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We consider massless Dirac fermions in a graphene monolayer in the ballistic limit, subject to
both a perpendicular magnetic field B and a proximity-induced pairing gap ∆. When the chemical
potential is at the Dirac point, our exact solution of the Bogoliubov-de Gennes equation yields
∆-independent relativistic Landau levels. Since eigenstates depend on ∆, many observables nev-
ertheless are sensitive to pairing, e.g., the local density of states or the edge state spectrum. By
solving the problem with an additional in-plane electric field, we also discuss how snake states are
influenced by a pairing gap.

Introduction.—It is well known that at energies close to
the neutrality point, the electronic properties of graphene
monolayers are accurately described in terms of two-
dimensional (2D) massless Dirac fermions1–7. Recent ad-
vances in fabrication and preparation technology6,8 allow
experimentalists to routinely reach the ballistic (disorder-
free) transport regime. Our theoretical work reported
below is largely motivated by spectacular recent progress
on Josephson transport in ballistic graphene flakes con-
tacted by conventional superconductors9–19, demonstrat-
ing in particular that proximity-induced superconduc-
tivity can coexist with rather high (Landau-quantizing)
magnetic fields12,15,18. This raises the question of how
a proximity-induced bulk pairing gap will affect the elec-
tronic properties of graphene in an orbital magnetic field.
In contrast to lateral graphene-superconductor inter-
faces, where theory is well developed3,20–22, we therefore
investigate vertical hybrid structures as shown schemat-
ically in Fig. 1. Superconductivity can be proximity-
induced in the graphene sample from a 2D van der Waals
superconductor23, e.g., using a NbSe2 film supported on
a standard hexagonal boron nitride (h-BN) substrate8.
NbSe2 is a good superconductor with high critical field
(Bc2 ≈ 5 T at T = 1 K), remains superconducting down
to a few monolayers, and exhibits high-quality interfaces
with graphene13. For gating the device, another h-BN
monolayer may be inserted as indicated in Fig. 1, at the
expense of reducing the proximity gap. The proximitized
graphene flake can be probed by a scanning tunneling
microscope (STM), e.g., using a graphite finger tip for
ultra-high energy resolution19.

Before turning to derivations, we briefly summarize our
main results which can be tested by established STM
techniques24, transport experiments, and/or local ma-
nipulation of defect charges in the substrate25: (i) By
means of an exact solution of the Bogoliubov-de Gennes
(BdG) equation, we show that at the Dirac point, i.e., for
chemical potential µ = 0, the energy spectrum of a prox-
imitized graphene layer in a homogeneous magnetic field
B is independent of the proximity gap ∆. The BdG spec-
trum thus reduces to the familiar relativistic Landau level
spectrum4, in marked difference to the time-reversal-

h-BN

graphene

STM tip

NbSe2

B

Figure 1. Sketch of a vertical hybrid structure in a perpendic-
ular magnetic field B, where the graphene flake is deposited
on a superconducting film (e.g., a few monolayers of NbSe2)
supported by an h-BN substrate. Inserting an h-BN mono-
layer between the superconductor and the graphene sample
allows to gate the device (gates not shown). The graphene
layer may be probed by an STM tip as indicated. Alterna-
tively, the stack could be closed by a top h-BN monolayer.

symmetric case with a strain-induced pseudo-magnetic
field where the spectrum depends on ∆ in a conventional
manner26–28. (ii) Even though the energy spectrum is
independent of ∆ at the Dirac point, the corresponding
eigenstates are sensitive to the pairing gap. Clear exper-
imental signatures of proximity-induced superconductiv-
ity in Landau-quantized graphene are predicted for the
energy-resolved local density of states (DOS) as well as
for the edge states present near the sample boundaries.
Away from the Dirac point, also the spectrum itself de-
pends on ∆. (iii) Chiral snake-like states are expected
in graphene for ∆ = 0 in the presence of a weak electric
field E perpendicular to B29–31, see Refs.32,33 for recent
experimental reports. We solve the corresponding BdG
equation for arbitrary ∆ through a Lorentz transforma-
tion of our solution for case (i), and thereby discuss how
snake states are affected by a pairing gap.

