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Abstract

Computational models of classical conditioning have made significant contributions to the

theoretic understanding of associative learning, yet they still struggle when the temporal

aspects of conditioning are taken into account. Interval timing models have contributed a

rich variety of time representations and provided accurate predictions for the timing of

responses, but they usually have little to say about associative learning. In this article we

present a unified model of conditioning and timing that is based on the influential Rescorla-

Wagner conditioning model and the more recently developed Timing Drift-Diffusion model.

We test the model by simulating 10 experimental phenomena and show that it can provide

an adequate account for 8, and a partial account for the other 2. We argue that the model

can account for more phenomena in the chosen set than these other similar in scope mod-

els: CSC-TD, MS-TD, Learning to Time and Modular Theory. A comparison and analysis of

the mechanisms in these models is provided, with a focus on the types of time representa-

tion and associative learning rule used.

Author summary

How does the time of events affect the way we learn about associations between these

events? Computational models have made great contributions to our understanding of

associative learning, but they usually do not perform very well when time is taken into

account. Models of timing have reached high levels of accuracy in describing timed behav-

iour, but they usually do not have much to say about associations. A unified approach

would involve combining associative learning and timing models into a single framework.

This article takes just this approach. It combines the influential Rescorla-Wagner associa-

tive model with a timing model based on the Drift-Diffusion process, and shows how the

resultant model can account for a number of learning and timing phenomena. The article

also compares the new model to others that are similar in scope.
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Introduction

Classical conditioning theories aim to understand how associations between stimuli are

learned. Ever since Pavlov [1] the process of association formation has been understood to

depend crucially on the temporal relations between stimuli [2, 3, 4]. Yet, classical conditioning

theories have so far struggled to work when time is taken into account as an attribute of the

stimulus representation. The study of time as a mental representation is the object of a separate

area of study known as interval timing. Interval timing theories have produced a rich variety of

time representations [5, 6, 7, 8, 9], and therefore are a natural place to look for ways to inte-

grate time into classical conditioning. In this paper we first analyse previous efforts in this

direction before introducing a new hybrid classical conditioning and timing model.

The process of association formation is understood to be of fundamental survival value for

both human and non-human animals. Prediction, which forms the core of classical condition-

ing, allows the organism to adapt to significant events in its surroundings. A prototypical

experiment in classical conditioning, a type of associative learning, involves a neutral stimulus

and an unconditioned stimulus (US) which is capable of eliciting an unconditioned response

(UR). After repeated pairings of both stimuli in a specified order and temporal distance, the

neutral stimulus comes to elicit a response similar to the UR. This response is called the condi-

tioned response (CR) and the neutral stimulus is said to have become a conditioned stimulus

(CS). Classical conditioning theories typically conceptualize this process as the formation of a

link (association) between the internal representations of CS and US. Their basic building

blocks are [10, 11]: (a) the representations of stimuli, and (b) a learning rule to update the asso-

ciation weights between these representations. Although most theories do not attempt to find

neurophysiological correlates, these constructs are nonetheless commonly assumed to be

instantiated by (a) neural activity in the form of spike rates, and (b) synaptic plasticity [12, 13,

14]. These have found some support in the neuroscientific literature, particularly studies of the

role of dopamine in reward prediction [15, 16, 17, 18]. However it is important to note that

there is still no widely accepted complete neural mechanism for classical conditioning and that

most theories stay at the computational level of explanation.

Stimulus representations are generally thought of as neural activation that is elicited by the

stimulus, which may linger for a short time as a ‘trace’ after stimulus offset. Representations

are commonly one of two types: molar or componential. Molar (or elemental) trace theories

treat the stimulus as a single conceptualized unit whose activity is usually assumed to peak

quite early following stimulus onset, and then gradually decrease [19, 20, 21, 22, 23, 24]. In

contrast, componential trace theories break down the CS representation into smaller units,

each capable of being associated with the US, with some units more active early during the CS

and others late, but all leaving a trace after activation [25, 26, 27, 28].

Learning rules may be classified according to different criteria. An important period in the

recent history of the field gave rise to one of these criteria. Prior to 1970’s conditioning used to

be rooted in the stimulus-response tradition, which attributed crucial importance to the tem-

poral pairing, or contiguity, of stimuli for the development of associations. The linear operator

learning rule [19] is one of the products of that period. In the late 1960’s and early 1970’s

important experimental discoveries using compound stimuli, that is, a stimulus formed by

combining other individual stimuli, showed the contiguity view to be incomplete [29, 30].

These compound experiments indicated that the formation of associations also depended on

the reinforcement history of the individual elements forming the compound stimulus. This led

to the development of new learning rules [31, 32, 33] capable of combining individual rein-

forcement histories in compounds, which the linear operator rule cannot. The first, and argu-

ably still the most influential, of these learning rules is the Rescorla-Wagner [RW, 31]. It has
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become famous for being the first model able to provide an account for the blocking effect

[34], where a novel CS does not become associated with the US if it is reinforced only in com-

pound with a previously conditioned CS.

The CR is usually not a single event. Organisms time their responses so that they emerge

gradually during the duration of the CS and reach maximum frequency or intensity around

the time of reinforcement. Interval timing theories have attempted to provide an account

for this timing of the CR. One of the fundamental properties of timing behaviour is that it is

approximately timescale invariant, i.e. the whole response distribution scales with the interval

being timed [35, 36].One of the consequences of timescale invariance is that the coefficient of

variation, that is the standard deviation divided by the mean, of the dependent measure of tim-

ing is approximately constant. A number of timing models have put forth explanations for

timescale invariance and other timing properties (how time is encoded, how it is stored in

memory and how it gets translated into behaviour) by recourse to an internal pacemaker. The

most influential pacemaker-based timing theory to date is Scalar Expectancy Theory [SET, 5,

37]. The pacemaker is supposed to mark the passage of time by emitting pulses. These pulses

can be gated to an accumulator via a switch which closes at the start of a relevant interval and

opens when the interval is finished. The accumulator count is kept in working memory. At the

end of the interval the current count is transferred to a long-term reference memory. Behav-

iour is guided by the action of a comparator which actively compares the count in working

memory to the one retrieved from reference memory.

In spite of the considerable overlap, interval timing and classical conditioning are not easily

integrated. Most conditioning theories are trial-based, that is they consider the trial as the unit

of time. A trial is generally taken to be the state where a CS is present (or CSs in compound)

and which may or may not contain a US (or USs). The most influential model in this category

is the Rescorla-Wagner [RW, 31]. In order to account for different stimulus durations, trial-

based theories like RW must resort to some sort of time discretization, usually by subdividing

the trial into ‘mini-trials’. Each mini-trial is treated as a trial in its own right, which are then

used to update associative links. This gives rise to the problem of deciding on a particular dis-

cretization. Also, given that humans experience time passing as a continuous flow, it is unlikely

that animals discretize their conditioning experience in such a way. A more realistic approach

to timing is taken by real-time theories. These theories attempt to formalize the concept of a

continuous flow of time.

The Temporal Difference model [TD, 38, 39] was one of the earliest and still most influen-

tial real-time classical conditioning model. It may be thought of as a real-time version of RW.

When used with stimulus representations such as the Complete Serial Compound [CSC, 40],

Microstimuli [MS, 28, 41] and the Simultaneous and Serial Configural-cue Compound

[SSCC, 42] it is capable of reproducing some timing phenomena like the gradual increase in

anticipatory responding that occurs before a signalled reinforcer, and the lower response rates

observed during longer CSs. However, only MS-TD has a time representation capable of

approximating the most fundamental property of timing, timescale invariance. Another issue

with the stimulus representations for TD is that their approach to timing resembles the strat-

egy used by trial-based models, i.e. they all split the stimulus into a number of smaller units or

states, the number of which being directly proportional to the duration of the stimulus. Given

that conditioning is observed in a timescale that ranges from milliseconds to hours [43, p. 189]

this can lead to a very high number of units being required. The stimulus as a whole no doubt

is a complex entity, and the brain may be employing a large number of neurons to represent it,

but to dedicate so many resources only for timing might not be the most energy-efficient strat-

egy. Also, TD and its stimulus representations do not usually account for a change in timing

that is not tied to reinforcement. Animals time the occurrence of different events, such as
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onset and offset of stimuli [see for example 44], but TD usually only allows for the timing of

rewards.

On the other hand, timing models have made even fewer attempts at integrating aspects of

classical conditioning. A notable exception is the Learning to Time [LeT, 7, 45] model. It rep-

resents the passage of time by transitioning between internal states according to a stochastic

pacemaker, an idea borrowed from an earlier timing model called the Behavioural Theory of

Time [6]. Learning takes place by associating reinforcement presentation with the current

internal state according to the linear operator, a standard classical conditioning rule. LeT offers

an account of the basic dynamics of association formation, but it cannot explain cue-competi-

tion phenomena like blocking. In a blocking procedure, a CS is first paired with a US until a

CR is acquired. The same CS is then presented together with a novel CS and both are paired

with the US for a few trials. If the novel CS is now presented alone it elicits little or no respond-

ing, and so it is said to be blocked by the first CS. LeT’s learning rule, the linear operator, has

largely been supplanted by RW in classical conditioning modelling because it cannot explain

cue-competition phenomena. Like TD, LeT also employs a representation that requires as

many units as time-steps, making it a resource-intense model.

Modular Theory [MoT, 46, 47] is a timing model which because of its explicit goal of inte-

grating timing and learning may be called a hybrid theory. MoT has introduced novelties that

allow it to account for some aspects of the dynamics of classical conditioning that LeT cannot.

Its architecture is different than the connectionist one (states or units connected by modifiable

links) assumed by RW, TD and LeT. Instead, it uses a more cognitive architecture, with sepa-

rate information processing stages that deal with perception, memory and decision. It postu-

lates two separate memories: a pattern memory which stores CS durations, and a strength

memory which stores the associative strength between each pattern memory and the US. This

separation allows MoT to deal with more complex situations involving the dynamics of learn-

ing during acquisition and extinction. However, MoT also relies on the linear operator to

update its strength memory, which, like LeT, prevents it from accounting for cue-competition

phenomena.

Although the models mentioned above, namely TD, LeT and MoT, have accomplished a

great deal in terms of bringing together timing and conditioning, they each have their different

strengths and weaknesses as we have touched above. In this paper we introduce a model that

tries to address some of these weaknesses while preserving the strengths. More specifically, the

model has the following strengths. It represents time in real-time. Like MoT and unlike LeT

and TD, its time representation does not require an arbitrary large number of units or states.

Similarly to TD but unlike LeT and MoT, it uses a learning rule that preserves the main fea-

tures of RW which allow it to account for compound phenomena. It can time the onset and

offset of all stimuli, not only of rewards, and store a memory for each. It includes two update

rules: one for timing that is updated by time-markers, and another for associations that is

updated by the US. Hence, simple stimulus exposure causes the model to learn and store its

duration. This capability is not present in models that depend only on an associative learning

rule to also learn about time, such as TD and LeT.

This new model is essentially a way to connect one of the most influential classical condi-

tioning theories, the Rescorla-Wagner model [31], with a recently developed timing theory

called Timing Drift-Diffusion Model [TDDM, 48, 49]. The TDDM is based on the drift-diffu-

sion model, widely used in decision making theory, and it provides an adaptive time represen-

tation that has commonalities with pacemaker-based models like SET and LeT [50]. These

models postulate the existence of a pacemaker that emits pulses at a regular rate, which are

then counted to mark the passage of time. To preserve timescale invariance they either postu-

late a specific type of noise in the memory saved for intervals and a ratio-based decision

A Rescorla-Wagner drift-diffusion model of conditioning and timing
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process (SET) or adapt the rate of pulses (LeT). The TDDM takes the latter route but sets a

fixed threshold on pulse counting. To emphasize the unification of these two theories we call

our proposal the Rescorla-Wagner Drift-Diffusion Model (RWDDM).

We evaluate RWDDM based on how well it can simulate the behaviour of animals in a

number of experimental procedures. Many classical conditioning phenomena have been iden-

tified which collectively represent a significant challenge for any single model to explain. A

recent list [51] has compiled 12 categories, which include acquisition, extinction, conditioned

inhibition, stimulus competition, preexposure effects, temporal properties, among others. Of

particular interest to a theory of timing and conditioning are phenomena that involve elements

of both timing and conditioning. As we detail later, we have searched the literature for docu-

mented effects that can challenge the main mechanisms embodied in RWDDM.

We proceed by first introducing the new model. We compare its formalism with four mod-

els that have similar scope, namely CSC-TD, MS-TD, MoT and LeT. In the results section we

present the phenomena we will simulate, followed by the results of our simulations, and com-

pare them to the current explanations given by LeT, MoT and TD.

Model

We follow most classical conditioning theories in conceptualizing the conditioning process as

the formation of an association between the internal representations of CS and US. Arguably,

one of the most influential rules describing the evolution of this association through training is

the Rescorla-Wagner [31] rule. As mentioned previously, other models exist which have a sim-

ilar scope to RW, both trial based [32, 33] and real-time [52, 23, 53]. However, our goal was to

take advantage of TDDM’s time representation, so we sought a theoretical associative frame-

work that could incorporate such a representation. Since trial-based conditioning theories lack

any time representation, they are a natural place to start. Out of those theories the RW is per-

haps the simplest whilst also retaining the greatest possible explanatory power. Its basic for-

malism consists of the following rule for updating associative strength:

DViðnÞ ¼ ab l �
Xl

j¼1

VjðnÞxjðnÞ

 !

xiðnÞ ð1Þ

where Vi(n) denotes associative strength for CSi at trial n, λ the asymptote of learning which is

set by the US representation, xi(n) which marks the presence (xi = 1) or absence (xi = 0) of the

i-th CS representation at trial n, 0< α< 1 a learning rate set by the CS and 0< β< 1 a learn-

ing rate set by the US. The summation term in the eq (1) sums over all CSs present in the trial.

The top panel of Fig 1 shows a diagram of a basic neural net for classical conditioning which

serves as the architectural framework for both RW and RWDDM. The RW rule is used to

update the links V1, . . ., Vl that connect the CS input nodes CS1, . . ., CSl. The summation term

in the RW rule is represented in the diagram as a summation unit or junction S, that sums the

inputs it receives from the CSs j = 1, . . ., l present in the trial. This sum allows RW to combine

(additively) the reinforcement history of each individual CS present in a compound trial. In

the neural network literature, eq (1) is also referred to as the Widrow-Hoff rule [54] and the

Least-Means-Square [LMS; 55]. The relationship to the LMS rule is easier to see if we let

yðnÞ ¼
Pl

j¼1
VjðnÞxjðnÞ be the output of a learning unit that aims to predict a target λ given

inputs xi by adapting the weights Vi. In classical conditioning, λ represents the maximum

learning driven by a given outcome (the US), xi is the CS and Vi the associative strength. If

we let δ(n) = λ − y(n) be the error between output and US, eq (1) can be obtained with the

A Rescorla-Wagner drift-diffusion model of conditioning and timing
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method of gradient descent by minimizing the squared error δ2(n) with respect to the weight

Vi.

