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Abstract

There has been a strong recent interest in applying quantum theory (QT) outside physics, including in cognitive science. We
analyze the applicability of QT to two basic properties in opinion polling. The first property (response replicability) is that, for
a large class of questions, a response to a given question is expected to be repeated if the question is posed again,
irrespective of whether another question is asked and answered in between. The second property (question order effect) is
that the response probabilities frequently depend on the order in which the questions are asked. Whenever these two
properties occur together, it poses a problem for QT. The conventional QT with Hermitian operators can handle response
replicability, but only in the way incompatible with the question order effect. In the generalization of QT known as theory of
positive-operator-valued measures (POVMs), in order to account for response replicability, the POVMs involved must be
conventional operators. Although these problems are not unique to QT and also challenge conventional cognitive theories,
they stand out as important unresolved problems for the application of QT to cognition. Either some new principles are
needed to determine the bounds of applicability of QT to cognition, or quantum formalisms more general than POVMs are
needed.
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Introduction

Quantum theory (QT) is the mathematical formalism of

quantum physics. (Sometimes the two are considered synonymous,

in which case what we call here QT would have to be called

‘‘mathematical formalism of QT.’’) However, QT has recently

begun to be used in various domains outside of physics, in biology,

economics, and cognitive science (see Text S1 Representative

Bibliography). For overviews, see the recently published mono-

graphs [1] and [2], as well as the recent target article in Brain and
Behavioral Sciences [3] with ensuing commentaries and rejoinders.

There is one obvious similarity between cognitive science and

quantum physics: both deal with observations that are fundamen-

tally probabilistic. This similarity makes the use of QT in cognitive

science plausible, as QT is specifically designed to deal with

random variables. Here, we analyze the applicability of QT in

opinion-polling, and compare it to psychophysical judgments.

On a very general level, QT accounts for the probability

distributions of measurement results using two kinds of entities,

called observables A and states y (of the system on which the

measurements are made). Let us assume that measurements are

performed in a series of consecutive trials numbered 1,2, . . .. In

each trial t the experimenter decides what measurement to make

(e.g., what question to ask), and this amounts to choosing an

observable A. Despite its name, the latter is not observable per se,

in the colloquial sense of the word, but it is associated with a

certain set of values u Að Þ, which are the possible results one can

observe by measuring A. In a psychological experiment these are

the responses that a participant is allowed to give, such as Yes and

No.

The probabilities of these outcomes in trial t (conditioned on all

the previous measurements and their outcomes) are computed as

some function of the observable A and of the state y tð Þ in which

the system (a particle in quantum physics, or a participant in

psychology) is at the beginning of trial t,

Pr u Að Þ~u in trial tDmeasurements in trials 1, . . . ,t{1½ �

~F y tð Þ, A, u
� �

:
ð1Þ

This measurement changes the state of the system, so that at the

end of trial t the state is y tz1ð Þ, generally different from y tð Þ. The

change y tð Þ?y tz1ð Þ depends on the observable A, the state y tð Þ,
and the value u Að Þ observed in trial t,
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y tz1ð Þ~G y tð Þ, A, u
� �

: ð2Þ

On this level of generality, a psychologist will easily recognize in

(1)–(2) a probabilistic version of the time-honored Stimulus-

Organism-Response (S-O-R) scheme for explaining behavior [4].

This scheme involves stimuli (corresponding to A), responses

(corresponding to u), and internal states (corresponding to y). It

does not matter whether one simply identifies A with a stimulus, or

interprets A as a kind of internal representation thereof, while

interpreting the stimulus itself as part of the measurement

procedure (together with the instructions and experimental set-

up, that are usually fixed for the entire sequence of trials). What is

important is that the stimulus determines the observable A
uniquely, so that if the same stimulus is presented in two different

trials t and t’, one can assume that A is the same in both of them.

The state y tz1ð Þ determined by (2) may remain unchanged

between the response u terminating trial t and the presentation of

(the stimulus corresponding to) the new observable that initiates

trial tz1. In some applications this interval can indeed be

negligibly small or even zero, but if it is not, one has to allow for

the evolution of y tz1ð Þ within it. In QT, the ‘‘pure’’ evolution of

the state (assuming no intervening inter-trial inputs) is described by

some function

y
tz1ð Þ
D ~H y tz1ð Þ, D

� �
, ð3Þ

where D is the time interval between the recording of u in trial t
and the observable in trial tz1. This scheme is somewhat

simplistic: one could allow H to depend, in addition to the time

interval D, on the observable A and the outcome u in trial t. We do

not consider such complex inter-trial dynamics schemes in this

paper.

The reason we single out opinion-polling and compare it to

psychophyscis is that they exemplify two very different types of

stimulus-response relations.

In a typical opinion-polling experiment, a group of participants

is asked one question at a time, e.g., a = ‘‘Is Bill Clinton honest

and trustworthy?’’ and b = ‘‘Is Al Gore honest and trustworthy?’’

