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CUBIST ALGEBRAS

JOSEPH CHUANG AND WILL TURNER

Abstract. We construct algebras from rhombohedral tilings of Euclidean space obtained as projec-
tions of certain cubical complexes. We show that these ‘Cubist algebras’ satisfy strong homological
properties, such as Koszulity and quasi-heredity, reflecting the combinatorics of the tilings. We con-
struct derived equivalences between Cubist algebras associated to local mutations in tilings. We recover
as a special case the Rhombal algebras of Michael Peach and make a precise connection to weight 2
blocks of symmetric groups.
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1. Introduction

1.1. Homological algebras. How many algebras are there which possess every strong homological

property known to mathkind, yet are not semisimple ?

We define algebras UX , which generalise the Rhombal algebras of M. Peach, as well as the Brauer

tree algebra associated to an infinite line. We prove that these algebras are Koszul, symmetric, super-

symmetric algebras, whose projective modules are of identical odd Loewy length 2r − 1, for some

natural number r. There are r! different highest weight structures on UX -mod. Standard modules are

Koszul, for any highest weight structure. Given a highest weight structure, there is a canonical choice

of homogeneous cellular basis for UX .

The Koszul duals VX of the UX generalise the preprojective algebra associated to an infinite line.

They have global dimension 2r− 2. Thinking of VX -mod as the category of quasi-coherent sheaves on

a chimeric noncommutative affine algebraic variety of dimension 2r − 2, we may define a category of

sheaves on the corresponding projective variety, which has dimension 2r − 3, and obeys Serre duality,

with trivial canonical bundle. There are r! different highest weight structures on VX -mod, dual to

those on UX -mod. Again, standard modules are all Koszul. Given a highest weight structure, there is

a canonical choice of homogeneous cellular basis for VX .

The only finite-dimensional algebras which enjoy these potent combinations of properties are semisim-

ple algebras. Our examples are therefore necessarily infinite dimensional.

The combinatorics of our algebras is governed by collections of cubes in r-dimensional space, viewed

from (r − 1)-dimensional space. In homage to P. Picasso and G. Braque, who explored manifold

possibilities of this geometric attitude when r = 3, we call them Cubist algebras.

We expect there to be further examples of algebras Aτ which satisfy many of the listed properties

of the UX ’s, and upon a suitable localisation, describe the Morita type of blocks of symmetric groups

/ Schur algebras. The Koszul duals of the algebras Aτ , upon localisation, will describe the Koszul

duals of blocks of Schur algebras.

There are further similarities between the Cubist algebras UX , and blocks of symmetric groups.

Large collections of them are derived equivalent, the tilting bimodule complexes being obtained by

composing two-term complexes. Symmetric group blocks of weight two are largely similar to certain

UX ’s, in case r = 3.

Differences between the algebras UX , and Aτ are soon visible. On UX , there are r! possible highest

weight structures. However, Aτ has only two alternative orderings on its simple objects, correspond-

ing to the dominance ordering of partitions and its opposite. The combinatorics surrounding Aτ is

complicated, and mysterious, whilst numerical properties of UX are elegant, and transparent.

Relations between matrices of composition multiplicities for UX and VX release beautiful combina-

torial formulae, associated to Cubist views of Euclidean space.
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Our proofs begin with the combinatorics of Cubist diagrams. Pursuing these combinatorics allows

us to prove the existence of highest weight structure on VX -mod. Standard modules for VX have linear

projective resolutions, implying that VX is standard Koszul, in the sense of Agoston, Dlab and Lukacs.

This allows us to deduce Koszulity, and the existence of highest weight structures on UX -mod. The

existence of cellular structures on UX , VX are then apparent. Eventually, symmetry of UX is won.

We proceed to prove that the derived categories of UX , UX ′ are equivalent, whenever X ′ is obtained

from X by a local flip. This equivalence of categories allows us identify portions of symmetric group

blocks of weight two with portions of certain Cubist algebras, in case r = 3, following a path down

from the Rouquier block.

Figure 1. Part of a tiling Γ.

1.2. The case r = 3: Peach’s rhombal algebras. Let Γ be a tiling of the plane by congruent

rhombi affixed to a hexagonal grid (see Figure 1). The rhombal algebra UΓ associated to Γ is defined

to be the path algebra of the quiver obtained from Γ by replacing every edge by two arrows in opposite

directions, modulo the following quadratic relations:

• Two rhombuses relation. Any path of length two not bordering a single rhombus is zero.

• Mirror relation. The sum of the two paths of length two from one vertex of a rhombus to

the opposite vertex is zero.

• Star relation. At each vertex x, there are six possible paths of length two from x to itself,

which we label as follows:
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We impose the relation

a + d = b + e = c + f,

where we read any of a, b, c, d, e, f as 0 if it is not present at the vertex x.

The choice of signs in this presentation is due to Turner [30, Definition 15]. The relationship with

Peach’s original presentation [22] is described in Remark 18 below.

We now list the good properties of UΓ, together with references to results (proved in the generality

of Cubist algebras) in the main body of the paper. Some of the properties were originally established

by Peach; in those cases we also provide the reference in Peach’s thesis.

• UΓ is a locally finite dimensional graded algebra; each indecomposable projective module has

radical length five ([22, Corollary 2.4.2], Corollary 69)

• UΓ is a symmetric algebra, i.e. it possesses an invariant inner product. ([22, Theorem 2.5.1],

Theorem 68)

• UΓ is Koszul (Theorem 52)

• UΓ is quasihereditary (Theorem 55)

Let VΓ be the quadratic dual of UΓ. Then

• VΓ is Koszul (Theorem 46)

• VΓ is quasihereditary (Theorem 40)

• VΓ has global dimension 5 (Theorem 69)

The quasihereditary structure on UΓ comes with a partial order ¹ on simple modules and therefore on

the vertices of Γ; the partial order for VΓ is the opposite order. The partial order ¹ may be described

as follows. There exists a bijection λ from the set of vertices of Γ to the set of rhombi in Γ, given

by Figure 2. Then y ¹ x if y is a vertex in the rhombus λx, and this relation generates the partial

order. The standard modules are pictured in Figure 3. Note that the standard module for UΓ has

four composition factors, while the standard module for VΓ has infinitely many.
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Figure 2. Bijection between vertices and rhombi.

Figure 3. Standard modules in UΓ and VΓ.

Rotating Figure 2 by a multiple of π/3, we obtain 6 different partial orders on the vertices of Γ and

therefore 6 different quasi-hereditary structures on UΓ and VΓ.

The quasi-hereditary and Koszul properties give rise to curious formulae for the inverse of a matrix

recording distances in Γ. Indeed, given x, y ∈ Γ, let d(x, y) be the length of the shortest path from

x to y along edges in Γ. Let Dist(q) be the infinite matrix with rows and columns indexed by the

vertices of Γ, whose (x, y)-entry is qd(x,y). Then

Dist(q) Loc(−q) = (1 − q2)2I,

where I is the identity matrix, and Loc(q) is a matrix with a number of equivalent descriptions,

each of which describe certain local configurations in Γ. The (x, y)-entry of Loc(q) can be written
∑

qd(x,z)+d(z,y), where the sum is over all vertices z in Γ such that x, y ∈ λz (Corollary 57).

An alternative formula for the (x, y)-entry of Loc(q), which does not depend on a choice of highest

weight structure is
∑

z∈IΓ(x)∩IΓ(y) q2[3 − d(z, x) − d(z, y)]q, where IΓ(x) is a set describing a local

configuration about x (Proposition 86), and [n]q = (qn − q−n)/(q − q−1). Let H be a tiled hexagon,
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in which the six internal lines/rhombi are placed in correspondence with the six external vertices, as

in Figure 4.
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Figure 4. The hexagon H.

Let H(x) be the hexagon H, centered at x, and dilated so its external vertices coincide with the six

vertices of Γ closest to x. Note that the rhombic tiles in H(x) cannot necessarily be thought of as tiles

in Γ. The set IΓ(x) consists of the vertex x, as well as those vertices 1, ..., 6 in H(x) corresponding to

lines/rhombi in H(x) which can also be thought of as lines/rhombi in Γ.

1.3. Acknowledgements. We thank Volodymyr Mazorchuk for helpful discussions on standard Koszul

algebras, Claus Ringel for his kind encouragement and Michael Peach for volunteering his pictures of

rhombus tilings. Joe Chuang thanks the EPSRC for its support (grant GR/T00924/01).

2. Cubist combinatorics

We define and study certain subsets of integer lattices that correspond to tilings of Euclidean space

by rhombohedra.

2.1. Cubist subsets. Given x, y ∈ Rr, we write x ≤ y if y − x ∈ Rr
≥0. This defines a partial

order on Rr. We denote by ε1, . . . , εr the standard basis of Rr. For x ∈ Rr and ζ ∈ R, let x[ζ] =

x + ζ(ε1 + · · · + εr) ∈ Rr.

Definition 1. A subset X ⊂ Zr is Cubist, if X = X−\X−[−1], where X− is a nonempty proper ideal

of Zr (with respect to the partial order ≤).

Note that X− is uniquely determined by X ; it is the ideal of Zr generated by X . An ideal of

Z2 is an infinite version of (the Ferrers diagram of) a partition, and of Z3 is an infinite version of

a plane partition (see, e.g., [28, p.371]). So Cubist subsets may be regarded as higher-dimensional

generalisations of infinite partitions.

We have the following easy inductive characterisation of ideals in Zr.

Lemma 2. X− is an ideal of Zr if, and only if,

(1) X−
i = {x ∈ Zr−1 | (x, i) ∈ X} is an ideal of Zr−1 for i ∈ Z, and

(2) X−
i+1 ⊂ X−

i , for all i ∈ Z. ¤

This leads to an useful inductive description of Cubist subsets.

Lemma 3. If X ⊂ Zr is Cubist, then Xi = {x ∈ Zr−1 | (x, i), (x, i− 1) ∈ X} is either a Cubist subset

of Zr−1 or empty, for i ∈ Z. ¤



CUBIST ALGEBRAS 7

Proof. By Lemma 2, X−
i = {x ∈ Zr−1 | (x, i) ∈ X−} is an ideal in Zr−1, and

X−
i \ X−

i [−1] = {x ∈ Zr−1 | (x, i) ∈ X−, (x[1], i) /∈ X−}

= {x ∈ Zr−1 | (x, i), (x, i − 1) ∈ X−, (x[1], i), (x[1], i + 1) /∈ X−}

= {x ∈ Zr−1 | (x, i) ∈ X , (x, i − 1) ∈ X}.

¤

The set of Cubist subsets of Zr is invariant under translations and under the action of the symmetric

group Σr permuting coordinates, as well as under the involution x 7→ −x. The latter is true because

of the following easy lemma.

Lemma 4. A subset X of Zr is Cubist if, and only if, X = X+\X+[1], where X+ is a nonempty

proper coideal of Zr. ¤

2.2. Rhombohedral tilings. In case r ≤ 3, it is easy to understand Cubist subsets: one only needs

to draw a picture. In higher dimensions, Cubist combinatorics are not so easy, but a topological

perspective can be helpful. Here we associate to any Cubist subset X of Zr a polytopal complex CX of

dimension r−1 inside Rr, whose faces are all cubes. This cubical complex projects homeomorphically

onto a hyperplane, inducing a tiling of Euclidean (r − 1)-space by rhombohedra.

Let us spell this out it detail. We define a cube in Zr to be a subset of the form

C = x +







∑

j∈S

ajεj , aj = 0, 1







,

where x ∈ Zr and S is a subset of {1, . . . , r}. We say C is a d-cube if S has size d. These cubes

define a polytopal decomposition of Rr in which the d-dimension faces are the convex hulls of the

d-cubes in Zr. For x = (x1, . . . , xr) ∈ Rr, the unique face of smallest dimension containing x is

{y ∈ Rr | bxc ≤ y ≤ dxe}, where bxc = (bx1c, . . . , bxrc) and dxe = (dx1e, . . . , dxre).

Fix a Cubist subset X of Zr.

Definition 5. We define CX to be the smallest subcomplex of Rr containing X . Equivalently CX is

the subcomplex consisting of all faces which are convex hulls of cubes contained in X .

For all x ∈ Rr, we have x ∈ CX if and only if bxc ∈ X and dxe ∈ X , i.e., if and only if dxe ∈ X−

and bxc[1] /∈ X−. We define CX− much as we did CX : as the smallest subcomplex of Zr containing

X−. We note that if x is in the ideal of Rr generated by X−, then dxe is as well. It follows that this

ideal is equal to CX− .

Let L be an affine line in Rr parallel to the vector ε1 + . . . + εr. Because X− is a nonempty proper

subset of Zr, the intersection of L with CX− is a half-line: there exists xL ∈ L such that for all y ∈ L,

y ∈ CX− if and only if y ≤ xL. Clearly, xL is on the boundary of CX− . Conversely any point on the

boundary is of the form xL for some L. Indeed, if x ∈ CX− and x 6= xL, where L is the affine line

parallel to ε1 + . . . + εr containing x, then {y ∈ Rr | y < xL} is a neighborhood of x contained in CX− .

We claim that the boundary of CX− is CX . Suppose that x ∈ CX is not on the boundary of CX− .

By the discussion above, x[ε] ∈ CX− for some ε > 0. Then bxc ∈ X and bxc[1] ≤ dx[ε]e ∈ X−,

contradicting the assumption that X is Cubist. On the other hand if x is on the boundary of CX− ,

then dxe ∈ X− and bxc[1] /∈ X−, the latter because x[ε] < bxc[1] for some ε > 0.
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Proposition 6. Let Rr
0 be the hyperplane {(x1, . . . , xr)|

∑

xi = 0} of Rr. Let π be the orthogonal

projection of Rr onto Rr
0. Then the restriction of π to CX is a homeomorphism onto Rr

0.

Proof. In the discussion above we proved that CX is the boundary of CX− and thus meets each fiber

of π in exactly one point. So the restriction of π to CX is a continuous bijection. In fact it is a

homeomorphism, since the restriction to any cell of CX is a homeomorphism onto a closed subset of

Rr
0. ¤

The homeomorphism between CX and Rr
0 induces a rhombotopal decomposition of Rr

0, which Linde,

Moore and Nordahl call ‘a configuration of the (r − 1)-dimensional tiling’ [17, §2]. When r = 3 we

obtain the rhombus tilings in R2 considered in § 1.2.

From Proposition 6 we deduce some useful properties of Cubist subsets.

Definition 7. A subset S of Zr is connected, if for any x, y ∈ S, there exists a sequence x =

x0, x1, . . . , xl = y, such that xm ∈ S and for each m ≥ 1, we have xm+1 = xm ± εj, for some

n = n(m).

Let S be a connected subset of Zr. For x, y ∈ S, let dS(x, y) be the smallest number l for which

there exists a sequence x = x0, x1, . . . , xl = y, such that xm ∈ S and for each m ≥ 1, we have

xm+1 = xm ± εn, for some n = n(m).

We write d(x, y) = dZr(x, y).

Corollary 8. Let X be a Cubist subset of Zr. Then

(1) X is a connected subset of Zr, such that Zr = qZX [m].

(2) No r-cube is contained in X .

(3) For any x ∈ X the intersection of the (r − 1)-cubes in X containing x is {x}.

Given a polytopal complex C which is everywhere locally homeomorphic to Rw, for some w, one can

form its dual complex C′. The dual C′ is a polytopal complex homeomorphic to C, whose d-dimensional

faces are in bijection with the (w − d)-dimensional faces of C. The poset of faces of C′ is opposite to

the poset of faces of C.

Definition 9. Let x be an element of a cubist subset X of Zr. We define Px to be the face of C′
X

which corresponds to the vertex x ∈ CX .

Thus, Px is an r − 1-dimensional polytope, which describes the configuration of X about x.

In case r = 3, the polytope Px can be a triangle, a square, a pentagon, or a hexagon. For general

r, the number of d2-dimensional faces containing any given d1-dimensional face of Px is
(

r−1−d1

d2−d1

)

,

whenever d1 ≤ d2.

2.3. Vertex-facet bijection. While we have defined d-cubes in Zr for all d, Proposition 6 shows that

(r − 1)-cubes are particularly relevant. We call them facets. Let F be the set of facets in Zr and FX

the set of facets contained in a Cubist subset X . Any F ∈ F can be written as

F = x + Fi,

where

Fi =







∑

j<i

ajεj −
∑

j>i

ajεj , aj = 0, 1







,
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for a unique choice of x ∈ Zr and i ∈ {1, . . . , r}.