In spite of the relative success in explaining a wide range of conditioning phenomena [for a

list of successes, and failures, see 56], the Rescorla-Wagner rule lacks a mechanism to account

for the microstructure of real-time responding during conditioning procedures. In terms of

the order of CS-US presentation conditioning procedures may be either forward (CS followed

by US) or backward (US followed by CS). Two common types of forward conditioning are

delay and trace. In delay conditioning the US always occurs a fixed time after CS onset. In

trace conditioning the US occurs at a fixed duration after CS offset. After sufficient training

with delay or trace conditioning, responding begins some time after CS onset, increases rap-

idly in frequency until it reaches a maximum level where it stays until US onset [57]. The RW

rule alone does not account for CR level as a function of time. This role is usually fulfilled by

the choice of CS representation. We base our choice on a timing model called Timing Drift-

Diffusion Model [TDDM, 49, 48, 58, 59]. We chose the TDDM because it possesses a number

of interesting features. It is part of a family of pacemaker based models like SET and LeT [50]

which are arguably two of the most successful timing theories to date. The TDDM is a

Fig 1. Connectionist diagram of RWDDM. Each CS unit is connected to a summing junction (labelled Σ) via

a modifiable link V. The output of the summing junction is the CR. The US is represented as a teaching signal

with a fixed weight H. Each CS unit has its own timerΨ and representation x. The bottom panel shows a

zoomed-in view of the timerΨl and CS representation xl associated with CSl. The timer slope Al is tuned to a

5-second CS duration.

https://doi.org/10.1371/journal.pcbi.1005796.g001

A Rescorla-Wagner drift-diffusion model of conditioning and timing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005796 November 2, 2017 6 / 50

https://doi.org/10.1371/journal.pcbi.1005796.g001
https://doi.org/10.1371/journal.pcbi.1005796


modified version of the drift-diffusion models that have been extremely successful at model-

ling reaction time in decision making tasks [60, 61]. Evidence of climbing neural activity

related to timing that resembles the TDDM has been extensively reported [62, 63, 64, 65, 66].

The TDDM consists of a drift-diffusion process with an adaptive drift or rate. The drift-diffu-

sion process is defined by a continuous random walk called Wiener diffusion process. The two

main components of Wiener diffusion are the drift and the normally distributed noise. The

Wiener diffusion process may be visualized by imagining a two-dimensional grid with time in

the horizontal axis and displacement on the vertical axis. If we imagine a purely linear and

non-random walk that starts at the origin and moves up at a constant rate then the resulting

walk would be a straight line and the drift would be equal to the slope of the line. With nor-

mally distributed noise, the walk becomes a random walk and it looks like a jagged curve, since

at each time step there is now only a probability that the displacement will be up or down. For

the purposes of timing, the slope is always positive and the random walk can be interpreted as

a noisy accumulator (or timer) C(t), which starts at the beginning of a salient stimulus and

stops (and resets) at the end. In a conditioning experiment the CS is usually the most salient

stimulus in the uneventful context of the conditioning chamber, so it is well placed to serve as

a time marker. When timing starts, accumulator increments are performed at each time-step

according to

DCiðtÞ ¼ AiðnÞ � Dt þm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AiðnÞ � Dt

p
�N ð0; 1Þ; ð2Þ

where Ai(n) is the rate (slope) of accumulation for CSi in trial n, m is a noise factor, Δt is the

time-step size and N ð0; 1Þ denotes a sampling from the standard normal distribution. An

interval is timed by the rise in the accumulator to a certain fixed threshold, say Ci(t) = θ. The

TDDM adjusts to new intervals by keeping the threshold fixed but adapting the rate of accu-

mulation Ai(n). The bottom left panel of Fig 1 shows a typical trajectory (or realization) of a

CS’s TDDM timer after one 5-second trial.

In its original formulation [48, 49] the accumulation process was not allowed to continue

beyond the threshold value θ, a constraint that gave rise to two distinct rules for rate adapta-

tion, one for when the US arrived earlier than expected and another for when it arrived later.

The constraint fixing a maximum level of accumulation was driven by the neurophysiological

assumption that a linear neural accumulator is not likely to continue to perform effectively

beyond a certain level. The neural implementation so far proposed for TDDM’s linear accu-

mulator [49] is based on a feedback control mechanism that is tuned to balance excitation and

inhibition in a neuron population. Tuning of this kind requires great computational precision,

which may not be easily kept for very long in a biological system. Neurophysiology notwith-

standing, we will drop that requirement here for simplicity and use instead only one update

rule. We demonstrate how this single update rule can be derived by the method of gradient

descent. The model learns a new interval by adapting its slope Ai so that the accumulator Ci

reaches the threshold value θ at the target time t�, which may be the time of reinforcement for

example. The target slope will therefore be θ/t�. The error δ(n) between the target slope and

the current slope is δ(n) = θ/t� − Ai(n). By minimizing the squared error δ2(n) using gradient

descent we can derive the slope update rule. The squared error as a function of Ai forms a

curve. Moving in the direction opposite the slope of this curve and taking a step of size αt/2 we

form the equation:

Aiðnþ 1Þ ¼ AiðnÞ �
at

2

dd
2
ðnÞ

dAiðnÞ
: ð3Þ
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Solving the derivative yields

Aiðnþ 1Þ ¼ AiðnÞ �
at

2
2dðnÞð� 1Þ

¼ AiðnÞ þ atðy=t� � AiðnÞÞ:
ð4Þ

Since the organism only has access to the psychological time given by its internal timing mech-

anism, and not the physical time t, we assume that an internal estimate for t is formed by divid-

ing the current pacemaker count by the current slope, t = Ci(t)/Ai(n). Substituting this

estimate into eq (4) we get:

Aiðnþ 1Þ ¼ AiðnÞ þ at
yAiðnÞ
Ciðt�Þ

� AiðnÞ
� �

¼ AiðnÞ þ atAiðnÞ
y

Ciðt�Þ
� 1

� �

¼ AiðnÞ þ atAiðnÞ
ðy � Ciðt�ÞÞ

Ciðt�Þ
:

ð5Þ

Hence, the update rule for slope Ai to be applied at target time t� (the end of the trial or of the

interval being timed) is

DAiðnÞ ¼ atAiðnÞ
ðy � Ciðt�ÞÞ

Ciðt�Þ
: ð6Þ

Eq (6) is the slope update rule we use. Note that n above is indexing the number of occurrences

of a specific interval that the timer is timing. These intervals may be the duration between CS

onset and US onset (the usual ‘trial’ in delay conditioning for example), but they may be any

other salient time interval such as CS or intertrial duration. Fig 2 shows timer slope adaptation

during three timing scenarios: timing a novel stimulus (row 1), timing a long-short change in

stimulus duration (row 3), and timing a short-long change in stimulus duration (row 5).

In the top row of Fig 2 and throughout the paper we assume that the initial value of slope A
for a novel stimulus is so low as to overestimate the stimulus duration. This overestimation

will only last for a few trials, the number of which can be made arbitrarily small by choosing a

high adaptation rate αt. Alternatively, it would be possible to use a very high initial value for A
so as to underestimate the stimulus duration. However this alternative does not seem neuro-

physiologically plausible as the brain would need to keep a pool of neurons firing very rapidly

as its ‘standby’ timer.

In TDDM, timescale invariance arises from the nature of the noise in the accumulator.

After repeated training, say in delay conditioning with a CS of fixed duration, eq (6) will con-

verge to a value of Ai which will make the accumulator reach the threshold value θ at the time

of stimulus offset, but only on average. In some trials the accumulator will reach the threshold

sooner, in which case the organism will underestimate the stimulus duration. In other trials

the accumulator will reach the threshold later, causing overestimation. The variability of this

time estimate relative to the mean is given by the coefficient of variation (CV). It has been well

established experimentally that the CV of time estimates in humans and other animals is

approximately constant over a wide timescale [35, 67, 36]. The CV of TDDM’s time estimate is

[see equation 3 in 68]

CV ¼
m
ffiffiffi
y
p ; ð7Þ

which depends only on the choice of threshold θ and noise factor m. As these are constant, the

A Rescorla-Wagner drift-diffusion model of conditioning and timing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005796 November 2, 2017 8 / 50

https://doi.org/10.1371/journal.pcbi.1005796


Fig 2. RWDDM timer and CS representation during three 12-trial timing scenarios. Top two rows: timing

a novel 6 second stimulus. Timer starts with a low baseline slope (A = 0.001) on trial 1 and gradually adapts

over training to reach approximately the required slope. Middle two rows: stimulus duration change from 6 to 3

seconds. Bottom two rows: stimulus duration change from 6 to 12 seconds. Parameters: αt = 0.215, θ = 1, σ =

0.25, m = 0.15.

https://doi.org/10.1371/journal.pcbi.1005796.g002
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CV of TDDM’s time estimate is also constant. Note that because the timer adapts its slope

gradually, if the duration of a CS is changed, CV measurements will only match the one given

by eq (7) after the slope has finished adapting. The number of trials to adaptation will vary

depending on the adaptation rate αt.
We substitute the presence representation used in the original RW model by a Gaussian

radial basis function. Its input is provided by the TDDM accumulator:

xiðCiÞ ¼ exp �
ðCiðtÞ � yÞ

2

2s2

� �

: ð8Þ

This representation may be interpreted as the receptive field of time-sensitive neurons that

read the signal coming from the accumulator neurons. Their receptive fields are tuned to the

accumulator threshold value θ. The bottom right panel in Fig 1 shows the representation for

CSl generated from the input provided by the timer on the left. Note how xl reaches its maxi-

mum value at the same time that Cl crosses the threshold at 1. Fig 2 shows x(C) adapting in

the three different timing scenarios explained previously. As can be seen, xi is a dynamic repre-

sentation of CSi that adapts to the temporal information conveyed by the stimulus. Other

representation shapes could be used, like a sigmoid for example, but a Gaussian is mathemati-

cally simple and has been used before by at least one other timing model [MS-TD, 28].

We follow Gibbon and Balsam [35, 69] in assuming that time sets the asymptote of learning,

λ, in eq (1). They were led to this hypothesis by investigating CR timing in fixed interval condi-

tioning schedules, a type of delay conditioning. After enough training in this procedure, sub-

jects begin responding some time after CS onset, with a slow rate at first which then increases

rapidly until it reaches asymptotic level some time before reinforcement delivery. Gibbon [35]

proposed that subjects make an estimate of time to reinforcement which is used to generate an

expectancy of reinforcement. The expectancy for a particular CSi with duration t�, hi, was

hypothesised to be hi = H/t�, where H was a motivational parameter which was assumed to

depend on the reinforcing properties of the US. The reinforcing value of the US is thus spread

evenly over the CS length. It was assumed that this expectancy would be updated as time

elapsed during the CS, such that hi(t) = H/(t� − t). Hence, expectancy would increase hyperbol-

ically until the estimated time to reinforcement t = t�. Responding would reach asymptotic

level when the expectancy crossed a threshold value hi(t) = b.

Here we will not use Gibbon’s concept of expectancy update. A similar role is fulfilled by

the TDDM accumulator in our formalization. But we hold on to his argument that the rein-

forcing value of the US is spread over the CS length. Within the Rescorla-Wagner modelling

framework, Gibbon’s expectancy value may be interpreted as setting the asymptotic level of

learning in eq (1), namely λ = H/t�. Under this interpretation, λ may be said to implement

hyperbolic delay discounting of rewards. Similarly to the argument used above in the deriva-

tion of the slope update rule, we use the psychological time estimate from TDDM in place of

the physical time t�, such that t� = Ci(t�)/Ai(n). The value we use is then l ¼
HAiðnÞ
Ciðt�Þ

. Another

possibility would be simply λ = HAi(n). Both alternatives yield the same asymptotic value, but

HAi(n) converges gradually (with the rate set by αt) whilst
HAiðnÞ
Ciðt�Þ

immediately. Our version of

eq (1) for updating associative strength then becomes:

DViðnÞ ¼ aV
HAiðnÞ
Ciðt�Þ

�
Xl

j¼1

VjðnÞxjðCjÞ

 !

xiðCiÞ: ð9Þ

In the trial-based RW model, eq (1) is applied at the end of a ‘trial’, which is usually taken to be

the event starting at CS onset and ending at US delivery. We follow the same practice here and
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apply eq (9) at the end of a trial, i.e. at US delivery. Note that because xi(Ci) is a dynamic CS

representation, its activation (or strength) level at the end of the trial will vary from trial to

trial, as can be seen in Fig 2. Eq (9) is applied using the activation level of xi(Ci) current at the

end of the trial.

We assume that real-time responses to a CSi are emitted according to the product of its

associative strength Vi(n) and representation xi(Ci), that is, it is the output of the summing

junction in Fig 1:

CRiðtÞ ¼ ViðnÞxiðCiÞ: ð10Þ

Eqs (2), (6), (8), (9) and (10) fully define the basic model. Its six free parameters are: m, αt,
θ, σ, αV, H.

Relationship with other models

Among the theories capable of providing an account of both timing and conditioning, argu-

ably four stand out for their scope or influence. They are CSC-TD, MS-TD, LeT and MoT.

TD has been developed primarily as a learning model, without the explicit intention of

addressing timing. It may be visualized as a real-time rendition of the RW rule. Its basic learn-

ing algorithm, is given by:

VtðxtÞ ¼
X

i

wtðiÞxtðiÞ; ð11Þ

dt ¼ lt � ðVtðxt� 1Þ � gVtðxtÞÞ; ð12Þ

wtþ1 ¼ wt þ adtet ð13Þ

where Vt is the US prediction at time t, formed by a linear combination of the weights w(i) and

the CS representation values x(i). This update algorithm is performed at each time step, and

not only at the end of a trial like RW and RWDDM. Another important difference is that

eq (12) computes a difference between the current US value and the temporal difference

between predictions. Hence, δt> 0 if the US is higher than this temporal difference in predic-

tion, and δt< 0 if the US is lower. The constant 0< γ< 1 is termed a discount factor. Eq (13)

updates the weights for the next time step. The vector et stores eligibility traces, which are func-

tions describing the activation and decay of representations xt. The three most common eligi-

bility traces used are: accumulating traces, bounded accumulating and replacing traces. These

three types accumulate activation in the presence of the CS and discharge slowly in its absence,

the first accumulates with no upper bound, the second only until the upper bound and the

third is always at the upper bound whilst the CS is present [39, pp. 162-192].

The richness of TD’s timing account relies on the choice of CS representation x. The Com-

plete Serial Compound representation [CSC, 40] postulates one CS element x(i) per time unit

of CS duration. Each element is only switched on at its activation time unit, and then decays

afterwards following its choice of eligibility trace e(i) (usually an exponential decay function).

This componential representation, which increases in size linearly with CS duration, should be

contrasted with RWDDM’s molar representation (eq (8)) which requires only one element.

