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2.1 Motivation, literature review and research question . . . . . . . . . . 64
2.2 General utility-based pricing theory . . . . . . . . . . . . . . . . . . . 69
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Abstract

This thesis is divided into three chapters, each dealing with a different aspect of mar-
ket incompleteness and its consequences on quadratic hedging strategies and hedging
errors.

The first chapter studies the effects of market incompleteness due to discrete time
trading. We derive the asymptotics (in trading frequency) of the quadratic hedging
error of a digital option and obtain a correction to the classical granularity formula,
showing that for discontinuous payoffs, the second order term driven by the Cash
Gamma remains highly significant. We also show that the discrete-time quadratic
hedging strategy generates the same asymptotic error as a continuous-time Black-
Scholes delta-hedging strategy used on a discrete set of times.

The second chapter studies the effects of market incompleteness due to jumps in
cases when the discretization error from Chapter 1 is predictable. We compute the
hedging error under an exponential Lévy model for a general ’Lévy contract’ that
encompasses log contracts, variance swaps and higher order moment swaps. We com-
pare two utility-based pricing approaches for incomplete markets: quadratic hedging
(corresponding to quadratic utility) and exponential utility. We show that for small
jumps, numerically difficult exponential utility results are well-estimated via closed-
form quadratic hedging formulas. We use our results on hedging errors to obtain
’good-deal bounds’ for variance and skewness swaps.

The third chapter studies the effects of market incompleteness due to uncertainty
in the exact specification of the data generating process. We conduct quadratic
hedging under a regime-switching Lévy model, which switches between a finite set of
distributions based on the value of a (hidden) state variable. We solve the quadratic
hedging problem in two steps. First we compute a stochastic differential equation
for the filtered estimate of the hidden state. We then use it to solve the quadratic
hedging problem with this additional observable variable via classic techniques. We
provide Fourier Transform formulas for the mean-value process and hedging strategy,
and a recursive scheme for the hedging error.
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Introduction - an overview of

contributions

This thesis is divided into three main chapters, each dealing with a different aspect

of market incompleteness and its consequences on variance-optimal prices, hedging

strategies and hedging errors.

Chapter 1

The first chapter is a study of the effects of market incompleteness due to discrete

time hedging. We specifically investigate the asymptotics of the hedging error of

a digital option as we rebalance our hedging position more frequently. Building

on the results of Bertsimas et al. [2000] for vanilla options and Gobet and Temam

[2001a] for digital options, we show that when the underlying is a martingale and

we consider a digital option, the variance-optimal hedging strategy, designed under a

discrete time incomplete market setting, generates the same asymptotic hedging error

as that of a continuous-time Black-Scholes ∆-hedging strategy used on a discrete set

of times. This brings into relation the discrete-time quadratic hedging error and the

“tracking error” of following a continuous-time strategy on a discrete set of trading

dates. We develop a more precise, second-order formula to compute the hedging error

asymptotics. We show that this second order term, usually ignored in the literature, is

a modified variant of the term obtained by Bertsimas et al. [2000] for vanilla options,

with an additional compensating for the explosive, divergent nature of the Cash

Gamma of a digital option at maturity. We show that the Cash Gamma remains

the main driver for the hedging error of a digital option even though it does not

appear in the first order asymptotic term as derived by Gobet and Temam [2001a],

by showing that for sensible, realistic numerical values for parameters in the model,

the second-order approximation of the hedging error of a digital option is significantly
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more precise than the first-order approximation.

Chapter 2

The second chapter builds on the ideas of the first chapter by considering a contract for

which the Cash Gamma, and hence the discretization error, is completely predictable.

This is the case of the log contract, which serves as a building block for variance

swaps. Since the discretization error for such contracts is no longer stochastic, we

focus on investigating what additional sources of market incompleteness may impact

these contracts. Specifically, we look at the impact of market incompleteness due to

jumps in stock returns on the log contract and variance swap. We introduce jump

risk into our model via exponential Lévy processes and compute the price, hedging

strategy and hedging error for a new, generic type of contract, which we label the

’Lévy contract’ - this encompasses log contracts, variance swaps and higher order

moment swaps. This adds to the literature on pricing variance swaps with jumps by

not only computing prices, but also hedging strategies and hedging errors. We use

an incomplete-market utility maximization approach to calculate these quantities.

We consider and compare two utility functions to measure gain and loss: on the one

hand, mean-variance preferences; on the other hand, exponential utility. We show

that the former is equivalent to solving the variance-optimal hedging problem, and

we use quadratic hedging quantities introduced in Chapter 1 to express prices, hedging

strategies and hedging errors for the ’Lévy contract’. We also show that the latter

essentially leads to calculating an exponential compensator, which we can explicitly

calculate using well-established results when the payoff of the derivative is given by

the realisation of a Lévy process.

We connect results on indifference pricing with our results on hedging errors to find

economically sensible price ranges (so-called ’good-deal bounds’) for variance and

skewness swaps. In addition to this being a new result, these bounds are also tighter

than the no-arbitrage bounds typically derived in the literature. We show that asymp-

totically, as jumps in our driving Lévy process become small and the skew and kur-

tosis decay to zero, exponential utility pricing results (which can only be obtained

implicitly) are well-estimated via simple closed-form formulas from variance-optimal

hedging, using the first four moments of the returns distribution given by the model.

We find that variance swap prices should contain an adjustment for the skewness of

returns, whereas skewness swaps should contain an adjustment for the kurtosis of

returns. We find that the width of price bounds on variance swaps and skewness
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swaps is driven by moments of up to the 4th order and 6th order respectively.

Chapter 3

The third chapter is motivated by the results of the second chapter, which strongly

depend on knowledge of the moments of the distribution of our returns. Therefore,

chapter 3 focuses on how pricing and hedging is further impacted if we introduce

uncertainty into the knowledge of the exact specifications of the “true” underlying

model generating returns. In contrast to Chapter 2, which assumes a fixed model

constant in time and relies on this fact to provide results, in the third chapter we

conduct variance-optimal hedging when our returns are driven by a regime-switching

Lévy process, allowing the returns distribution to switch between a finite set of dis-

tributions, based on the value of a state variable controlling the current regime. We

also make this regime state variable unobservable (putting this model into the cate-

gory of models often referred to as Hidden Markov Models), requiring us to filter out

an estimate of the current state based on observed returns. We solve the variance-

optimal hedging problem in a martingale setting in two steps: first, we derive an

explicit stochastic differential equation for the filtered estimate of the true regime

driving returns, extending and clarifying results from Ceci and Colaneri [2012]. Hav-

ing obtained a stochastic dynamics for the filtered estimate, we proceed to solve the

variance-optimal hedging problem via classic techniques with an additional observable

state variable (the filtered estimate). We provide Fourier Transform-based formulas

for the mean-value process and hedging strategy, and a recursive scheme to compute

the expected hedging error. To the best of our knowledge, no-one has previously

calculated the hedging error in such a model. We implement our theoretical results

numerically and illustrate the difference between the regime-switching model and a

simple weighted average of models. We run Monte Carlo simulations to verify the

significance of the impact of the regime-switching hedging strategy as opposed to

simpler approaches. Finally, we show how the Hidden Markov Model degenerates

into multiple simpler models, and we compare it against these less complex models.
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Chapter 1

On the hedging error asymptotics

of a digital option

1.1 Hedging errors - motivation and literature re-

view

The discovery of no-arbitrage option pricing (Black and Scholes [1973]) and the con-

cept of replication of derivatives via their underlying assets (Merton [1973]) has led

to a revolution in the world of finance. The notional value of all the outstanding

derivatives now overshadows the value of the underlying assets several times over.

The use of derivative contracts permeates the financial world in many ways, affecting

businesses and governments alike: airlines fix their costs by buying jet fuel futures,

farmers ensure a steady price for their wheat harvest by selling wheat futures, oil-rich

states buy put options on oil to ensure a floor on annual revenues, pension funds

buy interest-rate swaps to cover their ongoing future liabilities. They are only able

to do so, however, because there are counter-parties confident they can manage the

risk in these derivative contracts, either because they believe they can foresee market

activity and want exposure to the asset class (e.g. hedge funds or pension funds),

or because they feel confident they can manage their risk properly by trading in the

underlying asset to replicate the final payoff. Therefore it is of utmost importance

that we understand what risks this concept entails when deployed in practice.

As presented in Merton [1973], the theory of replication includes several assumptions
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which can never be satisfied in reality: no transaction costs, continuous trading, the

ability to borrow infinite amounts of cash, an agent whose trading does not influence

stock prices, lognormally distributed returns. This brings great doubt as to whether

the practices it encourages are truly safe. Therefore people have been researching the

problems that arise in practice when these assumptions are broken.

In this first chapter, we will focus on the assumption of continuous trading (as in

practice continuous trading is infeasible, not least due to the transaction costs in-

volved). We will break the assumption and consider a discretely hedged contingent

claim. We will analyze the expected hedging errors we obtain for vanilla and digital

options if we follow a hedging strategy optimal in discrete time. We will be partic-

ularly interested in the asymptotic behaviour of these errors for the case of digital

options as we increase the frequency of rebalancing, since in this case the order of

convergence of the error changes as we approach maturity. Our ultimate goal is to

extend the existing formulas in the literature for the asymptotics, showing that not

only the first order, but also the second order asymptotic term is significant. We will

also compare these asymptotics to those of a hedging strategy optimal in continuous

time but applied at a discrete set of times.

This chapter is organized as follows: in the first section, we will discuss the evolution of

the concept of contract replication and hedging. We will review the standard Black-

Scholes-Merton approach and then introduce the concept of mean-variance (a.k.a.

variance-optimal or quadratic) hedging, a more versatile hedging strategy optimal

either in discrete or continuous time in terms of minimizing hedging errors in the L2

sense and applicable to a general semimartingale underlying. In regard to it we also

introduce the related locally optimal risk-minimizing hedging strategy, which mini-

mizes hedging error in the L2 sense over a single (potentially infinitesimal) timestep.

We will then review the literature that has analyzed the so-called “tracking error”

- the error made when using a continuous-time trading strategy on a discrete set of

times; we will focus in particular on the literature analyzing the asymptotic behaviour

of these errors. In the second section, we will perform our own heuristic analysis of

the variance-optimal strategy and its hedging errors to gain intuition into how these

errors evolve asymptotically for derivatives with regular and discontinuous payoffs,

showing that their asymptotic behaviour differs only near maturity. We will perform

this analysis on the examples of a standard call option and a digital call option. In

the third chapter, we will investigate how the asymptotic hedging error of a digital

option evolves over time and we will show how the rate of decay of error changes as
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the value of our derivative approaches maturity; we will contrast our results with the

standard results for a vanilla call option and show that the change is caused by the

explosive behaviour of the Cash Gamma of a digital option at maturity. In the fourth

section, we will show how this all relates back to the tracking error of a Black-Scholes

strategy and to previously known results.

1.1.1 The evolution of hedging

The stock market has been around for centuries, and derivative securities have been

around at least since the 17th century (see Schaede [1989]). Some may argue deriva-

tives appeared even as early as ancient Greece, where, according to an account from

Aristotle [1999, Book 1, section 1259a], the famous Thales of Miletus entered a

forward-type agreement on olive oil presses. Traders who operated in these early

markets usually used heuristic “rules of thumb” to protect their open positions and

make profits, these rules coming from years of experience. Only in the 20th century

did more scientific approaches to handling risk in the markets appear. The idea of

securing arbitrage profits by hedging positions in a derivative contract, specifically

an option, by buying/selling a specific proportion of the underlying stock, was first

publicly presented in Thorp and Kassouf [1967]. In this system, the seller of an op-

tion would go on to buy a particular quantity of stocks to ensure that no matter

which direction the market moved, the total portfolio value would remain constant,

with losses in options being replaced by gains in the stock and vice versa. This was

inspired by the work in Samuelson [1965], where a rational price for an option was

derived, which in turn used the much older result in Bachelier [1900] of modeling

stock prices as what would later be named by Norbert Wiener as Brownian motion.

1.1.1.1 Black-Scholes-Merton ∆-hedging

Despite this early research, it was only the papers Black and Scholes [1973] and

Merton [1973] that managed to bring about an explosion of activity in the derivatives

market. Black and Scholes [1973] provided a closed-form solution for the no-arbitrage

price of a vanilla call option, and Merton [1973] mathematically formalized the idea

of option pricing via a replicating portfolio, using the tools provided by stochastic

calculus, which had progressed significantly since the time of Bachelier [1900]. The

fundamental idea of replication is similar to that presented in Thorp and Kassouf
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[1967]: by trading options and stocks in particular proportions you can make a risk-

less profit, i.e. get the return of a risk-free investment such as a money market

account. Conversely, you can trade stocks and hold the remaining cash in a money

market account in such proportions that you end up with the same payoff as you

would obtain with an option, for any possible stock price in the future. Therefore,

a trader in a bank who sells an option to a client can “hedge” his open position by

trading stocks and investing in a money market account, thus reducing the riskiness of

his book and ensuring he can meet his client’s demands no matter the future scenario.

The proportion of stocks to be bought, as dictated by the Black-Scholes theory, is

referred to as the ∆-hedge. The initial cash needed to engage in this trading also

uniquely determines the price of the option: by a no-arbitrage argument, it has to

cost as much as the trading strategy does; if the price were higher (lower), one could

sell (buy) the option and follow the ∆-hedging strategy to obtain the same payoff at

a lower cost, resulting in an arbitrage profit.

These reasonably simple arguments managed to completely transform the financial

industry and led to a boom in the derivatives market. However, this system only

works for a narrow class of models with many assumptions built in, as was already

highlighted in the introduction. Some papers, such as Haug and Taleb [2011], still

recommend sticking to the simpler heuristics developed by traders in the past, as

the trader ends up relying too much on the model and forgets its differences from

reality. Nevertheless, the Black-Scholes-Merton argument remains highly popular

amongst researchers and practitioners alike, and its robustness has been thoroughly

scrutinized (see e.g. Forde [2003], Karoui et al. [1998] and references therein).

1.1.1.2 Mean-variance hedging

One of the contested assumptions of the Black-Scholes model is that of market com-

pleteness, which among other things implies that options are obsolete since they can

be perfectly replicated by trading the underlying stock and putting cash into a money

account. This is obviously false since options continue to be traded, but the fact that

∆-hedging based on the Black-Scholes model does reduce the risk of issuing an op-

tion remains true. To better understand why this holds, a new incomplete market

approach to hedging arose from Hodges and Neuberger [1989], where the option price

is given as a solution to a utility maximization problem. Though originally this ap-

proach was studied under standard utility functions used in economics and produced
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non-linear pricing rules, a new strand of literature arose from using this concept with

a “utility function” −x2 (which does not satisfy the standard Inada conditions re-

quired - see e.g. Hugonnier et al. [2005]) where at every time step, the economic

agent chooses a hedging strategy so as to maximize his utility, which he obtains from

having minimal expected squared loss at maturity from his hedged option position.

The price of the replicated claim and the optimal hedging strategy is then formally

given as the solution to the optimization problem

inf
{ϑt}t=0,1,...,T−1

E[(Gx
T (ϑ) −H)2] (1.1)

s.t. Gx
T (ϑ) = RT

f x +

T−1∑

t=0

RT−t−1
f ϑtSt(Rt+1 − Rf)

where H is the payoff of the contingent claim at expiry and Gx
T (ϑ) is the terminal value

of the gains process of the self-financing portfolio that holds ϑt stocks with returns of

{Rt+1}t=0,...,T−1, and the remainder of cash in risk-free money account with return Rf

in an attempt to replicate the claim, with initial capital x. The trading strategy ϑt

and initial capital x must satisfy technical conditions as given in Černý and Kallsen

[2009, Definition 2.2] to be admissible; importantly, ϑt must be a predictable, i.e.

Ft-measurable process. In plain terms, we logically need to decide our strategy ϑt

before we realize stock gains ∆St+1 = St+1 − St.

As the reader may notice, problem (1.1) can be seen as a sort of ordinary least squares

minimization problem with a constraint. Early work on this regression-based tech-

nique can be found in Föllmer and Schweizer [1989] and Föllmer and Sondermann

[1986] and has been generalized to a great extent over the years; most recently in

Černý and Kallsen [2007], which provides a general semimartingale framework en-

compassing both discrete and continuous time models.

The strategy ϕ(x,H) that solves problem (1.1) is usually referred to as the dynam-

ically, globally optimal strategy, or the mean-variance or variance-optimal hedge. It

is the strategy that gives an expected error with mean zero and minimal variance,

as described in Schweizer [1995], and is closely related to the classical result of one-

period mean-variance portfolio optimization as developed by Markowitz [1952]. It is

also closely related to a suboptimal strategy, the so-called locally optimal strategy, in

which the optimization for each ϑt minimizes the conditional squared hedging error

over a single time-step and is oblivious to how well the hedging strategy performed in

previous and future timesteps. It is sometimes also referred to as the risk-minimizing
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strategy. Mathematically, at each time-step, the hedging strategy ϑt is given by

solving the problem (as in Černý and Kallsen [2009, eqn. (4.1)])

min
ϑt,x

Et−1[(x + ϑt∆St − Vt)
2] s.t. VT := H. (1.2)

We use the short-hand notation Et[·] = E[·|Ft] throughout. We will refer to V as the

mean-value process, which coincides with the option payoff at maturity T . In a com-

plete market model (such as Black-Scholes), the mean-value process coincides with the

price of the option; otherwise, it has only mathematical meaning with no real-world

interpretation. If we model the underlying S as a semimartingale, the optimal initial

endowment x at time t − 1 turns out to be x = Vt−1 = EQ
t−1[Vt] = EQ

t−1[E
Q
t [Vt+1]] =

· · · = EQ
t−1[H ], where Q is the so-called variance-optimal (σ-)martingale measure. For

the special case of the discounted price process being a martingale, this measure Q

coincides with the physical measure P. We can notice that in locally optimal hedging,

we always assume that we managed to hedge perfectly the change in price between

time-steps t−1 and t(i.e. locally) and at t we compute the hedging strategy ϑt as if we

had an initial endowment equal to Vt, i.e. the value we had set out to obtain by hedg-

ing. We denote the locally optimal hedging coefficient by ξ and in Černý and Kallsen

[2009, eqn. (4.6)] it is explicitly given in discrete time as

ξt =
Covt−1(Vt,∆St)

Vart−1(∆St)
. (1.3)

We can see the hedging coefficient not only as a solution to the one-period problem

(1.2), but also as part of the so-called Föllmer-Schweizer decomposition of the payoff

H , first introduced in Föllmer and Schweizer [1990]:

H = H0 +

∫ T

0

ξt− dSt +NT ,

where H0 is some constant (in our problem it can be seen as the initial capital) and

N is a local martingale orthogonal to S under physical measure P, i.e. 〈N, S〉 = 0, or

more plainly Covt−1(∆Nt,∆St) = 0. In a discrete time setting, the integral converts

to a sum. Given this decomposition, the price of the contingent claim is computed as

Vt = EP̂
t [H ] = EP̂[H ] +

∫ t

0

ξt− dSt +Nt,

where P̂ is the so-called minimal martingale measure, which in certain situations (e.g.
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when S is continuous) coincides with the variance-optimal martingale measure Q.

The existence of a solution to the local minimization problem (1.2) is, in light of this

new perspective, equivalent to the existence of the Föllmer-Schweizer decomposition.

A sufficient condition for the existence is the assumption that stock returns are IID,

allowing the solutions to (1.2) at various time-steps to be independent of each other.

Without the IID assumption, a locally optimal strategy may or may not be well-

defined, since the distribution of returns under the physical, historical measure may

not have all the moments the theory requires. Černý and Kallsen [2009, (Example

8.9)] provides an example of such a situation. However, a globally optimal solution to

(1.1) always exists under the general conditions provided in Černý and Kallsen [2007].

If both strategies do exist and the underlying price is assumed to be continuous (i.e.

without jumps), they are closely related. In the case of IID returns their relation is

specifically given in Černý and Kallsen [2009, eqn. (4.16)] as

ϕt(x) = ξt + λ̃t(Vt−1 −Gx
t−1(ϕ(x,H))).

where λ̃t = Et−1[∆St]/Et−1[(∆St)
2]. For non-IID returns this formula slightly alters,

as the λ̃ terms have to be obtained under a different, so-called opportunity-neutral,

measure.

If we look back, we can notice that the entire exposition on mean-variance hedging did

not require us to assume a specific model for the underlying and most of the analysis

refers to a situation where the underlying is a semimartingale, which is currently the

most general setting available that is still mathematically tractable. Thus its main

strength is that it does not require either market completeness or the assumption

of log-normal returns and is therefore better suited to handle kurtosis in a stock

return distribution (see Černý [2007]). Another level of flexibility originates from

the possibility to interpret the expectation in problem (1.1) to be either under the

historical physical probability, as in e.g. Hubalek et al. [2006], or under a martingale

probability, as in e.g. Föllmer and Sondermann [1986]. Cont et al. [2007] presents a

case in support of using the martingale probability. The choice of martingale measure,

in essence, allows us to choose whether we want to calibrate our prices based on the

historical distribution of the underlying or the current prices of other derivatives in

the market. The decision as to which approach to use remains an open question.
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1.1.2 Hedging errors over time

In this section we will discuss the consequences of breaking one of the assumptions

in the Black-Scholes model that lead to market incompleteness, particularly that

of continuous trading. Instead of rebalancing our replicating portfolio continuously,

we will only rebalance at a discrete set of times. This is an error that all traders

implementing their trading strategies via replication experience. The first paper to

consider the discretization of replicating hedging strategies is Boyle and Emanuel

[1980], but the first breakthrough was in Leland [1985], where the discretization occurs

due to the introduction of transaction costs, which explode when hedging becomes

continuous. In this paper, there are the first signs that the quantity

∂2V

∂S2
S2 = ΓS2,

the so-called Cash Gamma of an option, is of particular importance to the hedging

error made. Here, V denotes the value of the contingent claim being replicated, S

denotes the underlying asset. The computations in this paper are then made more

explicit by Toft [1996], where exact formulas for hedging errors due to discretization

are derived.

There was then a growing interest in the asymptotics of the hedging error and how

exactly it decays as we increase hedging frequencies. Independently from each other,

Zhang [1999] and Bertsimas et al. [2000] derived the exact order of decay of the hedg-

ing error when following a Black-Scholes type ∆-hedging strategy with the underlying

driven by the stochastic differential equation

dS = µ(t, S)dt+ σ(t, S)dW.

Both arrived at the fact that if the payoff of the contingent claim is sufficiently

smooth, the error will decay in a particular manner. Specifically, if we consider

equidistant trading intervals of length δ on a time interval [0, T ], then Zhang [1999]

and Bertsimas et al. [2000] conclude that the total squared hedging error (in an L2

sense) ε20 = ε20(δ) = E0[(H − VT )2], will have the following form:

ε20(δ) =

(
1

2

∫ T

0

E0

[(
σ2(t, St)S

2
t Γt

)2
]

dt

)

δ + O(δ3/2) = g2δ + O(δ3/2) (1.4)

The authors in Bertsimas et al. [2000] coin a new name for the variable g: granularity,
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as it refers to how “granular” time is, i.e. how much error we experience when

assuming continuous time in a discrete time reality. However, we must stress that

the result only holds in two cases:

• The payoff of the contingent claim is 6 times continuously differentiable w.r.t.

the underlying, the driving diffusion process has coefficients µ(t, S), σ(t, S) that

are differentiable once w.r.t. to time and 3 times w.r.t. to the underlying, and

Sσ(t, S) is six times differentiable. Moreover, all of these derivatives have to be

bounded.

• The payoff of the contingent claim is continuous and piece-wise linear, all of the

differentiability and boundedness conditions above on the diffusion parameters

are satisfied and moreover, S2 ∂
ασ(t,S)
∂Sα is bounded for all 2 ≤ α ≤ 6.

Thus, the result does not hold for derivatives with discontinuous payoffs. Further-

more, the results were only derived for a standard ∆-hedging strategy. Despite all

the assumptions, the result is significant, because it has a very direct application to

trading: if the trader wants to reduce his tracking error ε0 by a half, he has to trade

four times as often, i.e. reduce his rebalancing interval δ by a factor of four.

The literature then breaks the assumption on payoff regularity and observes that

when this occurs, the first order of decay of the L2 squared error is no longer O(δ),

but O(
√
δ) and hence the granularity changes. This is observed in Temam [2001] and

Gobet and Temam [2001b] from a mathematical finance perspective. This property

was also studied from a purely mathematical perspective, as a problem of approxi-

mating a stochastic integral in L2-space in Geiss [2002], where the convergence rate

is dependent on the so-called fractional regularity of the terminal condition, i.e. the

payoff. The authors show that error decay of order O(δ) can be regained by taking

non-uniform time steps.

Further recent research in Gobet and Makhlouf [2012] shows that for both continuous

and discontinuous payoffs, replacing the ∆-hedging strategy with a ∆ − Γ-hedging

strategy reduces the total squared error but does not alter the order of convergence for

a regular call, and does not even change the total error for a digital call. The former

implies that although we are able to reduce the error introduced into hedging via the

(path-dependent) Cash Gamma term, we are never able to completely eliminate it,

i.e. hedge out all the Gamma risk.
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The literature also extends the analysis in Bertsimas et al. [2000] to more complicated

and realistic processes, from stochastic volatility models in Hayashi and Mykland

[2005], exponential Lévy models in Denkl et al. [2013] and Broden and Tankov [2011],

and general Itô processes with jumps in Tankov and Voltchkova [2009]. Broden and Tankov

[2011] and Tankov and Voltchkova [2009] analyze the order of convergence of the

tracking error in presence of jumps and show that it may depend on the finer struc-

ture of the jump measure around zero, and L2 convergence may be of a different order

than convergence in probability. Tankov and Voltchkova [2009] also shows that the

hedging error (not the squared hedging error) of a digital option is of the same order as

that of a regular call option. Combining this with the result from Gobet and Temam

[2001b], we see that the digital option has a mean error of the same order as claims

with continuously differentiable payoffs, but its variance is of a different order.

1.1.3 Connecting granularity, tracking errors of the ∆-hedge

and quadratic hedging

As we have seen in the previous section, tracking errors have been widely examined

mostly just for a Black-Scholes ∆-hedging strategy, although there are also a few

results concerning mean-variance hedging errors. Tankov and Voltchkova [2009] finds

the convergence of the mean of the error ε0 to zero for general Lévy-Itô processes

to be independent of the hedging strategy used. Denkl et al. [2013] investigates and

compares the tracking error for the ∆-hedging strategy and a mean-variance optimal

strategy. Neither of these, however, do any asymptotic analysis of ε20 for a digital

option in terms of finding the exact rate of decay of the error. The closest paper

to that issue is Broden and Tankov [2011]. However, there the focus is more on

the influence of adding jumps to any asymptotic results. Importantly, all the above

studies study the tracking error of a continuous-time strategy followed in discrete

time, instead of a strategy directly computed as optimal in discrete time.

We will now show how all three concepts introduced in the previous sections - gran-

ularity, tracking errors and quadratic hedging - relate to each other.

By Toft [1996] we know that the tracking error of a continuous-time Black-Scholes

strategy on a discrete set of trading times can be decomposed into single-step errors

between trading dates, as can its variance, and the single-step squared tracking error

14



has the form

Et[(Vt + ∆t∆St − Ct+1)
2] =

(
1

2
ΓtS

2
t Vart(Rt+1)

)2

δ

where Vt is the replicating portfolio held at time t, ∆t is the Black-Scholes hedging

strategy and Ct+1 is the theoretical continuous-time price. Summing up over all

timesteps, we get a total squared tracking error of

ε20(δ) =
T−1∑

t=0

(
1

2
ΓtS

2
t Vart(Rt+1)

)2

δ

By comparing the above to the granularity formula (1.4) one can already see where

the granularity formula originates from.

In contrast to that, we know that the squared hedging error of the locally optimal

strategy can also be decomposed into single-step errors. By Černý and Kallsen [2009,

eqns (4.5), (4.9),(4.10)] we know the total error is

E0[(VT −H)2] = (x− V0)
2 +

T−1∑

t=0

E0[ψt] (1.5)

where

ψt = Et[(Vt + ξt∆St − Vt+1)
2] (1.6)

is the one-step conditional squared hedging error when the underlying S is discounted.

Here x denotes initial capital, V the mean-value process and ξ the locally optimal

hedge.

We know, due to the way the risk-minimizing locally optimal hedging strategy is

constructed, that in discrete time it will minimize variance of the single-step hedging

error and therefore should have a total error variance lower than the tracking er-

ror variance. However, we will show numerically that asymptotically the single-step

tracking error of the Black-Scholes hedge is very close to the single-step conditional

hedging error of the locally optimal hedging strategy, i.e.

ψt ≈
(

1

2
ΓtS

2
t Vart(Rt+1)

)2

δ

and therefore, the granularity coefficients of both strategies will be the same.
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The dynamically optimal mean-variance strategy has a “granularity” coefficient of

its own, which is necessarily smaller than the one for the Black-Scholes hedge and

the locally optimal strategy, due to it being a superior strategy by construction. The

superiority to the Black-Scholes hedge is numerically demonstrated for exponential

Lévy processes in Denkl et al. [2013]. Further, when the locally optimal hedge exists,

whether under the IID return assumption or otherwise, the errors of the dynamic and

local mean-variance strategy are closely linked, the total unconditional squared error

of the dynamic being given as a (possibly stochastically) weighted sum of conditional

local hedging errors, as given in Černý and Kallsen [2009, eqn. 4.21]:

E0[(G
x
T (ϕ(x,H)) − VT )2] = L0(x− V0)

2 +

T∑

t=1

E0[Ltψt].

Here, Lt is the so-called opportunity process; for IID returns, it is deterministic. For

non-IID returns, the situation becomes more complicated, since Lt becomes stochas-

tic.

1.1.4 Our setup and the research question

In our analysis we will consider a locally optimal quadratic hedging strategy ξ over a

fixed time period [0, T ] and trading on a set of times t = 0, 1, ..., T −1. We consider a

market with only two assets - a risk-free and a risky one. The risk-free asset will be a

continuously compounded money market account with risk-free rate r, i.e. Ŝ0
t = ert.

To model the dynamics of the risky underlying under the physical measure P, we will

assume for simplicity that the discounted price process St := e−rtŜt is a martingale,

its evolution given by:

St = S0 exp

(

−1

2
σ2t+ σWt

)

= S0E(σWt). (1.7)

Here E(·) denotes the stochastic exponential of Dóleans-Dade. We model the dis-

counted price process as a martingale to retain elegant solutions throughout; an

explicit solution with drift can be obtained, but it leads to unnecessarily lengthy

algebra and would not provide much additional insight, since Hubalek et al. [2006]

illustrates that the drift rate does not significantly affect variance-optimal hedging

strategies and errors - therefore a simple martingale model is a good proxy for the

full model. Already in Bertsimas et al. [2000, Figure 3], we see that under a ge-
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ometric Brownian motion, the drift does not have any significant influence on the

granularity of the discrete-time hedging error when doing Black-Scholes ∆-hedging.

By Denkl et al. [2013, Lemma 3.5] we know that in our martingale setting the classic

continuous-time ∆-hedging strategy and the continuous-time locally optimal hedging

strategy coincide, which is why the afore-mentioned fact also holds for locally optimal

(risk-minimizing) hedging.

We also look only at Brownian motion as the driver of randomness and omit any jump

processes, because previous work by Tankov and Voltchkova [2009] and Broden and Tankov

[2011] already shows that including jumps does not influence the order of convergence,

although it does increase the absolute magnitude of the (squared) hedging error.

Since the dynamics are driven by a geometric Brownian motion, we are assuming

that stock returns are IID, and thus the locally optimal strategy we are considering is

well-defined. The strategy (ξt)t=0...T−1 will be Ft-measurable, where F is the natural

filtration of the Brownian motion on a probability space (Ω,F ,P). Furthermore, it is

in close relation to the dynamically optimal strategy, as we have mentioned before.

Thus, the analysis on the locally optimal strategy can be a good proxy for results on

the dynamically optimal strategy.

In the previous sections, we introduced the reader to the concepts of replication,

∆-hedging and mean-variance (or quadratic) hedging. We also discussed the recent

progress made in the analysis of the asymptotics of tracking errors when using these

continuous-time hedging strategies at discrete time intervals. Importantly, we saw

that the order of decay of the error with decreasing time intervals between trades was

dependent on the smoothness of the payoff function of the contingent claim we are

replicating, as was demonstrated in Gobet and Temam [2001b].

Not only is there a difference in decay for a claim with a discontinuous payoff, but the

standard granularity (1.4) is infinite, and hence ill-defined. On the other hand, we

know that, for some small fixed η > 0, up to time T −η before maturity, the result by

Bertsimas et al. [2000] has to hold, since the price (in a Black-Scholes setting) or the

mean-value process (in a quadratic hedging setting) is sufficiently smooth to satisfy

all the conditions required for the standard formula to work. The aim of this first

chapter is to put these two facts together and obtain a description of how hedging

errors behave for digital options over the entire time interval [0, T ]. Specifically, we

will investigate how the one-step hedging errors accumulate and by doing so derive a

more general understanding of “granularity”.
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The contribution of this chapter is two-fold. First, we will show that although the

granularity formula (1.4) is infinite for a digital call option, we can control this explo-

sive behaviour by a minor correction to the original formula. Furthermore, thanks to

our direct computational approach, it becomes clear that the granularity formula is

still highly relevant to risk management of the option position over its lifetime even

in the case of a digital call. Specifically, we will show that the worse overall order

of convergence O(
√
δ) of the total squared hedging error for a derivative with a dis-

continuity in its payoff is caused by portfolio rebalancing in the time interval nearing

maturity [T − η, T ] for some fixed η, and the order of decay over the previous life of

the derivative was the original O(δ), with granularity (1.4). Secondly, we will show

that for the martingale case, the granularity of the locally optimal quadratic hedging

error is the same as that of the Black-Scholes tracking error in the case of a digital

option.

In the following sections we will proceed as follows: in section 1.2, we will investigate

and compare the order of decay of the one-step locally optimal mean-variance hedging

error at the very last time-step for the cases of a vanilla and digital call. We will

observe various rates of decay, which establish ground for our hypothesis. In section

1.3, we will go deeper into analyzing the hedging errors of a digital option and show

that up to a cut-off time T − η, the digital option retains the same granularity as a

vanilla call. We will also show that this relation breaks down for sufficiently small η,

when the term of order O(
√
δ) will begin to dominate. This will then lead us to an

asymptotic formula for the total squared hedging error of a digital call. In section 1.4,

we will relate the results to the Black-Scholes tracking error, contrast our results with

those of Gobet and Temam [2001b] (correcting their original formula) and illustrate

the importance of the second-order term numerically.
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1.2 Convergence of errors - heuristic analysis of

last step

In this section we will perform a heuristic analysis of the behaviour of hedging errors

at the very last rebalancing date when using a locally optimal mean-variance hedging

strategy for the cases of a vanilla and digital call. We will see that the vanilla and

digital call errors behave differently for δ → 0, with the vanilla call error diminishing

to zero much faster than that of a digital call. This result will serve as motivation

to further pursue the puzzling behaviour of a digital option, since we observe that at

the final timestep, the convergence rate is of order O(
√
δ); we already know from the

literature, however, that it is of order O(δ) anywhere before this last time-step.

1.2.1 Last step error of a call option

In this section we will compute the last-step hedging error of a vanilla call. By

equation (1.3) and Černý and Kallsen [2009, eqn. (4.9)], we know that the one-step

conditional hedging error (1.6) can be written as

ψt = Vart−1(Vt) −
(

Covt−1(Vt,∆St)

Vart−1(∆St)

)2

Vart−1(∆St),

where Vt is the mean-value process at time t of the claim with payoff H at time T .

For the last time-step, t = Nδ = T , we know that the mean value process of the

vanilla call option has value VN = H = f(SN) = (SN −K)+ = (SN −K)1SN>K .

In this section, we will, for simplicity, drop index N ; any variable X that is to

be understood at time tN−1 = (N − 1)δ will be denoted X−. In this notation,

V = f(S) = (S −K)1S>K . The hedging error at the last step will be

ψ = Var−(f(S)) −
(

Cov−(f(S), S)

Var−(S)

)2

Var−(S). (1.8)

Furthermore, we will denote the stock price at time T − δ as S− = Key, where y

measures the log deviation of the stock price from the strike. The stock price at time

T will then be S = K exp
(
y − 1

2
s2 + sZ

)
, where Z ∼ N(0, 1) and s = σ

√
δ.

Finally, we introduce one more piece of notation. We will denote a standard normal
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cumulative distribution function (CDF) by Φ(·). Furthermore, We will write Φ(·, ·; ρ)

to denote a bivariate normal CDF with correlation coefficient ρ, zero mean and unit

variances. Throughout, we will use the shorthand notation

Φ(x; ρ) := Φ(x, x; ρ), Φ(x) := Φ(x, x; 1), (1.9)

and we will note that in this notation,

Φ2(x) = Φ(x, x; 0) = Φ(x; 0). (1.10)

The probability distribution function (PDF) of a standard normal variable will be

denoted as ϕ(·).

Theorem 1.1. Under the stock price model (1.7), the quadratic hedging error ψ at

time T − δ for a vanilla call option is given as

ψ = g

(
log(S−/K)

σ
√
δ

, σ
√
δ

)

where

g(z, s) :=K2

[

e2sz+s2Φ

(

z +
3s

2

)

− 2eszΦ
(

z +
s

2

)

+ Φ
(

z − s

2

)

−

e2szΦ2
(

z +
s

2

)

+ 2eszΦ
(

z +
s

2

)

Φ
(

z − s

2

)

− Φ2
(

z − s

2

)

− (1.11)

1

es2 − 1

(

esz+s2Φ

(

z +
3s

2

)

− (esz + 1)Φ
(

z +
s

2

)

+ Φ
(

z − s

2

))2
]

.

