])

τ ∈ ExtmA (U,U) = HomK(Mod(A))(P, P [m])

(2.3.5)

define the product ζ · τ in Extm+n
A (U,U) by

ζ · τ = ζ[m] ◦ τ ∈ Extn+m(U,U) = HomK(Mod(A))(P, P [n+m]).
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This defines a graded product on Ext∗A(U,U) which is associative because it is induced

by composition in the homotopy category. The unit element of this multiplication is given

by IdU , viewed as an element of Ext0
A(U,U).

Corollary 2.3.14. The Hochschild cohomology of A is a graded unital associative k-

algebra.

Since HH∗(A) ∼= Ext∗A⊗kAop(A,A), we can regard the Hochschild cohomology of degree

n as being naturally isomorphic to the abelian group of equivalence classes of extensions

of A by A of length n. Consequently we have a cup product on HH∗(A). This is given by:

Definition 2.3.15. Let A be an associative unital k-algebra over a commutative ring.

Let f ∈ Cn(A,A) = Homk(A
⊗n, A) and g ∈ Cm(A,A). Then the cup-product f ^ g

∈ Cn+m(A,A) is given by:

(f ^ g)(a1, . . . , an+m) = f(a1, . . . , an) · g(an+1, . . . , an+m).

Under the isomorphism in Theorem 2.3.4, the cup product on Hochschild cohomol-

ogy corresponds to graded composition in the homotopy category (defined in Proposition

2.3.13).

The following proposition is due to Gerstenhaber [12]:

Proposition 2.3.16. Let A be a k-algebra. Then the Hochschild cohomology of A is a

graded-commutative algebra with respect to the cup product.

We recall the definitions of Gerstenhaber and Batalin-Vilkovisky algebras.

Definition 2.3.17. Let k be a commutative ring. A Gerstenhaber algebra is a graded

k-module A = ⊕i∈ZAi such that:

• A is a graded-commutative algebra with the operation denoted by ^.
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• A is a graded Lie algebra of degree −1

• The Lie bracket and ^ satisfy the Poisson rule, that is, for any c ∈ Al the map

[−, c] : Ai → Ai+l−1 satisfies

[a ^ b, c] = [a, c] ^ b+ (−1)m(l−1)a ^ [b, c] (2.3.6)

where m, l are respectively the degrees of a and c.

Gerstenhaber showed in [12] that the Hochschild cohomology of an algebra A is a

Gerstenhaber algebra. We recall the construction:

Let A be a k-algebra. Let f ∈ Cn(A) = Homk(A
n, A) and g ∈ Cm(A) with n,m ≥ 0.

If n,m ≥ 1, then for 1 ≤ i ≤ n, define

(f ◦i g)(a1, . . . , an+m−1) = f(a1, . . . , ai−1, g(ai, . . . , ai+m−1), ai+m, . . . , an+m−1) (2.3.7)

If we let n ≥ 1 and m = 0, then g can be identified as an element of A. For 1 ≤ i ≤ n,

define

(f ◦i g)(a1, . . . , an−1) = f(a1, . . . , ai−1, g, ai, . . . , an−1)

for any other case, define f ◦i g to be zero. Let

f ◦ g =
n∑
i=1

(−1)(n−1)(i−1)f ◦i g (2.3.8)

then we define the Gerstenhaber Lie bracket as

[f, g] = f ◦ g − (−1)(n−1)(m−1)g ◦ f (2.3.9)

This Lie bracket with the cup product makes Hochschild cohomology into a Gersten-

haber algebra.
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Remark 2.3.18. If we let f, g ∈ C1(A) = Homk(A,A), then the Gerstenhaber Lie bracket

becomes the usual Lie bracket [f, g] = f ◦ g − g ◦ f which induces a Lie algebra structure

on HH1(A).

Definition 2.3.19. A Batalin-Vilkovisky (BV ) algebra is a Gerstenhaber algebra A =

⊕n∈ZAn together with a degree −1 operator ∆ : An → An−1, called the BV-operator,

such that ∆ ◦∆ = 0 and such that we have

[a, b] = −(−1)(m−1)n(∆(a ^ b)− (∆a) ^ b− (−1)ma ^ (∆b)). (2.3.10)

for any two homogeneous elements a, b of degrees n,m, respectively. In other words, the

deviation of ∆ from being a derivation is the bracket.

In [38] Tradler noticed that the Hochschild cohomology of a symmetric algebra is a

BV algebra. In order to state this result, we need the following definition:

Definition 2.3.20. Let k be a unital commutative ring and let A be symmetric k-algebra

with a non-degenerate bilinear form 〈−,−〉 induced by a bimodule isomorphism between

A and its k-linear dual A∨. Let n ≥ 1 and f ∈ Cn(A,A). For i ∈ {1, . . . , n} define

∆if ∈ Cn−1(A,A) by the equation

〈∆if(a1, . . . , an−1), an〉 = 〈f(ai, . . . , an−1, an, a1, . . . , ai−1), 1〉 (2.3.11)

with this we define

∆ =
n∑
i=1

(−1)i(n−1)∆i

Theorem 2.3.21 ([38, Theorem 1]). Let A be a finite dimensional symmetric k-algebra

with non-degenerate bilinear form 〈−,−〉 : A × A → k. For f ∈ Cn(A,A), let ∆f ∈

Cn−1(A,A) be given by the Equation 2.3.11. Then Hochschild cohomology is a BV algebra

with BV operator ∆ defined above.
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2.3.3 Hochschild cohomology of the tensor product of two algebras

In [21], Le and Zhou define the tensor product of Gerstenhaber algebras:

Definition 2.3.22. Let (A,^A, [−,−]A) and (B,^B, [−,−]B) be two Gerstenhaber al-

gebras over k. Then there is a new Gerstenhaber algebra (L,^, [−,−]) over k given as

follows:

(i) Ln = ⊕i+j=nAi ⊗Bj as a k-vector space for each n ∈ Z;

(ii) (a⊗ b) ^ (a′ ⊗ b′) = (−1)|a
′||b|(a ^A a

′)⊗ (b ^B b′);

(iii) [a⊗b, a′⊗b′] = (−1)(|a|+|b|−1)|b′|[a, a′]A⊗(b ^B b′)+(−1)|a|(|a
′|+|b′|−1)(a ^A a

′)⊗[b, b′]B

where a, a′ ∈ A and b, b′ ∈ B are homogeneous elements. We call (L,^, [−,−]) the

tensor product of the two Gerstenhaber algebras A and B, and denote it by A⊗B.

The following result will be useful in Chapter 4.

Theorem 2.3.23 ([21, Theorem 3.3]). Let A and B be two k-algebras such that one of

them is finite dimensional. Then there is an isomorphism of Gerstenhaber algebras:

HH∗(A⊗B) ∼= HH∗(A)⊗HH∗(B).

Corollary 2.3.24 ([21, Theorem 3.4]). Let A and B be two k-algebras such that one of

them is finite dimensional. Then there is an isomorphism of Lie algebras

HH1(A⊗B) ∼= HH1(A)⊗HH0(B)⊕HH0(A)⊗HH1(B).

Let n be a positive integer. In the following corollary we denote by
∏n
i=1Ai the n-fold

tensor products A1 ⊗A2 ⊗ · · · ⊗An.

Corollary 2.3.25. Let n be a positive integer. Let Ai be a finite dimensional k-algebras
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for 1 ≤ i ≤ n.Then there is an isomorphism of Lie algebras

HH1
( n∏
i=1

Ai

)
∼=

∑
i1,...,in≥0,
i1+···+in=1

n∏
j=1

HHij (Aj).

Proof. We prove it by induction. For n = 2 it holds by Corollary 2.3.24. Let assume that

it holds for n, then we have:

HH1
( n+1∏
i=1

Ai

)
∼= HH1

( n∏
i=1

Ai

)
⊗HH0(An+1)⊕HH0

( n∏
i=1

Ai

)
⊗HH1(An+1)

=
∑

i1,...,in≥0,
i1+···+in=1

n∏
j=1

HHij (Aj)⊗HH0(An+1)⊕
n∏
i=1

HH0(Ai)⊗HH1(An+1)

=
∑

i1,...,in≥0,
i1+···+in+1=1

n∏
j=1

HHij (Aj).

2.3.4 Restricted Lie algebra structure on Hochschild cohomology

Definition 2.3.26. Let L be a Lie algebra over a field k and let x, y ∈ L. We denote by

Ad : L → Endk(L)

x 7→ Ad(x)(y) = [x, y]

(2.3.12)

the adjoint representation of L.

We introduce the last structure on Hochschild cohomology

Definition 2.3.27. Let L be a Lie algebra over a field k of positive characteristic p. We

say that L is a restricted Lie algebra if there exists a map [p] : L → L, called p-power or

p-operator, such that:

• Ad(x[p])(y) = Ad(x)p(y)

• (λx)[p] = λpx[p]
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• (x+ y)[p] = x[p] + y[p] +
∑p−1

i=1 si(x, y)

for all x, y ∈ L and λ ∈ k. Here, the element isi(x, y) is the coefficient of ti−1 in

Adp−1(ta+ b)((a)) = [. . . [a, ta+ b], . . . , ta+ b].

The following theorem is due to Zimmermann [40]

Theorem 2.3.28. For any field k of characteristic p ≥ 2 the sum of the odd degree

of the Hochschild cohomology, ⊕n∈NHH2n+1(A,A), is a restricted Lie algebra under the

Gerstenhaber bracket.

In particular HH1(A) is a restricted Lie algebra with the p-power map given by com-

posing f with itself p times, that is f [p] = f ◦ · · · ◦ f = fp.

We end the section with two definitions that will be useful later.

Definition 2.3.29. Let L be a restricted Lie algebra. An element x of L is p-nilpotent if

x[p] = 0.

Definition 2.3.30. Let L be a restricted Lie algebra. An element x of L is p-idempotent

if x[p] = x.

2.4 Transfer map and Hochschild cohomology

One of the fundamental tools in this thesis are transfer maps in Hochschild cohomology. In

order to introduce them, we need first some background covered by the following section.

2.4.1 Adjoint functors

Definition 2.4.1. Let F : C → D, G : D → C be two covariant functors of two categories

C,D. We say G is the left adjoint to F , or equivalently, F is right adjoint to G, if there
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is an isomorphism of bifunctors HomC(G(−),−) ∼= HomD(−,F(−)), that is, a family of

isomorphisms

HomC(G(V ), U) ∼= HomD(V,F(U))

where U and V are objects of C and D respectively such that

HomC(G(−), U) ∼= HomD(−,F(U))

and

HomC(G(V ),−) ∼= HomD(V,F(−))

are isomorphisms of contravariant and covariant functors respectively.

Such an isomorphism of bifunctors need not be unique. If C,D are k-linear categories,

for some commutative ring k, we always require such an isomorphism of bifunctors to be

k-linear.

Given an adjunction isomorphism φ : HomC(G(−),−) ∼= HomD(−,F(−)), we can

evaluate φ at an object V in D and G(V ) and hence obtain an isomorphism

HomD(V,F(G(V ))) ∼= HomC(G(V ),G(V )).

We denote by f(V ) : V → FG(V ) the morphism corresponding to IdG(V ) through this

isomorphism, that is f(V ) = φ(V,G(V ))(IdG(V )). It is easy to check that the family of

morphism f(V ) defined in this way is a natural transformation

f : IdD → F ◦ G (2.4.1)

called the unit of the adjuction isomorphism φ. Similarly if we evaluate φ at an object U in

C and F(U) we get an isomorphism HomC(G(F(U), U)) ∼= HomD(F(U),F(U)). We denote

by g(U) : G(F(U))→ U the morphism corresponding to IdF(U) through the isomorphism
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HomC(G(F(U), U)) ∼= HomD(F(U),F(U)) i.e g(U) = φ(F(U), U)−1(IdF(U)). Again this

is a natural transformation

g : G ◦ F → IdC (2.4.2)

called the counit of the adjuction isomorphism φ.

Example 2.4.2. Let A, B be algebras and let M be an A-B-bimodule. For any A-module

U and any B-module V we have natural inverse isomorphisms of k-modules

HomA(M ⊗B V,U) ∼= HomB(V,HomA(M,U))

ϕ→ (v → (m→ ϕ(m⊗ v)))

(m⊗ v → ψ(v)(m))← ψ

(2.4.3)

Hence M ⊗B − is left adjoint to HomA(M,−).

Proposition 2.4.3. Let A,B be two finite dimensional k-algebras and let AMB be an A-

B-bimodule. Furthermore, if A is symmetric, then HomA(M,A) is isomorphic to M∨ =

Homk(M,k) as B-A-modules. The isomorphism sends ψ ∈ HomA(M,A) to s ◦ ψ.

Proof. In order to define the inverse map we take {ui} to be a basis of A and let {vi} be

the dual basis respect the bilinear form of A denoted by
〈
−,−

〉
A

. Then if we consider

θ ∈M∨ and x ∈M the image of θ under the inverse map is given by
∑

i θ(vix)ui.

Proposition 2.4.4 ([41, Lemma 4.2.5]). Let A, B be two k-algebras. Let M be an A-B-

bimodule. Then there is a natural transformation

η : HomA(M,A)⊗A − → HomA(M,−) (2.4.4)

of functors from the category of A-modules to the category of B-modules. In addition

if M is finitely generated and projective as an A-module, then HomA(M,A) is a finitely

generated projective right A-module and η is an isomorphism of functors.
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Let A,B be two symmetric finite dimensional k-algebras. Using Proposition 2.4.3 and

Proposition 2.4.4 and Example 2.4.2 we have the adjoint pair (M ⊗B −,M∨ ⊗A −). Let

{ui} be a basis of A and let {vi} be the dual basis with respect to the bilinear form of A.

The counit morphism εM : M⊗BM∨ → A is explicitly given by εM (x⊗A θ) =
∑

i θ(vix)ui

for x ∈M and θ ∈M∨.

Similarly, if B has a symmetrising form t ∈ B∨ and if M is finitely generated and projective

as a right B-module, then M∨ is finitely generated and projective as a left B-module and

we have an isomorphism of functors

HomB(M∨,−) ∼= HomB(M∨, B)⊗B − ∼= M∨∨ ⊗B − ∼= M ⊗B −. (2.4.5)

Consequently we have another adjoint pair (M∨ ⊗A −,M⊗B,−) with unit morphism

µM∨ : A → M ⊗B M∨ which can be calculated as follows. Since M is finitely generated

and projective as a right B-module, there exist a positive integer s and ϕi ∈ HomB(M,B)

with 1 ≤ i ≤ s such that for any x ∈ M , x =
∑

i xiϕi(x). Hence µM∨ sends a ∈ A to∑
axi ⊗B t ◦ ϕi.

2.4.2 Transfer maps in Hochschild cohomology

We recall that the Hochschild cohomology of a k-algebra A is the cohomology of the

Hochschild complex HomA⊗Aop(PA, A) ∼= C∗(A). By Theorem 2.2.18 we have another

characterisation of the Hochschild cohomology which is given in terms of the homotopy

category that is,

HHn(A) ∼= HomK(Mod(A⊗Aop))(PA, PA[n]).

In [24] Linckelmann introduced the transfer maps in Hochschild cohomology for symmetric

algebras, say A,B, as follows: Let AMB be an A-B-bimodule such that AM and MB are

finitely generated and projective. Let PA (resp. PB) be a projective resolution of A (resp.
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of B) as bimodules. Suppose we are given ζ ∈ HHn(B) ∼= HomK(B⊗Bop)(PB, PB[n]). Then

we define tM (ζ) ∈ HHn(A) ∼= HomK(A⊗Aop)(PA, PA[n]) to be the class of the composition

PA
τ−−→M ⊗B PB ⊗B M∨

IdM⊗ζ⊗IdM∨−−−−−−−−−→M ⊗B PB[n]⊗B M∨
σ−−→ PA[n] (2.4.6)

where τ lifts the unit morphism and σ lifts a translation of the counit morphism εM :

M ⊗B M∨ → A.

An explicit construction of the transfer map is due to Koenig, Liu, and Zhou [20].

