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Abstract—Cloud computing motivates data owners to econom-
ically outsource large amounts of data to the cloud. To preserve
the privacy and confidentiality of the documents, the documents
need to be encrypted prior to being outsourced to the cloud. In
this paper, we propose a lightweight construction that facilitates
ranked disjunctive keyword (multi-keyword) searchable encryp-
tion based on probabilistic trapdoors. The security analysis yields
that the probabilistic trapdoors help resist distinguishability
attacks. Through the computational complexity analysis we
realize that our scheme outperforms similar existing schemes. We
explore the use of searchable encryption in the telecom domain
by implementing and deploying our proof of concept prototype
onto the British Telecommunication’s Public Cloud offering and
testing it over a real corpus of audio transcriptions. The extensive
experimentation thereafter validates our claim that our scheme
is lightweight.

Index Terms—Probabilistic Trapdoors; Indistinguishability;
Privacy Preservation; Inverted Index.

I. INTRODUCTION

Over the past decade the use of file hosting services (such as
Amazon, Dropbox, etc.) has seen a trend due to which Cloud
has emerged as Data-as-a-Service (DaaS) platform. There are
many advantages of outsourcing data to the cloud including
agility, availability and cost effectiveness but they lead to
security and privacy concerns. Searchable Encryption (SE) has
gained importance with the advent of DaaS that allows a client
to encrypt the documents prior to outsourcing them to the
cloud in such a way that the search queries can be generated
by the client and the Cloud Server may be delegated to conduct
the search on the client’s behalf.

Three main challenges associated with SE as discussed in
[1] are (a) security and privacy (b) efficiency and (c) query
expressiveness. Security, privacy and efficiency are discussed
in detail throughout this paper. Query expressiveness refers to
the degree to which a user can search for complex queries,
for example, a multi-keyword query can be termed more
expressive as compared to a single-keyword query. Similarly a
ranked enabled SE scheme is more expressive as compared to
an unranked SE scheme. In order to deal with the challenges
associated to security and privacy we require a SE scheme.

In this paper, we propose a index-based, ranked multi-
keyword searchable encryption (RMSE) scheme that is not
only efficient but equally secure and privacy preserving.

Ranked search is desirable for many applications where only
the most relevant documents are needed, instead of all the
documents which contain the keyword (search query). Ranked
disjunctive multi-keyword search poses a more difficult chal-
lenge. Often search queries are not single word but a group
of words. Our aim is to provide a solution for ranked multi-
keywords search on encrypted data. We consider disjunctive
queries, meaning that the search returns a document which
contains at least one keywords in the query. However, the more
relevant document is one which has all the keywords, instead
of the one which has only one keyword. For example, if a
client searches for “A brown fox”, the documents containing
all of the three keywords will be given priority over the
document containing fewer number of these keywords.

Apart from generic applications of SE on Cloud, SE has
been proposed in the healthcare domain [2] to perform search
over the encrypted medical records. In [3], authors have
explored the use of SE in performing secure search over the
genomic signatures outsourced to the cloud server. Whereas,
SE over email servers has been carried out in [4]. Apart from
these domains SE could have a profound impact on IoT, e-
commerce, business intelligence and data science.

A. Our Contribution

In this paper, we make the following contributions to the
field of SE:

• We design and present a novel and lightweight ranked
based multi-keyword searchable encryption (RMSE)
scheme that supports disjunctive queries. The trapdoors
are probabilistic that helps to maintain privacy of the
search by resisting distinguishability attacks.

• We introduce stronger notions of security in searchable
encryption and evaluate the security of our scheme.

• We implement and test our proof of concept prototype
over an encrypted Telephone Speech corpus (real dataset)
by deploying it to the British Telecommunication’s Public
Cloud offering.