Proof.To compute the hedging error ψ explicitly, we will evaluate formula (1.8). To

do that, we need to compute 3 terms: i) Var−(S), ii) Var−(f(S)), iii) Cov−(f(S), S).

The first item is easily evaluated directly, and after some integral computations we

get that

Var−(S) = E−[(S − S−)2] = E[(Key−s2/2+sZ −Key)2]

= K2e2yE[(e−s2/2+sZ − 1)2] = K2e2y(es
2 − 1).

For the second item, we first observe that

Var−(f(S)) = E−[f 2(S)] − E2
−[f(S)] = E−[(S −K)21S>K ] − E2

−[(S −K)1S>K ].
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We now compute each of the two parts separately, using lemma A.3:

E−[(S −K)21S>K ] = E−[S21S>K ] − 2KE−[S1S>K ] +K2E−[1S>K ]

= K2

[

e2y+s2Φ

(
y

s
+

3s

2

)

− 2eyΦ
(y

s
+
s

2

)

+ Φ
(y

s
− s

2

)]

E−[(S −K)1S>K ] = E−[S1S>K] −KE−[1S>K ]

= K
[

eyΦ
(y

s
+
s

2

)

− Φ
(y

s
− s

2

)]

.

Finally, using lemma A.3 again, we evaluate the covariance:

Cov−(f(S), S) = E−[f(S)(S − S−)]

= E−[S21S>K ] − (S− +K)E−[S1S>K ] + S−KE−[1S>K]

= K2

[

e2y+s2Φ

(
y

s
+

3s

2

)

− (ey + 1)eyΦ
(y

s
+
s

2

)

+ eyΦ
(y

s
− s

2

)]

When we put all of the above together, we obtain the desired result.

We see that the hedging error is a function of s = σ
√
δ, the standard deviation of the

stock price over one time step, and z = y/s, the number of standard deviations the log

stock price is away from the log option strike (a particular scaling of log moneyness).

We can gain insight into the properties of the complicated formula (1.11) graphically.

When plotting ψ in variable z = y/(σ
√
δ), we can see what this function looks like

and how it behaves for s → 0, i.e. δ → 0 numerically, as seen in figure 1.1. We

observe that the function ψ decays to 0 as we send δ → 0. But ultimately, we want

to know the behaviour of ψ as seen from time t = 0, i.e. we wish to compute E0[ψ],

as we are evaluating the expected hedging error. In the next section we provide a

general theorem that gives us a clear list of assumptions on g(·, ·) under which we can

easily compute the expected hedging error E0[ψ] at some time close to maturity. We

are interested in times close to maturity, because as we will later show, these are the

times where the asymptotics of a digital option differ from a regular call option.

1.2.1.1 Towards computing E0[ψ] - a Taylor expansion

Here we provide a general theorem that allows us to compute E0[ψ] when ψ has the

functional form g(·, ·) we showed in the previous section.

Theorem 1.2. At fixed time t = nδ and taking a fixed η ≥ 0 s.t. T−t ≤ η (T = Nδ),

21



−3 −2 −1 0 1 2 3
0

1

2

3

4

5
x 10

−3

z

ψ
(z

)

 

 

δ = 0.5
δ = 0.4
δ = 0.3
δ = 0.2
δ = 0.1
δ = 0.0005

Figure 1.1: The diminishing error ψ for δ → 0. K = 1, σ = 0.3.

we are given a function g(z, s) that has a Taylor expansion (as given by lemma (A.4))

in the form:

g(z, s) = g(z, 0) +
∂

∂s
g(z, 0)s+

∂2

∂s2
g(z, a)s2; 0 < a < s

with derivatives uniformly bounded in z, and furthermore:

• f(z) := g(z, 0) is well defined and is an even function,

•
∫

R
z2f(z) dz <∞,

• ∂
∂s
g(z, s)|s=0 = 0,

• g(z, s) is uniformly bounded, i.e. |g(z, s)| <∞ ∀(z, s) : z ∈ R, s ∈ [0, ση]

Let yn ∼ N
(
y0 − 1

2
σ2t, σ2t

)
be a normally distributed random variable, where yn =

log Sn

K
. Then it holds that

E0

[

g

(
yn

σ
√
δ
, σ

√
δ

)]

=

∫

R

f(z) dz
1√

2πσ2T
exp

(

−1

2

(
log S0

K
− 1

2
σ2T

)2

σ2T

)

σ
√
δ

+ O(δ3/2) + O(η
√
δ).
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Proof.We are attempting to compute

E0

[

g

(
yn

σ
√
δ
, σ

√
δ

)]

=

∫

R

g

(
x

σ
√
δ
, σ

√
δ

)

p (t, x) dx

where

p(t, x) :=
1√

2πσ2t
exp

(

−1

2

(
x− y0 + 1

2
σ2t
)2

σ2t

)

.

First, we transform variables:

E0

[

g

(
yn

σ
√
δ
, σ

√
δ

)]

=

∫

R

g

(
x

σ
√
δ
, σ

√
δ

)

p (t, x) dx =

∣
∣
∣
∣
z =

x

σ
√
δ

∣
∣
∣
∣

=

∫

R

g
(

z, σ
√
δ
)

p(t, σ
√
δz) dz σ

√
δ

By Taylor expansion and the assumption ∂
∂s
g(z, s)|s=0 = 0, it holds that

g(z, σ
√
δ) = g(z, 0) +

∂2

∂s2
g(z, s)|s=aσ

2δ; 0 < a < σ
√
δ

Using the fact that g(z, 0) = f(z), the derivatives of g are bounded and the function

p(t, z) is uniformly bounded and decays to 0 as z → 0, we can substitute into the

previous equation to get:

E0

[

g

(
yn

σ
√
δ
, σ

√
δ

)]

=

∫

R

f(z)p(t, σ
√
δz) dz σ

√
δ + O(δ3/2)

Our goal now is to make the density function p(t, z) independent of the integral and

centered around T , i.e. expand the function around the point (T, 0). Taylor’s theorem

A.4 and the fact that the derivatives of density functions are bounded gives us:

p(t, σ
√
δz) = p(T, σ

√
δz) − ∂

∂t
p(t, σ

√
δz)|t=b(T − t); t < b < T

We have assumed that (T−t) ≤ η. Together with the uniform boundedness of density

functions and their derivatives, we can make a worst-case estimate of the order of the

Taylor expansion error and write

p(t, σ
√
δz) = p(T, σ

√
δz) +R(t, z),

23



where the remainder R(t, z) is uniformly bounded by a fixed Cη, i.e.

∀(t, z) : R(t, z) ≤ Cη.

Now we expand p(T, σ
√
δz) in variable z around point 0:

p(T, σ
√
δz) = p(T, 0) +

∂

∂z
p(T, 0) σ

√
δz +

1

2

∂2

∂z2
p(T, z)|z=c σ

2δz2; 0 < c < z.

Computing the derivatives, we find that

∂

∂z
p(t, z) = p(t, z)

(

−z − y0 + 1
2
σ2t

σ2t

)

,
∂2

∂z2
p(t, z) = p(t, z)

[
(z − y0 + 1

2
σ2t)2

σ4t2
− 1

σ2t

]

.

Thus for all z it holds that

p(T, σ
√
δz) = p(T, 0)

[

1 +
y0 − 1

2
σ2T

σT

√
δz

]

+
1

2
p(T, c)

[
(c− y0 + 1

2
σ2T )2

σ2T 2
− 1

T

]

δz2.

Putting it all together:

p(t, σ
√
δz) = p(T, σ

√
δz) +R(t, z)

= p(T, 0)

[

1 +
y0 − 1

2
σ2T

σT

√
δz

]

+
1

2
p(T, c)

[
(c− y0 + 1

2
σ2T )2

σ2T 2
− 1

T

]

δz2 +R(t, z)

Therefore

∫

R

f(z)p(t, σ
√
δz) dz σ

√
δ =

∫

R

f(z) dz p(T, 0)σ
√
δ +

y0 − 1
2
σ2T

T

∫

R

zf(z) dz σδ

+
1

2
p(T, c)

[
(c− y0 + 1

2
σ2T )2

σ2T 2
− 1

T

] ∫

R

z2f(z) dz σδ3/2 +

∫

R

f(z)R(t, z) dzσ
√
δ.

The integral of the remainder is easily addressed, as it holds that

∫

R

f(z)R(t, z) dz σ
√
δ ≤

∫

R

f(z) dzCησ
√
δ,

and hence the term is, in the worst possible case, of order O(
√
δη).

Next, we note that the second term vanishes, as the integral
∫

R
zf(z) dz = 0, since

we have assumed that f(z) is an even function. Finally, we have assumed that
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∫

R
z2f(z) dz <∞, which ensures that the term of order O(δ3/2) is finite.

Therefore the approximation of E0

[

g
(

yn/(σ
√
δ), σ

√
δ
)]

is given as

E0

[

g

(
yn

σ
√
δ
, σ

√
δ

)]

=

∫

R

f(z)p(t, σ
√
δz) dzσ

√
δ

=

∫

R

f(z) dz p(T, 0)σ
√
δ + O(δ3/2) + O(

√
δη).

1.2.1.2 Asymptotic expansion for vanilla call hedging error

As we showed in theorem 1.2, the functional form g(z, s) of the error ψ = g(z, s) in

terms of variable z from theorem 1.1 has a significance when computing the asymp-

totics of the hedging error near maturity in the sense that f(z) = lims→0+ g(z, s)

contributes to the multiplier on the term of order O(
√
δ). Since the functional form

g(z, s) from 1.1 satisfies all the assumptions of theorem 1.2, the time t = 0 expectation

of the one-step hedging error at terminal time T can be written in the form

E0[ψ] = C

(∫

R

f(z)dz

)

σ
√
δ + O(δ3/2),

where C is a variable independent of δ and f(z) = lim
s→0+

g(s, z). Here we note that

this formula is not dependent on time to maturity η because we apply it for η = 0.

Therefore, if f(z) ≡ 0, the integral in the formula above will be 0 and hence the

hedging error will decay at a rate O(δ3/2):

E0[ψ] = O(δ3/2)

From the numerical results depicted in figure 1.1, we would expect this will hold for

a standard call option.

In the theorem that follows, we not only find that the function (1.11) asymptotically

decays to 0 as s → 0, but we also find that it does so at a speed of the order O(s2)

(which implies a rate of O(δ) when we substitute s = σ
√
δ). It provides us with a

Taylor expansion approximation of ψ = g(z, s) in variable s = σ
√
δ.

Theorem 1.3. Under model (1.7), for the last-step mean-variance hedging error
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ψ = g
(

σ
√
δ, yn

σ
√
δ

)

of a call option it holds that

lim
s→0

s−2g(z, s) = K2
[
Φ(z) + zϕ(z) + z2Φ(z) − (ϕ(z) + zΦ(z))2

]
(1.12)

where z and s are defined as in Theorem 1.1 and ϕ(x) = 1√
2π

exp(−1
2
x2) is the prob-

ability density function of a standard normal distribution. Furthermore,

f(z) = lim
s→0+

s0g(z, s) ≡ 0.

Proof.What we ultimately want to compute is a Taylor expansion of g(z, s) in variable

s around point (z, 0) up to order O(s2). To Taylor expand g(z, s) as given by equation

(1.11), we need to use the following Taylor expansions of the building blocks:

Φ
(

z − s

2

)

= Φ(z) − s

2
ϕ(z) +

1

2
ϕ′(z)

s2

4
+ o(s2),

Φ
(

z +
s

2

)

= Φ(z) +
s

2
ϕ(z) +

1

2
ϕ′(z)

s2

4
+ o(s2),

Φ

(

z +
3s

2

)

= Φ(z) +
3s

2
ϕ(z) +

1

2
ϕ′(z)

9s2

4
+ o(s2),

es
2 − 1 = s2 + o(s2).

Indeed, we substitute these asymptotic estimates into (1.11) and after some algebraic

manipulations, we get that

g(z, s) = s2K2
[
Φ(z) + zϕ(z) + z2Φ(z) − (ϕ(z) + zΦ(z))2

]
+ o(s2),

which directly leads us to our desired results.

We verify the results of this theorem numerically, to make sure that the asymp-

totic form for g(z, s) given by (1.12) is a good approximation for the full formula

(1.11). We can see in figure 1.2 that the approximation is very exact indeed even

for reasonably large values of δ - the value δ = 0.1 corresponds to rebalancing

every 25 days (i.e. roughly monthly) when measured in years and considering a

year with 252 business days. Using the above theorem we now compute E0[ψ] =

C
(∫

R
f(z) dz

)
σ
√
δ + O(δ3/2) = 0 + O(δ3/2) = O(δ3/2), to confirm that asymptot-

ically, the hedging error at maturity as seen from time t = 0 will decay at a rate

O(δ3/2). In the next section we will see how this differs from results for a digital

option.
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Figure 1.2: Comparison of the asymptotic approximation of ψ (1.12) and full function
(1.11). K = 1, σ = 0.3, δ = 0.1.

1.2.2 Last step error of a digital option

In this section we will derive the hedging error at the last rebalancing date for a

digital option in the same spirit as we did for a vanilla call and we will point out how

it differs from that of a vanilla call option. Just as before, we want to compute (1.8),

but this time taking f(S) = 1S>K.

Theorem 1.4. Under the stock price model (1.7), the mean-variance hedging error

at time T − δ for a digital call option is given as ψ = g
(

log(S−/K)

σ
√
δ

, σ
√
δ
)

, where

g(z, s) = Φ
(

z − s

2

)

− Φ2
(

z − s

2

)

− 1

es2 − 1

(

Φ
(

z +
s

2

)

− Φ
(

z − s

2

))2

. (1.13)

Proof.Just as for the vanilla call, we need to compute Var−(S), Var−(f(S)) and

Cov−(f(S), S) by formula 1.8. Since Var−(S) is the same in both cases, we needn’t

compute it again.

To compute Var−(f(S)), we again make use of the decomposition:

Var−(f(S)) = E−[f 2(S)] − E2
−[f(S)] = E−[1S>K] − E2

−[1S>K]
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Using lemma A.3, we easily see that

Var−(1S>K) = Φ
(y

s
− s

2

)

− Φ2
(y

s
− s

2

)

The covariance term is similarly first decomposed

Cov−(f(S), S) = E−[f(S)(S − S−)] = E−[S1S>K ] −KeyE−[1S>K],

and by virtue of A.3 we again easily obtain the result

Cov−(f(S), S) = Key
(

Φ
(y

s
+
s

2

)

− Φ
(y

s
− s

2

))

.

Now we have all we need to put together the last step hedging error (1.8) for a digital

option.

We will again analyze this result numerically to get better insight. Figure 1.3 shows

us that asymptotically, as δ → 0, the total error does not decay to 0 for all values

of z, but instead converges to a function of z which is non-zero for approximately 3

standard deviations of the stock price from the strike.
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Figure 1.3: The error ψ for δ → 0. σ = 0.3.

Theorem 1.5. For the last-step mean-variance hedging error (1.13) of a digital call

option ψ = g
(

logS−/K

σ
√
δ
, σ

√
δ
)

it holds that

f(z) = lim
s→0+

s0g(z, s) = Φ(z) − Φ2(z) − ϕ2(z)
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where ϕ(x) = 1√
2π

exp(−1
2
x2) is the probability density function of a standard normal

distribution.

Proof.The proof is analogous to that of theorem 1.3. To compute the limit f(z),

we can directly take the limit in the first two terms of (1.13) and are left with the

fraction. There, we use the same Taylor expansions as in theorem 1.3 to compute

the limit of the fraction in formula (1.13) and after some algebraic manipulations we

obtain our result.

We again verify numerically that this asymptotic approximation f(z) for δ ≈ 0 is

correct and uniformly converges to the full function ψ for small δ, as seen in figure

1.4.
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Figure 1.4: Comparison of the asymptotic approximation via f(z) and full function
ψ. σ = 0.3, δ = 0.01.

We thus obtain that because f(z) 6= 0, the leading term in the asymptotic expansion

of the expectation of the terminal error is of order O(
√
δ), since

E0[ψ] = C

∫

R

f(z) dzσ
√
δ + O(δ3/2) = O(

√
δ).

Thus we obtain results in line with those from the literature on tracking errors in a

∆-hedging setup: the overall error will decay at a rate of O(
√
δ). At the same time

we stated that for most of the life of the option, however, the digital call error behaves

in the same fashion as a vanilla call. In this section, we have managed to pinpoint
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at which point the difference in convergence appears. Specifically, we have verified

that the slower convergence for a digital option is caused by rebalancing errors very

close to expiry, where the assumptions of Bertsimas et al. [2000] fail to hold and the

mean-value process loses its smoothness.
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1.3 Granularity of claims with discontinuous pay-

offs

In the previous section, we saw an analysis of the last step hedging errors of a vanilla

and digital call. We concluded that the error diminishes at a slower rate for a digital

option. In this section we will analyze the one-step hedging errors of a digital option in

more depth, looking at the error made at any rebalancing date, not just the last one.

We will investigate the sum of these errors as seen from time t = 0 and we will show

how this sum relates to granularity (1.4). We will see that although formula (1.4) does

not apply over the entire time interval [0, T ] of the duration of the contract, we can

choose a parameter η such that the formula applies over the time interval [0, T − η].

This will mean that the error decay of order O(
√
δ) found in Gobet and Temam

[2001b] is only caused by a few last rebalancing periods over period [T−η, T ]. Finally,

we will derive a correction term for the granularity formula in the case of a digital

option and show how it is connected to the overall asymptotics of the digital option.

1.3.1 Hedging error for a digital call at one time step

We will now explicitly compute the one-step quadratic hedging error within the model

given by (1.7). Let us consider an option with maturity T = Nδ, where N is the

number of (equidistant) trading dates at which we rebalance our hedged portfolio

and δ is the time interval between dates. We will denote the trading dates tn, n ∈
{0, ..., N − 1}. In our discrete time setting, we will utilize the subscript n when

referring to variables given at time tn. The mean-value process Vn = EQ
n [1S>K ] of the

binary option at any trading time tn under our simple model is easily computed. In

the martingale setting the variance-optimal measure Q coincides with the physical

measure P and by lemma A.3 we find that

Vn = Φ

(

log Sn

K
− 1

2
σ2(T − tn)

σ
√
T − tn

)

,

where Φ(·) denotes the CDF of a standard normal random variable. Using a mean-

variance strategy, we know that the one-step hedging error, as given in Černý [2007,
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eqn. (3.11)], is

ψn = Varn(Vn+1) −
(

Covn(Sn+1, Vn+1)

Varn(Sn+1)

)2

Varn(Sn+1). (1.14)

Conditionally on the value at time tn, the stock price at time tn+1 will be given as

Sn+1 = Sn exp

(

−σ
2δ

2
+ σ

√
δZn+1

)

,

where Zn+1 is a standard normally distributed random variable (Zn+1 ∼ N(0, 1)).

Similarly as in section 1.2, we will use two variable transformations to simplify nota-

tion. First, we will be interested in the log moneyness yn = log(Sn/K). Secondly, we

will abbreviate the volatility over one time-step to the variable s = σ
√
δ. In light of

this new notation, our stock is given as

yn+1 = log
Sn+1

K
= yn −

1

2
s2 + sZn+1

Finally, we will use tn = tN−k = (N − k)δ to rewrite the value of the digital option

at times tN−k:

VN−k = Φ

(
yN−k

s
√
k
− 1

2
s
√
k

)

; k ∈ {1, ..., N},

where k = N − n. We will use the abbreviated notation

dN−k :=
yN−k

s
√
k
− 1

2
s
√
k.

We remind the reader that Φ(·, ·; ρ) denotes a bivariate standard normal CDF with

correlation coefficient ρ, with shorthand notation

Φ(x; ρ) := Φ(x, x; ρ), Φ(x) := Φ(x, x; 1), Φ2(x) = Φ(x, x; 0) = Φ(x; 0).

In the next theorem,we compute the single-step hedging error ψn for any timestep tn.

Theorem 1.6. Under the stock price model (1.7), the mean-variance hedging error

ψn at time tn = nδ for a digital call option is given as

ψn = ψN−k = Φ

(

x;
1

k

)

− Φ2(x) − 1

es2 − 1

(

Φ

(

x +
s√
k

)

− Φ(x)

)2

k = 1, ..., N

(1.15)
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where

x =
yN−k

s
√
k
− 1

2
s
√
k, s = σ

√
δ

Proof.Similarly to the previous section, this requires us to use formula (1.14) and

hence evaluate three terms: i) Varn(Sn+1), ii)Varn(Vn+1) = En[V 2
n+1] − E2

n[Vn+1], iii)

Covn(Vn+1, Sn+1) = En[Vn+1(Sn+1 − Sn)].

We needn’t compute the first term again, as it is identical to the result in section 1.2,

theorem 1.1; let us recall that Varn(Sn+1) = K2 exp(2yn)(exp(s2)−1). The remaining

two items are less trivial. We know that En[Vn+1] = Vn, since the underlying (and

hence the mean-value process) is a martingale. The other expression En[V 2
n+1] =

EN−k[V 2
N−k+1] can be evaluated thanks to Toft [1996, eqn. 52]:

EN−k[V 2
N−k+1] =

∫

R

Φ2

(
x√
k − 1

+
yN−k

s
√
k − 1

− 1

2
s

k√
k − 1

)
1√
2π
e−

1

2
x2

dx

= Φ

(
yN−k

s
√
k
− 1

2
s
√
k,
yN−k

s
√
k
− 1

2
s
√
k;

1

k

)

.

The covariance term can be converted into two simpler blocks:

En[Vn+1(Sn+1 − Sn)] = Keyn
(

e−
1

2
s2En[Φ(dn+1)e

sZn+1 ] − En[Vn+1]
)

The first expectation can be evaluated thanks to Toft [1996, eqn. 49]:

En[Φ(dn+1)e
sZn+1] = EN−k[Φ(dN−k+1)e

sZN−k+1]

=

∫

R

Φ

(
x√
k − 1

+
yN−k

s
√
k − 1

− 1

2
s

k√
k − 1

)
1√
2π
e−

1

2
(x2−2sx) dx

= e
1

2
s2Φ

(
yN−k

s
√
k
− 1

2
s
√
k +

s√
k

)

The second expectation uses the martingale property as was the case before, hence

En[Vn+1] = Vn. When we plug in all the partial results into equation (1.14), we obtain

our result.

Let us notice that for k = 1, i.e. the last rebalancing n = N − 1, Φ(x; 1/k) =

Φ(x; 1) = Φ(x), i.e. the bivariate distribution will collapse to a one-dimensional

standard normal distribution and the result will convert to what we obtained in the
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previous section:

ψN−1 = Φ(x) − Φ2(x) − (Φ(x + s) − Φ(x))2

es2 − 1

In figure 1.5 we see the shape of the one-step hedging error ψn with respect to the

number of standard deviations away from the strike, i.e. zn = yn/(σ
√
δ).
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Figure 1.5: The error ψn for δ → 0. σ = 0.3, n = 5, N = 10.

1.3.1.1 Computing and analyzing E0[ψn]

Ultimately, we are interested in the total squared hedging error:

ε20 =

N−1∑

n=0

E0[ψn]. (1.16)

Because we are interested in computing (1.16), we need to know E0[ψn], not just ψn.

The random variable in ψn, as seen from time t = 0, is yn, for which we know it holds

that, unconditionally, yn ∼ N(y0 − 1
2
σ2t, σ2t).

Theorem 1.7. For a digital call with maturity T = Nδ, the expected value at time
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t = 0 of the mean-variance hedging error at time t = nδ is

E0[ψn] = Φ

(

x;
n + 1

N

)

− Φ
(

x;
n

N

)

− (1.17)

1

es2 − 1

(

Φ

(

x +
s√
N

;
n

N

)

− 2Φ

(

x+
s√
N
, x;

n

N

)

+ Φ
(

x;
n

N

))

where x = y0/(s
√
N) − 1

2
s
√
N , s = σ

√
δ.

Proof.To compute E0[ψn], we take expectations in formula (1.15) to get

E0[ψn] = E0[ψN−k]

= E0

[

Φ

(

x;
1

k

)]

− E0

[
Φ2(x)

]

− 1

es2 − 1

(

E0

[

Φ

(

x+
s√
k

)2
]

− 2E0

[

Φ(x)Φ

(

x +
s√
k

)]

+ E0

[
Φ2(x)

]

)

= A−B − 1

es2 − 1
(C − 2D +B) ,

where

x =
y0

s
√
k

+
1

2

n√
k
s+

√
n

k
Zn = aZn + b; Zn ∼ N(0, 1).

We now separately compute terms A,B,C,D. To compute them, we first use Toft

[1996, eqn. 51] to obtain that

∫

R

1√
2π

exp

(

−1

2
x2
)

Φ (ax + b; ρ) dx = Φ

(√

1

1 + a2
b;
a2 + ρ

1 + a2

)

. (1.18)

For A we use equation (1.18) with ρ = 1/k to obtain

A =

∫

R

1√
2π

exp

(

−1

2
x2
)

Φ

(

ax + b;
1

k

)

dx

= Φ

(√

1

1 + a2
b;
a2 + 1

k

1 + a2

)

= Φ

(
y0

s
√
N

− 1

2
s
√
N ;

n+ 1

N

)

.
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For B, we recall the notation (1.10), and thus we set ρ = 0 in equation (1.18) to

obtain

B =

∫

R

1√
2π

exp

(

−1

2
x2
)

Φ2 (ax+ b) dx

= Φ

(√

1

1 + a2
b;

a2

1 + a2

)

= Φ

(
y0

s
√
N

− 1

2
s
√
N ;

n

N

)

.

For C, we again set ρ = 0 in (1.18) to get

C =

∫

R

1√
2π

exp

(

−1

2
x2
)

Φ2

(

ax + b+
s√
k

)

dx

= Φ

(√

1

1 + a2

(

b+
s√
k

)

;
a2

1 + a2

)

= Φ

(
y0

s
√
N

− 1

2
s
√
N +

s√
N

;
n

N

)

.

For D we require a slightly different formula, specifically Toft [1996, eqn. 52], to

obtain that

D =

∫

R

1√
2π

exp

(

−1

2
x2
)

Φ

(

ax + b+
s√
k

)

Φ (ax + b) dx

= Φ

(√

1

1 + a2

(

b+
s√
k

)

,

√

1

1 + a2
b;

a2

1 + a2

)

= Φ

(
y0

s
√
N

− 1

2
s
√
N +

s√
N
,
y0

s
√
N

− 1

2
s
√
N ;

n

N

)

.

Thus we have managed to compute all the separate building blocks, giving us a

complete analytic formula for the one-step hedging error as seen from time t = 0.

We will now try to capture the asymptotic behaviour of this expectation. To compute

the expectation asymptotically, we will use the fact that ψn can be seen as a function

of the form ψn = gn

(

yn/(σ
√
δ), σ

√
δ
)

. As we saw in theorem 1.2, to compute asymp-

totics of the unconditional hedging error near maturity, we are interested in the form

of the function fn(z) = lims→0 gn(z, s). Let us first write the function gn(z, s) that

gives us the one-step error formula (1.15) when we give it inputs (yn/(σ
√
δ), σ

√
δ):

gn(z, s) = gN−k(z, s) = Φ

(
z√
k
− 1

2
s
√
k;

1

k

)

− Φ2

(
z√
k
− 1

2
s
√
k

)

(1.19)

−

(

Φ
(

z√
k
− 1

2
s
√
k + s√

k

)

− Φ
(

z√
k
− 1

2
s
√
k
))2

es2 − 1
.
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We now want to take the limit s→ 0 to obtain fN−k(z).

Theorem 1.8. Given the function gn(z, s) (1.19) connected to the mean-variance

hedging error ψn (1.15) at time tn = nδ of a digital call option, then

fN−k(z) = lim
s→0

s0gN−k(z, s) = Φ

(
z√
k

;
1

k

)

− Φ2

(
z√
k

)

− 1

k
ϕ2

(
z√
k

)

(1.20)

Proof.We see that the first two terms of (1.19) are not problematic and we can

directly take the limit. For the last term, the limit is of the form 0/0, thus we will

have to use asymptotic arguments to estimate its form as s → 0. Similarly as in

section 1.2, we can use a Taylor expansion of the terms around the point z/
√
k (see

Theorem A.4):

Φ

(
z√
k
− 1

2
s
√
k

)

= Φ

(
z√
k

)

− ϕ

(
z√
k

)
1

2
s
√
k +

1

2
ϕ′
(

z√
k

)
1

4
s2k +R(z)s3

Φ

(
z√
k
− 1

2
s
√
k +

s√
k

)

= Φ

(
z√
k

)

+ ϕ

(
z√
k

)(
s√
k
− 1

2
s
√
k

)

+
1

2
ϕ′
(

z√
k

)(
s√
k
− 1

2
s
√
k

)2

+R(z)s3

es
2 − 1 = s2 + o(s2).

Here R(z) is a bounded function, as it is of the form const · ∂2ϕ(z)/∂z2 and the

derivatives of a normal distribution are bounded. We see that therefore asymptotically

(

Φ
(

z√
k
− 1

2
s
√
k + s√

k

)

− Φ
(

z√
k
− 1

2
s
√
k
))2

es2 − 1

=

(
s√
k
ϕ
(

z√
k

)

+ o(s2)
)2

s2 + o(s2)
=

1

k
ϕ2

(
z√
k

)

+ o(s2).

We can also compute the asymptotics of the first two terms to see the complete

37



asymptotics of gN−k(z, s) in s:

Φ

(
z√
k
− 1

2
s
√
k;

1

k

)

= Φ

(
z√
k

;
1

k

)

− s
√
k

∫ z√
k

−∞
ϕ

(

x,
z√
k

;
1

k

)

dx

+
1

4
s2k

[

ϕ

(
z√
k
,
z√
k

;
1

k

)

− 1

1 − (1/k)2

∫ z√
k

−∞

(
z√
k
− x

k

)

ϕ

(

x,
z√
k

;
1

k

)

dx

]

+ o(s2)

Φ2

(
z√
k
− 1

2
s
√
k

)

= Φ2

(
z√
k

)

− s
√
kΦ

(
z√
k

)

ϕ

(
z√
k

)

+
1

4
s2k

[

ϕ2

(
z√
k

)

− 1

2
zϕ

(
z√
k

)

Φ

(
z√
k

)]

+ o(s2)

Therefore we get that

gN−k(z, s) = Φ

(
z√
k

;
1

k

)

− Φ2

(
z√
k

)

− 1

k
ϕ2

(
z√
k

)

+ s
√
k

(

Φ

(
z√
k

)

ϕ

(
z√
k

)

−
∫ z√

k

−∞
ϕ

(

x,
z√
k

;
1

k

)

dx

)

+ s2
k

4

(

ϕ

(
z√
k
,
z√
k

;
1

k

)

− ϕ2

(
z√
k

))

+ s2
k

4

(

1

2
zϕ

(
z√
k

)

Φ

(
z√
k

)

− 1

1 − (1/k)2

∫ z√
k

−∞

(
z√
k
− x

k

)

ϕ

(

x,
z√
k

;
1

k

)

dx

)

+ o(s2).

and the asymptotic approximation of the curve in figure 1.5 for s → 0, i.e. fN−k(z),

is

fN−k(z) = Φ

(
z√
k

;
1

k

)

− Φ2

(
z√
k

)

− 1

k
ϕ2

(
z√
k

)

.

In figure 1.6 we verify whether our asymptotic function fn(z) is a good approximation

of the full function ψn = gn

(

yn/(σ
√
δ), σ

√
δ
)

; we see that the approximation is very

close to the full analytic expression as we take δ → 0.

Now that we have the function fN−k(z), we can use it to compute the expectation

E0[ψN−k] near maturity; as was shown in theorem 1.2, the expectation can, for small
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Figure 1.6: Comparison of the asymptotic approximation of ψn and full function.
σ = 0.3, δ = 0.0001, n = 5, N = 10.

values of k, be asymptotically approximated as

E0[ψN−k] =

∫

R

fN−k(z) dz
1√

2πσ2T
exp

(

−1

2

(
log S0

K
− 1

2
σ2T

)2

σ2T

)

σ
√
δ+O(δ3/2)+O(

√
δη).

We see that the unconditional one-step hedging error, up to order O(
√
δ), is a prod-

uct of the total volume under the curve from figure 1.5 given by the integral term
∫

R
fN−k(z) dz, the unconditional transitional density of the strike at time T as seen

from time t = 0, and the standard deviation of returns over one time-step.

Therefore, to complete our asymptotic computation of E0[ψn] at some time step near

maturity on the interval [T − η, T ], we need to integrate over fN−k(z). In the next

theorem,we compute the asymptotic hedging error when we evaluate that integral

over fN−k(z).

Theorem 1.9. Given a fixed η > 0, the expected value of the hedging error ψn of a

digital call with maturity T = Nδ at a time tn = nδ s.t.T − tn ≤ η is asymptotically
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given as

E0[ψN−k] =

[
√
k

(

2

2
√
π

(

1 −
√

1 − 1

k

))

− 1√
k

1

2
√
π

]

(1.21)

× 1√
2πσ2T

exp

(

−1

2

(
log S0

K
− 1

2
σ2T

)2

σ2T

)

σ
√
δ + O(δ3/2) + O(

√
δη)

=

[
1√
π

(
√
k −

√
k − 1) − 1

2
√
π

1√
k

]

× 1√
2πσ2T

exp

(

−1

2

(
log S0

K
− 1

2
σ2T

)2

σ2T

)

σ
√
δ + O(δ3/2) + O(

√
δη).

Proof.First we prove we can use theorem 1.2 with a digital call option; we recall that

the function fn(z) is given as

fn(z) = fN−k(z) = Φ

(
z√
k

;
1

k

)

− Φ2

(
z√
k

)

− 1

k
ϕ2

(
z√
k

)

.

We know that ϕ2(x) is an even function, thus we have to show that a function of the

form Φ(x; ρ) − Φ2(x) is even, i.e.

Φ(x; ρ) − Φ2(x) = Φ(−x; ρ) − Φ2(−x),

or rearranged,

Φ(x; ρ) − Φ(−x; ρ) = Φ2(x) − Φ2(−x) = Φ2(x) − (1 − Φ(x))2 (1.22)

= 2Φ(x) − 1.

But by Abramowitz and Stegun [1972, eqn. 26.3.9.], we know that relation (1.22)

holds, which means that f(z) is truly an even function. It is trivial to verify that the

conditions on gn(z, s) hold, and so we can use theorem 1.2.

By that theorem, we now need to compute
∫

R
fn(z) dz, i.e. we need to compute the
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integral

∫

R

(

Φ

(
z√
k

;
1

k

)

− Φ2

(
z√
k

)

− 1

k
ϕ2

(
z√
k

))

dz

=
√
k

∫

R

Φ

(

y;
1

k

)

− Φ(y; 0) dy − 1√
k

∫

R

ϕ2(y) dy

=
√
k

(∫ 0

−∞
Φ

(

y;
1

k

)

− Φ(y; 0) dy +

∫ ∞

0

Φ

(

y;
1

k

)

− Φ(y; 0) dy

)

− 1√
k

∫

R

ϕ2(y) dy.

Using lemma A.2 we know that

∫ 0

−∞
Φ (y; ρ) − Φ(y; 0) dy =

√
2
π

(

1
2
−

√
2(1−ρ)

4
−
(

1
2
−

√
2
4

))

=
√

2
π

(√
2
4

(

1 −
√

(1 − ρ)
))

.

In our case, ρ = 1
k

and the result simplifies to 1
2
√
π

(

1 −
√

1 − 1
k

)

. The integral over

the positive half-line can be computed by using the fact that

∫ ∞

0

Φ(y; ρ) − Φ(y; 0) dy =

∫ ∞

0

(1 − Φ(y; 0)) − (1 − Φ(y; ρ)) dy,

and observing that Lemma A.1 gives us its value in terms of an integral over the

negative half-line, for which we can again use Lemma A.2. It turns out that the

integral over the positive half-line has the same value as that over the negative half-

line. The last integral
∫

R
ϕ2(y) dy can easily be computed directly and equals to

1/(2
√
π). Putting results together and using Theorem 1.2, we get the desired result.

1.3.2 Computing Cash Gamma squared for a digital call

In this section we will aim to compute the expectation of the Cash Gamma squared
(

∂2V
∂S2 S

2
)2

= (ΓS2)2 of a digital call and compare it to the results in the previous

section, since by the hypothesis in Černý [2009, eqn. 13.78], the Cash Gamma squared

and the locally optimal hedging error should be closely related:

ψt =

(
1

2
ΓtS

2
t σ

2δ

)2

(Kurtt(Rt+1) − 1) + O(δ5/2). (1.23)
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Here Kurtt(Rt+1) is the kurtosis of returns on the stocks (in our case, Kurtt(Rt+1) = 3)

and σ2δ is the instantaneous variance of returns. Let us remind ourselves that the

value of the digital call option at time t and with expiry date T is

Vt = Φ

(

log St

K
− 1

2
σ2(T − t)

σ
√
T − t

)

,

or abbreviated,

Vt = Φ(d); d =
log St

K
− 1

2
σ2(T − t)

σ
√
T − t

. (1.24)

The Delta of the digital option is

∆ = ϕ (d)
1

Sσ
√
T − t

,

where ϕ(x) = ∂Φ(x)/∂x, and hence the Gamma is

Γ =
−1

S2σ
√
T − t

ϕ(d)

(

1 +
d

σ
√
T − t

)

The Cash Gamma squared is then given by the formula

(
ΓS2

)2
=

ϕ2(d)

σ2(T − t)

(

1 +
d

σ
√
T − t

)2

, (1.25)

or in a more extended form:

(
ΓS2

)2
=

ϕ2(d)

(σ2(T − t))3

((

log
S

K

)2

+ σ2(T − t) log
S

K
+

1

4
σ4(T − t)2

)

. (1.26)

In figure 1.7 we can see that the estimate from (1.23) for ψn using the explicit formula

(1.25) coincides nicely with the one-step hedging error as computed in (1.15).