Model.—We start from the BdG equation, HΨ = EΨ,
for proximitized graphene samples as in Fig. 1. The BdG
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Hamiltonian is represented by the matrix3,20,

H =

(
vF
(
p̂+ e

cA
)
· σ + V ∆

∆∗ −vF
(
p̂− e

cA
)
· σ − V

)
,

(1)
with canonical momentum p̂ = (p̂x, p̂y) = −i~∇ and
Fermi velocity vF ≈ 106 m/s. Pauli matrices σx,y act in
sublattice space, while explicitly written 2×2 matrices re-
fer to Nambu (particle-hole) space throughout. In partic-
ular, H in Eq. (1) acts on Nambu spinors Ψ(r) = (u, v)T

containing the spin-up electron-like (spin-down hole-like)
wave function u (v) near the K (K ′) valley, where u
and v are spinors in sublattice space and r = (x, y).
A decoupled identical copy of H with opposite spin is
kept implicit20. The vector potential A = (0, Bx) de-
scribes a perpendicular homogeneous magnetic field B
in Landau gauge, where we neglect the typically small
Zeeman splitting. The potential term in Eq. (1) also
accounts for the chemical potential µ through the shift
V − µ → V , and the homogeneous spin-singlet pairing
amplitude ∆ (taken real positive below) comes from the
proximity effect. Note that intrinsic superconductivity
in graphene34,35 has not been found experimentally. Fi-
nally, we neglect Coulomb interactions which are largely
screened off by the proximity-inducing superconductor.
In what follows, we measure lengths (wave numbers) in
units of the magnetic length lB (1/lB), and energies in
units of the cyclotron scale EB , where

lB =
√

~c/eB, EB = ~vF /lB . (2)

Equation (1) tacitly assumes applied magnetic fields
below the critical field of the proximity-inducing super-
conductor and that the Meissner effect is too weak to
completely expel the magnetic field from the proxim-
itized graphene layer. In principle, renormalized val-
ues of B and ∆ entering Eq. (1) can be obtained from
self-consistency equations, cf. Refs.36,37. However, since
coexistence of B and ∆ has already been observed in
graphene12,15,18 and other 2D electron gases38, we here
take them as effective parameters and focus on the
physics caused by their interplay.

Chiral representation.—It is convenient to reformulate
Eq. (1) using 4 × 4 Dirac matrices in the chiral repre-

sentation, β =

(
0 −σ0

−σ0 0

)
and αj =

(
σj 0
0 −σj

)
,

with j = 1, 2, 3 and identity σ0 in sublattice space. An-
ticommuting γν matrices are then given by γ0 = β and
γj = βαj , where we also define γ5 = diag(σ0,−σ0). In
Landau gauge, Eq. (1) is equivalently expressed as

H = α1p̂x + α2
(
p̂y + xγ5

)
+ γ5V − β∆. (3)

Formally, Eq. (3) describes 2D Dirac fermions with mass
−∆ subject to pseudo-vector and pseudo-scalar poten-
tials: the A and V terms involve γ5. Given a BdG eigen-

state ΨE = (uE , vE)
T

with energy E ≥ 0, a particle-hole
transformation yields a solution with energy −E,

Ψ−E(r) = −γ2Ψ∗E(r) =

(
−σyv∗E(r)
σyu

∗
E(r)

)
. (4)

Therefore it is sufficient to find solutions with E ≥ 0,
and Eq. (4) is a self-conjugation relation for E = 0. For
a complete set (uλ, vλ)T with energies Eλ ≥ 0, the local
DOS ρ(E) is defined in a standard way39 and can be
measured by STM techniques, see Fig. 1, Furthermore,
the charge current density J = (Jx, Jy)T corresponding
to a given eigenstate is

Jλ(r) = −evF
(
u†λσuλ + v†λσvλ

)
. (5)

In what follows, we assume V = V (x) such that Eq. (3)
enjoys translation invariance along the y-direction. BdG
solutions are given by Ψk(r) = eikyψk(x), where ψk(x)
is an eigenstate to Hk obtained from H in Eq. (3) with
p̂y → k. We now perform a partial (involving only the
momentum in y-direction) Bogoliubov transformation,
ψk(x) = Mkφk(x), with the unitary 4× 4 matrix

Mk = ak,+ − ak,−γ2 =

(
ak,+ −σyak,−
σyak,− ak,+

)
, (6)

ak,± =

√
Xk ± k

2Xk
, Xk =

√
k2 + ∆2.