Proposition 10. For each x ∈ X , there is a unique i such that x + Fi ⊆ X . We have

i = max{j | x + ε1 + . . . + εj−1 ∈ X},

and putting λx = x + Fi, we obtain a bijection

λ = λX : X −→ FX .

Proof. Let i = max{j | x + ε1 + . . . + εj−1 ∈ X}. Then x + Fi ⊆ X . Indeed if y ∈ x + Fi, then

y ≤ x + ε1 + . . . + εi−1 ∈ X− and y[1] ≥ x + ε1 + . . . + εi /∈ X−. On the other hand, if j > i (resp.

j < i) then x + ε1 + . . . + εi (resp. x − εi − . . . − εr) is in x + Fj but not in X . Once the map λ is

defined it is clearly a bijection. ¤

Definition 11. For x ∈ X , let µx be the cone opposite x. Thus, if λx = x + Fi, then µx = x + Ci,

where Ci = Zi−1
≤0 × Z × Zr−i

≥0 .

2.4. Basic examples. Let 1 ≤ j ≤ r. Then the lattice Hj = {(x1, . . . , xn) | xj = 0} is a Cubist

subset of Zr. The corresponding tiling of Rr
0 is a regular tiling composed of translates of a fixed

(r − 1)-dimensional rhombohedron. A Cubist subset X ⊂ Zr may look locally like one of these ‘flat’

Cubist subsets Hj .

Definition 12. Let X ⊂ Zr be Cubist. The subset Xflat of flat elements is defined to be the subset

of elements x ∈ X for which there exists i = i(x) such that x + εi, x − εi /∈ X . The subset Xcrooked of

crooked elements is the complement X\Xflat.

Lemma 13. Let X ⊂ Zr be a Cubist subset.

1. If x ∈ X is crooked, then for all j, either x + εj ∈ X , or x − εj ∈ X .

2. If x ∈ X is flat, then for all j 6= i(x), we have x + εj , x − εj ∈ X . ¤

Proof. We proceed by induction on r. The lemma is obvious for small r. Suppose the lemma holds in

dimensions < r, and X is a cubist subset of Zr. We may assume that x = 0. If x ∈ X0, then x−εr ∈ X ,

and the statement of the lemma holds by the inductive hypothesis. Similarly, if x ∈ X1 − εr, then

x+ εr ∈ X , and the statement of the lemma holds by the inductive hypothesis. Otherwise, x± εr /∈ X ,

in which case x[−1], x[1] /∈ X . Therefore, x +
∑

j<r εj , x −
∑

j<r εj ∈ X , and x ± εj ∈ X , for

1 ≤ j ≤ r − 1. ¤

Another example is the ‘corner configuration’.

Definition 14. The Corner configuration is the Cubist subset

XCC = Zr
≤0\Z

r
≤0[−1]

=
{

(x1, . . . , xn) ∈ Zr
≤0 | xi = 0 for some i

}

of Zr.

Lemma 15. Any Cubist subset X can be approximated in an arbitrarily large finite region, by removing

a finite number of r-cubes from the Corner configuration.



10 JOSEPH CHUANG AND WILL TURNER

Precisely, given x ∈ X , and N ≥ 0, there exists z ∈ Zr, and a Cubist set X (x, N) ⊂ Zr, such that

X (x, N)− is obtained from (z + XCC)− by removing a finite number of elements, and

y ∈ X ⇔ y ∈ X (x, N),

for all y ∈ Zr such that d(y, x) ≤ N .

Proof. Let X (x, N)− be the ideal of (Zr,≤) generated by

(X ∩ (x + [−N, N ]r)) ∪ {x[N ] − 2Nεi | i = 1, . . . , r}.

Let z = x[N ]. The statement of the lemma is satisfied for this pair (z,X (x, N)−). ¤

3. Some algebraic preliminaries

Let k be a field. We shall be working with associative k-algebras A graded over the integers. So

A = ⊕i∈ZAi and AiAj ⊂ Ai+j . While not assuming the existence of a unit, we require A to be equipped

with a set of mutually orthogonal idempotents {es | s ∈ S} ⊂ A0 such that A = ⊕s,s′∈SesAes′ . It will

be useful to allow some of the idempotents to be zero. Unless stated otherwise, all A-modules M are

assumed to be graded left modules, so that M = ⊕i∈ZMi and AiMj ⊂ Mi+j , and to be quasi-unital,

i.e., M = ⊕s∈SesM . Given n ∈ Z, we let M〈n〉 be the A-module obtained by shifting the grading by

n, so that M〈n〉i = M〈n − i〉.

Suppose that Ai = 0 for all but finitely many negative integers i, and that esAies′ is finite dimen-

sional for all s, s′ ∈ S and i ∈ Z. We define the graded Cartan matrix CA(q) to be the matrix with

rows and columns labelled by S and entries

CA(q)s,s′ =
∑

i∈Z

(dim esAies′) qi

in the ring of Laurent power series in an indeterminate q. If es = 0 then the entries in the row

and column labelled by s are zero. So we will often regard CA(q) as an R × R matrix, where

R = {s ∈ S | es 6= 0}.

Now suppose that A is positively graded, i.e. Ai = 0 for i < 0, and that {es | s ∈ R} is a basis for

A0. Let us also impose the finiteness condition dim esAi < ∞ for all s ∈ R and i ∈ Z. Let A-Mod

be the category of all graded A-modules, where the space of morphisms between graded modules M

and N , which we denote HomA(M, N), consists of A-module homomophisms preserving degree. We

denote by A-mod the full subcategory consisting of modules M such that dim esMi < ∞ for all s ∈ R

and i ∈ Z, and that Mi = 0 for i << 0.

Then Aes is a projective A-module (=projective indecomposable object in A-mod) for each s ∈ R,

and every projective indecomposable A-module is isomorphic to Aes〈n〉, for a unique s ∈ R and n ∈ Z.

Similarly, every simple A-module is isomorphic to LA(s)〈n〉 for a unique s ∈ R and n ∈ Z, where

LA(s) = Aes/A>0es. The category A-mod contains enough projective objects.

Fix a partial order ¹ on R. For each s ∈ R, the standard module ∆A(s) = Aes
P

tÂs AetAes
is the

largest quotient of Aes which does not contain L(t)〈n〉 as a composition factor for t Â s. We define

the graded decomposition matrix DA(q) of A to be the R×R matrix with entries

DA(q)st =
∑

i∈Z

(dim et∆A(s)i) qi.

If A has an antiautomorphism fixing each es, then DA(q)=DAop(q), where Aop is the opposite algebra.
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We say that A is a graded quasi-hereditary algebra, or that A-mod is a graded highest weight

category, if for all s ∈ R,

• DA(q)st = 0 for all t ± s,

• ker(Aes ³ ∆A(s)) has a filtration in which each section is isomorphic to ∆A(t)〈n〉 for some

t Â s and n ∈ Z.

This differs from the original notion of quasiheredity introduced by Cline, Parshall and Scott in

that A is allowed to be infinite dimensional; in particular A may have infinite global dimension. We

are also using a slightly different notion of (graded) highest weight category than that introduced by

Cline, Parshall and Scott. We filter projective objects by standard modules, rather than injectives by

costandards. Furthermore, we do not assume the finite interval property holds with respect to our

partial order ¹.

If A-mod is a highest weight category, then according to [8, Theorem 3.1.11] we have Brauer-

Humphreys reciprocity:

CA(q) = DA(q)T DAop(q).

We will need a version of Rickard’s Morita theorem for derived categories [24] adapted to our graded

algebras (see, e.g., [10, §2]). Let us assume that Aes is finite dimensional for each s ∈ S. Let

{Γt | t ∈ T } be a collection of bounded complexes of projective A-modules. Denote by Db(A-mod) the

derived category of bounded complexes in A-mod. Our formulation is rather clumsy; for the general

theory it is better to think in terms of functor categories.

Theorem 16 (Rickard). Suppose that

• for t, t′ ∈ T and m, n ∈ Z with m 6= 0,

HomDb(A-mod)(Γt〈n〉, Γt′ [m]) = 0.

• The triangulated subcategory of Db(A-mod) generated by all summands of Γt〈n〉, t ∈ T , n ∈ Z,

contains Aes for all s ∈ S.

Then, the graded endomorphism ring E = ⊕n∈ZEn with components

En = ⊕t,t′∈X HomDb(A-mod)(Γt〈n〉, Γt′),

comes equipped with idempotents et = idΓt ∈ E0, and there exists an equivalence

F : Db(Eop-mod)
∼
→ Db(A-mod)

such that F (Eopet) ∼= Γt for all t ∈ T , and F (X〈n〉) ∼= F (X)〈n〉 for X ∈ Db(A-mod) and n ∈ Z.

4. Definitions

Let r be a natural number. In this section, we define algebras Ur, and Vr by quiver and relations.

The Cubist algebras are defined to be quotients, or subalgebras of these.

Motivation. Before stating the generators and relations which define Ur and Vr, we explore their

conception.

Indeed, let J be a 2r-dimensional orthogonal vector space over an algebraically closed field k̄, with

non-degenerate bilinear form 〈, 〉.
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Let H be the Heisenberg Lie superalgebra of dimension 2r+1 associated to J , with H0 = k̄, H1 = J ,

and bracket

[(λ, x), (µ, y)] = (〈x, y〉, 0).

Let T be a maximal torus in SO(J). Then T acts on H as automorphisms, via (λ, x)t = (λ, xt).

In the sequel, we define an algebra Ur over an arbitrary field k. Over k̄, this algebra has the same

finite-dimensional graded complex representations as the crossed product U(H) o T of the universal

enveloping algebra of H with T .

The Koszul dual of this crossed product is S(J∗)/δ o T , where S(J∗) is the symmetric algebra on

J , and δ is the quadratic form on J , identified as an element of S2(J∗) ∼= S2(J). This Koszul dual

algebra has the same finite-dimensional graded representations as the algebra Vr.

Definition 17. We define a graded associative algebra Ur by quiver and relations, over any field k.

The quiver Q has vertices

{ex | x ∈ Zr},

and arrows

{ax,i, bx,i | x ∈ Zr, 1 ≤ i ≤ r}.

The arrow ax,i is directed from ex to ex+εi
, and bx,i is directed from ex to ex−εi

. Ur is defined to be

the path algebra kQ of Q, modulo square relations,

ax,iax+εi,i = 0,

bx,ibx−εi,i = 0,
(U0)

for x ∈ Zr, 1 ≤ i ≤ r, as well as supercommutation relations,

ax,iax+εi,j + ax,jax+εj ,i = 0,

bx,ibx−εi,j + bx,jbx−εj ,i = 0,

ax,ibx+εi,j + bx,jax−εj ,i = 0,

(U1)

for x ∈ Zr, 1 ≤ i, j ≤ r, i 6= j, and Heisenberg relations,

(U2) bx,iax−εi,i + ax,ibx+εi,i = bx,i+1ax−εi+1,i+1 + ax,i+1bx+εi+1,i+1,

for x ∈ Zr, 1 ≤ i < r.

Remark 18. Applying the automorphism τ of kQ defined by τ(ex) = ex, τ(ax,i) = (−1)
Pi

ζ=1 xζax,i

and τ(bx,i) = (−1)
Pi−1

ζ=1 xζbx,i, we obtain an alternative presentation for Ur, in which the relations (U1)

and (U2) are replaced by

ax,iax+εi,j − ax,jax+εj ,i = 0,

bx,ibx−εi,j − bx,jbx−εj ,i = 0,

ax,ibx+εi,j − bx,jax−εj ,i = 0,

(U1’)

for x ∈ Zr, 1 ≤ i, j ≤ r, i 6= j, and

(U2’) (−1)xi (bx,iax−εi,i − ax,ibx+εi,i) = (−1)xi+1
(

bx,i+1ax−εi+1,i+1 − ax,i+1bx+εi+1,i+1

)

,

for x ∈ Zr, 1 ≤ i < r. This presentation coincides with that used by Peach for his rhombal algebras

(the r = 3 case).
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Remark 19. Let Rr be the algebra generated by indeterminates ai, bi, i = 1, . . . , r, modulo relations

a2
i = b2

i = 0,

aiaj + ajai = bibj + bjbi = 0,

aibj + bjai = 0, i 6= j,

aibi + biai = ajbj + bjaj , i 6= j,

for i, j = 1, . . . , r. The algebra Rr acts on the right of Ur, via

u ◦ ai =
∑

x∈Zr

uax,i,

u ◦ bi =
∑

x∈Zr

ubx,i,

for u ∈ Ur. Similarly, Rr acts on the left of Ur. Let c be the element a1b1 + b1a1 of Ur. By the

supercommutation relations, the left and right actions of c commute: c ◦ u = u ◦ c, for u ∈ Ur.

Therefore, by a combination of the left and right actions, Ur attains the structure of an Rr ⊗k[c] R
op
r -

module.

Definition 20. We define Vr to be the quadratic dual of Ur. It is the path algebra of the quiver Q′

with vertices

{fx | x ∈ Zr},

and arrows,

{αx,i, βx,i | x ∈ Zr, 1 ≤ i ≤ r},

modulo commutation relations,

αx,iαx+εi,j − αx,jαx+εj ,i = 0,

βx,iβx−εi,j − βx,jβx−εj ,i = 0,

x ∈ Zr, 1 ≤ j < i ≤ r,

αx,iβx+εi,j − βx,jαx−εj ,i = 0,

for x ∈ Zr, 1 ≤ j ≤ i ≤ r, and the Milnor relation,
r

∑

i=1

βx,iαx−εi,i = 0,

for x ∈ Zr.

Remark 21. Let αi, βi (i = 1, . . . , r) be indeterminates. Let γi = αiβi. Let

Λr = k[α1, . . . , αr, β1, . . . , βr]/(
r

∑

i=1

γi).

The algebra Λr acts on the right of Vr, via

v ◦ αi =
∑

x∈Zr

vαx,i,

v ◦ βi =
∑

x∈Zr

vβx,i,

for v ∈ Vr. Similarly, Λr acts on the left of Vr. Let Γr be the subalgebra k[γ1, . . . , γr]/(
∑

γi) of

Λr. By the commutation relations, the right and left actions of Γr commute: γi ◦ v = v ◦ γi for
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v ∈ Vr. Therefore, by a combination of the left and right actions, Vr attains the structure of a

Λr ⊗Γr Λop
r -module.

Remark 22. Let x, y ∈ Zr. Any two paths in Q′ of length d(x, y) represent the same element of Vr,

by the commutation relations. We define pxy to be the element of Vr representing a path in Q′ of

length d(x, y).

Lemma 23. Let 1 ≤ i ≤ r. The set

Bi = {pxy ◦ m | x, y ∈ Zr, m is a monomial in γ1, . . . , γi−1, γi+1, . . . , γr},

is a basis for Vr.

Proof. We first demonstrate that Bi is a spanning set of Vr.

The commutation relations for Vr reduce any path from x to y in Q′ to the form pxy ◦qy, where qy is

a monomial in γ1, . . . , γr. The Milnor relation reduces qy to a polynomial in γ1, . . . , γi−1, γi+1, . . . , γr.

We now show that Bi is linearly independent.

Let Wr be the vector space with basis

{(x, y, m) | x, y ∈ Zr, m is a monomial in ζ1, . . . , ζi−1, ζi+1, . . . , ζr}.

We define an action of Vr on Wr, via

fx ◦ (y, z, m) = δxy(y, z, m),

αx,j ◦ (y, z, m) =



















(x, z, m), if x + εj = y, d(x, z) = d(y, z) + 1,

(x, z, γjm), if x + εj = y, d(x, z) = d(y, z) − 1, j 6= i,

−
∑

l 6=i(x, z, γlm), if x + εj = y, d(x, z) = d(y, z) − 1, j = i,

0, otherwise.

βx,j ◦ (y, z, m) =



















(x, z, m), if x − εj = y, d(x, z) = d(y, z) + 1,

(x, z, γjm), if x − εj = y, d(x, z) = d(y, z) − 1, j 6= i,

−
∑

l 6=i(x, z, γlm), if x + εj = y, d(x, z) = d(y, z) − 1, j = i,

0, otherwise.

This does in fact define an action. Indeed, we defined this action precisely in such a way that the

defining relations for Vr are forced to hold.