They choose PA, respectively PB, to be the bar resolution PA, respectively PB and they

explicitly construct the first lift. This is given in the following proposition:

Proposition 2.4.5. Let A,B and M be as before. Then for n ≥ 0 we let

θn : A⊗(n+2) →M ⊗B B⊗(n+2) ⊗B M∨ (2.4.7)

denote the map which sends a0 ⊗ · · · ⊗ an+1 ∈ A⊗n+2 to

∑
i0,...,in

a0xi1 ⊗ ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0)⊗ (t ◦ ϕi0)an+1. (2.4.8)

The map θn commutes with the differential, that is, θn−1di = (IdM⊗di⊗IdM∨)θn for each i,

where xi ∈M and ϕi ∈ HomB(M,B) with 1 ≤ i ≤ s such that any x ∈M,x =
∑

i xiϕi(x).

Moreover θ lifts the unit morphism that is, ηM∨µA = (IdM ⊗ µB ⊗ IdM∨)θ0.

Proof. We just prove that θ∨ lifts the unit morphism ηM∨ : A → M ⊗B M∨, that is,

ηM∨νA = (IdM ⊗ νB ⊗ IdM∨)θ0, where νA : A ⊗k A → A and νB : B ⊗k B → B

are the multiplication maps. For a0, a1 ∈ A we have (IdM ⊗ νB ⊗ IdM∨)θ0(a0 ⊗ a1) =

(IdM⊗νB⊗IdM∨)(a0xi⊗t◦φia1) = a0xi⊗Bt◦φia1, and on the other hand, νM∗νA(a0⊗a1) =

ηM∨(a0a1) = a0xi ⊗B t ◦ φia1 since η∨ is an A-A-bimodule homomorphism.

Hence if we let f ∈ Cn(B), then TrM (f) is given by:

A⊗(n+2) θn−→M ⊗B B⊗(n+2) ⊗B M∨
IdM⊗f⊗IdM∨−−−−−−−−−→M ⊗B B ⊗B M∨

εM−−→ A (2.4.9)
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Explicitly we have:

Proposition 2.4.6. For f ∈ Cn(B) = Homk(B
⊗n, B) with n ≥ 0, the map TrM (f) ∈

Homk(A
⊗n, A) sends a1 ⊗ · · · ⊗ an to

∑
i0,...,in,j

〈
ϕi0(vjxi1), f(ϕi1(a1xi2)⊗ · · · ⊗ ϕin(anxi0))

〉
B
uj . (2.4.10)

Here xi ∈ M and ϕi ∈ HomB(M,B) with 1 ≤ i ≤ s such that for any x ∈ M,x =∑
i xiϕi(x), where

〈
−,−

〉
B

is the bilinear form over B and where {uj}, {vj} are the dual

bases in A. In addition TrM : Cn(B)→ Cn(A) is a chain map.

Proof. The proof of the first statement follows from the explicit construction of θn and

εM . The second part is also direct since θ∗ is a chain map by Proposition 2.4.5 .

Remark 2.4.7. Let f ∈ C1(B). Using notation from Proposition 2.4.5, the map TrM (f)

sends a1 ∈ A to : ∑
i0,i1,j

〈
ϕi0(vjxi1), f(ϕi1(a1xi0))

〉
B
uj . (2.4.11)

2.4.3 Compatibility between transfer and p-power map

Let k be a field of positive characteristic p. Let A,B be two finite dimensional symmetric

k-algebras. Since the first Hochschild cohomology group is a restricted Lie algebra, we

can ask about the compatibility between the p-power and the transfer map. That is, we

can ask if the following diagram commutes:

HH1(B)

[p]

��

TrM // HH1(A)

[p]

��

HH1(B)
TrM // HH1(A)
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Example 2.4.8. Let k be a field of characteristic 2. Let H = {1, (12)} ∼= C2 ≤ S3 and

M = kS3 considered as a kS3-kC2 bimodule. By 〈−,−〉 we mean the standard bilinear

form for the group algebra kH. We choose R = {1, (13), (23)} as set of representatives of

S3/C2. We note that M is finitely generated and projective as a right kC2-module, since

[S3 : H] = 3, so there exist ϕi ∈ HomkC2(kS3, kC2) with 1 ≤ i ≤ 2 such that for any

x ∈M , x =
∑

i xiϕi(x). Explicitly:

ϕ1(1) = 1, ϕ1((12)) = (12), ϕ1(g) = 0 (2.4.12)

for every other g ∈ S3. Similarly we define ϕ2 and ϕ3, which are denoted by ϕ(13) and

ϕ(23) respectively, as follows:

ϕ(13)((13)) = 1, ϕ(13)((123)) = (12), ϕ(13)(g) = 0

ϕ(23)((23)) = 1, ϕ(23)((132)) = (12), ϕ(23)(g) = 0

(2.4.13)

for every other g ∈ S3.

It is easy to check that these maps satisfy x =
∑

i xiϕi(x) for every x ∈ M . Indeed,

let g ∈ S3, h ∈ H such that g = x
′
h and let ϕx(xh) = h, where x, x

′ ∈ R. Then we have:

∑
x∈R

xϕx(g) =
∑
x∈R

xϕx(x
′
h) = x

′
ϕx′ (x

′
h) = x

′
h = g. (2.4.14)

Since C2 is commutative, HH1(kC2) = Derk(kC2) is generated by {f0, f1} such that

f0((12)) = 1, f1((12)) = (12). In this case if we let f ∈ Der(kC2), then the transfer map

can be expressed as:

TrM (f)(a) =
∑

x,x′∈R,g∈G

〈
ϕx′ (g

−1x), f(ϕx(ax
′
))
〉
B
g (2.4.15)

where x, x
′

are coset representatives.
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For a = (13) we get:

∑
g∈G

〈
ϕ1(g−1(13)), f(ϕ(13)((13)))

〉
B
g +

∑
g∈G

〈
ϕ(13)(g

−1), f(ϕ1(1))
〉
B
g+

∑
g∈G

〈
ϕ(23)(g

−1(23)), f(ϕ(23)((23)))
〉
B
g =

∑
g∈G

〈
ϕ(23)(g

−1(23)), f((12))
〉
B
g

=
〈

1, f((12))
〉

1 +
〈

(12), f(12)
〉

(13)

In particular for f0 and f1 we have:

TrM (f0)(13) = 1, TrM (f1)(13) = (13).

By a similar calculation we have:

TrM (f0)(23) = 1, TrM (f1)(23) = (23).

In order to compute TrM (f0)(123) and TrM (f0)(132), we use the fact that (13)(23) =

(132), (23)(13) = (123) and the property that the transfer map of a derivation is itself a

derivation. Hence:

TrM (f0)(123) = TrM (f0)((23)(13)) = TrM (f0)(23)(13) + (23)TrM (f0)(13) = (13) + (23)

Similarly:

TrM (f0)(132) = (13) + (23), TrM (f1)(123) = TrM (f1)(132) = 0.

Finally writing a = (12) = (132)(13):

TrM (f0)(12) = 1 + (123) + (132), TrM (f1)(12) = (12).

It is straightforward to check the following conditions on element of S3:

TrM (f0)[2] = TrM (f
[2]
0 ) = 0

TrM (f1)[2] = TrM (f
[2]
1 ) = TrM (f1)
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since f0 is p-nilpotent and f1 is p-idempotent. Let us now consider an element f ∈

Der(kC2). Then f = λf0 + µf1 where λ0, λ1 ∈ k. Hence

f [2] = (λf0 + µf1)[2] = λ2f0 + λµ(f0f1 + f1f0) + µ2f2
1

= λ2f2
0 + λµf0 + µ2f2

1 = λµf0 + µ2f1

since f0f1 = f0 and f1f0 = 0. So

TrM (f2) = λµTrM (f0) + µ2TrM (f1).

On the other hand

TrM (λf0 + µf1)2 = (TrM (λf0) + TrM (µf1))2

=λ2(TrM (f0))2 + λµ(TrM (f0)TrM (f1) + TrM (f1)TrM (f0)) + µ2(TrM (f1))2

=µ2TrM (f1) + λµTrM (f0)

since TrM (f0) is 2-nilpotent, TrM (f1) is 2-idempotent and TrM (f0)TrM (f1)+TrM (f1)TrM (f0) =

TrM (f0). Hence the diagram commutes.

Despite what we have seen in this example, the p-power and transfer maps do not

commute in general. In fact we give a negative example in the next section.

There are many open problems regarding the compatibility between the transfer and

the p-power maps. For example, it is not known if the transfer maps send p-nilpotent

elements to p-nilpotent elements. The main problem lies in the explicit calculation of the

composition of the transfer with itself p times. Even if in the next chapter we show that

p-power maps commute with stable equivalences of Morita type on the subgroup of classes

represented by integrable derivations, this does not give a complete answer. In fact, not all

p-nilpotent derivations are integrable. For example, if we let k be a field of characteristic

2 and A = kC2 as in the previous example, then HH1(kC2) = Derk(kC2) is generated by

{f0, f1}. It is easy to prove that f0 is not integrable but it is 2-nilpotent.
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2.4.4 Transfer and p-power maps need not commute

In the previous section we provided an example of the compatibility between transfer and

p-power maps for the algebras A = kS3 and B = kC2. In Chapter 3 we will show that this

compatibility holds for any finite-dimensional selfinjective k-algebras A,B, with separable

semisimple quotients, in a certain subgroup of HH1 when A and B are stably equivalent

of Morita type. A natural question emerges: can we have the compatibility between these

maps without the assumption of stable equivalence of Morita type? The following example

gives a negative answer to this question.

Example 2.4.9. In this example we will show that TrM does not always commute with [p].

Let k be a field of characteristic 3. Let H = {1, (123), (132)} ∼= C3 ≤ S3 and M = kS3

considered as a kS3-kC3 bimodule. By 〈−,−〉 we mean the standard bilinear form for the

group algebra kH. We choose R = {1, t = (12)} as set of representatives of S3/H. We

note that M is finitely generated and projective as a right kC3-module, since [G : H] = 2,

so there exist xi ∈ M and ϕi ∈ HomkC3(kS3, kC3) with i = 1 or 2 such that for any

x ∈M , x =
∑

i xiϕi(x). Explicitly:

ϕ1(1) = 1, ϕ1((123)) = (123),

ϕ1((132)) = (132), ϕ1(g) = 0

(2.4.16)

for every other g ∈ G. Similarly we define ϕ2, denoted by ϕt, as follows:

ϕt((12)) = 1, ϕt((13)) = (132), ϕt((23)) = (123), ϕt(g) = 0 (2.4.17)

for every other g ∈ G. Since C3 is commutative, HH1(kC3) = Derk(kC3) is generated

by {f0, f1, f2} such that f0((123)) = 1, f1((123)) = (123) and f2((123)) = (132). Using

Equation 2.4.15, if we let f ∈ Derk(kC3) and g = xh for some x ∈ R and h ∈ H then we
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have :

TrM (f)(a) =
∑

x,x
′∈R,g∈G

〈
ϕx′ (g

−1x), f(ϕx(ax
′
))
〉
B
g

=
∑
h∈H

〈
h−1, f(ϕ1(a))

〉
h+

〈
h−1, f(ϕt(a))

〉
th+

〈
h−1, f(ϕ1(at))

〉
ht+

〈
h−1, f(ϕt(at))

〉
tht

(2.4.18)

where in the second equation we use the identity tht = h−1. In particular for a = (123)

we have:

TrM (f0)((123)) =
∑
h∈H

(〈
h−1, f0((123))

〉
+
〈
h, f0((132))

〉)
h

=
∑
h∈H

(〈
h−1, 1

〉
+
〈
h,−(123)

〉)
h = 1− (132)

(2.4.19)

similarly we have:

TrM (f0)(132) = 1− (123). (2.4.20)

We can note that TrM (f
[3]
0 ) = 0 since f0 is p-nilpotent. Therefore TrM (f

[3]
0 )(132) = 0. On

the other hand TrM (f0)[3]((132)) = TrM (f0)◦TrM (f0)(1−(123)) = trM (f0)(−1+(132)) =

1−(123). Now, the transfer maps send elements of HH1(B) to elements HH1(A). Therefore

there should exists a inner derivation in S3 which sends (132) to 1− (123) if we require the

commutativity of the diagram. But there is no element in a ∈ kS3 such that [a, (132)] = 1.

Hence in this case the p-power map does not commute with the transfer map.

2.4.5 The p-power map and BV-operator

In the previous section, we noticed that the stable equivalence of Morita type is a fun-

damental condition for the compatibility between the p-power and transfer maps. We

will show this for the spaces in HH1 given by integrable derivations. It is natural to ask

if this compatibility holds for the entire Hochschild cohomology of degree 1. Koenig et

al. in [20] prove that if A and B are two symmetric k-algebras that are related under a
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stable equivalence of Morita type then their Hochschild cohomology are isomorphic as BV

algebras. As a corollary we have that the Gerstenhaber bracket is invariant under stable

equivalences. This is because the bracket can be written in terms of the BV -operator

and the cup product (as shown by Tradler in [38]). More precisely, Tradler expressed the

Gerstenhaber bracket of two elements f ∈ HHn(A), g ∈ HHm(A), in the following way:

[f, g] = ∆(f ^ g)−∆(f) ^ g − (−1)nf ^ ∆(g).

The aim of this section is to prove that the BV -operator and the cup product do not

determine the p-power map on HH1.

Proposition 2.4.10. Let A be symmetric k-algebra with symmetrising form s : A → k

and let f : A→ A be a derivation. Then s ◦ f : A→ k is a symmetric map.

Proof. We need to prove that s ◦ f is symmetric. We have:

(s ◦ f)(ab) = s(f(ab)) = s(f(a)b+ af(b)) = s(f(a)b) + s(af(b))

= s(f(b)a) + s(bf(a)) = (s ◦ f)(ba)

(2.4.21)

since s is symmetric.

Remark 2.4.11. Let A be a symmetric algebra with a symmetrising form s : A 7→ k or

equivalently with a non-degenerate bilinear form < −,− >. Let f ∈ C1(A,A). Using

Equation 2.3.11 the BV operator in degree 1, ∆f ∈ C0(A,A) = A, is given by

< ∆f(1), a >=< f(a), 1 >= (s ◦ f)(a) (2.4.22)

Since ∆ is of degree −1, this implies ∆ sends HH1(A) to Z(A). Alternatively this can

be proven using Proposition 2.4.10. In fact, if we let f ∈ Der(A), then we have to show

that (∆f)(1) · a = a · (∆f) for every a ∈ A where we denote by · the multiplication in

A. It is enough to prove that < (∆f)(1) · a, b >=< a · (∆f), b > for every a, b ∈ A since
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< −,− > is not degenerate. Using Proposition 2.4.10 and the properties of bilinear forms

we have that

< (∆f)(1) · a, b > =< (∆f)(1), ab) >=< f(ab), 1 >= (s ◦ f)(ab)

= (s ◦ f)(ba) =< (∆f)(1), ba >

=< ba, (∆f)(1) >=< a · (∆f)(1), b >

(2.4.23)

Finally if g ∈ Inn(A), then < ∆g, a >= (s ◦ g)(a) = s(ab − ba) = 0 for every a ∈ A. So

∆g = 0.

Note that the p-power map can be defined as a map, only on the diagonal entries,

from the p-ary cartesian product HH1(A) × · · · × HH1(A) to HH1(A) sending (f, . . . , f)

to fp. Our question is the following: is it possible to express the p-power map as k-linear

combination of compositions of the cup product and the BV -operator having as domain

the p-ary cartesian product HH1(A)× · · · ×HH1(A) and codomain HH1(A)?

The first step is to write down all the possible ways to compose the BV -operator and

the cup product. For the sake of simplicity, we denote by the p-tuple (n1, . . . , np) the

p-ary cartesian product HHn1(A)× · · ·×HHnp(A) where the entries denote the degrees of

Hochschild cohomology. With this notation, the BV -operator sends (n1) to (n1 − 1) and

the cup product sends the couple (n1, n2) to (n1 + n2) for non-negative integers n1 and

n2. Another example is the map ^ ⊗Id which sends (1, 1, 1) to (2, 1).