The BdG equation, H̃kφk(x) = Eφk(x) with H̃k =
M−1
k HkMk, then involves the transformed Hamiltonian

H̃k = α1p̂x + α2
(
Xk + xγ5

)
+
k + γ2∆

Xk
γ5V (x). (7)

For B = 0 and constant V , one has plane waves with k =
(kx, k) and energy Ek,± =

√
(±~vF |k|+ V )2 + ∆220,

where the DOS for E ≥ 0 and V ≥ 0 is given by

ρ(E) =
1

π(~vF )2
×


0, E < ∆,

EV−(E2−∆2)√
E2−∆2

, ∆ < E <
√
V 2 + ∆2,

E − V, E >
√
V 2 + ∆2.

(8)
Note that at the Dirac point, i.e., for V = 0, the usual
BCS square-root singularity is replaced by a finite jump
at E = ∆, with ρ(E) ∼ E for E > ∆.

Exact solution at the Dirac point.—For V = 0, we
next observe that H̃k in Eq. (7) coincides with the
original Hamiltonian in Eq. (3) for ∆ = 0 and p̂y →
Xk. As a consequence, the entire spectrum coincides
with the (k,∆)-independent relativistic Landau energies,

Ek,n,s = En =
√

2nEB with n = 0, 1, 2, . . .4. On
top of the k-degeneracy, we have an additional dou-
ble degeneracy with s = ±, see below. Eigenstates
follow by the above Mk transformation from relativis-
tic Landau states. The latter are given by the Nambu

spinors φk,n,+(x) = (Fn(x+Xk), 0)
T

and φk,n,−(x) =

(0, σyFn(x−Xk))
T

, where sublattice spinors, Fn(x) =

( 1√
2
)1−δn,0

(
sgn(n)ϕ|n|−1, iϕ|n|

)T
, are expressed in terms

of normalized oscillator eigenfunctions40. Note that
the usual center-of-mass coordinate k is replaced by
Xk (−Xk) for the electron (hole) spinor component,
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Figure 2. Bar plots of the DOS weights Gn vs Landau energy
En for different ∆/EB , see Eqs. (10) and (11).

cf. Eq. (7). Using Eq. (6), eigenstates follow as

Ψk,n,s=±(r) = eiky
(
±ak,±Fn(x±Xk)
ak,∓σyFn(x±Xk)

)
. (9)

In contrast to the spectrum, these states depend on
∆ and thus most observables will be sensitive to pair-
ing. For given Ψk,n,s, Eq. (4) yields a mirror state
Ψ−k,−n,±(r) = ±γ2Ψ∗k,n,±(r) with E = −En. For n = 0,
this relation connects +k and −k states, and one can con-
struct two (s = ±) 1D zero-energy Majorana fields.

Density of states at the Dirac point.—By using the
states in Eq. (9) and restoring units, we obtain an exact
integral representation for the DOS41,

ρ(E) =
e−(∆/EB)2

πl2B
δ(E) +

|E|
π(~vF )2

× (10)

×
ˆ +∞−i0+

−∞−i0+

dλ

2πi
ei(E

2λ−∆2 tanλ)/E2
B cotλ,

which is singular and applies in the distribution sense.
For B → 0, the asymptotic approximation of Eq. (10)
reproduces Eq. (8) with V = 0. The bar plots in Fig. 2
show the dimensionless DOS weights

Gn = πl2B

ˆ En+0+

En−0+

dEρ(E), En =
√

2nEB , (11)

characterizing the δ(|E| − En) peaks in the DOS and
hence also the degeneracy per unit area of the energy
levels En. For ∆→ 0, Eq. (10) yields the standard Lan-
dau comb with Gn = 1. Figure 2 illustrates the crossover
between the analytically accessible limits ∆/EB → 0 and
∆/EB → ∞, where low-energy states with |E| < ∆ be-
come gradually depleted as ∆/EB increases. The DOS

-2 -1 0 1 2
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E
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∆ = 0-2 -1 0

x
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Figure 3. Edge states for a semi-infinite (x < 0) graphene
sheet with V = 0 and armchair conditions at x = 0. Main
panel: Dispersion relation for ∆ = 0.5EB (solid black) and
for ∆ = 0 (red dotted curves). Inset: Current density Jy(x)
[in units of −evF ] vs position x/lB for the two degenerate
eigenstates (solid and dashed curves for s = + and s = −,
resp.) with klB = 0.705. Blue (green) curves are for ∆/EB =
0.5 (∆ = 0) with Ek,n,s/EB ' 0.2683 (' 0.3520), cf. the blue
circle (green diamond) in the main panel.

in Fig. 2 also exhibits oscillatory features in the energy
dependence.