1.3.2.1 Towards granularity - computing expectations of the Cash Gamma

squared

As we saw in equation (1.4), to compute the granularity (as defined by Bertsimas et al.

[2000]) of the digital call option, we first have to compute

E0

[(
ΓtS

2
t

)2
]

.
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Figure 1.7: Comparison of the approximation of ψn(z) via Cash Gamma squared
formula (1.23) and the full function ψn. σ = 0.3, δ = 1/360, n = 300, N = 360.
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s
.

In the next theorem, we provide such a result.

Theorem 1.10. Under the stock price model (1.7), it holds that for t < T :

E0[(ΓS
2)2] =

1

(σ2(T − t))3

[

E0[ϕ
2(d)]

(
1

2
σ2(T − t) +

(

y0 −
σ2t

2

))2

(1.27)

+ E0[ϕ
2(d)Zn]

(

2

(

y0 −
σ2t

2

)

σ
√
t+ σ2(T − t)σ

√
t

)

+ E0[ϕ
2(d)Z2

n]σ2t

]

.

where

E0[ϕ
2(d)] =

1

2π

√

T − t

T + t
exp

(

−(y0 − 1
2
σ2T )2

σ2(T + t)

)

E0[Znϕ
2(d)] = −

√
t

π

√

T − t

T + t

y0 − 1
2
σ2T

σ(T + t)
exp

(

−(y0 − 1
2
σ2T )2

σ2(T + t)

)

E0[Z
2
nϕ

2(d)] =

(
T − t

T + t

)3/2
1

2π

(

1 +
4t(y0 − 1

2
σ2T )2

σ2(T + t)(T − t)

)

exp

(

−(y0 − 1
2
σ2T )2

σ2(T + t)

)

.

Furthermore, it holds that E0[(ΓtS
2
t )2] = O((T − t)−3/2).
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Proof.To compute the expectations of Cash Gamma squared, we first recall that

under our model (1.7) we have for yn = log(Sn/K) that:

yn = log
Sn

K
= y0 −

1

2
σ2t + σ

√
tZn;Zn ∼ N(0, 1).

If we plug the above into equation (1.26) for the Cash Gamma squared and take

expectations, we get (1.27). We can see that we will have to compute three expec-

tations: E0[ϕ
2(d)], E0[ϕ

2(d)Zn] and E0[ϕ
2(d)Z2

n], where d is defined in (1.24) (the

remainder of the terms are deterministic and can be taken out of the expectations).

To compute the expectations, we will first note that in general

ϕ2(x) =
1√
2π
ϕ(

√
2x).

We see that the expectations we are computing are a particular example of the general

formulas E[ϕ(aZ + b)],E[Zϕ(aZ + b)],E[Z2ϕ(aZ + b)];Z ∼ N(0, 1), with specific

parameters a, b. Therefore, let us evaluate the general formulas and then plug in our

parameters a, b. We evaluate the first expression:

E[ϕ(aZ + b)] =

∫

R

1√
2π

exp

(

−1

2
(ax + b)2

)
1√
2π

exp

(

−x
2

2

)

dx

=

∫

R

1

2π
exp

(

−1

2

(
(1 + a2)x2 + 2abx + b2

)
)

dx = |
√

1 + a2x = z|

=
1

2π

1√
1 + a2

∫

R

exp

(

−1

2

(

z2 +
2ab√
1 + a2

z + b2
))

dz

=
1

2π

1√
1 + a2

exp

(
a2b2

2(1 + a2)
− b2

2

)∫

R

exp

(

−1

2

(

z +
ab√

1 + a2

)2
)

dz

=
1

√

2π(1 + a2)
exp

(

− b2

2(1 + a2)

)

.
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The remaining two expressions are evaluated in a similar fashion:

E[Zϕ(aZ + b)] =

∫

R

1

2π
x exp

(

−1

2

(
(1 + a2)x2 + 2abx + b2

)
)

dx = |
√

1 + a2x = z|

=
1

2π

1

1 + a2

∫

R

z exp

(

−1

2

(

z2 +
2ab√
1 + a2

z + b2
))

dz

=
1

2π(1 + a2)
exp

(

− b2

2(1 + a2)

)∫

R

z exp

(

−1

2

(

z +
ab√

1 + a2

)2
)

dz

=
1√

2π(1 + a2)
exp

(

− b2

2(1 + a2)

) −ab√
1 + a2

E[Z2ϕ(aZ + b)] =

∫

R

1

2π
x2 exp

(

−1

2

(
(1 + a2)x2 + 2abx + b2

)
)

dx = |
√

1 + a2x = z|

=
1

2π(1 + a2)3/2
exp

(

− b2

2(1 + a2)

)∫

R

z2 exp

(

−1

2

(

z +
ab√

1 + a2

)2
)

dz

︸ ︷︷ ︸

E[Z2]=V ar[Z]+E2[Z]

=
1√

2π(1 + a2)3/2

(

1 +
a2b2

1 + a2

)

exp

(

− b2

2(1 + a2)

)

We can now substitute the correct parameters to get the expressions we need. To

find them, we observe that

ϕ(
√

2d) = ϕ

( √
2

σ
√
T − t

(

y0 −
σ2t

2
+ σ

√
tZ − σ2(T − t)

2

))

= ϕ

( √
2

σ
√
T − t

(

σ
√
tZ + y0 −

σ2T

2

))

.

Hence the right parameters are

a =

√
2t√

T − t
, b =

√
2

σ
√
T − t

(

y0 −
1

2
σ2T

)

.
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When we plug these parameters into our general formulae, we obtain the following

results:

E0[ϕ
2(d)] =

1

2π

√

T − t

T + t
exp

(

−(y0 − 1
2
σ2T )2

σ2(T + t)

)

E0[Zϕ
2(d)] = −

√
t

π

√

T − t

T + t

y0 − 1
2
σ2T

σ(T + t)
exp

(

−(y0 − 1
2
σ2T )2

σ2(T + t)

)

E0[Z
2ϕ2(d)] =

(
T − t

T + t

)3/2
1

2π

(

1 +
4t(y0 − 1

2
σ2T )2

σ2(T + t)(T − t)

)

exp

(

−(y0 − 1
2
σ2T )2

σ2(T + t)

)

.

We have thus obtained all we need to fully evaluate E0[(ΓS
2)2]. The last thing we

need to do is to show that E0[(ΓS
2)2] = O((T − t)−3/2), since this is not evident from

the way we have noted the solution. Specifically, we need to verify that the terms

1

(σ2(T − t))3

[

E0[ϕ
2(d)]

(

y0 −
σ2t

2

)2

+E0[ϕ
2(d)Zn]2

(

y0 −
σ2t

2

)

σ
√
t+E0[ϕ

2(d)Z2
n]σ2t

]

are of the desired order. Substituting

y0 −
1

2
σ2t = y0 −

1

2
σ2T +

1

2
σ2(T − t)

we can simplify the expression to get the desired result.

We numerically verify that the asymptotic formula (1.23) holds in expectations, i.e.

that

E0[ψn] = E0

[(
1

2
ΓnS

2
nσ

2δ

)2
]

(Kurtn(Rn+1) − 1) + O(δ5/2)

when we plug in our result for E0[(ΓtS
2
t )2]; we truly obtain the same values as we

get from the full formula (1.17). In figure 1.8 we see that for a time sufficiently far

away from maturity T , this relation holds. However, we can also see that this relation

breaks down and the estimate (1.23) is no longer accurate in expectations as we come

close to maturity, as illustrated in figure 1.9.
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Figure 1.8: Comparison of the results of formula (1.27) and formula (1.17). σ = 0.3,
K = 1, δ = 1/360, n = 330, N = 360.
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Figure 1.9: Comparison of the results of formula (1.27) and formula (1.17). σ = 0.3,
K = 1, δ = 1/360, n = 358, N = 360.
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1.3.3 Summing up the errors - a more general formula for

granularity

Now that we have computed the one-step error and seen that it corresponds well to the

Cash Gamma squared (both without and with expectations) when far from maturity,

we can proceed to sum up all those errors to obtain the total squared hedging error

ε20 as given by (1.16).

We will first show how ε20 = ε20(δ) is connected to granularity (1.4). By taking

expectations in (1.23) and summing over all the errors, we see that

N−1∑

n=0

E0[ψn] =
N−1∑

n=0

1

2
σ4δ2E0[(ΓnS

2
n)2] + O(δ5/2)

=
1

2
σ4δ

(
N−1∑

n=0

E0[(ΓnS
2
n)2]δ

)

+ O(δ5/2)

We can see that as we increase the number of rebalancing dates N (and thus decrease

the length of the interval δ), the term in parentheses above would seem to tend to

the standard granularity integral

N−1∑

n=0

E0[(ΓnS
2
n)2]δ

δ→0−−→
∫ T

0

E0[(ΓtS
2
t )2] dt.

This, however, only holds for derivatives with continuous payoffs. As we saw above,

illustrated in figure 1.9, the relation between the Cash Gamma squared and the one-

step local hedging error breaks down when nearing maturity. For a derivative with a

discontinuous payoff, the Cash Gamma will no longer be integrable over the interval

[0, T ] as it contains a singularity at terminal time T and hence the sum will not

converge to a Riemann integral. Therefore, the convergence to an integral above will

only hold for some time interval [0, T − η], where η > 0 is a fixed parameter. Thus,

if we denote T − η = Nηδ, then the following will hold:

Nη−1
∑

n=0

E0[(ΓnS
2
n)2]δ

δ→0−−→
∫ T−η

0

E0[(ΓtS
2
t )2] dt

The question then remains about the behaviour in the limit δ → 0 of the remainder

of the sum, i.e.
∑N

n=Nη
E0[ψn]. The following theorem will, by treating the last terms

differently, provide the full asymptotics up to order O(δ) for the total squared tracking
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error ε2(δ) of a digital call option. We will use ϕ(·, µ, ν) to denote the probability

density function of a normal random variable with mean µ and variance ν.

Theorem 1.11. The total squared mean-variance hedging error for a digital call

option under model (1.7) is asymptotically given as

ε20(δ) =

(
1√
π
ϕ̃σζ̃

)√
δ+

(∫ T

0

1

2
σ4E0[(ΓtS

2
t )2] − 1

8
√
π
ϕ̃σ

1

(T − t)3/2
dt+

ϕ̃σ

4
√
πT

)

δ+O(δ3/2)

(1.28)

where

ζ̃ =

∞∑

k=1

(√
k −

√
k − 1 − 1

2
√
k

)

and

ϕ̃ = ϕ

(

y0;µ =
1

2
σ2T ; ν = σ2T

)

Proof.We wish to get an asymptotic expression for

ε20(δ) =
N−1∑

n=0

E0[ψn].

We can divide the sum into two parts. For that we take a fixed parameter η > 0 s.t.

T − η = Nηδ and consider the sum

ε20(δ) = ε20(δ; η) =

Nη−1
∑

n=0

E0[ψn] +
N−1∑

n=Nη

E0[ψn]

Note that this division by parameter η does not influence the total sum, i.e. ε20(δ; η1) =

ε20(δ; η2). For the first part of the sum, we can use the asymptotic estimate (1.23) of

E0[ψn] to get an asymptotic estimate of the total hedging error:

Nη−1
∑

n=0

E0[ψn] =
1

2
σ4δ

(
Nη−1
∑

n=0

E0[(ΓnS
2
n)2]δ

)

+ O(δ5/2).

Since E0[(ΓnS
2
n)2] is an integrable function for timesteps t < T − η with finite first

derivative over [0, T − η], we know that the term in parentheses - a Riemann sum

- approximates a Riemann integral for δ → 0, with a finite approximation error of

order O(δ):
Nη−1
∑

n=0

E0[(ΓnS
2
n)2]δ =

∫ T−η

0

E0[(ΓtS
2
t )2] dt+ O(δ).

49



If we are interested in the approximation of the total error up to order O(δ), the

integral approximation is negligible, because we get a term of order O(δ)δ = O(δ2) <

O(δ3/2).

For the second part of the summation, we use the fact that for times η ≤ t ≤ T , the

individual errors are asymptotically given by (1.21), so computing their sum leads to

the problem of computing the sum

N−1∑

n=Nη

E0[ψn] =

N−Nη∑

k=1

E0[ψN−k]

=

Nη∑

k=1

1√
π

(√
k −

√
k − 1 − 1

2
√
k

)

ϕ

(

y0;µ =
1

2
σ2T ; ν = σ2T

)

σ
√
δ + O(δ3/2)

where y0 = log(S0/K) and ϕ(·, µ, ν) is the probability density function of a normal

random variable with mean µ and variance ν. Using abbreviated notation ϕ̃ :=

ϕ
(
y0;µ = 1

2
σ2T ; ν = σ2T

)
, we end up requiring to compute a sum of the form

1√
π
ϕ̃σ

√
δ

N−Nη∑

k=1

(√
k −

√
k − 1 − 1

2
√
k

)

.

To compute the sum above, we will consider its infinite sum counterpart

ζ̃ =

∞∑

k=1

(√
k −

√
k − 1 − 1

2
√
k

)

. (1.29)

Numerically, we find that the partial sums of the infinite series converge and hence

the sum is finite, its value being ζ̃ ≈ 0.7302. Then we find the asymptotics of our

finite sum by estimating the “tail” of the infinite sum:

N−Nη∑

k=1

(√
k −

√
k − 1 − 1

2
√
k

)

= ζ̃ −
∞∑

k=N−Nη+1

(√
k −

√
k − 1 − 1

2
√
k

)

= ζ̃ − 1

2

∞∑

k=N−Nη+1

(

2(
√
k −

√
k − 1) − 1√

k

)

(1.30)

It is easy to see that

∞∑

k=N−Nη+1

2(
√
k −

√
k − 1) =

∞∑

k=N−Nη+1

∫ k

k−1

dx√
x

=

∫ ∞

N−Nη

dx√
x
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and therefore

∞∑

k=N−Nη+1

(

2(
√
k −

√
k − 1) − 1√

k

)

=

∫ ∞

N−Nη

dx√
x
−

∞∑

k=N−Nη+1

1√
k

=

∫ ∞

N−Nη

dx√
x
−

∞∑

k=N−Nη

1√
k

+
1

√
N −Nη

.

We can see that the sum is some type of discretization of the integral. At this

point, we recall a fitting version of the Euler-MacLaurin summation formula (see

Kac and Cheung [2002, eqn. 25.9]):

∞∑

n=a

f(n) =

∫ ∞

a

f(t)dt+
1

2
f(a) + O(f ′(a))

In our case, f(n) = 1√
n
, a = N − Nη and O(f ′(a)) = O((N −Nη)

−3/2) and therefore

we see that

∞∑

k=N−Nη

1√
k
−
∫ ∞

N−Nη

dx√
x

=
1

2

1
√
N −Nη

+ O((N −Nη)
−3/2)

Finally, we notice that N −Nη = η/δ to gain the asymptotic behaviour of the partial

sum (1.30):

N−Nη∑

k=1

(√
k −

√
k − 1 − 1

2
√
k

)

= ζ̃ − 1

2

(

−1

2

1
√
N −Nη

+
1

√
N −Nη

+ O((N −Nη)
−3/2)

)

= ζ̃ − 1

4

√

δ

η
+ O

(
δ3/2

η3/2

)

and therefore

N−1∑

n=Nη

E0[ψn] =
1√
π
ϕ̃ζ̃σ

√
δ − 1

4
√
π
ϕ̃σ

δ√
η

+ O
(
δ5/2

η3/2

)

We now have all we need to complete the asymptotics and the corrected granularity
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formula of a digital option:

ε20(δ; η) =

(
1√
π
ϕ̃σζ̃

)√
δ +

(
1

2
σ4

∫ T−η

0

E0[(ΓtS
2
t )2] dt− 1

4
√
π
ϕ̃σ

1√
η

)

δ + O
(
δ5/2

η3/2

)

=

(
1√
π
ϕ̃σζ̃

)√
δ

+

[∫ T−η

0

(
1

2
σ4E0[(ΓtS

2
t )2] − 1

8
√
π
ϕ̃σ

1

(T − t)3/2

)

dt +
ϕ̃σ

4
√
πT

]

δ + O
(
δ5/2

η3/2

)

The function that is under the integral is now integrable on [0, T ]. However, we

cannot take the limit η → 0 directly due to the term of order O
(

δ5/2

η3/2

)

. Instead we

will show that we can make the difference between the sum ε20(δ) =
∑N−1

n=0 E0[ψn] and

the analytic formula given in the theorem as small as we wish. We can write

∣
∣
∣
∣
∣
∣

ε20(δ) −
(

1√
π
ϕ̃σζ̃

)√
δ −

∫ T

0
σ4

2
E0[(ΓtS

2
t )2] − ϕ̃σ

8
√
π

1
(T−t)3/2

dt

δ

∣
∣
∣
∣
∣
∣

≤

≤

∣
∣
∣
∣
∣
∣

∑N−1
n=Nη

E0[ψn] −
(

1√
π
ϕ̃σζ̃

)√
δ + δ

∫ T−η

0
ϕ̃σ
8
√
π

1
(T−t)3/2

dt− ϕ̃σ
4
√
πT

δ

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∑Nη−1
n=0 E0[ψn] − σ4

2
δ
∫ T−η

0
E0[(ΓtS

2
t )2] dt

δ

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

δ
∫ T

T−η
σ4

2
E0[(ΓtS

2
t )2] − ϕ̃σ

8
√
π

1
(T−t)3/2

dt

δ

∣
∣
∣
∣
∣
∣

We now take the limit δ → 0 on both sides of the inequality. We know that numerator

of the first of the 3 terms is exactly 0, since we previously showed that the sum and

the analytic expression are exactly equal. We know that numerator of the second

term is equal to 0 up to an approximation error of order O(δ2) and hence the term

will decay to 0 in the limit δ → 0. The final term will be a function dependent on η:

h(η) =

∫ T

T−η

σ4

2
E0[(ΓtS

2
t )2] − ϕ̃σ

8
√
π

1

(T − t)3/2
dt

We know that the function within the integral is integrable over [0, T ] and hence h(η)

is well-defined. Now we can use a (∆ − ǫ) approach to computing the limit. We can

always find an η which will satisfy the following:

∀ǫ > 0 ∃∆ > 0 : (η < ∆ ⇒ h(η) < ǫ)
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Figure 1.10: Absolute error between analytic formula for ε20 and asymptotic expan-
sions of order O(

√
δ) and O(δ). δ = 1/180, K = 1, σ = 0.3, T = 2.

Therefore, the overall difference between the sum and the analytic formula will be at

most ǫ and we can make this ǫ as small as we want.

We thus see that for a digital option, the leading asymptotic term will always be of

order O(
√
δ). Moreover, we have found the right correction term that compensates for

the explosion in the classical granularity term, thus leading to a new, discontinuous

version of the granularity formula. From the proof we see, however, that it is only

the very few last terms that deform the order of error decay, meaning that risk

management and mark to model rules for handling digital options should be time-

varying and adjust for how close to maturity the digital option is, maintaining the

importance of the Cash Gamma until very close to maturity. In figure 1.10, we can see

that the new extended formula provides significantly greater accuracy in estimating

the overall error than just the estimate of order O(
√
δ).
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1.4 Connecting results to the Black-Scholes track-

ing error

In this section we will connect the results we have obtained for the discrete-time

hedging error of a variance-optimal hedging strategy to the Black-Scholes tracking

error (i.e. following a continuous-time strategy on a discrete set of times) for a digital

option as discussed in Gobet and Temam [2001b]. We will show that in the case

of a martingale underlying, these two different types of hedging error have identical

asymptotic behaviour.

In Gobet and Temam [2001b], the authors find that the term of the digital option

tracking error that causes the asymptotic behaviour of order O(
√
δ) is, when applied

to the Black-Scholes model (with or without drift), of the form

E0

∫ T

0

ds

∫ s

ϕ(s)

dt
(
ΓtS

2
t

)2
σ4,

where ϕ(s) = inf{ti|s > ti}. We now relate this to our own computations. To do so,

we will first split the integral into two parts:

E0

∫ T

0

dt

∫ s

ϕ(s)

dt
(
ΓtS

2
t

)2
σ4 = E0

∫ T−η

0

ds

∫ s

ϕ(s)

dt
(
ΓtS

2
t

)2
σ4+E0

∫ T

T−η

ds

∫ s

ϕ(s)

dt
(
ΓtS

2
t

)2
σ4

We now rewrite the first double integral above (abbreviating notation, f(t) := E0[(ΓtS
2
t )

2
σ4])

as a single integral with a periodic convolution kernel pn(t) = k(t/δ − ⌊t/δ⌋δ) in the

integrated function:

∫ T

0

ds

∫ s

ϕ(s)

dtf(t) =

n−1∑

k=0

∫ tk+1

tk

ds

∫ s

tk

dtf(t) =

n−1∑

k=0

∫ tk+1

tk

f(t) dt

∫ tk+1

t

ds

=

n−1∑

k=0

∫ tk+1

tk

f(t)(tk+1 − t) dt =

n−1∑

k=0

T

n

∫ tk+1

tk

f(t)
n

T
(tk+1 − t) dt

=
T

n

∫ T

0

f(t)pn(t) dt = δ

∫ T

0

f(t)pn(t) dt

In our case, it can be shown that the convolution kernel is of the form k(x) = 1−x.We

now provide a theorem that shows that as long as the function f is integrable, the

periodic convolution kernel can be taken outside the integral.
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Theorem 1.12. Given a [0, T ]-integrable real function g and a periodic convolution

kernel pn(t) = k(t/δ − ⌊t/δ⌋δ), where k(·) is an integrable function defined on [0, 1]

and δ = T/n, it holds that

lim
n→∞

∫ T

0

g(t)pn(t) dt =

∫ 1

0

k(u) du

∫ T

0

g(t) dt.

Proof.First we will prove that the above holds for a uniformly continuous function

f .

In the proof we will use the definition of uniform continuity:

Definition 1.13. Given metric spaces (X, d1) and (Y, d2), a function f : X → Y is

called uniformly continuous if for every real number ε > 0 there exists δ > 0 such

that for every x, y ∈ X with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε. If X and

Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean norm,

|| · ||, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all

x, y ∈ X, |x− y| < δ implies |f(x) − f(y)| < ε.

Thus, we can find an n such that on every interval [tk, tk+1] of length T
n

we know that

|f(t) − f(tk)| < ε. Therefore, if we replace f(t) with f(tk), we make an error of at

most ± ε.

To compute the integral, we first separate it into several subintervals:

∫ T

0

f(t)pn(t) dt =

∫ T

0

f(t)k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt

=

n−1∑

k=0

∫ tk+1

tk

f(t)k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt

We know due to uniform continuity that we can choose n large enough for it to hold

that

∫ tk+1

tk

[f(tk) − ε]k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt <

∫ tk+1

tk

f(t)k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt

<

∫ tk+1

tk

[f(tk) + ε]k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt,

which will also hold for the sums. We will now investigate the upper and lower bound

sums and find that they both converge to the same integral for n → ∞, hence the
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middle term must converge to it as well. We will treat the upper bound, the lower

bound can be handled analogously.

n−1∑

k=0

∫ tk+1

tk

[f(tk) + ε]k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt =

n−1∑

k=0

f(tk)

∫ tk+1

tk

k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt

︸ ︷︷ ︸

I

+ ε
n−1∑

k=0

∫ tk+1

tk

k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt

︸ ︷︷ ︸
II

We can transform the integral of k(·) over [tk, tk+1]:

∫ tk+1

tk

k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt = |u =
t

δ
− ⌊ t

δ
⌋δ, δdu = dt| =

∫ 1

0

k(u)du δ

Combining this with the fact that k(·) is integrable on [0, 1] and hence its integral

has a finite value,
∫ 1

0
k(u) du = M <∞, we find that

II = ε
n−1∑

k=0

∫ tk+1

tk

k(
t

δ
− ⌊ t

δ
⌋δ) dt =

n−1∑

k=0

δ

∫ 1

0

k(u) du ε = TMε

Using the same transformation, we now compute I:

I =
n−1∑

k=0

f(tk)

∫ tk+1

tk

k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt = |u =
t

δ
− ⌊ t

δ
⌋δ, δdu = dt| =

n−1∑

k=0

f(tk)

∫ 1

0

k(u) duδ

=

∫ 1

0

k(u) du
n−1∑

k=0

f(tk)δ

Putting our estimate for II and transformation of I together, we get that

n−1∑

k=0

∫ tk+1

tk

f(t)k

(
t

δ
− ⌊ t

δ
⌋δ
)

dt <

∫ 1

0

k(u) du

n−1∑

k=0

f(tk)δ +Mε

By uniform continuity, we know we can make the error ε arbitrarily small by choosing

a larger n. At the same time, as we increase n, we see that the sum, thanks to the

fact that function f is continuous, will converge to a Riemann integral:

n−1∑

k=0

f(tk)δ
n→∞−−−→

∫ T

0

f(t) dt
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We can see that the lower bound will also converge to that same integral with an

arbitrarily small error. Therefore the term between the two bounds will also converge

to that integral and we obtain the desired final result.

Finally we note that the above sum converges to a Riemann integral, but whenever the

Riemann integral exists, it coincides with the Lebesgue integral (see e.g. Billingsley

[1995, pg. 222]), ensuring the existence of the Lebesgue integral.

We have thus proved the theorem for a continuous function, now all we need to state

is the well-known fact that the set of continuous functions with compact support

is dense in L1 space, and hence any integrable function g can be approximated to

arbitrary precision with a continuous function f in L1, or mathematically ∀ε > 0 :
∫ T

0
|g(t) − f(t)| dt < ε.

In our case, where k(x) = 1 − x, we have

∫ 1

0

k(x) dx = 1
2
. Thus overall,

E0

∫ T−η

0

dt

∫ t

ϕ(t)

dθ
(
ΓθS

2
θ

)2
σ4 =

(
1

2
σ4

∫ T−η

0

E0

[(
ΓtS

2
t

)2
]

dt

)

δ,

which is exactly what we obtained in our analysis for errors over [0, T − η].

Let us now consider the integral we are computing from Gobet and Temam [2001b]

over time period [T−η, T ]. Based on theorem 1.10 we know that E0[(ΓS
2)2] is of order

O((T − t)−3/2); the term of this order is the source of the singularity and explosive

behaviour of the Cash Gamma squared when nearing maturity. From the form of

the solution of the expected Cash Gamma squared in equation (1.27) we can see that

there exists a function g continuous on [T − η, T ] s.t.

σ4E0[(ΓtS
2
t )2] =

g(t)

(T − t)3/2
.

Let us note that this defines the same function g(t) as is given by Gobet and Temam

[2001b, eqn. 18]. In this new notation, we thus want to investigate the behaviour of

the integral
∫ T

T−η

ds

∫ s

ϕ(s)

g(t)

(T − t)3/2
dt (1.31)

Since g(t) is continuous it does not cause explosive behaviour and ∀ε > 0 we can

always choose our fixed η in such a way that |g(t) − g(T )| < ε, i.e. we can make

the approximation error made by using g(T ) as small as we want. The value of the

57



constant g(T ) can be directly computed to be

g(T ) = lim
t→T

E0[(ΓtS
2
t )2](T − t)3/2 =

σ

4
√
π
ϕ̃,

where ϕ̃ is the same as in theorem 1.28 in the previous section. Here we should point

out that Gobet and Temam [2001b] incorrectly computes this limit to be

σ3

4
√
π
ϕ̃,

and a correction to this article is provided in Černý and Špilda [2012].

We are now mainly interested in the asymptotic behaviour of the function (T − t)−3/2

when we integrate it, as this will provide us with asymptotic behaviour of our integral.

The following general theorem provides us with the asymptotic behaviour of the

integral.

Theorem 1.14. For α > 1, η > 0, δ = tk+1 − tk = T
n
, and assuming that η/δ is a

whole number, it holds that

∫ T

T−η

ds

∫ s

ϕ(s)

dt

(T − t)α
=δ2−α

η/δ
∑

j=1

(
1

(1 − α)jα−1
− 1

(1 − α)(2 − α)

(
1

jα−2
− 1

(j − 1)α−2

))

Furthermore, the integral has an asymptotic form in terms of δ given as

δ2−αζα − 1

2(α− 1)

1

ηα−1
δ +O(δ2)

where

ζα = lim
η/δ→∞

η/δ
∑

j=1

(
1

(1 − α)jα−1
− 1

(1 − α)(2 − α)

(
1

jα−2
− 1

(j − 1)α−2

))

Proof.We want to compute

∫ T

T−η

ds

∫ s

ϕ(s)

dt

(T − t)α

where α > 1. Let k∗ be defined by the relation T − η = k∗δ. We can rewrite the
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problem:

∫ T

T−η

ds

∫ s

ϕ(s)

dt

(T − t)α
=

n−1∑

k=k∗

∫ tk+1

tk

ds

∫ s

tk

dt

(T − t)α

=
n−1∑

k=k∗

∫ tk+1

t

ds

∫ tk+1

tk

dt

(T − t)α

=
n−1∑

k=k∗

∫ tk+1

tk

tk+1 − t

(T − t)α
dt

= |u =
tk+1 − t

δ
| =

n−1∑

k=k∗

∫ 1

0

δ
δu

(T − tk+1 + δu)α
du

=
n−1∑

k=k∗

δ2
∫ 1

0

u du

(n− 1 − k + u)αδα

=
n−1∑

k=k∗

δ2−α

∫ 1

0

u du

(n− 1 − k + u)α

= |j = n− k| =
n−k∗∑

j=1

δ2−α

∫ 1

0

u du

(j − 1 + u)α

We note that due to the fact that T − η = k∗δ, we can write the summation as being

from 1 to η/δ, since

n− k∗ = n− T − η

δ
= n− n+

η

δ
= η/δ.

We now compute
∫ 1

0

u du

(j − 1 + u)α
.

We can solve this problem through integration by parts:

∫ 1

0

u du

(j − 1 + u)α
= |p.p., f(u) = u, g′(u) = (u+ j − 1)−α|

=

[
u

(1 − α)(u+ j − 1)α−1

]1

0

− 1

1 − α

∫ 1

0

du

(j − 1 + u)α−1

=
1

(1 − α)jα−1
− 1

1 − α

[
1

2 − α

1

(j − 1 + u)α−2

]1

0

=

(
1

(1 − α)jα−1
− 1

(1 − α)(2 − α)

(
1

jα−2
− 1

(j − 1)α−2

))

If we now substitute back into the original problem, we get the desired result from
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the first part of the theorem.

We now continue to find the asymptotic expansion of the sum. We assume that for

α > 1, the sum converges for η/δ → ∞ (this can be verified numerically).We will

denote the value it converges to as ζα. Then we can write the sum as follows:

S =

η/δ
∑

j=1

(
1

(1 − α)jα−1
− 1

(1 − α)(2 − α)

(
1

jα−2
− 1

(j − 1)α−2

))

= ζα −
∞∑

j=η/δ+1

(
1

(1 − α)jα−1
− 1

(1 − α)(2 − α)

(
1

jα−2
− 1

(j − 1)α−2

))

We now try to estimate the end “tail” of the infinite sum. First we note that

1

(2 − α)

(
1

jα−2
− 1

(j − 1)α−2

)

=

∫ j

j−1

dx

xα−1
.

Thus

S = ζα −




1

1 − α

∞∑

j=η/δ+1

1

jα−1
− 1

1 − α

∫ ∞

η/δ

dx

xα−1





= ζα − 1

1 − α



− 1
(
η
δ

)α−1 +
∞∑

j=η/δ

1

jα−1
−
∫ ∞

η/δ

dx

xα−1





We now use the Euler-MacLaurin summation formula (see Kac and Cheung [2002,

eqn. 25.9]), which states that if the function f(x) and its derivatives decay to 0 as

x→ 0, then it holds that

∞∑

n=a

f(n) =

∫ ∞

a

f(x) dx+
1

2
f(a) + O(f ′(a)).

Using this, we can see that

S = ζα − 1

1 − α

[

−
(
δ

η

)α−1

+
1

2

(
δ

η

)α−1

+O(δα)

]

= ζα − 1

2(α− 1)

(
δ

η

)α−1

+O(δα)

Now all we need to do is multiply by δ2−α to get the asymptotic value of the integral
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we are computing:

∫ T

T−η

ds

∫ s

ϕ(s)

dt

(T − t)α
= δ2−αS = δ2−α

(

ζα − 1

2(α− 1)

(
δ

η

)α−1

+O(δα)

)

= δ2−αζα − 1

2(α− 1)

1

ηα−1
δ +O(δ2)

Let us notice that when we plug α = 3/2 into the result obtained above, we get that

∫ T

T−η

ds

∫ s

ϕ(s)

dt

(T − t)3/2
=

√
δζ3/2 −

δ√
η

+ O(δ2)

where the infinite sum

ζ3/2 =
∞∑

k=1

(−2√
k

+ 4(
√
k −

√
k − 1)

)

= 4
∞∑

k=1

(

(
√
k −

√
k − 1) − 1

2
√
k

)

= 4ζ̃

directly connects to our variable ζ̃ in equation (1.29). Therefore the asymptotics of

the integral (1.31) we wanted to compute are

g(T )

∫ T

T−η

ds

∫ s

ϕ(s)

dt

(T − t)3/2
=

σ

4
√
π
ϕ̃4ζ̃

√
δ − δ√

η

σ

4
√
π
ϕ̃

=

(
σ√
π
ϕ̃ζ̃

)√
δ −

(
σ

4
√
π
ϕ̃

)
δ√
η

We can put all these results together, and find that

E0

∫ T

0

dt

∫ t

ϕ(t)

dθ
(
ΓθS

2
θ

)2
σ4 = E0

∫ T−η

0

dt

∫ t

ϕ(t)

dθ
(
ΓθS

2
θ

)2
σ4 + E0

∫ T

T−η

dt

∫ t

ϕ(t)

dθ
(
ΓθS

2
θ

)2
σ4

=

(
1

2
σ4

∫ T−η

0

E0

[(
ΓtS

2
t

)2
]

dt

)

δ +

(
σ√
π
ϕ̃ζ̃

)√
δ −

(
σ

4
√
π
ϕ̃

)
δ√
η

We showed previously in theorem 1.11 that this value converges for η → 0. There-

fore, we have shown that in the martingale setting of model (1.7), the asymptotics

of the first-order term that contributes to the hedging error of a Black-Scholes ∆-

hedging strategy as computed in Gobet and Temam [2001b] (given the correction

in Černý and Špilda [2012]) is exactly the same as that obtained when following a

discrete-time variance-optimal hedging strategy. Furthermore, since we showed for

the variance-optimal case that the second-order δ2 term is in fact significant due to
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the explosive behaviour of the Cash Gamma at maturity, the same will apply for the

Black-Scholes tracking error, which we have shown is given by the same formula.

1.5 Conclusion

In this chapter we set out to investigate the asymptotic behaviour of the quadratic

hedging error for a digital call option with respect to the (increasing) frequency δ of

the discrete-time variance-optimal hedging strategy. We first contrasted the asymp-

totic behaviour of a single-step hedging error of a vanilla and digital call at the last

step prior to maturity, and showed that these have asymptotics of different orders. We

showed a connection between the single-step hedging error and the Cash Gamma of a

digital option. Using those results we showed how to sum up all the individual single-

step errors and compute the asymptotics of the overall expected quadratic hedging er-

ror. Finally, we compared the δ asymptotics of the variance optimal hedging strategy

(optimal in discrete time), against those of the discretization of the continuous-time

Black-Scholes ∆-hedging. We conclude that in our model, the asymptotics of the two

hedging errors coincide.
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Chapter 2

Good-deal bounds of variance

swaps and the Lévy contract

In the first chapter, we saw that the asymptotic hedging error due to discrete-time

trading of an optimally hedged contingent claim in the Black-Scholes model is deter-

mined primarily by the path-dependent Cash Gamma risk and that in the case of a

digital option, the properties of the Cash Gamma near maturity make it hard to deal

with. The main focus was on market incompleteness and hedging errors caused by

hedging our position at a finite set of dates. In this chapter, we investigate what other

incomplete market risks we may still have in a contract which no longer contains an

unpredictable Cash Gamma risk. If we were to investigate a specific contract - the

log contract - we would find that its Cash Gamma is constant and predictable. This

makes the expected size of the discretization error completely predictable.

In fact we will look at a more general contract, which we will refer to as a “Lévy

contract”. The payoff of this contract will not only encompass the log contract, but

also the more practical case of the variance swap, whose theoretical value is strongly

related to that of the log contract - when continuously sampled, it is the payoff of a

∆-hedged log contract. It will also allow us to look at higher order moment swaps

such as skewness and kurtosis swaps.

