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Abstract 8 

Snapping shrimps use a special shaped claw to generate a cavitating high speed water jet. Cavitation 9 

formed in this way, may be used for hunting/stunning prey and communication. The present work is a 10 

novel computational effort to provide insight on the mechanisms of cavitation formation during the 11 

claw closure. The geometry of the claw used here is a simplified claw model, based on prior 12 

experimental work. Techniques, such as Immersed Boundary and Homogenous Equilibrium Model 13 

(HEM), are employed to describe the claw motion and cavitating flow field respectively. The 14 

simulation methodology has been validated against prior experimental work and is applied here for 15 

claw closure at realistic conditions. Simulations show that during claw closure, a high velocity jet 16 

forms, inducing vortex roll-up around it. If the closure speed is high enough, the intensity of the 17 

swirling motion is enough to produce strong depressurization in the vortex core, leading to the 18 

formation of a cavitation ring. The cavitation ring moves along the jet axis and, soon after its 19 

formation, collapses and rebounds, producing high pressure pulses.      20 

  21 
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 23 

 Introduction 24 

Cavitation in water/liquids is a very effective way of generating shock waves 
1
, due to the rapid 25 

accelerations/decelerations of the bubble interface during its collapse stage. Cavitation-related 26 

phenomena may even appear in nature, in animal species; for example dolphins cannot swim faster 27 

than 15m/s due to cavitation formation
2
, which causes pain. On the other hand, the lack of pain 28 

receptors on the fins of fish belonging to the scombrid family
2
 (e.g. mackerels, tunas, etc.) allows 29 

them to exceed the cavitation free-limit and cavitation-induced damage has been observed on their 30 

bodies. Apart from the hindrance that cavitation may cause to swimming fish, other animal species 31 

have evolved to exploit the generation of shock waves through cavitation to stun or kill prey. 32 

Examples of such animals are snapping shrimps (belonging to the family of Alpheidae) and mantis 33 

shrimps (belonging to the family of Odontodactylidae).  34 

Mantis shrimps have two hammer-like or club-like raptorial appendages, which they use to strike 35 

with extreme force their prey, such as e.g. small crustaceans or molluscs. High speed imaging 36 

revealed that cavitation may form between the hammer-like appendage and the target
3,4

. It is 37 

speculated that the mechanism of cavitation formation is due to the strong depressurization of water 38 

due to the Bernoulli principle
3
, i.e. as the fluid moves at high speed, its static pressure drops. 39 

Moreover, it is likely that cavitation is enhanced by vortex formation and the hammer rebound after 40 

the impact on the target surface
3
. However, there are indications that cavitation in the case of the 41 

mantis shrimp may be an unwanted effect. Detailed inspection revealed that cavitation does not only 42 

damage the target, but the mantis shrimp's appendages as well
4
. Over time, the appendage surface 43 

becomes pitted and damaged, though frequent moulting of the mantis shrimp replaces the damaged 44 

smashing surface. The aforementioned discussion indicates that perhaps in the case of mantis shrimp, 45 

cavitation appears to be a side-effect of the percussion, with negative aspects that the shrimp has 46 

evolved to handle. On the other hand, it seems that the pistol shrimp is the sole species evolved to 47 



actively use cavitation itself as a weapon to kill/stun its prey. The mechanism of cavitation formation 48 

in pistol shrimp claws will be analyzed in the present work, focusing on the fluid mechanics aspects 49 

of its operation.   50 

Snapping shrimps, known also as pistol shrimps, have two specially shaped claws, one of which is 51 

enlarged and is capable of forming cavitation bubbles 
5,6

. Claws are expendable; if the large claw is 52 

amputated, the smaller claw will grow to replace the missing limb, whereas a new minor claw will 53 

grow in the place of the large claw 
7
. The claw consists of two parts, the dactyl and the propus 

5
. On 54 

the dactyl there is a protrusion (it will be referred as plunger hereafter) which fits into a 55 

complementary socket of the propus, see also Figure 1. When the claw is fully open, water fills the 56 

socket of the propus. Then, when the claw closes rapidly, the plunger displaces water from the socket 57 

volume. Water escapes through a narrow anterior groove formed between the plunger and the propus, 58 

as shown in Figure 1. The water expelled from the socket through the groove, creates a vortex ring
5
 in 59 

a similar way as an air vortex cannon
8
. Note that the shrimp claw is a complicated 3D shape and the 60 

expelled jet is not aligned at the same plane as the rest of the claw, thus it is not obstructed by the 61 

dactyl tip
9
. Hess et al.