Edge states.—Next we consider a semi-infinite
graphene sheet (x < 0) with V = 0. The bound-
ary is modeled by imposing armchair conditions3,4 along
the line x = 0. Solutions to the BdG equation are
then given in terms of parabolic cylinder functions
Dp(z)

42. The spectrum is obtained by numerically solv-
ing det[W (E)] = 0, where the matrix W follows with

ε = E/
√

2, a± = ak,± [cf. Eq. (6)], and D̃
(±)
p =

Dp

(
±
√

2(k2 + ∆2)
)

in the form41


−a+εD̃

(−)
ε2−1 a+D̃

(−)
ε2 a−εD̃

(+)
ε2−1 a−D̃

(+)
ε2

a+D̃
(−)
ε2 −a+εD̃

(−)
ε2−1 −a−D̃

(+)
ε2 −a−εD̃(+)

ε2−1

a−D̃
(−)
ε2 −a−εD̃(−)

ε2−1 a+D̃
(+)
ε2 a+εD̃

(+)
ε2−1

a−εD̃
(−)
ε2−1 −a−D̃(−)

ε2 a+εD̃
(+)
ε2−1 a+D̃

(+)
ε2


(12)

The spectrum is shown in Fig. 3. For ∆ = 0, we re-
cover earlier results43–45 reporting chiral edge states. For
∆ > 0, electron- and hole-type edge states become mixed
and the edge state dispersion exhibits gaps near k = 0.
Turning to the current density (5), the current flows
along the y-direction only, Jx = 0. The respective profile,
Jy(x), is illustrated for the two degenerate states with
k = 0.705 and lowest energy in the inset of Fig. 3. Since
the current density has a pronounced peak near x = 0
and a specific sign, we have unidirectional edge states
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Figure 4. Dispersion relation for an infinite graphene sheet
with potential V = 0.2EB for ∆ = 0.5EB (main panel) and
∆ = 2EB (inset). Since E−k,n = Ek,n, only k ≥ 0 is shown.
Solid black and dashed blue curves refer to numerical diago-
nalization and perturbative results [Eq. (13)], respectively.

also for ∆ > 0. However, the overall current becomes
smaller with increasing ∆, cf. Fig. 3.

Going away from the Dirac point.—Let us briefly ad-
dress the case V 6= 0, where numerical diagonalization
of the BdG equation using Landau states as basis shows
that a (chemical) potential shift causes dispersion, see
Fig. 4. Notably, most features in Fig. 4 can be under-
stood by expanding around the V = 0 solution (9) using
the term ∼ V in Eq. (7) as small perturbation. Writing
Ek,n,s = En+δEk,n,s, first-order degenerate perturbation
theory yields the correction

δEk,n,± = ±|V |
Xk

√
k2 + ∆2S2

k,n, (13)

where the overlap between Landau states Fn centered
at +Xk and −Xk is encoded by Sk,n. Explicitly, we find

Sk,0 = e−X
2
k and Sk,n>0 = 1

2e
−X2

k [Ln−1(2X2
k)+Ln(2X2

k)]

with the Laguerre polynomials Ln
42. For |k| � ∆,

Eq. (13) yields a uniform shift ±|V | of all Landau en-
ergies, while for k = 0, the correction simplifies to
±|V S0,n|, where S0,n oscillates when changing n.

