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Abstract — This paper offers a new approach to modelling the 
effect of cyber-attacks on reliability of software used in industrial 
control applications. The model is based on the view that successful 
cyber-attacks introduce failure regions, which are not present in 
non-compromised software. The model is then extended to cover a 
fault tolerant architecture, such as the 1-out-of-2 software, popu-
lar for building industrial protection systems. The model is used to 
study the effectiveness of software maintenance policies such as 
patching and “cleansing” (“proactive recovery”) under different 
adversary models ranging from independent attacks to sophisticated 
synchronized attacks on the channels. We demonstrate that the ef-
fect of attacks on reliability of diverse software significantly de-
pends on the adversary model. Under synchronized attacks system 
reliability may be more than an order of magnitude worse than 
under independent attacks on the channels. These findings, alt-
hough not surprising, highlight the importance of using an ade-
quate adversary model in the assessment of how effective various 
cyber-security controls are. 

Keywords— probabilistic model, software reliability, software 
fault-tolerance, on-demand software, adversary. 

I.  INTRODUCTION  

Cyber-security has affected everyday lives: cyber-fraud is 
widely spread, serious accidents with safety-critical systems 
caused by cyber-attacks have been reported. Cyber-security has 
become a topic affecting even politics1.  

Cyber-security assessment has matured in the last decade2. 
Yet, recommendations to deploy specific security controls are 
often made with no quantification of the benefits these are likely 
to bring about to a particular system. The assessment results, es-
pecially when qualitative assessment techniques are used, are of-
ten difficult to reproduce. Decision makers have difficulties to 
answer rationally practical questions such as: “How much 
should I invest in improving cyber-security?”, “After spending 
the available budget on additional cyber-security controls how 
much better is my system? Have I done enough to secure my 
system?”  

                                                           
1 There have been reports of a foreign state attempting to af-
fect the results from the referendum for Scottish independence 
in 2014, the presidential elections in the US in 2016 and in 
France in 2017. 

Software reliability engineering, on the other hand, has been 
a mature discipline for several decades. The concept of software 
reliability and the factors that affect it are well understood. In 
many industries, high software reliability is achieved following 
a well-understood process for software reliability assessment.  

Software faults (e.g. buffer overflow, etc.) make software 
vulnerable. Technical literature offers in abundance ingenious 
tricks that researchers have found to work in specific cases, e.g. 
obfuscation [1], which can help with a class of vulnerabilities. 
Often these solutions are taken and applied to a different context 
without proper analyses of how the new context will affect the 
effectiveness of the solutions that worked well elsewhere. For 
instance, in [2] the authors use software diversification via ob-
fuscation at compilation time to produce unique replicas. This 
makes the same attack “unlikely to succeed on any two vari-
ants”. Obfuscation is also used in intrusion tolerant solutions 
based on software replication, in which Byzantine agreement 
protocol [3] among replicas is used. This protocol is guaranteed 
to work correctly only if certain sufficient conditions on the 
number of simultaneously compromised replicas are met. Ob-
fuscation is seen often as a way of meeting these sufficient con-
ditions with high confidence. Such a belief, however, may be ill-
founded. As pointed out in [1], variants, obfuscated differently, 
may crash on the same attack. This, in turn, may lead easily to a 
violation of the sufficient conditions for the Byzantine agree-
ment protocol to work correctly.  

Dealing adequately with cyber-threats requires credible as-
sessment of the effectiveness of cyber-security controls de-
ployed in a particular system. In this paper we develop probabil-
istic models and use them to analyze the relationship between 
software reliability and the properties of the anticipated cyber-
attacks. Our models are built deliberately to operate at a rela-
tively high level of abstraction, which makes them applicable to 
a large class of systems, irrespective of the specific technology 
used in system design, and suitable to compare the benefits that 
different cyber-security controls can bring.  

Probabilistic model for assessment of software reliability and 

2 A range of standards deal with the assessment of risk from 
cyber-attacks on industrial control systems, e.g. IEC 62443, 
ISO/IEC 15408, ISO 27005, etc. 



 

 

system safety are widely used today. All major international 
safety standards recommend the use of probabilistic models. 
Probabilistic modelling has been useful not only in quantitative 
reliability assessment, but also in addressing some serious mis-
conceptions. A well-known example is the N-version program-
ming. Many believed at the time that a separation of develop-
ment teams would result in independent failure of software chan-
nels. Using probabilistic modelling Eckhardt and Lee [4] 
showed the fallacy of this belief. Independent development does 
not guarantee failure independence. Using a similar style of 
probabilistic modelling in own work [5]we studied how different 
testing regimes – with individual oracles or back-to back – com-
pared when applied to fault-tolerant software.  

These past successes motivated the work presented in this 
paper. We apply a similar style of conceptual probabilistic mod-
elling to both accidental failures and to the effects of cyber-at-
tacks on a specific software system and compare the benefits for 
fault-tolerant software of several popular software maintenance 
policies.  

The modelling approach presented in this paper was devel-
oped with cyber-physical systems (CPS) in mind. In such sys-
tems software interacts (controls, monitors, etc.) with tangible 
assets in circumstances, which typically provide no scope for 
data theft. We hope, despite the focus, that some elements of the 
work might be useful for a broader class of software systems.  

The contributions of the paper are as follows: 

• A conceptual model of software reliability in adverse envi-
ronment, which accounts for the effects of successful 
cyber-attacks on software reliability. The model is ex-
tended and applied to a 2-channel software system. 

• A study of how different maintenance policies, such as 
software patching and software “cleansing” [6], also 
known as “proactive recovery” [7], (i.e. periodically restor-
ing software to a clean copy, eliminating the consequences 
of successful cyber-attacks) compare under different sce-
narios of cyber-attacks.  

• A SAN model (Stochastic Activity Networks), used in the 
studies, is released in the public domain. This can be used 
by others to analyse practical scenarios of interest. 

The paper is organized as follows. Section 2 introduces in-
formally the problem that we study in the paper. Section 3 for-
mulates a stochastic model of how cyber-attacks affect software 
reliability. Section 4 presents the main results from the compar-
ison of the efficacy of software patching and cleansing under a 
range of attack scenarios. In section 5 we discuss the implica-
tions of our findings. Section 6 summarizes the related research. 
Finally, section 7 concludes the paper and outlines directions for 
future research. 