[5]. The two questions, obviously, differ from each other in many

respects, none of which has anything to do with their content: the

words ‘‘Clinton’’ and ‘‘Gore’’ sound different, and the participants

know many aspects in which Clinton and Gore differ, besides their

honesty or dishonesty. Therefore, if a question, say, b, were

presented to a participant more than once, she would normally

recognize that it had already been asked, which in turn would

compel her to repeat it, unless she wants to contradict herself. One

can think of situations when the respondent can change her

opinion, e.g., if another question posed between two replications of

the question provides new information or reminds something

forgotten. Thus, if the answer to the question a = ‘‘Do you want to

eat this chocolate bar?’’ is Yes, and the second question is b = ‘‘Do

you want to lose weight?,’’ the replications of a may very well elicit

response No. It is even conceivable that if one simply repeats the

chocolate question twice, the person will change her mind, as she

may think the replication of the question is intended to make her

‘‘think again.’’ In a wide class of situations, however, changing

one’s response would be highly unexpected and even bizarre (e.g.,

replace a in the example above with ‘‘Do you like chocolate?’’).

We assume that the pairs of questions asked, e.g., in Moore’s study

[5] are of this type.

In a typical psychophysical task, the stimuli used are identical in

all respects except for the property that a participant is asked to

judge. Consider a simple detection paradigm in which the

observer is presented one stimulus at a time, the stimulus being

either a (containing a signal to be detected) or b (the ‘‘empty’’

stimulus, in which the signal is absent). For instance, a may be a

tilted line segment, and b the same line segment but vertical, the

tilt (which is the signal to be detected) being too small for all

answers to be correct. Clearly, the participant in such an

experiment cannot first decide that the stimulus being presented

now has already been presented before, and that it has to be

judged to be a because so it was before.

With this distinction in mind, however, the formalism (1)–(2)–(3)

can be equally applied to both types of situations. In both cases a is

to be replaced with some observable A, and b with some

observable B (after which a and b per se can be forgotten). The

values of A and B are the possible responses one records. In the

psychophysical example, u Að Þ and u Bð Þ each can attain one of two

values: 1 = ‘‘I think the stimulus was tilted’’ or 0 = ‘‘I think the

stimulus was vertical’’. The psychophysical analysis consists in

identifying the hit-rate and false-alarm-rate functions (conditioned

on the previous stimuli and responses)

Pr u Að Þ~1 in trial tjmeasurements in trials 1, . . . ,t{1½ �~
F y tð Þ, A, 1
� �

,

Pr u Bð Þ~1 in trial tjmeasurements in trials 1, . . . ,t{1½ �~
F y tð Þ, B, 1
� �

:

ð4Þ

The learning (or sequential-effect) aspect of such analysis

consists in identifying the function

y tz1ð Þ~G y tð Þ, S, u
� �

, S [ A, Bf g, u [ 0, 1f g, ð5Þ

combined with the ‘‘pure’’ inter-trial dynamics (3).

In the opinion-polling example (say, about Clinton’s and Gore’s

honesty), there are two hypothetical observables: A, corresponding

to the question a = ‘‘Is Bill Clinton honest?’’, and B, correspond-

ing to the question b = ‘‘Is Al Gore honest?’’, each observable

having two possible values, 0 = ‘‘Yes’’ and 1 = ‘‘No’’. The

analysis, formally, is precisely the same as above, except that one

no longer uses the terms ‘‘hits’’ and ‘‘false alarms’’ (because

‘‘honesty’’ is not a signal objectively present in one of the two

politicians and absent in another).

In quantum physics, a classical example falling within the same

formal scheme as the examples above is one involving measuring

the spin of a particle in a given direction. Let the experimenter

choose one of two possible directions, a or b (unit vectors in space

along which the experimenter sets a spin detector). If the particle is

a spin-1=2 one, such as an electron, then the spin for each direction

chosen can have one of two possible values, 1 = ‘‘up’’ or 0 =

‘‘down’’ (we need not discuss the physical meaning of these

designations). These 1 and 0 are then the possible values of the

observables A and B one associates with the two directions, and

the analysis again consists in identifying the functions F , G, and

H .

Quantum Models in Psychology
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Theory

1 A brief account of conventional QT (with
measurements of the first kind)

In QT, all entities operate in a Hilbert space, a vector space

endowed with the operation of scalar product. The components of

the vectors are complex numbers. We will assume that the Hilbert

spaces to be considered are n-dimensional (n§2), but the

generalization of all our considerations to infinite-dimensional

spaces is trivial. The scalar product of vectors y, w is

Sy, wT~
Xn

i~1

xiy
�
i , ð6Þ

where xi and yi are components of y and w, respectively, and the

star indicates complex conjugation: if c~azib, then c�~a{ib.

The length of a vector w is defined as EwE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sw, wT

p
.