CSC may be called a time-static representation, whilst RWDDM is a time-adaptive representa-

tion, with a rule to change its structure based on a change in time (eqs (6) and (8)). CSC-TD

also lacks any mechanism to explain timescale invariance of the response curve, which is pres-

ent in RWDDM. A modification of CSC has recently been developed, the Simultaneous and

Serial Configural-Cue Compound [SSCC, 42]. SSCC-TD formalizes the idea that when
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multiple stimuli are presented together in time, a configural cue–a novel stimulus that is

unique to the current set of present stimuli–is formed. SSCC follows on the CSC representa-

tion, but, unlike any other TD model, it allows for the representation of compounds and con-

figurations of stimuli. Because SSCC-TD is a real-time model, it also allows for the simulation

of CR timing during compounds and configurations. However, its approach to timing is still

the same as CSC, i.e. it breaks down the stimuli into a series of elemental units which are acti-

vated in series. Therefore, with respect to timing only we will consider SSCC to belong to the

family of CSC representations.

The Microstimuli representation [28, 41] introduced a more realistic description of time.

Unlike CSC, it uses a fixed number of elements x(i) per stimulus. The ith microstimulus is

given by:

xtðiÞ ¼
1
ffiffiffiffiffiffi
2p
p exp �

ðyt � i=mÞ2

2s2

� �

� yt ð14Þ

where m is the total number of microstimuli, y is an exponentially decaying time trace set at 1

at CS onset. It will be noted that a microstimulus is a Gaussian curve modulated by the decay-

ing trace yt. The set of microstimuli generated by the CS will then give rise to partially overlap-

ping Gaussians, with decreasing heights and increasing widths across time. The fact that only a

fixed number of microstimuli are required per CS is an improvement to the potentially large

numbers of elements in CSC. The MS representation tries to capture the idea that as time

elapses, the stimulus leaves a more diffuse and faint impression. However, even though it is

more realistic than CSC, it still lacks a mechanism to produce exact timescale invariance.

Learning to Time is primarily a theory of interval timing which can also account for some

aspects of conditioning. Here we will deal with its most recent version in [45], which differs

somewhat from the earlier version in [7]. Its CS representation resembles CSC in postulating a

long series of elements (or states) that span the whole stimulus duration. Unlike CSC, it transi-

tions from state to state at a rate that varies from trial to trial, and that is normally distributed.

Hence, time during a trial is represented as a noiseless linear increase from states n = 1, 2, 3,

. . . (one per time-step) at a fixed rate. This linear time representation resembles the linear

accumulator in RWDDM, except that the latter has noise built into the linear accumulator,

whilst LeT assumes noise only at the intertrial level. Each state n is associated with the US via

an associative link. At the end of a trial, the strength w of these links are updated as follows:

• For the active state at reinforcement, n�, the update rule is

Dwðn�Þ ¼ bð1 � wðn�ÞÞ; ð15Þ

where β is a constant.

• For inactive states, n< n�, the update rule is

DwðnÞ ¼ �
a

n�
wðnÞ; ð16Þ

where α is a constant.

• For states that did not become active during the trial, n> n�, the rule is

DwðnÞ ¼ 0: ð17Þ

Note that unlike RWDDM’s associative update rule, eqs (15) to (17) do not include a sum-

mation term. This places a severe limitation on the ability of LeT to deal with compound
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conditioned stimuli. LeT’s strength lies on its being able to explain timescale invariance of the

response curve. Machado and colleagues [45] showed that it is possible to derive timescale

invariance using only the assumption of intertrial normality of state transition rate. Finally,

LeT assumes that responses are emitted at a constant rate if the current active state has associa-

tive strength w(n) greater than a threshold θ. The fact that responding depends on the associa-

tive strength of the current state, and that this strength only changes with US associations,

prevents LeT from accounting for changes in timing that are not related to US occurrence. For

example, there is evidence that animals learn the timing of a preexposed CS [70] and are sensi-

tive to changes in timing during extinction [71], two situations that do not involve the occur-

rence of a US.

Modular Theory is another primarily timing theory that can also deal with some aspects of

conditioning. It treats the onset of a stimulus as signalling a time expectation to reinforcement.

Its time representation T is, like LeT, an accumulator that increases linearly with time t, T = ct,
where c is a constant. When reinforcement is delivered the current reading from the accumula-

tor is stored in what is called pattern memory. Pattern memory is updated at each trial n
according to

mðnÞ ¼ mðn � 1Þ þ aðT� � mðn � 1ÞÞ ð18Þ

where α is a learning rate and T� is reinforcement time. Eq (18) may be contrasted to (6) from

RWDDM. The main difference is that pattern memory in MoT stores a moving exponential

average of intervals, whilst the slope in RWDDM stores a moving exponential harmonic aver-

age of intervals. However, both models are similar in that they can potentially time the occur-

rence of any event, not only rewards. MoT’s pattern memory and RWDDM’s slope can be

made, for example, to adapt to mark the end of stimuli that are not necessarily paired with a

reward.

A stochastic threshold b is used to mark response initiation. The threshold distribution is

set so as to yield timescale invariance of the response curve. Its mean, B, is a fixed proportion

of the value in pattern memory, B = km(n), where k is the proportionality constant, and its

standard deviation is γB, where γ is the coefficient of variation of B. Hence, the coefficient of

variation of the threshold, i.e. of response initiation, is constant for all intervals, which is the

timescale invariance of the response curve. RWDDM derives timescale invariance of response

curve from noise in the accumulator (eq (2), not from the threshold.

This account of time from MoT is an instantiation of Scalar Expectancy Theory, arguably

one of the most successful timing models to date. Being a purely timing theory, SET does not

address associative learning directly, so it does not have a rule for changes in association

between stimuli. MoT bridges this gap by adding a rule to update what is termed strength mem-
ory, w(n). Strength memory holds the associative strength between stimulus and reinforce-

ment. The rule consists of a linear operator:

DwðnÞ ¼
beð0 � wðn � 1ÞÞ if US is absent;

brð1 � wðn � 1ÞÞ if US is present;

(

ð19Þ

with β a constant that can determine different rates of update for acquisition (βr) and extinc-

tion (βe). Eq (19) may be compared with (9). Note that, unlike RWDDM, eq (19) does not con-

tain the summation term from RW based rules.

MoT also includes a rule for response rate that is more realistic than RWDDM’s given by

(10). It is partly derived from an empirical analysis of real-time responding in animals. We

refer the interested reader to [46] for a fuller description. We will only mention here that

MoT generates a two-state response pattern, low and high. The transition between states is
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determined by the crossing of threshold B, and the high state is proportional to strength mem-

ory w(n).

Other theories exist which are similar in scope to CSC-TD, MS-TD, LeT and MoT. Two

notable examples are the Componential version of the Sometimes Opponent Process model

[C-SOP, 72] and the Adaptive Resonance Theory—Spectral Timing Model [ART-STM 26].

C-SOP builds a CS representation based on two sets of elements, or components, one that

includes elements activated as a function of time and another whose elements are randomly

activated. Associative strength for each element is updated using the standard trial-based RW

rule. Simulations in [72] have demonstrated that C-SOP can produce some degree of timescale

invariance. ART-STM is a neural net with an input layer and one hidden layer, which allows it

to explain nonlinear conditioning phenomena (such as negative pattern) that a single-layer

RW neural net cannot. It employs a CS representation that is very similar to the microstimuli

used in MS-TD, so it also shows a degree of timescale invariance. Other theories could be men-

tioned [for two inuential examples see 52, 23, 53] but we will limit the analysis to CSC-TD,

MS-TD, LeT and MoT for two reasons: a) these four models collectively embody most of the

conditioning and timing mechanisms used in modelling these areas, and b) our goal here is

not to provide a comprehensive review, but rather focus on the mechanisms that are shared by

our proposed model and the others.

Table 1 summarizes the main mechanisms/features of the models described above. In terms

of the type of time representation, it may be observed that the models fall roughly into two

categories: (a) those that employ a chain of units or states activated sequentially (CSC-TD,

MS-TD, LeT), and (b) those that employ an accumulator (MoT and RWDDM). Those in cate-

gory (b) may be considered more economical both computationally and biologically, as they

don’t require a number of units that increase with time. In terms of what the representations

can time, two categories may be discerned: (a) those that time only rewards (CSC-TD, MS-TD

and LeT), and (b) those that can time any stimuli (MoT and RWDDM). Models in category

(b) have more flexibility to create a temporal map involving all stimuli present, including those

not signalling reward. In terms of timescale invariance, the models are basically divided

between those that can account for it (MS-TD, LeT, MoT and RWDDM) and the one that can-

not (CSC-TD). Finally, in terms of the type of associative learning rule used, models are

divided between those that use a RW-type rule (CSC-TD, MS-TD, RWDDM) and those that

use the linear operator (LeT and MoT). The ones that use RW are wider in scope, being able to

account for cue-competition phenomena, which form the core of classical conditioning.

The main innovation of RWDDM over its predecessors is the combination of a noisy linear

accumulator for timing with the RW rule for associative learning. As Table 1 shows, linear

accumulator theories are the only ones in our sample of the models that can fully account for

timescale invariance. But because they rely on the linear operator rule, they cannot account for

cue-competition and other compound stimuli phenomena in conditioning. Therefore

RWDDM extends the application of the linear accumulator to compound stimuli, covering a

wider range of conditioning phenomena.

Table 1. Summary of the main features of the models.

model type of time representation what it can time timescale invariant associative learning rule

CSC-TD units/states, one per time step only rewards no TD/RW, cue competition

MS-TD units/states, fewer than one per time step only rewards approximately TD/RW, cue competition

LeT units/states, one per time step only rewards yes linear operator, no cue competition

MoT linear accumulator any stimuli, not only rewards yes linear operator, no cue competition

RWDDM noisy linear accumulator any stimuli, not only rewards yes RW, cue competition

https://doi.org/10.1371/journal.pcbi.1005796.t001
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In summary, the model we propose is, to the best of our knowledge, the only one that unites

the flexibility, computational economy and timescale invariance of the linear accumulator as a

time representation, to the RW associative learning rule, which accounts for many more con-

ditioning phenomena than the linear operator. In the next section we evaluate the models

against a number of phenomena in conditioning and timing.

Results

The long history of experimental work in classical conditioning has allowed the discovery of a

rich variety of phenomena–a recent review [51] has catalogued approximately 87. This forces

theorists to be selective when deciding which phenomena to simulate when presenting a new

model. We searched the literature for phenomena that could test each feature of the model.

Table 2 lists the main RWDDM features, together with the corresponding phenomena found

in the literature that can test each.

Table 3 contains the design for each simulation performed with the model. The model

parameters used in all simulations were kept almost constant but in some cases a few adjust-

ments were found necessary to obtain a better agreement between model and data. We report

their values in each simulation below. The time-step was the same for all simulations: Δt = 10

msec. Simulations were performed using MATLAB version R2016b. The code to generate the

figures in each result section is available for download at https://github.com/ndrluzardo/

RWDDM-PLOSCB.

Faster reacquisition

A conditioned response emerges gradually over the course of several trials where the CS signals

the arrival of a US. If a measure of CR strength (such as rate or magnitude) is plotted against

the number of trials, the shape and rate of this acquisition curve will depend largely on the CR

and organism, but it usually follows a negatively accelerated curve [1, 43]. Pavlov [1] believed

timing of the CR would emerge only later in acquisition, through a process he described as

inhibition of delay whereby the initial part of the CS would become inhibitory. Recent and

more detailed analyses suggest that an estimate for the time to reinforcement is acquired very

early in training, possibly even after one or two trials, although the expression of such estima-

tion may not be observable until later in training [73, 74, 75, 76].

If the CS no longer signals reinforcement, CR strength gradually decreases over the course

of these extinction trials, until it finally disappears. If the CS is made to signal the US again, the

CR returns, a process that is called reacquisition. It is a consistent finding that reacquisition is

faster than acquisition [77, 46, 43, p. 185].

Learning is loosely defined as an enduring change in behaviour as a result of experience.

Acquisition of a CR is the most basic demonstration that classical conditioning is a form of

learning. As such, all classical conditioning models provide an account of it.

Table 2. Model features and the experimental findings they can explain.

RWDDM feature phenomenon for which it can account

independent update rules for time and associative

strength

faster reacquisition, time change in extinction,

latent inhibition and timing

RW rule for associative strength blocking with different durations, time specificity

of conditioned inhibition

intertrial variability in time estimation asymptote of

associative strength set by time

compound peak procedure ISI effect, mixed FI

a memory that learns the rate of reinforcement VI and FI, temporal averaging

https://doi.org/10.1371/journal.pcbi.1005796.t002
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Simulations. Fig 3 (top left panel) shows a plot of RWDDM’s associative strength as given

by eq (9), in a simulation of acquisition and extinction. Acquisition consisted of 80 presenta-

tions of a 5-sec CS followed by reinforcement, after which there were 100 extinction trials

where H was set to zero. The simulations match with experimental data from acquisition and

extinction (bottom left panel of Fig 3). The simulated acquisition curve asymptotes around the

theoretical value given by setting ΔV(n) = 0 in eq (9) and solving for V, yielding

V1 ¼
HA1

xðCt� ÞCðt�Þ
; ð20Þ

which in this particular case is V1� 1, since H = 5, A1� 1/5, Ct� = C(t�)� 1, x(Ct�)� 1,

where t� is the time of reinforcement. Because C(t�) is a random variable, x(Ct�) and V1 are

also random variables and their values are reported as approximations to their expected values

(but not the actual expected values).

Fig 3 (top middle panel) shows the adaptation of timer slope A given by eq (6). This equa-

tion precludes the initial value of A from being zero, so we set it to the very low value of

A(1) = 10−6. We also set the threshold θ = 1, which by eq (6) means that Ai(n) encodes the

exponential moving average of the rate of reinforcement signalled by CSi. Or, equivalently,

1/Ai(n) encodes the moving harmonic average of the intervals since last reinforcement during

CSi. In this simulation, since there is only one US which is delivered always at the same time at

CS offset (5000 msec), A converges to A1 = 1/5000. Note that the value of A does not decline

Table 3. Simulation designs.

Simulation Group Phase 1 Phase 2 Phase 3

Acquisition, extinction and

reacquisition

FI 5 80 CS+ 100 CS- 80 CS+

Extinction with diff. duration FI 20-40 150 CS(20)+ 150 CS(40)- —

FI 20-10 150 CS(20)+ 150 CS(10)- —

ISI effect FI 5 150 CS+ — —

FI 10 — —

FI 20 — —

VI vs FI VI 30 mixed 1500 CS+, 375 peak — —

FI 30 mixed 500 CS+, 125 peak — —

Mixed FI MFI 15-75 mixed 200 A(15)+, 200 A(75)+ — —

Latent inhibition Preexposed A 80 A- 120 A+ —

Control C — 120 C+ —

Blocking diff. durations Blocking A 120 A(10 or 15)+ 60 A(10)B1(15)+ or 60 A(15)

B1(10)+

—

Blocked B1,

B2

— —

Control C — 60 C(10)B2(15)+ or 60 C

(15)B2(10)+

—

Disinhibition of delay FI 30 100 A+, 100 B- mixed 300 A+, 300 B+, 100

AB+

—

Compound peak FI 50 100 A+, 100 B+ mixed 300 A+, 300 B+, 100

AB peak

—

Conditioned inhibition 1 group mixed 300 each E1(10)+, E2(30)+, E1(10)I1

(10)-, E2(30)I2(30)-

mixed 300 each E3(10)+, E3

(30)+

100 each peak E3I1,

E3I2, E3

Temporal averaging FI 10-20 700 L(20)+, 700 S(10)+, 154 L peak, 154 S

peak, 154 SL peak

— —

https://doi.org/10.1371/journal.pcbi.1005796.t003
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after extinction begins at trial 80. It continues to be updated since the stimulus is still present,

even if its presence no longer signals reinforcement.