                                                           
3 We ignore the complication that processing a demand may 
result in a partial failure. We believe, that with a suitable defi-
nition of a test for correctness, this difficulty usually can be 
overcome. 

II. INFORMAL PROBLEM STATEMENT 

Consider “on-demand” software, i.e. software, which re-
ceives demands for processing from its operational environment. 
Typical examples of on-demand software are various protection 
systems, e.g. of a nuclear power plant or of any other process 
control plant. In such systems safety is typically achieved by de-
fining a safe-state, which the system can enter should the con-
trolled process deviate from the intended safe envelop of opera-
tion. The sole purpose of a protection system (typically imple-
mented in software) is to react to such deviations. Demands, pro-
cessed correctly, will bring the plant to the predefined safe state.  

Processing a demand by a protection system may involve a 
very complex sequence of inputs coming from the operational 
environment – from the initial signal (e.g. that the pressure in a 
nuclear reactor has exceeded the normal/acceptable level), fol-
lowed by software reading multiple sensors until the anomaly is 
established with certainty (or high degree of confidence) and 
then a transition of the plant to a safe state is executed as needed. 
We call this entire sequence of sensor readings and transition to 
a safe state a demand. Typically, a complex plant may deviate 
from its safe operation in many different ways, hence, many dif-
ferent demands on the protection system are possible. Each de-
mand is processed either correctly or may result in a failure3.  

Now consider the space of cyber-attacks on on-demand soft-
ware. Attacks, or malicious demands, on a computer platform 
target various assets that have some value for the attacker, e.g. 
stealing personal details, such as a bank account, private infor-
mation such as documents, photos, etc. Examples of malicious 
demands closer to the particular context of industrial applica-
tions would be causing malfunction of equipment, disrupting a 
protection system, eliminating a safe-state, etc. Providing an ex-
haustive enumeration of malicious demands is outside the scope 
of the paper.  

Outside the scope of this paper are also malicious demands, 
which cause the attacked software (or the computer platform) to 
fail immediately. In some cases, defense mechanisms, e.g. the 
above mentioned obfuscation at compilation time, can block the 
attack by causing software to crash. Our main concern are suc-
cessful attacks which do not lead to immediate failures but make 
the software less reliable. In other words, our interest centers 
upon situations, in which successful attacks cause software fail-
ures in the future, which without the malicious demands would 
not have occurred. The advanced persistent threats (APT) which 
seek to compromise software, remain invisible and cause harm 
in the future, fall within this category.  

Malicious demands differ enormously in the delivery mech-
anisms used to reach a target. Exploiting vulnerabilities in a 
piece of software or its execution environment (operating sys-
tem, other software components deployed on the same plat-
form/network, etc.) is often combined with aid from human op-
erators – malicious insiders or careless users (e.g. in the case of 
spear phishing). Malicious demands also vary in terms of the 



 

 

payload that they deploy to harm the targeted assets4. Many ma-
licious demands include carefully crafted routines to erase any 
traces of a successful malicious demand [9]. Payloads of attacks 
on specialized process control software lead to lasting alterations 
of the operation of targeted software. Examples of such threats 
seen in the past have been documented for different versions of 
Stuxnet: i) the well documented version 1 of the worm [8] caused 
harm to the centrifuges used in Iranian enrichment plants by 
providing incorrect readings about the rotation speed of the cen-
trifuges; ii) an earlier version of the worm – v0.5 [10] – would 
periodically force various valves in installations to close tempo-
rarily, which would cause a pressure rise in pipes. This in turn 
would affect the production output and even cause physical dam-
age.  

Modelling the consequences of malicious demands on the 
failure behavior of targeted application software is the main fo-
cus of this paper.  

Corrective software maintenance (often referred to as patch-
ing) fixes bugs that cause software failures irrespective of 
whether software has been subjected to successful malicious de-
mands or not. In some cases, maintenance is focused on elimi-
nating bugs which may cause failures in operation; in some other 
cases patching targets specifically known vulnerabilities, which 
could be exploited by malicious demands. A special form of 
maintenance is software “self - cleansing” [6] (referred to as 
cleansing for short), in which application software (or the entire 
platform) is restored to a system state believed to be clean from 
the effects of malicious demands. Cleansing has been adopted in 
“proactive intrusion-tolerance” solutions. We model these 
maintenance policies and study the benefits from them when 
they are applied to software either in isolation or together. 

III. FORMAL MODEL DEFINITION 

A. Software Reliability  

Let us consider the space of demands, D={x1, x2, … xn}, for 
a particular on-demand software product, π, with a probabilistic 
measure, ܳ(∙), defined on D. ܳ(∙), known as the operational 
profile, captures the likelihood of demands being submitted to π. 

The failure process of π in operation is captured by a score 
function, defined on demands as follows, [11]: 

,ݔ)߱  (ߨ = 	 ൜0, ,1ߨ	ݕܾ	ݕ݈ݐܿ݁ݎݎ݋ܿ	݀݁ݏݏ݁ܿ݋ݎ݌	ݏ݅	ݔ	݀݊ܽ݉݁݀	݂݅ ݁ݏ݅ݓݎℎ݁ݐ݋  

 
Probability of failure (pfd) of π on a randomly chosen de-

mand, X, is then: ܲ(ߨ	ݏ݈݂݅ܽ	݊݋	ܺ) = ∑ ,ݔ)߱ ௫ఢ஽(ݔ)ܳ(ߨ                 (1) 

B. Model of malicious demands  

Now consider the space of malicious demands, Λ = {µ1, µ2, 
…, µn} that can be submitted to ߨ by adversaries at random mo-
ments in time. Each malicious demand either succeeds or fails in 

                                                           
4 Different attacks may use similar delivery mechanism – 
Stuxnet and Flame are examples – but deploy very different 

deploying its payload. We capture this outcome by defining an-
other score function: ߮(ݕ, (ߨ =	൜1, ,0ݎݑ݋݅ݒℎܾܽ݁	݁ݎݑ݈݂݅ܽ	ݏᇱߨ		ݐ݂݂ܿ݁ܽ	݋ݐ	ݏ݀݁݁ܿܿݑݏ	ݕ	݂݅ ݁ݏ݅ݓݎℎ݁ݐ݋        (2) 