5
 introduced the concept of formation number to explain the maximization of 62 

momentum transfer from the jet to the vortex. The jet velocity has been estimated by Versluis et al.
10

 63 

to be ~25 m/s, using high speed imaging of an actual pistol shrimp claw closing. Such a velocity may 64 

lead to pressure drops of ~3
.
10

5
 Pa, which is enough to vaporise water locally

10
 forming a cavitation 65 

bubble. Additionally, a simplified numerical investigation, based on the assumption of spherical 66 

cavitation bubble solved with the Rayleigh-Plesset equation, indicated pressure levels during collapse 67 

of even 2000 bar
10

. Furthermore, a study by Lohse et al.
6
 suggests that luminescence phenomena may 68 

be observed at the collapsing bubbles formed by pistol shrimps.  69 

 70 

 71 
Figure 1. (a) Snapping shrimp claw components: d corresponds to dactyl, p to plunger and s to socket  5. (b) Closed claw; the 72 
passage through which flow is expelled is visible  5. (c) Render of the simplified claw geometry used in the present study and 73 

in previous experimental investigations 5. 74 

 75 

While the aforementioned list of experimental work 
5,6,10

 aimed to investigate the phenomena being 76 

involved in the operation of the pistol shrimp claw, still the mechanism of cavitation formation is not 77 



described and well understood. In particular, the work of Versluis et al.
10

 examined the macroscopic 78 

cavitation formation from the claw and employed a simplified numerical model based on the 79 

assumption of spherical bubble shape and relying on parameter fitting to explain cavitation formation. 80 

In their work they recognised the lack of detailed flow field and pressure data in the vicinity of the 81 

closing claw. The work of Lohse et al.
6
 discussed the light emission from collapsing bubbles 82 

generated by pistol shrimps, hinting the extreme pressure/temperature conditions during collapse. Not 83 

much explanation was provided on the cavitation mechanism or flow field though. Finally, the work 84 

of Hess et al.
5
 was an experimental study aiming to describe the flow pattern during claw closure by 85 

analyzing an enlarged dimensions claw, which was based on a real pistol shrimp claw, scanned using 86 

X-ray Computational Tomography (CT). While vortex formation was demonstrated, the enlarged 87 

dimensions of the claw geometry did not permit observations of cavitation.  88 

The present work focuses on the fluid mechanics aspects of cavitation formation, growth and 89 

collapse, by resolving the flow field around the claw using numerical simulations. The flow field is 90 

something that was not analyzed in previous studies, due to experimental limitations. In particular, 91 

investigations involving actual pistol shrimps, have constraints in shrimp handling, in the experiment 92 

environment and conditions, thus inherently limiting the applicable measurement techniques. High 93 

speed photography becomes problematic, since high frame rates are required (of the order of 10
6
 fps), 94 

lighting and focusing becomes difficult (the animal may move in a not very controllable manner). The 95 

pressure signal recorded from the hydrophone may be excessively smoothed or underestimated by the 96 

sensor bandwidth
10

. Moreover, the complexity of the geometry of the claw and the uniqueness of each 97 

individual animal, hinder systematic and repeatable study. On the other hand, experimental replicas of 98 

pistol shrimp claws lack in reproducing the conditions of cavitation formation; for cavitation to occur, 99 

one needs a high speed moving object (the plunger). It is difficult to construct such a plunger in real 100 

size dimensions, moving at real closure speed, plus there are difficulties in the experimental 101 

techniques (similar to those mentioned above, i.e. high speed imaging, focusing/lighting etc.). This is 102 

the reason why Hess et al.
5
 resorted to enlarged and non-cavitating conditions.  103 

A general remark in both cases is that experimental techniques such as high speed photography, or 104 

pressure signal measurements provide only partial views of the flow pattern and underlying 105 

mechanisms. High speed photography can show the existence of cavitation only, but not the actual 106 

density of the fluid. Hydrophones may provide information of the pressure signal at a given point, but 107 

not everywhere. Particle-Image-Velocimetry (PIV) cannot provide insight in cavitating regions, since 108 

the cavitation cloud obstructs the view. The advantage of a well-defined and converged simulation is 109 

that it provides a well controlled environment for conducting studies, without limitations of measuring 110 

techniques, since they are not necessary (no need for high-speed imaging, Particle-Image-111 

Velocimetry), the flow field is directly accessible in a quantitative manner everywhere. Also there are 112 

much less limitations in the simulated conditions and geometry, ensuring repeatability and control. 113 