Any observable A in this n-dimensional version of QT is

represented by an n|n Hermitian matrix (or operator, the two

terms being treated as synonymous in a finite-dimensional Hilbert

space). This is a matrix with complex entries such that, for any

i, j [ 1, . . . , nf g, aij~a�ji. In particular, all diagonal entries of A

are real numbers. It is known from matrix algebra that any

Hermitian matrix can be uniquely decomposed as

A~
Xk

i~1

uiPi, kƒn, ð7Þ

where u1, . . . ,uk are pairwise distinct eigenvalues of A (all real

numbers), and Pi are eigenprojectors (n|n Hermitian matrices

whose eigenvalues are zeros and ones). All eigenprojectors are

positive semidefinite, i.e., for any nonzero vector x, SPix,xT§0,

and they sum to the identity matrix, P1z . . . zPk~I . For any

distinct i, j [ 1, . . . , kf g, the eigenprojectors satisfy the conditions

P2
i ~Pi (idempotency), PiPj~0 (orthogonality): ð8Þ

In QT, the distinct eigenvalues u1, . . . , uk are postulated to

form the set of all possible values u Að Þ. That is, as a result of

measuring A in any given trial one always observes one of the

values u1, . . . , uk. For simplicity (and because all our examples

involve binary outcomes), in this paper we will only deal with the

observables A that have two possible values u Að Þ, denoted 0 and 1.

This means that all our observables can be presented as A~P1,

and

P2
0~P0, P2

1~P1, P0P1~0, P0zP1~I : ð9Þ

Each eigenvalue u (0 or 1) has its multiplicity 1ƒdvn. This is

the dimensionality of the eigenspace V associated with u, which is

the space spanning the d pairwise orthogonal eigenvectors
associated with u (i.e., the space of all linear combinations of

these eigenvectors). Multiplication of Pu by any vector x is the

orthogonal projection of this vector into V . If d~1, the eigenspace

V is the ray containing a unique unit-length eigenvector of A

corresponding to u. The eigenvalue 1{u has the multiplicity n{d,

the dimensionality of the eigenspace V\ which is orthogonal to V .

If both d~1 and n{d~1 (i.e., n~2), then A is said to have a

non-degenerate spectrum. In this paper we assume the spectra are

generally degenerate (n§2).

The eigenvalues 0,1 of A in a given trial generally cannot be

predicted, but one can predict the probabilities of their

occurrence. To compute these probabilities, QT uses the notion

of a state of the system. In any given trial the state is unique, and it

is represented by a unit length state vector y. (For simplicity, we

assume throughout the paper that the system is always in a pure
state. This restriction is not critical for our analysis.) If the system is

in a state y tð Þ in trial t, and the measurement is performed on the

observable A, the probabilities of the outcomes of this measure-

ment are given by

F y tð Þ, A, u
� �

~Pr u Að Þ~u in trial tDmeasurements in trials 1, . . . , t{1½ �

~SPuy tð Þ,y tð ÞT~ Puy tð Þ
���

���
2

,

ð10Þ

where u~0,1. Note that these probabilities are conditioned on the

previous observables, in trials 1, . . . ,t{1, and their observed

values.

Given that the observed outcome in trial t is u, the state y tð Þ

changes into y tz1ð Þ according to

G y tð Þ, A, u
� �

~Puy tð Þ=EPuy tð ÞE~y tz1ð Þ: ð11Þ

This equation represents the von Neumann-Lüders projection
postulate of QT. The denominator is nonzero because it is the

square root of Pr u Að Þ~u in trial t½ �, and (11) is predicated on u

having been observed. The geometric meaning of G y tð Þ, A, u
� �

is

that y tð Þ is orthogonally projected by Pu into the eigenspace V and

then normalized to unit length.

Finally, the inter-trial dynamics of the state vector in QT

(between u and the next observable, separated by interval D) is

represented by the unitary evolution formula

H y tz1ð Þ,D
� �

~UDy tz1ð Þ~y
tz1ð Þ
D : ð12Þ

Here, UD is a unitary matrix, defined by the property

U{1
D ~U

{
D, where, U{1

D is the matrix inverse

(U{1
D UD~UDU{1

D ~I ), and U
{
D is the conjugate transpose of

UD, obtained by transposing UD and replacing each entry xziy in

it with its complex conjugate x{iy. The unitary matrix UD should

also be made a function of inter-trial variations in the environment

(such as variations in overall noise level, or other participants’

responses) if they are non-negligible. The identity matrix I is a

unitary matrix: if UD~I , (12) describes no inter-trial dynamics,
with the state remaining the same through the interval D. Note

that the eigenvalue u itself does not enter the computations. This

justifies treating it as merely a label for the eigenprojectors and

eigenspaces (so instead of 0,1 we could use any other labels).

Remark 1. In Pauli’s terminology [6], measurements described

by (10)–(11)–(12) are called measurements of the first kind. The

main distinguishing feature of such measurements is that two

identical measurements ‘‘immediately following each other’’ (i.e.,

with UD~I ) produce identical results. In Section 5 we consider a

generalized formalism that include measurements of the first kind

Quantum Models in Psychology

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e110909



as a special case, but also covers a broad (arguably, most

important) subclass of what Pauli calls measurements of the second

kind (defined as all measurements not of the first kind, or not

necessarily of the first kind).