 

The score function of ߨ compromised by a successful mali-
cious demand y, denoted by ߱௬(ݔ, ,ݔ)becomes:  ߱௬ ,(ߨ (ߨ = ൜1, ,0ݕ	݀݊ܽ݉݁݀	݈ݑ݂ݏݏ݁ܿܿݑݏ	ݐݏ݋݌	ݔ	݊݋	ݏ݈݂݅ܽ	ߨ	݂݅ ݁ݏ݅ݓݎℎ݁ݐ݋  

,ݔ)∅߱ (3)   could be used to denote the score function of software (ߨ
before it has been affected by a malicious demand. We expect 
that the values of ߱∅(ݔ,  on some demands will be altered by (ߨ
a successful malicious demand. More specifically, we assume 
that some scores will change from ߱∅(ݔ, (	ߨ = 0 to ߱௬(ݔ, (ߨ =1. We do not expect, that a malicious demand will lead to a fail-
ure compensation, i.e.: ߱௬(ݔ, (ߨ ≥ ,ݔ)∅߱  (4)    (	ߨ

The reader will have noticed that this formulation of the im-
pact of a malicious demand on ߨ extends naturally to any se-
quence of malicious demands applied to ߨ. Indeed, for a se-
quence, ߤଵ, ,ଶߤ … , ,ݔ)∅߱ :௠ we could define a set of score functionsߤ ,(ߨ ఓ߱భ(ݔ, ,(ߨ ఓ߱భ∧ఓమ(ݔ, ,(ߨ … , ఓ߱భ∧ఓమ∧…∧ఓ೘(ݔ,  (5)    (ߨ

 
where ߤଵ ∧ ଵߤ ,… ,ଶߤ ∧ ଶߤ ∧ …∧  ௠ are labels used to signifyߤ
the combined effect of a sequence of malicious demands, (ߤଵ, ,ଵߤ) ,… ,(ଶߤ ,ଶߤ … ,  .(௠ߤ

We will use ߱ ,ݔ)ࣝ  at any ߨ to denote the score function of (ߨ
stage, ࣝ, of software operation, where ࣝ can take values from 
the set ሼ∅, ,ଵߤ ,ଶߤ … ,௡ߤ ଵߤ ∧ ,ଶߤ … , ଵߤ ∧ ଶߤ ∧ …∧ -௡ሽ. The evoߤ
lution of ߨ’s state, as a result of successful malicious demands, 
is illustrated in Fig. 1. 

...
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Fig. 1. Evolution of software state as a result of successful malicious demands 
and in the absence of maintenance. There is a one-to-one mapping 
between the score function, ߱ࣝ(ݔ,  and the state, ܵࣝ, shown in the (ߨ
diagram. The transitions between the states are labelled with h(µi) to 
signify the hazard rates, [12], associated with the respective transitions.   

payloads: Stuxnet targets industrial controllers [8], while 
Flame delivers a spying payload [9]. 



 

 

We do not discuss whether the order of malicious demands 
in a sequence is important. Our chosen notation, however, does 
allow one to account for it, if necessary. 

C. Failure regions.  

The demand space of any non-trivial software is typically as-
tronomical. Empirical studies, e.g. [13], have demonstrated that 
software faults are projected on the demand space as failure re-
gions. That is, the same fault can be triggered by a number of 
different demands, which together form a failure region of de-
mands, on which software fails.  

We are not aware of systematic studies to establish whether 
the concept of failure regions applies to cyber-security attacks. 
We see no reasons, however, why it should not apply. The anal-
yses of Stuxnet [8] and of Flame [9] suggest that malware does 
indeed create new failure regions in the compromised software. 

Now we will use the concept of failure regions to model the 
effect of malicious demands on compromised software. We first 
introduce a number of additional notations. Let FR = {fr1, fr2, … 
frn} be the set of all potential failure regions that might be acti-
vated in a piece of software, π, as a result of at least one mali-
cious demand. Each failure region is a collection of normal de-

mands, ݂ ௜ݎ = ቄݔଵ(௜), ,ଶ(௜)ݔ … ,  ௞೔(௜)ቅ, on which software fails. In ourݔ

model failure regions do not overlap, i.e. ݂ݎ௜ ∩ ௜ݎ݂ = 	∅, ݅ ≠ ݆ . 
This assumption is made for convenience – and builds upon our 
previous work [14]. Later, in section Fig. 7, we discuss ways of 
relaxing the assumption. We characterize a failure region, fri, by 
its size, P(fri), which represents the probability of selecting at 
random a demand ௟ܺ(௜)that belongs to this failure region, fri.  

D. Malicious demands.  

We define a set ܦܯ(ߤ௜) = ቄ݂ݎଵ(ఓ೔), ,ଶ(ఓ೔)ݎ݂ … , ௝(ఓ೔)ݎ݂ ௟ഋ೔(ఓ೔)ቅ whereݎ݂ ∈ ݆|ܴܨ = 1… ݈ఓ೔ and use it to model the effect of mali-
cious demand ߤ௜ on target software should ߤ௜ be applied suc-
cessfully to software.  

In a non-compromised software, none of the regions in FR is 
active. If a malicious demand µi is successfully applied to soft-
ware, then all failure regions in ܦܯ(ߤ௜) become active in this 
software (Fig. 2). 

We characterize the sets FR and Λ via model parameters. 
The size of FR is explicitly defined as a model parameter and so 
is the max number of failure regions, max, per malicious de-
mand: the actual size of each set, ܦܯ(ߤ௜), is a random number, 
uniformly distributed in [1, max], where max is a model param-
eter. A probability distribution over FR is defined, which gov-
erns the allocation of failure regions to the sets, ܦܯ(ߤ௜). 

Each malicious demand, ߤ, is also assigned a probability of 
success, ௦ܲ௨௖௖௘௦௦(ߤ) and a distribution ఓܺ(ܶ ≤ -of time be (ݐ
tween the occurrences of instances of ߤ in operation. 