The outstanding risks we set out to assess in such a contract are those due to jumps

and the higher order moments of the distribution. For this purpose, we will work

in the setting of exponential Lévy models, for which the current mathematical tools

still allow us to obtain reasonably explicit formulas and computations, while allowing
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more general distributions, uncovering risks that were previously ignored within a

diffusion model. From Broden and Tankov [2011] it follows that the (here constant)

Cash Gamma is the main driver of asymptotic discretization hedging error even when

adding jumps to the underlying, so we have not added any additional discretization

risk by making our model more general. To keep a focus on jumps as the source

of market incompleteness, we will revert to a continuous-time setting. We will also

limit ourselves to a model with constant diffusion volatility to exclusively gauge the

uncertainty in pricing due to the presence of jumps in the model. This means that

in the small jump limit when our model has no jumps, a variance swap will have a

deterministic fixed price.

We will investigate the impact of jump risk on the price of the ”Lévy contract”

(and the contracts derived from it) by looking at ’good-deal’ price bounds within

an incomplete market where perfect replication is not possible; these price bounds

reflect possible hedging errors due to higher moments of the returns distribution,

and more generally uncertainty regarding the price of the contract. We will produce

these price bounds using two closely related (yet mostly separately handled in the

literature) methodologies: exponential utility-based pricing and pricing via variance-

optimal hedging.

2.1 Motivation, literature review and research ques-

tion

The idea of introducing a contract that would have a constant Cash Gamma first

arose from the working paper Neuberger [1990] (and accompanying journal article

Neuberger [1994]), and independently from that in Dupire [1992]. It was shown that

∆-hedging a log contract provided the holder with a payoff that was (nearly) perfectly

correlated with realized volatility of the underlying. The contract would thus allow

traders to trade realized volatility in the market. In practice the log contract never

traded (possibly due to its negative payout for low values of the underlying); in 1993,

however, the CBOE introduced a new product called the VIX, which was intended

for similar use, i.e. to trade volatility. The first large interest in the index was shown

after the LTCM crash, when many institutions found themselves lacking protection

against the sudden burst of volatility. Originally, the index was a weighted average

of options on the S&P 500 for a few options near the ATM position and resembled a
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slightly more complex straddle. The index was later redefined in 2003 in reaction to

publications such as Demeterfi et al. [1999] and Carr and Madan [2002] showing the

connection between the (continuous-time) variance swap and its replication via a ∆-

hedged position in a log contract, which in turn is replicated by a weighted portfolio

of (an infinite number of) vanilla calls and puts. The redefined VIX still essentially

remained a weighted basket of options, but now considering a wider range of vanilla

options in its computation. The exact payoff of the VIX is defined in CBOE [2009]

as σ × 100, where:

σ2 =
2

T

∑

i

∆Ki

K2
i

erTQ(Ki) −
1

T

[

1 − F

K0

]2

,

with Ki denoting strike prices, Q(Ki) the corresponding call/put option price and F

the forward price. The payoff is the discretized version of the theoretical replication

of a log contract via vanilla options. The popularity of the VIX has led to equivalent

products being introduced on other underlying indices, e.g. the VDAX for the DAX

Index or the VSTOXX for the STOXX 50 Index. Let us note, however, that a majority

of variance swaps are bespoke products that are traded OTC between investment

firms. Its popularity has also spurred research looking into the possibilities of trading

higher order moments of the distribution, e.g. Neuberger [2012], Schoutens [2005],

Corcuera et al. [2005], Nadtochiy and Ob lój [2017].

2.1.1 Motivating the log contract

The reason for introducing a log contract is quite simple. If we consider a diffusive

model of the stock S with (potentially time and spot-dependent) volatility σ(t, S)

and apply Itô’s lemma, we find:

d logSt =
dSt

St
− 1

2
σ2(t, St)dt.

Rearranged and integrated, we get that the model’s total integrated variance is equal

to selling 2 log contracts and holding a continuously rebalanced ∆-hedge of 2/St units

of the stock:
1

T

∫ T

0

σ2(t, St)dt =
2

T

(∫ T

0

dSt

St
− log(ST/S0)

)
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We can illustrate in this diffusive model how trading a log contract gives us exposure

to realized volatility. If we consider a general ∆-hedged portfolio consisting of a

(generic) claim with current value V (t, S), then such a portfolio experiences a daily

P&L of

P&L∆t =
∂V

∂t
∆t+

1

2

∂2V

∂S2
(∆S)2

However, using classic portfolio replication arguments, we know a generalized Black-

Scholes forward PDE holds:

∂V

∂t
+

1

2
σ2(t, S)S2∂

2V

∂S2
= 0,

so substituting for the time derivative into our P&L, we get that over time ∆t, the

P&L is

P&L∆t =
1

2
S2∂

2V

∂S2

(
(∆S)2

S2
− σ2(t, S)∆t

)

.

We can see that the P&L on a hedged position is highly path-dependent due to the

cash Gamma. However, if we now consider a contingent claim for which

∂2V

∂S2
=

1

S2
(2.1)

exactly, we could get rid of any path dependency. Then the P&L of the portfolio

summed over all time intervals ∆t would be

P&LT =
∑

t

1

2

(
(∆St)

2

S2
t

− σ(t, St)
2∆t

)

which is the difference between (a particular definition of) realized variance over the

duration of the contract and the model-assumed variance. The contract that satisfies

condition (2.1) is one that has terminal value VT = a − log ST + bST , where a, b

are constants of integration. Thus, by selling and ∆-hedging two log contracts and

holding 2a in cash and 2b units of the underlying, we obtain a portfolio whose value is

exactly the difference between (a particular definition of) realized and model-assumed

volatility.

2.1.2 Our research question

Although in the beginning of the line of research on log contracts and variance swaps,

all the computations appeared to be sufficiently model-independent, over time impor-
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tant flaws have been found in the theory. It has been acknowledged that the relation

between the log contract and the replicating strip of options is imperfect, and there

is no unique market-enforceable price for a variance swap based purely on available

option prices.

The literature has therefore at several points in time attempted to provide (some-

what) model-independent arbitrage bounds for the price of variance swaps. The ap-

proach usually taken is a static hedging one, where you find a portfolio of vanilla op-

tions super- and subreplicating the log contract payoff that would provide a bound.

Davis et al. [2014] derive these under the assumption of a continuous semimartin-

gale model (i.e. the underlying has no jumps). They find their lower bound to be

remarkably close to actual variance swap prices traded in the market, and the up-

per bound is potentially infinite. In contrast, Hobson and Klimmek [2011] develop

model-independent no-arbitrage bounds that allow for jumps, but in return require

a continuous range of options available for hedging. The bounds they find are not

particularly tight, the price easily being allowed to double without causing arbitrage.

The importance of including jumps to model variance swap prices has been shown in

Crosby and Davis [2011] and Carr et al. [2012], who report a divergence of actually

traded prices of variance swaps from their theoretical replication value based on diffu-

sive models. They show that you typically need more than 2 ∆-hedged log contracts

to replicate a variance swap, as implied by time-changed Lévy models calibrated to

market option prices. The practice of using diffusions for pricing variance swaps has

also been strongly criticized in more practitioner-oriented literature (Ayache [2006]).

In this context, the question we attempt to answer is whether we can find useful,

potentially tighter bounds on the price of a variance swap (and related contracts)

while recognizing the importance of jumps in their pricing and hedging.

Thus, the first contribution of this chapter is to extend the limited research into

incomplete market pricing of variance swaps when the underlying includes jumps,

as typically the pricing is done in a diffusion setting, with market incompleteness

stemming from stochastic volatility, as in e.g. Grasselli and Hurd [2007]. We will do

our analysis in the established framework of exponential Lévy processes - these are

analytically tractable but provide a richer set of distributions, thus letting us see the

influence of higher order moments such as skewness and kurtosis via the Lévy jump

density, but do not account for stochastic volatility. We provide appropriate skew

(and kurtosis) adjustments to the price of a variance swaps as our model departs
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from the Black-Scholes framework.

Secondly, instead of wide no-arbitrage bounds, we aim to provide tighter, econom-

ically rational bounds on the price of the ”Lévy contract”. We will obtain tighter

price ranges by not only eliminating prices that imply pure arbitrage opportunities,

but also those that would lead to “good deals”, i.e. attractive investments with high

risk-adjusted returns. The concept of “good deal bounds” was first introduced in

Cochrane and Saá-Requejo [2000], its main idea being that we can obtain upper and

lower price limits by setting an upper bound to the maximal available Sharpe ra-

tio attainable in the market that contains the derivative and the underlying asset.

Further developments on good deal bounds then came in Černý and Hodges [2002],

Černý [2003], Björk and Slinko [2006], Klöppel and Schweizer [2008], where the au-

thors show the relation of good-deal bounds and maximizing Sharpe ratios to the

theory of quadratic hedging. Unlike sub/superreplication bounds, this approach can

yield useful price bounds without considering the existence of any options traded in

the market.

We will use utility-based pricing (akin to Grasselli and Hurd [2007], see Henderson and Hobson

[2009] for an introduction) and the concept of certainty equivalents to rule out prices

that are too high or low, by setting an upper bound to the normalized certainty

equivalent, the so-called investment potential. We will do this for two different utility

functions: exponential and quadratic utility. These allow for analytically explicit (but

not necessarily closed-form in the case of exponential utility) solutions. We will show

that for the case of the quadratic utility function, utility-based good-deal bounds can

be related to the theory of quadratic hedging as described in the previous chapter.

Due to the structure of the solution under exponential utility, where the optimal

hedging strategy can only be computed implicitly, we also compute an asymptotic

approximation as jumps in our model diminish in size and intensity to gain better

insight into the small-jump properties of the solution. We obtain approximate closed-

form formulas based on the higher-order moments of the distribution when the jumps

we experience are reasonably small in the sense of Černý et al. [2013].

Thirdly, we will compare results for exponential and quadratic utility, and we will

find that the asymptotic solution for exponential utility yields bounds that differ

only minorly from the full explicit solution of quadratic utility. This will show that in

settings where our underlying distribution has fat tails but these are not too severe,

we lose little by using well-known simple formulae from quadratic hedging instead
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of dealing with complex implicit systems of equations from exponential utility pric-

ing. In other words, we show that despite some of its theoretical shortcomings (a

non-monotonic utility function), in most practical situations quadratic hedging is a

suitable substitute for other more theoretically sound but also less practical and more

cumbersome pricing systems.

Connections between the two utilities have previously been made in terms of the

asymptotic behaviour of prices when buying in small quantities. Kramkov and Ŝırbu

[2007] show that for a small number of claims, any standard utility indifference price

should asymptotically correspond to a mean-variance hedging price, albeit under a

new martingale measure and numéraire. Further work on investigating this connection

between exponential and quadratic utility, in various degrees of generality, has been

done in Becherer [2006], Mania and Schweizer [2005],Kallsen and Rheinländer [2011].

In contrast, we will be able to compare utility indifference pricing with mean-variance

hedging under physical measure, letting us see that a close relation between the two

still persists under that measure for the case of variance swaps (or more generally

“Lévy contracts”).

Finally, we contribute by showing the usefulness of the general ”Lévy contract” under

investigation, which encapsulates log contracts, variance swaps and higher order swaps

simultaneously, akin to a generalization made in Carr and Lee [2013]. Whereas that

paper directly considers polynomial transformations of jumps of the Lévy measure

(which give moment swap payoffs), we extend their results by first maintaining a more

general approach in our analysis, and only reverting to polynomial transformations

later on, when it is essential to gain insight into the asymptotics.

2.2 General utility-based pricing theory

In this section we will introduce concepts from general utility-based pricing theory,

and how it relates to mean-variance hedging.

Pricing and risk management based on utility theory in general considers a functional

u which models an agent’s preferences between different (potentially random) payoffs

in the future. Mathematically speaking, an agent will prefer random payoff X over

Y only if u(X) > u(Y ). We then set additional assumptions on the properties of u to

model an agent’s (rational) behaviour. The two most commonly made assumptions
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are the following:

1. u is monotone in a P-a.s. sense, i.e. u(X) > u(Y ) ⇔ X > Y P-a.s. In words,

the agent always prefers more to less.

2. u is a concave function, i.e. u(λX + (1 − λ)Y ) ≥ λu(X) + (1 − λ)u(Y ). Eco-

nomically speaking, an agent does not lose utility from diversification.

In recent years, a wide body of research has shown (see Ben-Tal and Teboulle [2007a],

Filipović and Kupper [2007], Filipović and Kupper [2008], Cheridito and Kupper [2009],

Černý et al. [2012], Cheridito et al. [2015] and references therein) that it is fruitful to

add a third condition to the previous two:

3. u is translation invariant. u(X + m) = u(X) + m,m ∈ R. which in words

means that an agent prefers the payout X over another payout Y if and only if

he prefers X−m to Y −m for all m. Economically speaking, the agent’s utility

of an uncertain payoff is not altered by any additional holdings in cash, i.e. his

investment is only dependent on the risk/reward profile of the payoff X , and

is independent of any cashflow considerations (for that reason this property is

sometimes also referred to as cash invariance).

A utility function u that has all three properties is referred to as a monetary utility

function (Filipović and Kupper [2008]). Such a utility function can be in turn related

to convex risk measures ρ as defined by Föllmer and Schied [2002]: ρ(X) = −u(X).

Recent research, such as Filipović and Kupper [2007] and Cherny and Kupper [2007],

has shown a connection between these general functionals u(X) and the more clas-

sic situation of expected utility E[U(X)], as first used for pricing derivatives in

Hodges and Neuberger [1989]. These papers show that the monetary utility func-

tion u corresponds to the translation-invariant hull of a classical expected utility.

This means it is the smallest translation-invariant functional that dominates the ex-

pected utility value. Filipović and Kupper [2007] show that this connection even

applies to the non-monotone quadratic utility function U(x) = x − α
2
x2, whose

translation-invariant hull is shown to be the mean-variance preference functional

u(X) = E[X ] − α
2

Var(X) (this can be extended to monotone truncated quadratic

utility, as shown in Černý et al. [2012]). We will later see that this, in turn, relates

to the problem of mean-variance hedging.
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Our goal will be to use utility-based pricing methods to compute good-deal bounds on

a “Lévy contract” (which encompasses variance swaps) in an incomplete market model

to investigate the price impact of jumps. We will do so both under the theoretically

unsound non-monotone mean-variance preferences (i.e. the quadratic utility function)

and those implied by the theoretically more amenable exponential utility function.

For both utility functions, we will investigate the translation-invariant version of

the expected utility maximization problem, to be able to operate under a united

framework. Specifically, we set out to find the maximal translation-invariant expected

utility for a portfolio holding ϑt, t ≤ T in the stock and q units of a contingent claim

with payout H at expiry T :

uγ(p, q) = max
ϑ∈Θγ(p,q)

max
η∈R

η + E[fγ(ϑ · ST + q(H − p) − η)] (2.2)

In our problem, we consider a normalized HARA utility function fγ as in Brooks et al.

[2012]:

fγ(x) =







(1+x/γ)1−γ−1
1/γ−1

, for γ > 0

ln(1 + x), for γ = 1

|1+x/γ|1−γ−1
1/γ−1

for γ < 0

1 − e−x for γ = ±∞

We will focus on the cases γ = −1 and γ = ∞, which correspond to mean-variance

preferences and exponential utility respectively. We will motivate our reason for

normalizing the utility function to have a risk aversion equal to 1 below. As the

problem is cash-invariant (by property 3 above), we do not consider any initial wealth.

Let us note that as a consequence of the translation (or cash) invariance of our

preferences, we can decompose the utility function into two parts:

uγ(p, q) = uγ(0, q) − pq

(a simple way to see this is by e.g. defining XT = ϑ · ST + qH − η and applying the

translation invariance: u(XT − pq) = u(XT ) − pq)

We will choose a set of admissible strategies Θγ(p, q) that encompasses both expo-

nential utility and mean-variance preferences, specifically the definition of admissible

strategies from [Biagini and Černý, 2011, Definition 1.1] (see definition B.4 in the ap-

pendix for details). This set of admissible strategies is well-defined for Lévy models
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with finite moments and exponential moments, which will be our setting later on.

Under this set of admissible strategies, the optimizer is also within the set, allowing

us to consider maxima instead of suprema.

Once we have the maximal utility uγ, we can compute the optimal quantity to pur-

chase at a given price p:

q̂γ(p) = arg max
q

uγ(p, q),

From that we can define the so-called investment potential (IP) of the market with

both the underlying and the derivative at price p to measure how utility an agent can

gain from investing in the underlying and derivative claim optimally:

IPγ(p) := uγ(p, q̂γ(p)).

The investment potential (IP) is a normalized version of the certainty equivalent (CE)

gain, stating the percentage gain in certainty equivalent wealth per unit of risk aver-

sion. It corresponds to what Ben-Tal and Teboulle [2007b] refer to as the Optimized

Certainty Equivalent (see [Černý, 2009, Section 3.5] for a further introduction on the

investment potential). The classical certainty equivalent gain CE is an amount of

risk-free cash we need to add to our current wealth to obtain the same level of utility

as an investment in the risky asset:

uγ(CEγ(p, q), 0) = uγ(p, q)

It provides a gauge for the lucrativeness of investing in a particular asset for the agent.

The only parameter it depends on is the shape of the normalized utility, determined

by γ. As a normalized measure, it is invariant on the risk aversion of a particular

agent and allows for comparison across agents. An agent who already holds some of

the derivative being priced but with lower risk aversion will gain the same amount

of utility from the claim at price p as another agent who holds less of the derivative

but is more risk averse. It can be shown (see Černý et al. [2012] and the references

within) that in the case of mean-variance preferences (γ = −1), IPγ(p) is directly

related to the maximal Sharpe ratio of the market with the derivative and underlying:

IP−1(p) =
1

2
SR2

As we want to assess the specific investment potential of the derivative in addition

to the pre-existing investment opportunity in the underlying, we will primarily be
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interested in the difference between the IP of a market with and without the derivative

(where the derivative is available at price p):

∆IPγ(p) = uγ(p, q̂γ(p)) − uγ(·, 0) (2.3)

As we now have a measure connecting lucrativeness of investment to the price of a

contingent claim in the market, we can invert this relationship to obtain good-deal

bounds of the derivative p̂±γ (∆IP ) (the superscript ± highlights the fact that there

is an upper and lower bound, as ∆IPγ(p) will be a function convex in p with two

different values of p giving the same IP). For a given level of IP added into the market,

we will obtain a lower and upper price bound for the derivative.

Inversely, if we consider q to be given and adjust p accordingly to solve our optimisa-

tion problem, we get the optimal price at a given quantity. From first order conditions

and the translation invariance equality above we have

p̂γ(q) =
d

dq
uγ(0, q)

and the related IP

IPγ(q) := uγ(p̂γ(q), q) = uγ(0, q) − q
d

dq
uγ(0, q)

We will refer to p̂γ(q) as the utility-based price, in line with Kramkov and Ŝırbu

[2007], which can also be understood as a marginal utility price for an investor who

already holds q contingent claims as his initial wealth. This can be contrasted with the

indifference price pIγ(q) which is defined as a price at which the agent is indifferent

between receiving the contingent claim or a lump sum of cash now:

pIγ(q) : uγ(pIγ(q), q) = uγ(·, 0)

If we revisit the definition of ∆IPγ in equation (2.3), we see that it ultimately measures

the distance in utility between the utility-based and utility indifference price:

∆IPγ(p) = uγ(p, q̂γ(p)) − uγ(·, 0) = uγ(p, q̂γ(p)) − uγ(pI , qI(p))
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2.2.1 Mean-variance preferences

We mentioned previously that the utility maximization with mean-variance prefer-

ences and quadratic hedging are closely linked. In the following theorem and its

corollary, we show this connection and how it can then be used to compute good-deal

bounds by setting bounds to the added investment potential ∆IP−1. We will find

that the width of the good-deal bounds for quadratic utility depends primarily on

the size of the expected root-mean-square hedging error ε0 (as defined in the first

chapter).

Theorem 2.1. For mean-variance preferences (γ = −1), the indirect utility function

can be expressed in terms of variables from mean-variance hedging:

u−1(p, q) =
1

2
(L−1

0 − 1) + q(V0 − p) − 1

2
q2ε20

L0 = min
ϑ

E[(1 − ϑ · ST )2]

ε20 = min
ϑ

E[(V0 + ϑ · ST −H)2]

Proof.First, we complete the square for the normalized quadratic utility function

f−1(x):

f−1(x) = x− 1

2
x2 =

1

2
− 1

2
(1 − x)2

Using this, we can rewrite the indirect utility:

u−1(p, q) = max
ϑ∈Θ−1(p,q)

max
η∈R

η + E[f−1(ϑ · ST + q(H − p) − η)]

= max
ϑ∈Θ−1(p,q)

max
η∈R

1

2
+ η − 1

2
E[(ϑ · ST − 1 + q(H − p) − η)2]

The term in expectations can be understood as a mean-variance hedging problem

for a derivative claim with payoff H̃ = −q(H − p) + 1 + η and initial capital ṽ0 =

0. Thus we can write the result in terms of variables of mean-variance hedging of

Černý and Kallsen [2007]:

u−1(p, q) = max
ηη∈R

1

2
+ η − 1

2

(

L0(Ṽ0 − ṽ0)
2 + ε20(H̃)

)

= max
ηη∈R

1

2
+ η − 1

2

(
L0(−q(V0 − p) + 1 + η)2 + q2ε20(H)

)

74



Optimizing over η, we find η∗ = L−1
0 + q(V0 − p) − 1. Plugging into the previous

equation, we get our result.

Corollary 2.2. For mean-variance preferences, good-deal bounds have the form

p̂±−1(∆IP ) = V0 ± ε0(H)
√

2∆IP

Proof.We first find the utility-based quantity q̂−1(p) by computing ∂
∂q
u−1(p, q) = 0.

We get

q̂−1(p) =
V0 − p

ε20(H)

Then we can relate the added investment potential to the market price p of the

derivative:

∆IP−1(p, q̂−1(p)) = u−1(p, q̂−1(p)) − u−1(·, 0)

= q̂(p)(V0 − p) − 1

2
q̂−1(p)

2ε20(H) =
1

2

(V0 − p)2

ε20(H)

Inverting this relationship, we get our desired result.

2.2.2 Exponential utility

In a general semimartingale underlying, if we search for optimal η∗ in the primal

maximization problem (2.2) we find

η∗ = − log(max
ϑ∈Θ

E[exp(−ϑ · ST − qH)]) − qp

u∞(p, q) = −qp− log(max
ϑ∈Θ

E[exp(−ϑ · ST − qH)])

Without additional assumptions on the underlying model, we cannot simplify this

further. Using results from Delbaen et al. [2002], we have a connection to the dual

solution of the problem over a space of martingale measures and we can express

the utility function u∞(p, q) in terms of minimal entropy. However, this is mainly a

theoretical result, with limited opportunity for explicit numerical implementation.

The structure provided by Lévy processes later allows us to get concrete results for

exponential utility in terms of quantities of the primal problem (2.2) as shown above.

Specifically, for an appropriate payoff H , the term in expectations will correspond
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to an exponential compensator, which is well-defined for most Lévy processes and

straightforward to compute.

2.3 The Lévy contract: utility pricing under a Lévy

model

In the first chapter we used a simple Black-Scholes model to evaluate discrete time

hedging errors. However, as discussed earlier, a diffusion model is not sufficient to

capture the full economic price of a variance swap (or higher order swaps). Therefore,

in this chapter we will move to a more general framework to evaluate hedging errors

and the corresponding price ranges, so as to accommodate for the jumps and risk

from higher order moments that are observed in real markets.

From now on, we model the forward price S = e−rtŜ via a one-dimensional exponential

Lévy process

S = S0 expX, (2.4)

where X , the cumulative log-return, is a Lévy process with characteristics (b(h), c, F )

relative to some truncation function h (typically, h(x) = x1|x|<1). Without loss of

generality, we set X0 = 0. The corresponding rate of return will be denoted X̃, with

characteristics (b̃, c̃, F̃ ). It relates to the underlying via the stochastic exponential,

i.e. S = S0E(X̃) (for further details, see Kallsen and Shiryaev [2002]). The Lévy

density F̃ (dx) satisfies the usual condition
∫

R
(1 ∧ x2)F̃ (dx) < ∞. We automatically

assume that the first four moments of the rate of return are finite, and label them

µ̃, σ̃2, S̃k, ẼK.

Under such a setting, we look at a general contract, which we will refer to as a “Lévy

contract”, with payoff

H = αT + βX̃T (h) + (W (x) − βh(x)) ∗ J X̃
T (2.5)

where α, β ∈ R are constants and W (x) is some transformation function of the jumps

of X̃ . The asterisk operator ∗ indicates a double integral:

(f(t, x) ∗ JX)t =

∫ t

0

∫

R

f(t, x)JX(dt, dx)
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The notation X̃(h) := X̃ − X̃0− (x−h(x)) ∗ J X̃ denotes the compensated part of X̃ .

Our motivation for such a payoff is its ability to provide us with prices for all moment

swaps. If we e.g. choose the function W (x) = x2 and α = c̃, β = 0, we get a claim

whose payoff is quadratic variation, i.e. the fixed leg of a variance swap. Similarly we

can get skewness swaps, kurtosis swaps, or the log contract log(S), the last of which is

obtained by exploiting the relationship between X and X̃ (see Kallsen and Shiryaev

[2002]) to fit it to the format of the payoff H :

X = X̃ − 1

2
c̃+ (log(1 + x) − x) ∗ J X̃ .

However, for H to be a well-defined Lévy process, parameters β,W (·) will need to

satisfy certain properties, which we discuss in the next lemma (the constant αT can

be added without any consequence).

Lemma 2.3. Let X be a Lévy process. For a given function W (·) which satisfies the

conditions
∫

R
(1 ∧W 2(x))FX(dx) <∞ and W (0) = 0 it holds that there exists β ∈ R

s.t.

Y = βX(h) + (W (x) − βh(x)) ∗ JX

is a Lévy process. Furthermore, if X has infinite total variation (TV (X) = ∞), this

β is unique. If TV (X) <∞, then β = Y (0)/X(0).

Proof.First, we observe that if Y is well-defined, then its Lévy density is of the form

F Y (G) =

∫

R

1G(W (x))FX(dx)

We know that for a Lévy density it must hold that

∫

R

(1 ∧ y2)F Y (dy) <∞

But by the structure of the Lévy density of Y and our assumption on W ,

∫

R

(1 ∧ y2)F Y (dy) =

∫

R

(1 ∧W 2(x))FX(dx) <∞

A Lévy process also requires that there is zero weight on jumps of size 0, which is

satisfied, as W (0) = 0.

Now we look at the matter of uniqueness. Let us say there are two well-defined
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Lévy processes Y, Y ′ with different coefficients β, β ′. Since the difference of two Lévy

processes is also necessarily a well-defined Lévy process, it must hold that

Y ′ − Y = (β ′ − β)X(h) + (β ′ − β)h(x) ∗ JX

is a Lévy process. However, we can see that this can only be a well-defined Lévy pro-

cess if one of the following two holds: either TV (X) <∞ (in which case h(x) ∗ JX <

∞, because Lévy densities of finite variation processes satisfy
∫

R
(1∧|x|)FX(dx) <∞)

or it must be true that β is unique, i.e. β ′ = β.

If TV (X) < ∞, then Y can be decomposed into a continuous process Y (0) and a

sum of jumps y ∗ JY :

Y = Y (0) + y ∗ JY = Y (0) +W (x) ∗ JX

At the same time, from the definition of Y and choosing truncation function h ≡ 0,

Y = βX(0) +W (x) ∗ JX

Therefore β = Y (0)/X(0), meaning that pathwise the continuous portion of our

constructed process Y will always be a constant multiple of X .

2.3.1 The Lévy contract good-deal bounds: mean-variance

preferences

As we saw in the general theory, for mean-variance preferences all we need to get

good-deal bounds is to compute the mean-value process and quadratic hedging error

of the contingent claim. In the case of the “Lévy contract” (2.5), they are given in

the following theorem.

Theorem 2.4. Under an exponential Lévy model, mean-variance (γ = −1) good-deal

price bounds for the contract (2.5) are given as

p̂±−1(∆IP ) = V0 ± ε0
√

2∆IP
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where

V0 = T (α + β
(

b̃(h) + µ∗c̃
)

+

∫

x>−1

((1 + µ∗x)W (x) − βh(x))F̃ (dx))

ε20 =
1 − exp(− µ̃2

σ̃2T )

µ̃2/σ̃2

(
∫

x>−1

W 2(x)F̃ (dx) − 2β

∫

x>−1

xW (x)F̃ (dx) −
(
∫

x>−1
xW (x)F̃ (dx))2

σ̃2

)

µ∗ =
−µ̃
σ̃2

,

the locally optimal hedging strategy ξ is

ξt =
1

St−

βσ̃2 +
∫

x>−1
xW (x)F̃ (dx)

σ̃2

and the variance-optimal strategy ϕ is given by the recursive equation

ϕt = ξt −
µ̃

σ̃2St−
(V0 +

∫ t

0

ϕu−dSu − Vt−)

Proof.We know that under the variance optimal martingale measure (VOMM) Q̂ of

mean-variance hedging, we obtain new characteristics for our driving process X̃ (see

Kassberger and Liebmann [2011], Miyahara et al. [2007]):

b̂(h) = b̃(h) + µ∗c+

∫

R

h(x)µ∗xF̃ (dx)

ĉ = c̃
∫

R

f(x)F̂ (dx) =

∫

R

f(x)(1 + µ∗x)F̃ (dx)

µ∗ =
−b(h) − 1

2
c−

∫

R
((ex − 1) − h(x))F (dx)

c+
∫

R
(ex − 1)2F (dx)

=
−µ̃
σ̃2

We can compute the mean-variance process directly:

Vt = Êt[HT ] = αT + βÊt[X̃T (h)] + Êt[(W (x) − βh(x)) ∗ J X̃ ]

= αT + βX̃t(h) + (W (x) − βh(x)) ∗ J X̃
t

+ β(T − t)b̂(h) + (T − t)

∫

x>−1

(W (x) − βh(x))(1 + µ∗x)F̃ (dx)

= αT + βX̃t(h) + (W (x) − βh(x)) ∗ J X̃
t

+ β(T − t)
(

b̃(h) + µ∗c̃
)

+ (T − t)

∫

x>−1

((1 + µ∗x)W (x) − βh(x))F̃ (dx)
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In our Lévy process setting with a deterministic opportunity set, the hedging error

ε20 is given via the quadratic variation of the mean-value process and underlying, and

the mean-variance tradeoff process K (see Černý [2007], Černý and Kallsen [2009]):

ε20 = (1 − exp(−KT ))
T

KT
E[〈V 〉T − ξ2 · 〈S〉T ]

Here ξ denotes the locally optimal strategy

ξt =
d〈V, S〉t
d〈S〉t

Using the canonical martingale decomposition of S, it is straightforward to compute

the required quadratic variations and co-variations:

〈V 〉t = 〈βX̃(h) + (W (x) − βh(x)) ∗ J X̃〉t

= t(β2c̃+

∫

x>−1

(β2x2 +W 2(x))F̃ (dx))

= t(β2σ̃2 +

∫

x>−1

W 2(x)F̃ (dx))

〈S〉t = S2
t−t(c̃+

∫

x>−1

x2F̃ (dx)) = S2
t−tσ̃

2

〈V, S〉t = 〈βX̃(h) + (W (x) − βh(x)) ∗ J X̃ , S〉t = St−(βc̃+

∫

x>−1

βx2 + xW (x))F̃ (dx)

This gives us the locally optimal hedging strategy. Proceeding to compute the second

term in the hedging error, we get

ξ2 · 〈S〉T =

∫ T

0

ξ2t d〈S〉t =

∫ T

0

ξ2t S
2
t−(c̃+

∫

x>−1

x2F̃ (dx)) dt

=
T

σ̃2
(βc̃+

∫

x>−1

(βx2 + xW (x))F̃ (dx))2 =
T (βσ̃2 +

∫

x>−1
xW (x)F̃ (dx))2

σ̃2

The last ingredient we need is the mean-variance tradeoff process Kt, for which we

know the explicit formula for Lévy models from Hubalek et al. [2006]:

Kt =
κ2(1)t

κ(2) − 2κ(1)
=
µ̃2t

σ̃2

where κ(·) is the cumulant-generating function. Joining all these results gives us the

hedging error and locally optimal hedge. Finally, the form of the variance-optimal
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hedging strategy follows from [Hubalek et al., 2006, Theorem 3.1].

2.3.2 The Lévy contract: exponential utility

For exponential (and power) utility it is well-known that when the underlying is an

exponential Lévy process, the optimal investment strategy is a constant-proportion

strategy, i.e. ϑ∗t,∞ = ζ∗/St− (see e.g. Kallsen [2000], Kardaras [2009], Nutz [2012],

Temme [2012] and the references within). This implies that also for hedging, our

optimal strategy will be of the same form.

Lemma 2.5. The optimal strategy ϑ∗∞ is a constant-dollar strategy of the form ϑ∗∞ =

ζ∗/S−, where ζ
∗ ∈ R is a constant.

Proof.Using results from Delbaen et al. [2002], we know the derivative contract H in

the exponential utility defines a change of measure dPH/dP, which allows us to convert

the hedging problem to a problem of optimal investment without the derivative, under

a different, non-physical measure. We can now use e.g. [Fujiwara, 2006, Theorem

4.1], which completes the proof.

Let us note that the strategy above is dependent on the variables of our utility maxi-

mization problem (2.2). Specifically, we will note explicitly as follows the dependence

of ζ∗ and ϑ∗∞ on the quantity q bought of the contract: ζ∗ = ζ∗(q), ϑ∗∞ = ϑ∗∞(q).

As a consequence of lemma 2.5, we can rewrite ϑ∗∞ ·ST as a multiple of the stochastic

logarithm of S , written L(S), which is equal to the rate of return X̃ :

ϑ∗∞ · ST =

∫ T

0

ϑ∗∞,tdSt =

∫ T

0

ζ∗(q)

St−
dSt = ζ∗(q)L(S)T = ζ∗(q)X̃T

We note that the stochastic logarithm L(S) is the inverse operation of the Doléans-

Dade stochastic exponential, i.e. E(L(S)) = S.

The fact that the optimal hedging strategy is of constant proportion will allow us to

rewrite the hedging portfolio as another Lévy process, as both the contract H and the

continuously rebalanced hedge ϑ∗∞(q) · ST = ζ∗(q)X̃T are Lévy processes, their linear

combination therefore also being a Lévy process. The utility maximization prob-

lem will reduce to computing an exponential compensator (see Kallsen and Shiryaev

[2002] for a definition). The next lemma will provide us with a general result that al-
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lows us to get the exponential compensator for our portfolio process V0+ϑ
∗
∞(q)·ST−H .

Lemma 2.6. Let X be a Lévy process with characteristics (bX(h), cX , FX) associated

with truncation function h(x). Define Lévy process Y :

Yt := αt+ βXt(h) + (W (x) − βh(x)) ∗ JX

where X(h) := X − X0 − (x − h(x)) ∗ JX , α and β are constants and W (·) is a

function corresponding to those in lemma 2.3. Then if
∫

|x|>1
eW (x)F (dx) <∞ (i.e. Y

is exponentially special), Y has an exponential compensator of the form

κ = βbX(h) +
1

2
β2cX + α +

∫

R

(
eW (x) − 1 − βh(x)

)
FX(dx)

Proof.We are looking for the exponential compensator, i.e. a value κ such that:

E [exp {Yt − κt}] = 1,

in other words a value which would make the compensated exponential Lévy process

a martingale. We compute κ by computing the drift of Zt = exp(Yt− κt) and setting

it to 0.

First we recall the canonical decomposition of X(h) into a drift and a local martingale

part M(h):

X(h) = bX(h)t +MX(h) = bX(h)t+Xc + h(x) ∗ (JX − νX)

where νX compensates the jump measure JX .

Using Itô’s lemma for Lévy processes, we find:

dZ = Z−(dY (h) − κdt +
1

2
(dY )2 + (ey − 1 − h(y))dJY )

= Z−(dY − (W (x) − h(W (x)))dJX − κdt+
1

2
β2cXdt+ (eW (x) − 1 − h(W (x)))dJX)

= Z−(αdt+ βdX(h) + (W (x) − βh(x))dJX − (W (x) − h(W (x)))dJX − κdt

+
1

2
β2cXdt+ (eW (x) − 1 − h(W (x)))dJX)

= Z−((α + βbX(h))dt+ βdMX(h) +
1

2
β2cXdt+ (eW (x) − 1 − βh(x))dJX − κdt)
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Setting bZ(h) = 0, we get that

α + βbX(h) +
1

2
β2cX +

∫

R

(eW (x) − 1 − βh(x))FX(dx) − κ = 0,

or equivalently

κ = α + βbX(h) +
1

2
β2cX +

∫

R

(eW (x) − 1 − βh(x))FX(dx)

The fact that Y is exponentially special ensures the finiteness of the Lévy integral.

We now have a general theorem to compute the exponential compensator of Lévy

contract (2.5). Therefore, we have everything needed to compute optimal exponential

utility and the related constant proportion hedging strategy ζ∗(q), which we do in

the following theorem.