2 Measurement sequences, evolution (in)effectiveness,
and stability

In this section we introduce terminology and preliminary

considerations needed in the subsequent analysis. Throughout the

paper we will make use of the following way of describing

measurements performed in successive trials:

A1,u1,p1ð Þ? . . .? Ar,ur,prð Þ: ð13Þ

We call this a measurement sequence. Each triple in the sequence

consists of an observable A being measured, an outcome u recorded

(0 or 1), and its conditional probability p. The probability is

conditioned on the observables measured and the outcomes recorded

in the previous trials of the same measurement sequence. Thus,

p1~ Pr u A1ð Þ~u1 in trial 1½ �,
p2~ Pr u A2ð Þ~u2 in trial 2 j u A1ð Þ~u1 in trial 1½ �,
p3~ Pr u A3ð Þ~u3 in trial 3 j u A1ð Þ~u1 in trial 1,½
and u A2ð Þ~u2 in trial 2�,

. . .

ð14Þ

As we assume that the outcomes u1, u2, . . . in a measurement

sequence have been recorded, all probabilities p1, p2, . . . are

positive if the measurement sequence exists. Recall that the

observables A1, A2, . . . in a sequence are uniquely determined by

the measurement procedures applied, a1, a2, . . ., and that the

outcomes (0 or 1) are eigenvalues of these observables.

Consider now the two-trial measurement sequence

A,u,pð Þ? B,v,qð Þ, where u, v [ 0,1f g. Let A have the eigenpro-

jectors P0, P1, and B have the eigenprojectors Q0, Q1. If the initial

state of the system is y~y 1ð Þ, we have p~EPuyE2, and y 1ð Þ

transforms into y 2ð Þ~Puy=EPuyE. Assuming an interval D

between the two trials, y 2ð Þ evolves into y
2ð Þ
D ~UDy 2ð Þ. This is

the state vector paired with B in the next measurement, yielding,

with the help of some algebra,

q~EQwy
2ð Þ
D E2~E U

{
DQwUD

� �
PuyE2=EPuyE2: ð15Þ

As a special case UD can be the identity matrix (no inter-trial

changes in the state vector), and then we have

q~EQwPuyE2=EPuyE2, ð16Þ

because in this case U
{
DQwUD

� �
~Qw: It is possible, however, that

the latter equality holds even if U
{
D is not the identity matrix. In

fact it is easy to see that this happens if and only if UD and B
commute, i.e., UDB~BUD. For the proof of this, see Lemma 1 in

Text S2 Proofs. We will say that

Definition 1. A unitary operator UD is ineffective for an
observable B if the two operators commute, UDB~BUD.

The justification for this terminology should be transparent: due

to Lemma 1, in the computation (15) of the probability q the

evolution operator can be ignored, yielding (16). The notion of

inefficiency of the evolution operator will play an important role in

the analysis of repeated measurements below.

Our next consideration regards the set of all possible values of

the initial state vector y for a given measurement sequence. In the

applications of QT in physics, this set is assumed to cover the

entire Hilbert space in which they are defined. We are not justified

to adopt this assumption in psychology, it would be too strong: one

could argue that the initial states in a given experiment may be

forbidden to attain values within certain areas of the Hilbert space.

At the same time, it seems even less reasonable to allow for the

possibility that the initial state for a given measurement sequence is

always fixed at one particular value. The initial state vectors, as

follows from both the QT principles and common sense, should

depend on the system’s history prior to the given experiment, and

this should create some variability from one replication of this

experiment to another. This is important, because, given a set of

observables, specially chosen initial state vectors may exhibit

‘‘atypical’’ behaviors, those that would disappear if the state vector

were modified even slightly. It is known [7] that in physical systems

very close states may have very different physical properties. We

need therefore to confine our analysis to properties that, while they

may not hold for the entire Hilbert space, are stable with respect to

very small changes in the initial states for which they hold. This

leads us to adopting the following

Stability Principle. If y is a possible initial state vector for a
given measurement sequence in an n-dimensional Hilbert space,
then there is an open ball Br yð Þ centered at y with a sufficiently
small radius r, such that any vector yzd in this ball, normalized by
its length yzdk k, is also a possible initial state vector for this
measurement sequence.

Definition 2. A property of a measurement sequence is (or

holds) stable for an initial vector y, if it holds for all state vectors

within a sufficiently small Br yð Þ.
Almost all our propositions below are proved under this stability

clause, specifically by using the reasoning presented in Lemma 2 in

Text S2 Proofs.

Remark 2. In Ref. [7] closeness is defined in terms of a measure

called fidelity, which is different from the measure of closeness

used in our stability principle. It is easy to show, however, that our

measure topologically refines fidelity (i.e., any sequence of states

converging to a given state in the sense of our measure also

convergence to that state in the sense of fidelity).

3 Consequences for ‘‘aRa’’-type measurement
sequences

Using the definitions and the language just introduced, we will

now focus on the consequences of (10)–(11)–(12) for repeated

measurements with repeated responses,

A, u, pð Þ? A, u, p’ð Þ: ð17Þ

Consider an opinion-polling experiment, with questions like a =

‘‘Is Bill Clinton trustworthy?’’ [5]. As argued for in Introduction, if

the same question is posed twice, a?a, a typical respondent, who

perhaps hesitated when choosing the response the first time she

was asked a, would now certainly be expected to repeat it, perhaps

with some display of surprise at being asked the question she has

just answered. This may not be true for all possible questions, but

it is certainly true for a vast class thereof. Let us formulate this as

Quantum Models in Psychology
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Property 1. For some nonempty class of questions, if a question
is repeated twice in successive trials (separated by one of a broad
range of inter-trial intervals), the response to it will also be repeated.