Finally, with more than one malicious demand we need a 
model to define how the malicious demands occur: for this we 
use the competing risks model [12]. The joint distribution of the 
competing risks – the risks can be independent or non-independ-
ent – at any moment in time defines the adverse environment.  

fr1 fr2 fr3 frN...

fr5

fr1

fr8

fr4 fr5 fr6 fr7 fr8

FR

MD(µ1) fr4

fr2

fr5

fr7

MD(µ2)
...

fr1 fr2 fr4 fr5 fr7 fr8

Sµ1˄µ2  

Fig. 2. Relationship between failure regions, malicious demands and the state 
of the compromised software. Active failure regions increase the pfd of 
compromised software. In the particular example shown in the figure, two 
malicious demand, ܦܯ(ߤଵ) and ܦܯ(ߤଶ) consist of 3 and 4 failure 
regions, respectively. The failure region, fr5 is common for the two 
malicious demands. Therefore, when both, ܦܯ(ߤଵ) and ܦܯ(ߤଶ), are 
applied successfully to software, the total number of active failure regions 
will be 6. The failure region fr5, which is common for both demands, is 
activated by the malicious demand which is first to succeed. 

E. Software Maintenance 

The effect of maintenance on the maintained channels is 
summarized as follows: 

• Cleansing: cleansing removes all failure regions activated 
by successful malicious demands. The channel’s pfd is thus 
restored to the value it had before malicious demands. 
Cleansing has no impact on the probability of success of 
future malicious demands: these probabilities remain the 
same as before cleansing, since cleansing does not fix any 
exploitable vulnerabilities. Clearly, since cleansing does 
not fix the exploitable vulnerabilities, cleansing may be 
faced with an increasingly adverse environment: once an 
exploitable vulnerability has been discovered and exploited 
once by a malicious demand, it could be exploited again 
and again, possibly with an increasing rate. 

• Patching: the model allows for the channel’s pfd to de-
crease as a result of some faults, unrelated to exploitable 
vulnerabilities, being fixed. The magnitude of this decrease 
is a model parameter. Patching may also affect the proba-
bility of success of some malicious demands in the future, 
possibly reducing it to 0, as a result to fixing exploitable 
vulnerabilities. We use another model parameter to capture 
the specific assumptions related to this reduction of the 
probability of success by malicious demands.  

Patching and cleansing occur at random points in time Ξ = ሼݐଵ, ଶݐ … , -௡ሽ. The state of software, captured by the correspondݐ
ing ߱ࣝ(ݔ, ,ߨ  and summarized by its pfd, changes at these (݌
points defining a new stochastic process, as illustrated in Fig. 3. 
In many cases, cleansing is applied periodically or at fixed times 
during the day. Such arrangements impose constraints on some 



 

 

of the transitions between the states (transitions to SdownC) in the 
stochastic process defined in Fig. 3. 
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Fig. 3. Illustration of the stochastic process describing the evolution of a 
channel under maintenance. Software state changes as a result of 
successful malicious demands applied to it (shown as solid arrows in the 
figure) and due to maintenance (cleansing/patching). Maintenance itself 
is completed in a state SdownC/P, (for cleansing and patching, respectively): 
in these states the software is not operational. After maintenance the 
channel operation is resumed from a clean state (Sclean, Sclean2, Sclean3, …). 

The models of cleansing and patching are similar: they are 
described by respective stochastic processes, which define the 
distribution of the intervals between the successive applications 
of maintenance, ܺ௣(ܶ ≤ ܶ)and ܺ௖ (ݐ ≤  for patching and ,(ݐ
cleansing respectively.  

These processes can be constrained, e.g. simultaneous 
maintenance of more than one channel may not be allowed to 
guarantee that at least one channel is always operational, as rec-
ommended by some standards, e.g. [15]. 

Maintenance duration may vary significantly depending on 
the size of the software state (i.e. useful data used by software) 
that needs to be migrated after maintenance to a clean copy. 
Some authors, e.g. [16], report that this may take seconds, 
minutes and even hours. Examples of techniques to minimize 
this duration are: i) on-the-fly patching [17]; ii) adding spare 
channels before some channels are taken down for maintenance 
[18], [16], etc. In our model the duration of maintenance is de-
fined as a model parameter, which we varied in different studies. 

F. The 1-out-of-2 system 

The model of 1-out-of-2 on-demand software adds complex-
ity since the system now consists of two channels. Let us denote 
the channels used in the 2-channel system as ߨ஺ (channel A) and ߨ஻ (channel B), respectively. The probability of failure of such 
a system can be expressed as, [11]: ܲ(ߨ஺, ஻݂݀݌஺݂݀݌	= (ܺ	݊݋	݈݂݅ܽ	஻ߨ + ,ܺ)ொ൫߱஺ݒ݋ܿ ,(஺ߨ ߱஻(ܺ,  (6)												஻)൯ߨ

 

The covariance term, ܿݒ݋ொ൫߱஺(ܺ), ߱஻(ܺ)൯, is a measure of 
failure dependence between the two channels. The covariance is 
0 if the channels fail independently.  

,஺ߨ)ܲ -represents the system pfd and will be af (ܺ	݊݋	݈݂݅ܽ	஻ߨ
fected by the malicious demands and the maintenance of the 
channels. At any point in time, the failure behavior of the 2-
channel software system is characterized completely by the tu-
ple (pfdA(t), pfdB(t), pfdsystem(t)).  

During a channel maintenance, the system operates as a sin-
gle channel system and the system pfd is reduced to the pfd of 
the operational channel. As soon as the channel maintenance is 
complete, the system pfd is restored to the value it had prior to a 
successful malicious demand being applied to the channel whose 
maintenance has just been completed.  

Malicious demands, via their respective, ܦܯ(ߤ௜) sets, affect 
the channel pfd and may also affect the system pfd. If the same 
failure region, fri, is activated in both channels (by respective 
malicious demands applied to the channels), this region becomes 
a “common failure” region for both channels and its size is added 
to system pfd. 

With 2-channel software, there is scope for variation in how 
malicious demands occur. We consider two important cases: the 
set of malicious demands on the channels may be either identi-
cal, i.e. Λ1 ≡ Λ2, or different.  