Theorem 2.7. Under Lévy model (2.4), the indirect utility u∞(p, q) for the Lévy

contract (2.5) is given as:

u∞(p, q) = T

[

qα + (qβ + ζ∗(q))b̃(h) − 1

2
(qβ + ζ∗(q))2c̃

−
∫

x>−1

(e−qW (x)−ζ∗(q)x − 1 + (qβ + ζ∗(q))h(x))F̃ (dx)

]

− pq

where ζ∗(q) is the solution to the equation

0 = b̃(h) − (qβ + ζ∗(q))c̃+

∫

x>−1

(xe−qW (x)−ζ∗(q)x − h(x))F̃ (dx) (2.6)

Proof.We recall that for normalized exponential utility f∞(x) = 1 − exp(−x), the

indirect utility function for utility-based hedging is defined as

u∞(p, q) = max
ϑ∈Θ∞(p,q)

max
η∈R

η + E[1 − exp(−ϑ · ST − q(HT − p) + η)]

We recall that the optimal strategy ϑ∗∞(q) has a constant proportion representation

(recall Lemma 2.5) and that we can rewrite ϑ∗∞(q) · ST as a multiple of the rate of

return X̃ :

ϑ∗∞(q) · ST = ζ∗(q)X̃T

Given our specific contract (2.5), the sum of the derivative and underlying hedging

83



strategy together form another Lévy process

YT := −ζ∗(q)X̃T − qHT

In this light, we can interpret the computation as that of computing the exponential

compensator of Y :

u∞(p, q) = max
η∈R

η + 1 − exp(η + pq)E[exp(YT )]

Using theorem 2.6, we find that the compensator has form

κY = −qα + (−qβ − ζ∗(q))b̃(h) +
1

2
(qβ + ζ∗(q))2c̃

+

∫

x>−1

(e−qW (x)−ζ∗(q)x − 1 + (qβ + ζ∗(q))h(x))F̃ (dx) (2.7)

Thus,

u∞(p, q) = max
η∈R

η + 1 − exp(η + pq + κY T )

Optimizing over η, we find η∗ = −κY T − pq and thus

u∞(p, q) = −κY T − pq.

Substituting for κY we get our expression for u∞(p, q).

To get the optimal hedging strategy, we simply minimize the compensator over the

hedging proportion ζ , i.e. compute ∂κY /∂ζ = 0. This gives us the equation for the

optimal hedging strategy.

We can now proceed to compute good-deal bounds on prices. For this, we need an

optimal quantity q̂∞(p) and consequently the added investment potential ∆IP∞(p) =

u∞(p, q̂∞(p)) − u∞(·, 0). A quick computation gives us that we can obtain optimal

q̂∞(p) only implicitly from the equation

T (α+ β(b̃(h) − (qβ + ζ∗(q))c̃) +

∫

x>−1

(W (x)e−qW (x)−ζ∗(q)x − βh(x))F̃ (dx)) − p = 0.

(We can see that inversely, the utility-based price can be computed directly). More-

over, this implicit equation is dependent on our optimal hedging strategy ζ∗(q), which

is also only given by an implicit equation, computed in theorem 2.7. In both cases

the target variable is within an integral over the Lévy density, making numerical so-
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lutions sensitive and unstable. We therefore wish to find an approximate solution

which would capture the main spirit of the hedging strategy and price bounds, but

via an easily computable, closed-form formula. This would provide more insight into

the properties of the price in relation to the structure of the Lévy process.

2.3.3 Exponential utility: asymptotic approximation for small

jumps

As discussed in the previous section, we wish to find approximations to the exponen-

tial utility hedge and optimal quantity in such a way that would allow us to capture

important features of the model but give tractable results. We will do so by con-

sidering asymptotically small amounts of jumps in our model. Specifically, to get

closed-form approximations of exponential good-deal bounds, we will model the rate

of return via a family of Lévy processes X̃λ with Lévy densities F̃ λ and fixed mean

and variance µ̃, σ̃2 such that the X̃λ converges to a Brownian diffusion with that

given mean and variance as λ→ 0. Our motivation for considering such a sequence is

to see how introducing small amounts of market incompleteness via a random jump

measure and fat tails in our driving process alter our optimal hedging strategy and

pricing rule. We will focus on the third and fourth moment of the distribution, i.e.

the skewness and kurtosis, and consider moments of higher orders to be negligible.

One particular series with these properties can be obtained via a parametrization

X̃λ
t = (1 − 1

λ
)µ̃t+ λX̃t/λ2 (2.8)

from Černý et al. [2013]. For this particular parametrization, we know that

∫

x>−1

f(x)F̃ λ(dx) =
1

λ2

∫

x>−1

f(λx)F̃ (dx)

This leads to a particular scaling of the original skewness and kurtosis:

S̃k
λ

= λS̃k

ẼK
λ

= λ2ẼK

We now provide a theorem which gives conditions under which the Lévy contract H

is well-defined in the limit λ→ 0 for the family of models (2.8).
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Theorem 2.8. Under the family of models (2.8), for the Lévy contract

Hλ = βX̃λ
T (h) + (W (x) − βh(x)) ∗ J X̃λ

T ,

(with W satisfying conditions in theorem 2.3) to have a well-defined limit H0 =

limλ→0+H
λ it is sufficient if W ∈ C1 at x = 0 and β = W ′(0). Furthermore, if

W ∈ C1 ∀x ∈ R, then β = W ′(0) is also a necessary condition.

Proof.For the family of processes (2.8), the contract H takes the following form:

Hλ = βX̃λ
T (h) + (W (x) − βh(x)) ∗ J X̃λ

T

= β

[(

1 − 1

λ

)

µ̃T + λX̃T/λ2 − (x− h(x)) ∗ J X̃λ

T

]

+ (W (x) − βh(x)) ∗ J X̃λ

T

= β

[(

1 − 1

λ

)

µ̃T + λX̃T/λ2

]

+ (W (x) − βx) ∗ J X̃λ

T

= β

[(

1 − 1

λ

)

µ̃T + λX̃T/λ2

]

+
1

λ2
(W (λx) − βλx) ∗ J X̃

T

Our goal is to investigate the limit limλ→0H
λ. By [Černý et al., 2013, Lemma 2.6] we

know the term in square brackets will converge to µ̃T + σ̃BT , where B is a standard

Brownian motion. Therefore we need to investigate the limit

lim
λ→0

1

λ2
(W (λx) − βλx)

Using a change of variable y = λx, we can also rewrite this as

x2 lim
y→0

1

y2
(W (y) − βy)

Let us denote the limit

L = lim
y→0

1

y2
(W (y) − βy)

For H0 to be well-defined, we need L < ∞ and the Lévy density over the limiting

function must be finite: ∫

x>−1

Lx2F X̃(dx) <∞.

Due to the minimal integrability requirements of Lévy processes and the finite second

moment, the density integral will be automatically finite as long as L is a finite-valued

limit.
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Assuming W (y) ∈ C1 on some small interval around 0 (and W (0) = 0), we can prove

the sufficient and necessary condition for finiteness is W ′(0) = β. Taylor expanding

W (y), we have:

W (y) = W (0) +W ′(0)y + O(y2) = W ′(0)y + O(y2)

Thus

lim
y→0

1

y2
(W (y) − βy) = lim

y→0

(W ′(0) − β)y + O(y2)

y2

Trivially limy→0
O(y2)
y2

< ∞. As a consequence, the limit will only be finite iff

limy→0
(W ′(0)−β)

y
<∞. The only way for this to be finite is iff W ′(0) = β.

Having established requirements on the form of the Lévy contract for the limit λ →
0 to be well-defined, we can progress to getting asymptotic approximations of the

indirect utility function u∞(p, q). Let us recall that the main term of the indirect

exponential utility in theorem 2.7 was the following exponential compensator, where

we are interested in an approximation of the Lévy density integral:

κλY = − qα+ (−qβ − ζ∗(q))µ̃+
1

2
(qβ + ζ∗(q))2c̃λ

+

∫

x>−1

(
e−qW (x)−ζ∗(q)x − 1 + (qβ + ζ∗(q))x

)
F̃ λ(dx) (2.9)

Transforming the Lévy integral to the original density F̃ , that means

∫

x>−1

(
e−qW (x)−ζ∗(q)x − 1 + (qβ + ζ∗(q))x

)
F̃ λ(dx) =

1

λ2

∫

x>−1

(
e−qW (λx)−ζ∗(q)λx − 1 + (qβ + ζ∗(q))λx

)
F̃ (dx)

From this perspective, we see that a Taylor expansion of the exponential function is

going to provide a good approximation, as λ is going to be small.

Therefore, let us proceed by Taylor-expanding the exponential in the density term

(keeping notation in the F̃ λ density). At this point, we could continue conducting

the analysis for a general function W (x), but this would lead to a need to do multiple

Taylor expansions and would generate complicated expressions providing little new

insight. Therefore, we choose a specific function W (x) - a 4th order polynomial, as

this allows us to capture moments of the returns distribution:
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Assumption 2.1.

W (x) = c1x + c2x
2 + c3x

3 + c4x
4 (2.10)

Such a function W (x) allows us to straightforwardly get results for variance, skewness

and kurtosis swaps (it does not allow for a log contract, however). Furthermore, since

we will only be interested in the impact of the first four moments of the distribution

on prices, we will make approximations of all our terms up to order O(λ2) (as we saw

previously, this is the λ order of kurtosis scaling for the parametrization (2.8)), which

means we only consider polynomial terms up to order 4 to be significant (because
∫

x>−1
xnF̃ λ(dx) = λn−2

∫

x>−1
xnF̃ (dx)). Thus our results also hold for any weight

function with higher order polynomial terms, e.g. W (x) + O(x5) (allowing us to

reclaim log contract asymptotics).

For the Taylor expansion to be valid, or more specifically, for the remainder term in

the Lévy density to be well-defined, we will make the following assumption on the

moments.

Assumption 2.2. We require that the following moments of the Lévy density are

finite: ∫

x>−1

(qW (x) + ζ∗(q)x)4F̃ λ(dx) <∞

We are now ready to state the lemma giving us an approximation for the exponential

compensator.

Lemma 2.9. Under assumption 2.2 and for a weight function W (x) +O(x5), where

W (x) has form (2.10), the exponential compensator (2.9) can be approximated via the

first four moments of the returns of X̃ as

κλY = −q(α + c2

∫

x2F̃ λ(dx)) + (−qc1 − ζ)µ̃

+
1

2
(qc1 + ζ)2σ̃2

+ S̃k
λ
σ̃3(c3q + c2ζq + c1c2q

2 − 1

6
(ζ + c1q)

3) (2.11)

+ ẼK
λ
σ̃4(

1

2
c22q

2 + c1c3q
2 + c3ζq − c4q −

1

2
c2ζ

2q − c1c2ζq
2 − 1

2
c21c2q

3 +
1

24
(qc1 + ζ)4)

+

∫

x>−1

(R5(x) + O(x5))F̃ λ(dx)

88



where

R5(x) = − 1

24
(qW (x) + ζ∗(q)x)5

∫ 1

0

(1 − s)4 exp{(−qW (x) − ζ∗(q)x)s} ds (2.12)

Proof.Simply Taylor-expanding the exponential function of the exponential com-

pensator κλY for a general function W (x), we obtain that the compensator can be

approximated as

κλY = − qα + (−qβ − ζ∗(q))µ̃+
1

2
(qβ + ζ∗(q))2c̃λ

+

∫

x>−1

(

− qW (x) − ζ∗(q)x+
1

2
(q2W (x)2 + 2qζ∗(q)W (x)x+ ζ∗(q)2x2)

− 1

6
(q3W (x)3 + 3q2W (x)2xζ∗(q) + 3qW (x)x2ζ∗(q)2 + x3ζ∗(q)3)

+
1

24
(q4W (x)4 + 4q3W (x)3xζ∗(q) + 6q2W (x)2x2ζ∗(q)2 + 4qW (x)x3ζ∗(q)3 + x4ζ∗(q)4)

+ (qβ + ζ∗(q))x+R5(x)

)

F̃ λ(dx)

= −qα + (−qβ − ζ∗(q))µ̃+
1

2
(qβ + ζ∗(q))2c̃λ

+

∫

x>−1

(

− q(W (x) − βx) +
1

2
(qW (x) + ζ∗(q)x)2 − 1

6
(qW (x) + xζ∗(q))3

+
1

24
(qW (x) + xζ∗(q))4 +R5(x)

)

F̃ λ(dx)

where

R5(x) = − 1

24
(qW (x) + ζ∗(q)x)5

∫ 1

0

(1 − s)4 exp{(−qW (x) − ζ∗(q)x)s} ds (2.13)

is the Taylor expansion remainder term (see Abramowitz and Stegun [1972, eqn

3.6.3]).

We notice that if we now plug in (2.10) for W (x) and use theorem 2.8, it is necessary

that β = W ′(0) = c1 for limλ→0H
λ to be well-defined. Therefore if we Taylor-expand

W (x) around 0, we eliminate the outstanding term of order O(x) in the integral and

are left with terms of at least order O(x2).

Using our weighting function (2.10), we can multiply terms out and simplify the
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approximate compensator κλY to get:

κλY = −qα + (−qc1 − ζ)µ̃

+
1

2
(qc1 + ζ)2c̃λ +

∫

x2F̃ λ(dx)(
1

2
(ζ + c1q)

2 − c2q)

+

∫

x3F̃ λ(dx)(c3q + c2ζq + c1c2q
2 − 1

6
(ζ + c1q)

3)

+

∫

x4F̃ λ(dx)(
1

2
c22q

2 + c1c3q
2 + c3ζq − c4q −

1

2
c2ζ

2q − c1c2ζq
2 − 1

2
c21c2q

3 +
1

24
(qc1 + ζ)4)

+

∫

x>−1

(R5(x) + O(x5))F̃ λ(dx)

We can express the Lévy integrals via the moments of returns and rearrange:

κλY = −q(α + c2

∫

x2F̃ λ(dx)) + (−qc1 − ζ)µ̃

+
1

2
(qc1 + ζ)2σ̃2

+ S̃k
λ
σ̃3(c3q + c2ζq + c1c2q

2 − 1

6
(ζ + c1q)

3) (2.14)

+ ẼK
λ
σ̃4(

1

2
c22q

2 + c1c3q
2 + c3ζq − c4q −

1

2
c2ζ

2q − c1c2ζq
2 − 1

2
c21c2q

3 +
1

24
(qc1 + ζ)4)

+

∫

x>−1

(R5(x) + O(x5))F̃ λ(dx)

Finally, we are interested in the conditions which must hold for the remainder to

be well-defined. For this, we can compute the integral in equation (2.13) for R5(x)

explicitly. Repeatedly using by parts integration, we find

∫ 1

0

(1 − s)4eAs ds = − 1

A5
(A4 + 4A3 + 12A2 + 24A− 24eA + 24)

where in our case, A = −qW (x) − ζ∗(q)x. Thus, we get a full closed-form expression

for the remainder:

R5(x) = − 1

24
(qW (x) + ζ∗(q)x)4 +

1

6
(qW (x) + ζ∗(q)x)3 − 1

2
(qW (x) + ζ∗(q)x)2

+ (qW (x) + ζ∗(q)x) + e−qW (x)−ζ∗(q)x − 1

This makes it easy to see the conditions we need to set on our distribution for every in-

tegral to be finite. We have already assumed the exponential
∫

x>−1
e−qW (x)−ζ∗(q)xF̃ (dx)

is finite, since this was a condition required for the full exponential compensator
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to exist. The other condition is on the existence of co-moments
∫

x>−1
(qW (x) +

ζ∗(q)x)4F̃ (dx), for which we have made assumption 2.2.

2.3.4 The approximate hedging strategy

Having the approximation of the exponential compensator of the full exponential

utility u∞(p, q)), allows us to compute the approximate hedging strategy for small

jumps.

Theorem 2.10. The full hedging strategy of theorem 2.7 for the family of Lévy pro-

cesses (2.8) can be expressed as a polynomial in λ in the form

ζλ = a0 + a1λ+ a2λ
2 + o(λ2) (2.15)

where

a0 =
µ̃

σ̃2
− qc1

a1 = σ̃S̃k(
1

2

µ̃2

σ̃4
− c2q)

a2 = c2qµ̃(ẼK− S̃k
2
) +

µ̃3

σ̃4
(
1

2
S̃k

2 − 1

6
ẼK) − c3σ̃

2qẼK

Proof.The approximate optimal hedging strategy ζλ(q) is found by minimizing the

exponential compensator, i.e. solving

∂

∂ζ
κλY = 0

Writing out the equation in full using the approximate form of the compensator (2.14),

we get:

0 = −µ̃+ σ̃2(qc1 + ζ)

S̃k
λ
σ̃3(c2q −

1

2
(ζ + c1q)

2) (2.16)

ẼK
λ
σ̃4(c3q − c2ζq − c1c2q

2 +
1

6
(qc1 + ζ)3) +

∫

x>−1

∂

∂ζ
R5(x) + O(x5)F̃ λ(dx)

The above can generally be seen as an equation of form G(ζ, λ) = 0. Now we look for

the approximate optimal hedging strategy ζλ. Using the implicit function method on
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equation (2.16), we look for a hedging strategy of the form

ζλ = f(λ) = a0 + a1λ+ a2λ
2 + o(λ2)

If we ignore the remainder term R5(x) (we will show below that we can do this) and

solve

G(ζ0, 0) = 0

∂

∂λ
G(ζ0, 0) = 0

∂2

∂λ2
G(ζ0, 0) = 0

we identify coefficients a0, a1, a2 to be

a0 =
µ̃

σ̃2
− qc1

a1 = σ̃S̃k(
1

2

µ̃2

σ̃4
− c2q)

a2 = c2qµ̃(ẼK − S̃k
2
) +

µ̃3

σ̃4
(
1

2
S̃k

2 − 1

6
ẼK) − c3σ̃

2qẼK

We now show why the remainder term ρ5(ζ, λ) :=
∫

x>−1
( ∂
∂ζ
R5(x) + O(x5))F̃ λ(dx)

from equation (2.16) does not influence our approximate hedging strategy. We can

differentiate R5(x) wrt to ζ for a general W (x):

∂

∂ζ
R5(x) = − 5

24
(qW (x) + ζx)4x

∫ 1

0

(1 − s)4e(−qW (x)−ζx)s ds

+
1

24
(qW (x) + ζx)5x

∫ 1

0

(1 − s)4se(−qW (x)−ζx)s ds

If we use W (x) from 2.10, we can compute the Lévy density integral over this re-

mainder term:

ρ5(ζ
∗(q), λ) =

∫

x>−1

∂

∂ζ∗(q)
R5(x)F̃ λ(dx)

=

∫

x>−1

(

− 5

24
λ3x5(q

4∑

i=1

ciλ
i−1xi−1 + ζ∗(q))4

∫ 1

0

(1 − s)4e(−qW (λx)−ζ∗(q)λx)s ds

+
1

24
λ4x6(q

4∑

i=1

ciλ
i−1xi−1 + ζ∗(q))5

∫ 1

0

(1 − s)4se(−qW (λx)−ζ∗(q)λx)s ds

)
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Since the leading λ terms are at least of order λ3, it follows that:

ρ5(ζ
∗(q), λ)|λ=0 = 0

∂

∂λ
ρ5(λ, ζ

∗(q))|λ=0 = 0

∂2

∂λ2
ρ5(λ, ζ

∗(q))|λ=0 = 0

which means the ρ5(ζ, λ) term does not enter into the computation of coefficients

a0, a1, a2 of the polynomial hedge approximation. The same logic applies if we use a

function W (x) which has an additional O(x5) term above the polynomial (2.10), as

any higher-order term would be subsumed into the O(x5) part of the remainder term

ρ5(ζ, λ).

2.3.5 Asymptotic exponential good-deal bounds for small jumps

Now that we have an approximation to the exponential compensator (and hence

the indirect utility) and we have an approximation for the hedging strategy (i.e. it

is no longer given by an implicit equation), we can get our desired final result, an

approximation to the full exponential utility good-deal bounds under the assumption

that our model jumps are small.

Theorem 2.11. For λ→ 0 in the family of processes (2.8), the exponential good-deal

bounds of the Lévy contract (2.5) with weighting function W (x)+O(x5) (where W (x)

is given by (2.10)) are

pλ,±∞ (∆IP ) = Nλ
∞ ±

√

2Dλ
∞∆IP + O(λ3)

where

Nλ
∞ = T (α+ c2

∫

x>−1

x2F̃ λ(dx) − S̃k
λ
(c2µ̃σ̃ − c3σ̃

3)

+
1

2
c2µ̃

2(ẼK
λ − (S̃k

λ
)2) − ẼK

λ
(c3µ̃σ̃

2 − c4σ̃
4))

Dλ
∞ = Tc22σ̃

4(ẼK
λ − (S̃k

λ
)2),
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Proof.Plugging in the approximately optimal hedging strategy ζλ(q) from (2.15) into

the approximation of the exponential compensator (2.14) we find that

κλY (q) = −1

2

µ̃2

σ̃2
− 1

6
S̃k

λ µ̃3

σ̃3
+
µ̃4

σ̃4
(−1

8
(S̃k

λ
)2 +

1

24
ẼK

λ
)

+ q

(

− α− c2

∫

x>−1

x2F̃ λ(dx) + S̃k
λ
(c2µ̃σ̃ − c3σ̃

3) +
1

2
c2µ̃

2((S̃k
λ
)2 − ẼK)

+ ẼK(c3µ̃σ̃
2 − c4σ̃

4)

)

+ q2
1

2
c22σ̃

4(ẼK
λ − (S̃k

λ
)2) + O(λ3)

From there we can compute the approximate indirect utility uλ∞(p, q) = −TκλY (q)−pq
and equally the change in investment potential ∆IP λ

∞(p) = uλ∞(p, q̂λ∞(p))−uλ∞(·, 0) =

−T (κλY (q̂λ∞(p))−κλY (0))−pq̂λ∞(p). To get the optimal quantity, we solve ∂
∂q

∆IP λ
∞ = 0

to find:

q̂λ∞(p) =
Nλ

∞ − p+ O(λ3)

Dλ
∞

,

where

Nλ
∞ := T (α+ c2

∫

x>−1

x2F̃ λ(dx) − S̃k
λ
(c2µ̃σ̃ − c3σ̃

3)

+
1

2
c2µ̃

2(ẼK
λ − (S̃k

λ
)2) − ẼK

λ
(c3µ̃σ̃

2 − c4σ̃
4))

Dλ
∞ := Tc22σ̃

4(ẼK
λ − (S̃k

λ
)2),

Plugging the optimal quantity into the indirect utility leads to the investment poten-

tial, which is then

∆IP λ
∞(p) =

1

2

(Nλ
∞ − p+ O(λ3))2

Dλ
∞

Inverting this relationship, we get approximate good-deal bounds up to order λ2 for

the Lévy contract (2.5):

pλ,±∞ (∆IP ) = Nλ
∞ ±

√

2Dλ
∞∆IP + O(λ3)
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2.4 Application 1: good-deal bounds of a variance

swap

We can use our theoretical results on the Lévy contract to investigate the good-deal

bounds of variance swaps. We achieve this by picking the contract variables

α = c̃, β = 0, W (x) = x2

making the payoff H = T (c̃+
∫

R
x2F̃ (dx)) = Tσ2 =

∫ T

0
σ2dt.

For mean-variance hedging, by way of results from theorem 2.4 we get the following

good-deal bounds:

p̂±−1(∆IP ) = V0 ±
√

2ε0∆IP

V0 = σ̃2T − µ̃σ̃S̃kT

ε20 =
1 − exp(− µ̃2

σ̃2T )

µ̃2/σ̃2
σ̃4(ẼK − S̃k

2
)

and a locally optimal hedging strategy

ξt =
σ̃S̃k

St−

For comparison, the asymptotic exponential good-deal bounds (for small λ) are

p̂λ,±∞ (∆IP ) = Nλ
∞ ±

√

2Dλ
∞∆IP + O(λ3)

Nλ
∞ = T (σ2 − µ̃σ̃S̃k

λ
+

1

2
µ̃2(ẼK

λ − (S̃k
λ
)2))

Dλ
∞ = T σ̃4(ẼK

λ − (S̃k
λ
)2)

The approximate pure unit hedge for exponential utility (i.e. the exponential equiv-

alent of the locally optimal hedge for mean-variance preferences), is

1

St−

ζλ(q) − ζλ(0)

q
=

1

St−
(σ̃S̃k

λ − µ̃(ẼK
λ − (S̃k

λ
)2) + o(λ2))

We can see that in both cases, up to order O(λ2), the price of the variance swap

is adjusted for the skewness of the returns process, and the size of the adjustment

depends on the mean return. The exponential utility case has an additional adjust-
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ment for the kurtosis of the returns. We interpret this difference to be due to the

non-symmetric shape of exponential utility, which, unlike mean-variance preferences,

does not have a cut-off point on the investment opportunities it sees.

We can further see that the width of the exponential good-deal bounds is very similar

to the mean-variance case - if we Taylor-expand the exponential in the mean-variance

case, we will find that up to first order the exponential and mean-variance bounds are

identical. On the other hand, there is a minor kurtosis adjustment in the approximate

price of the derivative for exponential utility. The difference ẼK
λ − (S̃k

λ
)2 serves

here as an imperfect measure of deviation from normality. Some unpublished results

(Harremoës [2000]) also indicate that this difference is related to minimal entropy

under restrictions on the first two moments of a distribution.

Comparing the approximate exponential hedging strategy with the mean-variance

result, we see again that to the order O(λ) they are identical. We see again a correction

based on the difference between kurtosis and squared skewness at the order O(λ2).

We now look numerically at the difference between the good-deal bounds obtained

via mean-variance preferences, full exponential and asymptotic exponential utility. In

figure 2.1 we provide a comparison of for the case of an NIG model whose parameters

are set to fit the first four moments of the returns distribution (in annual terms), with

µ = 0.1, σ = 0.3, Sk = −0.5,EK = 0.7, with a time horizon of 1 year, T = 1.

For the full exponential solution, to achieve numerical stability of the solution to the

nonlinear equation (2.6) (solved via MATLAB’s fsolve function), we truncate the

jump sizes of the Lévy density, eliminating rates of return above 100%.

For the asymptotic solution, we consider a solution where λ = 1. Since λ is scaled

in Černý et al. [2013] to the range [0, 1] only for pure convenience and the family

of processes Xλ could equally well be reparameterized to be within any other range

of values, the parameter’s value only gives us an indication of how close we are to

Brownian motion and how far away we are from the original Lévy process through

the value of the re-scaled skewness and kurtosis. If we find that for our chosen λ, the

full and asymptotic price bounds are only a few basis points away from each other at

a particular level of ∆IP , it means our exposure to jumps via the derivative is small

enough for us to handle them in an asymptotic sense. In other words, a world where

returns are generated by X̃λ is a world with small jumps from the perspective of the

hedger of the derivative contract.
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Figure 2.1: Comparison of mean-variance utility, exponential utility and asymptotic
utility good-deal bounds relative to the unique complete market price.
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From figure 2.1 we can see that we have to misprice the swap quite significantly

to introduce interesting trading opportunities into the market for our competitors.

Obviously, for large exposures and extreme market opportunities, the asymptotics do

not do a very good job of capturing the properties of the full exponential solution.

However, the main question we are trying to answer is the following: how much

can we misprice without offering other traders a lucrative opportunity? Let us use

the connection between ∆IP and the Sharpe ratio for the case of mean-variance

preferences (γ = −1), where ∆IP−1 = 1
2
SR2

SH , as a gauge of lucrativeness. Under

the assumption that traders will not consider it worth the effort to potentially improve

their annualized Sharpe ratio by less than 0.2, we’re really only interested in price

differences up to ∆IP < 0.02. The difference between the full exponential solution

and the approximation on that interval is of the order 10-15% relative to the Black-

Scholes price, where most of the difference is caused by the shifted mean of the

asymptotic approximation. This difference is large enough to indicate that we are

probably not in a world with completely small jumps. On the other hand, the mean-

variance solution only differs from the full exponential utility solution by at most 5%,

showing it is a worthy substitute. In terms of the deviations of the good-deal bounds

from their respective central case prices (i.e. pγ(∆IP )∆IP=0), all three solutions allow

a deviation of at most 12%, which we consider to be tight bounds relative to previous

results in the literature.

2.5 Application 2: good-deal bounds of a skewness

swap

Similarly to a variance swap, we can get possible price ranges of skewness swaps by

picking contract variables

α = 0, β = 0, W (x) =
x3

σ̃3

making the payoff H = T
∫
R
x3F̃ (dx)

σ̃3 = T S̃k. This ties into previous research on higher-

order moment swaps (Schoutens [2005]) and investigations into skewness risk premia

(Neuberger [2012], Kozhan et al. [2013] and references therein).
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For mean-variance preferences, by way of results from theorem 2.4 we get

V0 = T (S̃k − µ̃

σ̃
ẼK)

ε20 =
1 − exp(− µ̃2

σ̃2T )

µ̃2/σ̃2

(∫

x>−1
x6F̃ (dx)

σ̃6
− ẼK

2

)

ξt =
ẼK

σ̃St−

For exponential utility, the approximation up to order O(λ2) is insufficient to get

non-trivial good-deal bounds on the contract, because Dλ
∞ = 0. As a consequence,

ignoring moments of higher order than 4, the optimal q̂λ∞(p) automatically strays to

±∞ in case of any deviation from the unique price for the contract,

p̂λ(∆IP ) = T

(

S̃k
λ − ẼK

λ µ̃

σ̃

)

We can notice that at this level of approximation, the mean-value process coincides

with the exponential utility price. Furthermore, the approximate hedging strategy

also coincides:
1

St−

ζλ(q) − ζλ(0)

q
=

ẼK

σ̃St−

To get separate upper and lower good-deal bounds on a skewness swap in the asymp-

totic exponential sense, we would need to look at higher order terms. Specifically,

looking at the mean-variance hedging error, we hypothesize that we would need to go

up to the 6th moment (i.e. order O(λ4)) of the distribution to introduce uncertainty

on the approximate utility-based price.

2.6 Conclusion

In this chapter, we set out to look at the factors and risks that can further influence

the price of log contracts and variance swaps. Specifically we focused on the impact

of jumps on price uncertainty, as the literature suggests this is an important factor to

consider. We applied utility-based pricing methodology to get good-deal bounds on

a general family of contracts, which we labelled the Lévy contract, that encompass

the log contract, variance swaps and higher order moment swaps. We were able to

compute them for exponential utility and mean-variance preferences. For the former,

99



we also found a good closed-form approximation via the first four moments of the

distribution, which is applicable when the jumps we observe are not too large. We

derived explicit formulas for the situation when the Lévy contract has a specific, poly-

nomial structure to its jump transformation. Finally, we showed on the example of a

variance swap how good-deal bounds provide more granular information about price

uncertainty than standard no-arbitrage bounds. Setting a limit to the investment

opportunity we’re willing to inject into the market (i.e. an opportunity other traders

would react to), we obtain tight bounds on the price of the contract.

Looking critically at the results, however, we see that they are highly dependent on

our knowledge of the moments of the returns distribution. That is why in the next

chapter, we will try to allow for further uncertainty in this respect, by assuming the

returns are driven by a Hidden Markov Model (HMM), where we consider several

candidate distributions, but we are uncertain which of them is the “correct” one. To

decide that, we will attempt to let the data speak for itself by filtering out the most

probable distribution and adjusting our trading strategy based on this estimate.
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Chapter 3

Mean-variance hedging for

regime-switching Lévy processes

3.1 Motivation and literature review

In the previous chapter we derived, among other things, the mean-value process and

hedging error for a variance swap when pricing in an incomplete market setting. We

saw that it was completely determined by the first four moments of the underlying

returns distribution. Our price estimate will therefore be heavily reliant on us having

specified the “correct” distribution of returns, i.e. having chosen the right model.

In this chapter we will consider how incorporating uncertainty on these parameters

impacts pricing and hedging of contingent claims. There are currently multiple ways

of achieving this, all with their strengths and weaknesses.

We could take a highly risk-averse approach and acknowledge the uncertainty in our

use of the physical distribution completely by considering all the possible physical

measures that are attainable via distortion of the physical measure without adding

too many new assumptions as measured by entropy. This is an approach pioneered in

many papers by the authors of Hansen and Sargent [2008] and later used for obtaining

robust no-good-deal bounds in a discrete time setting in Boyarchenko et al. [2014].

The downside to the robustness is that this leads to rather involved computations

even for a simple binomial tree model.

A more tractable approach is for us to define stochastic dynamics of our uncertain
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parameters, thus exogenously imposing structure on how our parameter uncertainty

develops over time. Under well-chosen dynamics, this can lead to more straightfor-

ward and explicit calculations. An example of this approach is the broad class of

stochastic volatility models, such as the celebrated Heston model (Heston [1993]).

These incomplete market models acknowledge that the volatility of returns is an

unobservable and time-varying quantity, and impose a particular dynamic on its be-

haviour. The enforced dynamics allow us to then compute prices explicitly. However,

it may be unclear how to choose the most appropriate model for volatility, as apart

from the Heston model we can choose the CEV, SABR, GARCH, 3/2 model (or de-

fine our own brand new model), each of them leading to slightly different behaviour

of our volatility and prices. Furthermore, the majority of these models focus solely

on the uncertainty of the volatility, and consider all other moments of our returns

distribution to be deterministic. In a similar vein, we could use the uncertain volatil-

ity model of Avellaneda et al. [1995], where volatility σ does not have any dynamics

but is simply assumed to lie somewhere within a range [σmin, σmax] (based on e.g.

historical observations), and all other parameters are considered to be known.

An alternative approach is to limit our uncertainty to a finite set of possible re-

turns distributions corresponding to various market states (e.g. highly volatile bear

market, slowly rising bull market etc.). We then stipulate a dynamic according to

which the market switches between these different states. This is referred to as a

regime-switching (RS) model. When calibrated to historical data, it allows us to si-

multaneously consider empirical historical distributions in several distinct historical

periods. As a consequence, it also allows us to vary all the moments of the distribu-

tion, not just volatility. This can add realism particularly to the pricing of long-dated

claims (e.g. 20-30 year options), which may have to endure several different market

states until expiry.

Most commonly, the dynamics of the market state are described by a Markov process

- due to this Markovian structure these models are sometimes also referred to as

Markov-modulated or Markov-additive processes. They come in two flavours. The

first is a model where we assume that the state is observable throughout the lifetime

of the claim and thus we know the distribution from which returns are being drawn -

here the main new feature is the possibility of switching between regimes. The second

is a model where in addition, the state is unobservable and we must infer the most

probable state via filtering of the observed returns, taking into account the probability

of switching between regimes. This second type of model is sometimes also referred to
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as a hidden Markov model (HMM), and it bears resemblance to stochastic volatility

models, since the instantaneous volatility of our returns is not observable and our

estimate of it changes due to the changing probability of each regime filtered from

observed returns.

Regime-switching modelling in finance and economics goes back to Hamilton [1989],

but the most prolific author on the topic of regime-switching is Robert Elliott, start-

ing with the general textbook Elliott et al. [1995] and with many articles focused

on applications to options pricing, e.g. Elliott et al. [2005], Elliott et al. [2007],

Elliott and Siu [2008], Elliott et al. [2010], Elliott and Siu [2012], Elliott and Lian

[2013], Elliott and Siu [2013]. Most of these (just as most papers by other researchers

on the topic) deal with continuous returns processes driven by a Brownian motion,

and the regimes are usually ones with low, medium, or high volatility. More re-

cently, research has appeared on extending regime-switching to encompass returns

driven by Lévy processes, starting with Chourdakis [2005], with more recent contri-

butions by Elliott and Osakwe [2006], Elliott et al. [2013], Siu [2014], Hainaut [2011],

Hainaut and Robert [2014], Hainaut and Colwell [2014], Swishchuk et al. [2014], Kim et al.

[2011]. These papers limit themselves to using the Esscher martingale measure for

pricing, which relates to maximisation of exponential utility (see e.g. [Fujiwara and Miyahara,

2003, Section 4]). Furthermore, most of them only provide a price for the derivative,

but do not investigate hedging strategies or hedging errors.

For HMMs, it is also important to be able to filter the hidden state out of the data. For

Lévy processes, there are only limited results, restricted to either a pure jump process

or a jump diffusion process. The filtering is usually done via the so-called Zakai

filtering equation, giving a non-normalized version of the filter. Elliott and Royal

[2008], Elliott and Siu [2013] provide a Zakai equation for the case of pure jump

processes, Siu [2014] provides a Zakai equation for the case of jump-diffusion processes.

Ceci and Colaneri [2014], Ceci and Colaneri [2012] provide both a Zakai equation

for the unnormalized filter and a Kushner-Stratonovich equation for the normalized

filter in the case of a jump-diffusion driving both the state and the price process.

Schmidt and Frey [2012] provide a Kushner-Stratonovich equation in a similar setting

for filtering default intensities in credit derivatives.

Our goal in this chapter is to derive variance-optimal hedging results under a HMM

where the returns in different regimes are driven by Lévy processes. In doing so, we

will compute the impact of model uncertainty in our modelling on the quadratic hedg-
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ing error (and as we saw in the previous chapter, hence the good-deal bounds). The

existing literature on this topic is relatively sparse. Mean-variance portfolio selection

with regime-switching has been investigated in Elliott et al. [2010] for continuous

processes, in this case the regime was assumed to be known. For mean-variance

hedging, Pham [2001] provides continuous-time results for a diffusion process with

unobserved drift. For regime-switching diffusion processes, we have mean-variance

portfolio results in Elliott and Siu [2008]. An application to pricing and hedging

credit derivatives using regime-switching compound Poisson processes is described in

Schmidt and Frey [2012].

The works closest to ours, dealing with mean-variance hedging for regime-switching

Lévy processes, are Pelsser and Delong [2015], Momeya and Pamen [2011], Ceci et al.

[2015], Goutte et al. [2014]. The only paper to evaluate the hedging error of a regime-

switching Lévy process is Goutte et al. [2014], but does so only in the case when the

regime is observable. Our contribution is threefold:

1. We separate the filtering task from the hedging task, i.e. we obtain all quantities

of interest by applying general semimartingale quadratic hedging formulae of

Černý and Kallsen [2007] to the filtered dynamics of stock prices, where the

filtered state serves as an additional state variable;

2. we obtain more explicit dynamics of the posterior estimate of the unobserved

state;

3. and we will evaluate the mean-value process, the hedging strategy and the

hedging error for the case when the regime is unobservable throughout the life

of the contingent claim.