B. Organization

Section II explains the proposed RMSE architecture, the
threat model along with the associated security and privacy
concerns. Section III, highlights the literature review and



discusses the existing relevant schemes. Finally, in Section IV,
we present our RMSE scheme. In Section V, we perform the
security analysis. In Section VI, we present the computational
complexity analysis of similar schemes. The same section,
explains the implementation details and the computational
time of our scheme. Conclusions are drawn towards the end.

II. A HIGH LEVEL VIEW OF OUR PROBLEM

We now describe the system architecture and present our
RMSE scheme thereafter.

A. The System and Threat Model

The architecture of our ranked multi-keyword searchable
encryption (RMSE) scheme comprises of three entities: Alice,
Bob (client/ data owner), cloud server (CS). Bob converts all
the conversation that he has with Alice to transcriptions. Hence
Bob’s corpus contains n documents D = {D1, D2, . . . , Dn}.
Bob outsources the encrypted corpus to the CS. He wants to
perform disjunctive multi-keyword search over the encrypted
documents while preserving the privacy of the documents
and the search. Bob identifies a set of unique keywords
W = {W1,W2, . . . ,Wm} from the documents D. There is
a high probability that Bob’s trapdoor (search query) may
be disjunctively mapped to multiple documents, therefore, he
wishes retrieve documents based on some ranking mechanism.

In [5], a formula (equation 1) has been presented that is
commonly used for the relevance frequency generation by
researchers [6][7].

RF (W,D) =

W∑
t=1

1

|D|
· (1 + ln f(WD)) · ln(1 +

N

fW
) (1)

where W denotes the keyword to be searched; D denotes
the document; |D| denotes length of the document obtained
by counting the words appeared in the document D; f(D,W )

denotes number of times a word W appears within a particular
document D; fW denotes the number of documents in the
dataset that contain the word W and N denotes the total
number of documents in the dataset.

Bob generates a secure ranked index table I and outsources
it to the CS along with the encrypted documents D. The
CS is assumed to be “trusted but curious”, i.e. the CS does
not attempt to modify or delete the encrypted documents,
index table or trapdoor, but instead, the CS is curious to
learn additional information about the outsourced documents
or queries that are being sent by Bob to the CS. In order
to search for multiple keywords, Bob using his private key
generates a valid probabilistic trapdoor and sends it to the
CS. The CS searches over the secure index table I on Bob’s
behalf and returns the encrypted document identifiers in the
ranked order. From here on, Bob will be represented as a
client, throughout the rest of the paper.

B. Privacy Concerns

Two threat models widely used in literature [8][9][10]
explain the client’s privacy concerns :

• Known Cipher-text Model: The CS is only given access
to the data that the client outsources, such as, encrypted
set of documents, secure index table, and trapdoors. The
CS is also allowed to maintain a history of the trapdoors
and the search outcome.

• Known Background Model: Apart from the information
that the CS has in the known cipher-text model, the CS
also has some additional information about the datasets.
The CS also knows the nature of the documents, fre-
quency of the encrypted keywords with which they appear
within a document.

The confidentiality of the document’s is achieved by encrypt-
ing them before outsourcing them to the CS. Therefore, we
are more concerned about the privacy that can be violated by a
SE scheme in itself. The above mentioned threat models lead
to the following privacy related concerns:

• Keyword privacy: Apart from the outcome of the search,
the CS should not deduce any keyword related informa-
tion from the secure index and trapdoors.

• Trapdoor unlinkability: The CS should not be able to link
the trapdoor to the previous queries or index table prior
to the search. This requires a probabilistic trapdoor that
results in the generation of a different trapdoor for the
same set of keywords searched twice.

Section V presents the security definitions that take the afore-
mentioned privacy concerns into account to provide a greater
level of security. We now formally define our RMSE Scheme.

Definition (Ranked Multi-Keyword Searchable Encryption
Scheme (RMSE)) Our RMSE comprises of five polynomial
time algorithms Π = (KeyGen, Build Index, Build Trap,
Search Outcome, Dec) such that:
(K, ks) ← KeyGen (1λ): is a probabilistic key generation

algorithm run by the client. The algorithm takes a security
parameter λ as the input and returns a master key K and
a session key ks.