Theorem 2.4.12. Let A be symmetric algebra over a field k of positive characteristic

p. If p = 2 let n = 2, otherwise let n ≥ 2. Let f ∈ Der(A) and let z1, . . . , zn ∈ Z(A).

Every composition of the BV -operator and the cup product sends an element of the form

(z1 · f, . . . , zn · f) ∈ HH1(A)× · · · ×HH1(A) to z
′ · f ∈ HH1(A) where z

′ ∈ Z(A).

We need some technical lemmas in order to prove Theorem 2.4.12:
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Lemma 2.4.13. Let A be symmetric algebra over a field k of positive characteristic p and

let f : A→ A be a derivation. For p > 2 then f ^ f is zero.

Proof. Let p > 2 and let f ∈ Der(A). Since Hochschild cohomology has the structure

of a graded-commutative algebra and since f has odd degree we have that f ^ f =

(−1)|f |
2
(f ^ f) = (−1)f ^ f . Hence f ^ f should be zero. In particular this implies

that for every p > 2 the cup product of f with itself is zero. Hence the statement.

For p = 2 we have the following:

Lemma 2.4.14. Let A be symmetric algebra over a field of characteristic 2, let f : A→ A

be a derivation and let ∆ denote the BV operator. Then ∆(f ^ f) = 0.

Proof. Let f ∈ C1(A,A). Then f ^ f ∈ C2(A,A). Using the Equation 2.3.11 we have

∆ = −∆1 + ∆2 where:

< ∆1(f ^ f)(a1), a2 >=< (f ^ f)(a1, a2), 1 >= s ◦ (f(a1)f(a2)) = s ◦ (f(a2)f(a1))

(2.4.24)

since s is symmetric. Similarly for ∆2. Hence we have:

< ∆(f ^ f)(a1), a2 > = − < f(a1)f(a2), 1 > + < f(a2)f(a1), 1 >

= −s(f(a1)f(a2)) + s(f(a2)f(a1)) = 0

(2.4.25)

for every a1, a2. Thus ∆(f ^ f) = 0.

Proof of Theorem 2.4.12. The proof is by induction. Let n = 2 then the product HH1(A)×

HH1(A) is represented by the couple (1, 1). The cup product sends (1, 1) to (2). If

char(k) > 2 we get zero by Lemma 2.4.13. In fact if we let z1, z2 ∈ Z(A) then

(z1 · f ^ z2 · f)(a1, a2) = z1 · f(a1) · z2 · f(a2) = (z1 · z2) · (f ^ f)(a1, a2) = 0
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for all a1, a2 ∈ A. In characteristic 2 the only possible composition at this point is to

apply ∆ which send (2) to (1). By Lemma 2.4.14 we get zero. Starting again from

(1, 1), the other possibility is to apply either ∆⊗ Id or Id⊗∆ which send (1, 1) to (0, 1)

or (1, 0), respectively. In both cases we can only compose with the cup product which

sends (1, 0) or (0, 1) to (1), that is, to HH1(A). At this point we cannot neither compose

with the cup product nor with ∆ (since ∆2 = 0). It is easy to check that an element

(z1 · f, z2 · f) ∈ HH1(A) × HH1(A) is sent through these maps to z
′ · f where z

′ ∈ Z(A).

For example, the map ^ ◦(∆⊗ Id) sends (z1 · f, z2 · f) to ∆(z1 · f) · z2 · f .

Assume it holds for n− 1, then we show it holds for n. The n-ary product HH1(A)×

· · · × HH1(A) is represented by the n-tuple (1, . . . , 1). If we apply the cup product to

any two components it will give us the zero by Lemma 2.4.13. The only possibility is to

apply the BV -operator to one of the entries, that is, Id⊗ · · · ⊗∆⊗ · · · ⊗ Id which sends

the n-tuple (1, . . . , 1) to the n-tuple which has as entries n− 1 ones and 1 zero. The cup

product can only be applied on the entries of the form 1, 0 or 0, 1 otherwise we get zero.

In this cases, the cup product sends an n-tuple to an n − 1 tuple with one in all entries.

By induction hypothesis the result follows. Considering again the n-tuple which has n− 1

ones and 1 zero, we can apply the BV -operator to a non-zero entry which has as codomain

a n-tuple with n− 2 ones and 2 zeros. If we keep applying the BV -operator to non-zero

entries, we get a n-tuple with all zero entries except one. In this case we can only apply

the cup product until we have as codomain HH1(A). It is easy to check that an element of

the form (z1 · f, . . . , zn · f) is sent through these compositions to z
′ · f for some z

′ ∈ Z(A).

Otherwise at certain point we get an m-tuple, where m is a positive integer less than n,

with one in all entries. By induction hypothesis the result follows.
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Corollary 2.4.15. Let A be a symmetric k-algebra over a field of positive characteristic p.

Let f = (f, . . . , , f) be a p-tuple in HH1(A)×· · ·×HH1(A). Then all possible compositions

of the cup product and the BV -operator send f to z · f for some z ∈ Z(A). In particular

every k-linear combination of compositions of ^ and ∆ sends f to z · f .

Theorem 2.4.16. Let A be symmetric k-algebra over a field of positive characteristic

p and let f : A → A be a derivation. Then f [p] cannot always be expressed k-linear

combination of compositions of the BV-operator and the cup product.

Proof. For any fixed p, we need to find a derivation f such that f [p] cannot be expressed

as z · f for some z ∈ Z(A). We provide a family of examples with these properties.

Consider the algebra A = k[x, y]/ < xp, yp >. Let {fa,b}, {gc,d} ⊆ Der(A) be such that

fa,b(x) = xayb, fa,b(y) = 0, gc,d(x) = 0 and gc,d(y) = xcyd where 0 ≤ a, b, c, d ≤ p − 1.

Then a basis for Der(A) is given by {fa,b} ∪ {gc,d}. Since A is commutative this implies

Inn(A) = 0. An element of the algebra A acts on {fi,j} and {gi,j} in the following way:

xkyl · fi,j =


fi+k,j+l for 0 ≤ i+ k, j + l ≤ p− 1

0 otherwise.

Similarly for gi,j . We can also note that f1,0 ◦ g0,1 = g0,1 ◦ f1,0 = 0 and f1,0, g0,1 are

p-idempotents. Let f = λf1,0 +µg0,1 for λ, µ ∈ k. Since Der(A) is a restricted Lie algebra

we have:

f [p] = (λf1,0 + µg0,1)[p] = λpf1,0 + µpg0,1 +
∑
i

si

= λpf1,0 + µpg0,1

(2.4.26)

where si are zero since they are consecutive compositions of f1,0 and g0,1. An element of

the centre z ∈ Z(A) can be written as z =
∑

i,j λijx
iyj . Consequently

z · f = (
∑
i,j

λijx
iyj)(λf1,0 + µg0,1) =

∑
λij(λfi+1,j + µgi,j+1) (2.4.27)
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for 0 ≤ i, j ≤ p − 1. Since {fi,j}, {gi,j} are linearly independent, in order to have

f [p] = z · f , we should impose λ0,0 = λp−1 and λ0,0 = µp−1. For a field k large enough we

have a contradiction.
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Chapter 3

Invariance and properties of

r-integrable derivations

Sections 3.2, 3.3, 3, 4 and 3.5 of this chapter are based on the paper [34].

3.1 Introduction

Since the pioneering work of Happel [15, 16], Rickard [31], [32], [33] and Keller [19],

derived categories have played an increasing role in the representation theory of groups

and algebras. Broué’s abelian defect group conjecture [7] has been the starting point of a

major development in block theory using derived equivalences as main tool. Broué [8] has

introduced stable equivalences of Morita type, which are implied by derived equivalences

between symmetric algebras (as a consequence of a theorem of Rickard [32]). This puts

the focus on understanding invariants under derived and stable equivalences. Derived

equivalences have been shown to preserve the Hochschild cohomology. However stable

equivalences only preserve the positive part of the Hochschild cohomology. Keller [19] has
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shown that a derived equivalence preserves the Gerstenhaber algebra structure. Koenig

et al. [20] have shown that a derived equivalence between symmetric algebras preserves

the BV algebra structure using the transfer maps introduced in [24]. Apart from a paper

of Zimmerman [40], little has been done with the Lie restricted p-power map. In addition,

there are also evidences from calculations in examples in [6] that suggest there is a strong

relation between the algebra structure of A and the restricted Lie algebra structure of

HH1(A). In this chapter we address this compatibility problem for a subfamily of HH1(A)

called integrable derivations.

Integrable derivations have been introduced by Gerstenhaber in [13] and then studied

by Matsumura [28] and others. The main aim of this chapter is threefold. Following

Farkas, Geiss and Marcos (who have proved in [11] that integrable derivations are invariant

under Morita equivalences) we generalise the concept of integrable derivations, called r-

integrable derivations. In a similar fashion to [26] we prove they are invariant under stable

equivalences of Morita type. On the other hand, let k be a field of prime characteristic

p, for symmetric k-algebras, Zimmermann proved in [40] that the p-power map on (the

positive part of) Hochschild cohomology commutes with derived equivalences. We show

that the p-power map, restricted to the classes of r-integrable derivations, commutes

with stable equivalences of Morita type between finite-dimensional selfinjective algebras

(See Theorem 3.5.1 and Theorem 3.5.2 below). Finally we provide some properties of

r-integrable derivations and a family of examples when all derivations are integrable.

The chapter is divided into the following sections: in 3.2 we introduce the concept of

r-integrable derivations and some of their properties. Section 3.3 explains how to endow

the set of integrable derivations with a p-power map. Section 3.4 gives a cohomological in-

terpretation of integrable derivation whilst in 3.5 we prove the two main results. In section
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3.6 we study different properties of the p-power maps and integrable derivations. Then

we prove that the family of the r-integrable derivations form a poset and the subfamily

of pa-integrable derivations, where p is a prime number and a a positive integer, form a

vector space. We also establish the invariance of the Jacobson radical under r-integrable

derivations. In the last section we provide a family of examples given by quantum complete

intersection in which all the derivations are integrable.

3.2 Integrable derivations of degree r

We recall some background lemmas that will be helpful during the chapter. Let A be a

finite-dimensional k-algebra over a field k. Then we denote by A[[t]] the formal power

series with coefficients in A and by Z(A[[t]]) the centre of A[[t]]. In the following, all the

tensor products are over a field k unless otherwise specified.

Lemma 3.2.1. Let A be a finite-dimensional algebra over k. Then the multiplication in

A[[t]] induces a k[[t]]-algebra isomorphism k[[t]]⊗k A ∼= A[[t]].

Proof. The given map sends
∑

i≥0 λit
i⊗a to

∑
i≥0 λiat

i where λi ∈ k and a ∈ A. In order

to show that this is an isomorphism, we construct its inverse as follows: let
∑

i≥0 ait
i ∈

A[[t]] and let {ej}1≤j≤n be a k-basis of A. Write ai =
∑n

j=1 µijej for every non-negative

integer i where µij ∈ k. The inverse map sends
∑

i≥0 ait
i to

∑n
j=1

(∑
i≥0 µijt

i ⊗ ej
)

.

Lemma 3.2.2. Let A be a finite-dimensional algebra over k and let r be a positive integer.

Then the canonical map Z(A[[t]])→ Z(A[[t]]/trA[[t]]) is surjective.

Proposition 3.2.3. (cf. [26, 2.1]) Let A[[t]] be the formal power series with coefficients

in A. Then the canonical map A[[t]]→ A[[t]]/trA[[t]] induces an isomorphism

HHn(A[[t]];A[[t]]/trA[[t]]) ∼= HHn(A[[t]]/trA[[t]])
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for all n ≥ 0 and r > 0.

We denote by Aut(A[[t]]) the group of k[[t]]-algebra automomorphisms of A[[t]] and by

Out(A[[t]]) the group of outer k[[t]]-algebra automorphisms of A[[t]]. We introduce now a

subgroup of Aut(A[[t]]) related to the notion of r-integrable derivations.

For a fixed positive integer r, we denote by Autr(A[[t]]) the group of all k[[t]]-algebra

automorphisms of A[[t]] which induce the identity on A[[t]]/trA[[t]]. Clearly we have an

inclusion Autr(A[[t]]) ⊆ Aut1(A[[t]]) for every r ≥ 1. We denote by Outr(A[[t]]) the image

of the canonical map ϕ : Autr(A[[t]])→ Out(A[[t]]).

Lemma 3.2.4. Let A be a finite-dimensional k-algebra. Let r be a positive integer. Then

Outr(A[[t]]) is the kernel of the canonical group homomorphism

ψ : Out(A[[t]])→ Out(A[[t]]/(trA[[t]])). (3.2.1)

Proof. Clearly Outr(A[[t]]) ⊆ Ker(ψ). Let α be a representative of an element in the kernel

of ψ. Then ψ(α) is given by conjugation with an invertible element ū = u + trA[[t]] in

A[[t]]/trA[[t]] where u ∈ A[[t]]. We denote by A[[t]] = A[[t]]/trA[[t]]. Now, ū is invertible in

A[[t]] and so A[[t]] = A[[t]]ū. We lift u to A[[t]] = A[[t]]u+trA[[t]] ⊆ A[[t]]u+J(A[[t]])A[[t]].

By Nakayama’s Lemma we have A[[t]] = A[[t]]u hence u is invertible. Consequently if we

replace α by u−1αu, then the resulting automorphism is in the same class as α and it

induces the identity on A[[t]]/trA[[t]].

We recall a definition from [28] which is connected with Aut1(A[[t]]):

Definition 3.2.5. (cf. [28, 1.1]) Let A be a finite-dimensional k-algebra. A higher

derivation D of A is a sequence D = (Di)i≥0 of k-linear endomorphisms Di : A → A

such that D0 = Id and Dn(ab) =
∑

i+j=nDi(a)Dj(b) for all n ≥ 1 and all a, b ∈ A.
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We recall from [28, 1.5]:

Proposition 3.2.6. Let A be a finite-dimensional k-algebra. The set of higher derivation

of A is a group, called the Hasse-Schmidt group of A and denoted by HS(A), with the

product defined by

D ◦D′ =
( n∑
i=0

Di ◦D′n−i
)
n≥0

(3.2.2)

for any two higher derivations D = (Di)i≥0 and D′ = (D′i)i≥0.

From [28] we have the following relation between HS(A) and Aut1(A[[t]]) :

Proposition 3.2.7. Let A be a finite-dimensional k-algebra. The Hasse-Schmidt group of

A is isomorphic to Aut1(A[[t]]). The isomorphism sends a higher derivation D = (Di)i≥0

to α ∈ Aut1(A[[t]]) defined as α(a) =
∑

i≥0Di(a)ti for all a ∈ A.

Proof. Note that any k[[t]]-ring endomorphism of A[[t]] is determined by its restriction to

A since it can be extended linearly. Let D = (Di)i≥0 be an higher derivation. Then we

can construct α ∈ Aut1(A[[t]]) as follows: α(a) =
∑

i≥0Di(a)ti for all a ∈ A. It is easy

to check that α ∈ Aut1(A[[t]]) using Proposition 3.2.6. Conversely, let α ∈ Aut1(A) and

let di : A → A such that α(a) =
∑

i≥0 di(a)ti for all a ∈ A. Using the fact that α is an

automorphism which induce the identity on A, we have that the di satisfy 3.2.2 for every

i. Hence (di)i≥0 is a higher derivation.

Definition 3.2.8. Let A be a finite-dimensional k-algebra. A higher derivation D =

(Di)i≥0 is of degree r if D0 = Id, Di = 0 for 1 ≤ i ≤ r − 1 and Dr 6= 0. The set of higher

derivations of degree r is denoted by HSr (A).

We have the following:

Corollary 3.2.9. Let A be a finite-dimensional k-algebra. The set HSr(A) is a subgroup

of HS(A).
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Proof. Let us consider Autr(A[[t]]). Then the image of Autr(A[[t]]) under the isomorphism

in Proposition 3.2.7 is HSr(A).

Remark 3.2.10. Let (Di)i≥0 be a higher derivation of degree r. Since D0 = Id, Di = 0 for

1 ≤ i ≤ r − 1 then by definition of higher derivation we have that Di are derivations for

r ≤ i < 2r. In fact for r ≤ i < 2r:

Di(ab) =
∑
j+k=i

Dj(a)Dk(b) = aDi(b) +Di(a)b.