With the above, it is not implied that simulation is the only viable method in conducting research; it is 114 

clear that simulation may have pitfalls (hence the clarification "well-defined and converged"). It is 115 

also clear that developing simulation tools requires experimentation and theoretical developments to 116 

formulate modelling techniques and validate numerical results. 117 

The present work in an attempt to demonstrate the fundamental flow effects occurring at the claw 118 

of a pistol shrimp, the mechanism of cavitation generation, shape and collapse. The claw geometry 119 

used is based on the simplified model of Hess et al.
5
. The reason for resorting to a simplified model is 120 

mainly related to validation. There are experimental data available
5
 that can be used to test the 121 

numerical methodology (see also supplementary material 3 and 4) and validate the predictive 122 

capability of the model before further investigating cavitating conditions. Additionally, the simplified 123 

geometry offers the possibility of repeatability in any further research; the geometry is provided as 124 

supplementary material (see also supplementary material 12) in Parasolid Computer-Aided Design 125 



(CAD) format that can be used by experimentalists to construct their own models, or researchers to 126 

develop and test numerical techniques. Note that the methodology employed is applicable for any 127 

arbitrary shape, should it be available in a clean Computer-Aided Design (CAD) format.    128 

It is highlighted that in the frame of this work, instead of relying on modelled parameters/fitting, as 129 

was the case in the work of Versluis et al. 
10

, the whole claw and the surrounding fluid are simulated 130 

with Computational Fluid Dynamics (CFD). Thus, the present work is the first to simulate the actual 131 

flow field inside and outside the claw, demonstrating the flow physics, the cavitation structure and 132 

providing additional insight in relation to experiments, since the inherent limitations of the latter are 133 

avoided. Despite the simplifications in the claw geometry, the main mechanisms of cavitation 134 

generation and collapse are replicable and similar magnitude of jet velocity is found as in experiments 135 

involving real pistol shrimps. Briefly stated here, the claw closure produces a high speed jet. The high 136 

speed jet induces vortex roll-up, which in turn leads to a strong pressure drop inside the core of the 137 

vortex. If the jet velocity is high enough, a pressure drop of even ~10
5 

Pa can be produced, which is 138 

enough to vaporize water locally, forming a toroidal cavitation ring. The toroidal cavitation ring 139 

oscillates, expanding and collapsing; at the instance of the ring collapse, very high pressures are 140 

produced, due to the sudden deceleration of the surrounding liquid. 141 

The simulation of vortex cavitating flows is rather challenging, since high resolution and low 142 

numerical dissipation are required to accurately track the vortex
11

. Additionally, cavitating flows are 143 

rather difficult to describe and model, due to large pressure and density ratios; in the present 144 

simulations, density varies from 998.2 kg/m
3
 (pure liquid) to 0.017 kg/m

3 
(pure vapour) and pressure 145 

varies from ~2000 Pa (liquid/vapour mixture) up to 100
.
10

5
 Pa (pressure peaks). These variations 146 

have serious implications in the nature of the flow. Strong density variations imply prevalence of 147 

compressibility effects, such as low speed shock waves in the bubbly mixture
12

 and pressure pulses in 148 

areas of cavitation collapse. Indeed, cavitating flows are known to have a vast variation in the speed 149 

of sound, ranging from 0.01m/s for liquid/vapour mixture up to 10
3 

m/s for pure liquid 
13,14

. 150 

Cavitation-related computational techniques involve fully Eulerian compressible techniques 151 

(selectively 
15-17

) or Eulerian-Lagrangian methods (selectively 
18-20

). Research on cavitation has many 152 

practical applications, ranging from fuel injection systems
21,22

, ship propellers
23

  and pumps 
24,25

 to 153 

even drug delivery 
26

 and cancer treatment 
27

. The present research could further promote new and 154 

efficient designs in water cleaning/purification devices
28,29

, material processing and chemical 155 

engineering 
30

.  156 

 157 

Results    158 

Several cases have been examined, for different plunger closure speeds and different plunger sizes. 159 

Here, the focus will be on the results of a case with strong cavitation formation to demonstrate the 160 

underlying physical mechanisms. The interested reader is addressed to the supplementary material for 161 

a complete reference on all cases. The configuration to be presented features a socket with a 162 

characteristic length scale of ~1.4 mm and a plunger closure speed of 0.3ms, resulting to a peak 163 

plunger angular velocity of ~ 7000 rad/s. The Reynolds number of the jet diameter is ReD ~ 4000 or, 164 

based on the plunger length scale, ReL ~ 40000.    165 

 The developing vortices during the plunger closure are shown in Figure 2 and a close-up view  166 

around the jet in Figure 3. Vortical structures are indicated with the isosurface of the q-criterion 167 