(I)← Build Index(K,D): is a deterministic algorithm run by
the client to generate a secure index table I . The algo-
rithm as input takes a master key K and a collection of
documents D to be outsourced to the CS. The algorithm
returns a secure index I .

TW ← Build Trap(K, ks,W, num): is a probabilistic algo-
rithm run by the client. The algorithm, as the input
requires the master key K, a session key ks, a set of
disjunctive keywords W , the number (num) of documents
D required. The algorithm returns a trapdoor TW .

X ← Search Outcome(ks, I, TW ): is a deterministic algorithm
run by the CS. The algorithm takes the session key ks,
index table I and the trapdoor (TW ) as the input and
returns X , a set of desired document identifiers encrypted
EncK(id(Dj)) containing the set of keywords W in
ranked order.

Dj ← Dec(K,X): is a deterministic algorithm run by the
client. The algorithm takes client’s master key K and
encrypted set of document identifiers EncK(id(Dj)) to
decrypt and uncover the document id’s.



Correctness: A RMSE scheme is correct if for the security
parameter λ, master key K and the session key ks generated
by KeyGen(1λ), for (I) output by Build Index(K,D), the
search using the trapdoor TW generated for the set of keywords
W , always returns the correct set of encrypted document
identifiers EK(id(Dj)) containing the disjuctive keywords W
in ranked order. A RMSE scheme is correct if the following
are true:

• If W ∈ Dj then the following should hold with a non-
negligible probability

Search Outcome(ks, I, TW )=D ∩ Dec(K,X)
= Dj ,where 1 ≤ j ≤ n

• If W /∈ Dj then the following should hold with a non-
negligible probability

Search Outcome(ks, I, TW )=D ∩ Dec(K,X) = 0

Soundness : A RMSE scheme is sound if for the security
parameter λ, master key K and the session key ks generated
by KeyGen(1λ), for (I) output by Build Index(K,D), the
search using the trapdoor TW generated for disjunctive set
of keywords W , always returns sound results i.e. the result
should not contain any false positives or false negatives.

A RSE scheme is sound if the following are true:
• If W ∈ Dj then the following should hold with a non-

negligible probability
Search Outcome(ks, I, TW ) = 1

• If W /∈ Dj then the following should hold with a non-
negligible probability

Search Outcome(ks, I, TW ) = 0

III. LITERATURE REVIEW

In [7][6], authors for the first time introduce the concept
of ranking in SE. The authors present two schemes for
single keyword ranked search over encrypted text that are an
extension of [11]. There is an advantage of their later scheme
as it supports dynamic inverted index i.e. whenever a new
file is uploaded to the CS the re-ranking of the entire index
table is not required. Furthermore, the scheme helps to keep
the ranking score encrypted that helps to avoid leakage of
occurrence of a particular keyword to the server. However,
in [12] the authors have launched a successful differential
attack on the aforementioned scheme and demonstrated that
the scheme still leaks the relevance scores to the adversary
resulting in distinguishability attacks.

Kamara et al. in [13] have proposed a dynamic searchable
symmetric encryption scheme that is an extension of their
previous work presented in [11]. Their scheme facilitates the
addition, deletion or modification of documents on run time
with minimal modification and recompilation of the inverted
index. For the deletion of the file they use an additional data
structure that contains the pointers to the file being deleted. For
the modification they use homomorphic encryption to encrypt
the pointer so that based on the homomorphic encryption
properties the server can get to modify the file. Though this
can be termed as a breakthrough in the field of SE, there
is a drawback of their scheme i.e. the generated trapdoor is

deterministic and the same trapdoor is generated for the same
word every time it is searched. Hence, their scheme cannot
resist distinguishability attacks.