In particular Dr is a derivation.

Consequently, we can slightly extend Matsumura [28] in order to introduce the follow-

ing terminology:

Definition 3.2.11. Let A be a finite-dimensional k-algebra and let r be a positive integer.

A derivation D ∈ Der(A) is called r -integrable if there exists a higher derivation of degree

r, say D = (Di)i≥0, such that D = Dr. We denote by Derr(A) the set of r-integrable

derivations of A.

Note that for r = 1 we have the notion of integrable derivation defined in [13]; that is,

integrable derivations are 1-integrable.

Remark 3.2.12. The notion of integrable derivation can be defined over more general rings

(see e.g [26]) but we only work over a field k since the main results mostly require a field

as a base ring.

Now using Proposition 3.2.6 we have that:

Corollary 3.2.13. Let A be a finite-dimensional k-algebra and let r be a positive integer.

The set Derr(A) is a subgroup of the additive abelian group Der(A).
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Proof. If we let D,D′ ∈ Derr(A) with D,D′ the corresponding higher derivations, then

the rth term of D ◦D′ is D+D′. Thus the collection of r-integrable derivations is closed

under addition. Using Proposition 3.2.6, the rth term of the inverse of D, say D−1, is

−Dr. It is easy to check that the unit in the group of higher derivation is given by Di = 0

for i > 0 and D0 = 1. In particular Dr = 0.

It is helpful to have an equivalent characterisation of Derr(A) in terms of Autr(A[[t]]).

Using Proposition 3.2.7 we can write α ∈ Autr(A[[t]]) as follows: let a =
∑∞

i=0 ait
i. Then

α(a) =
∑
i,n≥0

Dn(ai)t
i+n = a+ tr

∑
k≥r

k∑
n≥1,
i≥0

i+n=k

Dn(ai)t
i+n−r

since Di = 0 for 1 ≤ i ≤ r − 1. Hence we can write α as α(a) = a + trµ(a) where µ is a

k[[t]]-linear endomorphism of A[[t]]. We need now the following:

Proposition 3.2.14. Let A be a finite-dimensional k-algebra. Let r be a positive integer,

let α ∈ Autr(A[[t]]). Let µ : A[[t]]→ A[[t]] be the unique k[[t]]-linear map such that α(a) =

a + trµ(a) for all a ∈ A[[t]]. Then the map µ̄ : A ∼= A[[t]]/tA[[t]] → A ∼= A[[t]]/tA[[t]]

induced by µ is a derivation.

Proof. Let a, b ∈ A[[t]], since α is an automorphism we have α(ab) = ab+ trµ(ab) is equal

to α(a)α(b) = ab+ trµ(a) + trµ(b) + t2rµ(a)µ(b) hence we obtain µ(ab) = aµ(b) + µ(a)b+

trµ(a)µ(b). Reducing modulo t we have

µ̄(ab) = aµ̄(b) + µ̄(a)b (3.2.3)

hence µ̄ is a derivation on A.

By Proposition 3.2.14 the map µ̄ : A→ A induced by µ is a derivation over A, in fact,

µ̄ is exactly Dr. We can now introduce an equivalent definition of r-integrable derivation:
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Remark 3.2.15. Let A be a finite-dimensional k-algebra. A derivation D is r-integrable if

there is a k[[t]]-algebra automorphism of A[[t]], say α, and a k[[t]]-linear endomorphism µ

of A[[t]] such that α(a) = a+ trµ(a) for all a ∈ A[[t]] and such that D is equal to the map

µ̄ induced by µ on A ∼= A[[t]]/tA[[t]].

Definition 3.2.16. Let A be a finite-dimensional k-algebra. Let r be a positive integer.

We denote by HH1
r(A) the image of Derr(A) in HH1(A).

We can now prove some results regarding r-integrable derivations:

Proposition 3.2.17. Let A be a finite-dimensional k-algebra. Let r be a positive integer,

let α ∈ Autr(A[[t]]). Let µ : A[[t]] → A[[t]] be the unique k[[t]]-linear map such that

α(a) = a+ trµ(a) for all a ∈ A[[t]]. Let µ̄ the map induced by µ on A. The following hold:

(a) Let α be an inner automorphism. Then µ̄ = [d̄,−] for some d̄ ∈ A; that is µ̄ is a

inner derivation.

(b) The class of µ̄ ∈ HH1
r(A) depends only on the class of α ∈ Outr(A[[t]]).

Proof. Let α be an inner automorphism induced by conjugation by an element c ∈

(A[[t]])×; that is α(a) = cac−1 for a ∈ A[[t]]. Since α induces the identity on A[[t]]/trA[[t]]

then taking the projection of α in A[[t]]/trA[[t]] we have c̄āc̄−1 = ā, that is c̄ā = āc̄ hence

c̄ ∈ Z(A[[t]]/trA[[t]])×. Since the map Z(A[[t]])→ Z(A[[t]]/trA[[t]]) is surjective (Remark

3.2.1), there is an element z ∈ Z(A[[t]])× such that z̄ = c̄ hence such that cz−1 ∈ 1+trA[[t]].

Therefore if we replace c by cz−1 we have c = 1+trd for some d ∈ A[[t]]. If we take a ∈ A[[t]]

we have cac−1 = α(a) = a + trµ(a) and hence ca = ac + trµ(a)c, that is [c, a] = trµ(a)c.

Now if we replace c by 1 + trd and we divide by tr we obtain

[d, a] = µ(a) + trµ(a)d. (3.2.4)
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Consequently [d̄, ā] = µ̄(ā), whence statement a).

For the second part we let α1, α2 be two representatives of the same class in Outr(A[[t]])

with induced derivations µ1, µ2. Since α1, α2 are in the same class, then α1 ◦ α−1
2 is an

inner automorphism of A[[t]]. By Proposition 3.2.6 the induced derivation of α1 ◦ α−1
2 is

µ1 − µ2. Then by statement a) we have that µ1 − µ2 is an inner derivation. Hence the

result.

The following proposition is useful for Proposition 3.2.19 and for the next section:

Proposition 3.2.18 ([34, Theorem 3.6]). Let A be a finite-dimensional k-algebra and

let α ∈ Aut1(A[[t]]). Let (Di)i≥0 be the higher derivation satisfying α(a) =
∑

i≥0Di(a)ti

for a ∈ A. The map that sends α to
∑

i≥0Dit
i induces a group homomorphism φ :

Aut1(A[[t]])→ (Endk(A)[[t]])×.

Proof. Let β ∈ Aut1(A[[t]]). For l ≥ 0 let El ∈ Endk(A) such that β(a) =
∑

l≥0El(a)tl.

For all a ∈ A let {ej}1≤j≤n be a k-basis of A. For every i ≥ 0 define µij : A→ k such that

Di(a) =
∑n

j=1 µij(a)ej where a ∈ A. On one side we have:

(β ◦ α)(a) = β
(∑
i≥0

Di(a)ti
)

=
n∑
j=1

β
(∑
i≥0

µij(a)tiej

)
=

n∑
j=1

∑
i≥0

µij(a)tiβ(ej) =
∑
l≥0

∑
i≥0

n∑
j=1

µij(a)El(ej)t
i+l

(3.2.5)

where the third equation holds since β is an automorphism over k[[t]]. If we fix a degree

m ∈ N, we have

∑
l,i

i+l=m

n∑
j=1

µij(a)El(ej)t
i+l =

∑
l,i

i+l=m

El(

n∑
j=1

µij(a)ej)t
m

=
∑
l,i

i+l=m

El(Di(a))tm

(3.2.6)
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Hence φ(β ◦ α) in degree m is equal to
∑

i,l≥0
i+l=m

El ◦ Dit
m. This is clearly equal to the

coefficient at tm of φ(β)φ(α).

Proposition 3.2.19. Let A be a finite-dimensional k-algebra. Let r be a positive integer

and let α ∈ Autr(A[[t]]) . Let µ be the unique k[[t]]-linear map on A[[t]] such that α(a) =

a + trµ(a) for all a ∈ A[[t]]. We denote by µ̄ the derivation induced on A by µ as in

Remark 3.2.15.

(a) The derivation µ̄ is inner if and only if α induces an inner automorphism in A[[t]]/tr+1A[[t]].

(b) We have the following short exact sequence of groups:

1 // Outr+1(A[[t]]) // Outr(A[[t]])
ψ

// HH1
r(A) // 1.

where ψ is defined as in Proposition 3.2.17

Proof. Let us assume that µ̄ is an inner derivation so µ̄ = [d̄,−] for some d ∈ A[[t]].

Take c = 1 + trd as in the proof of Proposition 3.2.17. By Equation 3.2.4 we can choose

τ(a) = −µ(a)d so that we have [d, a] = µ(a)− trτ(a). Since c = 1 + trd we get

[c, a] = [1 + trd, a] = tr[d, a]. (3.2.7)

So [c, a] = tr[d, a] = trµ(a) − t2rτ(a). Hence trµ(a) = [c, a] + t2rτ(a). Consequently

cac−1 = a+ trµ(a)c−1 − t2rτ(a)c−1. Now, α(a) = a+ trµ(a) implies that α(a)− cac−1 =

trµ(a)(1 − c−1) + t2rτ(a)c−1. Since c belongs to 1 + trA[[t]], we have c−1 ∈ 1 + trA[[t]]

and hence 1− c−1 ∈ trA[[t]]. This shows that α(a)− cac−1 ∈ t2rA[[t]] ⊂ tr+1A[[t]]. Con-

sequently α induces an inner automorphism on A[[t]]/tr+1A[[t]].

Conversely, suppose that α acts as an inner automorphism on A[[t]]/tr+1A[[t]]. Us-

ing the same argument as in Lemma 3.2.4 we may assume that α acts as identity on

A[[t]]/tr+1A[[t]] and hence it induces an inner derivation on A[[t]]/tr+1A[[t]]. Hence we
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can assume α ∈ Autr+1(A[[t]]) . Hence α(a) = a+ tr+1µ′(a) for some µ′(a) ∈ A[[t]], which

gives the equality µ(a) = tµ′(a). Consequently we have that µ induces the zero map on

A.

For the second part, we let β ∈ Autr(A). Let ν be the unique k[[t]]-linear map on A[[t]]

such that β(a) = a+trν(a) for all a ∈ A[[t]]. For i, l ≥ 0 let Di, El ∈ Endk(A) be such that

α(a) =
∑

i≥0Di(a)ti and β(a) =
∑

l≥0El(a)tl for all a ∈ A[[t]]. By Proposition 3.2.18, the

coefficient of the term of degree r of β◦α is
∑

l,i
i+l=r

El(Di(a)) = Er(a)+Dr(a) = µ̄(a)+ν̄(a)

since Ei = Dj = 0 for 1 ≤ i, j ≤ r− 1. Hence by Proposition 3.2.17 we have that the class

determined by β ◦ α in HH1
r (A) is the class determined by µ̄ + ν̄. The exactness follows

from part a).

3.3 The p-power map on r-integrable derivations

In this section we denote by k be a field of positive characteristic p. A way to under-

stand the action of the p-power map on the integrable derivations is by studying it on

Aut1(A[[t]]) and then using the homomorphism in Proposition 3.2.18, φ : Aut1(A[[t]]) →

(Endk(A)[[t]])×. In the following proposition the expression
∏c
j=1Dij is to be understood

as the composition Di1 ◦Di2 ◦ · · · ◦Dic . Note that this product is not commutative.

Proposition 3.3.1. Let D be a higher derivation and let l, n be positive integers. The

coefficient of the monomial tl in
(∑

i≥0Dit
i
)n

is equal to

l∑
c=1

(
n

c

) ∑
i1,...ic≥1
i1+···+ic=l

c∏
j=1

Dij (3.3.1)

Proof. The term at tl in
(∑

i≥0Dit
i
)n

is given by

∑
i1,...,in≥0
i1+···+in=l

n∏
j=1

Dij . (3.3.2)
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If ij = 0, then Dij = Id, so we regroup the sum
∑

i1,...,in≥0
i1+···+in=l

over the n-tuples in terms of

the number c of indices ij which are strictly positive. Then for each c-tuple (i′1, i
′
2, . . . , i

′
c)

which has non-zero components and such that
∑c

j=1 i
′
j = l, there are

(
n
c

)
different n-

tuples (i1, i2, . . . , in) which have the c non-zero components of the c-tuple (i′1, i
′
2, . . . , i

′
c)

and rest equal to zero. Since D0 = Id, this implies
∏n
j=1Dij =

∏c
j=1Di′j

. For a fixed c

the Equation (3.3.2) is given by
(
n
c

)∑
i1,...ic≥1
i1+···+ic=l

∏c
j=1Dij . If we sum over all c we have

the result.

Proposition 3.3.2. Let A be a finite-dimensional k-algebra and let α ∈ Autr(A[[t]]) for

some positive integer r. Then αp ∈ Autrp(A[[t]]). The p-power map sends HH1
r(A) to

HH1
rp(A), and Outr(A[[t]]) to Outrp(A[[t]]) and we have a commutative diagram

Outr(A[[t]])

��

( )p
// Outrp(A[[t]])

��

HH1
r(A)

[p]
// HH1

rp(A)

where the vertical maps are from Proposition 3.2.19 (b), ( )p is the p-fold composition and

[p] is the p-power map.

Proof. Let α ∈ Autr(A[[t]]) and let Dr the derivation in Derr(A). Let D′ be the higher

derivation associated to αp. Using Proposition 3.3.1, in degree l ≤ p− 1 we have:

l∑
c=1

(
p

c

) ∑
i1,...ic≥1
i1+···+ic=l

c∏
j=1

Dij t
l = 0 (3.3.3)

since the binomial coefficient are multiples of p. For l ≥ p

l∑
c=1

(
p

c

) ∑
i1,...ic≥1
i1+···+ic=l

c∏
j=1

Dij t
l =

∑
i1,...ip≥1
i1+···+ip=l

c∏
j=1

Dij t
l (3.3.4)
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Now we know that each Di is zero for i = 1, . . . , r − 1, so in order to have an element

different from zero we should impose that each ij be at least r. Therefore i1 + · · ·+ip = rp,

that is l = rp, hence the first non-zero coefficient is Dp
r . Consequently the diagram

commutes.

3.4 A cohomological interpretation of r-integrable deriva-

tions

In this section we let k be an arbitrary field. Integrable derivation can also be interpreted

using a cohomological point of view (See [26], [34]). We recall a standard theorem from

cohomology which is fundamental for the following sections:

Proposition 3.4.1. Let

0 // X
τ // Y

σ // Z // 0

be a short exact sequence of cochain complexes of modules over some k-algebra A with

differentials δ, ε, ζ respectively. This induces a long exact sequence

· · · // Hn(X)
Hn(τ)

// Hn(Y )
Hn(σ)

// Hn(Z)
dn // Hn+1(X) // · · ·

depending functorially on the short exact sequence, where dn is called the connecting

homomorphism. The functoriality dependence means that given a commutative diagram

of chain complexes with exact rows

0 // X
τ //

f

��

Y
σ //

g

��

Z //

h

��

0

0 // X
′ τ

′
// Y
′ σ′ // Z

′
// 0
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we get a commutative ladder of long exact sequences

· · · // Hn(X)
Hn(τ)

//

Hn(f)

��

Hn(Y )
Hn(σ)

//

Hn(g)

��

Hn(Z)
dn //

Hn(h)

��

Hn+1(X) //

Hn+1(f)

��

· · ·

· · · // Hn(X
′
)

Hn(τ
′
)
// Hn(Y

′
)

Hn(σ′)
// Hn(Z

′
)

d
′n
// Hn+1(X

′
) // · · ·

Proof. We only prove how dn is obtained. Let z̄ = z + Im(ζn−1) ∈ Hn(Z) for some

z ∈ Ker(ζn) ⊆ Zn. Since σ is surjective in each degree, there exists y ∈ Y n such that

σn(y) = z. Then ε(y) ∈ Y n+1 satisfies

σn+1(εn(y)) = ζn(σn(y)) = ζn(z) = 0 (3.4.1)

Hence ε(y) ∈ ker(σn+1) = Im(τn+1). Thus the is an x ∈ Xn+1 such that τn+1(x) = εn(y).