3.2 Setup

We work on fixed probability space (Ω,H,P), which will be a product space generated

by M+1 random variables X and Lk, k = 1...M . Here Lk will be M ≥ 2 independent

(in the sense of [Rogers and Williams, 2000, Vol 1, II.22]) Lévy processes Lk, k =

1...M , with local differential characteristics (bk, ck, F k) and characteristic exponentials

φk. Each of the component Lévy processes Lk generates its own filtration {Ĥk
t }.

We denote the enlarged filtration containing all the components Ĥt =
∨M

k=1 Ĥk
t . If
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we stack these individual Lévy processes into a vector, we obtain a vector process

L = (L1, L2, ..., LM)⊤ with differential characteristics (b,Σ,F ) and characteristic

exponential φ, where Σ is the variance-covariance matrix. Since the component Lévy

processes are independent and hence uncorrelated, we will simplify notation of the

differential characteristics to (b, c,F ), only recording the vector of variances c instead

of the entire variance-covariance matrix Σ, as all off-diagonal entries of Σ are zero.

Throughout, b denotes the instantaneous drift that relates to the truncation function

h(x) = x.

The stock price process S is modelled as a special semimartingale S = S0 exp(Y ), i.e.

the cumulative log-return Y is an exponentially special semimartingale (as defined

in Kallsen and Shiryaev [2002]; for a definition of a special and exponentially special

semimartingale, see appendix definitions C.1,C.2 ). More specifically, Y is a regime-

switching Lévy process which switches between the M Lévy processes Lk defined

above. The observable stock price process S (or equivalently Y ) generates a filtration

F̂t = σ(Yu|0 ≤ u ≤ t) - we assume this filtration F̂ ⊂ Ĥ captures all the observable

information in our model.

The current state of Y is controlled by an unobservable (M-dimensional) finite-state,

continuous-time Markov chain X. This Markov chain takes values from a finite

set of vectors {ek}k=1...M (here ek = (0, ..., 0, 1, 0, ..., 0)⊤ has a value of 1 at its k-

th element), with the intensity of transitions between these values controlled by an

(transition) intensity matrix A = {aij}i,j=1...M . This matrix is sometimes referred to

as the infinitesimal generator of X and its elements satisfy aii = −
∑

j 6=i aji. Process

X generates a filtration {Ft} independent from Y . We denote the joint (G)lobal

filtration of processes (X, Y ) as {Gt} = {Ft ∨ F̂t}. The joint process (X, Y ) is

Gt-Markov.

The process X belongs into the group of so-called point processes (see Brémaud [1981]

for an exposition) and the apriori probability pit = P(Xt = ei) of any given state can

be described via a forward Kolmogorov equation:

dpt

dt
= Apt

This can easily be solved to give

pT = pt exp(A(T − t))
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where exp(·) is understood to be the matrix exponential. The process X is a càdlàg

semimartingale, because it can be constructed as a sum of independent Poisson

random measures controlling each of the transitions between different states (see

Brémaud [1999, Theorem 9.1.2], Kella and Yor [2017, eqn. 48] for such a construc-

tion). [Elliott et al., 1995, Lemma 2.1] show that X has the following canonical

semimartingale decomposition:

Xt = X0 +

∫ t

0

AXu− du+ Mt

As a consequence, Mt := Xt −X0 −
∫ t

0
AXu− du is a (Ft,P)-martingale.

Given process X, the value of Y at any time t is determined by the following equation:

Yt = Y0 +

∫ t

0

X⊤
s−dLs = Y0 + X− ·Lt

Here, we can assume without loss of generality Y0 = 0. Assuming that we can

only glean information about X by observing Y (i.e. there are no other observables

that carry information about X), we will consider our best estimate of unobservable

X to be the so-called optional projection of X onto filtration {F̂t}, denoted X̂.

In general, an optional projection is a projection of process X onto a filtration to

which it is not adapted. [Rogers and Williams, 2000, Theorem 7.1] (equivalently

[Bain and Crisan, 2009, Theorem 2.7]) provides a definition of the optional projection

(and simultaneously theorem proving uniqueness).

Theorem, Definition 3.1. Let X be a bounded measurable process, then there exists

an optional process X̂ called the optional projection of X such that for every stopping

time τ :

X̂τ1τ<∞ = E[Xτ1τ<∞|F̂τ ]

This process is unique up to indistinguishability, i.e. any processes which satisfy these

conditions will be indistinguishable.

In practical terms, the optional projection can, for any finite t, be more simply com-

puted as follows:

X̂t := E[Xt|F̂t]

and the paths of this process will be unique (up to a null set - see [Protter, 2004,

Chapter I.1] for details of indistinguishability). Each element X̂ i of vector X̂ is
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the posterior probability of being in state ei given observations of process Y , which

therefore means the elements must sum to 1, i.e.

1⊤X̂ = 1

Furthermore, since X is a bounded (G,P)-semimartingale, it follows from [Föllmer and Protter,

2010, Theorem 9] that X̂ is an (F̂ ,P)-semimartingale.

Having defined how we will handle the unobservability of X, we now proceed to

describe the properties of Y under filtration {F̂t}. We will use the following lemma

to obtain the characteristic function of Y .

Lemma 3.2. For each t ∈ [0, T ], let J(t, T ) := (J1(t, T ), J2(t, T ), ..., JM(t, T )) ∈
[0, T − t]⊗M where Jk(t, T ) is the occupation time of the chain X in state ek in the

interval [t, T ](i.e.J(t, T ) :=
∫ T

t
Xs− ds). Suppose for each λ := (λ1, λ2, ..., λM)⊤ ∈

RM , and ΦJ(t,T )|Gt(λ) is the conditional moment-generating function of the vector of

occupation times J(t, T ) given Gt under P evaluated at the vector λ. That is,

ΦJ(t,T )|Gt(λ) = E[exp(λ⊤J(t, T ))|Gt]

Let diag(λ) be the diagonal matrix with diagonal elements given by the components

of λ. Then

ΦJ(t,T )|Gt(λ) = 1⊤ exp{(A + diag(λ))(T − t)}Xt.

Proof.See [Elliott and Siu, 2013, Lemma 5.1].

Using the lemma above, we can prove that the (conditional) characteristic function

of Y is given by the formula from the following theorem.

Theorem 3.3. The conditional characteristic function of regime-switching Lévy pro-

cess Y under filtration {F̂t} is:

ΦYT |F̂t
(u) = E[exp(iuYT )|F̂t]

= exp(iuYt)1
⊤ exp{(A + diag(φ(u)))(T − t)}X̂t

where φ(u) = (φ1(u), ..., φM(u))⊤.

Proof.Here we will follow the proof of [Elliott and Siu, 2013, Theorem 5.1]. Using
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Itô’s formula on exp(iuYt) and denoting Y c the continuous part of Y , we have:

d(eiuYt) = eiuYt−(iudYt −
1

2
u2d〈Y c〉t + (eiuy − 1 − iuy)dJY )

= eiuYt−(iuX⊤
t−dLt −

1

2
u2X⊤

t−d〈Lc〉tXt− + (eiuy − 1 − iuy)X⊤
t−dJ

L)

Integrating and using the fact that X2 = X, we have

eiuYT = eiuYt +

∫ T

t

eiuYs−iuX⊤
s−dLs −

1

2
u2
∫ T

t

eiuYs−X⊤
s−cds

+

∫ T

t

eiuYs−

∫

R

(eiuy − 1 − iuy)X⊤
s−J

L(dy, ds)

Since Y is exponentially special, the Lévy process L has the following decomposition:

dL = bdt+ diag(
√
c)dWt +

∫

R

y(JL(dy, dt) − F (dy)dt)

We can plug this into our integral representation of exp(iuYT ):

eiuYT = eiuYt +

∫ T

t

eiuYs−iuX⊤
s−

(

bds+ diag(
√
c)dWs +

∫

R

y(JL(dy, ds) − F (dy)ds)

)

− 1

2
u2
∫ T

t

eiuYs−X⊤
s−cds+

∫ T

t

eiuYs−

∫

R

(eiuy − 1 − iuy)X⊤
s−J

L(dy, ds)

Rearranging, we get

eiuYT = eiuYt +

∫ T

t

eiuYs−X⊤
s−(biu− 1

2
u2c)ds+

∫ T

t

eiuYs−diag(
√
c)dWs

+

∫ T

t

eiuYs−

∫

R

(eiuy − 1)X⊤
s−(JL(dy, ds) − F (dy)ds)

+

∫ T

t

eiuYs−X⊤
s−

∫

R

(eiuy − 1 − iuy)F (dy)ds

Taking expectations under the combined filtration Gt ∨FT (i.e. we know the path of

X up to T but the path of Y only up to t), we find

E[eiuYT |Gt ∨ FT ] = eiuYt +

∫ T

t

E[eiuYs−|Gt ∨ Fs−]X⊤
s−(biu− 1

2
cu2)ds

+

∫ T

t

E[eiuYs− |Gt ∨ Fs−]X⊤
s−

∫

R

(eiuy − 1 − iuy)F (dy)ds
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We notice that this is an ODE for variable Zs := E[eiuYs |Gt ∨ Fs] which is readily

solved to give the solution

E[eiuYT |Gt ∨ FT ] = eiuYt exp

(∫ T

t

X⊤
s−(biu− 1

2
cu2 +

∫

R

(eiuy − 1 − iuy)F (dy))ds

)

Observing that φ(u) = biu − 1
2
cu2 +

∫

R
(eiuy − 1 − iuy)F (dx) is the characteristic

exponent of Lévy process L, we can re-write this as:

E[eiuYT |Gt ∨ FT ] = eiuYt exp

(∫ T

t

X⊤
s−φ(u)ds

)

= eiuYt exp

(

φ(u)⊤
∫ T

t

Xs−ds

)

Now we recall that J(t, T ) =
∫ T

t
Xs−ds is the vector of occupation times that process

X spends in each of its M states. Thus we can rewrite this as follows:

E[exp(iuYT )|Gt ∨ FT ] = exp(iuYt + φ(u)⊤J(t, T ))

Then, under global information Gt, we know from the previous lemma the conditional

characteristic function of J(t, T ). The tower law of expectations gives us

E[E[exp(iuYT )|Gt ∨ FT ]|Gt] = exp(iuYt)E[exp(φ(u)⊤J(t, T ))|Gt]

= exp(iuYt)1
⊤ΦJ(t,T )|Gt(φ(u))

= exp(iuYt)1
⊤ exp{(A + diag(φ(u)))(T − t)}Xt

Finally, continuing to use the tower law and taking expectations of the above under

F̂t ⊂ Gt, all that is left is an optional projection of X contained in a linear term:

E[exp(iuYT )|F̂t] = E[exp(iuYt)1
⊤ exp{(A + diag(φ(u)))(T − t)}Xt|F̂t]

= exp(iuYt)1
⊤ exp{(A + diag(φ(u)))(T − t)}X̂t

From the characteristic function, we can directly compute the moments of underlying

price S (assuming they are finite).

Corollary 3.4. For any z ∈ R such that E[exp(zYT )] <∞ it holds that

E[Sz
T |F̂t] = Sz

t 1
⊤ exp{(A + diag(φ(−iz)))(T − t)}X̂t

109



Proof.This follows directly from the previous theorem, as Sz
T = Sz

0 exp(zYT ) and so

E[Sz
T |F̂t] = Sz

0E[exp(zYT )|F̂t] = Sz
0ΦYT |F̂t

(−iz).

We can also use theorem 3.3 to state conditions under which S is a (G,P) and (F̂ ,P)-

martingale.

Corollary 3.5. Assuming S has finite absolute first moment, i.e. E[|ST |] <∞, then

it is a (F̂ ,P)-martingale (and a (G,P)-martingale) iff

∀k ∈ {1...M} : φk(−i) = 0

in other words, when each of the M component Lévy processes is a martingale.

Proof.See [Hainaut, 2011, Proposition 6.2].

3.3 Stochastic dynamics for X̂

To use standard mean-variance hedging formulas of Hubalek et al. [2006], Černý

[2007] in our setting, we will require the dynamics of X̂. Here, we will derive the

unnormalized SDE for X̂ (as opposed to the normalized dynamics expressed by the

so-called Zakai equation, discussed in appendix C.1). This will give us its {F̂t}-

characteristics. In this section we provide a theorem that provides an SDE for X̂

under {F̂t} from which it follows that for a Lévy process Y , the joint process (X̂, Y )

is F̂-Markov. We will make an assumption on the structure of volatility across the

various Lévy processes - we assume the volatility of their diffusive term is identical

for all of them, with variation in volatility across different models being caused by

differences in the Lévy measure. This assumption could be weakened and for more

general non-Lévy models, the diffusive volatility could be dependent on time or the

level of Y - we only require it to be independent of state X, an assumption commonly

made across the literature (see e.g. Siu [2014] and references therein for a discussion

on the necessity of this assumption).

Assumption 3.1. All processes Lk have the same diffusive characteristic ck:

∀k ∈ {1 · · ·M} : ck = c̄

Under the above assumption, c⊤Xt = c̄ and we can define an innovations process I,
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which is a (P, F̂t)-Wiener process:

It := Wt +

∫ t

0

b⊤(Xs − X̂s)√
c̄

ds (3.1)

We will make an additional technical assumption on the Lévy processes we consider.

Assumption 3.2. The Lévy densities F k of Lévy processes Lk, k = 1...M are abso-

lutely continuous with respect to Lebesgue measure.

As a consequence of the above assumption we have that the Lévy measure F k has

a well defined density function, i.e. there exists such an integrable function f that

F k(dx) = fk(x)dx. Furthermore, the Lévy densities F k all have the same null sets.

For processes with non-integrable densities that have explosive limiting behaviour for

very small jumps i.e. limx→0 f
k(x) = ∞, we will consider their truncated variants,

where we discard any jumps smaller (in absolute value) than a fixed small ǫ > 0 (see

Elliott and Royal [2008] for such a truncation in the case of the Variance Gamma

process).

In what follows we provide an explicit form of the SDE for X̂, using lemma C.6 about

the structure of local martingales.

Theorem 3.6. Let assumptions 3.1 and 3.2 hold and assume that X and Y have no

common jumps. Then the optional projection X̂t = E[Xt|F̂t] can be represented as

follows:

X̂t = X̂0 +

∫ t

0

AX̂s−ds+

∫ t

0

∫

R

w(X̂s−, y)(JY (ds, dy) − X̂⊤
s−F (dy)ds) +

∫ t

0

a(X̂s−)dIs

(3.2)

where It is the (F̂t,P)-Wiener process defined in (3.1) and w(x, y), a(x) are vector

functions:

w(x, y) = diag(x)

(
dF (y)

x⊤dF (y)
− 1

)

=: diag(x)w̃(x, y)

a(x) = diag(x)
(b− x⊤b)√

c̄
=: diag(x)ã(x)

Proof.For the proof, see the appendix.
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Remark 3.7. If we denote the semimartingale decomposition of our special semi-

martingale Y as

Y = BY + Y c + y ∗ (JY − νY )

and define Z := (BY + Y c)/
√
c̄, then we can rewrite I as follows:

It := Wt +
1√
c̄

∫ t

0

(Xs− − X̂s−)⊤b ds

= Zt −
1√
c̄

∫ t

0

X̂⊤
s−b ds

to write

X̂t = X̂0 +

∫ t

0

AX̂s−ds+

∫ t

0

∫

R

w(X̂s−, y)(JY (ds, dy) − X̂⊤
t−F (dy)ds)

+

∫ t

0

a(X̂s−)(dZs − X̂⊤
s−b ds)

Here Z is to be understood as the continuous part of the process, i.e. the (compen-

sated) drift and the continuous diffusion. This is useful if the continuous and jump

components of Y are observable separately.

Remark 3.8. Note if the process Y being used for filtering has differential charac-

teristic b ≡ 0, i.e. it has no local drift, the diffusive term disappears.

Looking at the form of the SDE for X̂ , we can read off the semimartingale differential

characteristics of the process under {F̂t}.

Corollary 3.9. The semimartingale predictable differential characteristics of X̂ un-

der filtration {F̂t} are:

bX̂t = AX̂t−

cX̂t = a(X̂t−)a(X̂t−)⊤

F X̂

t (dy) = w(X̂t−, y)X̂⊤
t−F (dy)

Example 3.1 (Pure jump process with no switching). Let us assume A = 0 and

there is no diffusive term. Then the SDE for X̂ can be written as

X̂t = X̂0 +

∫ t

0

∫

R

diag(X̂s−)

(

dF (y)

X̂⊤
s−dF (y)

− 1

)

(JY (dy, ds) − X̂⊤
s−F (dy)ds)
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We note that the jump term represents the continuous-time version of Bayes theorem.

The update in reaction to a jump here is done in relation to the compensating jumps

instead of just the jump term to take into account the effect of ’non-events’, i.e. to

take into account the drift of the Bayesian update for the moments when no jump

arrives (we will show in a discrete time analogy in the next example that such a

’non-event’ bears information and impacts the filter).

Example 3.2 (Discrete-time analogy when no jump arrives). One might consider

the case of no jumps arriving, i.e. what happens for w(X̂t−, 0). In a pure jump

case, different jump processes may have different intensities of arrival. Thus even the

fact that no jump has arrived may be informative. Here we will illustrate that this

information is used by the filter. First, we provide an analogy in discrete time.

In general we have observable variable Y and a prior estimate p(t) = P(Xt|Y t) of

our state X where Y t = {Ys}s=1...t is the set of observations up to time t. By Bayes’

Theorem we have:

p(t+ ∆t) = P(Xt+∆t|Y t+∆t) =
diag(P(Yt+∆t|Xt))p(t)

P(Yt+∆t|Xt)⊤p(t)

Here P(Yt+∆t|Xt) denotes a vector of probabilities [P(Yt+∆t|Xt = e1), ...,P(Yt+∆t|Xt =

eM)]⊤. Let us now assume we only have two states, with the Lévy processes in each

state being compound Poisson processes with arrival intensities λ1 and λ2 respec-

tively, and the transition intensity matrix is A ≡ 0. Let the observation be that there

was no jump i.e. Yt+∆t − Yt = 0. Denoting p1 the first element of vector p, that will

mean

p1(t+ ∆t) =
(1 − λ1∆t)p1(t)

(1 − λ1∆t)p1(t) + (1 − λ2∆t)p2(t)

Thus, the change in probability can be written as:

p1(t + ∆t) − p1(t) =
(1 − λ1∆t)p1(t) − (1 − λ1∆t)p

2
1(t) − (1 − λ2∆t)p1(t)p2(t)

(1 − λ1∆t)p1(t) + (1 − λ2∆t)p2(t)

Looking at the zero order O(1) effect, we have

p1(t) − p21(t) − p1(t)p2(t) = p1(t)(1 − p1(t) − p2(t)) = 0

In other words, at zero order, the value of the filter does not change. In the first order
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O(∆t) term, the discrete time probability change is given as

−λ1p1(t) + λ1p
2
1(t) + λ2p1(t)p2(t) = (λ2 − λ1)p1(t)p2(t)

In words, the probability change will depend on the difference of arrival intensities of

the two processes. This illustrates that even when no jump arrives, this information

has an impact on the value of the filter and is thus informative about the current

state.

In the continuous time case, we know that the compensator ν of the Poisson process

is νk(dy, dt) = 1y=αF
k(dy)dt = λkdt. The function w(x, y) will simplify to

w(x, y) = diag(x)

(
λ

x⊤λ
− 1

)

If we observe a jump of size zero (i.e. JY (dy, dt) = 0) then the filter behaves as

follows:

dX̂t = diag(X̂t−)

(

λ

X̂⊤
t−λ

− 1

)

(0 − X̂⊤
t−λdt)

= diag(X̂t−)(−λ + X̂⊤
t−λ)dt

With some simple algebra and using X̂2
t− = 1 − X̂1

t− we find that the first element

dX̂1
t of the vector dX̂t is

dX̂1
t = −X̂1

t−λ1 + (X̂1
t−)2λ1 + X̂1

t−X̂
2
t−λ2

= (λ2 − λ1)X̂
1
t−X̂

2
t−

In other words, we retrieve the same result as in the case of the discrete-time asymp-

totic approximation.

Example 3.3 (Pure diffusion process with no transitions). Let us assume A = 0 and

the vector of Lévy processes L contains only diffusions. Then

X̂t = X̂0 +
1√
c̄

∫ t

0

diag(X̂s−)(b− b⊤X̂s−)(dYs − b⊤X̂s− ds)

(note here that the Z previously defined in Remark 3.8 is now equal to Y as we have

no discontinuous part of the process). In words the new value of the filter X̂ is given

by the difference of the drift in each state relative to the mean estimated drift based
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on past observations, multiplied by the observed move and its deviation from the

mean estimated drift, scaled by the volatility and the probability of each state in the

past step.

3.4 Mean-value process

We now proceed to apply the same mean-variance hedging theory from the previous

chapters in the setting of a regime-switching model. We will solve the classic mean-

variance optimization problem

ε20 = min
v∈R

min
ϑ∈Θ

E[(v + ϑ · ST −H)2]

for the case when S is a (P, F̂)-martingale (Corollary 3.5 stated conditions under

which this holds for our model), using Fourier transform methods from Hubalek et al.

[2006],Černý [2007] to obtain the mean-value process V and the variance optimal

hedging strategy ξ. Unlike these previous papers, we will resort to an approximative

backward iteration scheme to numerically compute the quadratic hedging error ε20.

Assumption 3.3. S is a (P, F̂)-martingale.

For the case when S is a martingale, we know from Föllmer and Sondermann [1986]

that the mean-value process is simply the expectation of the payoff under physical

measure, i.e.

Vt = E[H|F̂t]

As we intend to compute the mean-value process and variance-optimal hedging strat-

egy via Fourier transform techniques, we will assume that the payoff has an integral

representation, as defined in [Kallsen et al., 2009, Assumption 3.1]:

Assumption 3.4. The payoff is of the form H = fH(ST ) for some function fH :

(0,∞) → R, s.t.

fH(s) =

∫ R+i∞

R−i∞
szl(z) dz

for l : C → C and R ∈ R such that x→ l(R+ix) is integrable and E[exp(2RYT )] <∞

For examples of such integral representations of common payoffs, see Hubalek et al.

[2006]. Note that the condition of integrability of l may cause restrictions to the values
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R can take for certain payoffs (e.g. vanilla puts and calls have the same function l(z)

but different offsets R in the complex plane).

Theorem 3.10. If the payoff H has the form given in assumption 3.4 and S is

a martingale (assumption 3.3), then the mean-value process of the regime-switching

model can be written as a function v:

Vt = v(t, X̂t, St).

such that

v(t,x, s) =

∫ R+i∞

R−i∞
l(z)sz1⊤M(z, T − t)xdz

and

M(z, T − t) := exp{(A + diag(φ(−iz)))(T − t)}.

Proof.Under assumption 3.4, using Fubini’s theorem we can write the mean-value

process via the Laplace transform as

Vt = E[H|F̂t] = E[fH(ST )|F̂t] = E

[∫ R+i∞

R−i∞
Sz
T l(z) dz|F̂t

]

=

∫ R+i∞

R−i∞
V (z)tl(z) dz

where

V (z)t := E[Sz
T |F̂t]

From corollary 3.4, we know:

V (z)t = Sz
t 1

⊤ exp{(A + diag(φ(−iz)))(T − t)}X̂t

By defining M(z, T − t) := exp{(A + diag(φ(−iz)))(T − t)} we get the abbreviated

form

V (z)t = Sz
t 1

⊤M(z, T − t)X̂t

Thus, the mean-value process is ultimately a function of the current estimated state

and the spot price:

Vt = v(t, X̂t, St).

where

v(t,x, s) =

∫ R+i∞

R−i∞
l(z)Sz1⊤M(z, T − t)xdz
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Let us remark that the regime-switching mean-value process is close to, but not

completely equal to (due to impact of transition matrix A), the weighted average of

two single-regime mean-value processes.

Corollary 3.11. Under assumptions of theorem 3.10, the mean-value process of the

regime-switching model can be written as a function f :

Vt = f(t, X̂t, Yt) = f(t, X̂t, Yt|S0, T )

such that

f(t,x, y) =

∫ R+i∞

R−i∞
Sz
0 l(z) exp(yz)1⊤M(z, T − t)xdz

Proof.This follows directly from the fact that: Vt = f(t, X̂t, Yt) = v(t, X̂t, S0 exp(Yt))

3.5 Variance optimal hedging strategy

As established in Černý [2007] and references therein, for a martingale S the variance

optimal hedging strategy ξ (and in the martingale case also the variance-optimal

strategy) can be expressed as a ratio of the predictable quadratic covariation of V

and S and the predictable quadratic variation of S:

ξ =
d〈V, S〉
d〈S, S〉

Here the quadratic covariation and variation will always be under the filtration of S

(or equivalently, of Y ), i.e. under F̂t, unless specified otherwise.

We know d〈S〉t = S2
t−(d〈Y c〉t +

∫

R
(ez − 1)2X̂⊤

t−F (dz)dt). Under assumption 3.1 this

is

d〈S〉t = S2
t−σ

2(X̂t−)dt (3.3)

where we have defined σ2(X̂t−) := c̄+ X̂t−
∫

R
(ey − 1)2F (dy).

For the quadratic covariation term 〈V, S〉, we can move the covariation inside the

Laplace transform of V . Using the definition of covariation and assuming that all the

appropriate integrals, sums and limits below are finite, we can write (where tk ∈ [0, t]
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are equally spaced times with distance ∆t):

〈V, S〉t = lim
∆t→0

n∑

k=1

(Vtk − Vtk−1
)(Stk − Stk−1

)

= lim
∆t→0

n∑

k=1

(∫ R+i∞

R−i∞
V (z)tk l(z)dz −

∫ R+i∞

R−i∞
V (z)tk−1

l(z)dz

)

(Stk − Stk−1
)

=

∫ R+i∞

R−i∞
lim
∆t→0

n∑

k=1

(V (z)tk − V (z)tk−1
)(Stk − Stk−1

)l(z)dz

=

∫ R+i∞

R−i∞
〈V (z), S〉tl(z) dz

Then for our specific model, we have the following result.

Theorem 3.12. Under the assumptions of theorem 3.6, assumption 3.3 and assump-

tion 3.4, the variance optimal hedging strategy is given as

ξt =

∫ R+i∞

R−i∞
ξt(z)l(z)dz

where

ξt(z) =
Sz−1
t−

σ2(X̂t−)
1⊤M(T − t, z)×

× (z2c̄+ z
√
c̄a(X̂t−) +

∫

R

(ey − 1)(ezy(1 + w(X̂t−, y)) − 1)X̂⊤
t−F (dy))

Furthermore, we can write ξt = k(t, X̂t−, St−), where

k(t,x, s) =

∫ R+i∞

R−i∞

sz−1

σ2(x)
1⊤M(T − t, z)×

(z2c̄+ z
√
c̄a(x) +

∫

R

(ey − 1)(ezy(1 + w(x, y)) − 1)x⊤F (dy))l(z)dz
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Proof.Computing an SDE for dV (z), we get:

dV (z) = Sz
0

[

1⊤M(z)X̂−d(ezY ) + ezY−1⊤M(z)dX̂ + 1⊤M(z)d[ezY , X̂]

+ (...)dM + (...)d[M , Y ] + (...)d[M , X̂]

]

= Sz
0

[

1⊤M(z)X̂−e
zY−(zdY +

1

2
z2d〈Y c〉 + (ezy − 1 − zy)dJY )

+ ezY−1⊤M(z)(AX̂−dt+ w(X̂−, y)(JY (dy, dt) − X̂⊤
−F (dy)dt) + a(X̂−)dI)

+ 1⊤M(z)ezY−(z
√
c̄a(X̂−))dt+ (ezy − 1)w(X̂−, y)(JY (dy, dt) − X̂⊤

−F (dy)dt))

Thus the quadratic covariation with the underlying is:

d[V (z), S] = Sz+1
− 1⊤M(z)

[

z
√
c̄(z

√
c̄+ a(X̂−))dt

+ (ezy − 1 − zy + diag(w̃) + (ezy − 1)diag(w̃))(ey − 1)X̂−dJ
Y

]

= Sz+1
− 1⊤M(z)

[

(z2c̄+ z
√
c̄a(X̂−))dt

+ (ey − 1)(ezy(1 + diag(w̃)) − 1))X̂−dJ
Y

]

Together with the form of the quadratic variation of S from (3.3), we can use the

above to compute

ξt =

∫ R+i∞

R−i∞

d〈V (z), S〉t
d〈S〉t

l(z)dz

and get the stated result.

We can also compute the value of the hedging strategy without the use of Fourier

transforms, as long as the mean-value process Vt is sufficiently differentiable to apply

Itô’s lemma, i.e. Vt = f(t, X̂t, Yt) ∈ C1,2,2. In what follows we will denote the partial

derivatives of f with subscripts, e.g. fx = ∂f/∂x, where x is multidimensional where

appropriate and thus fx may be a vector.

Theorem 3.13. Let Vt = f(t, X̂t, Yt) from corollary 3.11 be such that f ∈ C1,2,2.

Then under the assumptions of theorem 3.6 and assumption 3.3, the mean-variance

optimal hedging strategy is

ξt = f ξ(t−, X̂t−, Yt−)
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such that

f ξ(t,x, y) =
f⊤
x a(x) + fyc̄+ x⊤ ∫

R
(ez − 1)(f(t,x + w(x, z), y + z) − f(t,x, y + z))F (dz)

S0 exp(y)σ2(x)

Proof.We compute ξ(t, X̂t−, Yt−) = d〈V,S〉
d〈S〉 directly. Using Itô’s lemma, we have

dV = ftdt+ fxdX̂(h1) + fydY (h2) (3.4)

+
1

2
(fxxd[X̂c] + fyyd[Y c] + 2fxyd[Xc, Y c])

+ (f(t, X̂− + x, Y− + y) − f(t, X̂−, Y−) − fxh1(x) − fyh2(y))dJX̂,Y

where h1, h2 are truncation functions. Equally,

dS = S−(dY (h) +
1

2
c̄dt+ (ey − 1 − y)dJY )

The predictable quadratic variation of S is given as

d〈S〉 = S2
−σ

2(X̂−)dt

The covariation of V and S is

d[V, S] = S−

[

fxd〈X̂c〉 + fyd〈Y c〉 +

(

(ey − 1)(f(t, X̂− + x, Y− + y) − f(t, X̂−, Y−))

)

dJX̂,Y

]

= S−

[

fxd〈X̂c〉 + fyd〈Y c〉 +

(

(ey − 1)(f(t, X̂− + w(X̂−, y), Y− + y) − f(t, X̂−, Y−)

)

dJY

]

Its F̂ -predictable variant can be written as:

d〈V, S〉 = S−

[

fxa(X̂−) + fy c̄ (3.5)

+ X̂⊤
−

∫

R

(ey − 1)(f(t, X̂− + w(X̂−, y), Y− + y) − f(t, X̂−, Y−))F (dy)

]

dt

Then the mean-variance optimal hedging strategy is

ξt = f ξ(t, X̂−, Y−) =
d〈V, S〉
d〈S〉

=
fxa(X̂−) + fyc̄+ X̂⊤

−
∫

R
(ey − 1)(f(t, X̂− + w(X̂−, y), Y− + y) − f(t, X̂−, Y−))F (dy)

S−σ2(X̂−)
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Remark 3.14. We can re-write X̂− + w(X̂−, y) more explicitly as follows:

X̂− + w(X̂−, y) = X̂− + diag(X̂−)

(
dF (y)

X̂⊤
−dF (y)

− 1

)

= diag(X̂−)

(

dF (y)

X̂⊤
−dF (y)

)

3.6 Quadratic hedging error - a recursive approx-

imation

The final element we need to have a complete picture about the variance optimal

hedging strategy is the quadratic hedging error ε20. We saw in the previous chap-

ter that it simplifies significantly when returns are IID (Theorem 2.4) Furthermore,

when the underlying is a martingale, the mean-variance tradeoff process K ≡ 0, and

it simplifies further to the following expectation under physical measure (simplify

[Černý and Kallsen, 2007, Theorem 4.12] using [Černý and Kallsen, 2007, Proposi-

tion 3.28]):

ε20 := E[(V0 + ξ · ST −H)2] = E[〈V, V 〉T − ξ2 · 〈S, S〉T ]

We will proceed with providing a solution via a recursive approximation scheme (with

the sketch of a partial integral differential equation solution in the appendix). We can

write the time t expected quadratic hedging error as a sum of infinitesimal single-step

hedging errors ψ(t, X̂t−, St−):

ε2t = Et

[∫ T

t

ψ(u, X̂u−, Su−)du

]

where

ψ(t, X̂t−, St−) :=
d〈V 〉t
dt

− ξ2t−
d〈S〉t
dt

(3.6)

Denoting ε2t as a function of the state estimate and the underlying price, i.e. ε2t =

g(t, X̂t, St), we can define a discrete-time recursive numerical approximation scheme

to compute it for the case when the Lévy process is a pure jump process.
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Theorem 3.15. Under martingale assumption 3.3, assuming b ≡ 0 and assuming

Vt = f(t, X̂t, Yt) ∈ C1,2,2, we can compute ε20 = g(0, X̂0, S0) using the backward

recursion:

g(T, X̂T , ST ) = 0

g(t, X̂t, St) =

∫

R

X̂⊤
t p(y)g(t+ ∆t, X̂t+∆t(y), St exp(y))dy + ψ(t, X̂t, St)∆t (3.7)

X̂t+∆t(∆Y ) = X̂t + AX̂t∆t + diag(X̂t)

(

dF (∆Y )

X̂⊤
t dF (∆Y )

− 1

)

∆Y

− diag(X̂t)(F (R) − X̂⊤
t F (R))∆t

(3.8)

Here we denote X̂t+∆t(∆Y ) as a function of the realization of the jump ∆Y , p(y)

is the vector of probability density functions of the M Lévy distributions, and ψ is a

function of the form

ψ(t,x, s) = c̄(fy − k2(t,x, s)s2) + fxa
2(x)

+ x⊤
∫

R

[

(f(t, diag(x)
dF (y)

x⊤dF (y)
, log(s/S0) + y) − f(t,x, log(s/S0)))

2

− k(t,x, y)2s2(ey − 1)2
]

F (dy).

Proof.The recursion comes from the following integral approximation:

ε2t = Et

[∫ t+∆t

t

ψ(u,Xu, Su)du+

∫ T

t+∆t

ψ(u,Xu, Su)du

]

≈ ψ(t,Xt, St)∆t+ Et[ε
2
t+∆t]

= ψ(t,Xt, St)∆t + Et[g(t+ ∆t, Xt+∆t, St+∆t)]

In the recursive scheme, the time t expectation of g at time t+ ∆t can be computed

as an integral over the weighted average (weighted by posterior probability X̂) of

probability density functions pk(y) of returns over a single time-step ∆t under all the

available states:

Et[g(t+ ∆t, X̂t+∆t, St+∆t)] =

∫

R

X̂⊤
t p(y)g(t+ ∆t, X̂t+∆t(y), St exp(y))dy
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To get the next value X̂ at timestep t+ ∆t dependent on the next incoming jump of

size ∆Y , we discretize the SDE from theorem 3.6 without a diffusive component to

get

X̂t+∆t(∆Y ) = X̂t + AX̂t∆t + diag(X̂t)

(

dF (∆Y )

X̂⊤
t dF (∆Y )

− 1

)

∆Y

− diag(X̂t)(F (R) − X̂⊤
t F (R))∆t

To compute ψ(t, X̂t, St) from equation (3.6) explicitly, we need quantities 〈V, S〉,
〈S, S〉 and 〈V, V 〉. We already know 〈V, S〉 and 〈S, S〉 from our computations of the

optimal hedging strategy (equations (3.5) and (3.3) respectively), so we will primarily

focus on the computation of 〈V, V 〉. Assuming Vt = f(t, X̂t, Yt) is sufficiently regular

to apply Itô’s lemma, we can see directly from our previous computations of dV in

equation (3.4) that

d〈V 〉/dt = fxd〈X̂c
−〉/dt

+ f 2
y c̄+ X̂⊤

−

∫

R

(f(t, diag(X̂−)
dF (y)

X̂⊤
−dF (y)

, Y− + y) − f(t, X̂−, Y−))2F (dy)

Recalling again that

d〈S〉/dt = S2
−σ

2(X̂−) = S2
−(c̄+ X̂⊤

−

∫

R

(ey − 1)2F (dy)),

we can evaluate ψ(t, X̂t−, St−) explicitly:

ψ(t, X̂t−, St−) =
d〈V 〉t
dt

− ξ2t−
d〈S, S〉t
dt

= c̄(fy − ξ2t−S
2
t−) + fx

d〈X̂c〉t
dt

+ X̂⊤
t−

∫

R

[

(f(t, diag(X̂t−)
dF (y)

X̂⊤
t−dF (y)

, Yt− + y) − f(t, X̂t−, Yt−))2

− ξ2t−S
2
t−(ey − 1)2

]

F (dy)
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Written purely as a function of its inputs, we can re-write ψ:

ψ(t,x, s) = c̄(fy − k2(t,x, s)s2) + fxa
2(x)

+ x⊤
∫

R

[

(f(t, diag(x)
dF (y)

x⊤dF (y)
, log(s/S0) + y) − f(t,x, log(s/S0)))

2

− k(t,x, s)2s2(ey − 1)2
]

F (dy)

Now we have everything needed to evaluate the hedging error numerically. In section

3.8, we will compute all the components of our regime-switching hedging framework

(mean-value process, variance optimal hedge, quadratic hedging error) in a numerical

example.