(defined as the second invariant of the velocity gradient tensor 
31,32

) for a value of 10
8
 s

-2
. As the 168 

plunger starts to move, flow detachment occurs and two counter-rotating vortices form at the wake of 169 

the plunger, indicated with (1). As the plunger continues to move, these vortices become larger and 170 

start to twist, see (2), (3) and (4). The tip of the plunger is covered by a stretched vortical structure, 171 

see (5), occupied by vapour at its core (see also Figure 4 at the same time instant). Later on, vortex 172 

instability 
33-36

 leads to break-up of the aforementioned structures, see the wake of the plunger at 173 



0.24ms or at (6), where the originally stretched vortical structure breaks to several smaller structures. 174 

At the same time instant, an attached vortex grows at the wall edge of the socket, due to fluid being 175 

expelled from the socket cavity. Because of the closure speed, a high speed jet is expelled from the 176 

opening between the plunger and socket walls. The jet velocity is ~30 m/s, inducing vortex roll-up 177 

and causing the formation of a large vortex ring, as shown at (8) at 0.3ms, occupied by vapour due to 178 

strong circulation, see (4) at Figure 4. Vortex roll-up is also observed at the sides of the socket walls, 179 

due to liquid escaping from the gap between socket walls and plunger, see (7). After its formation, the 180 

vortex ring detaches from the socket/plunger opening and starts to move in the direction of the jet, at a 181 

translation velocity approximately half of the jet velocity. The same mechanism is in agreement with 182 

experimental observations, see 
5,37

. Soon after its formation, the vortex ring elongates, see (9) at 183 

0.323ms, and then breaks into a complicated vortical structure, see e.g. (10) at 0.375ms, due to vortex 184 

instability, the collapse and rebound of the cavitation ring.  185 

 186 
Figure 2. Indicative instances of the 'real size' claw model closure; closure time 0.3 ms. Vortices are shown, represented with 187 

the velocity gradient second invariant (value q=108 s-2), coloured according to the velocity magnitude. 188 
 189 

The formation of the vortex ring is shown in detail in Figure 3. Initially, at 0.252ms, an attached 190 

vortex starts to form at the edges of the geometry, due to the expelled water jet. Note that the 191 

rectangular shape of the geometry causes the formation of a rectangular vortex ring as well. Later on, 192 

at 0.276ms, the vortex ring continues to grow and detaches. Its shape still resembles a rectangle, 193 

though it is smoothed at corners under the influence of viscosity. At 0.315ms the vortex ring has 194 

completely detached and travels following the jet. Its shape is elongated in the x-direction, resembling 195 



two cylinders with a gap in between, through which the jet moves. The elongated jet shape is caused 196 

by the asymmetric flow field promoted by the plunger motion. Finally, at 0.383ms, the vortex ring 197 

appears shattered after the cavitation ring collapse.   198 

Colouring in Figure 3 provides an indication of the swirling motion that the fluid is subjected to. 199 

The colouring is according to the vorticity magnitude, |ω| (defined as the magnitude of the curl of 200 

velocity vector field
35

). Under the assumption of forced (or rigid body) vortex type, vorticity and 201 

angular velocity are linked. Vorticity is twice the angular velocity of the instantaneous principal axes 202 

of the strain-rate tensor of a fluid element
35

. This implies that the liquid is undergoing intense 203 

swirling, since angular velocities may range from Ω ~ 80000 - 170000 rad/s. The induced liquid 204 

depressurization (defined as pressure at vortex radius R, pR, minus the pressure at the vortex core, pc) 205 

may be expressed as
13

: 206 

 
2

22ΩR
pp cR

 
  (1)  207 

Considering that the liquid density is ρ ~ 998.2 kg/m3 and the vortex radius is R ~ 0.1-0.3 mm, 208 

then the pressure drop ranges between ~5
.
10

4
 up to even 10

6 
Pa, with an average pressure drop of 209 

~2
.
10

5 
Pa. This value is similar to the one used as a fitting parameter by Versluis et al

10
, justifying that 210 

despite the simplicity of the model geometry, there is similarity in the underlying physical 211 

mechanisms of actual shrimp claws. It should be noted that the forced vortex assumption is not 212 

necessarily far from reality, since real fluid vortices are combinations of forced and free vortices. 213 

Moreover, this assumption serves to provide an order of magnitude estimate of the angular velocity, 214 

explaining the induced liquid depressurization.  215 

 216 

 217 
Figure 3. Indicative instances of the vortex ring formation, vortical structures indicated using a q-criterion value of 5.109 s-2. 218 
The isosurface is coloured according to local vorticity magnitude, providing an indication of the swirling angular velocity. 219 