Now observe that the Vr-module Wr is generated by {(x, x, 1), x ∈ Zr}. In fact, the image of Bi

under the map

Vr → Wr : v 7→
∑

x∈Zr

v ◦ (x, x, 1)

is the defining basis for Wr. Therefore, Bi is linearly independent. ¤

Corollary 24. CVr(q)xy = (1 − q2)1−rqd(x,y), for x, y ∈ Zr. ¤

Lemma 25. The actions of Λr on Vr are free.
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Proof. We look at the right action. For x ∈ Zr, the map

Λr → fxVr,

v 7→ fx ◦ v,

is clearly surjective, and degree preserving. To see it is an isomorphism, we observe that the Hilbert

polynomials of the two sides agree. Indeed, by corollary 24, summing over all y, we see the Hilbert

series of the right hand side is

(1 − q2)1−r(1 + 2q + 2q2 + . . .)r = (1 − q2)1−r

(

1 + q

1 − q

)r

= (1 − q2)(1 − q)−2r,

which is the Hilbert series of the left hand side. ¤

Let X ⊂ Zr be a Cubist subset. We now define our main objects of study.

Definition 26. The Cubist algebras associated to X are

UX = Ur/
∑

x∈Zr\X

UrexUr

and

VX =
∑

x,y∈X

fxVrfy.

Remark 27. CVX
(q)xy = (1 − q2)1−rqd(x,y), for x, y ∈ X .

Remark 28. The algebras Ur, Vr each have an anti-involution ω, which swaps ax,i and bx+εi,i (respec-

tively αx,i and βx+εi,i). These anti-involutions descend to UX , VX .

Remark 29. When r = 1, the algebras UX and VX are all isomorphic to the field k.

When r = 2, the algebras UX are all isomorphic to the Brauer tree algebra of an infinite line, and

the algebras VX are all isomorphic to the preprojective algebra on an infinite line.



16 JOSEPH CHUANG AND WILL TURNER

Figure 5. Cubist algebras when r = 2.

The commutation relations for the preprojective algebras come from the commutation relations for

V2 at flat elements x ∈ X and the Milnor relations at crooked elements. The commutation relations

for the Brauer tree algebras come from the supercommutation relations for U2 at flat elements x ∈ X

and the Heisenberg relations at crooked elements; the square relations for the Brauer tree algebras

come from the square relations for U2 at flat elements and the supercommutation relations at crooked

elements.

When r = 3, the algebras UX are isomorphic to the rhombal algebras of Peach introduced in § 1.2.

The rhombus tilings are obtained from the Cubist subsets X by projecting the cubical complex CX
onto a hyperplane, as described in § 2.2. The star relations come from the Heisenberg relations for U3,

and the mirror relations from the supercommutation relations. The two rhombuses relations come in

two varieties: straight paths of length two in the rhombus tiling are zero (a consequence of the square

relations), and nonstraight paths of lenth two not bordering a single rhombus are zero (a consequence

of the supercommutation relations).

To obtain the original presentation of the rhombal algebras given by Peach, one has to use a different

presentation of U3. This alternative choice of signs is described in remark 18.

5. Highest weight categories

In this section and the following one, we demonstrate that UX -mod, VX -mod are graded highest

weight categories, in the sense of Cline, Parshall and Scott. As throughout the rest of the paper, we

frequently forget the word graded, and use the term ”highest weight category” as an abbreviation for

“graded highest weight category”.

Let X ⊂ Zr be a Cubist subset. The bijection λ between X and its set of facets FX established in

Proposition 10 gives rise to a partial order on X which usually does not coincide with the restriction

of the partial order on Zr that we have been employing.
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Proposition 30. X possesses a partial order º, generated by the relations x º y, for y ∈ λx.

Proof. We proceed by induction on r.

When r = 1, the set X has only one element, and the lemma is trivial.

Now assume r > 1. Let

x = x0 Â x1 Â . . . Â xl = x

be a loop in X . To prove the lemma, we show any such loop has length zero. Without loss of generality,

we may assume that x = 0.

Let us first observe that the loop must lie in the hyperplane Zr−1 × 0 ⊂ Zr. This is because by

definition xi+1 ∈ λxi + Fj for some j, which implies that the last coordinate of xi+1 is less than or

equal to the last coordinate of xi Let us write Z0 = X ∩ (Zr−1 × 0). We have proved the loop lies in

Z0.

Secondly, we prove that the loop must lie either in the subset X0 of Z0, or else in Z0\X0 where

X0 = {x ∈ Z0 | x − εr ∈ X}

= {x ∈ Z0 | λx = x + Fj , j = 1, .., r − 1}.

Indeed, the loop cannot pass from X0 onto Z0\X0, since if λ(xi) = xi + Fj , and j = 1, .., r − 1 then

xi+1 = xi + h, where h ∈ Fj ∩ (Zr−1 × 0), and so h − εr ∈ Fj , x
i + h − εr ∈ X , which implies that

xi+1 ∈ X0.

The relation º on Z0\X0 is precisely the restriction of the relation ≥ on Zr−1 × 0, so there are no

loops in Z0\X0.

Therefore, the loop must lie in X0. By corollary 3, X0 is a Cubist subset of Zr−1. Therefore, by the

inductive hypothesis, our loop has length zero. ¤

Remark 31. Permuting indices 1 ≤ i ≤ r with an element of the symmetric group Σr, we obtain an

alternative partial order on X . Indeed, conjugating º by elements of the symmetric group, we obtain

r! different partial orders on X . The theorems of this paper hold for any such partial order.

Example 32. (1) Consider the flat Cubist subset Hj = {x = (x1, . . . , xn) | xj = 0} in Zr. For

each x ∈ Hj we have λx = x + Fj . So for all x, y ∈ Hj . x º y if and only if xi ≤ yi for i < j

and xi ≥ yi for i > j.

(2) The partial order on the corner configuration XCC is more subtle. Given x ∈ XCC , we have

λx = x + Fm(x) where m(x) = min {i | xi = 0}. We claim that x º y in XCC if and only if the

following hold:

• m(x) ≥ m(y),

• xi ≤ yi, if 1 ≤ i ≤ m(y),

• xi ≥ yi, if m(x) ≤ i ≤ r.

These conditions define a transitive relation on XCC which clearly holds when y ∈ λx and

therefore when x º y. Conversely suppose that the conditions are satisfied for some x, y ∈ XCC .

Then x º x(1) º . . . º x(m(x)−m(y)) º y, where x(j) ∈ XCC is defined by

x
(j)
i =

{

0 if m(x) − j ≤ i ≤ m(x),

xi otherwise.
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Our proofs of the strong homological properties of the Cubist algebras, rely on the following com-

binatorial observation.

Proposition 33. For x, y ∈ X , the intersection λx ∩ µy is a d-cube, for some dimension d.

If x 6= y, and λx∩µy 6= ∅, then there exist some k ∈ {1, . . . , r}, σ ∈ {±1} such that x+σεk ∈ λx∩µy,

and d(x + σεk, y) = d(x, y) − 1.

Proof. The intersection of x+Fi with y+Cj is certainly a d-cube for some d. Indeed, if it is nonempty,

this subset of the (r − 1)-cube x + Fi is carved out by a number of inequalities on coordinates.

The second statement of the proposition is trivial when r = 1. Let us assume that the proposition

is true for all Cubist subsets of Zr−1. Let X be a Cubist subset of Zr. We prove that the proposition

is true for X , and thereby for any Cubist subset, by induction. We assume that λx ∩ µy 6= ∅ for

some x 6= y, and demonstrate the existence of some coordinate k so that the proposition is satisfied.

Without loss of generality, y = 0.

Case 1. λy = Fr, λx = x + Fr. Therefore, µy = Zr−1
≤0 × Z ∩ X . Then x ∈ µy, and x + εi ∈ µy, for

some i < r, and the proposition holds for k = i.

Case 2. λy = Fr, λx = x + Fi, for some i < r. Again, µy = (Zr−1
≤0 × Z) ∩ X . We claim that the

intersection of µy with X0 is empty. Indeed, suppose for a contradiction that this set is non-empty,

and there exists z ∈ X0 ∩ µy ⊂ (Zr−1
≤0 × 0) ∩ X . Then z − εr ∈ X . Since z ≤ 0, we have z − εr ≤ −εr.

Therefore −εr ∈ X+, and ε1 + . . . + εr−1 ∈ X+[1]. Thus ε1 + . . . + εr−1 /∈ X . However, λy = Fr by

assumption, so ε1 + . . . + εr−1 ∈ X , realising our contradiction.

We may now observe that the existence of a nontrivial intersection between µy and λx implies the

rth coordinate of x must be strictly greater than zero, and the proposition holds for k = r.

Case 3. λy = Fi for some i < r, λx = x + Fr. Suppose there is a non trivial intersection λx ∩ µy.

Then µy = Zi−1
≤0 × Z × Zr−i

≥0 . If the jth coordinate of x is strictly less than zero for some j < i, then

the proposition holds for k = j.

If the 1st, . . . , i − 1th coordinates of x are equal to zero, let us observe the ith coordinate of x is

strictly less than zero. Indeed, suppose for a contradiction that the 1st, . . . , i − 1th coordinates of x

are equal to zero, and the ith coordinate of x is greater than, or equal to zero. Let z ∈ λx ∩ µy. We

may assume that z ∈ x + (0i × {0, 1}r−i). Thus, z ∈ Zr
≥0 ∩ X , and z + ε1 + . . . + εi ∈ X . Thus,

ε1 + . . . + εi ∈ X−, so −εi+1 − . . . − εr ∈ X−[1], and −εi+1 − . . . − εr /∈ X . However, λy = Fi, and so

−εi+1 − . . . − εr ∈ X , giving a contradiction.

When the 1st, . . . , i − 1th coordinates of x are equal to zero, we may now observe the truth of the

proposition for k = i.

Case 4. λy = Fi, λx = x + Fj for some i, j < r. Then either the rth coordinate of x is strictly

greater than zero, in which case the proposition holds for k = r, or else x ∈ X0, in which case the

induction hypothesis gives the result. ¤

Corollary 34. If x 6= y ∈ X , and λx∩µy is non-empty, then there exists a (d− 1)-cube C, an integer

k ∈ {1, . . . , r}, and σ ∈ {±1}, such that

λx ∩ µy = C + {0, σεk},
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and such that for all c ∈ C,

d(x, c + σεk) = d(x, c) + 1,

d(c + σεk, y) = d(c, y) − 1.

Proof. By proposition 33, there exists a (r−2)-cube C′ such that λx = C′ +{0, σεk}, and for all c ∈ C′,

we have d(x + σεk, y) = d(x, y)− 1, d(y, c + σεk) = d(y, c)− 1, and c ∈ µy exactly when c + σεk ∈ µy.

The corollary follows upon putting C = C′ ∩ µy. ¤

Let D̃VX
(q) be the X × X matrix, whose xy entry is qd(x,y), if y ∈ µx, and zero otherwise.

Let D̃UX
(q) be the X × X matrix, whose xy entry is qd(x,y), if y ∈ λx, and zero otherwise.

(We shall eventually show that these are equal to the decomposition matrices DVX
(q) and DUX

(q).)

Lemma 35.

D̃UX
(q)D̃VX

(−q)T = 1.

Proof. For x, y ∈ X , the xy entry is equal to
∑

z∈λx∩µy

qd(x,z)(−q)d(z,y).

If λx ∩ µy = ∅, then this sum is equal to zero.

If x 6= y, and λx ∩ µy is non-empty, the previous corollary shows that this sum is equal to
∑

c∈C

(−1)d(c+σεk,y)
(

qd(x,c+σεk)+d(c+σεk,y) − qd(x,c)+d(c,y)
)

= 0.

If x = y, then λx ∩ µy = {x}, and the sum is equal to 1. ¤

Corollary 36. Let x, y ∈ X . If x ∈ µy, then x º y.

Proof. The matrix D̃UX
(q) is lower unitriangular with respect to º. Therefore its inverse is also lower

unitriangular, with respect to ºop. ¤

Let 1 ≤ i ≤ r. Consider the subalgebra Pi of Vr generated by elements

{fx, βx,1, . . . , βx,i−1, αx,i+1, . . . , αx,r | x ∈ Zr}.

Let L(x) be the simple Pi-module corresponding to x ∈ Zr. Let

∆V,i(x) = Vr ⊗Pi
L(x),

a Vr-module. Let Ωi = k[β1, . . . , βi−1, αi+1, . . . , αr] a polynomial subalgebra of Λr in r − 1 variables.

Lemma 37. The algebra Pi is free over Ωi with basis {fx | x ∈ Zr}. The algebra Vr is free over Pi

with a basis {b ◦ 1 | b ∈ Bi}, where

Bi = {monomials in α1, . . . , αi, βi+1, . . . , βr}

∪ {monomials in α1, . . . , αi−1, βi, . . . , βr} .
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Proof. By Lemma 25, the action of Λr on Vr is free, with basis {fx | x ∈ Zr}. The commutative

algebra Ωi acts freely on Λr, with basis Bi. Hence

Vr =
⊕

x∈Zr

Λr ◦ fx =
⊕

x∈Zr

⊕

b∈Bi

bΩi ◦ fx =
⊕

b∈Bi

b ◦ Pi,

the action of Ωi on Pi is free with basis {fx} and the action of Pi on Vr is free with basis {b ◦ 1 | b ∈

Bi}. ¤

Let X ⊂ Zr be a Cubist subset. Given x ∈ X , we have λx = x + Fix for some ix.

Corollary 38. Let x ∈ X , 1 ≤ i ≤ r.

[∆V,i(x) : L(y)]q =
∑

z∈x+Ci

qd(x,z),

[fX∆V,ix(x) : L(y)]q = D̃VX
(q)xy.¤

Lemma 39. Let x ∈ X . Then ∆VX
(x), the standard VX -module corresponding to X with respect to

ºop, possesses a linear projective resolution:

. . . →
⊕

y∈λx
d(x,y)=2

VX fy〈2〉 →
⊕

y∈λx
d(x,y)=1

VX fy〈1〉 → VX fx → ∆VX
(x).

Furthermore, ∆VX
(x) ∼= fX∆V,ix(x), and consequently DVX

(q) = D̃VX
(q).

Proof. We first prove the existence of a linear projective resolution for ∆VX
(x), before deducing the

standard property.

In fact, we first reveal a linear projective resolution of

∆V,i = Vr ⊗Ωi
k,

for 1 ≤ i ≤ r, where k is the unique graded simple Ωi-module. Note that

∆V,i
∼= Vr ⊗Pi

(

⊕

x∈Zr

fxΩi

)

⊗Ωi
k ∼= Vr ⊗Pi

⊕

x∈Zr

L(x) ∼=
⊕

x∈Zr

∆V,i(x)

as Vr-modules, and therefore ∆V,i(x) possesses a linear projective resolution. In case i = ix, applying

the exact functor ⊕x∈XHom(Vrfx,−), we obtain a linear projective resolution of ∆VX
(x).

How to obtain the linear projective resolution of ∆V,i ? Recall that Ωi is a Koszul algebra, whose

Koszul complex

k[β1, . . . , βi−1, αi+1, . . . , αr] ⊗k

∨

(β1, . . . , βi−1, αi+1, . . . , αr) ³ k

defines a linear projective resolution of Ωi
k. Here, we write

∨

(W ) for the vector space dual of
∧

(W ∗).

Note that
∧

(W ∗) is Koszul dual to S(W ) ∼= k[W ∗].

Recall that Pi acts freely on Vr. Furthermore, Ωi acts freely on Pi. Therefore, tensoring the Koszul

complex for Ωi with Vr over Ωi, we obtain a linear projective resolution of Vr-modules,

Vr

⊗

Ωi

k[β1, . . . , βi−1, αi+1, . . . , αr] ⊗k

∨

(β1, . . . , βi−1, αi+1, . . . , αr)

³ Vr

⊗

Ωi

k = ∆V,i.



CUBIST ALGEBRAS 21

Let x ∈ X . Taking a direct summand of this complex, in case i = ix, we obtain a linear projective

resolution of ∆V,ix(x), whose term in differential degree d is
⊕

h∈Fi,|h|=d

Vrfx+h ⊗ kξh,

where ξh = ξ1
h ∨ . . . ∨ ξr

h, and

ξj
h =











βj if the coefficient of εj in h is 1

1 if the coefficient of εj in l is 0

αj if the coefficient of εj in h is − 1

for h ∈ Fix . Note that all the projective indecomposable terms in this complex are indexed by

elements of X . Therefore, applying the exact functor ⊕x∈XHom(Vrfx,−), we obtain a projective

linear resolution of the VX -module fX∆V,ix(x), as described in the statement of the lemma.