• Synchronised attacks (Λ1 ≡ Λ2). This case would be an ap-
propriate model if the adversary is aware of the underlying 
2-channel architecture. This adversary will be aware that 
attacking a single channel will have no immediate effect: 
even if an attack on the channel is successful, the system 
may remain unaffected, if the second channel is non-com-
promised. The Adversary, therefore, will seek to compro-
mise both channels by attacking the system with malicious 
demands crafted specifically for each of the channels. 

• Independent attacks. The model with different sets of ma-
licious demands (Λ1 ≠ Λ2) would be appropriate to model 
the behaviour of an adversary unaware of software archi-
tecture and who would attack one of the channels, e.g. se-
lected at random. Common failure regions with different 
sets of malicious demands may still occur (e.g. if malicious 
demands ߤ௜ and ߤ௝ are applied to channel A and channel B, 
respectively, and a failure region ݂ݎ௞ exists which happens 
to belong to both ܦܯ(ߤ௜) and ܦܯ൫ߤ௝൯. The system pfd 
thus will be increased by the size of the common failure 
region, ݂  ௞. Such common failure regions are generally lessݎ
likely with different sets of malicious demands than with 
the same set of demands. 

With a 2-channel system a reasonable policy would be to 
subject to maintenance at most one channel at a time [19], which 
in our model of cleansing/patching is achieved by implementing 
a maintenance mutex.  

IV. RESULTS 

In this section we use the model described in Section III to 
answer a number of questions:  

• Is an architectural solution based on periodic “cleansing” 
of software, i.e. restoring software from clean copies, a 
sound defence of vulnerable software? The proponents of 
“proactive recovery”, e.g. [1] [6], [16] and [18], would ar-
gue that it is, while some may argue that such practice may 



 

 

in fact reduce dependability. Indeed, the benefits, of cleans-
ing are questionable: an advanced persistent threat (APT) 
that has successfully compromised a piece of software once 
is likely to persist and likely to compromise it again and 
again, probably taking increasingly shorter time to compro-
mise a replica after cleansing.  

• To patch or not to patch? Again, patching is a standard pol-
icy adopted for consumer devices, data centres and “enter-
prise” solutions. Patching industrial control systems, how-
ever, is a very expensive operation. Problematic patches, 
too, are not uncommon and some standards prescribe rig-
orous procedures to address this concern [15]. In practice, 
many operators of critical infrastructures are reluctant to 
patch [19]. Often operators are prepared to postpone patch-
ing as long as they can. We compare the reliability of un-
patched and patched software to illustrate the risks of not 
patching. We also look at the impact of different patching 
policies: i) patching as soon as a patch becomes available 
(implicitly assumed so far), and ii) deferred patching, e.g. 
when a channel is only patched when the channel has been 
detected as compromised. In our study the detection of a 
channel compromise is delegated to an intrusion detection 
system (IDS) with imperfect intrusion coverage.  

In this section we present a number of results obtained with 
a probabilistic model(s) built with Mobius [20] using the sto-
chastic activity networks (SAN) formalism. We solved the 
model(s) via Monte-Carlo simulation. The structure of the 
model(s) is shown in Fig. 4. It consists of a number of atomic 
models and a composite model, which links instances of the 
atomic models using the mechanism of shared places.  

 

Fig. 4. Structure of the SAN model.  

For lack of space we omit the implementation details of the 
model. However, the entire SAN project is available online [21] 

and the interested reader can analyze the model in detail. 

The project includes extensive custom C code, necessary for 
model initialization: i) creation of the set of failure regions (100 
failure regions were used in the conducted studies), ii) creation 
of a number of malicious demands applicable to a channels using 
a set of parameters explained below, etc. 

The initial pfds of the channels and of the system are also 
defined to represent a realistically reliable on-demand software: 
the channel pfd is assumed 2×10-3 for both channels; the system 
pfd is assumed 10-4. These values define a system with a high 
positive correlation of channel failures, which is not uncommon. 

A. Model parameterisation and studies 

The essential model parameters together with the values used 
in the studies are provided in TABLE I.  

Malicious demands on each channel are run as competing 
risks – the winner (i.e. the malicious demand that occurs first) is 
applied to the respective channel by activating the failure regions 
in the demand space of that channel, thus increasing the chan-
nel’s pfd. System pfd may also be affected due to new common 
failure regions that may occur as a result of the latest successful 
malicious demand. The competition between the risks (i.e. mali-
cious demands) is then resumed until the next winner occurs, etc. 

We utilize the built-in capability of Mobius to design a 
“study” [20], i.e. a number of experiments with different values 
assigned to model parameters. 

We use a set of global variables, which allow us to change 
the logic of the simulation as necessary so that different scenar-
ios - with or without patching and/or cleansing - are enabled or 
disabled. 

The experiments conducted can be grouped into the follow-
ing 4 categories: 

• A 2-channel system with no maintenance (NC NP). Both 
cleansing and patching of channels are disabled.  

• A 2-channel system with cleansing only (C NP). Cleansing 
of channels is enabled, their patching - is disabled.  

• A 2-channel system with patching only (NC P). Patching 
of channels of enable, cleansing – is disabled. 

• A 2-channel system when both patching and cleansing are 
enabled (P C). 

In all scenarios we simulated a mission of 350 days of oper-
ation, almost a year of calendar time, and looked at two related 
“rewards”: the system pfd (as a “time averaged” mean) and the 
probability to survive a mission of up to 350 days – in intervals 
of 10 days. We show estimates of the average system pfd calcu-
lated over intervals of 50 days to illustrate trends in system pfd 
over time. Each study was repeated 300 times and all rewards - 
calculated with confidence level of 95% and a relative confi-
dence interval of 10%. In a very few cases we increased the num-
ber of runs to 500 to achieve the required confidence level.  

This demand rate (normal_demands_rate) in TABLE I. is 
chosen somewhat arbitrarily. It may be too high for some appli-
cations (e.g. protection systems) and too low for some other ap-
plications (e.g. processing demands from sensors, etc.). 



 

 

TABLE I.  THE ESSENTIAL SAN MODEL PARAMETERS AND THE VALUES ASSIGNED TO THEM IN THE STUDIES 

Name Description Value 

FR_size [day-1] Failure region sizes (uniformly distributed). Each newly activated failure region (due to a successful 
malicious demand) will increase the channel’s pfd by this random number. 

