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structural performance under different hazards [1]. In this context, PBE has been considered to treat the 
serviceability performance of tall buildings under wind excitation [2]. In particular, wind-excited slender high-rise 
buildings with rectangular floor plan are prone to excessive accelerations in the across-wind direction (i.e., within 
the normal plane to the wind direction) due to vortex shedding effects generated around their edges [3,4]. Ensuring 
that the across-wind floor accelerations remain below a certain threshold associated with users’ comfort becomes a 
critical performance requirement for serviceability [5]. In general, increasing the stiffness of the building does not 
lead to suppression of wind-induced peak accelerations [6]. Consequently, supplemental damping systems are often 
provided to modern tall buildings appropriately designed to meet the occupants’ comfort requirements prescribed by 
building codes and guideline. To this aim, tuned mass-dampers (TMDs), among other devices and configurations for 
supplemental damping, have been widely used over the past three decades for vibration mitigation in wind-excited 
tall buildings [7,8]. In its simplest form, the linear passive TMD comprises a mass attached towards the top of the 
building whose oscillatory motion is to be controlled (primary structure) via linear stiffeners, in conjunction with 
linear energy dissipation devices (dampers). The effectiveness of the TMD relies on “tuning” its stiffness and 
damping properties for a given primary structure and attached mass, such that significant kinetic energy is 
transferred from the dynamically excited primary structure to the TMD mass and eventually dissipated through the 
dampers.  

The two main drawbacks of the TMD regarding the suppression of lateral wind-induced floor accelerations are: 
• The TMD is commonly placed at the upper floors of the building and tuned to control the fundamental lateral 

mode shape of the primary structure (e.g. [9]). Nevertheless, peak floor accelerations are heavily influenced by 
higher modes of vibrations which the TMD cannot control. 

• The effectiveness of the TMD for vibration control depends heavily on the attached mass [8,10]. The latter can 
rarely exceed 0.5% to 1% of the total building mass in tall buildings as it becomes overly expensive to 
accommodate its weight and volume due to structural and architectural limitations, respectively.  
To address the above issues and concerns in an innovative manner, Giaralis and Petrini [11] explored the potential 

of incorporating an inerter device to wind-excited TMD-equipped tall buildings, to achieve enhanced floor 
accelerations suppression in the across-wind direction without increasing the attached TMD mass. The inerter is a 
line-like two-terminal device introduced by Smith in 2002 [12], having negligible mass/weight resisting relative 
accelerations between its terminals, and characterized by a scalar variable called “inertance”. In [11] the tuned mass-
damper-inerter (TMDI) configuration, originally introduced by Marian and Giaralis [13,14] for earthquake 
engineering applications, was considered. Appreciable gains in reducing peak top floor accelerations in a 74-floor 
benchmark tall building were achieved compared to the TMD through a parametric study considering non-optimal 
TMDI stiffness and damping coefficients for fixed attached mass and increasing inertance. These gains are attributed 
partly to the mass-amplification effect and partly to higher-modes-damping effect endowed to the TMD by the 
inerter. In the present paper, the same building benchmark structure is used as in [11] to derive optimal TMDI 
stiffness and damping improving further the TMDI efficiency for floor acceleration control compared to same-
attached-mass TMDs.  

2. The Tuned Mass-Damper-Inerter (TMDI) for multi-storey building 

Conceptually defined by Smith (2002) [12], the ideal inerter is a linear massless two-terminal mechanical 
element resisting the relative acceleration at its terminals through the so-called inertance coefficient, b, measured in 
mass units. In this regard, the inerter element force F shown schematically as a hatched box in the inlet of Fig.1 
reads a 

1 2( - )F b u u= && && , where, a dot over a symbol signifies differentiation with respect to time. The ideal inerter can 
be interpreted as an inertial weightless element whose gain depends on b and on the relative acceleration observed 
by its terminals [15].  

The above considerations led to the TMDI configuration in [13,14] where an inerter device is used as a mass 
amplifier contributing additional inertia to the attached mass of the classical TMD without increasing its weight to 
enhance the TMD vibration suppression effectiveness. Specifically, consider a planar linear n-storey frame structure 
modelled as an n-DOF dynamical system with mass mk (k=1,2,…,n) lumped at the k-th floor as shown in Fig.1 (a). 
Treating the above system as the primary structure, the TMDI configuration comprises a mass mTMDI attached to the 
top floor via a linear spring of stiffness kTMDI and a linear dashpot of damping coefficient cTMDI, and linked to the 
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m b k
υ ξω

+
= =

+
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to characterize the dynamics of the TMDI given an attached mass mTDMI and inertance b. 