Looking at the first two terms in our resolution, and observing that x+ εj ≺ x for j = 1, . . . , ix − 1,

and x− εj ≺ x for j = ix +1, . . . , r, we perceive that fX∆V,ix(x) surjects onto the standard module at

x. However, we also know that y º x, for y ∈ µx, and so every composition factor L(y) of fX∆V,ix(x)

satisfies y º x. Therefore, fX∆V,ix(x) is a standard module ∆VCX
(x) for VX . ¤

Theorem 40. VX -mod is a highest weight category, with respect to ºop.

Proof. Thanks to the linear resolution of standard modules, we have the formula

D̃UX
(−q)CVX

(q) = DVX
(q).

Together with proposition 35 and the identification DVX
(q) = D̃VX

(q), this implies that

CVX
(q) = DVX

(q)T DVX
(q).

Now that this numerical manifestation of the highest weight property is evident, we may appeal

to a standard argument due to Dlab [9]. Let A = VX . The existence of the (graded) highest weight

structure is equivalent to the surjective multiplication map

Afx
∑

yÂx AfyAfx
⊗k

fxA
∑

yÂx fxAfyA
−→

∑

yºx AfyA
∑

yÂx AfyA

being an isomorphism, for all x ∈ X . Keeping in mind that we have an anitautomorphism ω of A fixing

each fx, we see that this is equivalent to the sum over x ∈ X of the Hilbert series of fz∆(x)⊗k fz′∆(x)

being equal to the sum over x of the Hilbert series of fz

P

yºx AfyA
P

yÂx AfyAfz′ , for all z, z′ ∈ X . This is precisely

the formula,

CVX
(q)zz′ =

(

DVX
(q)T DVX

(q)
)

zz′
.

¤

Remark 41. We are using a slightly different notion of highest weight category than that introduced

by Cline, Parshall and Scott. We filter projective objects by standard modules, rather than injectives

by costandards. Furthermore, we do not assume the finite interval property holds with respect to our

partial order ¹. In other words, we do not assume that {z | x ¹ z ¹ y} to be finite, for all x, y ∈ X .

The following theorem can be proved by the dual of an argument given by Cline, Parshall and Scott

([8], Theorem 3.9(a)).
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Theorem 42. Suppose that X possesses the finite interval property. Let T1 ⊂ X be an ideal relative

to ¹. Let VT1 be the quotient of VX by the ideal generated by fx, x ∈ X\T1.

There is a full embedding of derived categories,

Db(VT1-mod) ↪→ Db(VX -mod).

We conclude this section by observing the finite interval property does hold for those Cubist sets

which are obtained from the corner configuration XCC by removing finitely many boxes.

Lemma 43. Suppose that X− is obtained from the corner configuration X−
CC by removing finitely

many elements. Then set {z ∈ X | x ¹ z ¹ y} is finite for all x, y ∈ X .

Proof. The finite interval property holds for XCC , by example 32(2). ¤

6. Standard Koszulity

Theorem 44. Ur and Vr are Koszul dual.

Proof. Note that Λr is a Koszul algebra, whose Koszul complex

Λr ⊗k (Λ!
r)

∗
³ k,

defines a linear projective resolution of Λrk. (More generally, any commutative complete intersection

with quadratic regular sequence is Koszul, see [12, §3.1].) Tensoring over with Vr over Λr, we obtain

a linear projective resolution,

Vr

⊗

Λr

(

Λr ⊗k (Λ!
r)

∗
)

→ Vr

⊗

Λr

k = V 0
r ,

of the degree zero part of Vr. The Koszul dual of Vr is equal to its quadratic dual, namely Ur. ¤

Let T be a finite truncation of the poset (X ,ºop). Thus T is the intersection of an ideal T1, and

a coideal T2 in X , and T has finitely many elements. Since VX -mod has a highest weight module

category, it has a finite dimensional subquotient VT , which is quasi-hereditary, and whose simple

modules are indexed by T ([8], Theorem 3.9).

Proposition 45. Standard modules for VT have linear projective resolutions. VT is Koszul.

The Koszul dual V !
T of VT is quasi-hereditary, with respect to º. Standard modules for V !

T have

linear projective resolutions.

Proof. Let t ∈ T . Let X (t, N) be a Cubist subset of Zr defined as in Lemma 15. Thus X (t, N) is

identical to X in the region of radius N about t, and is obtained by removing finitely many boxes from

a shift of the Corner configuration. We know by Lemma 43 that X (t, N) satisfies the finite interval

property. Note that for N >> 0, the finite truncation VT is also a finite truncation of VX (t, N).

Replacing X by X (t, N) for some N >> 0, if necessary, we may now assume that X possesses the

finite interval property.

Let ∆(s) be a standard VX -module. By Lemma 39, we have a linear projective resolution,
⊕

t∈λs

VX ft ³ ∆(s),

of ∆(s). The term VX ft rests in homological degree d(s, t).
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We first prove that standard modules for VT1 have linear projective resolutions. Indeed, let L be a

simple VT1-module, and assume s ∈ T1. We have, by Lemma 42,

Ext∗VT1
-mod(L〈j〉, ∆(s)) ∼= Ext∗VX -mod(L〈j〉, ∆(s)).

Therefore, our linear projective resolution of ∆(s) in VX -mod descends to a linear projective resolution

of ∆(s) in VT1-mod.

Let s ∈ T . Let fT =
∑

t∈T ft. A standard module for VT is obtained by applying the functor

HomVT1
(VT1fT ,−) to the standard VT1-module ∆(s). Applying this functor to our resolution of ∆(s),

we obtain a linear resolution of fT ∆(s), as required. The terms in this resolution are projective,

because they are sums of modules fT VT1ft such that t ∈ λs ∩ T1; and therefore t ºop s, and t ∈

T1 ∩ T2 = T .

We have proved that the algebra VT is a ‘Standard Koszul algebra’, in the sense of Ágoston, Dlab,

and Lukács [1]. In other words, VT is a quasi-hereditary algebra, all of whose standard modules have

linear projective resolutions. These authors have proved that such algebras are always Koszul, and

that their Koszul duals are standard Koszul, with respect to the opposite ordering. Therefore VT is

Koszul, and V !
T is standard Koszul with respect to º. ¤

Theorem 46. VX is Koszul.

Proof. Let x ∈ X . Let X (x, N) be a Cubist subset of Zr defined in Lemma 15. Thus X (x, N) is

identical to X in the region of radius N about x, and is obtained by removing finitely many boxes from

a shift of the Corner configuration. We know by Lemma 43 that X (x, N) satisfies the finite interval

property. Consequently there exists a finite subset T (x, N) of X (x, N), which is the intersection of

an ideal and a coideal, and contains the region of radius N about x. The algebra VT (x,N) is therefore

Koszul by the previous theorem. In particular, VT (x,N) is a quadratic algebra, and as this is true for all

x, N , the algebra VX is quadratic. Let K be the Koszul complex associated to the quadratic algebra

VX . Thus, K =
⊕

N≥0 KN is the sum of complexes

KN =
⊕

i+j=N

(VX )i ⊗ (V !
X )∗j .

To prove that VX is Koszul, it suffices to show that fxKN is exact for all x, and all N ≥ 1. This is

true, however, because we can identify fxKN with the corresponding summand of the Koszul complex

of VT (x,N). ¤

Proposition 47. VX is isomorphic to the path algebra of the quiver with vertices

{fx | x ∈ X},

and arrows

{αx,i | x, x + εi ∈ X} ∪ {βx,i | x, x − εi ∈ X},

modulo the ideal generated by quadratic relations,

αx,iαx+εi,j − αx,jαx+εj ,i = 0 (x, x + εi, x + εj , x + εi + εj ∈ X ),

βx,iβx−εi,j − βx,jβx−εj ,i = 0 (x, x − εi, x − εj , x − εi − εj ∈ X ),

αx,iβx+εi,j − βx,jαx−εj ,i = 0 (x, x + εi, x − εj , x + εi − εj ∈ X ),

1 ≤ i, j ≤ r, i 6= j,
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∑

i

ξx,iηx,i = 0 (x ∈ Xcrooked),

where

(ξx,i, ηx,i) =

{

(βx,i, αx−εi
), if x − εi ∈ X

(αx,i, βx+εi,i), if x − εi /∈ X .

Proof. Since VX is Koszul, it is generated in degrees zero and one, modulo the ideal generated by qua-

dratic relations. In degrees zero and one, by definition VX has a basis as described in the proposition.

It remains to check the quadratic relations between these generators.

The commutation relations between generators of VX are visible as the first three families of relations

given in the proposition. The Milnor relation at x is inherited from Vr if x is crooked. However, the

degree two part of fxVX fx has dimension r − 1, and when x is flat, the Milnor relation need not be

invoked to demonstrate that the elements {βx,jαx−εj
, j 6= i(x)} form a basis for this space. ¤

Corollary 48. If x, y ∈ X , then dX (x, y) = dZr(x, y). ¤

The Koszul dual of VX is equal to the quadratic dual V !
X . The quadratic presentation of V !

X is by

the quiver with vertices,

{ex | x ∈ X}

arrows,

{ax,i | x, x + εi ∈ X} ∪ {bx,i | x, x − εi ∈ X},

and relations,

ax,iax+εi,i = 0 (x ∈ X , x + εi ∈ X , x + 2εi ∈ X ),

bx,ibx−εi,i = 0 (x ∈ X , x − εi ∈ X , x − 2εi ∈ X ),

1 ≤ i ≤ r.

ax,iax+εi,j + ax,jax+εj ,i = 0 (x, x + εi + εj ∈ X ),

bx,ibx−εi,j + bx,jbx−εj ,i = 0 (x, x − εi − εj ∈ X ),

ax,ibx+εi,j + bx,jax−εj ,i = 0 (x, x + εi − εj ∈ X ),

1 ≤ i, j ≤ r, i 6= j,

bx,iax−εi,i + ax,ibx+εi,i = bx,i+1ax−εi+1,i+1 + ax,i+1bx+εi+1,i+1 ,

(x ∈ X ), 1 ≤ i < r.

Here, the term ax,iax+εi,j is defined to be zero if x + εi is not an element of X . The same convention

applies to any term in the last four relations.

Lemma 49. V !
X is a locally finite dimensional algebra.

Proof. The relations allow an element of degree 2r to be written as a sum of elements,

c1
σ1 . . . cr

σrd
1
σ1 . . . dr

σr, σ ∈ Σr, {c
i, di} = {a, b}.

The term c1
σ1 . . . cr

σr represents a path of length r across an r-cube. All such paths are equal up to sign,

by the supercommutation relations, and there exists such a path through each vertex of the r-cube.

However, no r-cube is a subset of X , so this term is equal to zero in V !
X . ¤

Because V !
X = Ext∗VX

(V 0
X , V 0

X ) is locally finite dimensional, we have the following fact:
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Corollary 50. VX has finite global dimension. ¤

Corollary 51. There is a recollement of derived categories,

Db(Vr-mod)X
←−
À Db(Vr-mod)

←−
À Db(VX -mod).

Proof. Since VX has finite global dimension, a theorem of Cline, Parshall, and Scott implies that

the map Db(Vr-mod) → Db(VX -mod) extends to a recollement of derived categories ([8], Theorem

2.3). Here, Db(Vr-mod)X is the category of complexes of modules, whose homology is given by simple

modules outside X . ¤

Theorem 52. We have an isomorphism, V !
X
∼= UX . In other words, UX is Koszul dual to VX .

Proof. The relations for V !
X are precisely the relations for Ur, modulo the relation eX = 0. Therefore,

there exists a surjection V !
X → Ur/UreXUr = UX of graded algebras.

Thanks to the aforementioned recollement, there exists a surjection,

Ur = Ext∗Vr
(V 0

r , V 0
r ) → Ext∗VX

(V 0
X , V 0

X ) = V !
X ,

in the kernel of which lies UreXUr. Thus, we have a surjection UX → V !
X of graded algebras.

We have proved the existence of graded surjections from V !
X to UX , and back. Such maps preserve

homogeneous spaces of projective indecomposable modules, which are finite dimensional. Each of

these surjections is therefore an isomorphism. ¤

Corollary 53. There is an equivalence of derived categories,

Db(UX -mod) ∼= Db(VX -mod).

Proof. By a theorem of Beilinson, Ginzburg, and Soergel, such an equivalence holds for a general pair

of Koszul dual algebras, one of which is locally finite dimensional ([2], Theorem 2.12.6). ¤

Corollary 54. There is a recollement of derived categories,

Db(UX -mod)
←−
À Db(Ur-mod)

←−
À Db(Ur-mod)X .

Proof. Since VX is equal to fXV fX , we know that ExtiUr
(S, T ) = ExtiUX

(S, T ), for all simple UX -

modules S, T . By functorality, ExtiUr
(M, T ) = ExtiUX

(M, T ), for all finite dimensional UX -modules

M , and all simple UX -modules T . Again by functorality, we find that ExtiUr
(M, N) = ExtiUX

(M, N),

for all finite dimensional UX -modules M, N .

A theorem of Cline, Parshall and Scott allows us to deduce that the map Db(UX -mod) → Db(Ur-mod)

extends to a recollement ([7], Theorem 3.1). Here, Db(Ur-mod)X is the quotient category of Db(Ur-mod)

by the thick subcategory Db(UX -mod). ¤

Corollary 55. UX -mod is a highest weight category, with respect to º. Standard modules possess

linear projective resolutions.

Proof. For x ∈ X , N ≥ 0, let X (x, N) be a Cubist subset which can be identified with X in a box of

diameter N around x, such that X (x, N) is obtained by removing boxes from a translate of the corner

configuration. Such an X (x, N) has the finite interval property, and therefore for all finite truncations

T (x, N), the algebra UT (x,N) Koszul dual to VT (x,N) is standard Koszul. Because UX is locally finite

dimensional, UX can be identified with UT (x,N) in a large region around x, so long as N is large enough.
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For this reason, the regular UX -module possesses a ∆-filtration. As the Koszulity of VT (x,N) implied

the Koszulity of VX in the proof of theorem 46, now the existence of linear projective resolutions

for standard UT (x,N)-modules imply the existence of linear projective resolutions for standard UX -

modules. ¤

Lemma 56. The standard module ∆UX
(x) of UX has a basis {qy | y ∈ λx}, with qy in degree d(y, x).

If y, y′ ∈ λx and d(y′, x) = d(y′, y) + d(y, x), then γy′yqy = ±qy′. In particular, ∆UX
(x) has simple

socle L(xop)〈w〉.

Proof. Let K−1 : Db(VX -mod) → Db(UX -mod) be the inverse Koszul duality functor (see [2, Theorem

1.2.6]). Then K−1 is a triangulated functor such that K−1(M〈n〉) = K−1(M)[−n]〈−n〉, K−1(VX ex) =

L(x), and K−1(L(x)) = U∗
X ex. By Lemma 39, we deduce that K−1(∆VX

(x)) is quasiisomorphic to a

module M whose composition factors are described by the matrix DUX
(q). Moreover, by Lemma 38,

M has an injective resolution U∗
X ex → ⊕y∈µx,d(y,x)=1U

∗
X ey〈−1〉 → . . .. Hence M is the costandard

module of UX associated to the simple module L(x), and ∆UX
= M∗, the corresponding standard

module, also has composition factors given by DUX
(q). By comparing DUX

(q) with CUX
(q), we deduce

that the images qy, y ∈ λx of γy,x, y ∈ λx under a surjective homomorphism UX ex → ∆X (x) form a

basis for ∆X (x), and furthermore we have γy′yqy = ±qy whenever d(y′, x) = d(y′, y) + d(y, x). ¤

Corollary 57.

CUX
(q) = DUX

(q)T DUX
(q).

Definition 58. Let x ∈ X . We call the standard UX -module ∆UX
(x) the facetious module correspond-

ing to λx. It is a graded UX -module whose head is L(x), and whose Hilbert series is
∑

y∈λx qd(x,y)L(y).

Theorem 59. UX , and VX have homogeneous cellular bases. For either algebra, there is a canonical

choice of such basis, with respect to our fixed generators.