1.00E-04 – 2.00E-4 

attackRateIncrease [day-1] Sets the rate increase of malicious demands over time.The change to attack rate is applied upon 
patching (a modelling assumption). The rationale here is as follows: once a vulnerability has become 
a “public knowledge” (or known to the adversary), it is likely to be exploited with an increased rate.  

0.001 

attackSProb_reduction Coefficient of reduction of malicious demand probability of success. Captures the effect of patching 
on the probability of success of malicious demands. 

0.95 

ch1_pfd Channel 1 initial pfd (before any malicious demand sufcceeded to compromise software).  0.002 
ch2_ pfd Channel 2 initial pfd (no malicious demands) 0.002 
cleansing_interval [day] Interval between cleansings of channels (if cleansing enabled). Fixed value. 1 
common_pfd System pfd (before any channel has been compromised). 1.00E-04 
delay_sync_attack [day] Delay between channel attacks in case of synchronised attacks.  0.05 
demand_rates [day-1] Malicious demands rates (exponential distributions).  0.01-0.07 
demand_types Number of different malicious demands to channel 1 and channel 2. In the studies the same number 

is assumed for both channels, but the implementation allows differerent values to be assigned to 
channel 1 and channel 2. 

10 

m_demand_max_FRs Maximum number of failure regions per malicious demand. The model assumes the same value for 
both channels. The actual number of failure regions per malicious demand is a random number chosen 
from the range [1, m_demand_max_FRs] using a uniform distribution.  

10 

normal_demands_rate [day] Interval between normal demands on system 1 
patchingInterval [day] Interval between patches (exponential distribution) 0.15 
patch_ch_pfd_reduction Channel pfd reduction coefficient after patching. This parameter captures the effect of fixing bugs, 

other than exploitable vulnerabilities. Fixing such bugs may improve the operational reliability of the 
respective software channel(s) 

0.9 

patch_CC_pfd_reduction System pfd reduction coefficient after patching a channel which leads to fixing bugs that are not 
exploitable vulnerabililities.  

0.95 

upgrade_duration [day] Maintenance duration (fixed interval) 0.01 

B. Cleansing vs patching 

We start with a set of results conducted under the assumption 
of independent attacks and that maintenance takes 0.01 days (i.e. 
almost 15 min), a plausible number recorded by some, e.g. [18].  

Patches are applied as soon as they become available.  

The results (Fig. 5) confirm that all forms of maintenance, 
including cleansing alone, improve system reliability very sig-
nificantly. Without maintenance, system pfd rapidly grows. 

 

Fig. 5. System pfd and mission survival of a 2-channel system under independent attacks.



 

 

Interestingly, for the chosen parameterization, cleansing 
may outperforms patching (compare “C-NP” and “NC-P” 
plots), which is surprising. The trends of system pfd for the 
different scenarios provide further insight. We see a clear 
trend downwards for “NC-P”, and an increasing trend for 
cleansing “C-NP” (due to the simulated increase in the rate 
of repeated attacks). Up to 250 days of operation, the system 
pfd with cleansing only is lower (i.e. the system is more re-
liable) than the pfd with patching only. The two curves cross 
over in the interval 250 – 300 days of operation. After the 
300th day of operation the system with patching only be-
comes more reliable.  

When both cleansing and patching are used, not surpris-
ingly, system pfd is the lowest (i.e. the system is the most 
reliable). The lower left plot demonstrates the effect of 
cleansing duration (T) on system pfd. T was assigned values 
from the range [0.001, 0.1] days. Not surprisingly, long T 
eventually make cleansing universally inferior to patching. 
Shorter T makes cleansing more effective.  

The last curve (bottom, right) shows the probability of 
surviving a mission (PS) for different maintenance policies. 
Cleansing only eventually becomes inferior to patching 
only: there is a clear stochastic ordering between PScleansing 
and the PSpatching towards the end of the mission (250+ days). 
The modes with patching – with and without cleansing (P-
C and NC-P, respectively) – are practically indistinguisha-
ble.  

C. Independent attacks vs. coordinated attacks 

In this section we compare system pfd of a 2-channel 
system placed in two different environments: i) independent 
attacks, and ii) synchronized attacks on the channels. 

We modelled the synchronized attacks by making an ad-
ditional assumption: once a malicious demand is success-
fully applied to one of the channels, the same demand is ap-
plied to the second channel with a short delay, the value of 
which is defined by an additional model parameter, de-
lay_sync_attack. In the studies we set this parameter to 0.05 
days (i.e. slightly over an hour) – a somewhat arbitrary 
value, chosen to be significantly smaller than the intervals 
of cleansing (a day) and the average interval of patching 
(once a week). Thus, a synchronized attack has a good 
chance of compromising both channels despite the adopted 
maintenance.  

The results for synchronized and independent attacks for 
all 4 regimes are given in Fig. 6. The plots of system pfd 
show that synchronized attacks make the system much 
worse: stochastic ordering is established for both measures 
– system pfd and PS. Without maintenance (the plots in the 
upper half of the figure) under synchronized attacks system 
pfd eventually becomes more than an order of magnitude 
worse than under independent attacks. The plots in the lower 
half of Fig. 6 show how the two environments compare 
when maintenance is applied. Stochastic ordering is pre-
served here, too: the curves representing synchronized at-
tacks are above all curves representing the independent at-
tacks. In other words, irrespective of the maintenance pol-
icy, synchronized attacks make the system pfd worse than 
the independent attacks. Under synchronized attacks the ef-
fect of maintenance policy is similar to what we observed 
with independent attacks: combined maintenance is best, 
second best is cleansing only. The worst performing policy 
is patching only. The crossover between the curves repre-
senting cleansing and patching only occurs between 300 and 
350 days.  

 

Fig. 6. Independent vs. Synchronised attacks. 

The plot with PS is also quite clear: when either cleans-
ing or patching only are applied, the PS for sync attacks is 

noticeably lower than under independent attacks, irrespec-
tive of the maintenance policy. A clear stochastic ordering 



 

 

exists between the PS curves for independent and synchro-
nized attacks after 200+ days. A combination of patching 
and cleansing is sufficient for a system under sync attacks 
to behave comparably to how it would behave under inde-
pendent attacks: the corresponding PS confidence intervals 
overlap (i.e. the simulation does not show a clear ordering). 
This observation seems to suggest that, cleansing appears a 
very useful as a complementary control to patching, espe-
cially under synchronized attacks! 