Note that due to the square opening between plunger and socket, the vortex ring has initially a square shape as well. 220 
 221 

 222 

 In Figure 4, indicative instances of cavitation formation are shown, combined with the presence of 223 

turbulent structures. Turbulent structures are represented as translucent isosurface, whereas cavitation 224 

is represented using the density isosurface, for a density value of 990kg/m
3
 (or vapour volume 225 

fraction of ~1%). This combined representation enables to link cavitation structures with vortical 226 

structures. At the start of the plunger motion, attached cavitation develops at the wake of the plunger 227 

due to local flow detachment. As the plunger accelerates, reaching maximum angular velocity, flow 228 

detachment at the sides and the tip of the plunger induces the formation of cavitation sheets, see (1) at 229 

0.18ms. Later on, detached cavitation structures are observed at the plunger wake at the cores of 230 

vortices, e.g. see (2) and (3). The rapid plunger closure leads to the formation of a cavitating vortex 231 

ring around the high speed jet, which is clearly shown in (4). After formation, the cavitation vortex 232 

ring moves following the jet and oscillates, collapsing and then rebounding again, see the sequence of 233 

(5 - collapse), (6 - minimum size) and (7 - rebound).  At minimum ring minor radius, at the final stage 234 

of collapse and before the cavitation ring rebound, very high pressures are generated, in the order of 235 



100 bar. At the same time, the strong flow acceleration, due to vortex rebound deforms the vortex 236 

even more and shatters the cavitation ring.  237 

The generated vortex ring cross-section is a Burgers vortex and its circulation is ~0.005 m
2
/s 238 

throughout the whole simulation time. The minor radius of the forced vortex core is ~0.11 mm at 239 

generation, later increasing to 0.22 mm after the cavitation ring rebound. 240 
 241 

 242 
Figure 4. Indicative instances of the simplified claw model closure; closure time 0.3 ms. Vortices are shown, represented 243 

with the velocity gradient second invariant (value q=108 s-2), coloured according to the velocity magnitude (semi-translucent 244 
isosurface). Cavitation is shown with a density isosurface for a value of 990 kg/m3 (i.e. vapour vol. fraction ~1% - black 245 

opaque isosurface). 246 
 247 

To demonstrate with clarity the flow field, Figure 5 shows the flow field at the midplane of the 3D 248 

geometry. Flow velocity is represented with velocity vectors whereas the contour shows vorticity at 249 

the normal, to the midplane, direction (ωx). Cavitation is represented using a density isoline for a 250 

value of 500kg/m
3
 (or 50% vapour volume fraction). The core of the vortex ring is tracked over time 251 

and annotated with arrows.   252 

Instances in Figure 5 show clearly the correlation of vortex roll-up with cavitation structures; note 253 

that at 0.3ms (plunger closure) cavitation occupies entirely the core of the two counter-rotating 254 

vortices, indicating as "C1" and "C2". At 0.345ms, "C1" becomes larger, whereas "C2" shrinks, due to 255 

the interaction of jet and plunger wake. After the collapse of the cavitation ring, "C1" vortex splits in 256 



two. The two new vortices, named "C3" and "C4", may cavitate alternatively, e.g. at 0.383ms vortex 257 

"C4" cavitates, whereas at 0.39ms vortex "C3" cavitates.  258 

Plunger motion displaces liquid from the socket, causing the formation of a high speed jet towards 259 

the +y direction. However, the plunger imparts momentum to liquid at its wake, towards the -z 260 

direction. Interaction of the jet with fluid from the plunger wake leads to a deviation of jet and 261 

cavitation vortex ring from the horizontal direction. Indeed, the jet-wake interaction imparts 262 

downward momentum to the jet, which is observable in the presented instances in Figure 5. Similar 263 

effect was observed in the experiment as well and it is demonstrated in the validation study in the 264 

supplementary material. 265 

 266 
Figure 5. x-vorticity (ωx, 1/s) and velocity vectors represented at the midplane (yz-plane) of the geometry. The black thick 267 

line indicates a density isoline of 500 kg/m3 (i.e. vapour volume fraction of 50%). 268 
 269 

Discussion 270 

Even though cavitation ring rebounding might seem unexpected, the rebound mechanism is 271 

physical and is related to conservation of angular momentum. Indeed, it may be proven that, for a 272 

vortex (cylindrical or toroidal), circulation acts in a similar way to a non-linear spring, preventing 273 

complete collapse, since the induced centrifugal forces tend to increase the vortex size, eventually 274 

leading to rebound, see J.P. Franc 
13

. In essence, as long as vorticity is preserved (e.g. inviscid fluid), 275 

the cavitation ring would rebound indefinitely. The collapse time for a toroidal cavitation ring may be 276 

approximated as 
13

: 277 

 