In [10], Cao et al. have proposed a ranked based multi-
keyword SE scheme. The authors for the first time introduce
the concept of “coordinate matching” that takes “as many
matches as possible” into consideration. They use a vector
for the trapdoor generation, where each element of the vector
represents a particular keyword. To preserve the privacy of
the documents, they add some dummy keywords to a specific
document at random. This is not feasible as it increases the size
of the index. For the ranking they compute the Euclidean Norm
against every document vector, which is again not feasible.
Although, they are achieving ranking but due to the dummy
keywords the precision of the results decreases.

Li et al. in [9] have proposed a ranked multi-keyword
SE scheme that is efficient as compared to the constructions
proposed by Cao et al. in [10]. It is surprising that they use
the term “conjunctive keywords” but perform the search just
like disjunctive keywords. Hence, they loose the benefit of
conjunctive keywords. They use a relevance score generation
formula quite similar to the one that we use. They also use
inverted index for the blind storage. The authors represent
the trapdoor by a vector, where each element represents the
presence/ occurrence of a keyword. They add dummy integers
to the vector to increase the privacy of the trapdoor without
measuring the effect it has on the precision of the results.

IV. PROPOSED RMSE SCHEME

As discussed in Section II, our RMSE scheme comprises
of five polynomial time algorithms that are explained in this
section. (Table I shows the notations used in our scheme).

TABLE I
NOTATIONS AND ABBREVIATIONS

CS –Represents a Cloud Server.
D –Denotes a set of all possible documents to be outsourced to the
cloud. That is D=D1, D2, . . . , Dn.
W –Denotes a set of unique Keywords extracted from D such that
W =W1,W2, . . . ,Wm.
W –Denotes a set of unique disjunctive Keywords that are to be
searched such that W =W1,W2, . . . ,Wi.
|W|–Denotes total number of identified distinct keywords.
|D|–Denotes the size of a particular document, obtained by counting
the words appeared in the document D.
RF –Denotes the relevance frequencies of the keywords W among
the documents D.
Mask(RF ) –Denotes the masked RF.
P –Denotes a prime number of the size λ (security parameter) +1.
id(Di) –Denotes the set of unique identifiers for D.
I –Denotes the secure inverted Index table stored on CS that provides
ranked keyword searching.
TW –Represents the unique trapdoors generated to identify documents
D containing disjunctive keywords W .
Into Integer –Represents the conversion of a value from Hexadecimal
to positive Integer.
Enc –Denotes a probabilistic encryption algorithm such as AES-CBC.
Dec –Denotes the decryption algorithm corresponding to Enc.
x← –Denotes x contains the content of the variable A.
H(·) –Represents a keyed one-way hash function.
K –Represents the master key.
ks –Represents the session key.



A. KeyGen Algorithm

The KeyGen algorithm is triggered by the client. The client
provides the security parameter λ against which he receives
the master key K; where, K ∈ {0, 1}λ. The master key K
is kept secret. The client generates a session key ks; where,
ks ∈ {0, 1}λ and sends it to the CS.

Algorithm 1: KeyGen

a) Input: A security parameter λ.
b) KeyGen:

Generate random keys K, ks ← {0, 1}λ.
c) Output: Master key K and session key ks.

B. Build Index Algorithm

The client generates an index table I that is represented
by a dynamic array A. The client uses a cryptographic Hash
function

H : {0, 1}λ ×W → {0, 1}L

where L is the length of the output. The keyed Hash function
H uses the master key K to generate hash of the keywords
and convert them to positive integers.

Algorithm 2: Build Index

a) Input: A set of documents D and a master key K, a Hash functions
H(·).
b) Initialization:
• Initialize dynamic 2D Array A.
• Scan D and build W , a set of unique and distinct keywords

occurring in D.
• Initialize Prime number P of the size λ+ 1 bits.

c) Build Index I:
• for 1 ≤ t ≤ |W|:

– let a← Into Integer(HK(Wt)) mod P
– Compute a−1 and store it in A[1][t];
– Compute EK(id(Dn)), store it in A[t][1];
– Calculate the RF for Wt occurring in Dn using equation (1)

and store the value at the respective location within A;
• Mask(RF ) :