Proof. Let X ⊂ Zr be a Cubist subset. The cellularity is immediate from the definition of S. König

and C. Xi [16, Corollary 4.2]: a quasi-hereditary algebra which has a decomposition by primitive

idempotents each fixed by an anti-involution is cellular. Our anti-involution is ω, which swaps ax,i

and bx+εi,i (respectively αx,i and βx+εi,i). The grading on our algebras is compatible with the highest

weight structure, and therefore with the cellular structure. Cellular bases can be canonically defined

with respect to the generators of UX , VX , because the q-decomposition numbers are all monomials. ¤

7. Symmetry

Before proving an algebraic property of the Cubist algebras, we must always do some combinatorics.

Let us prove some lemmas, before we deduce the symmetry of UX . . .

Let w0 be the longest element of Σr. Let the standard partial order be the partial order explicitly

written down in the paper.

Lemma 60. Fix a partial order º on X . The map x 7→ xop which takes x to its opposite in λx is

bijective.

Proof. Let λ : X → FX be the map defined by the standard partial order º. Let λ′ : X → FX be

the map defined by the partial order ºw0 . Since xop = λ′−1λ(x), and λ, λ′ are bijective, the lemma

holds. ¤
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Lemma 61. Let x, y be distinct elements of X . Then there exists a facet F of X such that x ∈ F and

y /∈ F .

Proof. Because CX is homeomorphic to Rr−1, any d-cube C in X can be characterised as the intersec-

tion of facets containing C. For this reason, Px can be characterised as the largest subcomplex of CX
whose vertices are all contained in Px. However, since x, y are distinct, we have Px 6= Py. Therefore,

some vertex of Px is not a vertex of Py. This completes the proof of the lemma. ¤

Definition 62. Let x ∈ X , and let ξ be a facet of X containing x. Let

ξi =











ai if x + εi ∈ ξ,

bi if x − εi ∈ ξ,

1 otherwise,

for i = 1, . . . , r. Let s(ξ) to be the order of the set {ξi | ξi = bi}.

Definition 63. Let Fx = {ξ ∈ FX | x ∈ ξ}, for x ∈ X

Lemma 64. If ξ, ξ′ ∈ Fx, then there is a sequence ξ = ξ0, ξ1 . . . , ξl = ξ′ in Fx, such that ξi ∩ ξi+1 is

an r − 2-cube.

Proof. The polytope Px has a 1-skeleton whose vertices correspond to elements of Fx, and whose edges

correspond to r − 2-cubes containing x. The poset of faces of Px ordered by inclusion is the opposite

of the poset of cubes containing x, ordered by inculsion. The 1-skeleton of any polytope is connected.

Therefore, the lemma holds. ¤

Lemma 65. Suppose that ξ, η ∈ FX , and that ξ ∩ η is an r− 2-cube. Then one of the following holds:

(a) There exists i ∈ [1, r], such that ξi = ai, ηi = bi, and ξk = ηk for k ∈ [1, r], k 6= i.

(b) There exists i ∈ [1, r], such that ξi = bi, ηi = ai, and ξk = ηk for k ∈ [1, r], k 6= i.

(c) There exist distinct i, j ∈ [1, r], such that (ξi, ξj) = (ai, 1), (ηi, ηj) = (1, aj), and ξk = ηk for

k ∈ [1, r], k 6= i, j.

(d) There exist distinct i, j ∈ [1, r], such that (ξi, ξj) = (bi, 1), (ηi, ηj) = (1, bj), and ξk = ηk for

k ∈ [1, r], k 6= i, j.

Proof. We only need eliminate a couple of possibilities. The first is the existence of distinct i, j ∈ [1, r],

such that (ξi, ξj) = (ai, 1), (ηi, ηj) = (1, bj), and ξk = ηk for k ∈ [1, r], k 6= i, j. However, such an

arrangement implies that xξ = x +
∑

k,x+εk∈ξ εk ∈ ξ ⊂ X , as well as xη = x −
∑

k,x−εk∈η εk ∈ η ⊂ X .

Thus xη, xη[1] = xξ ∈ X , which cannot happen.

The remaining possibility is the existence of distinct i, j ∈ [1, r], such that (ξi, ξj) = (ai, 1), (ηi, ηj) =

(1, bj), and ξk = ηk for k ∈ [1, r], k 6= i, j. This we can eliminate for identical reasons. ¤

Lemma 66. Let x ∈ X , and let ξ, η be facets of X containing x. Then

(−1)s(ξ)ex ◦ ξ1 . . . ξr−1ξ
ω
r−1 . . . ξω

1 = (−1)s(η)ex ◦ η1 . . . ηr−1η
ω
r−1 . . . ηω

1 ,

and these are non-zero elements of UX .

Proof. The written elements of UX are non-zero, by the cellularity of UX . By lemma 64, we may

assume that ξ ∩ η is an r − 2-cube. By lemma 65, we should check cases (a)-(d).
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Case (a): By the supercommutation relations, the left hand side is equal to

(−1)s(ξ)ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξraibiξ
ω
r . . . ξω

i+1ξ
ω
i . . . ξω

1 ,

whilst the right hand side is equal to

(−1)s(ξ)+1ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξrbiaiξ
ω
r . . . ξω

i+1ξ
ω
i−1 . . . ξω

1 .

Let j 6= i be that number such that ξj = ηj = 1. The difference of the left and right hand side is

(−1)s(ξ)ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξr(aibi + biai)ξ
ω
r . . . ξω

i+1ξ
ω
i . . . ξω

1 ,

which is equal to

(−1)s(ξ)ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξr(ajbj + bjaj)ξ
ω
r . . . ξω

i+1ξ
ω
i . . . ξω

1 ,

by the Heisenberg relation. Note that x−
∑

k,x−εk∈ξ εk ∈ X , and so its shift, x+εj +
∑

k,x+εi∈ξ εk /∈ X ,

and thus

ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξraj = ±ex ◦ aj

∏

k,x+εk∈ξ

ξk

∏

k,x−εk∈ξ

ξk = 0.

Similarly, ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξrbj = 0, and we have proved the difference of left and right hand side

is zero.

Case (b) is proved identically to case (a).

Case (c): The left hand side is equal to

(−1)s(ξ)ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξraibiξ
ω
r . . . ξω

i+1ξ
ω
i . . . ξω

1 ,

whilst the right hand side is equal to

(−1)s(ξ)ex ◦ ξ1 . . . ξj−1ξj+1 . . . ξrajbjξ
ω
r . . . ξω

j+1ξ
ω
j . . . ξω

1 .

By the Heisenberg relations, we have

(−1)s(ξ)ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξr(aibi + biai)ξ
ω
r . . . ξω

i+1ξ
ω
i . . . ξω

1 =

(−1)s(ξ)ex ◦ ξ1 . . . ξj−1ξj+1 . . . ξr(ajbj + bjaj)ξ
ω
r . . . ξω

j+1ξ
ω
j . . . ξω

1 .

However, x − εj =
∑

k,x−εk∈ξ εk ∈ X , and so its shift, x +
∑

k,x+εi∈ξ εk /∈ X , and thus

ex ◦ ξ1 . . . ξi−1ξi+1 . . . ξrbi = ±ex ◦ bi

∏

k,x−εk∈ξ

ξk

∏

k,x+εk∈ξ

ξk = 0.

Similarly, ex ◦ ξ1 . . . ξj−1ξj+1 . . . ξrbj = 0, and we have proved the equality of left and right hand side.

Case (d) is proved identically to case (c). ¤

Lemma 67. Let F be a facet of a cubist set X , containing an element x. Then there exists σ ∈ Σr,

such that F = x + F σ
i .

Proof. We have

F =







x +
∑

j∈S

ajεj +
∑

j /∈S∪{i}

ajεj , aj = 0, 1







for some S ⊆ {1, . . . , r} and i /∈ S. Let σ be some element of Σr, such that σ({1, . . . , |S|}) = S. ¤

Theorem 68. UX is symmetric.
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Proof. Let us define a bilinear form on UX by the formula

(u1, u2) =
∑

x∈X

c(u1.u2),

where c(u) the coefficient of the element (−1)s(ξ)ξ1 . . . ξ1ξ
ω
r−1 . . . ξω

1 of lemma 66 in u. The form is

clearly associative. Let us prove its non-degeneracy.

By lemma 66, we know that the the degree 2r − 2 part of UX is isomorphic to kX as a UX -UX -

bimodule, and that UX vanishes in degree 2r − 1. Therefore, let 0 6= u ∈ exUX ey be homogeneous of

degree i < 2r − 2. We are required to show that U>0
X .u 6= 0. Suppose not. Then the socle of UX ey

contains a summand isomorphic to L(x)〈i〉. Hence the same is true of the socle of one of the factors

∆UX
(z)〈d(z, y)〉, y ∈ λz in a standard filtration of UX ey. By Lemma 60 there is a unique z ∈ X such

that zop = x, and by Lemma 56 we must have y ∈ λz and i = d(z, y) + r − 1. In particular we have

y 6= x.

Now the above argument remains valid for any conjugate of the partial order on X . By Lemma 61

there is a facet F of X such that x ∈ F and y /∈ F . Let z′ be the vertex of F opposite x. By lemma 67,

we may choose a partial order º′ on X , with respect to which λ′z′ = F . Then z′op = x with respect

to λ′, but y /∈ λ′z′, which is a contradiction.

Let us finally observe that (, ) is symmetric. We need to see that the Nakayama automorphism N

of UX , defined by

(x, y) = (N(y), x),

is trivial. The Nakayama automorphism is a graded homomorphism, so it is enough to know that

N(x) = x, for arrows x, since these generate UX . The explicit formula of lemma 66 makes this

clear. ¤

Corollary 69. Every principal indecomposable UX -module has radical length 2r − 1. The global

dimension of VX is 2r − 1.

Corollary 70. UX is Ringel self-dual.

Proof. Projective modules are also injective, and therefore tilting. ¤

R. Mart́ınez-Villa has characterised Koszul self-injective algebras by a noncommutative Gorenstein

property [18], providing a corollary to theorem 68:

Corollary 71. There is an isomorphism of graded kX -kX -bimodules,

Ext∗VX -mod(kX , VX ) ∼= kX〈2r − 2〉.¤

Let A be a Z+-graded algebra. Let A-nil be the Serre subcategory of A-mod, of modules on which

A>0 acts nilpotently. Let

A-Qmod = A-mod /A-nil,

the non-commutative analogue of coherent sheaves on a projective scheme Proj(A) associated to a

commutative graded algebra A. Let A-qmod be the subcategory of A-Qmod of graded VX -modules

with projective resolutions whose terms are all finitely generated. A theorem of R. Mart́ınez-Villa and

A. Martsinkovsky [19] provides a second corollary to theorem 68:
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Corollary 72. (Serre duality) For graded VX -modules M, N , we have,

ExtiVX -qmod(M, N) ∼= Ext2r−3−i
VX -qmod(N, M〈−2r + 2〉)∗.¤

Note that in the above duality, we do not twist the module N by an automorphism of VX . The

absence of such an automorphism (canonical bundle) is known to some as the Calabi-Yau property.

The Calabi-Yau dimension of VX -qmod is 2r − 3. In particular, when r = 3, these categories have

Calabi-Yau dimension 3. String theorists are said to be interested in such things.

To end this section, let us give a few definitions concerning the algebra UX which will be of some

application in the sequel.

Definition 73. Let ω : kQ −→ kQ be the graded antiautomorphism, defined by ω(ex) = ex, ω(ax,i) =

bx+εi,i, ω(bx,i) = ax−εi,i. We have ω(R) = R , so ω defines antiautomorphisms on Ur and UX which

we still call ω.

Given a graded UX -module V = ⊕Vn, we make the dual V ∗ = ⊕(V ∗)n = ⊕V ∗
−n a graded UX -module

via (uφ)(v) = φ(ω(u)v).

Definition 74. Let κ be the automorphism of Zr defined by κ(x) = −x.

Then G = Zr o 〈κ〉 acts as a group of automorphisms on Zr (the Zr by translations) and thus as a

group of automorphisms of kQ, with g(ex) = eg(x); g(ax,i) = ag(x),i and g(bx,i) = bg(x),i if g ∈ Zr; and

κ(ax,i) = bg(x),i and κ(bx,i) = ag(x),i if g /∈ Zr.

Let x = (x1, . . . , xr), y = (y1, . . . , yr) ∈ Zr. All paths in Q from x to y of shortest length have the

same image in Ur, up to sign, by virtue of the anticommutation relations. In order to be precise, we

make the following

Definition 75. Let γxy ∈ Q be the path of shortest length starting at x, visiting (y1, x2, . . . , xn),

(y1, y2, x3, . . . , xn), . . . , (y1, . . . , yn−1, xn) in succession and ending at y.

8. Derived equivalences

In this section we show how certain mutations of Cubist subsets correspond to derived equivalences

of Cubist algebras. These ‘flips’ play an important role in the study of rhombus tilings (see, e.g., [17,

§2]).

Lemma 76. Let X be a Cubist subset of Zr and let z ∈ X . Then the following statements are

equivalent.

(1) z is a maximal element of X with respect to the partial order ≤.

(2) For all x ∈ Zr, if z[−1] < x ≤ z, then x ∈ X .

(3) The subset X ′ of Zr obtained from X be replacing z by z[−1] is a Cubist subset.

(4) The polytope Pz is an r − 1-simplex.

For most of the remainder of this section we fix a Cubist subset X ⊂ Zr and an element z ∈ X

satisfying the conditions of the Lemma. Our aim is the following result
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Theorem 77. There exists an equivalence of triangulated categories

F : Db(UX ′-mod)
∼
→ Db(UX -mod)

such that F (X〈n〉) ∼= F (X)〈n〉 for X ∈ Db(UX ′-mod) and n ∈ Z. Moreover, for all x ∈ Zr, we have

F (U ′
X ex) ∼= Γx, where Γx is a complex explicitly described in §8.2.

8.1. Structure around a flip. We begin by describing the structure of UX near z. Given n ∈ Z, let

[n]q :=
qn − q−n

q − q−1
∈ Z[q, q−1]

be the associated ‘quantum integer’. Note that [−n] = −[n].

Lemma 78. (1) The element ζz = ezbz,iaz−εi,iez in UX is independent of i.

(2) The elements

γx,zζ
s
z , z[−1] < x ≤ z, 0 ≤ s ≤ r − 1 − d(z, x)

form a basis of UX ez, and the elements

ζs
zγz,x, z[−1] < x ≤ z, 0 ≤ s ≤ r − 1 − d(z, x)

form a basis of ezUX .

(3) We have CUX
(q)zy = q−d(z,x) + q−d(z,x)+2 + . . . + qd(z,x) = qr−1[r − d(z, x)]q.

(4) Suppose z[−1] < x ≤ z and let ρ(γz,x) : UX ez〈d(z, x)〉 → UX ex be the homomorphism defined

by right multiplication by γz,x. Then HomUX
(UX ez〈n〉, coker(ρ(γz,x))) = 0 for all n ∈ Z.

Proof. Part (1) is a consequence of the Heisenberg relations because z + εi /∈ X for all i. Define a

kQ-module W with basis

{wx,s | z[−1] < x ≤ z, 0 ≤ s ≤ r − 1 − d(z, x)}

with deg(wx,s) = d(z, x) + 2s and action

eywx,s =

{

wx,s if y = x,

0 otherwise,

ay,iwx,s =

{

(−1)σwx+εi,s+1 if y = x and x + εi ∈ X ,

0 otherwise,

by,iwx,s =

{

(−1)σwx−εi,s if y = x, x − εi ∈ X , and s 6= r − 1 − d(z, x),

0 otherwise,

where σ = #{j ∈ {1, . . . , i − 1} | yj = xj − 1}. It is easy to check that the defining relations of Ur

hold, and that W is annihilated by ex for all x /∈ X . Hence W is a UX -module. There is a unique

homomorphism ψ : UX ez −→ W such that ψ(ez) = wz,0. We have ψ(γx,zζ
s
z ) = wx,s, so ψ is surjective.

The dimension of W is
∑

z[−1]<x≤z

(r − d(z, x)) =
r

∑

j=1

(

r

j

)

j = r
r

∑

j=1

(

r − 1

j − 1

)

= r2r−1.

On the other hand the dimension of UX ez is
∑

DUX
(1)yzDUX

(1)yx, where the sum is over all x, y

such that z, y ∈ λx. This is also r2r−1, since z is contained in exactly r facets of X , by Lemma 76.