8
ln0

p
R


  (2)  278 

in the limit of small minor to major torus radius ratio. In equation (2), R0 is the minor torus radius, ρ is 279 

the liquid density, Δp is the pressure difference between far field and the cavitating vortex core and ε 280 

is the ratio between the minor and major torus radii. For the configurations examined in the present 281 



work, the R0 is ~ 0.1 mm, Δp  ~ 97 kPa, ρ ~ 998.2 kg/m
3
 and ε ~ 0.16, leading to an oscillation period 282 

approximately twice the collapse time, i.e. ~32μs.   283 

Since in nature pistol shrimps are not identical, it is reasonable to expect variations in the claw size 284 

or closure speed. For this reason, a parametric investigation was performed to determine the effect of 285 

the closure speed to jet velocity and cavitation volume. In Figure 6a, a comparison between the jet 286 

velocity of several cases is shown, for claw closure times of 0.3 ms, 0.4 ms and 0.5 ms. The angular 287 

closure speeds range between 4000 up to 7000 rad/s and plunger velocity at tip between 5.7 up to 288 

10m/s. Jet velocity is measured at the neck of the formed orifice, as in the experiment 
5
. The peak jet 289 

velocity is a linear function of the maximum plunger closure velocity (see Figure 6b). In all cases a 290 

local minimum is found after the jet velocity peak, which is closely followed by a second peak, much 291 

smaller than the first. This second peak is associated with flow reversal inside the socket. Indeed, 292 

during the last stages of the plunger closure, depressurization induced cavitation occurs between the 293 

socket/plunger, due to the expelled jet inertia. Thus, shortly after the jet formation, flow rushes back 294 

at the cavity formed between the plunger/socket. Indicative instances of the flow reversal are shown 295 

in supplementary material. 296 

 297 
Figure 6. (a) Comparison of the flow velocity at the neck, for different closure speeds. (b) Relation between the maximum jet 298 

velocity and the maximum plunger velocity. 299 
 300 

Figure 7 shows the vapour volume in the cavitation ring formed by the plunger closure in respect 301 

to time. A global maximum of vapour volume is clearly observed around the time of plunger closure, 302 

closely followed by a local minimum due to the cavitation ring rebound. The time scale of the ring 303 

rebound is ~70μs, close to the calculated period from equation (2). Discrepancy is expected, mainly 304 

because equation (2) is applicable for small minor to major torus radius ratio and a perfectly circular 305 

ring, which is obviously not the case here.  306 

The maximum volume of vapour is related to the closure speed as a quadratic function of the form 307 

bauuV  2)( , see Figure 7b. This form resembles the dynamic pressure contribution (0.5ρu
2
), 308 

including a constant value which is related to the vaporization pressure threshold. As already 309 

demonstrated, the plunger speed is linearly related to the jet speed. The jet speed affects the pressure 310 

inside the vortex core, since vortex pressure is a quadratic function of tangential vortex velocity
13

. It is 311 

highlighted that Figure 7 discusses only cavitation volume in the ring, omitting cavitation formed at 312 

the wake of the plunger or inside the socket, since the latter may not be relevant to the actual shrimp 313 

claw, due to differences in the exact claw shape. In any case, for the sake of completeness, it is 314 



mentioned that the trend relating maximum vapour volume in the whole computational domain to the 315 

closure speed is similar to the one shown in Figure 7b.   316 

 317 
Figure 7. (a) Comparison of the vapour volume generated during the plunger motion. Calculation performed as the volume 318 

integral of the vapour volume fraction. (b) Maximum relative vapour volume defined in respect to the slowest closure speed 319 
investigated (i.e. 0.5ms closure, total vapour volume of 0.00156 mm3).  320 

 321 

As the cavitation ring collapses and rebounds, very high pressures are produced due to sharp 322 

deceleration of surrounding liquid. In essence, the sudden deceleration of liquid results to a water-323 

hammer effect, consequently emitting a pressure pulse. This pressure pulse is the speculated 324 

mechanism employed by the pistol shrimp to stun or kill its prey 
10

. The generated pressure peak is 325 

closely related to the amount of vapour produced during the plunger closure. When the plunger moves 326 

at the highest speed examined here (closure at 0.3ms, max. angular velocity 7000 rad/s, see Results 327 

section), an intense pressure peak is found, reaching instantaneous pressures of even 80bar, see Figure 328 