3.7 Filtered variance - relation to stochastic volatil-

ity and variance swaps

We now show a few results for the properties of the filtered variance of the regime-

switching model. If we define σ2
k := ck +

∫

R
(ex − 1)2F k(dx) and define the vector

σ2 := [σ2
1 , ..., σ

2
M ]⊤, then we know that at any time, the instantaneous variance σ2

t

of process S under filtration {Gt} is simply σ2
t = (σ2)⊤Xt−. Therefore its dynamics

are dσ2
t = (σ2)⊤dXt. Restricting ourselves to the filtration of observable returns

{F̂t} (i.e. considering the filtered estimate of instantaneous variance), we find that

E[dσ2
t |F̂t−] = (σ2)⊤dX̂t. We saw in theorem 3.6 that X̂ is of a dynamic nature and

follows an SDE. Thus, a Hidden Markov Model will exhibit similar behaviour to a

model of stochastic volatility where volatility is considered to be observable.

The resemblance to stochastic volatility models is further strengthened by the ex-

istence of a long-term average variance to which the model naturally mean-reverts.

Specifically, from e.g. [Brémaud, 1999, Theorem 6.1] we know that non-degenerate

Markov chains with transition probability matrix A have a long-term steady state

π = limt→∞ Xt which is readily available as a solution to the set of equations πA = 0

and π⊤1 = 1. As a consequence, if we want to compute the long-run mean of the

variance limt→∞ E[σ2
t ], then it is simply the corresponding weighted average of the

124



variances of the component Lévy processes:

lim
t→∞

E[σ2
t ] = π⊤σ2

Despite the stochastic nature of filtered volatility, it is straightforward to price a

variance swap. Using our previous results from lemma 3.2, we can compute the

formula for a variance swap implied by the model. Since the payoff of the continuously

sampled variance swap is an expectation of integrated variance, in our model we can

write:

E

[∫ T

0

σ2
t dt

]

= E

[∫ T

0

(σ2)⊤Xt−dt

]

= (σ2)⊤E[J(0, T )] =
∑

k

E[Jk(0, T )]σ2
k

where Jk(t, T ) is the occupation time of the Markov chain X in state k over the time

interval [t, T ]. In lemma 3.2 we got the moment-generating function of occupation

times. This allows us to directly compute the mean vector of occupation times under

filtration F̂t:

E[J(t, T )|F̂t] = exp(A(T − t))X̂t(T − t)

This gives us that the expected integrated variance (and hence the fair strike of a

variance swap) is

E

[∫ T

0

σ2
t dt

]

= (σ2T )⊤ exp(AT )X̂0

i.e. a weighted average of variances of the individual Lévy processes modulated by the

transition probability between the various states. Let us note that the results above

can be considered to be computed under a risk-neutral pricing measure (say defined

by market prices of traded instruments), but we do not need to specify anything about

it as we know that X and its dynamics are independent of the probability measure

of S and the vol of S is independent of risk-neutral measure change.

In figure 3.1 we can observe the evolution of filtered volatility for 3 sample paths when

our regime-switching model consists of two NIG models (high vol and low vol)with

2% probability of transferring between states at any given time. Our initial estimate

for the probability of each state is X̂k
0 = 0.5.
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Figure 3.1: Evolution of filtered volatility in 2-state NIG model with volatilities
σ1 = 20%, σ2 = 57%. 3 simulated paths.

3.8 Numerical results

In the following section we will implement the previously obtained formulae for the

mean-value process, hedging strategy and hedging error numerically. First, we review

results from the literature regarding calibration of parameters for regime-switching

models.

3.8.1 Calibration and parameters - from the literature

In the literature there are only few examples of calibrated regime-switching Lévy

processes, with implementations of Brownian regime-switching models being more

common. However, both for the case of regime-switching Lévy processes and regime-

switching pure Brownian motions, the number of states is typically limited to only 2

or 3, and they correspond to either states with varying volatility (high/medium/low
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vol states) or with varying drift (bullish/bearish/stagnant market states). This is

partly due to a practical limitation on the feasible number of states, as the number of

parameters in the transition probability matrix to be calibrated grows quadratically

with the number of states, leading to potentially unstable parameters and overfitting.

For purely Gaussian models, two-state models of returns have been fitted in Liew and Siu

[2010], Hardy [2001], Goutte and Zou [2013], Di Graziano and Rogers [2009]. In a

high-frequency setting with large amounts of data, Cartea and Jaimungal [2013] find

the optimal number of regimes varies between 2 and 7 for a regime-switching Brow-

nian motion calibrated to intraday single stock trading data.

For jump models, Elliott and Royal [2008] provide a calibration of a 2-state trun-

cated variance-gamma process to the returns of the S&P 500 between 1986 and

2006 via the EM algorithm. They find evidence for the two states corresponding

to a high and low volatility state. Chevallier and Goutte [2015, 2014] provide cal-

ibrations of a 2-state mean-reverting OU process driven by NIG returns to various

global market indices. Hainaut and Courtois [2013] calibrates a mean-reverting 2-

state regime-switching NIG process, VG process and a Brownian motion to 6-month

CDS premiums when modelling credit default intensities. Haidinger and Warnung

[2012] calibrate indices from multiple asset classes to a 2-state generalized hyperbolic

distribution. Rogers and Zhang [2011] calibrate a 2-state VG and symmetric general-

ized hyperbolic distribution simultaneously to multiple stock indices, finding a good

fit to most stylized facts of asset returns, including autocorrelation of absolute log

returns (a feature typically captured by stochastic volatility models).

3.8.2 Mean-value process - numerical results

We will now illustrate the mean-value process and hedging strategy for a standard

call option. We will consider a 2-regime model, switching between two martingale

models with NIG jump measures with varying volatility. The first (low vol regime)

has a volatility of σ1 = 20%, the other a significantly higher volatility σ2 = 57%.

We recall that the NIG characteristic exponent is given as (following notation in

Kienitz and Wetterau [2012])

φNIG(z) = −δt(
√

α2 − (β + iz)2 −
√

α2 − β2)
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and the Lévy density is

F (dy) =
δα

π

exp(βy)K1(α|y|)
|y| dy,

where K1(·) is the modified Bessel function of the second kind. The low volatility

martingale NIG model has parameters α = 75, β = −4.089, δ = 3.024, the high

volatility NIG model has parameters α = 17.5, β = −10.089, δ = 3.524. We recall

(see Kienitz and Wetterau [2012]) that the first four moments of the NIG distribution

are given via those parameters as follows (with the abbreviation γ =
√

α2 − β2):

E[Yt] = δβt/γ

V ar[Yt] = tα2δγ−3

sk =
3β

α
√
δtγ

kurt = 3

(

1 +
α2 + 4β2

α2 + δtγ

)

Note that we apply the martingale adjustment technique of Kienitz and Wetterau

[2012] to correct the mean of the distribution and set it to zero (i.e. to be a

martingale). We find our low-vol state has lower annualized skewness and kurto-

sis Skewlowvol = −0.01, Kurtlowvol = 5.9 compared to the high-vol state, for which

the values are Skewhighvol = −0.24, Kurthighvol = 9. In figure 3.2 we can see that

the probability distributions these processes draw from are significantly different. We

compute a regime-switching mean-value process where the two underlying models are

those above. We set X̂0 = [0.5, 0.5]⊤, and choose the intensity matrix A to be

A =

[

−0.0204 0.0204

0.0204 −0.0204

]

.

This corresponds to a 2% transition probability between regimes on any given day,

and the average number of days within a regime before switching is 1/a12 ≈ 50. Its

symmetrical nature implies that transitions from regime 1 to regime 2 are equally

likely as transitions in the opposite direction. We note that this is not a requirement

and real-world calibrations may result in asymmetrical transition matrices, where one

state is more persistent than the other.

We consider a call option with a maturity of T = 1 year struck at K = 100 for a

range of spot prices S0. The result of the computation can be seen in figure 3.3.
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Figure 3.2: Comparisons of low and high vol NIG distribution used to generate daily
log returns.
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Figure 3.3: Regime switching model mean-value process vs mean-value processes from
constituent low-vol (σ1 = 20% and high-vol σ2 = 57% models. K = 100, T = 1
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We can look at the dependence of the mean-value process on the estimated probability

of being in a particular state, i.e. how much variation there is between different states.

In figure 3.4 we illustrate how the mean-value process of the ATM call option differs

across time and different estimates X̂1
t of being in the low volatility state. We can

see that the variation is quite significant, and the dependence on X̂1
t is (for any fixed

time t) nearly linear. As expected, this difference in mean-value process across the

state estimate value vanishes as we near maturity.
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Figure 3.4: Regime-switching mean-value process for a range of times t ∈ [0, T ] and
state estimates X̂lowvol ∈ [0, 1].

In figure 3.5 we show the regime-switching mean-value process for a fixed maturity

and varying estimates of the state X̂. In this figure we also compare the regime-

switching mean-value process for a certain state X̂1 ∈ {0, 1} against the mean-value

process coming from a single-regime model, in effect illustrating the impact of the

transition intensity matrix. As the two are very close to each other and hard to

distinguish visually, we look closer at the exact size of these differences. In figure 3.6

plot the difference between the regime-switching mean-value process with a given state

estimate X̂ and a weighted average of single-regime mean-value processes X̂1
t V

1
t +

(1 − X̂1
t )V 2

t for varying state estimates. We see that overall, the price difference
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Figure 3.5: Regime-switching mean-value process for a range of state estimates X̂1 ∈
{0, 0.25, 0.5, 0.75, 1}, and single-regime mean-value processes for the low vol and high
vol state. Maturity T = 1, option strike K = 100.
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mean-value processes. Maturity T = 1, option strike K = 100.
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is largest when the option is at-the-money and we are very certain about our state

estimate. However, the absolute size of the difference is small, and is only significant

in percentage terms in the area deep OTM, where the value of the contract is already

very small.

3.8.3 Hedging strategy - numerical results

Next, we provide the hedging strategy for the regime-switching model with the param-

eters described above. Figure 3.7 illustrates the regime-switching hedging strategy

and how it compares to the strategies implied by the constituent models. Just as with
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Figure 3.7: Regime-switching variance optimal hedge vs hedging strategies for con-
stituent low-vol (σ1 = 20% and high-vol σ2 = 57% models. K = 100, T = 1.

the mean-value process, we look at the variation of the hedging strategy dependent

on the estimated probability of being in a particular state. In figure 3.8 we illustrate

how the hedging strategy of the ATM call option differs across time and different es-

timates X̂1 of being in state 1. We can see that the variation is quite significant, with
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a rather non-linear dependence on the state estimate. Just as with the mean-value
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Figure 3.8: Regime-switching variance optimal hedging strategy at K = S0 = 100 for
a range of times t ∈ [0, T ] and state estimates X̂1 ∈ [0, 1].

process, we can compare the hedging strategy for various levels of X̂ at a fixed matu-

rity, and compare the limiting cases where X̂1 ∈ {0, 1} with the single-regime cases.

We provide such a comparison in figure 3.9. We again see that the limiting cases are

quite close to the single-regime cases. In figure 3.10 we compare the regime-switching

optimal hedge against a simple weighted average of single-regime optimal hedges.

We can see that unlike the mean-value process, the difference between the weighted

average and the regime-switching hedge can be relatively significant, especially for

levels of positions that are slightly ITM, with the hedges being up to 5% different

from each other. Again, in percentage terms (i.e. relative to the weighted average)

the differences are more significant in the deep OTM level, where the absolute level

of the hedge is quite small already.
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Figure 3.9: Regime-switching variance optimal hedge ξ for a range of state estimates
X̂1 ∈ {0, 0.25, 0.5, 0.75, 1}, and single-regime variance optimal hedge ξ for the low vol
and high vol state. Maturity T = 1, option strike K = 100.
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3.8.4 Expected hedging error - numerical results

Here we show the results we obtain for computing the hedging error via the recursive

scheme (3.7). In figure 3.11 we show the error for different initial estimates of the
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Figure 3.11: Regime switching model expected quadratic hedging error for con-
stituent low-vol (σ1 = 20%) and high-vol (σ2 = 57%) models. Call option strike
K = 100, across varying initial estimates of the low-vol state X̂1

0 and varying initial
log-moneyness log

(
S0

K

)
.

low-volatility state X̂1
0 and different levels of initial log-moneyness log

(
S0

K

)
(varying

S0, as the strike is fixed to K = 100). The peak hedging error is (predictably) at-

the-money, where we run the greatest risk of having to frequently and significantly

readjust our hedge, especially when nearing maturity. The highest value we observe

is max ε20 = 67.76, implying the highest mean square root error (MSRE) ε0 = $8.23.
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We note that the estimated squared hedging error not only increases as we increase

our estimated probability of the high-volatility state, but also with the increasing

uncertainty of our current regime estimate - the peak is achieved when we have a

certain degree of certainty (X̂ lowvol
0 ∈ [0.2, 0.4]), i.e. we are in the high-volatility

state but are not completely certain of it. Thus the volatility of our filtered estimate

contributes significantly to the expected hedging error.

3.8.4.1 A note on numerical precision

We note that due to the format of the equation for the hedging error ε20, there is little

point in going very far in terms of log-moneyness, as numerical precision becomes an

issue. Consider that the format of the single step hedge error is:

ψ(t, X̂t−, St−) = (d〈V 〉t − ξ2t−d〈S〉t)/dt

where quadratic variation of S will be of order O(S2). Let our Fourier transform

scheme for ξ have an error of ǫ. To the first order of error, (ξt− + ǫ)2 = ξ2t− + 2ǫ+ o(ǫ).

We need to ensure that the difference of the quadratic variation of the mean-value

process and the scaled quadratic variation of the underlying is positive. Thus

(d〈V 〉 − (ξ2− + 2ǫ)d〈S〉)/dt > 0

This only holds when the hedging error is large enough relative to the scale of the

price:

ψ(t, X̂t−, St−) > 2ǫd〈S〉t/dt

We know d〈S〉/dt = S2
−σ

2(X̂−), with the scale of the number being determined by

the leading factor S2
−:

ψ(t, X̂t−, St−) > 2ǫS2
t−σ

2(X̂t−)

This is a problem for deep ITM/OTM options where the single-step hedging error

is quite small. E.g. If our underlying has a level of St− = 100 and the true single-

step hedging error ψ deep ITM/OTM has a level of 10−2, we will have to compute

our hedging strategy ξt to a precision of at least ǫ = 10−7. This issue is amplified

further for underlyings with large absolute values, e.g. with the S&P 500 at St− =

2000, we would have to get our hedging strategy to a precision of ǫ = 10−9 deep

ITM/OTM. As a consequence we do not investigate hedging errors very far away
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from the strike. This is warranted as most options trade within a small range of the

ATM level (with moneyness levels greater than 110% or smaller than 90% considered

to be deep ITM/OTM). For example for a different problem involving numerical

solutions of PIDEs, Cont and Voltchkova [2005] limit their range of log-moneyness to

the interval [log(2/3), log(2)] ≈ [−0.18, 0.3], as this range already covers most market-

traded options. From a practitioner’s perspective, a majority of trades will be struck

at the current spot or forward level at inception, thus the ATM expected hedging

error is also the most relevant for practical purposes.

3.8.5 Realized hedging error via simulations

We now investigate the economic impact of using a regime-switching strategy instead

of a Black-Scholes delta hedge or a variance optimal strategy with just one underlying

Lévy process. Specifically, we will look at the variance of the terminal hedging error

when run on simulated paths.

As a simple example, we simulate paths with log-returns drawn from the two log-

return distributions compared in figure 3.2. We generate 1000 paths and a simulated

realized state process for T = 1 business year, with daily timesteps ∆t = 1/252,

as shown in figure 3.12. As we assume our underlying is a martingale, both our

distributions of returns have zero mean. At the start, we consider both models to be

equally probable (i.e. X̂k
0 = 0.5, k = 1, 2). We propagate the filter X̂t forward with

the intensity matrix A specified previously. For one of the sample paths, we show

the evolution of the filtered state X̂t, as shown in figure 3.13. We can see that the

filter quickly adjusts and distinguishes with a reasonable degree of accuracy which

model is generating returns. We note that in order to be able to identify the state

sufficiently quickly, the two assumed states must be sufficiently different from each

other, otherwise the filter will not gain strong certainty on the current state.

We now run portfolio simulations. At the start of the simulation, we buy 1 unit of an

ATM call option with expiry T = 1 year, and hedge it by dynamically selling short

∆ units of stock, rebalancing daily (i.e. using 252 timesteps) without any transaction

costs. For simplicity, we assume lending is interest-free and equally excess cash earns

no interest. We consider three cases:

1. the trader books the option value via the Black-Scholes formula (σ = 30% =
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√

0.52σ2
lowvol + 0.52σ2

highvol) and uses the Black-Scholes Delta (at that volatility)

to dynamically hedge throughout.

2. the trader books the option value as the initial average of the NIG-based mean-

value processes under the two regimes and hedges via the same average of the

two variance optimal strategies throughout.

3. the trader books the option value as the regime-switching (between normal and

NIG returns) mean-value process and hedges via the regime-switching optimal

strategy (which continually updates based on the value of filtered state X̂).

The distribution of the terminal P&L of trading on 1000 simulated stock paths based

on the three different hedging strategies can be seen in figure 3.14. From the figure we

Figure 3.14: Empirical distribution of terminal P&L when following three different
hedging strategies. 1000 simulated paths.

can see that the regime-switching hedging strategy fares the best, the plain variance-

optimal strategy coming in second and the Black-Scholes strategy faring the worst,
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exhibiting a somewhat fatter tail than the previous two cases. We see that the regime-

switching strategy has a significant edge over regular variance-optimal hedging with

a fixed weighted average. Unlike the other two strategies, its distribution actually ap-

pears to be positively skewed, whereas the other two are distinctly negatively skewed.

The adaptive filter that can identify the regime we are experiencing allows the trader

to anticipate periods of volatility shifts and thus appropriately inflating/deflating his

hedge in anticipation of larger/smaller movements in the spot.

3.9 Comparison to alternative hedging strategies

Just like the realized hedging error, the mean-value process, variance optimal hedging

strategy and the corresponding expected hedging error of our regime-switching model

can be compared to several alternative hedging strategies and corresponding hedging

errors. These allow us to identify the changes to the mean-value process/hedge and

the additional error or improvement our complex model brings about compared to

simpler models. We will compare against the following:

1. The variance optimal strategy and error under a regime-switching model with

the assumption that the current state X is observable, i.e. under the global

filtration {Gt};

2. The variance optimal strategy under a regime-switching model where we do not

attempt to filter and improve our initial regime estimate X̂0, using it throughout

for pricing and hedging;

3. The variance optimal strategy and error of a mixture model (i.e. does not

assume any regime-switching behaviour) where our initial estimate X̂0 deter-

mines the constant proportions with which the two Lévy models contribute to

the returns process;

4. The approximation of the hedging error via the asymptotic Cash Gamma squared

estimate discussed in Chapter 1, estimated via the volatility and kurtosis of our

underlying.

We will find most of the settings listed above are a special limiting case of the more

generic regime-switching model.
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3.9.1 Observable regime case

The case of observable X corresponds to a situation when our estimate is absolutely

certain, i.e. X̂1 ∈ {0, 1}, allowing us to re-use our computations from the hidden

state case. The mean-value process and hedging strategy are readily read off

from charts 3.4 and 3.8. For the mean-value process, this is because it only depends

on the expected occupation time of X in each regime, which does not change whether

we observe the process or not. For the hedging strategy, if X1 is constantly either

1 or 0, the filtering equation jump weighting processes w(x, y) = a(x) ≡ 0 and the

dynamics of the filtered state estimate become the same as that of the state itself.

We expect the hedging error to be significantly smaller than our baseline as we

observe more information about the model and can therefore hedge more exactly. To

compute the hedging error, we must make a minor adjustment to our computations, as

the quadratic variation of X is different to that of X̂. Specifically, [Cohen and Elliott,

2008, Section 2] show that

d〈X〉t/dt = [diag(AXt−) − diag(Xt−)A⊤ −Adiag(Xt−)].

This leads to a modified quadratic variation of the mean-value process:

d〈V 〉t/dt = fx(t,Xt−, Yt−)(diag(AXt−) − diag(Xt−)A⊤ −Adiag(Xt−))

+ fy c̄+ X⊤
t−

∫

R

(f(t,Xt−, Yt− + y) − f(t,Xt−, Yt−))2F (dy)

This in turn affects the values of ψ(t,Xt−, St−) in the hedging error recursion. How-

ever, the general structure of the recursive scheme remains very similar, with a minor

change to how we compute expectations of g for the next step:

Et[g(t+ ∆t,Xt+∆t, St+∆t)] =
M∑

j=1

Xj
t

M∑

k=1

Pkj

∫

R

pk(y)g(t+ ∆t, ek, St exp(y))dy

Here Pkj = P(Xt+∆t = ek|Xt = ej) is retrieved from the intensity matrix A:

P = exp(A∆t) and pk(y) is the probability density function of the k-th log-return

distribution. We can see the result we get for our numerical setting in figure 3.15.

We see that as we have perfect information about current and future state of the

regime, there is only a limited difference between the expected hedging error over 1

year when we start off in a high-vol or low-vol regime, as we can always adapt to the
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current regime perfectly.
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Figure 3.15: Regime switching model expected quadratic hedging error for constituent
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3.9.2 Regime-switching model with unobservable state but

without filtering

We can alternatively put ourselves into a position where we acknowledge that the

returns process undergoes multiple regime shifts throughout the lifetime of the con-

tingent claim, but we do not attempt to estimate the current regime from observations
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of the returns process. There are multiple cases when this can be a legitimate stance

to take: for example, we may believe that the change between economic regimes is

rather subtle and difficult to detect using noisy returns; it may be the case we believe

the regimes change very frequently, and we are not able to detect the change in time

before another change happens.

In this setup, we consider the true underlying model to still be a regime-switching

model and we simply do not update our estimate of X. We can re-use the results

we have computed for the mean-value process from the general case, as the only

difference will be that the estimate X̂t will be replaced with X̂0. In terms of our

numerical results this means that from our 2D grid (X̂1, Y ) in figure 3.4, we will

consider only a slice across different values of Y for one fixed value X̂1 = X̂1
0 .

The hedging strategy will subtly change, as it shall now become independent of

filtering variables, losing dependence on the SDE for X̂ (and its filtering functions

a(x) and w(x, y)). In such a setting the quadratic covariation between V and S under

filtration F̂t becomes

d〈V, S〉/dt = S−

(

fy c̄+ X̂0

∫

R

(ey − 1)(f(t, X̂0, Y− + y) − f(t, X̂0, Y−))F (dy)

)

and the quadratic covariation within the Fourier transform becomes

d〈V (z), S〉/dt = Sz+1
− 1⊤M(z, T − t)

(

z2c̄+ X̂0

∫

R

(ey − 1)(ezy − 1)X̂⊤
0 F (dy)

)

The quadratic variation of Vt = f(t, X̂0, Yt) will be

d〈V 〉t/dt = f 2
y c̄+ X̂⊤

0

∫

R

(f(t, X̂0, Yt− + y) − f(t, X̂0, Yt−))2F (dy)

Although our initial pricing will lead to the same price as in the setting where we do

filter the current state, we expect our hedging error to be larger, as the underlying

model is the same but our hedging strategy will presumably be suboptimal more

often, as we do not improve the estimate of the hidden state. We can see the resultant

hedging error in figure 3.16.
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3.9.3 Lévy mixture model

We can consider the classic hedging strategy for either the individual constituent Lévy

processes, or for a fixed mixture model - a linear combination of the constituent Lévy

processes. In both cases we simply re-use the classical quadratic hedging results of

Černý [2007]. A mixture model can also be seen as a particular case of the regime-

switching model when the transition matrix A ≡ 0 and thus we assume no switching

happens.

We have already compared the mean-value process and hedging strategy of the

regime-switching model with those of the component models in figures 3.4,3.6, and

3.9, 3.10 respectively. Assuming the two component Lévy processes are independent,

the case of the fixed mixture model is simply a weighted average of the two, both for

the mean-value process and the variance-optimal hedging strategy.

Regarding the hedging error, we could use the Fourier transform results of Černý

[2007], but for consistency of numerical stability and precision, we instead use the

same backward-iterative scheme as we do in the regime-switching case. With the

exception of the mean-value process itself, the formulas for computing the hedging

error via the iterative scheme are identical to the case of a regime-switching model

where we do not filter the state.

Relative to the regime-switching model, we expect the anticipated hedging error to

be smaller, as the model itself never counts on us being caught out by some sudden

change in the market.

We can see the resultant hedging error in figure 3.17. Indeed, we can confirm that

the mixture model reports a significantly lower expected squared hedging error.

3.9.4 Approximation of the hedging error via the Cash Gamma

Finally, we can consider using a simplified approximation to estimate the quadratic

hedging error and see good an estimate this much simpler approach is. We established

in the first chapter that the variance optimal strategy relates to the Cash Gamma

of the derivative. We can use the approximate discrete-time formulas from [Černý,
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2009, Chapter 13], simplified for the martingale case:

ε20 =

(
Kurt− 1

4

)

σ4
T−1∑

t=0

E0[(ΓtS
2
t )2]

E0[(ΓtSt)
2] =

S2
0

2πσ2
√
T 2 − t2

exp

(

−(log(S0/K) + 0.5σ2T )2 + 2σ2t log(S0/K)

σ2(T + t)

)

Figure 3.18 shows the estimated hedging error using the formulas above with the

weighted average variance and kurtosis of the two underlying models of the regime-

switching model. We see that the height of the peak of this Cash Gamma approxima-

tion roughly corresponds to the height of the peak of our regime-switching hedging

error, suggesting that the approximation is quite good, though it does not have the

asymmetry the full solution exhibits with respect to the log-moneyness.
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Figure 3.18: Cash Gamma approximation of expected quadratic hedging error. Call
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3.10 Conclusion

In this chapter we set out to use a regime-switching methodology to incorporate pa-

rameter uncertainty into our pricing and hedging strategy. We provided an SDE that

drives the evolution of our filtered estimate (an optional projection) of the unob-

servable state. With this additional stochastic state variable, we computed the rele-

vant mean-variance hedging quantities (mean-value process, variance-optimal hedging

strategy, quadratic hedging error) under such a regime-switching model. We found

that the regime-switching mean-value process resembles a weighted average of two

independent mean-value processes, the dependence on X̂ being nearly linear. For the

hedging strategy, the impact of the filtered state X̂ is more complex and is determined

partly by the dynamics (with respect to the observations Y ) of the filtered state. We

found that it can deviate from a weighted average case when the option drifts some-

what OTM/ITM during its lifetime. We developed a simple approximative iterative

scheme to compute the hedging error. We ran Monte Carlo simulations of the termi-

nal P&L of a delta-hedged option using the regime-switching strategy indicate that

when the filter is good at identifying the current state, the regime-switching strategy

performs significantly better than a simple single-regime variance optimal strategy.

For this reason, we conclude that using a regime-switching model for pricing and

hedging appears preferable when our constituent regimes are sufficiently distinctive.

We also compared the expected hedging error of the regime-switching model against a

range of alternatives. We found that adding a regime-switching component increases

the size of the hedging error we expect (in essence making us aware of the additional

risk a more realistic model would carry), and can be reduced by either progressively

filtering the current state or (if possible) observing it directly.
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Conclusion - a summary and a

view to the future

In this thesis, we have dealt with various risks causing market incompleteness and

how quadratic hedging techniques can take these additional risks into account.

In chapter 1, we dealt with the risk coming from an inability to act out any hedging

strategy continuously in a real-world setting. We looked at the asymptotics of hedg-

ing errors coming from discrete-time trading as we increase the frequency at which

we rebalance our hedge of a digital option. We saw that we can demonstrate the

importance of the Cash Gamma for the hedging error of the digital option by includ-

ing a compensating term in the granularity integral that balances out the explosive

nature of the Cash Gamma at maturity and ensures convergence of the integral to a

finite value. We found that this second order term significantly improves the quality

of the approximation of the full hedging error, especially for ATM strikes. An inter-

esting question this raises and is to be answered by future research is whether this

behaviour is specific to a digital option or whether we could obtain the same result

for contracts with different types of discontinuities in their payoffs. Specifically, we

could look at whether the absorbing behaviour of barriers in barrier options changes

the rate of explosion of the Cash Gamma at maturity, and thus changes the nature

of the discontinuity.

In chapter 2, we dealt with the risk coming from an inability to protect ourselves

from jumps in the price of the underlying, and how this impacts variance swaps and

skewness swaps. We did so via a generic “Lévy contract”, which encapsulates log

contracts, variance swaps and higher order moment swaps. We computed the hedg-

ing errors for these contracts using two different utility functions: quadratic utility

a.k.a. mean-variance preferences, leading to solving a quadratic hedging problem;

and exponential utility, which leads to calculating an exponential compensator. We
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obtained closed-form solutions for the quadratic utility case. We found that the

exponential utility case required asymptotic small-jump approximations to obtain

fully closed-form solutions for the desired quantities (price, hedging strategy, hedg-

ing error). Under such an approximation, the exponential utility solution strongly

resembles the quadratic hedging case, signifying that when adding small jumps to

our model, we can safely use quadratic utility and its easily computable closed-form

solutions as good approximations to the more theoretically sound exponential utility

solution. The results of this chapter raise several questions that could be addressed.

First, we could investigate how our results would differ if we stopped relying strongly

on the translation invariance property, allowing an impact of initial wealth and rela-

tive risk aversion. Secondly, for true market applications of these results, we would

need to extend the results to allow hedging our variance swap not only by trading

the underlying, but also by trading a replicating portfolio of vanilla options, which is

the standard approach taken by variance swap traders.

In chapter 3, we considered adding an additional risk to the model framework from

chapter 2. Not only do we maintain jumps in our underlying price process, but

also add the possibility of switching between different distributions of returns dur-

ing the lifetime of the trade, considering different potential market states (e.g. a

bull market and bear market). Under this more complicated model (but under the

simplifying assumption of a martingale underlying), we derived all three quantities

central to quadratic hedging, namely the mean-value process, the variance-optimal

hedging strategy, and the quadratic hedging error. For the first two, we use a Fourier

transform approach to obtain explicit, implementable formulas. We contrasted the

regime-switching mean-value process and hedging strategy against a simple weighted

average of single-regime Lévy models. For the hedging error, we find a backward

recursive scheme to numerically calculate it. We provided Monte Carlo simulation

results that demonstrate the positive impact it has on the P&L of pricing and hedging

options in a regime-switching market. However, for more conclusive evidence of the

quality of this model, in future research we would require doing these simulations on

realizations of true market paths (e.g. rolling 3-month windows over which we hedge

3-month options). We would also need to calibrate our model to observed market

prices of vanilla options at each of these points, testing the quality and stability of fit

to the market. From a theoretical perspective, it would also be helpful to extend the

results provided beyond a martingale case.

In summary, we have shown that the quadratic hedging approach can be very useful
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for dealing with a multitude of risks that lead to incomplete markets. Moreover,

unlike most incomplete market approaches, the quadratic hedging approach always

inherently carries with it a measure of error that we expect to experience in our

hedging, whether this is due to discrete-time trading, jumps in the underlying, or

uncertainty about the distribution that generates the log-returns we observe. By

contributing to the literature on quadratic hedging and its applications in various

circumstances, we hope to further popularize this framework, and slowly but surely

approach a situation when it is practical to implement it on a broader scale. The ideal

future is one that draws a parallel from Monte Carlo simulations - just as one never

considers the mean of a Monte Carlo simulation without considering its standard

deviation, we hope one will in the future never consider a derivative price without

considering its expected hedging error.
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Appendix A

Asymptotics of hedging errors -

technical details

Lemma A.1. For 0 ≤ ρ ≤ 1 it holds that

∫ 0

−∞
Φ(x, x, ρ) dx +

∫ ∞

0

1 − Φ(x, x, ρ) dx =

√

2

π

where Φ(·, ·, ρ) is the cumulative distribution function of the bivariate normal distri-

bution with zero means, unit variances and correlation ρ.

Proof.Using the notation in Abramowitz and Stegun [1972], we can rewrite our equa-

tion as
∫ 0

−∞
L(−x,−x; ρ) dx +

∫ ∞

0

1 − L(−x,−x; ρ) dx =

√

2

π
.

By Abramowitz and Stegun [1972, eqn. 26.3.9], we know that

L(−x,−x; ρ) − L(x, x; ρ) = 2Φ(x) − 1.

We can integrate the above over the interval [0,∞] to get

∫ ∞

0

L(−x,−x; ρ) − L(x, x; ρ) dx =

∫ ∞

0

2Φ(x) − 1 dx,
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or rearranged,

∫ ∞

0

L(−x,−x; ρ) dx +

∫ ∞

0

1 − L(x, x; ρ) dx = 2

∫ ∞

0

Φ(x) dx,

We see that by a simple change of variable y = −x, it holds that:

∫ ∞

0

1 − L(x, x; ρ) dx =

∫ 0

−∞
1 − L(−x,−x; ρ) dx.

Finally, we evaluate the integral on the right-hand side:

2

∫ ∞

0

Φ(x) dx = 2 [xΦ(x) + ϕ(x)]∞0 = 2
1√
2π

=

√

2

π
.

Lemma A.2. For 0 ≤ ρ ≤ 1 it holds that

√
π

2

∫ 0

−∞
Φ2(x, x, ρ)dx =

1

2
−
√

2(1 − ρ)

4
,

where Φ2(·, ·, ρ) is as given in Lemma (A.1).

Proof.Using ϕ(x, y; ρ) to denote the cumulative density function of a bivariate normal

distribution with unit variances and correlation ρ, we can write

∫ 0

−∞
Φ(z; ρ) dz =

∫ 0

−∞

∫ z

−∞

∫ z

−∞
ϕ(x, y; ρ) dx dy dz.

We can see that area over which we want to integrate, {−∞ ≤ x ≤ z;−∞ ≤
y ≤ z;−∞ ≤ z ≤ 0}, can equivalently be written as {−∞ ≤ x ≤ 0;−∞ ≤ y ≤
0; max{x, y} ≤ z ≤ 0}. Using this, we write

∫ 0

−∞

∫ z

−∞

∫ z

−∞
ϕ(x, y; ρ) dx dy dz =

∫ 0

−∞

∫ 0

−∞
ϕ(x, y; ρ)

(∫ 0

max{x,y}
dz

)

dx dy

=

∫ 0

−∞

∫ 0

−∞
ϕ(x, y; ρ) − max{x, y} dx dy

= −
∫ 0

−∞
dx

∫ x

−∞
xϕ(x, y; ρ) dy −

∫ 0

−∞
dy

∫ y

−∞
yϕ(x, y; ρ) dx.
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Now we make use of the fact that ϕ(x, y; ρ) = ϕ(y, x; ρ), so we can write

∫ 0

−∞
Φ(z; ρ) dz = −2

∫ 0

−∞

∫ x

−∞
xϕ(x, y; ρ) dy dx

By virtue of Abramowitz and Stegun [1972, eqn. 26.3.2]:

∫ 0

−∞

∫ x

−∞
xϕ(x, y; ρ) dy dx =

∫ 0

−∞

∫ x

−∞
(1 − ρ2)−1/2xϕ(x)ϕ

(

y − ρx
√

1 − ρ2

)

dy

=

∫ 0

−∞
xϕ(x)Φ(Ax) dx,

where A = 1−ρ√
1−ρ2

. We are left with a standard integration problem that requires the

use of integration by parts. Using this technique, we get

∫ 0

−∞
xϕ(x)Φ(Ax) dx = [−ϕ(x)Φ(Ax)]0−∞ + A

∫ 0

−∞
ϕ(x)ϕ(Ax) dx

= − 1

2
√

2π
+ A

∫ 0

−∞
ϕ(x)ϕ(Ax) dx

By a simple change of variables, we obtain that

∫ 0

−∞
ϕ(x)ϕ(Ax) dx =

1

2
√

2π
√
A2 + 1

.

We now have everything needed to get our result. Plugging in for A and putting

terms together, we find that

∫ 0

−∞
Φ(z; ρ) dz = −2

(

− 1

2
√

2π
+

√
1 − ρ

2
√

2
√

2π

)

=
1√
2π

(

1 −
√

1 − ρ√
2

)

.

Lemma A.3. For a process S given by dynamics (1.7) evaluated at times t ∈ [0, T ],

it holds that ∀α ≥ 0

Et[S
α
T 1ST>K ] = Sα

t exp

(
1

2
(α2 − α)σ2(T − t)

)

Φ

(
yt
s
−
(

1

2
− α

)

s

)

,

where s = σ
√
T − t and yt = log St

K
and Φ(·) is the cumulative distribution function

of the standard normal distribution.
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Proof.We prove the lemma via a change of measure and Girsanov theorem. The

change of measure will be defined by

dP ∗

dP |FT

= ZT =
Sα
T

E0[Sα
T ]

We can compute ZT explicitly by using the knowledge of the distribution of log

returns, logST ∼ N(log S0 − 1
2
σ2T, σ2T ) and the fact that Sα is martingale:

ZT =
exp (α logST )

E0[Sα
T ]

=
Sα
0 exp

(
−1

2
ασ2T + ασWT

)

Sα
0

= exp

(∫ T

0

ασ dWt −
1

2

∫ T

0

α2σ2 dt

)

,

where W is a Brownian motion. As it is written, we see that ZT perfectly fits Girsanov

theorem (see e.g. Shreve [2004, Theorem 5.2.3]), and thus we know that under the

new measure P ∗, Brownian motion is given by

W ∗
t = Wt − ασt

We can now write the expectation we wish to compute as follows:

Et[S
α
T1ST>K ] = Et








Sα
T

E0[S
α
T ]

︸ ︷︷ ︸
ZT

E0[S
α
T ]1ST>K








By Shreve [2004, Lemma 5.2.2], we know that

1

Zt

Et[ZT1ST>K ] = E∗
t [1ST>K ].