3. Adopted primary structure and wind excitation model 

To optimize the TMDI in Fig. 1(a) for suppressing wind induced oscillations in tall buildings, a high-rise building 
previously considered for the development of a performance-based wind engineering framework [4] is taken as a 
benchmark structure. The adopted structure is a 74-storey steel frame building of 305m total height with a 50m-by-
50m footprint. The building comprises two spatial steel frames, one inner including 12 columns, and one outer 
formed by 28 columns, the two frames are connected by three outriggers located at 100m, 200m, and 300m in 
elevation. All columns have hollow square sections, with varying outer dimensions and thickness along the building 
height ranging in between 1.20m to 0.50m, and 0.06m to 0.025m, respectively. Beams are of various standard 
double-T steel section profiles and all beam-to-column joints are taken as rigid. The outriggers are braces consisted 
of double-T beams and hollow-square diagonal struts. The first three natural frequencies of these modes and the 
corresponding modal participating mass ratios in parentheses are 0.185Hz (0.6233), 0.563Hz (0.1900), and 1.052Hz 
(0.0745). The modal damping ratios ξs has been assumed equal to 2% for the first 9 modes [11]. Starting from 
detailed FE model of the structure, a reduced dynamic system with n=74 DOFs is derived in terms of mass, 
damping and stiffness matrices to serve as the primary (uncontrolled) structure. The 74 DOFs of the system 
correspond to the lateral translational DOFs of the FE model. The wind action is considered only in the across-wind 
direction as this is the critical direction to check for the occupants’ comfort criterion for this particular structure [4]. 
The wind force components Fk (k=1,2,…,74) acting at the slab heights of the primary structure as pictorially shown 
in Fig.1 are modelled as a zero-mean Gaussian ergodic spatially correlated random field represented in the 
frequency domain by a ( ) 74 74ω ×∈74

FFS �  PSD matrix.  
The response displacement and acceleration PSD matrices of the TMDI-equipped primary structure are obtained 

using the frequency domain input-output relationships  

( ) ( ) ( ) ( ) ( ) ( )* 4andω ω ω ω ω ω ω= =
&&&&xx FF xx xxS B S B S S   (3) 

respectively. In Eq. (3), SFF is the PSD wind force matrix 74
FFS  augmented by a zero row and a zero column 

corresponding to the DOF of the TMDI which is not subjected to any wind load and the “*” superscript denotes 
complex matrix conjugation, and the transfer matrix B is given as ( ) 12 iω ω ω

− = − + B K M C , being 1i = − . Finally, 
peak k-th floor accelerations are estimated by the expression { } 2peak

kk xx g σ=
&&

&& , and the peak factor g is estimated by 
the widely used empirical formula ( ) ( )2 0.577 2wind windg ln T ln Tη η= + .  

4. Performance-Based optimization of the TMDI 

The performance of the building in term of occupants comfort are evaluated by comparing the hourly peak 
accelerations of the floors as experimented under a design wind having an annual return period (mean wind velocity 
Vref=35 m/s at the top of the building at the considered site), with code-prescribed threshold values depending on the 
first natural frequency of the building in the across-wind direction. 

Then, considering the configuration in Fig. 1(a), optimization of the TMDI parameters (Design Variables - DVs) 
υTMDI and ξTMDI in Eq. (2) is conducted for fixed values of the TMD mass ratio μ= mTMDI/Mbuilding and inertance ratio 
β=b/Mbuilding by using the pattern search algorithm [16]. Since the maximum peak acceleration is always attained by 
the top floor of the building, the goal of the optimization problem is to minimize the hourly peak top floor 
acceleration { }74peak x&& induced by the considered wind loads, subjected to the constrains of meeting the structural 
performances in terms of peak top floor accelerations ( { }74peak thresholdx x≤&& &&  for building occupant comfort) and 
maximum peak drift along the height of the building ( { }1 74 1max peakj j j thresholdx x θ≤ ≤ −
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by the true value) equal to 0.06% for υTMDI, and 7% for ξTMDI, in both cases occurring for the largest considered β 
value. 

   

Fig. 3. Comparison between fitted (Eq. (6)- dashed lines), and optimum values (β=0.1 (∆), 0.2 (○), 0.3 (x), 0.4 (□)) for υTMDI and ξTMDI    

5. Conclusions 

Optimal TMDI damping and frequency ratio parameters (ξTMDI and υTMDI respectively) are found to follow the same 
trend of classical TMD parameters at increasing mass for fixed inertance values. Structural response results (Fig. 
2(c)) confirm that for small attached mass the TMDI performs significantly better than the TMD. Peak inerter force 
is found to be at manageable levels for connecting the inerter terminals with the primary structure. Lastly, closed 
form expression of υTMDI and ξTMDI parameters as a function of mass and inertance have been derived by means of 
ordinary polynomial fitting techniques in the range of values that are relevant to tall buildings. 
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