The top right panel of Fig 3 shows the acquisition and reacquisition curves using RWDDM.

Reacquisition produced by the model is evidently faster than the simulated acquisition, but

not as fast as the reacquisition seen in the data on the bottom left of Fig 3.

Discussion. In RWDDM acquisition and extinction of associative strength follow from

the same mechanism as RW. The only difference is the noisy stimulus representation x(Ct�),

which induces noise into the acquisition curve. Changes in associative strength and timing are

treated independently. In particular, the memory for time encoded by the slope A is not

affected by extinction. This leads to a faster reacquisition following extinction. This is because

RWDDM’s time-adaptive CS representation x(Ct�) reaches its maximum activation value

right from the beginning of reacquisition, since the timer slope A is already tuned to the cur-

rent CS duration (see eq (8)).

Modular theory [46] is another model that treats timing and associative strength separately.

It postulates two memories, one for the pattern of reinforcement and another for the strength

of the association between CS and US. The pattern memory stores an exponential moving

average of the intervals to reinforcement which, like RWDDM, does not change with

Fig 3. Acquisition and reacquisition. Top left: simulated associative strength V in acquisition and extinction. Top middle: adaptation of RWDDM slope

A. CR extinction began at trial 80 but has no effect on the RWDDM slope. Top right panel: simulated V curves in acquisition and reacquisition. Bottom left

panel: response strength data from an experiment in acquisition and extinction, redrawn from Fig 1 in [77]. Bottom right panel: data from an experiment in

acquisition and reacquisition, redrawn from the top panel of Fig 3 in [77]. Model parameters: m = 0.15, θ = 1, σ = 0.3, αt = 0.1, αV = 0.1, H = 4 in acquisition

and H = 0 in extinction.

https://doi.org/10.1371/journal.pcbi.1005796.g003
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extinction. However, its strength memory w(n) is updated according to the linear operator

rule,

wðnþ 1Þ ¼ wðnÞ þ bðl � wðnÞÞ ð21Þ

which, unlike RWDDM, does not include a term for a time-adaptive CS representation. Thus,

the way MoT accounts for rapid reacquisition is by using different learning rates β for acquisi-

tion and reacquisition. The same strategy may be employed with the TD and LeT models.

In summary, RWDDM explains reacquisition as the persistence of a memory for time,

whilst TD, LeT and MoT explain it as a permanent change in the learning rate for associative

strength.

Time change in extinction

When a previously conditioned stimulus is no longer followed by reinforcement, the condi-

tioned response gradually decreases. An important theoretical question for hybrid timing/con-

ditioning models concerns what happens to the timing of responses in extinction. Using the

peak procedure Ohyama and colleagues [78] found that although the maximum (peak)

response rate decreased in extinction, peak time and sensitivity (measured by the coefficient of

variation) remained virtually unchanged. Drew and colleagues [79] investigated the behaviour

on extinction by changing CS duration between acquisition and extinction. Groups where the

CS changed to a shorter or longer duration were compared to another where the duration did

not change. They found that CS duration had little effect on the rate of extinction, with all

groups taking about the same number of trials to achieve CR extinction. However, when the

CS used in extinction was considerably longer (4 times) than the one acquired, extinction was

facilitated. Guilhardi and Church [71] performed a similar experiment (experiment 2) and

observed that when stimulus duration is changed from acquisition to extinction, the pattern of

responding during extinction gradually shifts to the new duration over extinction trials. Fol-

lowing the same procedure, Drew and colleagues [80] also used partial reinforcement to slow

down the rate of acquisition, and thus observe if response patterns really do shift gradually to

the new duration. They confirmed that when CS duration was increased from acquisition to

extinction, the within-trial response peak shifted gradually to the right over the course of

extinction. When the CS was shortened, the results were not conclusive. Also, when CS dura-

tion was changed from training to extinction, the speed of extinction increased, but this

appeared to be explained at least in part by the shifting of response patterns.

In summary: a) peak timing and CV are not altered in extinction when using a peak proce-

dure, b) changing the CS duration from training to extinction causes the within-trial response

peak to shift to the new duration, and c) changing the CS duration in extinction can speed up

extinction, but this may be due to the shifting of the response peak and not to changes in asso-

ciative strength. These results pose a challenge to the models analysed here. Out of CSC-TD,

MS-TD, LeT and MoT, only MoT has a mechanism that would allow it to account for time

change in extinction.

Simulations. RWDDM provides an account for these findings as follows. In the case of

the peak procedure, the occurrence of the longer peak trials may be considered too infrequent

to cause a shift to the longer time. In this case, eq (6) is not applied in peak trials so RWDDM

predicts that both slope A and CV will remain unaltered in extinction. In the case of a perma-

nent change in CS duration from acquisition to extinction, the slope update rule is applied and

the response peak will shift gradually to the new duration.

We have simulated RWDDM in two extinction conditions, one where the CS presented in

extinction was longer than the one acquired (20 sec to 40 sec, short-long) and another where
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the extinction CS was shorter than the acquired CS (20 sec to 10 sec, long-short). Fig 4 summa-

rizes the main results.

The panels on the left column show response strength during a trial in conditions short-

long (top) and long-short (bottom). In the early stages of extinction (early) the response curves

peak around the time of US arrival in acquisition (20 sec). This is more evident in the condi-

tion short-long (top left) because in the other condition (bottom left) the trial ends 10 seconds

before the peak at 20 seconds occurs. Had the stimulus remained on for a full 20 seconds, the

response curve in the early stages of long-short would have continued to increase until the 20

second mark. In middle and late extinction the response peak slowly shifts to the new duration

in both conditions, and their heights decrease. Compare the simulated curves in the left col-

umn of Fig 4 to the actual experimental data in the right column. The panels on the middle

row of Fig 4 show the adaptation of time estimate 1/A in conditions short-long (top) and long-

short (bottom). They demonstrate that RWDDM adapts exactly to time change in extinction.

To investigate if the rate of acquisition changes with CS duration, we have plotted the

extinction curves for each CS duration in the left panel of Fig 5. Decreasing CS duration from

acquisition to extinction slightly facilitates extinction, but increasing CS duration markedly

delays extinction. However, these are only the V values, a theoretical construct that accounts

Fig 4. Time change in extinction. Left column: simulated response strength averaged over trials in extinction short-long (top) and long-short (bottom).

Middle column: time estimate adaptation of the model during extinction short-long (top) and long-short (bottom). Right column: experimental data from an

experiment where the CS duration changed from 12-sec in acquisition to either 24-sec (top) or 6-sec (bottom) in extinction. Data plots redrawn from

Figure 10 in [80]. Model parameters: m = 0.25, θ = 1, σ = 0.35, αt = 0.08, αV = 0.09, H = 30.

https://doi.org/10.1371/journal.pcbi.1005796.g004
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for the associative strength of the stimulus as a whole. Actual behaviour measurements of

extinction are based on how much response frequency changes from trial to trial. But response

frequency also changes within the trial. As pointed out by [80], the value obtained for the rate

of extinction may be affected by which portion of the CS was measured. To analyse this, they

[80] measured response frequency only during the first 6-sec (half the duration of the CS in

acquisition) of each CS duration in extinction. We have followed the same procedure and the

results can be seen on the middle panel of Fig 5. They show a marked delay on extinction

when the CS duration was shortened, but not when it was lengthened. Compare these curves

with the actual data analysed by [80] and displayed in the rightmost panel of Fig 5. The simula-

tions conflict in part with the same analysis in [80], which showed no delay on extinction, only

facilitation in the case of extending CS duration.

Discussion. RWDDM predicts that a change in CS duration from acquisition to extinc-

tion will always cause a rescaling of the response curves in extinction. This is largely in agree-

ment with the data. However, RWDDM seems to predict a degree of delay on extinction,

whilst the data seems to point to a facilitation of extinction when the CS changes duration.

When only the first half of the CS response curves are analysed, the data suggests that extend-

ing CS duration in extinction can speed up extinction, whilst RWDDM predicts that shorten-

ing CS duration will delay extinction.

RWDDM’s prediction for a delay in extinction following a change in CS duration is due to

the shifting of the response curve. At the beginning of extinction, a trial ends either before the

CS representation has reached its peak (CS shortening) or after its peak (CS lengthening). This

makes eq (9) update with a small value for x(C), resulting in a smaller update than with the

higher x(C) value of the unchanged CS.

As mentioned above, time change in extinction is a difficult phenomenon for the current

models to explain. CSC-TD does not have a mechanism to change the peak of responding

when a US is not present. Neither does MS-TD or LeT. These models assume that extinction

can only weaken existing links between CS and US representations. Because in these models

timing usually depends on the sequential activation of these links, changing the CS duration in

extinction would not alter the timing but only the magnitude of responding. RWDDM

explains time change in extinction because its rule for time adaptation is independent of a

change in associative strength. Thus, when the duration changes in extinction, RWDDM’s

Fig 5. Extinction curves. Left panel: model V values for each CS duration in extinction. Middle panel: simulated CR values calculated only for the first

10 seconds of the CS. Each data point is calculated by summing the output of eq (10) over the first 10 sec of each trial, then averaging these trial values

two by two, and dividing by 100 to rescale. Right panel: actual CR data for the first 6 sec of the CS in extinction, redrawn from Figure 8 (C) in [80].

https://doi.org/10.1371/journal.pcbi.1005796.g005
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accumulator slope tracks this change, whilst associative strength decays as a function of US

absence. Regarding the extinction facilitation caused by a change in CS duration, none of the

models analysed here currently have a mechanism to explain this either.

It would be possible to allow the average rate of state transition in LeT to vary as a function

of CS duration, which would cause timing to adapt to the new time in extinction. However, in

its latest formulation [45] LeT relies on a fixed average rate of state transition to explain time-

scale invariance. Thus, if the rate is made to change as a function of CS duration, this would

break timescale invariance.

As for MS-TD, one interesting modification that would likely allow it to explain time

change in extinction is to make the microstimuli themselves time-adaptive. Like RWDDM’s

time-adaptive CS representation, the microstimuli could be made to ‘stretch’ or ‘compress’

when stimulus duration shortens or lengthens.

Modular Theory is likely to account for time change in extinction, since its pattern mem-

ory for time could be made to update even in extinction. That would shift the response pat-

tern to the new time whilst strength memory, which depends only on US presentation, would

decay.

Latent inhibition and timing

When a subject is exposed to repeated and non-reinforced presentations of a stimulus it has

never encountered before, this procedure is called preexposure. If reinforcement is subse-

quently paired with the preexposed CS, the initial rate of CR acquisition is usually lower com-

pared to acquisition to a nonpreexposed stimulus, a phenomenon called latent inhibition [81].

The asymptotic level of conditioning, however, is not normally affected by preexposure [82].

Latent inhibition is an important representative of a class of phenomena involving latent

effects. Collectively, these phenomena demonstrate that something is learned about the stimu-

lus even when it does not signal reinforcement. Therefore, latent inhibition cannot be

accounted by the Rescorla-Wagner model, since the theory only applies when there are

changes in associative strength.

A question relevant for real-time conditioning models is what happens to timing when a

preexposed stimulus is conditioned. To answer this question, Bonardi and colleagues [70]

used CSs of variable and fixed durations (the variable duration CS had the same mean as the

duration of the fixed CS) to vary the temporal conditions between preexposure and condition-

ing phases. Latent inhibition was observed even when the temporal information from the two

phases was different. Crucially, timing, as measured by the response gradient within a trial,

appeared to improve in the preexposed CS even when the temporal information was different

between the two phases.

As alluded to above, latent inhibition cannot be accounted by the associative learning

update rule used in RWDDM, the Rescorla-Wagner. However, we show here that RWDDM

is compatible with the Pearce-Hall rule [33, 83], one of the most widely used models for

explaining latent inhibition and other latent learning effects. We demonstrate that this modi-

fication maintains the basic framework of the RWDDM, and that it can account for latent

inhibition and improved timing with preexposure. None of the other models analysed here

can account for latent inhibition without modifications. Improved timing with preexposure

could be accounted by Modular Theory, but not by the the current version of the other

models.

Simulations. The Pearce-Hall model is basically a rule for adapting the learning rate αV
based on the error δ between the predicted US outcome and the actual US outcome. It was

originally formulated by [33] and updated by [83]. We have maintained eq (9) for associative
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strength, but changed αV on every trial n according to

aVðnþ 1Þ ¼ aVðnÞ þ gðjdj � aVðnÞÞ; ð22Þ

d ¼
HAðnÞ
Cðt�Þ

� VðnÞxðCÞ
� �

ð23Þ

where 0< γ< 1 is a parameter that sets the rate of learning rate adaptation. Eq (22) is basically

the Pearce-Hall rule, except that instead of using 1 as the asymptote of learning we use
HAðnÞ
Cðt�Þ .

We simulated latent inhibition with a 5-sec CS. Preexposure consisted of 80 trials of the CS

without reinforcement (H = 0). The preexposed CS was then reinforced for 250 trials. Fig 6

(top left panel) compares the acquisition curves for the preexposed CS and a control CS in the

reinforced trials. The preexposed CS acquisition curve increases at a lower rate than the con-

trol CS, the latent inhibition effect (see data from a corresponding experiment at the bottom

left panel of Fig 6).

Improved timing with preexposure follows directly from the fact that RWDDM adapts its

accumulator slope A to the CS duration during preexposure. However, our choice of a Gauss-

ian for stimulus representation does not allow for this change to become visible. Bonardi and

colleagues [70] demonstrated improved timing by showing that the slope of the response curve

Fig 6. Latent inhibition. Top row: simulated associative strength in latent inhibition (left), simulated CR averaged over the first 30 trials of conditioning

phase (middle), and simulated CR averaged over the last 30 trials of conditioning phase (right). Bottom row: acquisition curves from an actual experiment

in latent inhibition (left), and response rate data during the CS (right). Data plots redrawn from Figures 1 and 2 respectively in [70]. Model parameters: αt =

0.1, αV = 0.08, μ = 1, σ = [0.6 − 0.35], m = 0.2, H = 4, αPH = 0.4, γ = 0.03.

https://doi.org/10.1371/journal.pcbi.1005796.g006
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from the preexposed CS was higher in the first few trials of acquisition than the one from the

control CS (see bottom right panel of Fig 6). In general, animal response curves tend to be

quite flat during the beginning of acquisition. There is evidence that the response curves

appear to change from negatively accelerated to a sigmoidal shape over the course of training

(see Figure 1 in [44] for an example). This means that in the early stages of acquisition, within-

trial response frequency increases very early in the trial and then stays at a constant level until

the end. As training progresses, the increase in frequency moves slowly to the right, giving rise

to the sigmoidal shape that peaks just before the end of the trial. In these cases a higher slope of

the response curve would indicate improved timing. But in our model the curves are sigmoidal

from start of acquisition, so they will always peak at the end of the trial, even if the timer slope

has not adapted to the interval yet, as is the case with a novel stimulus. Therefore, during the

acquisition phase of latent inhibition, RWDDM predicts that only the peaks of the response

curves will gradually increase over the trials. Because of the learning decrement caused by pre-

exposure, the peak of the control CS will increase faster than the preexposed CS, as the top

middle panel of Fig 6 demonstrates. The response curve of the control CS will have a higher

slope than the preexposed CS, even though the preexposed CS’s timer rate has been adapted to

its duration. Hence, the improved timing found in the data is explained by adaptation of

RWDDM’s timer slope, but RWDDM’s CS representation cannot make this visible.