– for 1 ≤ m ≤ |W|:
◦ for 1 ≤ n ≤ D:

Choose R in Zp
A[n+ 1][m+ 1] = A[n+ 1][m+ 1] ∗R

d) Output: Index table I

The array A of dimensions D ×W holds three attributes.
The first row of the array consists of values that are gener-
ated by calculating the inverse of the hash of keywords W
after converting it into positive integer under mod P . The
first column consists of the encrypted document identifiers
EncK(id(D)) of all the outsourced documents. Whereas, the
remaining entries of the array are the relevance frequencies of
the keywords W among the documents D. The relevance fre-
quencies are calculated according to equation (1). Each column
represents the relevance frequencies associated to a particular
keyword W . We multiply each column (excluding the first
row and first column of the array A) with a random number R
within Zp, represented by Mask(RF ). This way the relevance
frequencies are masked while maintaining proportion between
the relevance scores of the keywords W occurring in different

documents. However, in case document does not contain a
keyword, the particular entry within the table is left blank.
Therefore, the server from the index table can only learn the
presence or absence of a keyword but can never deduce the
keyword or launch a statistical attack. This helps to prevent
frequency analysis attack and disclosure of document size. For
further enhancing the security in case of active adversary, one
may also use Order Preserving Hashing for masking the RF .

C. Build Trap Algorithm

The client generates a trapdoor to search for documents
containing a set of disjunctive keywords. The client using a
probabilistic symmetric encryption algorithm such as AES,
encrypts the search string and converts the results into positive
integer under mod P , represented by b in the algorithm. The
client using the master key K generates the hash H(·) of the
keyword set and converts it into positive integer under mod
P , represented by a in the algorithm. Now c is computed
by multiplying a with b under mod P . The client initializes
a dynamic array B having dimensions 1 × W and stores c
in the respective locations corresponding to all the keywords
present in the string. The client uses a cryptographic keyed
Hash function

H : {0, 1}λ ×W → {0, 1}L

where L is the length of the output. The keyed Hash function
H uses the master key K to generate a, the hash of the
keyword and uses session key ks to generate d, the Hks(b).
The trapdoor consists of d,B and the desired number of
documents represented by num.
The trapdoor TW is transmitted to the CS. Using this trapdoor
the CS performs search on the client’s behalf.

Algorithm 3: Build Trap

a) Input: The master key (K), the session key (ks), keywords (W ),
Hash function H(·), desired number of documents (num).
b) Initialization:

Initialize dynamic Array B.
c) Trapdoor Generation:
• let b← Into Integer(EncK(W )) mod P .
• for 1 ≤ u ≤W

– let a← Into Integer(HK(W )) mod P
– let c← a ∗ b mod P
– B[u] = c
• let d← Hks (b).
• TW ← (d,B, num).

d) Output: Transmit TW to CS.

D. Search Outcome Algorithm

CS now using the transmitted trapdoor searches for the doc-
uments containing the disjunctive multi-keywords. The server
has d,B and num. The CS tries to find entries for which the
following condition holds true d == Hks(B[u] ∗ a−1modP )
where u represents the total number of keywords in the search
query. On a positive hit, CS performs the addition of the
frequencies represented as Z, the CS also records the number
of words that add up to form a particular frequency within
Z. This helps us achieve disjunctive search. In this way



if a client has searched for the three disjunctively chosen
keywords, the document containing all the three keywords will
be given priority over the documents containing fewer number
of the searched keywords. Now, within Z, CS searches for the
highest value, records the index location and correspondingly
stores the document identifier in the array X . This helps the
CS achieve ranking of the documents. The total number of
returned encrypted document identifiers are equal to the num
mentioned in the trapdoor.