Remark 3. One may be tempted to dismiss this property as readily

explained by the respondent’s ‘‘simply remembering’’ her previous

answers. As argued in Conclusion, however, the availability of such

common sense explanations is irrelevant for our analysis, as its

purpose is to determine if the phenomena we consider can be

explained in a unified mathematical language of QT.

If a question a within the scope of Property 1 is represented by

an observable A, we are dealing with the measurement sequence

(17) in which p’~1. Such a measurement sequence does not

disagree with the formulas (10)–(11)–(12). In fact it is even

predicted by them if the intervening inter-trial evolution of the

state vector is assumed to be ineffective. Indeed, (15) for the

measurement sequence (17) acquires the form

p’~E U
{
DPuUD

� �
PuyE2=EPuyE2, ð18Þ

and the inefficiency of UD for A implies

p’~EP2
uyE2=EPuyE2~1, ð19Þ

because P2
u~Pu holds for all projection operators. We remind the

reader that (10)–(11)–(12) define measurements of the first kind

(see Remark 1). Our consideration is confined to these measure-

ments until Section 5.

We see that ineffective evolution implies Property 1. As it turns

out, under the stability principle, this implication can be reversed:

effective inter-trial evolution is excluded for the observables

representing the questions falling within the scope of Property 1.

In other words, for all such questions, the unitary operators UD

can be ignored in all probability computations. Let us say that

Definition 3. An observable A has the Lüders property with

respect to a state vector y if the existence of the measurement

A,u,pð Þ for this y and an outcome u [ 0,1f g implies that the

property p’~1 holds stable for this y in the measurement

sequence A,u,pð Þ? A,u,p’ð Þ.
In other words, the Lüders property means that an answer to a

question (represented by A) is repeated if the question is repeated,

and that this is true not just for one initial state vector y, but for all

state vectors sufficiently close to it.

Remark 4. Note that for the ineffective evolution (including the

measurements that ‘‘immediately follow each other’’) the Lüders

property holds for all possible state vectors y. This was taken by

Pauli [6] as the defining property of the measurements of the first

kind. As argued at the introduction of the stability principle in

Section 2, in psychology formulations involving ‘‘all possible initial

states’’ would be unjustifiably strong.

We now can formulate our first proposition.

Proposition 1. [repeated measurements] An observable A has
the Lüders property if and only if UD in (12) is ineffective for A.

See Text S2 Proofs for a formal proof. In the formulation of

Property 1, the interval D and the question represented by A can

vary within some broad limits, whence the inefficiency of UD for A

should also hold for each of these intervals combined with each of

these questions.

We have to be careful not to overgeneralize the Lüders property

and the ensuing inefficiency property. As we discussed in

Introduction, one can think of situations where replications of a

question may lead the respondent to ‘‘change her mind.’’ The

most striking contrast, however, is provided by psychophysical

applications of QT. Here, the inter-trial dynamics not only cannot

be ignored, it must play a central role.

Let us illustrate this on an old but very thorough study by

Atkinson, Carterette, and Kinchla [8]. In the experiments they

report, each stimulus consisted of two side-by-side identical fields

of luminance L, to one of which a small luminance increment DL

could be added, serving as the signal to be detected. There were

three stimuli:

a~ LzDL, Lð Þ, b~ L, LzDLð Þ, c~ L, Lð Þ: ð20Þ

In each trial the observer indicated which of the two fields, right

one or left one, contained the signal. There were thus two possible

responses: Left and Right. An application of QT analysis to these

experiments requires a, b, c to be translated into observable

A, B, C, each with two eigenvalues, say, 0~Left and 1~Right.
In the experiments we consider no feedback was given to the

observers following a response. This is a desirable feature. It makes

the sequence of trials we consider formally comparable to

successive measurements of spins in quantum physics: measure-

ments simply follow each other, with no interventions in between.

We are interested in measurement sequences

A,0,p1ð Þ? A,0,p
1
0� �

, B,0,p3ð Þ? B,0,p
3
0� �

, C,0,p5ð Þ? C,0,p
5
0� �

A,1,p2ð Þ? A,1,p
2
0� �

, B,1,p4ð Þ? B,1,p
4
0� �

, C,1,p6ð Þ? C,1,p
6
0� �
:

ð21Þ

Recall that the probabilities p’i (i~1, . . . ,6) are conditioned on

previous measurements, so that, e.g., p’1zp’2=1 while p1zp2~1.

For each observer, the probabilities were estimated from the last

400 trials out of 800 (to ensure an ‘‘asymptotic’’ level of

performance). The results of one of the experiments (with

equiprobable a and b), averaged over 24 observers, were as

follows:

A,0,:65ð Þ? A,0,:73ð Þ, B,0,:36ð Þ? B,0,:39ð Þ, C,0,:50ð Þ? C,0,:50ð Þ
A,1,:35ð Þ? A,1,:38ð Þ, B,1,:64ð Þ? B,1,:71ð Þ, C,1,:53ð Þ? C,1,:60ð Þ:

ð22Þ

In accordance with Proposition 1, we should conclude that the

inter-trial evolution (12) here intervenes always and significantly.