We have tried adding an adaptable σ in eq (8) so as to decrease the width of the gaussian

curve gradually over trials. We chose a simple linear operator rule to adapt the Gaussian

width:

sðnþ 1Þ ¼ sðnÞ þ asð0:35 � sðnÞÞ; ð24Þ

and set σ(1) = 0.6 and ασ = 0.025.

Fig 6 (top middle panel) shows response strength of control and preexposed CSs averaged

over the first 30 trials of the conditioning phase. The preexposed CS already shows a clear sig-

moidal shape, whilst the control is slightly wider and linear. But the effect is too small to be

able to account for the one seen in the data from [70]. Towards the end of the conditioning

phase the two curves converge (Fig 6, top right panel).

Discussion. The simulations show that the model can account for latent inhibition ade-

quately if the Pearce-Hall rule is used (in which case the model would be more appropriately

named PHDDM). The PH rule adapts the learning rate αV based on the level of associative

learning between stimulus and reward. When the subject encounters a novel stimulus, it is

assumed that αV has some non-zero starting value anovel
V , which allows learning in eq (9) to take

place. If this novel stimulus does not signal reward, as is the case in the preexposure phase of

latent inhibition, σ = 0 and eq (22) will simply decay the value of the learning rate across trials

until it reaches zero. If at this point the stimulus begins to be followed by reward, σ> 0 and eq

(22) will begin to raise the value of the learning rate, which in turn will allow eq (9) to begin

increasing the value of V. Since the increase in the value of the learning rate is gradual, deter-

mined by the rate γ, there will be a number of trials in the beginning of the conditioning phase

where aV < anovel
V , which leads to the initial impairment in the learning curve when compared

to the learning curve of a non-preexposed CS, as seen in the top left panel of Fig 6.

The separate rule for time adaptation allows the model to account for improved timing

after preexposure, but the model cannot make this effect visible even if we allow for Gaussian

width adaptation. In view of this it seems more likely that a two-state CS representation may

be a better solution. As mentioned above, Figure 1 in [44] suggests that during the initial stages
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of training a CS representation may be modelled by the following leaky integrator

xiðt þ 1Þ ¼ xiðtÞ þ
1

t
ðIi � xiðtÞÞ ð25Þ

where Ii is the indicator function marking the presence of CSi, and τ a time constant. In the lat-

ter stages of training, when timing is expressed, the organism switches to the Gaussian repre-

sentation given by eq (8). When the switch between representations is made and how abruptly

remains to be investigated.

Latent inhibition cannot be accounted by any of the other models analysed here without

modifications. Also, models that rely on the US for time adaptation, like CSC-TD, MS-TD and

LeT, cannot account for improved timing by preexposure. Modular Theory is the only one

that can time any stimulus like RWDDM, so it could account for the improved timing. But it

would also need a modification like (22) to adapt its learning rate to account for latent

inhibition.

Blocking with different durations

Arguably, the most important compound conditioning phenomenon is blocking. It is part of a

class of cue competition and compound phenomena discovered in the late 1960s which chal-

lenged the view that conditioning was driven by the pairing, or contiguity, of CS-US. These

results suggested that conditioning with compound stimuli was influenced by the reinforce-

ment histories of the elements forming the compound [29, 30]. This led to the development of

a new generation of models that could account for those findings [31, 32, 33]. The rule we use,

the Rescorla-Wagner, provides an explanation for blocking that is based on the summation

term in eq (1).

In a blocking procedure a CS is first paired with a US in phase 1 of training. During phase 2

a novel CS is presented in compound with phase 1 CS and paired with the US for just a few tri-

als. Subsequently, when tested alone the novel CS elicits less responding than if it had been

trained in compound with another novel stimulus [34]. The previously reinforced CS is said to

block the novel CS. The temporal information encoded by each CS has an effect on the amount

of blocking observed. Schreurs and Westbrook [84] varied the ISI in the pre-training and com-

pound phases, and observed less blocking when the durations were different in both phases

than when they were the same. Barnet and colleagues [85] performed a similar experiment but

with forward and simultaneous conditioning varying between phases, and also found that

blocking was stronger when blocked and blocking CSs had the same temporal history. Jen-

nings and Kirkpatrick [86] used compounds where the elements had different durations. They

observed that a long blocking CS could block a co-terminating short Cs, but a short blocking

CS failed to block a co-terminating long CS (see rows 1 and 3 in Fig 7). Amundson and Miller

[87] performed four blocking experiments using trace conditioning. In two of them the block-

ing CS trace duration changed between phases, and blocking was not observed. In the other

two experiments the trace duration was held fixed between phases, and the blocking and

blocked CSs were presented serially and not in a compound (see rows 2 and 4 of Fig 7). Block-

ing was observed when the blocking CS followed the blocked CS, but not in the reverse

condition.

The studies reviewed above appear to show that changing the ISI of the blocking CS

between phases may attenuate blocking. Another finding is the apparent asymmetry of block-

ing when the ISI of the blocking CS is kept constant between phases. Rows 1 and 2 of Fig 7 sug-

gest that a long blocking ISI can block a short blocked ISI. Rows 3 and 4 suggest that a short

blocking ISI does not block a long blocked ISI.
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As mentioned above, RWDDM can account for blocking because it uses the RW rule. The

summation term in eq (1) formalizes the widely held view that a given US can only confer a

limited amount of associative strength which CSs must compete for. Different theories exist

that take other approaches to blocking [see for example 32, 88, 89] but among the ones ana-

lysed here (for their ability to handle timing also) only CSC-TD and MS-TD are equipped to

deal with it. We show next that RWDDM can account for the blocking of a short CS by a long

CS, and that by making the reasonable assumption of second-order conditioning it can also

account for the lack of blocking of a long CS by a short CS. CSC-TD and MS-TD are also capa-

ble of providing an account of both blocking conditions.

Simulations. Because RWDDM is based on the RW rule, it produces virtually the same

results as the latter when the CSs have the same duration. Our interest here is to test whether it

can reproduce the finding that a long CS can block a shorter CS but a shorter CS does not

block a longer one. We performed a simulation following the design in rows 1 and 3 of Fig 7.

In the first phase a CSA (blocking CS) of duration either 10 or 15 seconds was followed by

reinforcement until its associative strength V reached asymptote. In phase 2 CSA was joined

with a CSX (blocked CS), of either 15 or 10 seconds, in a coterminating compound and fol-

lowed by US. The top left panel of Fig 8 shows the acquisition of associative strength for CSX

and its control during phase 2 for the condition CSA-15sec and CSX-10sec. A considerable

amount of blocking is observed, matching with the data (bottom left panel).

The top right panel of Fig 8 shows the results for condition CSA-10sec and CSX-15sec. In

this condition the model diverges considerably from the data (bottom right panel) and predicts

that CSX should actually become inhibitory.

Discussion. The blocking and inhibition seen in Fig 8 is a result of a discrepancy in the

asymptote of learning between the CSs. After phase 1, CSA has associative strength VA�HAA.

During phase 2, CSX’s associative strength changes according to:

DVX � aðHAX � ðVA þ VXÞÞ

¼ aðHAX � ðHAA þ VXÞÞ

¼ aðHðAX � AAÞ � VXÞ

and since (AX − AA)< 0, VX becomes negative.

Fig 7. Experimental designs from two blocking experiments. CS X was blocked (B) in rows 1 and 2, and

not blocked (NB) in rows 3 and 4. Blue bar indicates US presence.

https://doi.org/10.1371/journal.pcbi.1005796.g007
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However, it could be argued that the short CSA becomes a secondary reinforcer which is

signalled by the onset of the long CSX. In this case, the onset of CSX would serve as the time

marker for the onset of CSA, and not for the onset of US. Hence, during the first 5 seconds of

CSX responding would be under the control of this 5-sec stimulus representation which would

not overlap, thus not compete, with CSA’s later representation. It would follow from this

account that no blocking would be observed, and that responding during test phase with CSX

would peak at the 5-sec mark. This is a testable prediction that, if shown to be the case, could

validate RWDDM’s account.

Also note that the time-dependent associative strength asymptote assumed by RWDDM

implies that learning during a compound where the elements are of different durations is not

stable. In particular, if CSA and CSX are the two elements of the compound phase of blocking,

their associative strengths are updated by RWDDM as

DVA ¼ aVðHAA � ðVA þ VBÞÞ

DVB ¼ aVðHAB � ðVA þ VBÞÞ;

Fig 8. Blocking with different durations. Left column: simulation (top) with a 15 sec blocking CS and 10 sec

blocked CS, and animal data (bottom) from an experiment with the same design. Right column: simulation

(top) with a 10 sec blocking CS and 15 sec blocked CS, and animal data (bottom) from an experiment with the

same design. Data panels redrawn from the top right panel in Figure 5 in [86]. Model parameters: αt = 0.2,

αV = 0.1, μ = 1, σ = 0.35, m = 0.2, H = 10.

https://doi.org/10.1371/journal.pcbi.1005796.g008
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which in the steady state form an inconsistent system of linear equations,

VA þ VB ¼ HAA

VA þ VB ¼ HAB:

Since the compound phase of blocking only lasts for a few trials, RWDDM could produce the

blocking seen on the left panel of Fig 8. But if training with the compound was carried out for

longer, the V values would grow without bound. However, there is evidence that in com-

pounds formed by elements with asynchronous onsets, like in the compound phase of the

blocking experiments here, the shorter stimulus comes to control CR timing and there is no

summation of associative strengths [90]. Hence, it appears that with compounded asynchro-

nous CSs, the shorter CS, more proximal relative to the US, comes to dominate and a summa-

tion rule like RW would not be applicable beyond the first few trials of training.

A model that is well placed to explain these results is CSC-TD. A long blocking CS will

completely overlap a short blocked CS, blocking all units in the blocked CS. But in the case of a

short blocking CS, there will be free units in the beginning of the blocked CS which will

acquire associative strength, attenuating blocking. Given its similarity, MS-TD would likely

produce comparable results. MoT and Let would not be able to account for any type of block-

ing given their current choice of rule for associative strength. Unlike RWDDM and the TD

models, they both rely on the linear operator rule, which antedates the transition to the rules

that sum associative strengths in the compounds as mentioned previously. MoT and LeT

would need, at the very least, to replace the linear operator by the RW or other equivalent rule

to be able to account for blocking and other compound phenomena.

Time specificity of conditioned inhibition

Learning occurs not only when a CS signals the occurrence of a US, but also when a CS signals

the omission of a US. It is commonly assumed that the excitation caused by the former is coun-

teracted by an inhibition produced by the latter. This is again formalized by the summation

term in the RW rule. Conditioned inhibition is thus one of the phenomena that, together with

blocking and other compound phenomena, challenged the contiguity interpretation of classi-

cal conditioning.

A conditioned inhibition procedure involves reinforced trials with a CS, say A+, intermixed

with non-reinforced trials with a compound AB-. Conditioned responding develops during

A+ trials but not during AB-. Hence, conditioned inhibition is a key conditioning phenome-

non since it is also a form of discrimination learning.

Conditioned inhibition poses higher technical challenges for a model of learning and tim-

ing as responses cannot be directly observed. To assess conditioned inhibition two types of

measures are used [91]: summation and retardation tests. There are different procedures that

can generate inhibition, so we refer here specifically to the inhibition produced by alternating

A+ with AB- trials. CSA is called a training excitor, and CSB an inhibitor. In summation tests,

this inhibitor is then presented together with a different excitor, and the inhibitor is said to

pass the test if there is a decrement in responding compared to the excitor alone. In retardation

tests, the inhibitor by itself is now paired with the US, and it is said to pass the test if acquisition

is slower than with a neutral stimulus. Denniston and Miller [91] reviewed a series of studies

that varied the durations of the training excitor and that between the inhibitor and the training

excitor. The studies showed that conditioned inhibition is observed when the temporal rela-

tions between training and testing are preserved, and not otherwise.

However, the studies reviewed by [91] used as measure of conditioned inhibition the time

to resume drinking (licking suppression) when presented with the inhibitor. Williams and
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colleagues [92] investigated inhibition caused by reinforcement omission in excitatory condi-

tioning, a more direct measure than licking suppression. In their experiments the inhibitor

stimulus signalled the omission of one of two USs (at 10 or 30 seconds) that had been associ-

ated with the excitor stimulus. Using summation tests they found that the inhibitor would

suppress responding only at the specific time of predicted US omission. Retardation tests con-

firmed that the time of US omission is encoded by the inhibitor.

We show here that RWDDM can account for inhibition and its time specificity. CSC-TD

and MS-TD are also equipped to deal with these results. MoT and LeT do not currently have

the necessary mechanisms to explain inhibition.

Simulations. We demonstrate time specificity of inhibition with simulations of Williams

and colleagues [92] experiment. Excitors E1 and E2 signalled reinforcement after 10 and 30

seconds respectively, and inhibitors I1 and I2 signalled US omission after 10 and 30 seconds

respectively. During phase 1, E1 and E2 were always reinforced, whilst the compounds E1I1

and E2I2 were never reinforced (see Table 3). In phase 2 a transfer excitor E3 was trained on a

mixed FI schedule, where in half the trials E3 lasted 10 seconds and in the other half 30 sec-

onds. Phase 3 consisted of nonreinforced peak trials that lasted 90 seconds, a third with E3

compounded with I1, a third with E3I2, and a third with E3 alone. Fig 9 summarizes the

results. Responding during E3 alone shows the two peaks characteristic of mixed FIs. As Fig 9

Fig 9. Conditioned inhibition. Left column: simulation (top) and data (bottom) from conditioned inhibition

with a long inhibitor. Right column: simulation (top) and data (bottom) from conditioned inhibition with a short

inhibitor. Data plots redrawn from Figure 4 in [92]. Model parameters: αt = 0.09, αV = 0.06, μ = 1, σ = 0.35,

m = 0.16, H = 30.

https://doi.org/10.1371/journal.pcbi.1005796.g009
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shows, the compound excitor and inhibitor inhibits responding only at the time encoded by

the inhibitor.