Algorithm 4: Search Outcome

a) Input: A trapdoor TW transmitted by the client, a session key ks, a
Hash functions H(·) (same as Build Trap phase) and the index table
I .
b) Initialization:
• Dynamic Arrays X,Y, Z.

c) Searching:
• for 1 ≤ q ≤W

– for 1 ≤ l ≤ sizeofI:
◦ if (d == Hks (B[q] ∗ a−1modP )) :
� Y [q] = l
� for 1 ≤ m ≤ Y.length:
. Add all the RF within a row, store it in Z. Also store

the number of RF that add up to form a particular index of Z.
. Find the highest value in Z OR gate {the greatest

number of keywords added}, return the EncK(id(Di)) corresponding
to the I[l][identifiedvalue].

– X[ ]← EncK(id(Di))
c) Output: Ranked encrypted document identifiers EncK(id(Di)).

E. Dec Algorithm

The client after receiving the ranked encrypted document
identifiers, decrypts them to uncover the document identifiers
containing the required set of keywords.

Algorithm 5: Dec

a) Input: The master key (K), A set X of encrypted document
identifiers stored in ranked order.
b) Decryption:
• for 1 ≤ o ≤ sizeofX:

–DecK(X[o]);
c) Output: Documents identifiers id(Di)

V. SECURITY ANALYSIS

Firstly, we revisit the existing security definitions and ex-
plain their limitations. We propose and present new security
definitions applicable to our scheme and in accordance with
the threat model presented in Section II.

A. Limitations of Previous Definitions

Curtmola et al. in [11] claimed that all the previous defini-
tions did not provide adequate amount of security, hence they
were vulnerable to security attacks. Notwithstanding the previ-
ous definitions, they introduced two new definitions Adaptive
and Non-Adaptive Indistinguishability. These definitions are
widely accepted and used to date.

We remark that Curtmola’s work was indeed a breakthrough
and provides the desired level of security when the trapdoor
is deterministic. In [14], again authors clearly state that “A
serious limitation of known SSE constructions (including ours)

is that the token they generate are deterministic, in the sense
that the same token will always be generated for the same
keyword. Currently, it is not known how to design efficient SSE
schemes with probabilistic trapdoors”. Since our proposed SE
construction is based on probabilistic trapdoors, therefore we
term the definitions proposed by them a “Baseline” for any
SE scheme and we require stringent definitions to prove the
security of our proposed RMSE scheme.

B. Proposed Definitions

Definition 1:(Keyword-Trapdoor Indistinguishability for
RMSE- Informal Version) A RMSE scheme is secure in the
sense of Keyword-Trapdoor Indistinguishability if for any two
adaptively chosen keywords and constructed trapdoor for any
one of the chosen keywords, no (probabilistic polynomial-time)
adversary can distinguish the trapdoor of one keyword from
the other with probability non-negligibly better than 1/2.

Proof Sketch: We assume that the adversary chooses
the disjunctive multi-keywords adaptively i.e. based on the
outcome of the previous search the selection of multiple
keywords can be made. Against the selected keywords the
adversary is given access to the corresponding trapdoor.
This way the adversary may form a history containing the
keywords and associated trapdoors. Now from the past
history, the adversary has adaptively select two distinct
queries comprising of any number of multiple keywords. The
adversary is given one trapdoor corresponding to any of the
queries sent earlier. The adversary is successful if it guesses
the query corresponding to the generated and transmitted
trapdoor. Intuitively, this could lead the adversary to perform
more sophisticated attacks and violate the privacy of the
search.

Definition 2:(Trapdoor-Index Indistinguishability for RMSE-
Informal Version) A RMSE scheme is secure in the sense of
Trapdoor-Index Indistinguishability if for any two adaptively
chosen keywords, the constructed trapdoor and index entries
for any of the chosen keywords, no (probabilistic-time) adver-
sary can distinguish the index entry of one trapdoor from the
other with the probability non-negligibly better than 1/2.