4 Consequences for ‘‘aRbRa’’-type measurement
sequences

Returning to the opinion polling experiments, consider the

situation involving two questions, such as a = ‘‘Is Bill Clinton

honest?’’ and b = ‘‘Is Al Gore honest?’’ The two questions are posed

in one of the two orders, a?b or b?a, to a large group of people.

The same as with asking the same question twice in a row, one

would normally consider it unnecessary to extend these sequences

by asking one of the two questions again, by repeating b or a after

having asked a and b. A typical respondent, again, will be expected

to repeat her first response. We find it ‘‘almost certain’’ (the

‘‘almost’’ being inserted here because we cannot refer to any

systematic experimental study of this obvious expectation) that from

the nonempty (in reality, vast) class of questions falling within the

scope of Property 1 one can always choose pairs of questions falling
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within the scope of the following extension of this property. (See

Remark 3.)
Property 2. Within a nonempty subclass of questions (and for

the same set of inter-trial intervals) for which Property 1 holds, if a
question a is asked following questions a and b (in either order), the
response to it will necessarily be the same as that given to the
question a the first time it was asked.

As always, we replace a, b with observables A, B, and use the

following notation: the probability of obtaining a value u when

measuring the observable A is denoted puA, quA, etc. (the letters

p,q, etc. distinguishing different measurements); we use analogous

notation for the probability of obtaining a value v when

measuring the observable B. Consider the measurement sequence

A,u,puAð Þ? B,v,pvBð Þ? A,u,p’uAð Þ ð23Þ

Property 2 implies that in these sequences p’uA~1 and q’vA~1.

As it turns out, this property has an important consequence

(assuming the two inter-trial intervals in the measurement

sequences belong to the same class as D in Proposition 1).
Proposition 2. [alternating measurements] Let A and B

possess the Lüders property, and let the measurement sequences
A,u,puAð Þ? B,v,pvBð Þ exist for all u, v [ 0,1f g, and some initial

state vector y. Then, in the measurement sequences (23), the
property p’uA~1 holds stable for this y if and only if A and B
commute, AB = BA.

In other words, if the probabilities puA,pvB in

A,u,puAð Þ? B,v,pvBð Þ are nonzero for some y, the sequences

(23) exist with p’uA~1 for all state vectors in a small neighborhood

of y if and only if AB~BA. See Text S2 Proofs for a formal proof.

The commutativity of A and B is important because it has an

experimentally testable consequence.
Proposition 3. [no order effect] If A and B possessing the

Lüders property commute, then in the measurement sequences
A,u,puAð Þ? B,v,pvBð Þ and B,v,qvBð Þ? A,u,quAð Þ, the joint prob-

abilities of the two outcomes are the same,

Pr u Að Þ~u in trial 1 and v Bð Þ~v in trial 2½ �

~Pr v Bð Þ~v in trial 1 and u Að Þ~u in trial 2½ �:
ð24Þ

Consequently,

Pr u Að Þ~u in trial 1½ �

~Pr u Að Þ~u in trial 2½ � and Pr v Bð Þ~v in trial 1½ �

~Pr v Bð Þ~v in trial 2½ �:

ð25Þ

The proof of the proposition is given in Text S2 Proofs.

Equations (24)–(25) are empirically testable predictions. More-

over, if we assume that the questions like ‘‘Is Clinton honest’’ and

‘‘Is Gore honest’’ fall within the scope of Property 2 (and it would

be amazing if they did not), these predictions are known to be de

facto falsified.
Property 3. Within a nonempty subclass of questions for which

Property 2 holds (and for the same set of inter-trial intervals), the
joint probability of two successive responses depends on the order in
which the questions were posed.

This ‘‘question order effect’’ has in fact been presented as one for

whose understanding QT is especially useful: the empirical finding

that (24) fails is explained in Ref. [9] by assuming that A and B do

not commute. In the survey reported by Moore [5], about 1,000

people were asked two questions, one half of them in one order,

the other half in another. The results are presented for four pairs

of questions, in the form Pr u Að Þ~1 in trial 1½ � versus

Pr u Að Þ~1 in trial 2½ �, and analogously for B:

Pr u Að Þ~1 in trial 1½ �, Pr u Að Þ~1 in trial 2½ �ð Þ

~ :50,:57ð Þ, :41,:33ð Þ, :41,:53ð Þ, :64,:52ð Þ

Pr v Bð Þ~1 in trial 1½ �, Pr v Bð Þ~1 in trial 2½ �ð Þ

~ :68,:60ð Þ, :60,:64ð Þ, :46,:56ð Þ, :45,:33ð Þ

ð26Þ

As we can see, for all question pairs, the probability estimates of

Yes to the same question differ depending on whether the question

was asked first or second. Given the sample size (about 500

respondents per question pair in a given order) the differences are

not attributable to chance variation.

Properties 1, 2, and 3 turn out to be incompatible within the

framework of the conventional QT (with measurements only of

the first kind). We should conclude therefore that this formalism

cannot be applied to the questions that have these properties

without modifications.

5 Would POVMs work?
Are there more flexible versions (generalizations) of QT that

could be used instead?