In addition we have that

τn+2(δn+1(x)) = εn+2(τn+1(x)) = εn+1(εn(y)) = 0.

Since τn+2 is a monomorphism, this shows that δn+1(x) = 0. Consequently x + Im(δn)

is an element in Hn+1(X). One can verify that if z ∈ Im(ζn+1) then x ∈ Im(δn). This

implies that there is a well-defined map dn : Hn(Z) → Hn+11(X) sending z + Im(ζn) to

x+ Im(δn).

Let α ∈ Aut(A[[t]]) and let U be a right, equivalently left, A[[t]]-module. We denote

by Uα (or αU) the A[[t]]-module which is equal to U as a k[[t]]-module, with a ∈ A[[t]]

acting on the right, equivalently on left, as α(a) on U .

Let us consider the short exact sequence of A[[t]]-A[[t]]-bimodules:

0 // A[[t]]/tA[[t]]
tr // A[[t]]/tr+1A[[t]] // A[[t]]/trA[[t]] // 0.

Twisting the exact sequence on the right by the automorphism α ∈ Autr(A[[t]]) does

not affect the A[[t]]-A[[t]]-bimodules A[[t]]/tA[[t]] and A[[t]]/trA[[t]], since α induces the
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identity on A[[t]]/trA[[t]], but only A[[t]]/tr+1A[[t]]. The resulting sequence is also exact

hence we have the following short exact sequence:

0 // A[[t]]/tA[[t]]
tr // (A[[t]]/tr+1A[[t]])α // A[[t]]/trA[[t]] // 0.

Proposition 3.4.2. Let A be a finite-dimensional algebra over k. Set Â = A[[t]] and set

Âe = Â ⊗k[[t]] Â
op. Let α ∈ Autr(Â). Let r a positive integer and let µ : Â → Â be the

unique k[[t]]-linear map satisfying α(a) = a + trµ(a). Let P be a projective resolution of

Â as Âe-module. Applying the functor HomÂe(P,−) to the exact sequence of Âe-modules

0 // Â/tÂ
tr // (Â/tr+1Â)α // Â/trÂ // 0

yields a short exact sequence of cochain complexes

0 // HomÂe(P,A)
tr // HomÂe(P, (Â/t

r+1Â)α) // HomÂe(P, Â/t
rÂ) // 0

The first non trivial connecting homomorphism can be identified with a map

EndÂe(Â/t
rÂ)→ HH1(A) (3.4.2)

and this map sends IdÂ/trÂ to the class of the derivation induced by µ on A.

Proof. We take as a projective resolution the bar resolution P of Â where the tensor

products are over k[[t]]:

. . . // Â⊗n+2 δn // Â⊗n+1 // . . .

which is given by δn(a0⊗ · · · ⊗ an+1) =
∑n

i=0(−1)ia0⊗ · · · ⊗ aiai+1⊗ · · · ⊗ an+1. The last

non-zero differential is the map δ1 : Â⊗3 → Â⊗2 which sends a⊗ b⊗ c to ab⊗ c− a⊗ bc

for a, b, c ∈ Â. We have the following identifications:

H0(HomÂe(P, Â/t
rÂ)) = HH0(Â, Â/trÂ)

∼= HH0(Â/trÂ) = EndÂe(Â/t
rÂ)

(3.4.3)
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The identity map in EndÂe(Â/t
rÂ) corresponds to the homomorphism

ζ : Â⊗k[[t]] Â→ Â/trÂ

a⊗ b 7→ ζ(a⊗ b) = ab+ trÂ

(3.4.4)

for all a, b ∈ A[[t]]. This lifts to an Âe-homomorphism

ζ̄ : Â⊗k[[t]] Â→ (Â/tr+1Â)α

a⊗ b 7→ ζ̄(a⊗ b) = aα(b) + tr+1Â

(3.4.5)

for a, b ∈ Â since α induces the identity on Â/trÂ.

Following the proof of Proposition 3.4.1, since ζ̄ ∈ HomÂe(Â ⊗ Â, (Â/tr+1Â)α), we need

to apply the first non-zero differential

ε : HomÂe(Â
⊗2, (Â/tr+1Â)α)→ HomÂe(Â

⊗3, (Â/tr+1Â)α) (3.4.6)

which is given by composing with −δ1. Hence in Â/tr+1Â we have:

(−ζ̄ ◦ δ1)(a⊗ b⊗ c) = −ζ̄(ab⊗ c− a⊗ bc) = −abα(c) + aα(bc)

= a(α(b)− b)α(c) = traµ(b)α(c).

(3.4.7)

for all a, b, c ∈ Â. In order to construct the first non trivial connection homomorphism, we

observe that traµ(b)α(c)+ tr+1Â ∈ Â/tr+1Â is the image, under tr : Â/tÂ→ (Â/tr+1Â)α,

of the map ψ : Â⊗3 → Â/tÂ, that is we have the following commutative diagram:

Â⊗3

ψ

zz

−ζ◦δ

��

Â/tÂ
tr // (Â/tr+1Â)α

where ψ sends a⊗ b⊗ c to aµ(b)α(c) + tÂ which is equal to aµ(b)c+ tÂ since α(c)− c ∈

trÂ ⊆ tÂ. Consequently ψ induces a map ψ̄ : Â⊗3 → A which sends a ⊗ b ⊗ c to āµ̄(b̄)c̄

that can be restricted to the map ψ̄ : A→ A that sends b̄ to µ(b̄). Using Proposition 3.2.3

the result follows.
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Remark 3.4.3. Let O be is a complete discrete valuation ring with maximal ideal J(O) =

πO for some nonzero element π ∈ O. Let B be an O-algebra such that B is free of finite

rank as an O-module. If we consider the exact sequence in [26, 4.1] with O = k[[t]] and

B = A⊗k k[[t]] for some finite-dimensional k-algebra A then we have:

0 // Â/trÂ
tr // (Â/t2rÂ)α // Â/trÂ // 0.

The commutative diagram

0

��

// Â/trÂ

����

tr // (Â/t2rÂ)α

����

// Â/trÂ // 0

��

0 // Â/tÂ
t2r // (Â/tr+1Â)α // Â/trÂ // 0

together with the naturality of the connecting homomorphism implies that the follow-

ing diagram commutes:

EndÂe(Â/t
rÂ) // HH1(Â/trÂ)

����

EndÂe(Â/t
rÂ) // HH1(Â/tÂ)

Consequently Proposition 3.4.2 can be deduced from [26, 4.1].

3.5 Invariance theorems

Our first aim in this section is to prove the invariance of the r-integrable derivations under

stable equivalences which is a variation of [26, 5.1]:

Theorem 3.5.1. Let A,B be finite-dimensional selfinjective k-algebras indecomposable

with separable semisimple quotients. Let r be a positive integer and let M , N be an
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A-B-bimodule, B-A bimodule, respectively, inducing a stable equivalence of Morita type

between A and B. Then for any α ∈ Autr(A[[t]]) there is a β ∈ Autr(B[[t]]) such that

α−1M [[t]] ∼= M [[t]]β as A[[t]]-B[[t]]-bimodules. This correspondence induces a group iso-

morphism Outr(A[[t]]) ∼= Outr(B[[t]]) making the following diagram commute:

Outr(A[[t]])

��

∼= // Outr(B[[t]])

��

HH1
r(A)

∼= // HH1
r(B)

where the vertical maps are from Proposition 3.2.19 and the lower horizontal isomorphism

is induced by the functor N ⊗A −⊗AM

Proof. Let α ∈ Autr(A). Then α induces the identity on A[[t]]/tA[[t]] ∼= A, hence stabilises

the isomorphism classes of all A-modules, hence in particular of all simple A-modules

and all finitely generated projective A[[t]]-modules. By Theorem 4.2 in [23] there ex-

ists an automorphism β ∈ Autr(B[[t]]), unique up to inner automorphisms, such that

α−1M [[t]] ∼= M [[t]]β as A[[t]]-B[[t]]-bimodules. Then by [26, Lemma 5.2] we have that the

upper horizontal map is a group isomorphism. Note that in [26, Lemma 5.2] A,B are

nonsimple in order to exclude trivial cases, that is, when HH1 is zero. The hypotheses of

separable semisimple quotients and indecomposablity of A and B are needed in order to

apply Theorem 4.2 in [23].

We also have that α is such that α(a) = a + trµ(a) for all a ∈ A[[t]] and β such that

β(b) = b+ trν(b) for all b ∈ B[[t]] for some k[[t]]-linear endomorphisms µ, ν. We denote by

µ̄ and ν̄ the classes in HH1
r(A) and HH1

r(B) respectively determined by the canonical group

homomorphism Outr(A[[t]])→ HH1(A) and Outr(B[[t]])→ HH1(B). Set M̂ = M [[t]]. By

the assumptions, tensoring by M yields a stable equivalence of Morita type between A

68



and B. In particular we have:

HH1(A) ∼= Ext1
A⊗kBop(M,M) ∼= HH1(B) (3.5.1)

induced by the functors − ⊗AM and M ⊗B −. In addition since B[[t]] is isomorphic to

N̂ ⊗A[[t]] M̂ in the relatively k[[t]]-stable category of B[[t]]⊗k[[t]]B[[t]]op-modules, it follows

that the isomorphism

HH1(A) ∼= HH1(B) (3.5.2)

given by the composition of the two previous isomorphisms is induced by the functor

N ⊗A − ⊗AM . The functors M ⊗B −, −⊗AM also induce algebra homomorphisms

EndA⊗Aop(A)→ EndA⊗Bop(M)← EndB⊗Bop(B) (3.5.3)

Tensoring the following two exact sequences

0 // A // (A[[t]]/tr+1A[[t]])α // A[[t]]/trA[[t]] // 0

and

0 // B // (B[[t]]/tr+1B[[t]])α // B[[t]]/trB[[t]] // 0

by −⊗A[[t]] M̂ and M̂ ⊗B[[t]] − yields short exact sequences of the form

0 //M //
α−1(M [[t]]/tr+1M [[t]]) //M // 0

0 //M // (M [[t]]/tr+1M [[t]])β //M // 0

By the naturality properties of the connecting homomorphism and the description of µ̄, ν̄

in Proposition 3.4.2 the image of µ̄⊗ IdM and IdM ⊗ ν̄ in Ext1
A⊗kBop(M,M) are equal to

the images of IdM̂ under the two connecting homomorphisms

EndA⊗kBop(M̂)→ Ext1
A⊗kBop(M,M) (3.5.4)
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obtained after applying the functor HomA[[t]]⊗B[[t]]op(M̂,−) to the short exact sequences

using the same identification used in Proposition 3.4.2. By Lemma [26, 4.3] the two exact

sequences are equivalent, consequently the connecting homomorphisms are equal. Hence

the two images of IdM coincide. This shows that the group isomorphism HH1
r(B) ∼=

HH1
r(A) induced by Outr(B[[t]]) ∼= Outr(A[[t]]) is equal to the one determined by the

functor N ⊗A −⊗AM . Hence the result.

We want now to prove the compatibility between the transfer map and the p-power

map under stable equivalences:

Theorem 3.5.2. Let k be a field of positive characteristic p. Let A,B be finite-dimensional

selfinjective indecomposable k-algebras with separable semisimple quotients, and let M , N

be an A-B-bimodule, B-A-bimodule, respectively, inducing a stable equivalence of Morita

type between A and B. For any positive integer r, the p-power map sends HH1
r(A) to

HH1
rp(A), and we have a commutative diagram of maps

HH1
r(A)

[p]

��

∼= // HH1
r(B)

[p]

��

HH1
rp(A)

∼= // HH1
rp(B)

where the horizontal isomorphisms are induced by the functor N ⊗A − ⊗AM , and where

the vertical maps are the p-power maps.

Proof. We show first that the following diagram commutes:

Outr(A[[t]])

( )p

��

∼= // Outr(B[[t]])

( )p

��

Outrp(A[[t]])
∼= // Outrp(B[[t]])
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where the horizontal maps are from Theorem 3.5.1 and the vertical maps are p-fold compo-

sitions. Let α ∈ Autr(A[[t]]) and β ∈ Autr(B[[t]]) such that α−1M [[t]] ∼= M [[t]]β. Let µ, ν

be the unique linear maps on A[[t]] such that α(a) = a+ trµ(a) and β(b) = b+ trν(b) re-

spectively. By Corollary 3.3.2 we have αp ∈ Autrp(A[[t]]), βp ∈ Autrp(A[[t]]) and also that

the maps µ̄, ν̄, induced by µ, ν on A, are sent under the p-power map to µ̄p and ν̄p respec-

tively. Hence we have the commutativity of the diagram above since α−pM [[t]] ∼= M [[t]]βp .

Using the commutative diagram above and Theorem 3.5.1 we have that the class of µ̄p is

sent though the isomorphism defined in Theorem 3.5.2 to the class of ν̄p. Hence we have

the commutativity of the diagram in the beginning of the theorem.

3.6 Structure on r-integrable derivations

Let p be a prime number and let a, r be two positive integers. The aim of this section is

to study the structure of the r-integrable derivations. We divide this section in two parts:

if r = pa and if r is arbitrary.

3.6.1 Vector space structure of pa-integrable derivations

Matsumura in [28] already notes the following for 1-integrable derivations:

Proposition 3.6.1. Let A be a k-algebra. Then the set of 1-integrable derivations of A

form a Z(A)-submodule of Der(A). In particular Der1(A) is a k-vector space.

Proof. In Proposition 3.2.13 we prove that Der1(A) is a subgroup of the additive abelian

group Der(A). Let D = (Di)i≥0 be a higher derivation of degree 1 . For any central

element in Z(A) the sequence

λD = (1, λD1, . . . , λ
rDr, . . . )

71



is a higher derivation of degree 1.

Slightly generalising we have the following:

Theorem 3.6.2. Let k be a perfect field of positive characteristic p and let A be a finite

dimensional k-algebra. Let a be a non-negative integer. Then Derpa(A) is a k-vector

subspace of Der(A).

Proof. In Proposition 3.2.13 we prove for any positive integer r that Derr(A) is a subgroup

of the additive abelian group Der(A). Hence we just need to show that Derpa(A) is closed

under scalar multiplication. Let λ
1
pa be the unique pa-th root of λ. If we let n be a positive

integer, we denote by λn/p
a

= (λ1/pa)n. Let D = (Di)i≥0 be a higher derivation of degree

pa. Then we define the scalar multiplication as follows:

λ ·D = (1, 0, . . . , λDpa , λ
pa+1
pa Dpa+1, . . . ) (3.6.1)

It is easy to check that λ ·D is a higher derivation for every λ ∈ k , in fact for any positive

integer r:

pa+r∑
i=0

λ
i
paDi(a)λ

pa+r−i
pa Dpa+r−i(b) = λ

pa+r
pa

pa+r∑
i=0

Di(a)Dpa+r−i(b)

= λ
pa+r
pa Dpa+r(ab)

(3.6.2)

Remark 3.6.3. It is not known if Derpa(A) has a Z(A)-module structure.

Theorem 3.6.4. Let k be an algebraically closed field of positive characteristic p and let A

be a finite dimensional k-algebra. Let n be a positive integer. Then Dern(A) is a k-vector

subspace of Der(A).
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Proof. Using Proposition 3.2.13 we just need to show that Dern(A) is closed under scalar

multiplication. Let λ
1
n be a n-th root of λ. If we let m be a positive integer, we denote

by λm/n = (λ1/n)m. Let D = (Di)i≥0 be a higher derivation of degree n. Then we define

the scalar multiplication as follows:

λ ·D = (1, 0, . . . , λDn, λ
n+1
n Dn+1, . . . ) (3.6.3)

Similarly to Theorem 3.6.2 it is easy to check that λ ·D is a higher derivation for every

λ ∈ k .

Remark 3.6.5. By Proposition 3.6.1 the sequence

λD = (1, λD1, . . . , λ
nDn, . . . )

is higher derivation but it is not additive in λ, so does not yields a vectors space structure

in Dern(A).