Proof Sketch: The adversary is given access to the
trapdoors and the associated index table entries. We assume
that the adversary chooses the queries comprising of multiple
keywords adaptively i.e. based on the previous history shared,
the selection of the query can be made. Against the selected
query the adversary is given access to the corresponding
trapdoor and the associated index table entry. Now the
adversary has to select two distinct queries adaptively making
a selection from the past history. The adversary is given one
trapdoor corresponding to any of the queries sent earlier. The
adversary is successful if it guesses the index table entry
corresponding to the trapdoor. Intuitively, this could lead the
adversary to perform more sophisticated attacks and if the
scheme lacks to provide indistinguishability, the adversary
may violate the privacy of the search.



Theorem 1: RMSE is a completely indistinguishable SE
scheme.

Proof Sketch: At a very high level, this proof for our RMSE
automatically follows the proofs of definition 1 and definition
2. Since the trapdoors are probabilistic, i.e. for the same
keywords queried twice, an adaptive adversary is not able to
predict the result prior to performing the search. Therefore,
the RMSE scheme ensures Keyword-Trapdoor and Trapdoor-
Index indistinguishability. Having said this, the adversary
cannot even guess the required document identifiers prior to
the search. Hence, our proposed RMSE can be termed as
completely indistinguishable.

The above definitions and theorem conclude that since
our scheme is based on a probabilistic trapdoor hence it is
secure under the Known Cipher-text Model and the known
background model. Furthermore, the indistinguishability
security proof assures that our scheme mitigates the privacy
concerns associated to the keywords and trapdoors.

Theorem 2: RMSE ensures correctness and soundness.
Proof Sketch: At a very high level, we prove the correctness

and soundness of our proposed RMSE scheme. It is straight-
forward to verify that for two distinct keywords, different
hashes appear due to which different trapdoors are generated.
Therefore, while searching for multiple keywords, there is a
negligible probability that the same hashes may appear for
different keyword. The soundness property is associated to the
correctness. Since, using the inverses we are correctly able to
map the trapdoor to the index entry, therefore, the correct set
of encrypted document identifiers will definitely be returned
to the client. This leads to the soundness of our proposed
RMSE scheme. In other words, if a scheme does not ensure
correctness, it cannot provide soundness.

Hence, the proposed RMSE scheme ensures a high level of
security by defying any distinguishability attacks.

VI. PERFORMANCE ANALYSIS

Performance analysis helps validate the claim of our pro-
posed scheme being “lightweight”. This is a two-fold process
i.e. we perform the asymptotic comparative analysis of our
proposed scheme against similar existing schemes, then we
implement a proof of concept prototype by deploying it to
the British Telecommunication’s Public Cloud offering and
measuring the computational time of our scheme over a real
corpus.

A. Complexity Analysis

It is observed that the KeyGen and the Dec phase of all the
schemes is nearly identical, therefore, our analysis does not
take these two phases of the schemes into account.

Starting with MRSE I and MRSE II [10], the main differ-
ence between MRSE I and MRSE II is that MRSE II is more
privacy preserving. For the Build Index, MRSE I requires two
multiplications over the matrix of the order (d+ 2) ∗ (d+ 2)
and a (d + 2)-dimension vector. Hence, the total computa-
tional complexity of the Build Index is O(md2). Similarly,

TABLE II
COMPUTATIONAL COMPLEXITY ANALYSIS

Schemes Build Index Build Trap Search Outcome
MRSE I

[10]
O(md2) O(d2) O(md)

MRSE II
[10]

O(md2 + U2) O(d2) O(md+ U)

EMRS [9]
O(md2 + d2) O(d2) O(d

′
ds

′
)

This Paper O(d+ dm) O(d
′
) O(dd

′
+m

′
d
′
)

d represents the total number of keywords, (m) is the total number of
documents, U represents the dummy keywords, (d

′
) represents the number

of keywords in the trapdoor, s
′

represents the number of a blocks in a
document including dummy blocks, m

′
represents the documents containing

the keyword d
′
.