Discussion. The account provided of inhibition by RWDDM relies on the traditional

summation term inherited from the RW rule. Time specificity comes from the inhibitor CS

timer being treated just like any other CS timer, except that instead of timing the arrival of the

US it times the arrival of US omission.

RWDDM predicts that the representation of an inhibitor CS has the same shape as of an

excitor CS. This implies that inhibition is the exact opposite of excitation. This is a testable pre-

diction which the empirical results above provide some validation.

The TD models provide a similar account of these data. Both CSC and MS TD have CS rep-

resentations that allow for time specificity of US omission. Because the TD relies on the RW

summation term, they can account for inhibition. LeT and MoT can also represent such time

specificity, but because they rely on the older linear operator rule, they do not have a mecha-

nism to account for inhibition.

Disinhibition of delay and compound peak procedure

The two related phenomena described here are important in that they appear to challenge the

summation effect. A common observation is that a compound of two previously conditioned

CSs usually produces more responding than its individual components [93, 43, p. 204]. How-

ever, failure to obtain summation is also common [94, 95], and the precise conditions when it

is observed or not is still a current topic of debate [see 24, for a discussion]. Here we consider

two cases in which summation was not observed and that RWDDM can offer a possible

explanation.

Aydin and Pearce [96] used an autoshaping procedure to condition pigeons to stimuli of 30

second duration. They observed little or no summation in compound trials, but a response

curve with a consistent shift to the left. This earlier start of responding was observed even

when one of the components was a neutral preexposed CS. The shift of the response curve to

the left was termed disinhibition of delay.

Meck and Church [44] performed an analogue experiment using the peak procedure. They

trained rats to associate a light and a sound (both of 50 second duration) individually to a rein-

forcement, and then used a peak procedure to investigate what happens to timing in their

compound. Like [96] they also found no summation and a shift to the left in the compound.

Furthermore, rats also stopped responding earlier in the compound peak trials.

Taken together, these results appear to show that in some cases summation is not observed,

and responding in the compound starts earlier than in the component CSs. One possible

explanation for this effect is that the subject fails to recognize the two individual components

of the compound, what is known as generalisation decrement. If this is the case then it would

be a performance effect, and not a learning phenomenon. We cannot rule this out, but we

show that RWDDM’s trial variability in time estimation provides a plausible mechanism to

explain this effect. The only other models in our analysis set that can account for this are MoT

and LeT.

Simulations. RWDDM is capable of accounting for the earlier responding in compounds

by noise in the timer. When a compound formed by CSA and CSB is presented, its two timers

CA(t) and CB(t) will run in parallel. However, their rates AA and AB will have slightly different

values due to noise. This implies that on every compound trial, one timer will be running

slightly faster than the other. In contrast, on trials where only one CS is present, the timer will

run faster in some trials and slower in others. Therefore, if on compound trials responding is
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guided by the faster timer, the average response curve for compounds will be shifted to the left

when compared to the averaged response curve for a single CS.

Fig 10 shows simulations of disinhibition of delay and compound peak procedure. The fig-

ures were constructed by averaging the responses produced by eq (10) over 50 trials. The simu-

lations reproduce in part the anticipation in responding during the compound that is observed

in the data in both experiments (see top right and bottom left panels of Fig 10). Meck and

Church [44] reported a median peak time of 40±4 seconds for the response curves in com-

pound trials, and 50±3.5 seconds in the individual trials. We ran 15 simulations as the one

shown at the bottom row of Fig 10, and analysed the peak times produced by each. We found

an average peak time of 42±3 seconds in the compound trials, and 47±4 in the individual trials.

Both results are within the error bounds in [44]. Aydin and Pearce [96] did not analyse peak

times or shift in the response curves, so we cannot make a quantitative comparison with our

simulations.

Discussion. RWDDM can offer a good account for the lack of summation and earlier

responding in compound trials in the two cases analysed here. It does so by having trial to trial

variability in time estimation. However, the model shows a slightly higher maximum response

frequency in compounds than in their components (top and bottom left of Fig 10) something

not observed in the data. This is not the product of summation, but of the slightly different

asymptotes of learning in the faster and slower timers in the reinforced trial immediately

Fig 10. Disinhibition of delay and compound peak procedure. Top row: simulation (left) and data (right) of disinhibition of delay. Bottom row:

simulation (left and middle) and data (right) of a compound peak procedure. The middle panel is a normalized (proportion of maximum response strength)

version of the left panel. Data plot redrawn from Figure 13 in [44]. Model parameters: m = 0.25, θ = 1, σ = 0.18, αt = 0.75, αV = 0.1, H = 5.

https://doi.org/10.1371/journal.pcbi.1005796.g010
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preceding the peak trial. Our assumption was that in compound trials the timer running faster,

with a higher slope A, would be the one guiding responding. When timing adaptation has

reached asymptotic levels, the updates on slope A are due to noise in the value of the timer at

reinforcement time, C(t�). The two slopes, AA and AB, will have very similar values. In the

reinforced trial preceding the compound peak trial, whichever timer produces a value of C(t�)
lower than the threshold will have its slope A adjusted up by the the slope update rule, likely

causing it to overtake the other slope. This slightly higher slope will then be chosen in the peak

trial that follows. But the corresponding V associated with that timer will have been updated

on the previous reinforced trial based on the lower C(t�)<θ value. Because that is the denomi-

nator in HA/C(t�), the V value of the chosen timer will be consistently slightly higher on the

compound peak trials.

Other theories that might account for the data in this phenomenon are LeT and MoT. Both

theories postulate intertrial variability in timer rate, the same mechanism used by RWDDM to

explain this data. TD in any of its current versions lacks a mechanism to explain these data.

ISI effect

The interval between CS onset and US onset is called Inter Stimulus Interval (ISI). In general,

measures of CR strength such as response frequency and amplitude decrease with longer ISIs

[97, 57, 43]. Response timing is commonly analysed by using fixed interval (FI) schedules of

reinforcement, which rely on a fixed ISI. It is a well established result that the peak in the

response curve decreases with longer FIs [98, 99]. However, the entire response curve approxi-

mately scales with FI. This is obtained by plotting different FI response curves as the propor-

tion of maximum response strength versus the proportion to FI, a normalization procedure.

The resultant normalized curves roughly superimpose [100, 101, 9, 36]. This is sometimes

called scalar timing, and it is one of the manifestations of the more general property of time-

scale invariance.

CSC-TD does not have a mechanism to explain either timescale invariance or the ISI effect.

Its more recent development, MS-TD, can approximately reproduce both timescale invariance

and the ISI effect. LeT is also a timescale invariant model, but does not appear to show the

decrease in response peak as a function of FI. MoT, at least in its earlier version [47], can

reproduce both the ISI effect and timescale invariance.

Simulations. To demonstrate how RWDDM can reproduce the ISI effect we have simu-

lated a delay conditioning procedure using three fixed interval stimuli. Fig 11 shows RWDDM

simulations with FIs 5, 10 and 20 seconds. The top left panel shows within-trial response rate

(given by eq (10)) averaged over 50 trials for each FI. The response curves show the same pat-

tern as commonly found in data (bottom panel) from fixed interval experiments [102]: a sig-

moidal shape with a maximum that decreases as a function of FI duration. Note that because

the simulation curves are averages of 50 trials, the noise is averaged out.

The top middle panel of Fig 11 shows the associative strength acquisition curves for each

FI. Their asymptotic levels are given by eq (20). V1 is approximately a linear function of A1,

the TDDM slope. The different asymptotic levels of associative strength are responsible for the

different response peaks in the left panel of Fig 11.

RWDDM also reproduces the superposition observed when FI response curves are normal-

ized by maximum response rate and time to reinforcement (top right panel of Fig 11).

Discussion. Gibbon and Balsam [69] attributed the ISI effect to the expectancy to rein-

forcement. A specific reinforcer carries, according to their view, an amount of expectancy H.

This expectancy is spread back in time over the stimulus that signals US occurrence. Hence,

for a CS of fixed duration T and US with expectancy amount H, the total expectancy during
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the CS is hT = H/T. Our RWDDM account follows the same principles. The time to reinforce-

ment T is computed by the ratio between the accumulation height at time of reinforcement C

(t�) and the timer slope at the current trial A(n). This leads to the asymptote of learning in eq 9

being set to HAi(n)/Ci(t�). Superimposition of the response curves follows directly in

RWDDM from the nature of noise in the linear accumulator. This noise guarantees that the

time estimate produced by the model is timescale invariant [50].

The ISI effect can also be explained by the TD model with the Presence representation [38]

and with the more recently developed Microstimuli representation [41]. The Presence repre-

sentation consists of a single element x which has the value 1 when the CS is present, and 0 oth-

erwise. Its associative strength V is updated by the TD rule at every time step within a trial. In

longer trials (longer FIs) the strength V will decay more, since it is updated more times in the

absence of the US. This will lead to a lower asymptotic value for V. However, Presence TD can-

not account for the superimposition of intratrial response curves. The CSC-TD fares even

worse, unable to account for either ISI effect or superimposition [see 41, for a comparison

between MS, CSC and Presence TD]. The Microstimuli representation treats the stimulus as if

it were composed of many units activated in sequence. Their activations follow a Gaussian

shape which partially overlap. Later units have lower peaks and are wider than earlier ones.

Because the number of Microstimuli are fixed, in longer FIs there is less temporal resolution

which causes the US prediction to be lower than in shorter FIs, so it can explain the ISI effect.

Fig 11. ISI effect. Top row: simulated average response rate during CSs (left), associative strength over trials (middle), and superimposition of response

curves (right). Bottom row: average response rate data from an FI experiment, redrawn from bottom right panel of figure 4 in [102]. Model parameters:

m = 0.15, θ = 1, σ = 0.3, αt = 0.2, αV = 0.1, H = 5.

https://doi.org/10.1371/journal.pcbi.1005796.g011
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MS-TD’s account of superimposition is only partial, although clearly better than CSC and

Presence-TD.

LeT in its current version lacks a mechanism to produce decreasing response peaks with

increasing FIs. But it can account very well for superimposition, since its time representation

is timescale invariant. The earlier version of Modular Theory, called Packet Theory, has been

shown to produce the ISI effect (see top row of Figure 3 in [47]). This prediction comes from

longer interval durations decreasing the probability of response packet generation in the

model. MoT is also timescale invariant, so it generates superimposition quite easily.

To summarise, the ISI effect is explained either by time setting the asymptote of learning

(RWDDM) or by a time representation that gets more diffuse with time, lowering the US pre-

diction (MS-TD). Superimposition is explained either by the type of noise in the linear accu-

mulator (RWDDM, LeT) or by stimulus units which have an approximately timescale

invariant activation profile (MS-TD).

Mixed FI

Procedures where a stimulus signals reinforcement at more than one location in time are

called mixed FI or two-valued interval schedules. A mixed FI involves only one CS which

could be of short or long duration, and the subject has no way of knowing which duration it is

currently experiencing until the US is delivered. Catania and Reynolds [98] conditioned

pigeons in a mixed FI and reported a pattern of responding during the long CS that resembles

a combination of two distinct FIs (with two peaks) when the separation between the intervals

was in the ratio 8:1 but not at smaller proportions. Cheng and colleagues [103] found a similar

result (experiment 2) when the intervals were in 5:1 proportion, and Leak and Gibbon [104]

showed that with intervals in the 8:1 proportion the scalar property (measured by the CV)

holds approximately even for three-valued interval schedules. Whitaker and colleagues [105]

ran three experiments with Mixed FIs in rats and found two peaks with the same CV when the

proportion between the durations was greater than 4:1, but not for smaller proportions. They

also found that the peak height at the short duration was higher than at the long duration in

most cases. Whitaker and colleagues [106] used intervals in the very small proportion 2:1 and

still found two peaks that became more distinct when the short interval was presented more

often than the long.

These results are interesting because they challenge in particular models of timing. They

have served to provide evidence in favour of SET, and against BeT and the first version of LeT

[104]. Subsequently, they provided motivation for the development of the current version of

LeT [45]. LeT can now account for the multiple response peaks in Mixed FIs, and their super-

imposition, but it cannot produce peaks with decreasing heights. Modular Theory has the nec-

essary mechanisms to account for all the features of the data above. The TD models, MS and

CSC, could both account for multiple peaks, but their account of superimposition would vary,

with MS being superior than CSC. We show next that RWDDM can account for all features of

the data in Mixed FIs.

Simulations. In this simulation one CS was used which was followed by reinforcement

either after 15 or 75 seconds randomly chosen, a proportion of 5:1. Our assumption was that

in Mixed FI experiments subjects form two independent stimulus representations, one for the

short interval xS, and another for the long interval xL, each with its respective associative

strength (VS, VL) and timer (CS, CL). At CS onset, both timers begin timing, generating the

two representations xS and xL, and at each point in time behaviour is guided by the representa-

tion with the highest activation value. When a reinforcement occurs, the CS representation

with the highest activation value is the one to which credit is assigned.
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The left panel of Fig 12 shows the simulated responses averaged over 50 trials of the long

75-second duration. Two peaks, centred roughly at 15 and 75 seconds, of decreasing heights

and increasing widths are clearly seen, matching roughly with the data (right panel).

Discussion. RWDDM’s mechanism for dealing with mixed FIs is in essence the same as

for single FIs. The only difference is that instead of only one timer (and CS representation) in

Mixed FIs RWDDM uses as many timers (and CS representations) as rewards. We have not

however addressed explicitly how one CS can give rise to two distinct representations. One

possible explanation is that the slope adaptation rule (eq (6)) is only applied when the differ-

ence between the two intervals is below a certain amount. If the difference is above this

amount, then the model would create a new representation. In fact, the data reviewed here sug-

gests that animals may not be able to distinguish two intervals if they are in proportion below

2:1.

To the best of our knowledge, the only other model from our analysis set that has tried to

address the behaviour in mixed FIs is LeT. Machado and colleagues [45] have succeeded in

obtaining the two peaks with the same CV using LeT. Their account relies on a single accumu-

lator in the form of a series of states activated at a fixed rate. This rate is fixed within a trial, but

varies from trial to trial. After repeated training with a mixed FI, the states around the rein-

forced times receive on average more associative strength than the ones away from them. This

activation pattern generates the response peaks seen in the data. However, as the authors note,

‘in mixed-FI schedules, the response rate [produced by LeT] at the first peak is equal to or

lower than the response rate at the second peak, but never higher,’ which is the opposite of

what the data shows. The authors suggest that a decaying arousal function might need to be

added to the model so as to allow response rate to decay with interval duration.

Modular Theory is capable of accounting for the behaviour in Mixed FIs since its pattern

memory for time is based on SET, which has been shown to account for these data [104].

MoT’s account is similar to RWDDM’s in that both rely on a separate accumulator (and mem-

ory) for each time of reinforcement. CSC-TD would likely produce two peaks, since it relies

on a perfect discretization of time into as many units as time-steps. But the curves would not

superimpose when scaled as there is no mechanism to account for timescale invariance.

MS-TD would also account for the two peaks but superimposition would likely not be fully

obtained as its simulations of the ISI effect have only partially reproduced it [see section and

41].