Crossed electric and magnetic fields.—We finally also
include an in-plane electric field E by putting V = eEx.
With the dimensionless parameter ε = (c/vF )E/B, we
consider the regime |ε| < 1. The corresponding ∆ = 0
problem has been solved analytically by a Lorentz boost
into the reference frame with vanishing electric field
(E ′ = 0)29. Remarkably, such a strategy also admits an
exact solution for ∆ 6= 0: First, we write down the spinor
transformation law, ψ = Sψ′ with S = cosh(η/2) −
sinh(η/2)γ0γ2, where the Lorentz angle η = tanh−1 ε de-
fines the frame with E ′ = 0. Next, using the parameter

ζ ≡ (1− ε2)1/4, we rescale (i) the x-coordinate, x′ = ζx,
(ii) the wave number, k′ = (k + εE)/ζ3, (iii) energy,
E′ = (E+εk)/ζ3, and (iv) the proximity gap, ∆′ = ∆/ζ.

With these rescalings and X ′k =
√
k′2 + ∆′2, cf. Eq. (6),

the BdG equation in the new frame coincides with the
V = 0 problem solved above. Transforming the solution,
Eq. (9), back to the lab frame and restoring units, we
obtain the ∆-independent spectrum

Ek,n,s = −~εvF k + sgn(n)
√

2|n|ζ3EB , (14)

where n runs over all integers and k is restricted to those
values with Ek,n,s ≥ 0. Each level is two-fold degenerate
(s = ±), and the corresponding eigenstates are

Ψk,n,±(r) = eikyζ3/2

[
cosh(η/2)

(
±ak′,±Fn(x′ ±X ′k)
ak′,∓σyFn(x′ ±X ′k)

)

+ sinh(η/2)

(
∓ak′,±σyFn(x′ ±X ′k)
ak′,∓Fn(x′ ±X ′k)

)]
, (15)

States with negative energy follow from Eq. (4), and for
ε = 0, Eq. (15) reduces to Eq. (9).

In the normal (∆ = 0) case, so-called snake states
exist near the interface between V > 0 and V < 0
regions30–33 which are semiclassically described by snake-
like orbits propagating along the interface (here the y-
direction) with velocity cE/B = εvF . In the supercon-
ducting case (∆ > 0), the spectrum in Eq. (14) sug-
gests that unidirectional snake states remain well de-
fined and propagate with the same snake velocity as for
∆ = 0. In particular, for n = 0, these states are local-
ized near the line x = 0. Computing the total charge
current carried by a given state along the y-direction,
I =
´
dxJy(x), Eqs. (5) and (15) yield the analytical re-

sult I(∆)/I(0) = 1/
√

1 + (∆′/k′)2. Similar to the above
edge state case, we thus find that the magnitude of the
current becomes gradually suppressed with increasing ∆.

Conclusions.—We have studied electronic properties of
graphene monolayers in an orbital magnetic field when
also proximity-induced pairing correlations are present.
Remarkably, at the Dirac point, the energy spectrum is
independent of ∆, but observables may still show pro-
nounced pairing effects since eigenstates depend on ∆.
We hope that our work will stimulate experimental and
further theoretical work on the coexistence of magnetism
and superconductivity in graphene.
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Appendix A: Density of states at Dirac point

We first discuss the derivation of Eq. (10) in the main
text. Below we set a = ∆/EB . Using the exact V = 0
states in Eq. (9), the local DOS takes the form

ρ(E) = 2g0δ(E) +
∑
n>0

(gn−1 + gn)δ
(
|E| −

√
2nEB

)
,

gn =

ˆ
dk

2π
ϕ2
n

(√
(klB)2 + a2

)
=

1

2πl2B
In(a), (A1)

In(a) =
1√
π2nn!

ˆ ∞
a2

du√
u− a2

H2
n

(√
u
)
e−u.

For ∆ = 0, we have In(0) = 1 and the Landau comb
is reproduced. Moreover, I0(a) yields the δ(E) prefactor
in Eq. (10). We thus focus on the local DOS for |E| >
0. With D denoting an effective high-energy bandwidth,
where eventually the limit D → ∞ has to be taken, we
can rewrite Eq. (A1) as

ρ(E) =
1

2πl2B

∑
n>0

e−2n(EB/D)2 [In−1(a) + In(a)]×

× δ
(
|E| −

√
2nEB

)
(A2)