We deduce that ψ is an isomorphism and that the first half of part (2) is true. The second half is
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obtained by applying the antiautomorphism ω. Part (3) is follows immediately. The last part is also

a consequence of the second, because

HomUX
(UX ez〈n〉, coker(ρ(γz,x))) ∼=

(

ezUX ex

ezUXγz,x

)

n

.

¤

8.2. The tilting complex. For each x ∈ Zr we define

Γx =

{

cone(UX ez〈d(z, x)〉
ρ(γz,x)
−→ UX ex) if z[−1] ≤ x ≤ z,

UX ex otherwise.

So each Γx is a complex of projective UX -modules concentrated in homological degrees −1 and 0.

Observe that Γz is contractible and that Γz[−1] is isomorphic to UX ez〈r〉[1]. Hence Γz is nonzero as

an object of Db(UX -mod) if and only if x ∈ X ′.

Proposition 79. The complexes Γz satisfy the hypotheses of Theorem 16.

Proof. The generation condition clearly holds, because UX ez
∼= Γz[−1]〈−r〉[−1] and, for all x 6= z,

UX ex is isomorphic to Γx or to the cone of a morphism from Γx to UX ez〈d(z, x)〉[−1]. So it remains

to prove that for x, x′ ∈ X and m, n ∈ Z with m 6= 0,

HomDb(UX -mod)(Γx〈n〉, Γx′ [m]) = 0.

This is clear unless m = 1 or m = −1, since Γx and Γx′ are complexes concentrated in degree −1 and

0. Thus it suffices to show that HomUX
(UX ez〈n〉, H

0(Γx′)) = 0 and HomUX
(H0(Γx)〈n〉, UX ez) = 0 for

all n ∈ Z. The first is true by Lemma 78 and the second follows because UX is a symmetric algebra

(Theorem 68). ¤

We form the graded endomorphism ring

E := ⊕n∈ZEn, En = ⊕x,y∈Zr HomDb(UX -mod)(Γx〈n〉, Γy),

and put e′x = idΓx for each x ∈ Zr. By Theorem 16 there exists an equivalence

F : Db(mod(Eop))
∼
→ Db(mod(UX ))

such that F (Eope′x) ∼= Γx for all x ∈ Zr, and F (X〈n〉) ∼= F (X)〈n〉 for X ∈ Db(Eop-mod) and n ∈ Z.

To complete the proof of Theorem 77 we shall construct an isomorphism between UX ′ and Eop.

8.3. Identification of the endomorphism ring. We define a graded homomorphism

Φ : kQ −→ Eop

as follows:

Φ(ex) : Γx → Γx = idΓx

Φ(ax,i) : Γx〈1〉 → Γx+εi
=

{

((−1)σx,iρ(ζz), ρ(ax,i)) if z[−1] ≤ x, x + εi ≤ z,

(0, ρ(ax,i)) otherwise,

Φ(bx,i) : Γx〈1〉 → Γx−εi
=

{

((−1)σx,i id, ρ(bx,i)) if z[−1] ≤ x, x − εi ≤ z,

(0, ρ(bx,i)) otherwise,
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where σx,i = #{j < i | yj 6= xj} and chain maps (f−1, f0) are specified by their components f−1, f0 in

degrees −1 and 0. Using Lemma 78 it is straightforward to check that these are indeed chain maps.

Proposition 80. Φ is surjective.

Proof. Let f : Γx〈n〉 → Γy be a chain map. We want to show that the image of Φ contains f . It

certainly contains a chain map whose degree 0 component agrees with f , so by taking their difference

and scaling we may assume that z[−1] ≤ x, y ≤ z, and that f = (ρ(ζs
z ), 0) where 2s = n + d(z, x) −

d(z, y). Since f is a chain map, we have ζs
zγz,y = 0 which implies by Lemma 78 that s ≥ r − d(z, y).

Hence n ≥ 2r − d(z, x) − d(z, y) ≥ 0.

If n = 0 then f = Φ(ez[−1]). If n = 1 then f = Φ(az[−1],i) or f = Φ(bz[−1]+εi,i) for some i. Now

we assume n ≥ 2 and argue by induction on n. Suppose that y = z[−1]. Since Γz is contractible we

may assume that x 6= z and choose i such that z[−1] ≤ x + εi ≤ z. Then f is the composition of

Φ(ax,i)〈n − 1〉 and (ρ(ζs
z ), 0) : Γx+εi

〈n − 1〉 → Γz[−1].

Suppose on the other hand that y 6= z[−1]. Choose i such that z[−1] ≤ y − εi ≤ z. Then f is

the composition of (ρ(ζs−1
z ), 0) : Γx〈n〉 → Γy−εi

〈1〉 and Φ(by−εi,i). The former is a chain map because

s − 1 ≥ r − d(z, y − εi). ¤

Proposition 81. Φ factors through the natural homomorphism kQ → UX ′.

Proof. Since Φ(ex) = idΓx = 0 for x /∈ X ′, it suffices to show that Φ kills the defining relations of

Ur. We shall show that in fact the image of any relation under Φ is the zero chain map (not merely

nullhomotopic); note that this is clear in homological degree 0.

• Square relations (U0): For any x ∈ Zr, at least one of x, x+ εi, and x+2εi is not in z−{0, 1}r

and hence Φ(ax,iax+εi,i) = 0. A similar argument applies to Φ(bx,ibx−εi,i).

• Supercommutation relations (U1): Consider Φ(ax,iax+εi,j + ax,jax+εj ,i). We may assume that

both Γx and Γx+εi+εj
are nonzero in degree −1, and therefore that x, x+ εi, x+ εj , x+ εi + εj ∈

z − {0, 1}r. Then the component of Φ(ax,iax+εi,j + ax,jax+εj ,i) = 0 in degree −1 is right

multiplication by
(

(−1)σx,i+σx+εi,j + (−1)σx,j+σx+εj ,i

)

ζ2
z = 0.

The argument that Φ(bx,ibx+εi,i + bx,jbx+εj ,i) = 0 and Φ(ax,ibx+εi,j + bx,jax−εj ,i) = 0 is similar.

• Heisenberg relations (U2): If x /∈ z − {0, 1}r, then the degree −1 component of Φ(ax,ibx+εi,i +

bx,iax−εi,i) is 0. If x ∈ z − {0, 1}r then exactly one of x + εi and x − εi is in z − {0, 1}r, and

therefore the degree −1 component of Φ(ax,ibx+εi,i+bx,iax−εi,i) is ρ(ζz), which does not depend

on i.

¤

By virtue of these two propositions we have a surjective homomorphism UX ′ → E
op

. We now show

that this is actually an isomorphism, by demonstrating that CUX′ (q) = CEop(q).

Lemma 82. We have

CEop(q)x,y =

{

CUX
(q)x,y − qr−1[r − d(z, x) − d(z, y)]q if z[−1] ≤ x ≤ z,

CUX
(q)x,y otherwise.
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Proof. By Lemma 78,

CUX
(q)z,x =

{

qr−1[r − d(z, x)]q if z[−1] ≤ x ≤ z,

0 otherwise,

and since ω(exUX ez) = ezUX ex, we have CUX
(q)x,z = CUX

(q)z,x.

Hence

CEop(q)x,y =
∑

n∈Z

dim HomDb(UX -mod)(Γx〈n〉, Γy) qn

=
∑

n∈Z

dim HomUX
(UX ex〈n〉, UX ey) qn

+
∑

n∈Z

dim HomUX
(UX ez〈d(z, x) + n〉, UX ez〈d(z, y)〉) qn

−
∑

n∈Z

dim HomUX
(UX ex〈n〉, UX ez〈d(z, y)〉) qn

−
∑

n∈Z

dim HomUX
(UX ez〈d(z, x) + n〉, UX ey) qn.

So if z[−1] ≤ x, y ≤ z, then

CEop(q)x,y = CUX
(q)x,y + qr−1+d(z,y)−d(z,x)[r]q

− qr−1+d(z,y)[r − d(z, x)]q − qr−1−d(z,x)[r − d(z, y)]q

= CUX
(q)x,y − qr−1[r − d(z, x) − d(z, y)]q,

and otherwise CEop(q)x,y = CUX
(q)x,y. ¤

By using the automorphism κ we see that the results of this section apply to a dual situation in

which we specify an element of a Cubist subset minimal with respect to ≤. Taking in particular the

Cubist subset X ′ and the minimal element z[−1], we obtain a graded endomorphism ring E′ together

with an epimorphism UX → (E′)op, and the formula

C(E′)op(q)x,y =

{

CUX′ (q)x,y − qr−1[r − d(z[−1], x) − d(z[−1], y)]q if z[−1] ≤ x, y ≤ z,

CUX′ (q)x,y otherwise.

There is an equivalence of categories,

F ′ : Db((E′)op-mod))
∼
→ Db(UX ′-mod).

Note that r − d(z[−1], x) − d(z[−1], y) = d(z, x) + d(z, y) − r.

We are now ready to show that CUX′ (q)xy = CEop(q)xy for all x, y ∈ Zr, and thus complete the proof

of Theorem 77. Because Γz is contractible we may assume that x 6= z and y 6= z. If z[−1] ≤ x, y ≤ z,

then

CEop(q)x,y = CUX
(q)x,y + qr−1[r − d(z, x) − d(z, y)]q

≥ C(E′)op(q)x,y + qr−1[r − d(z, x) − d(z, y)]q

= CUX′ (q)x,y

≥ CEop(q)x,y,
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where ≥ means an inequality holds for each pair of corresponding coefficients. We deduce that the

inequalities are actually equalities.

Remark 83. By Koszul duality, the derived categories of UX -mod, VX -mod are equivalent. Therefore,

there also exists an equivalence of triangulated categories

Db(VX ′-mod)
∼
→ Db(VX -mod).

Remark 84. The simple VX -module L(z) has extension algebra ezUX ez
∼= k[ζz]/ζr

z
∼= H∗(Pr−1) in the

category of ungraded VX -modules. Objects whose extension algebras are isomorphic to H∗(Pn) are

called Pn-objects by D. Huybrechts and R. Thomas [13], and give rise to self-equivalences whenever

they appear in the derived category of a smooth projective variety.

In our setting, self-equivalences of Db(UX -mod) can be obtained by composing equivalences,

F ◦ F ′ : Db(UX -mod)
∼
→ Db(UX ′-mod)

∼
→ Db(UX -mod).

8.4. Another formula for the entries of the graded Cartan matrix of UX . We can now derive

a different formula for the entries of CUX
(q), one which isn’t tied to a choice of quasi-hereditary

structure on UX .

For any x ∈ X we define

IX (x) = {z ∈ X | x ≤ z ≤ x[1]}.

Lemma 85. Let X1 and X2 be Cubist subsets containing x, and suppose that IX1(x) = IX2(x). Then

for all y ∈ Zr, we have CUX1
(q)xy = CUX2

(q)xy.

Proof. Let X ⊂ Zr be a Cubist subset. Using the fact that UX is quasihereditary (Corollary 55) and

the formula for its decomposition matrix given in Lemma 56, we have

CUX
(q)xy =

∑

z∈X
x,y∈λz

qd(x,z)+d(y,z) =
∑

F∈FX
x,y∈F

qd(x,λ−1(F ))+d(y,λ−1(F )).

Hence it suffices to show that whether or not a facet F ∈ F containing x is contained in X depends

only on IX (x). For some S ⊆ {1, . . . , r} and i /∈ S, the facet F consists of all x′ ∈ Zr such that

x′ ≤ x+
∑

j∈S ajεj and x′ ≥ x−
∑

j /∈S∪{i} ajεj . Hence F is contained in X if and only if x+
∑

j∈S εj ∈ X

and x +
∑

j∈S∪{i} εj /∈ X . ¤

Proposition 86. Let X be a Cubist subset. Then for all x, y ∈ X , we have

CUX
(q)xy =

∑

z∈IX (x)∩IX (y)

qr−1[r − d(z, x) − d(z, y)]q.

Proof. We induct on |IX (x)|. If IX (x) = {x}, then the sum on the right hand side of the desired

equality contains a single term qr−1[r − d(x, y)]q if y ≤ x ≤ y[1] and is zero otherwise. This is in

agreement with part (3) of Lemma 78.

Now suppose |IX (x)| > 1. By Lemma 85 we may assume that X = X− \ X−[−1], where X− is the

ideal in Zr generated by IX (x). Choose an element v ∈ IX (x) maximal with respect to ≤. Then v is

also a maximal element of X with respect to ≤. By Lemma 76 the subset X ′ of Zr obtained from X
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by replacing v by v[−1] is Cubist. We have IX ′(x) = IX (z) \ {v}, so by induction the stated formula

holds for CUX′ (q)xy. Hence for all y ∈ X we have

CUX
(q)xy =

{

CUX′ (q)xy + qr−1[r − d(v, x) − d(v, y)]q if v ∈ IX (x),

CUX′ (q)xy otherwise

=
∑

z∈IX (x)∩IX (y)

qr−1[r − d(z, x) − d(z, y)]q,

where the first equality is by Lemma 82, and the second by induction. ¤

9. Formulae

We assemble nine elegant formulae, which combine to give purely combinatorial relations. It seems

difficult to imagine how such expressions could have been conceived, without the Cubist algebras.

Note that the formulae involving decomposition matrices hold for any of the r! possible highest

weight structures, but depend on the given highest weight structure. The formulae which do not

involve decomposition matrices are independent of highest weight structure.

Theorem 87. Combinatorial formulae for decomposition matrices:

DUX
(q)xy =

∑

z∈λx

δzyq
d(z,x),

DVX
(q)xy =

∑

z∈µx

δzyq
d(z,x).

Combinatorial formulae for Cartan matrices:

CUX
(q)xy =

∑

z∈IX (x)∩IX (y)

qr−1[r − d(z, x) − d(z, y)]q.

CVX
(q)xy = (1 − q2)1−rqd(x,y),

Brauer formulae for Cartan matrices:

CUX
(q) = DUX

(q)T DUX
(q),

CVX
(q) = DVX

(q)T DVX
(q),

Transpose formulae:

CUX
(q) = CUX

(q)T .

CVX
(q) = CVX

(q)T .

Inverse formulae:

DUX
(q)T .DVX

(−q) = 1.

CUX
(q).CVX

(−q) = 1.

Symmetry formula:

CUX
(q−1) = q2−2rCUX

(q).
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Proof. The combinatorial formulae for the decomposition matrices were proved during our study of

highest weight categories (corollary 38, lemma 56). The combinatorial formula for CUX
(q) was proved

in the last section (proposition 86). The combinatorial formula for CVX
(q) is recorded as remark 27.

The Brauer formulae for Cartan matrices in terms are abstract consequences of UX -mod, VX -mod

being highest weight categories with duality [8, Theorem 3.1.11]. The transpose formulae follow

immediately.

The inverse formula relating the decomposition matrices of UX , VX was proven as lemma 35. The

inverse formula relating the Cartan matrices of UX , VX is an abstract consequence of UX , VX being

Koszul dual ([2], Theorem 2.11.1).

The symmetry formula holds because UX is symmetric. ¤

10. Interpretation

The algebras UX look like blocks of finite group algebras. Let us detail this metaphor.

Consider the diagram,

Blocks of finite groups −→ Abelian Categories

↘ ↙

Triangulated categories .

Here the horizontal arrow describes a functor Φ, which takes B to its module category B-mod.

The southwest pointing functor Ψ carries an abelian category to its derived category. The southeast

pointing functor Υ takes a block to its derived category. We have the following vague conjectures:

Conjecture 88. 1. The image of Φ is small.

2. The image of Υ is very small.

We should be more precise. Let k have characteristic p. Let P be a p-group, and BP be the set of

blocks with defect group P . Let b be a block of some group in which P is normal, and let Bb be the

set of blocks whose Brauer correspondent is Morita equivalent to b.

Conjecture 89. 1. (P. Donovan) For any P , |im(ΦBP
)| < ∞.

2. (M. Broué) For abelian P , |im(ΥBb
)| = 1.

Specialising to symmetric groups, both parts of conjecture 89 are theorems. Let BΣ,w be the set of

blocks of symmetric groups of weight w.

Theorem 90. 1. (J. Scopes) |im(ΦBΣ,w
)| < ∞.

2. (J. Chuang, R. Rouquier) |im(ΥBΣ,w
)| = 1.