Fig 12. Mixed FI. Left: simulated response strength during long trials. Right: response strength data from a

mixed FI experiment, redrawn from Figure 3 in [104]. Model parameters: αt = 0.2, αV = 0.1, μ = 1, σ = 0.425,

m = 0.2, H = 30.

https://doi.org/10.1371/journal.pcbi.1005796.g012
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VI and FI

Schedules of reinforcement specify the conditions of reinforcement delivery. There are a num-

ber of different types of schedules, some are based on the time elapsed between reinforce-

ments, some on the number of responses emitted between reinforcements, but there can be

other possibilities. Of particular interest for a timing and conditioning model are the two most

commonly used time-based schedules: variable and fixed interval. Variable Interval schedules

of reinforcement (VI) consist in the delivery of a US following a CS that varies in duration

from trial to trial. The CS durations are usually derived from an arithmetic or geometric

sequence. In contrast, Fixed Interval schedules of reinforcement (FI) use a CS of fixed duration

in all trials. Skinner and Ferster [107] reported that VIs tend to produce behaviour with a con-

stant rate throughout the trial, whilst FIs produce scalloped curves with a pause following each

reinforcement and a rapid increase in rate until the next reinforcement.

Catania and Reynolds [98] performed a detailed analysis of behaviour under VIs and found

that response rate declined with the average reinforcement rate. Within a trial response fre-

quency increased with time, following approximately a negatively accelerated curve. When

normalized by maximum response rate and time to reinforcement, these curves showed a con-

siderable degree of superimposition.

Matell and colleagues [108] trained rats on a VI in which intervals were sampled from an

uniform distribution Uð15; 45Þ, and then tested using a peak procedure. They compared the

VI response peak curve to the peak curve from a control group trained on an FI 30 (the mean

of the VI distribution). Although the two curves were not significantly different statistically,

the VI response peak curve peaked slightly earlier and was slightly higher than the control

group.

Jennings and colleagues [109] compared timing performance between VI and FI in three

experiments, but found VI timing only in a VI where the average interval was 30 seconds. The

other experiments from the same paper produced results more in agreement with the earlier

work by [107] showing a constant rate of responding during VI trials.

Taken together, these studies appear to show that timing may sometimes be present during

VI schedules. In this case, animals appear to be learning the average of the interval distribu-

tion. Here we demonstrate with simulations that RWDDM can account for such findings. The

only other model in our analysis set that can account for this result is Modular Theory.

Simulations. In this simulation a random VI was produced by sampling intervals from a

discrete uniform distribution Uð15; 45Þ. Non-reinforced peak trials of duration 135 seconds

were interspersed during the VI, with a probability of 0.25. Our assumption here is that sub-

jects will keep adapting the timer rate A over trials. In this case, eq (6) calculates the exponen-

tial moving harmonic average of the CS durations. Since it is a moving average, the predicted

peak time will depend on the actual intervals used and their presentation order, but the non-

moving harmonic average of all intervals is 27.1 seconds. This is earlier than the arithmetic

average (30 seconds), which is in line with the trend observed in the data by [108].

Fig 13 (top left panel) compares the response strength averaged over peak trials in the VI

and in a regular peak procedure with FI 30. The VI peak is higher and slightly earlier (at

roughly 29.68 sec) than the FI peak, matching roughly with the data (bottom row). When nor-

malized both by peak height and time the curves show the superimposition (top right panel)

also seen in the data.

Discussion. The model predicts a harmonic mean value for the position of the response

peak, which is always less than the arithmetic mean, but because it is a weighted moving aver-

age the actual value may vary. As we saw in the simulations, the VI response curve peaked at a

value (29.68 sec) very near the arithmetic mean of the intervals (30 sec). This may explain the
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trend observed in the data by [108]. However, because that trend was not statistically signifi-

cant, further experiments would be needed to establish if the response peak during VIs is

nearer to the harmonic or the arithmetic mean.

Taken together, these results are more easily accommodated by theories that can store an

average of CS durations like RWDDM. Modular Theory is such an example, since it also stores

an average of intervals in its pattern memory. Other models such as LeT and MS or CSC-TD

would struggle with this result. The CS representation in these models break down the CS into

a sequence of units activated serially in time. With a uniform distribution of CS durations asso-

ciative strength would likely be spread broadly over the weights that cover the interval, gener-

ating a broader pattern of responses that would not be centred on the mean.

Temporal averaging

Although animals are able to time different durations simultaneously, as seen in mixed FIs,

paradoxically under certain circumstances a type of temporal averaging can be observed. This

is a relatively new and important phenomenon, which challenges in particular theories of tim-

ing to propose a mechanism that can explain such averaging.

When rats are trained using two distinct stimulus modalities, a visual stimulus (a light) and

an auditory (a tone), each signalling reinforcement at a different time, responding during

Fig 13. VI and FI. Top row: simulated average response strength during peak trials (left), and the same data

plotted after both axes are normalized (right). Bottom row: average response strength data from an

experiment in VI and FI, redrawn from Figure 1 in [108]. Model parameters: αt = 0.1, αV = 0.1, μ = 1, σ = 0.3,

m = 0.2, H = 40.

https://doi.org/10.1371/journal.pcbi.1005796.g013
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compound presentations of both stimuli peaks roughly in the middle of both durations [110].

This intermediate response curve to the compound superimposes with the two other single

stimulus curves when normalized, suggesting that the animal is timing only one average dura-

tion. The type of average being computed appears to be modulated by the reinforcement prob-

abilities associated with each stimulus duration, with the weighted geometric average fitting

the data better than a weighted arithmetic average or a non-weighted average [111, 112, 113].

Significantly, temporal averaging in rats is only consistently observed when the auditory stim-

ulus signals the short interval and the visual stimulus signals the long interval [111, 114]. Even

when each stimulus is associated with a different response option (light reinforced with a left

nosepoke, tone with a right) rats still tend to mix the temporal information during compound

trials [115].

We do not make a strong claim about RWDDM’s ability to explain this data. Rather, we

show that it has the necessary elements from which an account can begin to be formulated.

MoT also has similar elements from which an account can be built. CSC-TD, MS-TD and LeT

do not appear to be equipped to deal with this phenomenon.

Simulations. In RWDDM the accumulator is the mechanism that marks the passage of

time. The temporal proximity to an event is determined by how close the level of accumulation

is to a fixed threshold value. A CS that signals reward later than another CS, will have a lower

rate (Alow) of accumulation than the shorter CS (Ahigh). Because in RWDDM associative

strength is set by time to reward, the two CSs will also have different associative strengths, Vlow

and Vhigh respectively. We may assume that under temporal averaging circumstances the sti-

muli are of such nature that they cause the subject to integrate their information. At the start

of the compound trials, the ambiguity presented by the compound stimulus may cause the rep-

resentations of the two component stimuli to be only partially retrieved. If the subject fails to

represent the two stimuli separately, the result may be the formation of a single representation

composed by only a fraction of the timing rate A and associative strength V of each individual

stimulus. The fractions are then added into one single rate and one single associative strength,

and processed as if they were the components of a single stimulus representation. For the sim-

ulation below, we assume that the fractions added are exactly half of their individual values:

Acompound = Alow/2 + Ahigh/2, and Vcompound = Vlow/2 + Vhigh/2.

We used a long CS of duration 20 seconds and a short CS of duration 10. We simulated a

peak procedure with each CS and with the compound. A plot of the response strength aver-

aged over peak trials is shown in the top left panel of Fig 14. The three peaks scale when nor-

malized (top right panel).

The peak of the compound is roughly at 13.33 sec, which would be the expected value for

an averaged rate A = (1/10 + 1/20)/2, the harmonic average of the intervals. The height of the

compound peak is also at an intermediate level between the two end peaks. The simulations

match roughly with the data (bottom row of Fig 14)

Discussion. The assumption we made here, that temporal averaging is the result of only

one accumulator being active during the compounds and fed with half the rate for each of the

stimuli, is plausible and can accommodate the main features of the data. However, given the

evidence from mixed FIs it seems animals are capable of keeping multiple timers running in

parallel, without averaging their rates. Also, if averaging of rates always happened during com-

pounds, then the explanation provided by RWDDM for the left shift in the response curve in

the compound peak procedure would not hold. We suggest one possible way of interpreting

these three phenomena based on a failure of representation selection caused by the ambiguity

of the signal. In mixed FIs there is one single CS that signals two rewards at very different

times. There is not much ambiguity in how to interpret the signal, so the subject keeps two

timers running in parallel. In the case of compounds formed by individual CSs that signal
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reward at the same time, as in the compound peak procedure, there is also not much ambigu-

ity. There’s very little difference between the time memories evoked by the CSs, so choosing

only one, the faster one, leaves no ambiguity as to which CS is signalling reward. In the case of

compounds formed by individual CSs of different modalities that signal reward at different

times, the ambiguity might be such that cannot be resolved easily. The information from each

CS may then be only partially retrieved and added into one representation, resulting in tempo-

ral averaging.

As mentioned previously, this is not a strong account of the conditions that generate tem-

poral averaging. But whatever the final word on this may be, RWDDM has components that

allow it to generate averaging and timescale invariance. However, RWDDM predicts this

average to be the harmonic mean, and not the geometric mean weighted by reinforcement

probabilities that has been frequently found [111, 112, 113]. Also, Matell and Henning [112]

reported evidence of summation of response rates during the compound trials. In our simula-

tions here we assumed that equal fractions were taken of the rates of each CS, resulting in a

combined non-weighted harmonic average of rates, but different fractions (or weights) may be

taken. In particular, the data indicates that the weights are set by the reinforcement probabili-

ties of each individual stimulus. Since this information is stored in the associative strength V,

Fig 14. Temporal averaging. Top row: simulated response strength averaged over peak trials in temporal

averaging (left), and the same data normalized by maximum response strength and peak time (right). Bottom

row: peak trial response strength data from an experiment in temporal averaging, redrawn from Figure 1 in

[110]. Model parameters: αt = 0.2, αV = 0.1, μ = 1, σ = 0.35, m = 0.2, H = 30.

https://doi.org/10.1371/journal.pcbi.1005796.g014
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we could assume the subject integrates the two timer rates as follows:

Acompound ¼
Vlow

Vlow þ Vhigh

 !

Alow þ
Vhigh

Vlow þ Vhigh

 !

Ahigh:

Although this would produce a weighted average, it is still a weighted harmonic average of the

intervals and not a weighted geometric average found in the data, so the account given by

RWDDM would still be partial. As for the summation of response rates observed in the com-

pound trials, this could be explained by RWDDM if instead of taking a fraction of the V values

for each stimulus to form the Vcompound, the subject simply summed, or partially summed,

both V values.

Another model that is equipped to deal with averaging is Modular Theory. If we allow for

one single accumulator fed by one half of each time memory, then MoT would predict a peak

of responding at the arithmetic mean of the two intervals. A weighted average could also be

obtained following the procedure we sketched above for RWDDM. However, this would yield

a weighted arithmetic mean, and not the weighted geometric mean obtained in the data. As

for timescale invariance, MoT relies on a noisy timer threshold whose mean is always a fixed

proportion of the time memory, with a standard deviation proportional to this mean. There-

fore, timescale invariance is guaranteed for all time memories, averaged or not.

LeT would not be able to explain temporal averaging without modifications. It cannot

change its average transition rate between states without compromising timescale invariance.

Without changing the transition rate it is difficult to see how else LeT could account for a dif-

ferent timing in the presence of the compound. CSC-TD and MS-TD also lack any mechanism

that could be used to account for temporal averaging.

Summary of results and analysis

Table 4 summarizes the results from the simulations. RWDDM was able to reproduce the

main features of the data in 8 out of the 10 experiments. In the other 2 the model was able to

partially account for the data.

To allow for comparison we have offered qualitative predictions for the other 4 models in

Table 4. It is important to note that for most of the 10 phenomena analysed here simulations

using these models are not available in the literature. Although we have tried our best to pro-

vide predictions based on our understanding of these models, we have not actually simulated

Table 4. Summary of main simulation results and comparison with other models. Notes: (1) if learning rate is allowed to vary.

phenomenon RWDDM CSC-TD MS-TD LeT MoT explaining mechanism

faster reacquisition yes yes1 yes1 yes1 yes1 time-adaptive stimulus representation or changes in learning rate

time change in extinction yes no no no yes separate rules for time adaptation and associative strength

latent inhibition and timing part. no no no no PH rule and separate rules for time adaptation and associative strength

blocking with diff. durations part. yes yes no no RW rule and ability to time any stimulus or distributed time representation

time spec. of conditioned

inhibition

yes yes yes no no RW rule and concentrated memory for time or distributed time representation

compound peak procedure yes no no yes yes intertrial variability in time estimation

ISI effect and

superimposition

yes no part. part. yes asymptote of assoc. strength set by time and accumulator noise or time

representation that gets diffuse with longer time

mixed FI yes part. part. part. yes ability to generate multiple time representations or a single distributed time

representation

VI and FI yes no no no yes memory that stores average of intervals

temporal averaging yes no no no yes memory that stores average of intervals and the accumulator

https://doi.org/10.1371/journal.pcbi.1005796.t004
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them. Therefore it is possible that in some cases a model may produce results that we did not

foresee if the right set of parameters is found or some of the assumptions are relaxed. It is also

possible that some simple modifications might allow the models to explain the data. We

endeavoured to point out some such modifications that seem likely to work when discussing

the simulation results above, but we do not make predictions based on them because the pur-

pose here is only to provide a comparison of the current mechanisms of each model and there-

fore encourage future work on model improvement. With that in mind, Modular Theory has

fared best after RWDDM, being able to account for 7 out of the 10 experiments. MS-TD and

CSC-TD shared the second place with 3 out of 10. LeT came in last, able to account for 2

experiments. The last column of Table 4 identifies the main mechanisms responsible for suc-

cessfully accounting for each phenomenon.

Discussion

RWDDM was able to reproduce faster reacquisition due to its memory for time being

conserved during extinction. This memory is used to activate the stimulus representation.

Learning is slower in acquisition because RWDDM increases the activation in the stimulus

representation gradually over the trials. The stimulus representation needs to be ‘built up’

first, and this process depends on learning the timing of the US. Extinction eliminates associa-

tive strength but leaves the time memory, hence the stimulus representation, intact. Reacquisi-

tion proceeds faster because the stimulus representation does not need to be built up again.

Other models explain this by allowing the associative strength learning rate to be faster in

reacquisition.

Time change in extinction was accounted for because of RWDDM’s ability to time CS dura-

tion independently from US associations. Time is learned entirely by time markers. The TD

models and LeT do not make this separation. These models do not have a mechanism to time

stimuli without the US stamping in the changes.

Improved timing in latent inhibition was also accounted by RWDDM’s ability to learn tim-

ing independently of associations. Preexposure allows the model to build its time representa-

tion, which is later expressed by behaviour during the acquisition phase. The only other model

that learns to time independently of associations is MoT, but it does not have a mechanism to

explain the latent inhibition effect. The latent inhibition effect alone, i.e. the initial decrement

in the acquisition curve of a preexposed stimulus, was made possible in RWDDM by using the

P-H rule to change the learning rate for associative strength. The use of the P-H rule instead of

the RW would certainly have other theoretical implications for the general theory we are intro-

ducing in this paper, but we have used it only in this case. We will make further comments in

the conclusion.