=
|E|
πl2B

∑
n>0

(In−1 + In)e−2n(EB/D)2
ˆ +∞

−∞

dλ

2π
eiλ(E2−2nE2

B)

with δ(E2−2nE2
B) = (2|E|)−1δ(|E|−

√
2nEB) and an in-

tegral representation of the δ-function. Exchanging sum
and integral, measuring E in units of ∆ and rescaling
λ→ λ/∆2, we find

ρ(E) =
∆|E|

π(~vF )2
e−(E/D̃)2 × (A3)

×
ˆ +∞

−∞

dλ

2πa2
eiλ̃E

2
(
e−2iλ̃ + 1

)
Ga(λ̃),

where we define D̃ = D/∆,

Ga(λ̃) =
∑
n≥0

In(a)e−2iλ̃n, λ̃ =
1

a2

(
λ− i

D̃2

)
.

Next, using
∣∣∣e−2iλ̃

∣∣∣ < 1 and the Poisson kernel42, we sum

up the series,

Ga(λ̃) =
∑
n≥0

1√
π

ˆ ∞
a2

du√
u− a2

H2
n(
√
u)

2nn!
e−ue−2iλ̃n

=
1√
π

ˆ ∞
a2

du√
u− a2

exp
(
u 2e−2iλ̃

1+e−2iλ̃

)
(1− e−4iλ̃)1/2

e−u

=
1

1− e−2iλ̃
exp

(
−1− e−2iλ̃

1 + e−2iλ̃
a2

)
. (A4)

Inserting Eq. (A4) into Eq. (A3), we obtain

ρ(E) =
∆|E|

π(~vF )2
e−(E/D̃)2 ×

×
ˆ +∞−i/D̃2

−∞−i/D̃2

dλ

2πi

eiλE
2−a2 tan(λ/a2)

a2 tan(λ/a2)
. (A5)

Restoring units, letting D →∞, and including the E = 0
peak, we arrive at Eq. (10) in the main text.

Appendix B: On the determinantal condition

We here consider the semi-infinite case (x < 0) with
V = 0 and armchair boundary conditions imposed on
the line x = 0. For given wave number k and energy E,
using the parabolic cylinder functions Dp(z)

42, general
solutions of the BdG equation that are normalizable for
x < 0 are given by the Nambu spinors

Ψk,E(r) = c1e
iky

(
a+FXk,E(x)
a−σyFXk,E(x)

)
+ (B1)

+ c2e
iky

(
−a−F−Xk,E(x)
a+σyF−Xk,E(x)

)
,

with complex coefficients c1,2, the numbers a± ≡ ak,± in
Eq. (6), and the sublattice spinors (p ≡ E2/2)

F±Xk,E(x) =

(
− E√

2
Dp−1

(
−
√

2(x±Xk)
)

iDp

(
−
√

2(x±Xk)
) )

. (B2)

We now impose armchair boundary conditions at x = 0,

ψA(0, y)+ψ′A(0, y) = 0, ψB(0, y)+ψ′B(0, y) = 0, (B3)

where the sublattice spinor components
ψA/B(r) [ψ′A/B(r)] characterize an electron at the

K [K ′] valley and Eq. (B3) has to be satisfied for all y.
Next we note that the upper Nambu spinor component
in Eq. (B1) contains ψA/B(r) for an electron at the K
valley with wave number k and energy E, while the lower
component of Eq. (B1) contains the complex conjugate
of ψ′A/B(r) for an electron at the K ′ valley with wave

vector −k and energy −E. In order to satisfy Eq. (B3),
we thus have to consider superpositions of ±k states
with the same energy E. Using complex coefficients d∗1,2
to parametrize the partner states with wave number
−k and the same energy E, see Eq. (B1), and using
F∗±Xk,−E = −F±Xk,E , Eq. (B3) yields the relations

c1a+FXk,E − c2a−F−Xk,E (B4)

+ d1a+σyFXk,E + d2a−σyF−Xk,E = 0,

c1a−σyFXk,−E + c2a+σyF−Xk,−E
− d1a−FXk,−E + d2a+F−Xk,−E = 0,

where all sublattice spinors F are taken at x = 0. The
relations (B4) result in four equations for the four vari-
ables (c1, d1, c2, d2). We thus arrive at the matrix W (E)
in Eq. (12). For ∆ = 0, the corresponding determinantal

condition simplifies to pD2
p−1(−

√
2k) = D2

p(−
√

2k).
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