3.6.2 Filtrations of r-integrable derivations

In this section we ask if there are inclusions among integrable derivations. The following

theorem provides the answer:

Theorem 3.6.6. Let A be a finite dimensional algebra over a field of positive character-

istic p. Let n, k be two positive integers. Let {Derr(A)}r≥1 be the set having elements

r-integrable derivations for r ≥ 1. If k divides n, then Derk(A) ⊆ Dern(A). Hence,

{Derr(A)}r≥1 is a poset where the partial order is given by the inclusion.

Proof. Let α ∈ Autr(A[[t]]) and let D = (Dk)k≥0 be the higher derivation of degree r

associated to it. Clearly Dr ∈ Derr(A). We need to construct β ∈ Autn(A[[t]]) such that

D′n = Dr, where D′ = (D′k)k≥0 is the higher derivation associated to β. We divide the
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proof in different steps given by the homomorphisms that are defined below:

Autr(A[[t]])
ψ1

// Autr(A[[tn]])
ψ2

// Autr(A⊗ k[[tn]])

ψ3

��

Autn(A[[t]]) Autn(A⊗ k[[t]])
ψ5

oo Autr(A⊗ k[[tn]]⊗k[[tn]] k[[t]])
ψ4

oo

Since all the maps are k[[t]]-linear, it is enough to evaluate them in A rather than

in A[[t]]. Let a ∈ A and let ψ1(a) =
∑

i at
in. Set β1(a) to be equal to (ψ1 ◦ α)(a) =∑

iDi(a)tni for a ∈ A. Then the image of β1 under ψ2, say β2, is defined as the unique

automorphism of A[[t]] such that the following diagram commutes:

A[[tn]]

φ1

��

β1
// A[[tn]]

φ1

��

A⊗ k[[tn]]
β2

// A⊗ k[[tn]]

where φ1 is the isomorphism from Lemma 3.2.1. Hence β2(a) is defined as

φ1(β1(a)) =
∑

Di(a)⊗ tni (3.6.4)

Since β2 ∈ Autr(A⊗k[[tn]]), it can be extended to the automorphism on A⊗k[[tn]]⊗k[[tn]]

k[[t]], which is the image of ψ3 of β2, in the following way:

a 7→
∑
i

Di(a)⊗ tni ⊗ 1 (3.6.5)

We define β4 = ψ4◦β3 to be the unique automorphism of A⊗k[[t]] such that β4◦φ2 = φ2◦β3

where φ2 is the isomorphism between A⊗ k[[tn]]⊗k[[tn]] k[[t]] and A⊗ k[[t]], hence :

β4(a) =
∑
i

Di(a)⊗ tni. (3.6.6)

Finally β5 is given by β5(a) =
∑

iDi(a)tni. Hence β5 is in Autn(A[[t]]).
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As a consequence we have:

Corollary 3.6.7. Let A be a finite dimensional k-algebra over a perfect field of positive

characteristic. Let a, b be two positive integers such that a ≤ b. Then Derpa(A) is a

k-vector subspace of Derpb(A).

3.7 Other properties of r-integrable derivations

In this section we collect some other properties of r-integrable derivations.

3.7.1 Invariance of the Jacobson radical under integrable derivations

We recall from Farkas, Geiss and Marcos in [11]:

Proposition 3.7.1. Let A be a finite dimensional k-algebra. If D : A → A is a 1-

integrable derivation. Then D(J(A)) ⊆ J(A).

The result is based on the following theorem:

Theorem 3.7.2 ([11, Theorem 2.1]). Let A be a finite dimensional k-algebra. Let (Di)i≥0

be a higher derivation and let α ∈ Aut1(A[[t]]) be the corresponding automorphism. Then

α(J(A)) ⊆ (J(A))[[t]], that is Di(J(A)) ⊆ J(A) for all i.

We generalise Theorem 3.7.1 for every r-integrable derivation.

Proposition 3.7.3. Let A be a finite dimensional k-algebra and let D : A → A be a

r-integrable derivation. Then D(J(A)) ⊆ J(A).

Proof. Let D be a higher derivation of degree r. Then using Theorem 3.7.2, we deduce

that Dm(J(A)) ⊆ J(A) for every positive integer m. Hence the result.
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3.8 Integrable derivations of quantum complete intersec-

tions

In [11] Farkas, Geiss and Marcos provide a family of examples given by commutative

monomial algebras such that all their derivations are 1-integrable. The aim of this section

is to provide another family given by certain quantum complete intersections.

Let k be a field of odd prime characteristic and let q ∈ k× be an element of finite order

e ≥ 2 such that e divides p− 1. Then

A = k〈x, y| xp = yp = 0, yx = qxy〉 (3.8.1)

is a symmetric local k-algebra of dimension p2. This k-algebra is called a quantum com-

plete intersection. The set of monomials

V = {xiyj | 0 ≤ i, j ≤ p− 1} (3.8.2)

is a k-basis of A. The symmetrising form is given by the linear map that sends xp−1yp−1

to 1 and all other monomials in V to 0. The set

X
′

= {xiyj | 0 ≤ i, j ≤ p− 1, i and j divisible by e, or i = p− 1, or j = p− 1}

is a k-basis of Z(A).

Remark 3.8.1. One can relax the condition that e divides p−1 in the definition of A. How-

ever, the resulting algebra A is not symmetric (although it is selfinjective [6]). Therefore

A cannot be Morita equivalent to a block algebra of a finite group. To see this, assume

that A is symmetric. Then any symmetrising form s of A is nonzero on the socle. In

particular on xp−1yp−1. Thus

0 6= s(xp−1yp−1) = s(xp−2yp−1x) = qp−1s(xp−1yp−1), (3.8.3)
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and consequently qp−1 = 1.

Proposition 3.8.2 ([6, Lemma 5.2]). Let a, b be integers such that 0 ≤ a, b ≤ p− 1.

• If e divides a− 1, and b, or b = p− 1 there is a derivation, say, fa,b on A satisfying

fa,b(x) = xayb

and

fa,b(y) = 0.

• If e divides b − 1 and a, or a = p − 1 then there is a derivation, say, ga,b on A

satisfying

ga,b(x) = 0

and

ga,b(y) = xayb.

We recall a result from [6] that allows us to determined the set of derivations and inner

derivations in A.

Lemma 3.8.3 ([6, Lemma 5.3]). Let a, b, c, d be integers such that 0 ≤ a, b, c, d ≤ p − 1.

Let

X1 = {fa,b| 0 ≤ a, b ≤ p− 1, e divides a− 1, and b, or b = p− 1} (3.8.4)

X2 = {ga,b| 0 ≤ a, b ≤ p− 1, e divides a, and b− 1, or a = p− 1}. (3.8.5)

Then X1 ∪X2 is the complement of IDer(A) in Der(A). Hence every element in HH1(A)

is represented by X1 ∪X2.

The following Lemma describes the Z(A)-module structure of Der(A).
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Lemma 3.8.4. Let i, j be two non-negative integers and let xiyj be an element of the

basis of Z(A). Let a, b, c, d be integers such that 0 ≤ a, b, c, d ≤ p − 1 and let fa,b ∈ X1,

gc,d ∈ X2. Then the action of the monomials on the derivations is described as follows:

xiyj · fa,b =


fa+i,b+j for 0 ≤ a+ i− 1, b+ j ≤ p− 1

0 otherwise.

Similarly:

xiyj · gc,d =


gc+i,d+j for 0 ≤ c+ i, d+ j − 1 ≤ p− 1

0 otherwise.

Proof. It is enough to prove the statement for the generators of the algebra A. Since

fa,b(x) = xayb then xiyjfa,b(x) = xa+iyb+j = fa+i,b+j(x). Clearly if a + 1 + i or b + j is

greater than p we have zero. Similarly for gc,d.

We can now prove the main theorem of this section

Theorem 3.8.5. With the notation and assumptions above, we have that all derivations

on A are 1-integrable.

Since X is a k-basis in HH1(A) where X1, X2 are from Lemma 3.8.3, our aim is to

prove that all elements of X = X1 ∪X2 are 1-integrable derivations.

Let us first consider f1,0 ∈ X1. Set α : A → A[[t]] defined as α(x) = x(1 + t) and

α(y) = y for x, y in A. In order to show that α extends to an automorphism in Aut1(A[[t]])

we need to check that the following relations hold:

α(x)p = 0

α(y)p = 0

α(x)α(y) = qα(y)α(x).

(3.8.6)
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Since α(x)p = (x(1 + t))p = 0 = xp = α(xp). The second equation is straightforward. For

the last one we have: α(x)α(y) = x(1 + t)y = xy(1 + t) = qyx(1 + t) = qα(y)α(x). Hence

f1,0 is integrable. Now we consider fa,b such that a 6= 0 and e divides a− 1 and b. Every

element of this form can be obtained from f1,0 by the multiplication by xa−1yb ∈ Z(A).

Since the integrable derivations are a Z(A)-module we have that they are integrable. All

the elements of the form fa,p−1 where a 6= 0 can be obtained as fa,p−1 = xa−1yp−1 · f1,0.

Since xa−1yp−1 is an element of the centre they are also integrable. The only remaining

element, using Lemma 3.8.4, is f0,p−1. If we consider the automorphism α(x) = (x+xp−1t),

then it is easy to check that α verifies the conditions 3.8.6. Similarly we can do the same

for gc,d. Consequently, all the elements of the basis of X are 1-integrable. Any other

derivation is represented by a class of linear combinations of them, hence the result.

Corollary 3.8.6. Let A be a quantum complete intersection. Then

HH1
1(A) = HH1(A).

In particular, HH1
1(A) is a restricted Lie algebra

Using Theorem 3.5.2 we have also the following:

Corollary 3.8.7. Let A be a quantum complete intersection and let B be symmetric a

k-algebra. Let M , N be an A-B-bimodule, B-A-bimodule, respectively, inducing a stable

equivalence of Morita type between A and B. Then

HH1(A) ∼= HH1(B)

as restricted Lie algebras. In addition HH1(B) ∼= HH1
1(B).

Proof. We have HH1
1(A) ∼= HH1

1(B) from Theorem 3.5.2 . From Corollary 3.8.6 it follows

that HH1
1(A) = HH1(A). We also have that HH1(A) ∼= HH1(B) as k-vector spaces (from

the stable equivalence of Morita type). Hence the statement.
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Chapter 4

Block algebras with HH1 a simple

Lie algebra

4.1 Introduction

Let p be a prime and k an algebraically closed field of characteristic p. The purpose of

this chapter is to illustrate close connections between the Lie algebra structure of HH1(B)

and the structure of B, where B is a block of a finite group algebra kG. We consider two

extreme cases for blocks with a single isomorphism class of simple modules. The main

result of this chapter is from a joint paper with Markus Linckelmann [27].

Theorem 4.1.1. Let G be a finite group and let B be a block algebra of kG having a

unique isomorphism class of simple modules. Then HH1(B) is a simple Lie algebra if and

only if B is nilpotent with an elementary abelian defect group P of order at least 3. In

that case, we have a Lie algebra isomorphism HH1(B) ∼= HH1(kP ).

In particular, Theorem 4.1.1 implies that no other simple modular Lie algebra occurs

as HH1(B) for B a block with a single isomorphism class of simple modules. See [35], [36]
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for details and further references on the classification of simple Lie algebras in positive

characteristic. We do not know whether the hypothesis on B to have a single isomorphism

class of simple modules is necessary in Theorem 4.1.1.

Theorem 4.1.2. Let G be a finite group and let B be a block algebra of kG having a

nontrivial defect group and a unique isomorphism class of simple modules. Then

dimk(HH1(B)) ≥ 2.

We introduce some background material in the next four sections. In section 4.6 we

prove some intermediate results which are fundamental for the proofs of the main theorems

which are proved in the last section.

4.2 Block theory background

The background for this section can be found in [37].

4.2.1 The G-Algebra Structure and the Trace Map

If k has characteristic zero or positive characteristic not dividing the order of a finite

group G, then kG is semisimple, or equivalently, its block algebras are matrix algebras

over division algebras. If char(k) = p > 0 and p divides the order of G, then the structure

of the block algebras of kG is more complicated. A first measure for how far off a block

is from being a matrix algebra is encapsuled in the defect groups of a block, a concept

due to Brauer. We will see that the defect groups of a block form a conjugacy class of

p-subgroups of G and in some sense control the complexity of the representation theory of

the block algebra. There are many different ways to characterise defect groups of blocks;

we will follow the approach due to Green in [14] using the notion of a G-algebra.
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Let G be a finite group. The group algebra kG is endowed with an action of G, given

by the conjugation action xa = xax−1, where x ∈ G, a ∈ kG. In addition, the map

sending a ∈ kG to xa is a k-algebra automorphism of kG for all x ∈ G. In this sense, kG

is called a G-algebra over k.

Definition 4.2.1. Let G be a finite group. For every subgroup P of G we denote by

(kG)P the subalgebra of all P -fixed points in kG; that is,

(kG)P = {a ∈ kG| ya = a for all y ∈ P}.

Example 4.2.2. Let G be a finite group. We have (kG)G = Z(kG).

It is easy to check that (kG)P is an NG(P )-algebra. If Q ⊆ P are subgroups of G,

then there is an inclusion map (kG)P → (kG)Q. Conversely, we define a k-linear map

TrPQ : (kG)Q → (kG)P as follows. If a ∈ (kG)Q and x ∈ P , then xa depends only on the

coset xQ, not on the choice of x because a is fixed by Q. Thus, if we denote by [P/Q] any

set of representatives in P of the Q-cosets P/Q = {xQ| x ∈ P}, then the expression

TrPQ(a) =
∑

x∈[P/Q]

xa

does not depend on the choice of [P/Q]. Moreover, for any y ∈ P , we have

yTrPQ(a) =
∑

x∈[P/Q]

yxa

As x runs over a set of representatives of the cosets P/Q, so does yx, and hence this

expression is again equal to TrPQ(a). Thus defined k-linear map TrPQ : (kG)Q → (kG)P is

called the trace map from Q to P on kG. We set (kG)PQ = Im(TrPQ).

We outline some properties of the trace map:

Proposition 4.2.3. Let G be a finite group and let S,Q,R, P be subgroups of G such that

Q ≤ P and R ≤ S ≤ P . Then we have:
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• For any a ∈ (kG)P and b ∈ (kG)R we have

aTrPR(b) = TrPR(ab), TrPR(b)a = TrPR(ba)

In particular, (kG)PR is a two-sided ideal in (kG)P .

• We have TrPSTrSR = TrPR.

• If a ∈ (kG)R then

TrPR(a) =
∑

x∈[Q\P/R]

TrQQ∪xR(xa)

which is called Mackey formula.

Proof. The first two parts are straightforward, hence we just prove the last. In the

disjoint union P = ∪x∈[Q\P/R]QxR any double coset QxR is again a disjoint union

QxR = ∪y∈[Q/Q∩xR]yxR. In other words, we can take for [P/R] the set of all yx, with x

running over [Q\P/R] and, for any such x, with y running over [Q/Q∩xR], which implies

the formula.

Proposition 4.2.4. Let Q, P be subgroups of G such that Q ≤ P . Then (kG)PQ is spanned

by elements of the form TrPCQ(x)(x), x ∈ G.

4.2.2 The Brauer Homomorphism

Let G be a finite group and let H be a subgroup of G. In general the canonical k-linear

projection kG → kH sending
∑

x∈G λxx to
∑

x∈H λxx is not an algebra homomorphism.

However, the next theorem illustrates that this map does restrict to be an algebra homo-

morphism for suitable subalgebras of fixed points:

Theorem 4.2.5. Let G be a finite group and let P be a p-subgroup of G. The canonical

k-linear projection kG → kCG(P ) induces a split surjective homomorphism of NG(P )-
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algebras over k,

BrkGP : (kG)P → kCG(P )∑
x∈G

λxx 7→
∑

x∈CG(P )

λxx
(4.2.1)

where λx ∈ k. The kernel of (BrkGP ) is given by

∑
Q<P

(kG)PQ

where in the sum Q runs over all proper subgroups.