8.  329 

 330 
Figure 8. Pressure peak due to cavity collapse, plunger closure at 0.3ms. Pressure is shown at a midplane slice. The black 331 

isosurface is the 1% vapour fraction. Pressure, locally, may exceed 80bar. 332 



 333 

Figure 9 shows the time evolution of pressure and velocity magnitude at a characteristic length 334 

scale L ~ 1.4 mm (see table 1) away from the claw neck, at the y-direction, for plunger closure at 335 

0.3ms. Before the time of 0.2 ms, pressure signal is almost stable. Then, from 0.2 to 0.3 ms small 336 

pressure peaks are detected, followed by a sudden pressure drop at 0.35 ms. At the instance of 337 

cavitation ring collapse a very high pressure pulse is found, reaching pressures of more than 10 bar. 338 

At the same time instant there is a local maximum of flow velocity, reaching 17m/s. The pressure 339 

peak is then followed by a second pressure drop. The pressure signal pattern is the same as the one 340 

found in the prior work by Versluis 
10

.  341 

 342 

 343 
Figure 9. Pressure and velocity magnitude as a function of time, at a characteristic length scale L=1.4 mm from the claw 344 

neck.  345 

 346 

To summarize, the present work is the first to analyze the cavitating flow in a geometry resembling 347 

a pistol shrimp claw, providing insight in the physical mechanisms of cavitation generation and 348 

proving that cavitation produced by the shrimp claw is not a spherical bubble but rather a toroidal 349 

cavitation structure. The main mechanism of the cavitating claw operation is vortex ring roll-up, 350 

induced by the high speed jet expelled from the socket. Depending on the plunger closure speed, 351 

circulation of the vortex ring may become high enough to cause a considerable pressure drop inside 352 

the vortex core. A large pressure drop may induce vaporization of the liquid inside the vortex core, 353 

leading to the formation of a cavitating vortex ring. Upon its formation, the cavitation ring travels at 354 

the direction of the jet, with a translational velocity around half of that of the jet and its minor radius 355 

oscillating until viscosity dissipates angular momentum. The oscillation of the cavitation ring leads to 356 

periodic collapses and rebounds, which emit high pressure pulses. These pressure pulses are used by 357 

the shrimp for communication, as a defence mechanism, to stun, or kill the shrimp's prey. 358 

Considering all the aforementioned observations, similarities and differences of the flow produced 359 

by a simplified and an actual pistol shrimp claw may be summarised. First of all, from the results it is 360 

clear that, as the claw plunger moves inside the socket, the displaced liquid forms a high velocity jet, 361 

which in turn induces vortex ring roll-up. The shape of the vortex ring will affect the shape of 362 

cavitation in the vortex core. While in the simulation the vortex ring is rectangular, due to the square 363 

shape of the plunger-socket opening, in reality the shrimp's claw opening is a smooth curve leading to 364 

a more circular vortex ring. In the simulation, cavitation at the wake of the plunger was observed. In 365 

reality, the streamlined shape of the claw means that flow detachment is limited, thus there is very 366 

little cavitation, if any. Moreover, whereas in simulation the socket was fixed in place, in actual pistol 367 

shrimp claws both plunger and socket move at opposite directions, offsetting somewhat the jet 368 



deviation introduced by the plunger wake. Despite these differences, quantitative characteristics of 369 

claw operation have been reproduced. In particular, the maximum plunger angular closure speed in 370 

the simulation was 7000rad/s, whereas actual claws
10

 close at comparable speeds of 3500rad/s. 371 

Plunger closure results to water jet speed of 28-31m/s predicted by the simulation, whereas 372 

measurements
10

 in real claws indicate jet velocities of 25-32m/s. The pressure drop predicted by the 373 

intense swirling motion of the liquid is very similar to the one imposed as fitting parameter by 374 

Versluis et al. 
10

 (simulation ~2
.
10

5
Pa, reference 2.2

.
10

5
). Moreover, the peak pressure measured from 375 

the bubble collapse is comparable to the one found from the present study, see P. Krehl
1
, and the 376 

pressure signature is very similar to that measured by  Versluis et al.
10

. It is also highlighted here, that 377 

effects found in the simulations may be confirmed by early investigations of other researchers, 378 

working on similar simplified claw models under cavitating conditions, see the work of Eliasson et al. 379 
38,39