D. Deferred patching  

Finally we present results from a study, in which patch-
ing a channel is deferred until the channel has been diag-
nosed as compromised.  

Clearly, deferring a patch will avoid some of the periods 
when the system operates as a 1-channel system, hence this 
regime may potentially improve system pfd. On the other 
hand, deferring a patch relies on detecting reliably that a 

channel has been compromised. If detection is poor, a com-
promised channel may remain unpatched even if a patch has 
become available, which may reduce system reliability. Our 
study sheds light on this interesting tradeoff. 

The study of deferred patching is conducted for synchro-
nized attacks only under additional assumptions: i) the 
checks/diagnosis if a channel has been compromised are un-
dertaken at the time the particular channel is subjected to a 
malicious demand; and ii) the success of the check/diagno-
sis is not affected by whether the malicious demand has 
been successful or not. The intuition behind these modelling 
choices are that the intrusion detection/prevention system 
(IDS/IPS) will be triggered by a malicious demand, an as-
sumption which may not hold true in some cases. In this 
study the channels were not subjected to cleansing. We 
model checks’ imperfection with a single parameter, com-
promise_detection_prob (CPD), applied to both channels. 
We study the effectiveness of deferred patching by assign-
ing CPD different values from the range (0, 1).  

 

Fig. 7. Deferred vs immediate patching under synchronized attacks.  

In the model implementation we also adopted the policy 
of cumulative patch, that is, the effects of all deferred 
patches, such as a possible reduction of channel and system 
pfd and of the probability of success of the future malicious 
demands (due to removing/mitigating some vulnerabilities), 
are applied at once when the channel is eventually patched. 
This approach seems consistent with the industrial practice.  

The results from the study are summarized in Fig. 7. 

Again, for the sake of brevity, we only show the results 
related to system pfd and the probability of surviving a mis-
sion (PS) of a given length.  

Clearly, CPD has a significant impact on system pfd. For 
values of CPD = 0.8 and 0.5, system pfd is practically indis-
tinguishable from system pfd for the case with immediate 
patching – the three curves shown in the left hand plot of 
Fig. 7 are within the confidence intervals. Further statistical 
tests also provided no evidence to reject the null hypothesis 
that the mean values of the respective system pfd calculated 
over 500 simulation runs (used in this study) are different. 
The same similarity is observed with respect to PS for mis-
sions of up to 350 days. We confirmed that the recorded dif-
ferences between PS for missions of 200 and 350 days for 
CPD = 0.8 and 0.5 and immediate patching were statistically 

insignificant. When CPD drops to 0.2, however, system pfd 
increases noticeably – there is a clear stochastic ordering be-
tween the curves for CPD = 0.2 and with the other 3 cases 
(CPD = 0.5, 0.8 and immediate patching). With respect to 
PS, the effect of CPD is less clearly pronounced in Fig. 7: 
the confidence intervals associated with the PS with differ-
ent CPD clearly overlap. Using statistical tests we checked 
the null hypothesis “the PS with deferred patching with CPD 
= 0.2 and with immediate patching are equal” for mission 
lengths of 200 and 350. For significance level 0.05 this hy-
pothesis was rejected. Thus, we confirmed that a system 
with deferred patching with low CPD = 0.2 has lower 
chance to survive a mission than a system, in which the pol-
icy of immediate patching is used. 

V. DISCUSSION 

Our findings offer a number of interesting observations.  

Model behavior under synchronized attacks is signifi-
cantly worse than under independent attacks. While this ob-
servation is not surprising, its implications are quite serious. 
It reiterates that selecting an adequate model of adversary is 
an essential part of assessment. Selecting the “wrong” ad-
versary model may lead to gross errors in assessment: i) if 
synchronized attacks are likely but a model of independent 



 

 

attacks is used in assessment, the assessment results may 
lead to dangerous overconfidence in system reliability; ii) 
undertaking assessment under the assumption of synchro-
nized attacks, on the other hand, may lead to too pessimistic 
assessment results, in case synchronized attacks are made 
unlikely in the particular system, e.g. by deploying addi-
tional controls which make synchronized attacks difficult.  

Synchronized attacks raise doubts about the benefits 
that one should expect from some intrusion-tolerant systems 
built on assumptions, which rule out multiple channels be-
ing compromised simultaneously. The proposed style of 
modelling allows one to study the realism of an assumption 
that only a small number of channels can be compromised 
simultaneously.  

Our findings support the view that cleansing may be 
quite effective in countering attacks, especially the synchro-
nized attacks. This is particularly attractive, since the fre-
quency of cleansing can be tuned to fit the needs of a partic-
ular system. In contrast, the frequency of patching depends 
on software vendors and cannot be adapted to the needs of 
a particular system.  

Our results suggest that deferred patching of fault-toler-
ant software may be a reasonable alternative to the dominant 
practice today – patch as soon as possible. Deferred patch-
ing may deliver a comparable system reliability even when 
an IDS with relatively modest coverage is used. This is par-
ticularly relevant given the additional delays recommended 
by some standards [15] to validate patches before their de-
ployment. The final decision whether to deploy deferred 
patching or not for a particular system may require further, 
more detailed, analysis. 

We already acknowledged that in our model malicious 
demands’ success is modelled as a “binary” outcome; par-
tial success by a malicious demand has not been modelled. 
The implications of such a modelling choice are that either 
all failure regions associated with a particular malicious de-
mand are activated or none is. The model could easily be 
extended to address this limitation. A partial success might 
imply that only a subset of failure regions is activated. The 
effect of such an extension is conceptually clear – partially 
successful malicious demand will make the situation no 
worse than the fully successful malicious demands. Thus, 
the results one obtains with the current model can be seen as 
conservative bounds on channel/system pfd of software un-
der attack. 

The model presented in this paper belongs to the cate-
gory of “conceptual” models. Similarly to [4, 5], which mo-
tivated this work, and provides useful insight to support de-
cision making when design choices, e.g. alternative mainte-
nance policies, are analyzed and compared. This model 
helps improve one’s understanding, not least by applying 
sensitivity analysis to model parameters.  