The N(P )-algebra homomorphism BrkGP is called the Brauer homomorphism for P on kG.

We write BrP instead of BrkGP if it causes no confusion. The following two propositions

analyse the interaction between the Brauer homomorphism and the trace map.

Lemma 4.2.6. Let P , Q be p-subgroups of G. Suppose that a ∈ (kG)GQ and BrQ(a) 6= 0.

Then there exists x ∈ G such that Q ⊆x P .

Proof. We have a = TrGP (c) for some c ∈ (kG)P . By Mackey’s formula, Proposition 4.2.3,

we have

BrQ(a) = BrQTrGP (c) =
∑

x∈[P\G/P ]

BrQTrQQ∩xP (xc)

Since BrQ(a) 6= 0, there exists x ∈ G such that Q ∪x P = Q, that is, Q ⊆x P .

Proposition 4.2.7. Let P be a p-subgroup of G. Then for a ∈ (kG)P we have

BrPTrGP (a) = Tr
NG(P )
P BrP (a).

In particular, BrP ((kG)GP ) = (kCG(P ))
NG(P )
P .

Proof. By Mackey’s formula, Proposition 4.2.3, we have

BrPTrGP (a) =
∑

x∈[P\G/P ]

BrPTrPP∩xP (xa).
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But P ∩x P = P iff x ∈ NG(P ). Thus

BrPTrGP (a) =
∑

x∈[NG(P )/P ]

BrP (xa) = Tr
NG(P )
P BrP (a).

We are ready to define the defect groups of a block:

4.2.3 Defect Groups of a Block

Definition 4.2.8. Let b be a block of kG. A defect group P of the block b is a minimal

subgroup of G such that b ∈ (kG)GP .

Using Brauer homomorphisms, we can give alternative characterisations of defect

groups of a block.

Theorem 4.2.9. Let b be a block of kG. For a p-subgroup P of G, the following conditions

are equivalent:

• P is a defect group of b.

• P is a maximal subgroup of G such that BrP (b) 6= 0.

• We have b ∈ (kG)GP and BrP (b) 6= 0.

Since b is G-invariant, any G-conjugate of P is again a defect group of b. In fact the

converse is also true:

Proposition 4.2.10. Let G be a finite group, b a block of kG and let P be a defect group

of b. If char(k) = 0, then the defect groups of b are trivial. If char(k) = p > 0, then the

defect groups of the block b of kG form a single G-conjugacy class of p-subgroups of G.
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Definition 4.2.11. Let G be a finite group. The kG-module k endowed with the iden-

tity action of all group elements is called the trivial kG-module. The surjective algebra

homomorphism ε : kG→ k defined by

ε
(∑
x∈G

λxx
)

=
∑
x∈G

λx

is called the augmentation homomorphism and the ideal I(kG) = Ker(ε) is called the

augmentation ideal of kG.

Proposition 4.2.12. Let G be a finite group. The augmentation ideal I(kG) is free as a

k-module and the set {x− 1| x ∈ G\{1}} is a k-basis of I(kG).

Proof. Let
∑

x∈G λxx ∈ I(kG); that is,
∑

x∈G λx = 0. Then

∑
x∈G

λxx =
∑
x∈G

λx(x− 1) =
∑

x∈G,x 6=1

λx(x− 1)

which shows that the set {x− 1| x ∈ G\{1}} generates I(kG) as a k-module. Since G is

a k-basis of kG one easily sees that this set is k-linearly independent, hence a k-basis of

I(kG).

Proposition 4.2.13. Let G,H be finite groups. Let φ : G→ H be a group homomorphism

and let α : kG → kH be the induced algebra homomorphism. Set N = ker(φ). We have

ker(α) = kG · I(kN) = I(kN) · kG.

Proof. Let
∑

y∈N µyy ∈ I(kN); that is,
∑

y∈N µy = 0. Since N is normal in G we

have
∑

y∈N µyxyx
−1 ∈ I(kN), hence xI(kN) = I(kN)x for all x ∈ G, from which we

get the equality kG · I(kN) = I(kN) · kG. Since φ maps all elements in N to 1 we get

I(kN) ⊆ ker(α). As α is an algebra homomorphism, its kernel is an ideal and thus contains

the ideal I(kN) · kG generated by I(kN) in kG. Let
∑

x∈G λxx ∈ ker(α). Denote by

[G/N ] a system of coset representatives G/N in G. Thus α(
∑

x∈G λxx) =
∑

x∈G λxφ(x) =
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∑
x∈[G/N ]

∑
y∈N λxyφ(xy) =

∑
x∈[G/N ]

∑
y∈N λxyφ(x) = 0 if and only if

∑
y∈N λxy = 0 for

any x ∈ G. This means that
∑

y∈N λxyy ∈ I(kN) for any x ∈ G, and hence
∑

x∈G λxx =∑
x∈[G/N ]

∑
y∈N λxyxy =

∑
x∈[G/N ] x(

∑
y∈N λxyy) belongs to kG · I(kN)

Clearly ε(Z(kG)) = k. Since the algebra k has a unique block 1k, the Idempotent

Lifting Theorem, Proposition 2.1.6, tells us that there exists a unique block b0 of kG such

that ε(b0) = 1k, that is, b0 is not contained in I(kG). The block b0 is called the principal

block of kG.

Proposition 4.2.14. Let b0 be the principal block of kG. The defect groups of b0 are the

Sylow p-subgroups of G.

Theorem 4.2.15 (Brauer’s First Main theorem). Let G be a finite group, let P be a

p-subgroup of G,and let b be a block of kG with P as a defect group. Then There is a

unique block c of kNG(P ) with P as defect group such that BrP (b) = BrP (c), and this

correspondence defines a bijection between the sets of blocks of kG and of kNG(P ) with P

as defect group.

Definition 4.2.16. Let G be a finite group, let b be a block of kG and let P be a

defect group of b. The unique block c of kNG(P ) with P as defect group satisfying

BrP (b) = BrP (c) is called the Brauer correspondent of b.

4.2.4 Brauer Pairs and Nilpotent blocks

Definition 4.2.17. A Brauer pair for kG is a pair (P, e) consisting of a p-subgroup P of

G and a block e of kCG(P ). The set of Brauer pairs for kG admits the natural conjugation

action by G: for a Brauer pair (P, e) and x ∈ G, then

x(P, e) = (xP,x e).
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Definition 4.2.18. Let G be a finite group, let b be a block of kG and let P be a defect

group of b. The unique block c be the Brauer correspondent of b. If e is a block of kCG(P )

satisfying ec = e then the group E = NG(P, e)/PCG(P ) is called the inertial quotient of

b.

Definition 4.2.19 ([1], [9]). Let (P, e), (Q, f) be Brauer pairs for kG. We say that (P, e)

contains (Q, f) and write (Q, f) ≤ (P, e) if Q ≤ P and for every primitive idempotent i

for (kG)P such that BrP (i)e 6= 0 we have BrQ(i)f = BrQ(i).

It is possible to prove that the set of Brauer pairs is partially ordered using the Brauer

map with respect this inclusion. The Brauer pair (P, e) belongs to a block b if b is the

unique block such that (1, b) ≤ (P, e).

Definition 4.2.20 ([10]). Let k be an algebraically closed field of characteristic p > 0

and let G be a finite group. A block b of kG with defect group D is nilpotent if whenever

there is a Brauer pair (Q, eQ) that belongs to b and satisfies (Q, eQ) ≤ (D, e), then

(Q, eQ)g ≤ (D, e) implies that there is a c ∈ CG(Q) and u ∈ D such that g = cu.

Nilpotent blocks with abelian defect can be characterised as follow:

Theorem 4.2.21 (Okuyama and Tsushima [29]). Let G be a finite group and B a block

algebra of kG. Then the following are equivalent:

(i) B is a nilpotent block with an abelian defect group.

(ii) J(B) = J(Z(B))B.

(iii) B has abelian defect group and trivial inertial quotient.

4.3 Basic algebras

Background for this section can be found in [2].
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Let A be a k-algebra. The aim of this section is to introduce the concept of a basic

algebra of A which allows us to reduce the study of the representation theory of A to a

smaller algebra.

Proposition 4.3.1. Let A be a k-algebra. Let e an idempotent in A and let U be an A-

module. The correspondence sending U to eA⊗AU yields a functor, called Schur functor,

Mod(A)→ Mod(eAe)

which sends an A-module homomorphism φ : U → V to the eAe-module homomorphism

IdeA ⊗ φ : eA ⊗A U → eA ⊗A V defined by (IdeA ⊗ φ)(ea ⊗ u) = ea ⊗ φ(u) for all a ∈ A

and v ∈ U .

If the algebra A and the module U are finite-dimensional, then eAe and eU are finite-

dimensional, and hence this functor restricts to a functor

mod(A)→ mod(eAe)

where by mod(A) we denote the category of finitely generated left A-modules. The fun-

damental question regarding the Schur functor is to understand for which idempotent the

functor is an equivalence.

Theorem 4.3.2. Let A be a k-algebra and e an idempotent in A. The following are

equivalent.

(i) The functor eA⊗A − : Mod(A)→ Mod(eAe) is an equivalence.

(ii) We have AeA = A.

(iii) For every simple A-module S we have eS 6= {0}.

If one of three equivalent statements holds, then the functors eA⊗A − and Ae⊗eAe −

are equivalences between Mod(A) and Mod(eAe) which are inverse to each other.
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Proof. Suppose that A = AeA. We are going to show that the functor

eA⊗A − : Mod(A)→ Mod(eAe)

has as inverse the functor

Ae⊗eAe − : Mod(eAe)→ Mod(A)

sending an eAe-module N to the A-module Ae ⊗eAe N . Here Ae is considered as an A-

eAe-bimodule. The functor Ae ⊗eAe − followed by eA ⊗A − is given by tensoring with

eA⊗AAe ∼= eAe, and clearly eAe⊗eAe− is the identity functor on Mod(eAe). Conversely,

the functor eA⊗A− followed by Ae⊗eAe− is given by tensoring with Ae⊗eAe eA. In order

to show that this is the identity functor on Mod(A) we have to show that Ae⊗eAe eA ∼= A

as A-A-bimodule. What we are going to show that the map µ : Ae⊗eAe eA→ A sending

ce ⊗ ed to ced is an isomorphism, where c, d ∈ A. Clearly this map is a homomorphism

of A-A-bimodules. Its image is Im(µ) = AeA = A, so this map is surjective. It remains

to see that µ is injective. Since AeA = A there is a finite set J and elements xj ∈ Ae,

yj ∈ eA, for any j ∈ J , such that
∑

j∈J xjyj = 1. Let
∑

s∈S cs ⊗ ds be in the kernel of

this map, where S is a finite indexing set and cs ∈ Ae, ds ∈ eA, for s ∈ S. That means

that we have
∑

s∈S csds = 0. But then also
∑

s∈S yjcsds = 0 for any j ∈ J . Note that

yjcs ∈ eAe. Therefore, tensoring with xj and taking the sum over all j yields

0 =
∑

j∈J,s∈S
xj ⊗ yjcsds =

∑
j∈J,s∈S

xjyjcs ⊗ ds =
∑
s∈S

cs ⊗ ds.

Thus ker(µ) = 0. This shows the implication (ii) =⇒ (i). The implication (i) =⇒ (iii)

is trivial. For the implication (iii) =⇒ (ii), suppose that AeA is a proper ideal. The

nonzero A-module A/AeA is finitely generated as a left A-module (by the image of 1).

This module has a maximal submodule, hence a simple quotient S. In particular, S is

annihilated by e, which completes the proof.
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The following Lemma give us some criteria for when the Schur functor is an equivalence.

Lemma 4.3.3. Let A be a finite-dimensional k-algebra, e an idempotent in A, I a primi-

tive decomposition of 1 and J a primitive decomposition of e. The following are equivalent.

(i) We have AeA = A.

(ii) Every i ∈ I is conjugate to an element in J .

(iii) Every primitive idempotent in A is conjugate to a primitive idempotent in eAe.

(iv) For every simple A-module S we have eS 6= {0}.

We recall from Chapter 2 that f k is algebraically closed, then

A/J(A) ∼=
∏

Mni(k) ∼=
∏

Endk(Si).

which shows that the integer ni is both equal to dimk(Si) and equal to the multiplicity of

Ai as a direct summand of the regular A-module A.

The point of the following definition is to bring the dimensions of the simple modules

to be equal to 1, without changing the equivalence class of the module category of A.

Definition 4.3.4. Let A be a finite-dimensional k-algebra. We say that A is a basic

k-algebra if in any primitive decomposition I of 1A, the elements of I are pairwise non-

conjugate, or equivalently, if the summands in A = ⊕i∈IAi are pairwise non-isomorphic.

Proposition 4.3.5. Let A be a finite-dimensional k-algebra. The following are equivalent.

(i) The algebra A is basic.

(ii) As a left A-module, A/J(A) is a direct sum of pairwise non-isomorphic simple A-

modules.

(iii) As an algebra, A/J(A) is a finite direct product of division algebras.
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Proof. Consider a module decomposition A = ⊕i∈IAi for some primitive decomposition

of 1. Then the elements in I are pairwise non-conjugate if and only if the A-modules

Ai, i ∈ I, are pairwise non-isomorphic. This holds if and only if the simple modules

Si = Ai/J(A)i, i ∈ I, are pairwise non-isomorphic. This shows the equivalence of (i) and

(ii). The equivalence of (ii) and (iii) follows from Wedderburn’s theorem.

Corollary 4.3.6. Suppose that k is algebraically closed. The following are equivalent for

a finite dimensional k-algebra A.

• The algebra A is basic.

• The algebra A/J(A) is a finite direct product of copies of k.

• For any simple A-module S we have dimk(S) = 1.

Proof. This is an easy consequence of Wedderburn’ss theorem and Proposition 4.3.5.

Theorem 4.3.7. Let A be a finite-dimensional k-algebra. There is an idempotent e in

A such that the algebra eAe is basic and Morita equivalent to A via the Schur functor

given by e. Moreover, e is then unique up to conjugation, and hence eAe is unique up to

isomorphism.

Proof. Let I be a primitive decomposition of 1 in A. Choose in I a set J of representatives

of the conjugacy classes of elements in I. Set e =
∑

j∈J j. The result follows from

combining Proposition 4.3.2 and Lemma 4.3.3.

Definition 4.3.8. Let A be a k-algebra and let e be an idempotent in A such that eAe

is basic. Then we define eAe to be a basic algebra of A.

Proposition 4.3.9. Let A be a finite dimensional k-algebra and let eAe be a basic algebra

of A. Then A and eAe have the same Cartan matrix.
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Proof. Since Morita equivalence preserves projective indecomposables and simple modules

the result follows.

Definition 4.3.10. Let A be a finite dimensional k-algebra. Then A is local if the k-

algebra A/J(A) is isomorphic to k.

Theorem 4.3.11. Let A be a finite-dimensional split k-algebra, and let I be a set of

representatives of the conjugacy classes of primitive idempotents in A. Let C = (cij)i,j∈I

be the Cartan matrix of A. For any i, j ∈ I we have cij = dimk(iAj).

Proposition 4.3.12. Let A be a symmetric local k-algebra. If A is Morita equivalent to

a block algebra B of kG for some finite group G then dimk(A) = |P |, where P is a defect

group of B.

Proof. The proof uses the fact, due to Brauer, that the elementary divisors of the Cartan

matrix of B, hence of A, divide |P | and exactly one of them is equal to |P |. Thus if A is

local, its Cartan matrix consists of the single entry |P |, which then by Theorem 4.3.11 is

the dimension of A.

4.4 Uniserial algebras

Background for this section can be found in [2] and [41].

Definition 4.4.1. Let A be a k-algebra. An A-module M is uniserial if it has only one

composition series. An algebra A is uniserial if each indecomposable projective A-module

is uniserial.

The following theorem is well known:
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Theorem 4.4.2 ([3, Theorem VI.2.1]). Let A be a uniserial algebra. Then every inde-

composable A-module is uniserial, and A has finite representation type.

Theorem 4.4.3 ([22, Theorem 2.1]). Let k be a field and let A be a finite dimensional

symmetric k-algebra. Then the following statements are equivalent.