One widely used generalization of the conventional QT involves

replacing the projection operators with positive-operator-valued
measures (POVMs), see, e.g., Refs. [10,11]. POVMs may but do

not have to conform with (10)–(11)–(12). The generalized theory

therefore involves measurements of both first and second kind.

The conceptual set-up here is as follows. We continue to deal

with an n-dimensional Hilbert space (n§2). The notion of a state

represented by a unit vector y in this space remains unchanged.

The generalization occurs in the notion of an observable. For

experiments with binary outcomes, an observable A of the

conventional QT is defined by A~P1, with eigenprojectors

P0,P1ð Þ and eigenvalues 0,1ð Þ. The eigenvalues themselves are not

relevant insofar as they are distinct: replacing 0,1 with another

pair of distinct values amounts to trivial relabeling of the

measurement outcomes. The information about the observable

A therefore is contained in the eigenprojectors P0, P1. They are

Hermitian positive semidefinite operators subject to the restric-

tions (9).

A generalized observable, or POVM, A (continuing to consider

only binary outcomes) is defined as a pair E0,E1ð Þ of Hermitian

positive semidefinite operators in the n-dimensional Hilbert space,

summing to the identity matrix I. In other words, the generaliza-

tion from eigenprojectors Pu to POVM components Eu amounts

to dropping the idempotency and orthogonality constraints,

defined in (8).

Any component Eu (u~0,1) can be presented as M{
u Mu, where

Mu is some matrix and M{
u is its conjugate transpose. The

representation Eu~M{
u Mu for a given Eu is not unique, but it is

supposed to be fixed within a given experiment (i.e., for a given

measurement procedure).

The measurement formulas specifying F and G in (1)–(2) can

now be formulated to resemble (10)–(11). The conditional

probability of an outcome u~0,1 of the measurement of

A~ E0,E1ð Þ in state y tð Þ is
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F y tð Þ,A,u
� �

~Pr u Að Þ~u in trial tDmeasurements in trials 1, . . . ,t{1½ �

~SEuy tð Þ,y tð ÞT~EMuy tð ÞE2

ð27Þ

This measurement transforms y tð Þ into

G y tð Þ,A,u
� �

~Muy tð Þ=EMuy tð ÞE~y tz1ð Þ: ð28Þ

The formula for the evolution of the state vector between trials

remains the same as for the conventional observables, (12).

It is easy to see that we no longer need to involve inter-trial

changes in the state vector to explain the fact that, in

psychophysics, a replication of stimulus does not lead to the

replication of response. In a measurement sequence

A,u,pð Þ? A,u,p’ð Þ, if UD is the identity matrix, then p’ is given

by SE2
u y,yT=SEuy,yT. This value is generally different from 1,

because E2
u , not necessarily an orthogonal projector, is generally

different from Eu.

This is interesting, as it suggests the possibility of treating

psychophysical judgments and opinion polling within the same

(evolution-free) framework. This encouraging possibility, however,

cannot be realized: the theory of POVMs cannot help us in

reconciling Properties 2 and 3 in opinion-polling, because POVMs

with Lüders property cannot be anything but conventional

observables. This is shown in the following.

Proposition 4. [no generalization] A POVM A~ E0,E1ð Þ has
the Lüders property with respect to a state y if and only if A is a
conventional observable (i.e., it is a Hermitian operator, and its
components E0,E1 are its eigenprojectors).

See Text S2 Proofs for a formal proof.

Proposition 4 says that POVMs to be used to model opinion

polling should be conventional observables, otherwise Property 1

will be necessarily contradicted. Put differently, the Lüders

property effectively confines the measurements that can be

considered within the framework of POVMs to those of the first

kind. But then Propositions 1 and 2 are applicable, and they say

that the inter-trial dynamics is ineffective, and that all the

observables representing different questions within the scope of

Property 2 pairwise commute. This, in turn, allows us to invoke

Proposition 3, with the result that, contrary to Property 3, the

order of the questions should have no effect on the response

probabilities.

Remark 5. Not all measurements of the second kind can be

described by POVMs (see, e.g., the discussion of quantum

operations in Ch. 8 of Ref. [11]). One might argue that POVMs

represent most ‘‘typical’’ quantum measurements. It remains to be

seen, however, if other generalizations or modifications of QT

would lead to different results (see Conclusion).

Conclusions

Let us summarize. Both cognitive science and quantum physics

deal with fundamentally probabilistic input-output relations,

exhibiting a variety of sequential effects. Both deal with these

relations and effects by using, in some form or another, the notion

of an ‘‘internal state’’ of a system. In psychology, the maximally

general version is provided by the probabilistic generalization of

the old behaviorist S-O-R scheme: the probability of an output is a

function of the input and the system’s current state (function F in

(1)), and both the input and the output change the current state

into a new state (function G in (2)). If we discretize behavior into

subsequent trials, then we need also a function describing how the

state of the system changes between the trials (function H in (3)).