Some of the modelling choices, e.g. modelling malicious 
demands as sets of failure regions, were taken due to the 
convenience they offer to build the model extending our pre-
vious work. The underlying concepts, however, can be cap-
tured making alternative modeling choices. We intend to 
work on models, suitable for practical assessment, which 
rely on parameters estimable via feasible measurements.  

VI. RELATED RESEARCH 

In addition to the references we used earlier in the paper 
to motivate the work and the modelling approach taken, we 
would like to outline a number of related sources.  

A number of publications apply software reliability 
growth models to vulnerabilities, e.g. [22-24]. These authors 
acknowledge the fundamental difference between software 
reliability predicted for a “stable” operational environment 
and the profile defined by the adversaries for security. For 
the latter, the profile is unlikely to be stable. These models 
follow the tradition of reliability growth modelling and are 
focused on predicting the time to discovering the next vul-
nerability. Instead, in our models we are primarily interested 
in the consequences of successful attacks on software relia-
bility of a particular system. The predictions of time to next 
vulnerability are related to the time a new patch is released, 
which is used in our model as a set of model parameters.  

There have been studies applying different modelling 
techniques to known attacks. A couple of examples are [25, 
26]. The first reference applies a probabilistic technique to 
define a model of Stuxnet and demonstrates how the model 
parameters can be assigned plausibly. The second example, 
instead, uses a non-probabilistic formalism. These authors 
claim that documenting itself of the particular malware is an 
important contribution. Neither of the two models, however, 
is used by the respective authors for an analysis of open re-
search problems. Our focus is quite different: instead of 
merely constructing a plausible model, we use the model as 
a tool to study practical problems such as the effectiveness 
of maintenance policies in adverse environments.  

A somewhat related to this paper is our own previous 
work on modelling the effect on cyber-attacks on the relia-
bility of an embedded device with fault-tolerant software 
[27]. The style of modelling there and in this paper is simi-
lar, but the scope of the analysis is different. In [27]we de-
veloped a detailed model of a specific device to study a spe-
cific attack – on the safe-state of the device. In the current 
paper instead we develop a model, which operates intention-
ally at a much higher level of abstraction and is used to com-
pare different maintenance policies.  

Synchronized attacks that we studied in detail are con-
ceptually similar to common mode/cause failure, a topic 
which has been studied very extensively in the context of 
system/software safety and highly available computer sys-
tem.  

We would like to acknowledge the ADVISE formalism, 
a part of the Mobius tool used to implement our models. The 
ADVISE formalism captures probabilistically the motiva-
tion of an Adversary, the assets of a particular system and 
the rewards that successful attacks will bring to an Adver-
sary should an attack succeed. Although ADVISE is appli-
cable to any system and assets, the level of abstraction this 
formalism uses is significantly higher than the level we 
chose in this paper – failure regions in demand space. We 
believe that modelling synchronized attacks on multi-chan-
nel software systems with ADVISE will be more difficult 
than with the approach to modelling that we have adopted.  

Finally, [7, 28] are examples of studies that model and 
verify the effectiveness of cleansing (proactive recovery).  



 

 

VII. CONCLUSION AND FUTURE WORK  

We presented an approach to modelling the effect of 
cyber-attack on software reliability and applied it to a 1-out-
of-2 on-demand software. We established a number of re-
sults: 

• We provide a new insight about the role of Adversary 
models in the assessment of benefits from software 
fault-tolerance. We recorded an order of magnitude 
difference in system pfd of a 2-channel software be-
tween adverse environment with independent and syn-
chronised attacks on the channels. 

• Cleansing, despite being a relatively simple method of 
defence against cyber-attacks, can be quite effective, 
especially against synchronised attacks.  

• Finally, we report on the existence of an interesting 
phenomenon related to a deferred patching of the chan-
nels of a 2-channel software system. Deferred patching 
is an attractive alternative to immediate patching even 
with a modest probability of detecting a compromised 
software channel. 

This work can be extended in a number of ways.  

First of all, most of the results that we presented are ob-
tained with a complex model, which depends in a large num-
ber of parameters. We did not explore systematically the 
space of model parameters and only scratched upon sensi-
tivity analysis (Fig. 7). Ideally, we would have liked to be 
able to state some of our results as “theorems”, e.g. state-
ments about the relationships between maintenance policies 
that are true irrespective of the values of the model parame-
ters. Whether this is achievable or not is yet to be seen. We 
plan to extend the research effort in this direction. 

Second, we left some aspect of the analysis incomplete. 
This is mainly due to the limited space a conference paper 
can offer. We envisage several important extensions of the 
work: 

• We limited our work to the simplest fault-tolerant ar-
chitecture – the 1-out-of-2 software – but referred sev-
eral times to systems of significantly higher complex-
ity such intrusion-tolerant architectures based on Byz-
antine agreement protocol [1, 16, 18]. The proposed 
style of modelling seems applicable to such systems, 
too. These systems are said to be intrusion tolerant un-
der a number of assumptions, which may hold true or 
be violated in operation. Applying the proposed 
method of modelling, especially with synchronised at-
tacks, will provide insight about the likelihood that the 
conditions necessary for the intrusion-tolerant solu-
tions to work correctly are satisfied in the adverse en-
vironment anticipated in operation.  

• Our model crucially depends on the view that mali-
cious demands activate new failure regions, not present 
in software prior to successful malicious demands. 
This view is quite plausible, and consistent with the 
empirical evidence we have analysed. Further empiri-
cal studies may provide additional insight and lead to 
further refinement of the modelling approach adopted 
in this work.  

• We used the probability of system failure as one of the 
main measure of interest and limited our analysis to the 
mean value (calculated over a number of simulation 
runs). It is clear that system pfd changes over time (as 

Fig. 6 illustrates). We did not scrutinise the implica-
tions of the recorded trends systematically, and con-
sider this direction of future research worthwhile. 

• As indicated in the discussion section, we plan to ex-
tend this work towards models suitable from practical 
security assessment. A less detailed description of a 2-
channel system evolving over time, e.g. using the triad 
(pfdA(t), pfdB(t) and pfdsys(t)), seems a promising can-
didate, more aligned with realistic measurements and 
with the statistical techniques we developed in the past, 
e.g. [29] and [30].  
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