(i) There is a t ∈ A such that J(A) = A · t or J(A) = t ·A.

(ii) The A-modules A/J(A) and J(A)/J2(A) are isomorphic.

4.5 Bounds and simplicity of HH1 for elementary abelian

p-groups

We collect in this section results needed for the proof of Theorem 4.1.1.

Theorem 4.5.1 ([6, Theorem 3.1]). Let A be a symmetric k-algebra and let E be a max-

imal semisimple subalgebra. Let f : A→ A be an E-E-bimodule homomorphism satisfying

E+J(A)2 ⊆ ker(f) and Im(f) ⊆ soc(A). Then f is a derivation on A in socZ(A)(Der(A)),

and if f 6= 0, then f is an outer derivation of A. In particular, we have

∑
S

dimk(Ext1
A(S, S)) ≤ dimk(socZ(A)(HH1(A)))

where in the sum S runs over a set of representatives of the isomorphism classes of simple

A-modules.

Corollary 4.5.2 ([6, Corollary 3.2]). Let A be a local symmetric k-algebra. Let f : A→ A

be a k-linear map satisfying 1 + J(A)2 ⊆ ker(f) and Im(f) ⊆ soc(A). Then f is a

derivation on A in socZ(A)(Der(A)), and if f 6= 0, then f is an outer derivation of A. In

particular, we have

dimk(J(A)/J(A)2) ≤ dimk(socZ(A)(HH1(A))) .
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Theorem 4.5.3 (Jacobson [18, Theorem 1]). Let P be a finite elementary abelian p-group

of order at least 3. Then HH1(kP ) is a simple Lie algebra.

The following holds as well.

Proposition 4.5.4. Let P be a finite abelian p-group. If HH1(kP ) is a simple Lie algebra,

then P is elementary abelian of order at least 3.

Proof. Suppose that P is not elementary abelian; that is, its Frattini subgroup Q = Φ(P )

is nontrivial. Let where I(kQ) be the augmentation ideal of kQ. We will show that the

set of derivations with image contained in I(kQ)kP , which is equal to ker(kP → kP/Q)

by Proposition 4.2.13, is a nonzero Lie ideal in Der(kP ). Indeed, every element in Q is

equal to xp for some x ∈ P . Consequently, using Proposition 4.2.12 and the fact that

k has characteristic p, every element in I(kQ) is a linear combination of elements of the

form (x − 1)p, where x ∈ P . Every derivation on kP preserves I(kQ)kP . In fact let

(x−1)p ∈ I(kG), y ∈ P and let f : kP → kP be a derivation on kP . Using the fact that k

has characteristic p we have: f((x−1)py) = f((x−1)p)y+(x−1)pf(y) = f(xp−1)y+(x−

1)pf(y) = f(xp)y + (x− 1)pf(y) = pf(x)xp−1y + (x− 1)pf(y) = (x− 1)pf(y) ∈ I(kQ)P .

Thus there is a canonical Lie algebra homomorphism ϕ : Der(kP ) → Der(kP/Q). In

order to prove that ϕ is nonzero with nonzero kernel we first let P = Cpn =< y > for

some y ∈ Cpn . Then Q = Cpn−1 =< yp > and P/Q ∼= Cp. Hence ϕ : Der(k[x]/(xp
n
)) →

Der(k[x]/xp). If we consider the derivation f(x) = x we have ϕ ◦ f is nonzero whilst the

image g(x) = xp under ϕ is zero. We apply the same idea when P be a finite abelian

p-group. We have P = Cpn1 × · · · × Cpnr for some positive integers ni. Then the group

algebra kP is isomorphic to kCpn1 ⊗· · ·⊗kCpnr . Using the notation from Corollary 2.3.25
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we have kP =
∏r
i=1 kCpni and kP/Q =

∏r
i=1 kCp. By Corollary 2.3.25 we have

Der(kP ) = HH1(
r∏
i=1

kCpni ) ∼=
∑

i1,...,ir≥0,
i1+···+ir=1

r∏
j=1

HHij (kCpnj ) =
∑

i1+...ir≥0,
i1+···+ir=1

r∏
j=1

HHij (k[xj ]/(x
pnj

j ))

(4.5.1)

and

Der(kP/Q) = HH1(kP/Q) ∼=
∑

i1,...,ir≥0,
i1+···+ir=1

n∏
j=1

HHij (kCp) =
∑

i1,...,ir≥0,
i1+···+ir=1

n∏
j=1

HHij (k[xj ]/x
p
j )

(4.5.2)

Let f̂ = f⊗x2⊗· · ·⊗xr ∈ Der(k[x1]/xp
n1

1 )⊗k[x]/xp
n2

2 ⊗· · ·⊗k[x]/xp
nr

r where f(x1) = x1.

Then the image of f̂ under ϕ is non-zero. Similarly, if we let ĝ = g ⊗ x2 ⊗ · · · ⊗ xr ∈

Der(k[x1]/xp1)⊗k[x2]/xp2⊗· · ·⊗k[xr]/x
p
r , where g(x1) = xp1, then the image of ĝ under ϕ is

zero. Hence HH1(kP ) is not simple. Note that the order of P cannot be 2. In fact in this

case we have kP = kC2
∼= k[x]/x2 and Der(k[x]/x2) is not simple. The result follows.

Remark 4.5.5. Theorem 4.1.1 implies that the hypothesis on P being abelian is not nec-

essary in the statement of Proposition 4.5.4.

4.6 Further results on derivations

Let B be a block having a unique isomorphism class of simple modules and let A be the

basic algebra of B. In order to exploit the hypothesis of HH1 being simple in the statement

of Theorem 4.1.1, we consider Lie algebra homomorphisms into the HH1 of subalgebras

and quotients of A.

Lemma 4.6.1. Let A be a finite-dimensional k-algebra and f be a derivation on A. Then

f sends Z(A) to Z(A), and the map sending f to the induced derivation on Z(A) induces

a Lie algebra homomorphism HH1(A)→ HH1(Z(A)).
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Proof. Let z ∈ Z(A). For any a ∈ A we have az = za, hence f(az) = f(a)z + af(z) =

f(z)a + zf(a) = f(za). Comparing the two expressions, using zf(a) = f(a)z, yields

af(z) = f(z)a, and hence f(z) ∈ Z(A). The result follows.

Lemma 4.6.2. Let A be a local symmetric k-algebra such that J(Z(A))A 6= J(A). Then

the canonical Lie algebra homomorphism HH1(A)→ HH1(Z(A)) is not injective.

Proof. Since J(Z(A))A < J(A), it follows from Nakayama’s lemma that J(Z(A))A +

J(A)2 < J(A). Thus there is a nonzero linear endomorphism f of A which vanishes on

J(Z(A))A+J(A)2 and on k ·1A, with image contained in soc(A). In particular, f vanishes

on Z(A) = k · 1A + J(Z(A)). By Corollary 4.5.2, the map f is an outer derivation on A.

Thus the class of f in HH1(A) is nonzero, and its image in HH1(Z(A)) is zero, whence

the result.

Lemma 4.6.3. Let A be a local symmetric k-algebra and let f be a derivation on A such

that Z(A) ⊆ ker(f). Then f(J(A)) ⊆ J(A).

Proof. Since A is local and symmetric, we have soc(A) ⊆ Z(A), and J(A) is the annihilator

of soc(A). Let x ∈ J(A) and y ∈ soc(A). Then xy = 0 and hence 0 = f(xy) = f(x)y +

xf(y). Since y ∈ soc(A) ⊆ Z(A), it follows that f(y) = 0, hence f(x)y = 0. This shows

that f(x) annihilates soc(A), and hence that f(x) ∈ J(A).

Lemma 4.6.4. Let A be a finite-dimensional k-algebra and J be an ideal of A.

(i) Let f be a derivation on A such that f(J) ⊆ J . Then f(Jn) ⊆ Jn for any positive

integer n.

(ii) Let f , g be derivations on A and let m, n be positive integers such that f(J) ⊆ Jm

and g(J) ⊆ Jn. Then [f, g](J) ⊆ Jm+n−1.
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Proof. In order to prove (i), we argue by induction over n. For n = 1 there is nothing to

prove. If n > 1, then f(Jn) ⊆ f(J)Jn−1 + Jf(Jn−1). Both terms are in Jn, the first by

the assumptions, and the second by the induction hypothesis f(Jn−1) ⊆ Jn−1. Let y ∈ J .

Then [f, g](y) = f(g(y))− g(f(y)). We have g(y) ∈ Jn; that is, g(y) is a sum of products

of n elements in J . Applying f to any such product shows that the image is in Jm+n−1.

A similar argument applied to g(f(y)) implies (ii).

Proposition 4.6.5. Let A be a finite-dimensional k-algebra. For any positive integer m

denote by Der(m)(A) the k-subspace of derivations f on A satisfying f(J(A)) ⊆ J(A)m.

(i) For any two positive integers m and n we have [Der(m)(A),Der(n)(A)] ⊆ Der(m+n−1)(A).

(ii) The space Der(1)(A) is a Lie subalgebra of Der(A).

(iii) For any positive integer m, the space Der(m)(A) is an ideal in Der(1)(A).

(iv) Let A be a local finite dimensional k-algebra. The space Der(2)(A) is a nilpotent Lie

subalgebra of Der(A).

Proof. Statement (i) follows from Lemma 4.6.4 (ii). The statements (ii) and (iii) are

immediate consequences of (i). In order to prove statement (iv) we observe that derivations

on a local algebra are non-zero only on the Jacobson radical. Then the proof follows from

(i) and the fact that J(A) is nilpotent.

4.7 Proofs of main Theorems

Proof of Theorem 4.1.1. Let G be a finite group and B a block of kG. Suppose that B has

a single isomorphism class of simple modules. If B is nilpotent and P a defect group of B,

then by [30], B is Morita equivalent to kP , and hence there is a Lie algebra isomorphism
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HH1(B) ∼= HH1(kP ). Thus if B is nilpotent with an elementary abelian defect group P

of order at least 3, then HH1(B) is a simple Lie algebra by Theorem 4.5.3.

Suppose conversely that HH1(B) is a simple Lie algebra. If J(B) = J(Z(B))B, then

B is nilpotent with an abelian defect group P by Theorem 4.2.21. As before, we have

HH1(B) ∼= HH1(kP ), and hence Proposition 4.5.4 implies that P is elementary abelian of

order at least 3.

Let e be an idempotent in B such that the algebra A = eBe is a basic algebra of

B. Suppose that J(Z(B))B 6= J(B). Then J(Z(A))A 6= J(A). We give a proof by

contraposition: assume J(Z(A))A = J(A). By Lemma 4.3.3 it follows that BeB =

B. By Proposition 4.3.7 we have that A and B are Morita equivalent hence they have

isomorphic centers, that is, Z(A) ∼= Z(B)e. It is easy to prove that J(A) = eJ(B)e and

J(B) = BJ(A)B. Consequently, J(B) = BJ(A)B = BJ(Z(A))AB ∼= BJ(Z(B)e)AB =

BJ(Z(B))eAB = J(Z(B))BeBeB = J(Z(B))B. Hence J(Z(B))B = J(B) .

Since B has a single isomorphism class of simple modules and since the set of represen-

tatives of the isomorphism classes of simple B-modules is in bijection with the conjugacy

classes of primitive idempotents we have that there is just one conjugacy class of primitive

idempotents. By Corollary 4.3.6 and Wedderburn’s Theorem we have that A is local. By

Proposition 2.1.11 we have that A is symmetric. Thus soc(A) is the unique minimal ideal

of A. We have J(A)2 6= {0}. Indeed, if J(A)2 = {0}, then soc(A) contains J(A), and

hence J(A) has dimension 1, implying that A has dimension 2 by Wedderburn-Malcev’s

theorem and by the fact that A is local. By Proposition 4.3.9 A and B have the same

Cartan matrix C. Since A is basic, local and has dimension 2, then A = k[x]/x2. Con-

sequently the Cartan matrix C has one single entry which is equal to 2. By Theorem

4.3.11 and Proposition 4.3.12 it follows that B is a block with defect group of order 2.
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Then the number of simple modules equals the order of the inertial quotient E (see The-

orem 6.5.5 in [4] for example), hence by Theorem 4.2.21 and by the fact that B has a

unique simple module then B is nilpotent. Consequently B Morita equivalent to kC2.

Hence HH1(B) ∼= HH1(kC2) which is not a simple Lie algebra, a contradiction. Thus

J(A)2 6= {0}, and hence soc(A) ⊆ J(A)2. By Lemma 4.6.2, the canonical Lie algebra

homomorphism HH1(A) → HH1(Z(A)) is not injective. Since HH1(A) is a simple Lie

algebra, it follows that this homomorphism is zero. In other words, every derivation on

A has Z(A) in its kernel. It follows from Lemma 4.6.3 that every derivation on A sends

J(A) to J(A). Thus, by Lemma 4.6.4, every derivation on A sends J(A)2 to J(A)2. This

implies that the canonical surjection A→ A/J(A)2 induces a Lie algebra homomorphism

HH1(A) → HH1(A/J(A)2). Let a, b be two elements in A. Using the fact that A is split

local, there are r, s ∈ J(A) and λ, µ ∈ k such that a = λ · 1A + r and b = µ · 1A + s. Then

ab = λµ · 1A + µ · r + λ · s+ rs. Since rs ∈ J(A)2, the algebra A/J(A)2 is commutative.

Since J(A)2 contains soc(A), it follows that the kernel of the canonical map HH1(A) →

HH1(A/J(A)2) contains the classes of all derivations with image in soc(A). By Corol-

lary 4.5.2 there are outer derivations with this property. It follows from the simplicity of

HH1(A) that the canonical map HH1(A) → HH1(A/J(A)2) is zero. Using the fact that

A/J(A)2 is commutative, that is Inn(A) = {Id}, this implies that every derivation on

A has image in J(A)2. But then Proposition 4.6.5 implies that Der(A) = Der(2)(A) is a

nilpotent Lie algebra. Thus HH1(A) is nilpotent. By Proposition 4.3.7 A and B are Morita

equivalent hence HH1(A) ∼= HH1(B) which contradicts the simplicity of HH1(B).

Proof of Theorem 4.1.2. Denote by A a basic algebra of B. Since B has a unique isomor-

phism class of simple modules and a nontrivial defect group, it follows by Corollary 4.3.6,

Proposition 2.1.11 and Weddernburn’s Theorem that A is a local symmetric algebra. Since
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B has nontrivial defect, the dimension of A is at least 2, otherwise B is Morita equivalent to

a simple algebra which is a contradiction. By Corollary 4.5.2 we have dimk(HH1(A))) ≥

dimk(J(A)/J(A)2). Thus dimk(HH1(A)) ≥ 1. Moreover, if dimk(HH1(A)) = 1, then

dimk(J(A)/J(A)2) = 1. Consequently J(A)/J(A)2 is a simple module which is isomor-

phic to A/J(A), hence by Theorem 4.4.3 A is a uniserial algebra. By Theorem 4.4.2 we

have that A has finite representation type which implies that B is a block with a cyclic de-

fect group P . By assumption B has a unique isomorphism class of simple modules, hence

by Theorem 4.2.21 B is a nilpotent block. Note that A and kP are both basic algebras,

hence by Theorem 4.3.7 we have A ∼= kP . We have dimk HH1(A) = dimk(HH1(kP )) =

|P |, a contradiction. The result follows.

Remark 4.7.1. The hypothesis that B has a single isomorphism class of simple modules is

necessary in Theorem 4.1.2; for instance, if P is cyclic of order p ≥ 3 and if E is the cyclic

automorphism group of order p− 1 of P , then HH1(k(P o E)) has dimension one.

Remark 4.7.2. All finite-dimensional algebras in this paper are split thanks to the assump-

tion that k is algebraically closed. It is not hard to see that one could replace this by an

assumption requiring k to be a splitting field for the relevant algebras. Lemma 4.6.1 and

Lemma 4.6.4 do not require any hypothesis on k.

101



Bibliography

[1] J. Alperin, M. Broué, Local Methods in Block Theory, Ann. Math. 110, (1979), 143–

157.
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