. To be more specific, the downwards deflection of the jet and the cavitation ring, the formation of 380 

cavitation at the wake of the plunger and the formation of cavitation inside the plunger/socket cavity 381 

are clearly shown in high speed videos
38,40

, providing additional validation of the presented results.  382 

 383 

Methods 384 

The numerical methodology used in the present work is discussed in detail in the supplementary 385 

material, but will be described here briefly. The plunger motion is imposed using an Immersed 386 

Boundary (IB) technique 
41-43

. The advantage of this technique is that the computational domain 387 

remains unchanged throughout the whole simulation time, thus greatly simplifying geometry 388 

manipulation, especially in cases of small gaps or contact regions. Cavitation is modelled using the 389 

Homogenous Equilibrium Assumption 
15,44-46

, thus pressure and density are directly linked through an 390 

Equation of State (EoS) describing the phase change process. This assumption is justified based on 391 

cavitation tunnel experiments 
47

.  392 

The geometry used for the simulations is based on prior experimental studies 
5
. Experiments were 393 

based on the claw morphology of a typical specimen of snapping shrimp, A. bellulus.  The 394 

morphology of the claw was obtained in a computerized form using X-ray micro-Computed 395 

Tomography (μ-CT) scanning, at fully closed and open positions. A two dimensional slice was 396 

extracted along the midplane of the claw geometry, obtaining the mean profile of plunger and socket 397 

geometry. This two dimensional slice was extruded in the 3rd direction, to obtain a simplified model 398 

of the shrimp claw. Additionally, scale similarity was exploited to manufacture an enlarged scale 399 

model of the claw (scale 70:1), which has been used for experimental studies, involving flow 400 

visualization and Particle Image Velocimetry. In the scope of the present study, two types of 401 

simulations have been performed. One simulation involved the 'enlarged model' geometry that was 402 

used in previous experiments, at the same conditions (e.g. plunger closure profile). The aim of this 403 

simulation was to validate the numerical framework and detailed results are presented in the 404 

supplementary material. The second set of simulations involved parametric studies of the 'real size' 405 

geometry, based on the dimensions of the actual snapping shrimp claw. Results of the second set of 406 

simulations are presented in this paper, since they involve cavitation related effects which are the 407 

focus of the study.  408 

As shown in Figure 10a, the experimental geometry has many construction features, such as holes 409 

for spring attachments, hinge shaft etc. Such features are not necessary for the simulation, since the 410 

area of interest is in the flow channel between plunger and socket. Thus, such features have been 411 

removed (Figure 10b). Moreover, the fillet of the geometry has been removed (Figure 10c), for 412 

simplifying the triangulation of the plunger surface, which is needed for preparing the marker point 413 

set (see supplementary material 1). The plunger initially is positioned at 73
o
 from the fully closed 414 

configuration.  415 

 416 



 417 
Figure 10. Left to right: (a) original geometry, used for enlarged scale experiments, (b) simplified geometry (hole and small 418 
features removed) and (c) final geometry (fillets removed). In (c) the wireframe of the socket is shown, providing a view to 419 

the inner geometry of the socket. 420 
 421 

The simplified pistol shrimp claw dimensions, jet velocity and Reynolds number are outlined in 422 

Table 1.  423 

Table 1. Characteristics of the real size and enlarged models examined
5
. 424 

 
Experiment - 'enlarged model' 'Real size' 

Geometry - L 

(socket length scale) 
0.1 m 1.41 mm 

Liquid dynamic 

viscosity - μ 
5 mPa.s 1 mPa.s 

Density - ρ 998.2 kg/m
3
 998.2 kg/m

3
 

Closure time - tclosure 0.5 s 0.5 ms 

Indicative Velocity - u ~ 1 m/s ~ 17 m/s 

Reynolds number - ReL ~ 20000 ~ 20000 

 425 

The Reynolds number may be defined based on the socket length scale, L, as in the experiment 
5
 for 426 

consistency: 427 

 





Lu
LRe  (3)  428 

It is highlighted though, that the velocities reported in Table 1 occur in the neck region of the formed 429 

nozzle, as the claw closes. Thus, one could define the Reynolds number, based on the jet diameter, D, 430 

which is comparable to the nozzle neck, i.e. ~1cm for the 'enlarged model' or ~ 0.14  mm for the 'real 431 

size' model, as: 432 

 





jet

D

Du
Re  (4)  433 

Based on the nozzle dimensions, the jet Reynolds number is ReD ~2000 for both 'real size' and 434 

'enlarged model' cases. The maximum jet Reynolds number of the parametric cases examined is 435 

~4000, thus the developed flow is laminar or at the borderline to transitional, consequently an explicit 436 

turbulence model was not used.     437 

 438 
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