Quantum physics uses a special form of the functions F , G, and

H , the ones derived from (or constituting, depending on the

axiomatization) the principles of QT. Functions F and G are given

by (10)–(11) in the conventional QT, and by (27)–(28) in the QT

with POVMs, with the inter-trial evolution in both cases described

by (12). Nothing a priori precludes these special forms of F ,G,H
from being applicable in cognitive science, and such applications

were successfully tried: by appropriately choosing observables and

states, certain experimental data in human decision making were

found to conform with QT predictions [3].

As this paper shows, however, QT encounters difficulties in

accounting for some very basic empirical properties. In opinion

polling (more generally, in all psychological tasks where stimuli/

questions can be confidently identified by features other than those

being judged), there is a class of questions such that a repeated

question is answered in the same way as the first time it was asked.

This agrees with the Lüders projection postulate, and renders the

use of both the inter-trial dynamics of the state vector and the

measurements of the second kind (at least those falling within the

framework of the POVM theory) unnecessary: to have this

property the questions asked have to be represented by

conventional observables with ineffective inter-trial dynamics. In

many situations, we also expect that for a certain class of questions

the response to two replications of a given question remains the

same even if we insert another question in between and have it

answered. This property can only be handled by QT if the

conventional observables representing different questions all

pairwise commute, i.e., can be assigned the same set of

eigenvectors. This, in turn, leads to a strong prediction: the joint

probability of two responses to two successive questions does not

depend on their order. This prediction is known to be violated for

some pairs of questions. The explanation of the ‘‘question order

effect’’ is in fact one of the most successful applications of QT in

psychology [9], but it requires noncommuting observables, and

these, as we have seen, cannot account for the repeated answers to

repeated questions.

Our paper in no way dismisses the applications of QT in

cognitive psychology, or diminishes their modeling value. It merely

sounds a cautionary note: it seems that we lack a deeper theoretical

foundation, a set of well-justified principles that would determine

where QT can and where it must not be used. We should also

point out that the problems identified in this paper are not unique

to QT. For example, random utility theories also have difficulty

explaining the trial to trial dependencies in answers to questions. If

we assume that a response is based on a randomly sampled utility

in each trial, then repeating the response will produce different

random samples in each trial. That is why in the experiments

designed to test random utility models questions never repeated

back to back, and instead ‘‘filler trials’’ are inserted to make

participants forget their earlier choice.

Clearly, the basic properties that we have shown to contravene

QT can be ‘‘explained away’’ by invoking considerations

formulated in traditional psychological terms. One can, e.g.,

dismiss the problem with repeated questions in opinion polling by

pointing out that the respondents ‘‘merely’’ remember their

previous answers and ‘‘simply’’ do not want to contradict

themselves. One can similarly dismiss the question order effect

by pointing out that the first question ‘‘simply’’ changes the

context for pondering the second question, e.g., reminds
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something the respondent would not have thought of had the

second question been asked first. These may very well be valid

considerations. But if one allows for such extraneous to QT

explanations, one needs to understand (A) why the same

extraneous considerations do not intervene in situations where

QT is successfully applicable, and (B) why one cannot stick to

considerations of this kind and dispense with QT altogether.

A reasonable answer is that the value of QT applications is

precisely in that it replaces the disparate conventional psycholog-

ical notions with unified and mathematically rigorous ones. But

then in those situations where we find QT not applicable one

needs more than invoking these conventional psychological

notions. One needs principles. Both in a psychophysical detection

experiment and in opinion polling, participants may think of

various things between trials, and previously presented stimuli/

questions as well as previously given responses definitely change

something in their mind, affecting their responses to subsequent

stimuli/questions. Why then the applicability of QT is not the

same in these two cases? Why, e.g., should the inter-trials

dynamics of the state vector (or the use of POVMs in place of

conventional observables) be critical in one case and ineffective (or

unnecessary) in another?

One should also consider the possibility that rather than acting

as switches distinguishing the situations in which (10)–(11) or (27)–

(28) are and are not applicable, the set of the hypothetical

principles in question may require a higher level of generality for

the functions F ,G,H. In Section 5 of Theory (see Remark 5) we

mentioned the existence of measurements of the second kind

falling outside the scope of POVMs. A serious and meticulous

work is needed therefore to determine precisely what features of

QT are critical for this or that (un)successful explanation. As an

example, virtually any functions F ,G,H in the general formulas

(1)–(2)–(3) predict the existence of the question order effect, and

the functions can always be adjusted to account for any specific

effect. The QQ constraint for the question order effect discovered

by Wang and Busemeyer [9] means that, for any two questions a,b

and any respective responses u, v [ 0,1f g,

hab u,vð Þ~

Pr u in response to a in trial 1, and v in response to b in trial 2½ �

~fab u,vð Þzgab u,vð Þ,

where fab u,vð Þ~fba v,uð Þ and gab u,vð Þ~{gab 1{u,1{vð Þ. It

follows then that

hab u,vð Þzhab 1{u,1{vð Þ~hba v,uð Þzhba 1{v,1{uð Þ,

which is the QQ equation. Clearly, F ,G,H functions in (1)–(2)–(3)

can be chosen so that fab and gab have the desired symmetry

properties, and the QT version of F and G used in Ref. [9] (with

ineffective H) is only one way of achieving this. It is an open

question whether one of many possible generalizations of this QT

version may turn out more profitable for dealing with opinion

polling.
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