Various investigations into blocks of symmetric groups suggest the following parallel to theorem 90:

Conjecture 91. Let w < p.

im(ΦBΣ,w
) ⊂







eAe-mod, A a standard Koszul, symmetric algebra,
graded in degrees 0, 1, . . . , 2w,

e an idempotent in A







.
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The relation between the algebras UX and blocks of symmetric groups should now be clear. We have

proved the UX ’s possess all of the strong properties of the algebras A of the above conjecture, as well

as various refinements of these properties. We have also revealed a multitude of derived equivalences

between UX ’s, as one expects to find between blocks of finite groups.

In fact, the similarity between blocks of symmetric groups and Cubist algebras appears to be more

than merely formal. In the following section, we make a precise connection between the algebras UX

in case r = 3, and symmetric group blocks of defect 2.

It would be interesting if there were generalisations of conjecture 91 to other families of finite groups.

The stated conjecture already appears to be quite deep.

Remark 92. Let G be a finite group. Let χ be the submatrix of the ordinary character table of

G, whose columns are indexed by p-regular elements. The matrix B of p-Brauer characters of G, is

related to χ by the formula,

χ = D.B,

where D is the p-decomposition matrix of G. Therefore, to compute B from χ, one uses the formula

B = D−1χ, where D−1 is a left inverse of D.

It is always easier to find the ordinary character table of G than the table of Brauer characters.

Therefore, from a computational point of view, D−1 is more important than D itself.

For the algebra UX , we know exactly what the inverse of the decomposition matrix is: it is the

q-decomposition matrix of VX , evaluated at q = −1.

For the algebras A which we expect to control blocks of symmetric groups of abelian defect, the same

situation ought to arise. The Koszul dual of such an algebra will have a q-decomposition matrix. It is

the evaluation of this matrix at q = −1 which should allow for the direct computation of the Brauer

character table B of a related block from the ordinary character table χ of the relevant symmetric

group.

11. Symmetric group blocks and rhombal algebras

11.1. Overview. Here we establish a direct connection between rhombal algebras and some blocks

of symmetric groups, making more precise and complete the observations of Michael Peach [22, §4].

Let B be a weight 2 block of a symmetric group in characteristic p 6= 2. Then B has 1
2 (p − 1) (p + 2)

simple modules. In this section we will prove the following result.

Theorem 93. There exists a Cubist subset X ⊂ Z3, an idempotent e ∈ UX and an idempotent f ∈ B

such that eUX e and fBf are isomorphic as algebras, each having 1
2 (p − 1) p simple modules.

Actually we shall obtain a more precise result, in which X is described explicitly in terms of the

combinatorics associated to B. The strategy of the proof is to first construct an isomorphism directly

for a special class of blocks, the Rouquier blocks, which are known to have a description in terms of

wreath products [4]. Then the result is extended to all blocks using the derived equivalences between

Cubist algebras in §8, together with known equivalences between blocks of symmetric groups: the

Morita equivalences of Scopes [26] and the derived equivalences of Rickard [25].
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11.2. Blocks of symmetric groups. We begin by sketching the combinatorics of the block theory

of the symmetric groups, referring the reader to the standard references [14] and [20] for more details.

Let Sn be the symmetric group of degree n and let k be a field of characteristic p. The simple modules

Dλ of kSn are parametrized by p-regular partitions λ of n.

We describe a method due to Gordon James [15] for representing partitions which is useful in

this context. We consider an abacus with p vertical half-infinite runners, with positions labelled

0, 1, . . . from left to right and then top to bottom. Thus the positions on the i-th runner are labelled

i, i + p, i + 2p, . . .. Given any partition λ = (λ1, λ2, . . .) of n, an abacus representation of λ is obtained

by placing N beads in positions λ1 + N − 1, λ2 + N − 2, . . . , λN , where N is any integer at least

as big as the number of parts of λ. By moving all the beads as far up their runners as possible one

obtains an abacus representation of a partition of n − wp for some w ≥ 0. This partition is the core

of λ and w is the weight of λ. The simple modules Dλ and Dµ belong to the same block of kSn if

and only if λ and µ have the same core (and therefore the same weight). This statement, known as

Nakayama’s Conjecture, allows us to assign a core κ and weight w to each block B of kSn. Any two

blocks of the same weight have the same number of simple modules. We denote by ΛB the set of all

partitions (of n) with core κ and weight w. Then the simple modules Dλ of B are indexed by the

p-regular partitions in ΛB.

We choose mutually orthogonal idempotents fλ ∈ B such that Bfλ is a projective cover of Dλ.

Then (
∑

fλ)B(
∑

fλ) is a basic algebra Morita equivalent to B.

11.3. Weight 2 blocks. We now assume that p > 2 and restrict our attention to blocks of weight

2. This class of blocks has been well studied. Peach and our work on rhombal algebras has been

partly inspired by the general results of Scopes [27] and Tan [29], the determination of decomposition

numbers by Richards [23] and the calculation of quivers and relations by Erdmann and Martin [11]

and by Nebe [21].

We shall describe a natural parametrization of the simple modules in any block of weight 2 by the

set

S = {(u, v) ∈ Z2 | 0 ≤ u ≤ v ≤ p − 1, (u, v) 6= (0, 0)}.

The simple modules corresponding to the subset

P = {(u, v) ∈ Z2 | 0 ≤ u < v ≤ p − 1}

will survive in a truncation of the block which will be shown to be isomorphic to a truncation of a

rhombal algebra.

Let B be a block of kSn of weight 2. Consider an abacus representation of the associated p-core

partition κ. Let q0, . . . , qp−1 be the first unoccupied positions in each of the p runners, relabelled so

that q0 < . . . < qp−1, and define the pyramid of B to be

PB = {(u, v) ∈ P | qv − qu < p}.

This is a corruption of a notion introduced by Matthew Richards [23]; his pyramid, defined for any

weight, contains the same information in weight 2 as ours. Richards proves that if (u, v) ∈ PB, then

(u, w), (w, v) ∈ PB whenever u < w < v, and that any subset of P with this property is equal to PB
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for some block B of weight 2. We also define

SB = {(u, v) ∈ S | qv − qu < p}.

= PB ∪ {(u, u) ∈ Z2 | 1 ≤ u ≤ p − 1}.

Example 94. Let k be a field of characteristic 7, and let B be the block of kS42 of weight 2

corresponding to the 7-core partition κ = (12, 6, 6, 1, 1, 1, 1). Choosing N = 7 we get place beads

on the abacus in positions 1, 2, 3, 4, 10, 12, 18. The first unoccupied positions on each of the runners

are, from left to right, 0, 8, 9, 17, 25, 5, 6. Hence

(q0, q1, q2, q3, q4, q5, q6) = (0, 5, 6, 8, 9, 17, 25),

PB = {(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ,

SB = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} .

We shall use a variation of a shorthand, due to Scopes [26, 27], for labelling the partitions in ΛB:

• 〈u, v〉 for the partition (whose abacus display is) obtained (from the abacus display of κ) by

moving the beads at positions qu − p and qv − p down one position, i.e. to positions qu and qv.

Here u 6= v.

• 〈u〉 for the partition obtained by moving the bead at qu − p to qu + p.

• 〈u, u〉 for the partition obtained by moving the bead at qu−2p to qu−p, and the beas at qu−p

to qu.

The same set of shorthands labels is used for all blocks of weight 2. However the subset of labels that

corresponds to p-regular partitions in ΛB depends on B.

Scopes [26] considers pairs of blocks related to each other by ‘swapping adjacent runners’. Even

though her results are valid for blocks of arbitrary weight, here we just describe the weight 2 case.

Suppose that there exists an abacus display of κ and 0 ≤ s < t ≤ p − 1 such that qt − qs = mp + 1,

where m > 0. Then by moving the beads from positions qt−p, qt−2p, . . . , qt−mp, to the unoccupied

positions qt − p − 1, qt − 2p − 1, . . . , qt − mp − 1 we obtain the abacus display of a p-core partition

κ̄. Then B and the block B̄ of weight 2 with p-core κ̄ are said to form a [2 : m] pair. It is easy to

describe the relationship between the pyramids of B and B̄: if m ≥ 2 then PB̄ = PB, and if m = 1

then PB̄ is the disjoint union of PB and {(s, t)}. For an arbitrary block B of weight 2, there exists a

sequence B0, . . . , Bl of blocks of weight 2 such that PB0 = ∅, Bl = B and for i = 1, . . . , l, the blocks

Bi−1 and Bi form a [2 : m] pair for some m.

By Scopes [27], there exists a bijection

Φ = ΦB,B̄ : ΛB
∼
→ ΛB̄

such that

• Φ(λ) is p-regular if and only if λ is p-regular,

• Φ(λ) and λ have the same shorthand notation, except in the following cases when m = 1:

Φ (〈t, t〉) = 〈s〉 ,

Φ(〈s, t〉) = 〈t, t〉 ,

Φ(〈s〉) = 〈s, t〉 .
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In case m = 1, we are extending Scopes’ Definition 3.4 in [27] by taking, in her notation, Φ(α) = ᾱ,

Φ(β) = γ̄, and Φ(γ) = β̄.

We now produce the promised parametrization of simple modules in blocks of weight 2.

Proposition 95. (1) Let B be a block of weight 2. Then the map

λB : S →ΛB

defined by

λB(u, v) =



















〈u + 1, v〉 if (u, v) /∈ SB and (u + 1, v) /∈ SB

〈v, v〉 if (u, v) /∈ SB and (u + 1, v) ∈ SB

〈u, v + 1〉 if (u, v) ∈ SB and (u, v + 1) ∈ SB

〈u〉 if (u, v) ∈ SB and (u, v + 1) /∈ SB

is an bijection of S onto the set of p-regular partitions in ΛB.

(2) If B and B̄ form a [2 : m] pair, then

ΦB,B̄ ◦ λB = λB̄.

Proof. First suppose that PB = ∅. Then λB(u, u) = 〈u〉 and λB(u, v) = 〈u + 1, v〉 if u < v. Thus

λB is a bijection onto the set of partitions in ΛB whose shorthand labels do not involve 0, which are

precisely the p-regular ones. This proves statement (1) in this special case.

For an arbitrary block B, there is a sequence of blocks starting at one with empty pyramid and

ending at B such that each successive pair of blocks forms a [2 : m] pair for some m. Hence in order

to prove both statements in general it suffices to show that statement (2) holds for a fixed [2 : m]-pair

of blocks B and B̄ under the assumption that statement (1) holds for B. This is clearly true if m ≥ 2,

because then SB = SB̄ and Φ preserves shorthand labels. So let us suppose that B and B̄ form a

[2 : 1] pair. We have PB̄ = PB ∪{(s, t)} for some 0 ≤ s < t ≤ p−1. Note that (s+1, t), (s, t−1) ∈ SB

and (s − 1, t) , (s, t + 1) /∈ SB. Hence

Φ(λB(s, t)) = Φ(〈t, t〉) = 〈s〉 = λB̄(s, t),

Φ(λB(s − 1, t)) = Φ (〈s, t〉) = 〈t, t〉 = λB̄ (s − 1, t) ,

Φ(λB(s, t − 1)) = Φ(〈s〉) = 〈s, t〉 = λB̄(s, t − 1).

Remembering our assumption that statement (1) holds for B, we also see that for any (u, v) ∈

S \ {(s, t), (s − 1, t) , (s, t − 1)}, the shorthand labels for Φ(λB(u, v)) and λB(u, v) are the same and

therefore that Φ(λB(u, v)) = λB̄(u, v). ¤

Example 96. We take p = 7 and κ = (12, 6, 6, 1, 1, 1, 1) as in Example 94. The graph in Figure 6

records the bijection of Proposition 95. Its vertices are in bijection with the p-regular partitions in

ΛB, each of which has a shorthand label as well as a label by an element of S, via λB. The shorthand

labels are placed to the right of the vertices, and the S-labels to the left, in boldface. The subset P is

indicated by black vertices and the pyramid PB by square black vertices. Two vertices are connected

by an edge if an only if there exists a nonsplit extension of one of the corresponding simple B-modules

by the other; in fact, by replacing each edge by a pair of directed edges in opposite directions one

obtains the ‘extension quiver’ of B.



42 JOSEPH CHUANG AND WILL TURNER

◦

KKKKKKKKKKKK11 12 ◦

ssssss

ssssss
LLLLLLLLLLLL22 23 ◦

rrrrrr

rrrrrr
LLLLLLLLLLLL33 34 ◦

rrrrrr

rrrrrr

00
00

00
00

00
00

44 4 ◦

rrrrrrrrrr

rrr

±±
±±
±±
±±
±±
±±

00
00

00
00

00
00

55 5 ◦

±±
±±
±±
±±
±±
±±

66 6

HH
HH

HH01 02

vv
vv

vv
HH

HH
HH12 13

vv
vv

vv
HH

HH
HH23 24

vv
vv

vv
34 3 •

vv
vv

vv
HH

HH
HH45 55 •

vv
vv

vv
56 66

02 0

HH
HH

HH13 14

vv
vv

vv
24 2 •

vv
vv

vv
HH

HH
HH35 45 •

vv
vv

vv
46 56

•
II

II
II03 33 14 1 •

uu
uu

uu
II

II
II25 35 •

uu
uu

uu
36 46

•
II

II
II04 44 •

uu
uu

uu
II

II
II15 25 •

uu
uu

uu
26 36

•
II

II
II05 15 •

uu
uu

uu
16 26

•06 16

Figure 6. Extension quiver of B when p = 7 and κ = (12, 6, 6, 1, 1, 1, 1)

11.4. Gradings. We expect that all blocks of weight w < p should have gradings compatible with

radical filtrations. This is easy to verify when w < 2, and has been proved by Peach for w = 2.

Theorem 97 (Peach [22]). Let B be a block of weight 2. Then there exists a grading B = ⊕4
i=0Bi

such that radj(B) = ⊕4
i=jBi.

We may assume that the idempotents fλ introduced in §11.2 are in B0.

11.5. Morita and derived equivalences. There is a strong relationship between the module cat-

egories of blocks in a Scopes pair. Suppose that B and B̄ form a [2 : m] pair of blocks. Scopes [26]

proves that, if m ≥ 2, there is an equivalence

F ′ : B-mod
∼
→ B̄-mod

such that

F ′(Bfλ) ∼= B̄fΦ(λ)

for all p-regular λ ∈ ΛB. Her results are true in greater generality, for blocks of arbitrary weight.

Rickard [25] (see also [5]) built on the ideas of Scopes, proving the existence of some derived equiva-

lences between blocks. A special case of Rickard’s result (see [3] and [22, §5]) states that if B and B̄

form a [2 : 1] pair, then there exists an equivalence

F ′ : Db(B-mod)
∼
→ Db(B̄-mod),

such that, in the notation of the analysis of [2 : 1] pairs in §11.3,

F ′(Bf〈t,t〉〈3〉[1]) ∼= B̄fΦ(〈t,t〉)

and

F ′(cone(P ′
λ

ζ′
λ−→ Bfλ)) ∼= BfΦ(λ)

for all p-regular λ ∈ ΛB apart from 〈t, t〉, where ζ ′λ is a projective cover of the smallest submodule M

of Bfλ such that HomB(Bf〈t,t〉〈n〉, Bfλ/M) = 0 for all n ∈ Z.
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We will only make use of truncated versions of these equivalences. Let

f =
∑

(u,v)∈P

fλB(u,v) ∈ B and f̄ =
∑

(u,v)∈P

fλB̄(u,v) ∈ B̄.

If m ≥ 2, then by Proposition 95 the Morita equivalence F ′ above induces an equivalence

F = FB,B̄ : fBf -mod
∼
→ f̄ B̄f̄ -mod

such that

F (fBfλB(u,v)) ∼= f̄ B̄fλB̄(u,v)

for all (u, v) ∈ P. If m = 1, then 〈t, t〉 = λB(s, t) and, by Proposition 95, we have λ ∈ λB(P) if and

only if Φ(λ) ∈ λB̄(P). Hence the equivalence F ′ : Db(B-mod)
∼
→ Db(B̄-mod) induces an equivalence

F = FB,B̄ : Db(fBf -mod)
∼
→ Db(f̄ B̄f̄ -mod)

such that

F (fBfλB(s,t)〈3〉[1]) ∼= f̄ B̄fλB̄(s,t)

and

F (cone(P(u,v)

ζ(u,v)
−→ fBfλB(u,v))) ∼= f̄ B̄fλB̄(u,v)

for (u, v) ∈ P \ {(s, t)}, where ζ(u,v) is a projective cover of the smallest submodule M of fBfλB(u,v)

such that HomfBf (fBfλB(s,t)〈n〉, fBfλB(u,v)/M) = 0 for all n ∈ Z.