Blocking with different durations was easily accounted in one condition, the short blocked

and long blocking CS. The blocking effect in this condition followed from the summation

term in the RW rule. For the other condition, long blocked and short blocking CS, a straight

application of the model did not yield the results expected. But the experimental results leave

open the possibility that this might be a case of second-order conditioning, where the summa-

tion term in RW does not play a role. In this case, RWDDM is well placed to explain the

results, since it can time the whole sequence of stimuli. The only other models capable of

explaining these results were the TD models.

The time specificity in conditioned inhibition was very well accounted for by the combina-

tion of the summation term in the RW rule, which allowed for inhibition to develop, and the

independent timing mechanism in RWDDM that allowed it to time US omission. However,

the alternative account provided by the different time representation in the TD models was
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also successful. The other theories failed here for the same reason as in blocking, they lack a

rule like RW that can deal with compound stimuli effects.

The response curves centred at the mean of intervals in the VI procedure was well

accounted by the ability of RWDDM to learn the average of intervals. This ability is only pres-

ent in Modular Theory, making it the only other model able to account for the results here.

In the case of temporal averaging, RWDDM was able to account for the general features of

the phenomenon, namely a response curve that peaks at the average of the intervals signalled

by the compound stimulus. However, RWDDM predicts the peak to be at the harmonic mean,

whilst some experimental results suggest it happens at the geometric mean. RWDDM’s

account of temporal averaging was hypothesised as the result of ambiguity in the signal. In try-

ing to resolve whether the compound should be treated as a single stimulus or as two separate

stimuli, the subject settles on using one accumulator that is fed partial timing information

from both stimuli. Other hypothesis might turn out to be more adequate, but this is one possi-

bility that fits well with the RWDDM framework. The only other model that would produce

averaging under the same hypothesis is MoT.

The classic ISI effect followed from two mechanisms in RWDDM. The lower response

curves during longer stimuli were explained by time setting the asymptote of associative learn-

ing by hyperbolic delay discounting. The larger spread of response curves during longer sti-

muli and the superimposition of normalised curves follows from RWDDM’s timescale

invariant time representation. The noise in RWDDM’s accumulator decreases with the inter-

val being timed in such a way that it results in timescale invariance of the response curves.

Modular Theory can also reproduce all features in the data. This is because it relies on a time-

scale invariant response rule function that generates less responding in longer intervals. LeT

can account for superimposition, but it does not have a mechanism to account for the lower

curves in longer stimuli. MS-TD can account for both elements because of the form of its

microstimuli representation.

The double peaks observed in the response curves during mixed FIs is explained by

RWDDM using simultaneous timing. It generates two different representations, one for each

reward. Thus, it can account for mixed FIs by the same principles used to account for the ISI

effect and simple FI schedules. Modular Theory takes the same approach of simultaneous tim-

ing and is also successful. The TD models and LeT can provide a partial account due to their

distributed time representation. But timescale invariance of the peaks is not observed in

CSC-TD and only approximately in MS-TD. LeT produces the timescale invariance but not

the decrease in peak height with time.

The left shift of response curves seen in compound peak procedure and disinhibition of

delay was well accounted for by RWDDM. It did so because of intertrial variability in noise

estimation. By choosing in every compound trial the time memory that predicts reward

sooner, RWDDM produces the left shift in response. The only other models that can appeal to

the same principle to explain it are LeT and MoT.

The superiority of RWDDM and MoT in explaining the majority of the phenomena ana-

lysed highlights the importance of some of their shared mechanisms. Both models have sepa-

rate rules for updating time and associative strength. This makes them capable of timing any

stimuli, independent of changes in associative strength. Both models represent psychological

time as linearly related to physical time through the theoretical construct of the accumulator.

Their memory for time stores a moving average of the experienced intervals. They both allow

for intertrial variability in time estimation. Among their differences, only one proved crucial

in discriminating the two models in the experiments analysed here: the lack of a mechanism in

MoT to account for stimulus compounds. RWDDM uses the RW rule, which was developed

to deal with phenomena such as blocking and inhibition, whilst MoT uses the linear operator,
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a historically earlier association rule that cannot handle compounds. This was the single differ-

ence that caused the difference between MoT and RWDDM in number of phenomena

explained.

MS-TD came in third place in number of phenomena successfully explained, but the gap

between it and MoT was comparatively high, with MoT being almost twice more successful

than MS-TD. CSC-TD came just half a point below MS-TD. This is certainly a result of their

similarities. The only difference between these two TD models is in their time representation.

However, this different representation allowed MS-TD to explain only one more phenomenon

than CSC-TD, the ISI effect. Therefore, in the set of experiments analysed here MS-TD did not

show a significant improvement on CSC-TD. This does not mean that MS-TD is not a signifi-

cant improvement on CSC-TD overall. Its superior account of timing is significant. But the set

of experiments chosen here are particularly challenging even for a dedicated timing theory, so

they raise the bar even higher. The strength of the TD models was in accounting for compound

phenomena of blocking and inhibition, due to their RW rule for association. Their weaknesses

was that they rely on changes in associative strength to express changes in timing. This pre-

vented them from explaining time change in extinction and improved timing in latent inhibi-

tion. They both lack a memory to store the average of intervals, so they could not explain

behaviour in VI schedules. Finally, their lack of trial to trial variability in time estimation pre-

vented them from accounting for the left-shift in the compound peak procedure.

With respect to the number of successes only, LeT came in last. The results allowed us to

identify at least four limitations in LeT’s current formulation. The first is that it ties its time

representation to changes in associative strength. This prevented it to explain time change in

extinction and improved timing in latent inhibition. The second limitation is that it relies on

the linear operator rule for associative strength, which prevented it from accounting for block-

ing and time specificity in conditioned inhibition. Thirdly, its distributed memory for time

does not store the average of the intervals seen. This prevented it from accounting for the

behaviour in VI. Lastly, it doesn’t have a mechanism to explain the decrease in peak height of

the response curves with longer ISIs. However, as a timing model, LeT’s strength is in explain-

ing timescale invariance. If it can be made to overcome at least the weakness of its associative

learning rule, for example by also adopting the RW to update associative strength, LeT could

be on a par with the TD models.

RWDDM faced a few problems in explaining the set of phenomena analysed here. In latent

inhibition the model was able to learn the timing for the preexposed CS, but our choice of CS

representation translates this into a response curve that does not fully match the data. A better

solution might involve a two-state CS representation, one state for the early stages of training

and the other for the latter stages. RWDDM could not account for the lack of blocking with a

long blocked CS and a short blocking CS. One possible solution that does not require changing

the model is to treat the blocking CS as a secondary reinforcer. A more difficult problem

related to asynchronous co-terminating CSs such as the ones used in the blocking experiment

analysed here, is that in its current formulation RWDDM cannot produce a stable solution.

Because RWDDM assigns a different learning asymptote for each CS in the compound, it gen-

erates an inconsistent system of equations for V. How to fix this remains an open problem.

Finally, in temporal averaging RWDDM predicts a peak in CR at the harmonic mean of the

intervals, not at the geometric mean as has been observed in the data. More experiments might

help to determine if the harmonic average should indeed be ruled out as an explanation.

One relevant phenomenon that we did not explore here is the peak procedure. In particular,

Balci and colleagues [116] have produced evidence that in the long peak trials animals don’t

stop responding immediately after the expected reward time, but instead take a number of

peak trials to learn to stop. The Gaussian function xi(Ci) used as the CS representation in
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RWDDM ensures that CR levels will begin to decrease after Ci(t) crosses threshold θ without

any learning. To address the findings in [116] the RWDDM CS representation could be

changed to a sigmoid, saturating after the timer C(t) crosses a first threshold. A second thresh-

old could then be introduced to mark the time to stop responding. When the timer crosses this

stop threshold the saturation process in the CS representation would stop and a decay process

would begin. This however would still be an incomplete account, as a mechanism would be

needed to explain the learning of the second threshold. But if such a CS representation was

used, the model would also fit a larger body of data coming from studies that analyse respond-

ing during individual trials of the peak procedure. Schneider [117] and subsequently Gibbon

and Church [118] and others [119, 120] have argued that the pattern of responding is better

characterized not by a Gaussian but instead by an approximate square-wave function, with a

low-high-low response frequency pattern. It can be shown that by introducing a stop threshold

to the timer Ci(t), the TDDM timer (used in RWDDM) can fit the data on times of start and

stop responding [68]. Alternatively, the accumulator Ci(t) itself could be used as the CS repre-

sentation, replacing xi in eqs (9) and (10). In this case, an upper absorbing boundary would

need to be set on the accumulator to prevent response strength increasing considerably in the

first few trials following a CS duration increase for example. Also, such a choice of CS repre-

sentation would cause within-trial responding to become linear, rather than the more com-

monly observed sigmoidal pattern. If a sigmoidal response curve is to be preserved, a different

choice of response function would be required.

Another phenomenon that we did not address but deserves mention is the timescale invari-

ance of the acquisition process [67]. It refers to the general finding that the number of trials

required until an acquisition criterion is met depends on the ratio of intertrial (or context) and

trial durations, the I/T ratio [35, 121, 73]. Gibbon and Balsam [69] provided an account for

this that postulates a decision process based on the reward expectancy signalled by the stimulus

versus the one signalled by the context. A ratio between the two expectancies is calculated, and

once the ratio exceeds a certain value, acquisition starts. If the same postulate of a decision

ratio of reward expectancies is made, RWDDM may account for the I/T ratio in a similar

manner. If we assume that animals time the interval between USs (the context or I duration)

with rate AI(n) and also the CS duration as usual with rate AT(n), then we can form the ratio

r(n) = AT(n)/AI(n). As the number of trials n increases, the A rates converge to their asymptotic

values, and the ratio r will converge to AT/AI = (1/T)/(1/I) = I/T. This is essentially the same

account given by [69], with the timer rates AT and AI substituting Gibbon and Balsam’s expec-

tancies H/T and H/C.

At least three testable RWDDM predictions came out from the simulations reported here.

The first concerns blocking with different durations. A long blocked CS will not be blocked by

a short co-terminating blocking CS, and two peaks in responding will be observed during test

trials with the blocked CS: one at the time the short blocking CS would normally start, and

another at the end of the blocked CS. The second prediction is that conditioned inhibition is

the exact opposite of excitation. This means that the behaviour produced by inhibition is

timed in the same manner as in excitation. Finally, in temporal averaging the response peak in

the compound stimulus should be at the harmonic average, or weighted harmonic average.

One prediction that did not come out of the simulations but that is worth mentioning con-

cerns time estimation during very early trials. Our assumption of a low initial value for the

accumulator rate A implies that in the initial trials durations will be overestimated. A new

experiment testing this prediction could help validate, or invalidate, the model.

RWDDM is, to the best of our knowledge, the first time the RW associative learning rule is

coupled with a accumulator-based timing theory. An important implication of this effort for

associative learning is that it allows for a richer analysis of the effects of timing in compound
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stimuli experiments. Here we have analysed blocking and conditioned inhibition, but there is

evidence suggesting time may have important effects in other cue-competition phenomena

such as overshadowing [122, 123]. Timing effects in compounds has until now received some-

what little attention, with many published experimental studies reporting only aggregate

response measures. This is perhaps to be expected, since most associative learning models that

can handle compounds do not have any, or a rich enough, time representation. RWDDM is an

attempt at filling this theoretical gap.

Another limitation of associative learning models is that they tend to simply postulate the

timing features of the stimulus representation, without a detailed account of how these can

mechanistically arise and evolve. This is the case with the CS representations of CSC-TD,

MS-TD and others like C-SOP [72]. RWDDM’s adaptive timer and time-adaptive CS repre-

sentation provide a fuller account of the timing mechanism and its dynamics. Another recent

model that provides this level of detail is the Timing from Inverse Laplace Transform [TILT,

124, 125]. It can dynamically develop a timescale invariant representation of stimulus history

using a two-layer neural network. It can also reproduce the important I/T ratio conditioning

phenomenon, but so far it has only been implemented with the linear operator rule for associa-

tive learning, which precludes it from accounting for cue competition phenomena.

The RWDDM architecture suggests that timing is largely independent of the process of

association formation and maintenance. Associations however, according to RWDDM,

depend on timing both to set the asymptote of associative strength and to build the CS repre-

sentation so that it can enter into association with the US. Thus, RWDDM implies that interac-

tions between timing and associative learning are mainly one-directional. This appears to

match roughly with experimental findings. In a review Kirkpatrick [4] found that prediction

error influenced measures of time estimation only through changes in reward magnitude and

devaluation, whilst effects in the other direction included the appropriate timing of CRs from

start of conditioning, trial and intertrial durations affecting strength and probability of CR

occurrence, and cues with different temporal information affecting cue competition.

Conclusion

In this paper we introduced a new real-time model for classical conditioning and timing. The

model combines elements from two theories, the Rescorla-Wagner conditioning model and

the TDDM interval timing theory.

We have simulated the model on 10 conditioning phenomena selected from the literature,

which collectively represent a particular challenge for any single model to explain. The model

was successful in accounting for 9, and can be made to account for the rest if simple modifica-

tions are made. The mechanisms used by other models of similar scope were evaluated to see if

they could also account for the data. The model that got closer to this level of success in this set

of phenomena was Modular Theory. This was due to MoT and RWDDM having a significant

overlap in terms of mechanisms. Both models use an accumulator to mark the passage of time.

Both models require only a single associative unit per stimulus that adapts to the temporal

information conveyed by the stimulus. Their main difference is that MoT still uses the linear

operator rule which precludes it from explaining blocking and other compound phenomena,

whilst RWDDM uses the RW rule which can account for those phenomena. The same limita-

tion is faced by TILT, a recent model that we did not analyse but that shows promising results

and has desirable timing properties.

RWDDM may be improved in several ways. It is quite likely that the asymptote of learning

may not be described by the simple inverse relationship to reinforcement time that we

assumed. In some of the experiments modelled here, response peak seemed to decrease slower
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with ISI than our inverse relationship predicted. Functions other than Gaussians might be

used to represent the CS, which could better fit the data in the case of latent inhibition for

example. These and other theoretical issues may be better elucidated by new experiments

involving compound stimuli and a manipulation of their durations, such as the experiments

with blocking, compound peak procedure and temporal averaging analysed here.

We have also adopted the P-H rule in one experiment, but have not explored its application

in the others. Making the P-H rule an integral part of RWDDM would add one more parame-

ter but it would also allow RWDDM to account for other preexposure and attentional effects

that the rule is designed to account. This is not a difficult modification, and we have already

shown it to be feasible.

RWDDM may be regarded, like TD, as a real-time extension of RW. Unlike TD and LeT, it

does not require a number of associative units that grows linearly with time. It adds to RW the

powerful timing mechanism of TDDM. But also, by making a link with a version of DDM, it

shows that it may be possible to arrive at a unified account of timing, conditioning and deci-

sion making.
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