Moreover, by Girsanov theorem (e.g. Shreve [2004, Theorem 5.2.3]), Zt = Et[ZT ],

thus leading us to the result

Et[S
α
T1ST>K ] = ZtE0[S

α
T ]E∗

t [1ST>K ] = Et[S
α
T ]E∗

t [1ST>K ].

By straightforward computations, we obtain that

Et[S
α
T ] = Sα

t exp

(
1

2
(α2 − α)σ2(T − t)

)
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Now all we have to do is evaluate E∗
t [1ST>K ]:

E∗
t [1ST>K ] = P ∗(logST > logK) = P ∗

(

log St −
1

2
σ2(T − t) + σWT−t > logK

)

= P ∗
(

σ(W ∗
T−t + ασ(T − t)) >

1

2
σ2(T − t) − log

St

K

)

= P ∗
(

σW ∗
T−t >

(
1

2
− α

)

σ2(T − t) − yt

)

Finally, we normalize W ∗
T−t =

√
T − tZ∗ to a random variable Z∗ ∼ N(0, 1) and use

the fact that P ∗(Z∗ > x) = P ∗(Z∗ < −x) = Φ(−x) to obtain that

E∗
t [1ST>K ] = P ∗

(

Z∗ >

(
1

2
− α

)

s− yt
s

)

= Φ

(
yt
s
−
(

1

2
− α

)

s

)

Lemma A.4 (Taylor’s Theorem). Let k ≥ 1 be an integer and let the function

f : R → R be k + 1 times differentiable at point a ∈ R. Then

f(x) = f(a) + f ′(a)(x− a) +
f (2)(a)

2!
(x− a)2 + · · · +

f (k)(a)

k!
(x− a)k +Rk(x)

where Rk(x) is a remainder term of the form

Rk(x) =

∫ x

a

f (k+1)(t)
(x− t)k

k!
dt =

(x− a)k+1

(k + 1)!
f (k+1)(ξ) (a < ξ < x)

Proof.See Whittaker and Watson [1996].
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Appendix B

Good deal bounds of variance

swaps - technical details

As we will be dealing with Lévy processes that allow for exotic distributions whose mo-

ments are not all necessarily finite, we provide lemmas that provide us with sufficient

and equivalent conditions for the existence of moments and exponential moments.

We now state a general theorem from the literature that provides an equivalent con-

dition for the finiteness of any E[g(Xt)], as long as g is a so-called submultiplicative

function.

Definition B.1. A function g is called submultiplicative if it has the following prop-

erties:

• g > 0

• ∃a > 0 ∀x, y : g(x+ y) ≤ ag(x)g(y)

Theorem B.2. Let g be a submultiplicative, locally bounded, measurable function.

Let (Xt)t≥0 be a Lévy process with characteristic triplet (b(h), σ2, F ). Then

∀t : E[g(Xt)] <∞ ⇔
∫

|x|>1

g(x)F (dx) <∞

Proof.See Sato [1999, Theorem 25.3].
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Corollary B.3. Let (Xt)t≥0 be a Lévy process with characteristic triplet (b(h), σ2, F ).

Then

∀n∀t : E[|Xt|n] <∞ ⇔
∫

|x|>1

|x|nF (dx) <∞

∀n∀t : E[enXt ] <∞ ⇔
∫

|x|>1

enxF (dx) <∞

Proof.We notice that functions g(x) = |x|n and g(x) = enx are submultiplicative and

apply Theorem B.2.

Finally we know that E[|X|n] <∞ implies that E[Xn] <∞, thus giving us a sufficient

condition for the finiteness of Xn.

For reference, we reproduce here the definition of the set of admissible strategies from

Biagini and Černý [2011] which we will consider in the utility maximization problem.

Definition B.4. H ∈ L(S) is an admissible integrand if U(H · ST ) ∈ L1(P) and if

there exists an approximate sequence (Hn)n in H such that:

1. Hn · St → H · St in probability for all t ∈ [0, T ];

2. U(Hn · ST ) → U(H · ST ) ∈ L1(P).

The set of all admissible integrands is denoted by H̄.
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Appendix C

Regime-switching quadratic

hedging - technical details

The next two definitions are reproduced for reference from Kallsen and Shiryaev

[2002].

Definition C.1. A real-valued semimartingale is called special if it can be written

as X = X0 +M + V for some local martingale M and some predictable process V of

finite variation, both starting at 0.

Definition C.2. Let X be a real-valued semimartingale. X is called exponentially

special if exp(X −X0) is a special semimartingale.

The following are helpful lemmas establishing martingale properties of the Markov

process X and optional projections.

Lemma C.3. X̂M
t := exp(−At)X̂t is a (F̂t,P)-martingale.

Proof.

E[X̂T |F̂t] = E[E[XT |F̂T ]|F̂t] = E[XT |F̂t]

= E[E[XT |Gt]|F̂t] = E[exp(A(T − t))Xt|F̂t] = exp(A(T − t))X̂t

Consequently,

E[X̂M
T |F̂t] = E[exp(−AT )X̂T |F̂t] = exp(−At)X̂t = X̂M

t
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Lemma C.4. IfXt is a (Gt,P)-martingale, then X̂t = E[Xt|F̂t] is a (F̂t,P)-martingale.

Proof.The (Gt,P)-martingale property of X dictates that E[Xt|Gs] = Xs. Then it

follows directly that

E[X̂t|F̂s] = E[E[Xt|F̂t]|F̂s] = E[Xt|F̂s]

= E[E[Xt|Gs]F̂s] = E[Xs|F̂s] = X̂s

Lemma C.5. For any progressively measurable process Z with E
∫ T

0
|Zt|dt < ∞, it

holds for optional projections onto filtration F̂t) that

ξT :=
̂∫ T

0

Ztdt−
∫ T

0

Ẑtdt

is a (P,Ft)-martingale.

Proof.Rewriting using expectations and using Fubini’s theorem and the Tower law,

ξT =
̂∫ T

0

Ztdt−
∫ T

0

Ẑtdt

= E[

∫ T

0

Ztdt|F̂T ] −
∫ T

0

Ẑtdt

= |Fubini| =

∫ T

0

E[Zt|F̂T ] − E[Zt|F̂t]dt

=

∫ T

0

E[Zt|F̂T ] − E[E[Zt|F̂T ]|F̂t]dt
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Then for any fixed u ≤ T :

E[ξT |F̂u] =

∫ u

0

E[E[Zt|F̂T ]|F̂u] − E[E[Zt|F̂t]|F̂u]dt

+

∫ T

u

E[E[Zt|F̂T ]|F̂u] − E[E[Zt|F̂t]|F̂u]dt

=

∫ u

0

E[Zt|F̂u] − E[Zt|F̂t]dt

+

∫ T

u

E[Zt|F̂u] − E[Zt|F̂u]dt

=

∫ u

0

E[Zt|F̂u] − E[Zt|F̂t]dt = ξu

C.1 Dynamics of X̂ via Zakai equation

We can obtain an SDE of a normalized version of the filtered state X̂ over time.

We shall do so in this section by following results from Elliott and Royal [2008] and

Siu [2014]. Define a reference probability measure P̄ and a Lévy measure F̄ (of our

choosing) under P̄. Further, we define the following processes:

Lk(y) :=
dF k

dF̄
(y)

Ūt :=

∫ t

0

∑

k

Xk
s−

∫

R

(Lk(y) − 1)(JY (dy, ds) − F̄ (dy)ds)

Λ̄1
t := 1 +

∫ t

0

Λ̄1
s−dŪs

= exp

(
∫ t

0

∑

k

Xk
s−

∫

R

log(Lk(y))J(dy, ds) −
∫ t

0

∑

k

Xk
s−

∫

R

(Lk(y) − 1)F̄ (dy)ds

)

The process Λ̄1 will be used as a change of measure of the jump density, leading to a

Lévy measure compensator F̄ independent of X under measure P̄. We also define a

process Λ̄2 for the diffusion part of the process Y , making that part independent of

X under P̄:

Λ̄2
t := exp

(
∫ t

0

X⊤
s b

X⊤
s c

dWs −
1

2

∫ t

0

(
X⊤

s b

X⊤
s c

)2

ds

)
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Define

Λ̄ := Λ̄1Λ̄2

and consider the change of measure

dP

dP̄ |Gt

= Λ̄t

Let us note that for us to use the reference measure, we require the change of mea-

sure to be locally absolutely continuous with respect to the historical measure P.

This holds under certain integrability conditions listed in Jacod and Shiryaev [2003,

Theorem IV.4.39]. For some infinite activity processes (such as the VG process),

these conditions are not satisfied, but are satisfied for their truncated versions, where

jumps smaller than ǫ are ignored. We shall therefore limit ourselves to only processes

whose Lévy densities that satisfy the following assumption.

Assumption C.1. All the Lévy measures F k, k = 1...M are locally absolutely con-

tinuous with respect to the reference measure P̄.

Using the change of measure, we obtain an alternative representation of the filter X̂

using the continuous-time version of Bayes’ Theorem:

X̂t = E[Xt|F̂t] =
Ē[Λ̄tXt|F̂t]

Ē[Λ̄t|F̂t]

We will now get the dynamics for the (M-dimensional) unnormalized estimate qt(X) =

Ē[Λ̄tXt|F̂t]. Using Ito’s lemma, we have

Λ̄tXt = Λ̄0X0 +

∫ t

0

Λ̄s−AXsds+

∫ t

0

Λ̄s−dMs

+

∫ t

0

Λ̄s−
∑

k

ekX
k
s−
bk

ck
dWs

+

∫ t

0

Λ̄s−
∑

k

ekX
k
s−

∫

R

(Lk(y) − 1)(JY (dy, ds) − F̄ (dy)ds)

It can be shown that because M is a (P,Gt)-martingale, it is also a (P̄,Gt)-martingale.

Furthermore, we note that Λ̄sXs is independent of observations Yu at times u ∈ [s, t].
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Consequently:

qt(X) = E[Λ̄tXt|F̂t]

= q0(X) +

∫ t

0

Aqs(X)ds+

∫ t

0

∑

k

ek
bk

ck
qks (X)dWs

+

∫ t

0

∑

k

ekq
k
s (X)

∫

R

(Lk(y) − 1)(JY (dy, ds) − F̄ (dy)ds)

We can further transform this into an ODE via the so-called Gauge transformation

by considering an inverse change of Lévy measure:

Uk
t =

∫ t

0

∫

R

(
1

Lk(y)
− 1)(JY (dy, ds) − F k(dy)ds)

λkt = 1 +

∫ t

0

Xk
s−
bk

ck
dWs +

∫ t

0

λks−dU
k
s

Γt = diag(λt)

where Γ is a M-dimensional matrix with elements λkt on its diagonal. Then the

transformed variable q̄t(X) = Γtqt(X) follows the ODE:

q̄t(X) = q̄0(X) +

∫ t

0

ΓsAΓ−1
s q̄s(X)ds

which can be solved numerically starting from point q̄0(X) = q0(X) = X̂0. Then

X̂t =
qt(X)

qt(X)⊤1
=

q̄t(X)

q̄t(X)⊤1

One issue with this representation is that it is not straightforward to compute the

predictable quadratic variation (or covariation) of X̂ from this form.
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C.1.1 Discretization and numerical solution

By discretizing the equation for q̄ over an equidistant grid {t0, ..., tN} with timestep

size ∆t, we have

Γtk+1
qtk+1

(X) = Γtkqtk(X) +

∫ tk+1

tk

ΓsAqs(X)ds

≈ Γtkqtk(X) + ΓtkAqtk(X)∆t,

or equivalently,

qtk+1
(X) ≈ Γ−1

tk+1
Γtk(IM + A∆t)qtk(X).

To get Γt, we recall that Γt = diag(λt), where

λjt = exp

(
∫ t

0

bj

cj
dWs −

1

2

∫ t

0

(
bj

cj

)2

ds+

∫ t

0

∫

R

(
1

Lj(y)
− 1)F j(dy)ds+

∫ t

0

log(Lj(y))JY (dy, ds)

)

= exp

(

bj

cj
Wt +

1

2

(
bj

cj

)2

t+

∫ t

0

∫

R

(F̄ (dy) − F j(dy)) +

∫ t

0

log(Lj(y))JY (dy, ds)

)

Then B = Γ−1
tk+1

Γtk is going to be a diagonal matrix with diagonal elements

Bjj = exp

(
bj

cj
(Wtk+1

−Wtk) +
1

2

(
bj

cj

)2

δt

+ ∆t

∫

R

(F̄ (dy) − F j(dy)) +

∫ tk+1

tk

log(Lj(y))JY (dy, ds)

)

Here we note that the last term is simply going to be a weighted sum over all jumps

observed between times tk and tk+1, where the weighting term Lj is the ratio of Lévy

densities of the j-th Lévy process and the chosen reference process with Lévy measure

F̄ .

C.2 Filtered dynamics for X̂

Lemma C.6. Under assumptions 3.2 and 3.1, every (P, F̂t)-local martingale m can

be decomposed as

mt = m0 +

∫ t

0

∫

R

ωs(y)(JY (ds, dy) − X̂⊤
t−F (dy)ds) +

∫ t

0

αsdIs
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where It is an (P, F̂t)-Wiener process, ωt(y) is an F̂t-predictable process and αt an

F̂t-adapted process and both are bounded P-a.s. When m is a M-dimensional vector,

ωt(y) = [ω1
t (y), ..., ωM

t (y)]⊤ and αt = [α1
t , ..., α

M
t ]⊤ are vector processes.

Proof.See Ceci and Colaneri [2012, Proposition 2.4], or in different notation also in

Schmidt and Frey [2012, Lemma 3.2].

Proof of theorem 3.6. The proof of this theorem follows the ideas in Ceci and Colaneri

[2012, Theorem 3.1], extended to a multidimensional signal X . (Note a similar theo-

rem is provided in [Frey and Schmidt, 2012, Proposition 3.2]).

We use the innovation process previously defined:

It = Wt +

∫ t

0

∑

j

bj√
c̄
(Xj

s− − X̂j
s−) ds = Wt +

1√
c̄

∫ t

0

b⊤(Xs− − X̂s−)ds

which is a (P, F̂t)-local martingale. We know X has the semimartingale decomposi-

tion:

Xt = X0 +

∫ t

0

AXs−ds+ Mt

The F̂t-projection of X is

X̂t = X̂0 +
̂∫ t

0

AXs−ds+ M̂t

= X̂0 +

∫ t

0

AX̂s−ds−
∫ t

0

AX̂s−ds+
̂∫ t

0

AXs−ds+ M̂t

From Lemma C.5 we have that
∫ t

0
AX̂s−ds − ̂∫ t

0
AXs−ds is a (F̂t,P)-martingale.

Furthermore, since we know Mt is a (Gt,P)-martingale, it follows (see Lemma C.4)

that M̂t is a (F̂t,P)-martingale and hence X̂t − X̂0 −
∫ t

0
AX̂s−ds is also an F̂t-

martingale. Lemma C.6 then ensures the existence of vector processes α,ω such

that

X̂t − X̂0 −
∫ t

0

AX̂s−ds =

∫ t

0

∫

R

ωs(y)(JY (ds, dy) − X̂⊤
s−F (dy)ds) +

∫ t

0

αsdIs

We will now proceed to find such processes α,ω and find they can be written as

functions of X̂t (and jump size y for the case of ω).
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For that, consider F̂t-adapted process W̃ :

W̃t = It +

∫ t

0

X̂⊤
s b√
c̄
ds = Wt +

∫ t

0

X⊤
s b√
c̄
ds

and a bounded F̂t-adapted M-dimensional process U s.t.

Ut =

∫ t

0

∫

R

Γ(s, x)JY (ds, dx)

where Γ(s, x) = [Γ1(s, x), ...,ΓM(s, x)]⊤.

We proceed following the steps in Ceci and Colaneri [2012]:

1. compute X̂kW̃ t and X̂k
t W̃t separately

2. compute X̂kUk
t and X̂k

t U
k
t

Since in both cases, W̃ and U are F̂t-adapted, it holds that X̂kW̃ t = X̂k
t W̃t and

X̂kUk
t = X̂k

t U
k
t . By comparing the drift on the left and right-hand side of each

equation, we will find processes αk
s and ωk

s (y).

Step 1

d(Xk
t W̃t) = Xk

t−dW̃t + W̃t−dX
k
t + d〈Xk, W̃ 〉Gt

= Xk
t−dWt +Xk

t−
b⊤Xt√
c̄

)dt+ W̃t−
∑

j

akjX
j
t dt+ dm1

t

where m1
t =

∫ t

0
W̃s−dM

k
s is a (P,Gt)-local martingale. Projecting onto F̂t,

d(X̂kW̃ t) =

{
∑

j

bj√
c̄
X̂k

t−X
j
t + W̃t−

∑

j

akjX̂
j
t

}

dt+ X̂kdWt + dm̂1
t + dm̃1

t

where m̃1 is a (P, F̂t)-martingale and m̂1 has a sequence of stopping times on which

it is a (P, F̂t)-martingale (see Ceci and Colaneri [2012]).

Computed separately,

d(X̂k
t W̃t) =

{

X̂k
t−
b⊤X̂t√

c̄
+ W̃t−

∑

j

akjX̂
j
t + αk

s

}

dt+ dm2
t
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where m2
t =

∫ t

0
(W̃sh

k(s) + X̂k
s )dIs +

∫ t

0
W̃s

∫

R
ωk
s (x)(J(ds, dx) − X̂⊤

s−F (ds, dx)) is a

(P, F̂t)-local martingale.

Since X̂kW̃ t = X̂k
t W̃t, the drift terms must equal,which gives

αk
t =

∑

j

bj√
c̄

(

X̂k
t−X

j
t− − X̂k

t−X̂
j
t−

)

.

This can be further simplified by noting that X̂k
t−X

j
t− = X̂k

t− when k = j, and

otherwise equals 0:

αk
t = X̂k

t−
1√
c̄

(

bk −
∑

j

bjX̂j
t−

)

.

Thus the process αt = [α1
t , ·, αM

t ]⊤ can be written as αt = a(X̂t−) where function

a(x) is defined as follows:

a(x) = diag(x)
b− b⊤x√

c̄

Defining ã(x) := 1√
c̄

(
b− b⊤x

)
, then the process can also be rewritten into vector

form as follows:

αt = diag(X̂t−)ã(X̂t−)

Step 2 As in step 1, we start under Gt; if we assume that X and Y do not have any

common jumps:

d(Xk
t U

k
t ) = Xk

t−dU
k
t + Uk

t−dX
k
t + d[Xk, Uk]t

=

{

Uk
t−
∑

j

akjX
j
t +Xk

t−

∫

R

Γk(t, x)
∑

j

Xj
t F

j(dx)

}

dt+ dm3
t

where m3
t =

∫ t

0

∫

R
Xk

s−Γk(s, x)J̃Y (ds, dx) +
∫ t

0
Us−dM

k
s is a (P,Gt)-martingale. Pro-

jecting onto F̂t,

d(X̂k
t U

k
t ) =

{

Uk
t−
∑

j

akjX̂
j
t +

∫

R

Γk(t, x)
∑

j

X̂k
t−X

j
tF

j(dx)

}

dt+ dm̃3
t

where m̃3
t is a (P, F̂t)-martingale.
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Independently computed,

d(X̂k
t U

k
t ) = X̂k

t−dU
k
t + Uk

t−dX̂
k
t + d[X̂k, Uk]t

=

{
∫

R

(X̂k
t− + ωt(x))Γk(t, x)

∑

X̂j
t−F

j(dx) + Uk
t−
∑

j

akjX̂
j
t−

}

dt+ dm4
t

where m4
t =

∫ t

0
Uk
s h

k(s)dIs+
∫ t

0
(X̂k

s−Γk(s, x)+Uk
s−ω

k
s (x))(JY (ds, dx)−

∑

j X̂
j
s−F

j(dx)ds)

is a FY
t -martingale.

Comparing drifts again, we find:

∑

j

X̂k
t−X

j
t−

∫

R

Γk(t, x)F j(dx) =

∫

R

Γk(t, x)(X̂k
t− + ωk

t (x))
∑

j

X̂j
t−F

j(dx)

Rearranging, we can obtain the process ωk
t (x):

ωk
t (x) =

∑

j(X̂
k
t−X

j
t− − X̂k

t−X̂
j
t−)F j(dx)

∑

j X̂
j
t−F

j(dx)

But X̂k
t−X

j
t = X̂k

t− when k = j and is equal to 0 for all other cases, which means our

result simplifies:

ωk
t (x) = X̂k

t−

(

F k(dx)
∑

j X̂
j
t−F

j(dx)
− 1

)

This can be written in vector form as ωt(y) = w(X̂t−, y) where function w(x, y) is

defined as follows:

w(x, y) := diag(x)

(
F (dy)

x⊤F (dy)
− 1

)

We can define a separate function w̃(x, y) := ( F (dy)
x⊤F (dx)

− 1), which means w(x, y) =

diag(x)w̃(x, y), or alternatively w(x, y) = diag(w̃(x, y))x.

C.3 Hedging error via PIDEs

Here, we will describe an alternative approach that gives us the hedging error

ε20 = E[〈V 〉T − ξ2 · 〈S〉T ]
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as the solution of a partial integral differential equation (PIDE). For that, we define

the following function h:

h(t, Yt, X̂t) := E[

∫ T

t

d〈V − ξ · S〉u|F̂t]

where Y = log(S/S0). Our aim then is to compute

h(0, Y0, X̂0) = ε20 = E[

∫ T

0

d〈V − ξ · S〉u|F̂0]

Theorem C.7. Assuming h(t, y, x) ∈ C1,2,2 and Vt = f(t, X̂t, Yt) ∈ C1,2,2, then

ε20 = h(0, Y0, X̂0)

is the solution to the following backwards PIDE

0 = (
∂f

∂y
− St−ξt−)2c̄

+

∫

R

[

f(t, Yt− + y, X̂t− + w(X̂t−, y))

− f(t−, Yt−, X̂t−) − ξt−St−(ey − 1)

]2

X̂⊤
t−F (dy)

+ (∇xf)⊤(

∫

R

X̂t−diag(w̃
2)X̂⊤

t−X̂
⊤
t−F (dy) + X̂t−diag(ã(X̂t−)2)X̂⊤

t−)∇xf

+
∂

∂t
h+

1

2

∂2

∂y2
h c̄+ (∇xh)⊤AX̂t− +

∑

i,j

∂2

∂xi∂xj
hai(X̂t−)aj(X̂t−)

+

∫

R

(

h(t, Yt− + y, X̂t− + w(X̂t−, y)) − h(t, Yt−, X̂t−) − ∂

∂y
h(t, Yt−, X̂t−)y

)

X̂⊤
t−F (dy)

with terminal condition

h(T, YT , X̂T ) = (f(T, YT , X̂T ) −H(T, S0e
YT ))2

Proof.To pin down the function h, we will use the fact that

βt :=

∫ t

0

d〈V − ξ · S〉u + E[

∫ T

t

d〈V − ξ · S〉u|F̂t] =

∫ t

0

d〈V − ξ · S〉u + h(t, Yt, X̂t)
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is a martingale:

E[βt|F̂s] = E[

∫ t

0

d〈V − ξ · S〉u + E[

∫ T

t

d〈V − ξ · S〉u|F̂t]|F̂s]

= E[

∫ s

0

d〈V − ξ · S〉u + E[

∫ T

s

d〈V − ξ · S〉u|F̂t]|F̂s]

=

∫ s

0

d〈V − ξ · S〉u + E[

∫ T

s

d〈V − ξ · S〉u|F̂s] = βs

As a consequence, it holds that

E[d〈V − ξ · S〉t + dh|F̂t] = 0 (C.1)

We will use this relation to obtain a PIDE that determines h.

Using Itô formula for jump processes and the Kushner-Stratonovich equation in the-

orem 3.6 we have

dh(t, Yt, X̂t) =
∂

∂t
h dt

+
∂

∂y
h dYt +

1

2

∂2

∂y2
h d〈Y c〉t

+ (∇xh)⊤ dX̂t +
1

2

∑

i,j

∂2

∂xi∂xj
hd〈X̂ i, X̂j〉ct

+ (h(t, Yt− + y, X̂t− + w(X̂t−, y)) − h(t, Yt−, X̂t−) −∇xh
⊤x− ∂h

∂y
y) ∗ JX̂,Y

Then the expectation in equation C.1 leads to the following PIDE for h (with jump

measure truncation function h(y) = y):

0 =
d〈V − ξ · S〉

dt
+
∂

∂t
h+

1

2

∂2

∂y2
h c̄

+ (∇xh)⊤AX̂t− +
1

2

∑

i,j

∂2h

∂xi∂xj
ai(X̂t−)aj(X̂t−)

+

∫

R

(

h(t, Yt− + y, X̂t− + w(X̂t−, y)) − h(t, Yt−, X̂t−)

− ∂

∂y
h(t, Yt−, X̂t−)y −∇xh

⊤w(X̂t−, y)

)

X̂⊤
t−F (dy)

To completely define this PIDE, we need to compute d〈V −ξ·S〉
dt

.
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To obtain it, we will apply Itô’s lemma to V , compute V − ξ · S, and then from that

directly obtain its predictable quadratic variation.

Writing Vt = f(t, X̂t, Yt) and using notation hy(t, y, x) := ∂h
∂y

(t, y, x), Itô’s lemma

says:

VT = f(T, X̂T , YT )

= V (0, Y0, X̂) +

∫ T

0

ft(t, X̂t−, Yt−)dt+

∫ T

0

fy(t, X̂t−, Yt−)dYt

+
1

2

∫ T

0

fyy(t, X̂t−, Yt−)d〈Y c〉t

+

∫ T

0

∫

R

(f(t, Xt− + w(X̂t−, y), Yt− + y) − f(t, X̂t−, Yt−)

− fy(t, X̂t−, Yt−)y −∇xf(t, X̂t−, Yt−)w(X̂t−, y))J(dy, dt)

+

∫ T

0

(∇xf(t, X̂t−, Yt−))⊤dX̂t +
1

2

∫ T

0

∑

i,j

∂2

∂xi∂xj
f(t, X̂t−, Yt−)d〈X̂ i, X̂j〉ct

We then write S in terms of Y (using truncation function h(y) = y):

dS = S0d(eY ) = S−(dY +
1

2
d〈Y c〉 +

∫

R

(ey − 1 − y)J(dy, dt))

to get V − ξ · S:

VT −
∫ T

0

ξtdSt = f(T, X̂T , YT )

= f(0, X̂, Y0) +

∫ T

0

ft(t, X̂t−, Yt−)dt+

∫ T

0

(fy(t, X̂t−, Yt−) − ξt−St−)dYt

+
1

2

∫ T

0

(hfyy(t, X̂t−, Yt−) − ξt−St−)d〈Y c〉t

+

∫ T

0

∫

R

[

f(t, X̂t− + w(X̂t−, y), Yt− + y)

− f(t, X̂t−, Yt−) − fy(t, X̂t−, Yt−)y −∇xf(t, X̂t−, Yt−)w(X̂t−, y)

− ξt−St−(ey − 1 − y)

]

J(dy, dt)

+

∫ T

0

(∇xf(t, X̂t−, Yt−))⊤dX̂t +
1

2

∫ T

0

∑

i,j

∂2

∂xi∂xj
f(t, X̂t−, Yt−)d〈X̂ i, X̂j〉t
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Then we can see the predictable quadratic variation of this is:

〈V − ξ · S〉T =

∫ T

0

(fy(t−, X̂t−, Yt−) − St−ξt−)2d〈Y c〉t

+

∫ T

0

∫

R

[

f(t, X̂t− + w(X̂t−, y), Yt− + y)

− f(t−, X̂t−, Yt−) − ξt−St−(ey − 1)

]2

X̂⊤
t−F (dy)dt

+

∫ T

0

f(t−, X̂t−, Yt−)⊤d〈X̂〉tf(t−, X̂t−, Yt−)

From the Kushner-Stratonovich equation 3.6 for X̂, we know that

d〈X̂〉 = (

∫

R

X̂−diag(w̃2)X̂⊤
−X̂

⊤
−F (dy) + X̂−diag(ã(X̂−)2)X̂⊤

− )dt

This leads to a final PIDE defining the backward evolution of the quadratic hedging

error (omitting the inputs to h, V , w̃ where clear):

0 = (
∂f

∂y
− St−ξt−)2c̄

+

∫

R

[

f(t, X̂t− + w(X̂t−, y), Yt− + y)

− f(t−, X̂t−, Yt−) − ξt−St−(ey − 1)

]2

X̂⊤
t−F (dy)

+ (∇xf)⊤(

∫

R

X̂t−diag(w̃2)X̂⊤
t−X̂

⊤
t−F (dy) + X̂t−diag(ã(X̂−)2)X̂⊤

t−)∇xf

+
∂

∂t
h +

1

2

∂2

∂y2
h c̄+ (∇xh)⊤AX̂t− +

∑

i,j

∂2h

∂xi∂xj
ai(X̂t−)aj(X̂t−)

+

∫

R

(

h(t, Yt− + y, X̂t− + w(X̂t−, y)) − h(t, Yt−, X̂t−)

− ∂

∂y
h(t, Yt−, X̂t−)y −∇xh

⊤w(X̂t−, y)

)

X̂⊤
t−F (dy)

We remind the reader that in this equation, we aim to solve for function h as we want

to obtain ε20 = h(0, X̂0, Y0), whereas V = f(t, X̂t, Yt) is known.

It is worth pointing out that the dimensionality of the PIDE grows with the number

of regimes. Already with 2 regimes, we have at best a 2-dimensional PIDE (with

dimensions X̂1
t , Yt, eliminating 1 dimension by noting that X̂2

t = 1 − X̂1
t ). Thus we

are better served by using our recursive approximation scheme for this computation,
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especially for more than 2-3 regimes. Alternatively we can resort to computing the

quadratic hedging error via Monte Carlo simulations.

As there is no self-evident solution to the PIDE that gives us the hedging error, in

the next subsection we outline a finite-difference scheme to solve it numerically. We

do this for the case of 2 regimes, as this illustrates the principles behind higher-

dimensional solutions but keeps the indexing and notation manageable.

C.3.1 Finite difference scheme for 2 regimes

We recall the PIDE:

0 = (
∂f

∂y
− St−ξt−)2c̄

+

∫

R

[

f(t, X̂t− + w(X̂t−, y), Yt− + y)

− f(t−, X̂t−, Yt−) − ξt−St−(ey − 1)

]2

X̂⊤
t−F (dy)

+ (∇xf)⊤(

∫

R

X̂t−diag(w̃2)X̂⊤
t−X̂

⊤
t−F (dy) + X̂t−diag(ã(X̂t−)2)X̂⊤

t−)∇xf

+
∂

∂t
h+

1

2

∂2

∂y2
h c̄+ (∇xh)⊤AX̂t− +

∑

i,j

∂2

∂xi∂xj
hai(X̂t−)aj(X̂t−)

+

∫

R

(

h(t, Yt− + y, X̂t− + w(X̂t−, y)) − h(t, Yt−, X̂t−) − ∂

∂y
h(t, Yt−, X̂t−)y

)

X̂⊤
t−F (dy).

We notice that can define a drift term d(t, X̂, Y ) independent of the solution h:

d(t, X̂t−, Yt−) := (
∂f

∂y
− St−ξt−)2c̄

+

∫

R

[

f(t, X̂t− + w(X̂t−, y), Yt− + y)

− f(t−, X̂t−, Yt−) − ξt−St−(ey − 1)

]2

X̂⊤
t−F (dy)

+ (∇xf)⊤(

∫

R

X̂t−diag(w̃2)X̂⊤
t−X̂

⊤
t−F (dy) + X̂t−diag(ã(X̂t−)2)X̂⊤

t−)∇xf

This drift term can be pre-computed completely separately from any finite difference

scheme solution.
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Next, we simplify the solution for h(t, Y, X̂) = h(t, Y, X̂1, X̂2) by noting that X̂2 =

1 − X̂1 and hence h(t, Y, X̂1, X̂2) = h(t, Y, X̂1, (1 − X̂1)) =: h̃(t, Y, X̂1). We will

continue this section by using this variant of h(t, y, x) with 1-dimensional inputs.

Using the simplifying relation above, and denoting the elements of vector a(X̂) as

a1, a2, the PIDE can be written as follows:

0 = d(t, x, y) +
∂h

∂t
+

1

2
c̄
∂2h

∂y2

+
∂h

∂x
((a11 − a21)x + (a12 − a22)(1 − x)) +

∂2h

∂x2
(a1 − a2)2

+

∫

R

(h(t, Y− + y, X̂1
− + w(X̂1

−, y)) − h(t, Y−, X̂
1
−) − ∂h

∂y
(t, Y−, X̂

1
−)y −∇xh

⊤w(X̂−, y))X̂⊤
−F (dy)

Now we define 3 grids on which we will solve the PIDE numerically:

• time grid: indexed 0, ..., t, t+ 1, ..., T ,

• y grid: indexed 0, ..., n, n+ 1, ..., N ,

• x grid: indexed 0, ..., m,m+ 1, ...,M

(note here M denotes how finely we can distinguish between different levels of X̂1,

not the number of regimes) and denote ht,n,m := h(t, yn, xm). We then use an explicit

finite difference implementation and central finite differences:

∂h

∂t
≈ ht,n,m − ht−1,n,m

∆t
∂h

∂x
≈ ht,n,m+1 − ht,n,m−1

2∆x
∂2h

∂x2
≈ ht,n,m+1 − 2ht,n,m + ht,n,m−1

(∆x)2

∂2h

∂y2
≈ ht,n+1,m − 2ht,n,m + ht,n−1,m

(∆y)2
.

Using these approximations within our PIDE, we obtain an explicit recursive scheme
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solving backward in time:

ht−1,n,m = ∆t

(

dt,n,m + ht,n,m +
1

2∆x
(ht,n,m+1 − ht,n,m−1)((a11 − a21)x1 + (a12 − a22)(1 − x1))

+
1

2(∆y)2
c̄(ht,n+1,m − 2ht,n,m + ht,n−1,m)(a1t,m − a2t,m)2

+

∫

R

(h(t, yn + z, xm + w1(xm, z)) − ht,n,m

− z
ht,n+1,m − ht,n−1,m

2∆y
− w1(xm, z)

ht,n,m+1 − ht,n,m−1

2∆x
)(xmF

1 + (1 − xm)F 2)(dz)

The terminal condition (ie. boundary on the time grid) is hT,n,m = (fT,n,m −HT,n)2.

For the boundaries on indices m,n we use the smooth-pasting condition ∂2h
∂x2 = 0, ∂

2h
∂y2

=

0, which translates to the practical boundary conditions ht,M,n = 2ht,M−1,n−ht,M−2,n

and ht,m,N = 2ht,m,N−1 − ht,m,N−2.
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Álvaro Cartea and Sebastian Jaimungal. Modelling Asset Prices for Algorith-

mic and High-Frequency Trading. Applied Mathematical Finance, 20(6):512–

547, dec 2013. ISSN 1350-486X. doi: 10.1080/1350486X.2013.771515. URL

http://www.tandfonline.com/doi/abs/10.1080/1350486X.2013.771515.

CBOE. Vix white paper, 2009.

Claudia Ceci and Katia Colaneri. Nonlinear filtering for jump diffusion observations.

Advances in Applied Probability, 44(3):678–701, 2012. ISSN 00018678. doi: 10.

1239/aap/1346955260.

Claudia Ceci and Katia Colaneri. The Zakai equation of nonlinear filtering for jump-

diffusion observation: existence and uniqueness. Applied Mathematics & Optimiza-

tion, 69(1):47–82, 2014. URL http://arxiv.org/abs/1210.4279.

Claudia Ceci, Katia Colaneri, and Alessandra Cretarola. Local risk-minimization

under restricted information to asset prices. Electronic Journal of Probability, 20,

2015. URL http://arxiv.org/abs/1312.4385.
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Ken-Iti Sato. Lévy processes and infinitely divisible distributions. Cambridge Univer-

sity Press, 1999.

Ulrike Schaede. Forwards and futures in tokugawa-period japan: A new perspective

on the dojima rice market. Journal of Banking and Finance, 13:487–513, September

1989.

191

http://rfs.oxfordjournals.org/cgi/doi/10.1093/rfs/hhs101
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9965.2011.00480.x/full
http://ideas.repec.org/p/arx/papers/1303.4082.html
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convergence of discrete-time to continuous-time maximizers. Math-

ematical Methods of Operations Research, 76(1):21–41, 2012. URL

http://link.springer.com/article/10.1007/s00186-012-0388-3.

Edward O. Thorp and Sheen T. Kassouf. Beat The Market: A Scientific Stock Market

System. Random House New York, 1967.

Klaus B. Toft. On the mean-variance tradeoff in option replication with transaction

costs. The Journal of Financial and Quantitative Analysis, 31(2):233–263, June

1996.

192

http://www.informaworld.com/openurl?genre=article{&}doi=10.1080/14697680500401490{&}magic=crossref{%}7C{%}7CD404A21C5BB053405B1A640AFFD44AE3
http://link.springer.com/article/10.1007/s00186-012-0388-3


E.T. Whittaker and G.N. Watson. A course of modern analysis. Cambridge University

Press, 4th edition, 1996.

Ruotao Zhang. Couverture Approchée des Option Européennes. PhD thesis, École
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