11.6. Main result. We are now ready to state and prove our result linking Cubist algebras and blocks

of symmetric groups. Let B be a block of weight 2. Define

xB :
{

(u, v) ∈ Z2 | u < v
}

−→ Z3

by

xB(u, v) =

{

(−u − 1, v, 0) if (u, v) ∈ Z2 \ PB,

(−u, 1 + v, 1) if (u, v) ∈ PB.

Then

XB = Im(xB) ∪ {(i, j, 1) ∈ Z3 | i + j ≤ 1}

is a Cubist subset of Z3. Indeed,

X−
B = Z × Z × Z≤0 ∪ {(i, j, 1) ∈ Z3 | i + j ≤ 1 or (−i, j − 1) ∈ P}

is an ideal in Z3 such that XB = X−
B \ X−

B [−1].

Example 98. As in earlier examples, we take p = 7 and κ = (12, 6, 6, 1, 1, 1, 1). Figure 7 shows part

of XB realised in the plane as a rhombus tiling. The image of P under xB is indicated by black vertices

and that of PB by square black vertices. Compare with Figure 6.
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Figure 7. Part of the Cubist subset XB when p = 7 and κ = (12, 6, 6, 1, 1, 1, 1)

Let UXB
be the Cubist algebra corresponding to XB and put e =

∑

x∈xB(P) ex ∈ UXB
.

Theorem 99. We have an equivalence

FB : eUXB
e-mod

∼
→ fBf -mod

such that for all (u, v) ∈ P,

FB(eUXB
exB(u,v)) ∼= fBfλB(u,v).

Proof. The case PB = ∅ is handled in §11.7.

Now suppose that B and B̄ form a [2 : m] pair and assume that the theorem is known to hold for

the block B. We need to prove that it holds for B̄.

Suppose that m ≥ 2. Then PB = PB̄, and hence xB = xB̄ and XB = XB̄. So we simply define

FB̄ = FB,B̄ ◦ FB.

Suppose that m = 1. We have PB̄ = PB∪{(s, t)}, where 0 ≤ s < t ≤ p−1. Thus xB(u, v) = xB̄(u, v)

for (u, v) ∈ P \ {s, t}, and xB̄(s, t) = xB(s, t)[1], and XB̄ = (XB \ {(xB(s, t)}) ∪ {xB (s, t) [1]}. Let

z = xB(s, t). By Theorem 77 and Lemma 78 we have an equivalence

G′ : Db (UXB
-mod)

∼
→ Db

(

UXB̄
-mod

)

such that

G′(UXB
ez〈3〉[1]) ∼= UXB̄

ez[1].

and

G′(cone(Q′
x

ξ′x−→ UXB
ex)) ∼= UXB̄

ex

for x ∈ XB \ {z}, where ξ′x is a projective cover of the smallest submodule M of UXB
ex such that

HomUXB
(UXB

ez〈n〉, UXB
ex/M) = 0 for all n ∈ Z. We know that Q′

x is either 0 or isomorphic to

UXB
ez〈n〉 for some n ∈ Z.
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Since (s, t) ∈ P, we have eez 6= 0, which implies the existence of an equivalence

G : Db (eUXB
e-mod)

∼
→ Db

(

ēUXB̄
ē-mod

)

such that

G(eUXB
ez〈3〉[1]) ∼= ēUXB̄

ez[1].

and

G(cone(Qx
ξx
−→ eUXB

ex)) ∼= ēUXB̄
ex

for x ∈ xB(P) \ {z}, where ξx is a projective cover of the smallest submodule M of eUXB
ex such that

HomeUXB
(eUXB

ez〈n〉, eUXB
ex/M) = 0 for all n ∈ Z. Put

FB̄ = FB,B̄ ◦ RFB ◦ H : Db(ēUXB̄
ē)

∼
→ Db(f̄ B̄f̄),

where H is a quasi-inverse to G. Then we have

FB̄(ēUXB̄
exB̄(s,t)) ∼= FB,B̄(RFB(eUXB

exB(s,t)[1])

∼= FB,B̄(fBfλB(s,t)[1])

∼= f̄ B̄f̄λB(s,t),

and for (u, v) ∈ P \ {(s, t)},

FB̄(ēUXB̄
exB̄(u,v)) ∼= FB,B̄(RFB(cone(Qx

ξx
−→ UXB

e
xB(u,v)

)))

∼= FB,B̄(cone(FB(Qx)
FB(ξx)
−→ BeλB(u,v)))

∼= f̄ B̄f̄λB(u,v).

It follows that FB̄ restricts to an equivalence ēUXB̄
ē-mod

∼
→ f̄ B̄f̄ -mod. ¤

11.7. Rouquier blocks. Now we assume that PB = ∅. In this case B is known as a Rouquier block

of weight 2 and is particularly well understood. We shall prove that there is an isomorphism eUXB
e

∼
→

fBf sending exB(u,v) to fλB(u,v) for all (u, v) ∈ P, and thus complete the proof of Theorem 99.

We have

X = XB = X0 ∪ X1,

where

X0 = Im(xB) = {(i, j, 0) | i + j ≥ 0}

and

X1 = {(i, j, 1) | i + j ≤ 1}.

We shall in fact prove that the algebra
∑

x,x′∈X0
exUX ex′ is isomorphic to a truncation of an infinite-

dimensional wreath product. Then a further truncation will yield the desired isomorphism.
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11.7.1. Reformulation in terms of wreath products. Let A be the path algebra of the infinite quiver

· · ·
γ−2

À
δ−1

·g−1

γ−1

À
δ0

·g0

γ0

À
δ1

·g1

γ1

À
δ2

· · ·

modulo the relations γiγi+1 = 0, δiδi−1 = 0, γiδi+1 + δiγi−1 = 0, for i ∈ Z; this is a graded algebra

with each arrow in degree 1. (We saw in Remark 29 that this algebra is isomorphic to UY , for any

Cubist subset Y ⊂ Z2.)

We now form the wreath product A o S2 = A ⊗ A ⊗ kS2, graded with kS2 in degree 0. Let σ

be the nonidentity element of S2. The following elements of A o S2 are a complete set of orthogonal

idempotents:

gij = gi ⊗ gj ⊗ 1, (i, j ∈ Z, i < j),

g±ii = gi ⊗ gi ⊗ (1 ± σ)/2, (i ∈ Z).

Now observe that (g1 + . . . + gp)A(g1 + . . . + gp) is a Brauer tree algebra of a line with p− 1 simple

modules, so is Morita equivalent to the principal block of kSp. It follows that g′(A o S2)g
′ is Morita

equivalent to the principal block of kSp oS2, where g′ =
∑

1≤i<j≤p−1 gij +
∑

1≤i≤p−1 g+
ii +

∑

1≤i≤p−1 g−ii .

On the other hand there is a Morita equivalence between the block B and the principal block of

kSp o S2 (see [3] and [4]), where the correspondence between simple modules is known explicitly.

Passing to truncated algebras, we obtain an isomorphism fBf
∼
→ g(A oS2)g that sends f〈i,j〉 to gij for

1 ≤ i ≤ j ≤ p− 1, where gii is defined to be g+
ii if i is even and g−ii if i is odd, and g =

∑

1≤i≤j≤p−1 gij .

For (u, v) ∈ P, we have λB(u, v) = 〈u+1, v〉 and xB(u, v) = (−u− 1, v, 0). So to obtain the desired

isomorphism between eUX e and fBf , it suffices to get an isomorphism eUX e
∼
→ g(A o S2)g sending

e(−i,j,0) to gij for 1 ≤ i ≤ j ≤ p − 1.

It will be more convenient to prove a stronger statement. Let

ẽUX ẽ :=
⊕

x,x′∈X0

exUX ex′ and g̃(A o S2)g̃ :=
⊕

i,j,i′,j′∈Z, i≤j, i′≤j′

gij(A o S2)gi′j′ .

We will show that there is an isomorphism ẽUX ẽ
∼
→ g̃(A oS2)g̃ sending e(−i,j,0) to gij for i, j ∈ Z, i ≤ j.
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Figure 8. XB in case PB = ∅.

11.7.2. A presentation for ẽUX ẽ. We first observe that ẽUX ẽ is a Koszul algebra, since X is a Cubist

subset and X0 is an ideal in (X ,¹), as in Figure 8. In particular it is quadratic algebra.

So using the alternative presentation of U3 given in Remark 18 we deduce a presentation of ẽUX ẽ

by quiver and relations. The quiver has vertices

{ei,j | i, j ∈ Z, i + j ≥ 0},

and arrows

{αi,j,1, αi,j,2 | i + j ≥ 0},

{βi,j,1, βi,j,2 | i + j ≥ 1}.

The arrows αi,j,1 and αi,j,2 are directed from ei,j to ei+1,j and from ei,j to ei,j+1, and the arrows βi,j,1

and βi,j,2 are directed from ei,j to ei−1,j and from ei,j to ei,j−1. Then ẽUX ẽ is isomorphic to the path
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algebra of this quiver, modulo relations

αi,j,1αi+1,j,1 = 0 (i + j ≥ 0),

αi,j,2αi,j+1,2 = 0 (i + j ≥ 0),

βi,j,1βi−1,j,1 = 0 (i + j ≥ 2),

βi,j,2βi,j−1,2 = 0 (i + j ≥ 2);

(0)

αi,j,1αi+1,j,2 = αi,j,2αi,j+1,1 (i + j ≥ 0),

βi,j,1βi−1,j,2 = βi,j,2βi,j−1,1 (i + j ≥ 2),

αi,j,1βi+1,j,2 = βi,j,2αi,j−1,1 (i + j ≥ 1),

αi,j,2βi,j+1,1 = βi,j,1αi−1,j,2 (i + j ≥ 1),

α−j,j,1β−j+1,j,2 = 0 (j ∈ Z),

α−j,j,2β−j,j+1,1 = 0 (j ∈ Z);

(1)

αi,j,1βi+1,j,1 = βi,j,1αi−1,j,1 (i + j ≥ 2),

αi,j,2βi,j+1,2 = βi,j,2αi,j−1,2 (i + j ≥ 2),

α−j,j+1,1β−j+1,j+1,1 − β−j,j+1,1α−j−1,j+1,1 = β−j,j+1,2α−j,j,2 − α−j,j+1,2β−j,j+2,2 (j ∈ Z),

α−j,j,1β−j+1,j,1 = α−j,j,2β−j,j+1,1 (j ∈ Z).

(2)

The three groups of relations come from (U0), (U1’) and (U2’), respectively.

11.7.3. Construction of the isomorphism. We define a homomorphism

ẽUX ẽ → g̃(A o S2)g̃

by

ei,j 7→ g−i,j ,

αi,j,1 7→

{

δ−i ⊗ gj ⊗ 1 if i + j ≥ 1,

δj ⊗ gj ⊗ 1 + (−1)jgj ⊗ δj ⊗ σ if i + j = 0,

αi,j,2 7→

{

g−i ⊗ γj ⊗ 1 if i + j ≥ 1,

gj ⊗ γj ⊗ 1 + (−1)jγj ⊗ gj ⊗ σ if i + j = 0,

βi,j,1 7→

{

γ−i ⊗ gj ⊗ 1 if i + j ≥ 2,
1
2

(

γj−1 ⊗ gj ⊗ 1 + (−1)jγj−1 ⊗ gj ⊗ σ
)

if i + j = 1,

βi,j,2 7→

{

g−i ⊗ δj ⊗ 1 if i + j ≥ 2,
1
2

(

gj−1 ⊗ δj ⊗ 1 + (−1)j−1gj−1 ⊗ δj ⊗ σ
)

if i + j = 1.

This yields a homomorphism: that the images of the generators satisfy the relations stated in §11.7.2

is a straightforward calculation in A o S2.
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The graded Cartan matrix C(q) for ẽUX ẽ is just a submatrix of that of UX , which can be calculated

using Proposition 86. We get

C(q)(i,j),(i′,j′) =







































1 + q2 + q4 if (i, j) = (i′, j′) and i + j = 0,

1 + 3q2 + q4 if (i, j) = (i′, j′) and i + j = 1,

1 + 2q2 + q4 if (i, j) = (i′, j′) and i + j ≥ 2,

q + q3 if |i − i′| + |j − j′| = 1,

q2 if |i − i′| = 1 and |j − j′| = 1,

0 otherwise.

Replacing (i, j) by (−i, j) and (i′, j′) by (−i′, j′), we obtain the same answers for the graded Cartan

matrix of g̃(A o S2)g̃, by direct calculation (see, e.g., Proposition 7.1 of [6]). So to show that our

homomorphism is an isomorphism as desired, it suffices to demonstrate that it is surjective. This can

be done by making the following observations:

• The degree 0 and degree 1 components of g̃(A oS2)g̃ are contained in the image of our homo-

morphism, so it is enough to show that they generate g̃(A o S2)g̃ as an algebra.

• The algebra A o S2 is generated by its degree 0 and 1 components.

• Define hii to be g−ii if i is odd and g+
ii if i is even. Then hii(A o S2)1gi′j′ 6= 0 if and only if

gi′j′(A o S2)1hii 6= 0 if and only if (i′, j′) = (i − 1, i) or (i′, j′) = (i, i + 1).

• The product maps

gi−1,ig̃ (A o S2)1 g̃ ⊗ g̃ (A o S2)1 g̃gi−1,i → gi−1,i (A o S2)2 gi−1,i

and

gi−1,ig̃ (A o S2)1 g̃ ⊗ g̃ (A o S2)1 g̃gi,i+1 → gi−1,i (A o S2)2 gi,i+1

and

gi,i+1g̃ (A o S2)1 g̃ ⊗ g̃ (A o S2)1 g̃gi−1,i → gi,i+1 (A o S2)2 gi−1,i

are surjective.

12. Open questions

Let r = 2. The affine Lie algebra gl∞ is associated to the infinite Brauer line UX , via the Cartan

matrix CUX
(−1). Via a construction of Ringel-Hall type, the positive part of gl∞ can be obtained

as a Lie algebra of constructible functions on the set of indecomposable VX -modules on which arrows

act nilpotently (G. Lusztig, H. Nakajima). D. Joyce has shown analogously how to associate a Lie

algebra L(A) to any abelian category A. Are the examples L(VX -nil) of any distinguished interest,

when r > 2 ? Can one define analogues of the full Lie algebra gl∞ in this setting, and not only its

positive part ?

Can one deform the Cubist algebras in an interesting way ? In case r = 2, PBW deformations of

VX have been introduced by Crawley-Boevey (“deformed preprojective algebras”), and deformations

of VX o Σn by Etingof, and Ginzburg (“symplectic reflection algebras”).

Let p be a prime number. Let (K,O, k) be a p-modular system. In case r = 2, there is a polynomial

deformation ŨX = O[z]⊗UX of UX defined over O, such that ŨX /(z−p) is the Green order associated

to an infinite line, defined over O. Can one make analogous constructions for r > 2 ?
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Is it possible to deform the Cubist algebras, whilst preserving all their homological structure (in-

cluding decomposition matrices, etc.) ?

Classify all symmetric algebras with highest weight module categories, whose Loewy length is ≤ 5.

In case r = 2, the preprojective algebra VX is closely related to the hereditary algebra kA∞ with

linear quiver of type A∞. There are analogues of this algebra, and its Koszul dual, in case r > 2.

Indeed, the algebras

UX =
⊕

z,x∈X ,i∈Z

ExtiVX -mod(∆VX
(z), ∆VX

(x) < i >),

VX =
⊕

z,x∈X ,i∈Z

ExtiUX -mod(∆UX
(z), ∆UX

(x) < i >),

are Koszul dual to each other, with Cartan matrices DUX
(q), DVX

(q). One can associate such a pair

of algebras to any dual pair of standard Koszul algebras. Are these of any interest ?
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5. Joseph Chuang and Raphaël Rouquier, Derived equivalences for symmetric groups and sl2-categorification, Ann. of

Math. (2) (2005), to appear, math.RT/0407205.
6. Joseph Chuang and Kai Meng Tan, Representations of wreath products of algebras, Preprint, 2001.
7. E. Cline, B. Parshall, and L. Scott, Algebraic stratification in representation categories, J. Algebra 117 (1988), no. 2,

504–521. MR MR957457 (90d:18004)
8. , Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99.
9. Vlastimil Dlab, Quasi-hereditary algebras revisited, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 4 (1996), no. 2,
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