MRSE II requires O(md2 +U2), where U dummy keywords
are added to preserve the privacy. The Build Trap phase for
both MRSE I and MRSE II requires two multiplications over
the matrix of the order (d+2)∗(d+2) and a (d+2)-dimension
vector. Hence the complexity of Build Trap phase is O(d2).
In case of MRSE I, the Search Outcome phase requires to
compute the inner product of two (d + 2)-dimension vectors
twice for the dataset containing m documents, resulting in
O(md). The complexity for MRSE II is O(md+ U).

Analyzing the EMRS scheme [9], the Build Index requires
two multiplications over the matrix of the order (d+ 2)∗ (d+
2) and a (d + 2)-dimension vector. For the relevance score
generation a computation of O(md) is required. Therefore, the
total computational complexity of the Build Index is O(md2+
md). For the Build Trap phase, two multiplications over the
matrix of the order (d+ 2) ∗ (d+ 2) and a (d+ 2)-dimension
vector are required. So the complexity of Build Trap is O(d2).
The search requires O(d

′
ds

′
).

Now, we present the computational complexity of our
proposed RMSE scheme. The main task in the Build Index
is to calculate the Hash of all the keywords in the dictionary
and compute their inverses. This leads to the computational
complexity of O(d). To enhance the privacy of the index, we
have to mask the entries. Since the masking and relevance
frequencies can be calculated simultaneously, the total compu-
tation complexity for the Build Index of the proposed RMSE
scheme is O(d + dm). The computational complexity of the
Build Trap is dependent upon the total number of keywords
(d

′
) in the trapdoor. So, for every keyword in the trapdoor, we

have to calculate the Hash. Hence, the Build Trap requires
O(d

′
) computational resources. The searching is performed

at the CS. For every keyword (d
′
) in the trapdoor, the CS

has to parse all the keywords (d) contained in the index table
consuming O(d∗d′

). After that the CS has to obtain the ranked
documents so it has to parse the documents m

′
containing the

keyword d
′
. Therefore, the computational complexity on the

whole for the Search Outcome phase becomes O(dd
′
+m

′
d

′
).

B. Dataset Description

We use the Switchboard-1 Telephone Speech Corpus (LDC
97S62) [15] for testing our implementation originally collected
by Texas Instruments in 1990-1, under DARPA sponsorship.



The Switchboard-1 speech database [16] is a corpus of spon-
taneous conversations which addresses the growing need for
large multi-speaker databases of telephone bandwidth speech.
The corpus contains 2430 conversations averaging 6 minutes
in length; in other words, over 240 hours of recorded speech,
and about 3 million words of text, spoken by over 500 speakers
of both genders from every major dialect of American English.
The dataset comprises of more than 120,000 distinct keywords.

C. System Specification

We have implemented our algorithms in Java and presented
the results in the form of graphs using Excel.We have deployed
the client side on our local machine and the server side on the
BT Public Cloud Server(BTCS) offering. The client and the
server interact with each other through sockets.

• Client side: Encryption is achieved by implementing 128-
bit AES-CBC and the keyed cryptographic hash function
used is SHA-128. The workstation used for the demon-
stration runs with an Intel Core i5 CPU running at 3.00
GHz and 8 GB of RAM.

• Server side: Entire searching is performed at the BTCS.
The resources allocated at the BTCS include a Dual Core
Intel (R) Xeon (R) CPU E5-2660 v3 running at 2.60 GHz
and 8GB of RAM.

D. Performance Metrics

To analyze the computational time of our proposed RMSE
scheme, we analyze each of the algorithms separately over the
dataset. Since the KeyGen algorithm and the Dec algorithm
are the same for any SE scheme, therefore we do not analyze
them, instead we analyze the remaining three algorithms.

1) Build Index Algorithm: We generate the index table for
the dataset by gradually adding 100 documents to the dataset
and analyzing the time required for the index generation. As
ranking may not be required in all of the SE constructions.
Therefore, our analysis includes ranked and non-ranked index
generation. Figure 1, graphically represents the computational
time of our proposed SE scheme. The time in seconds is rep-
resented along the y-axis, whereas, the number of documents
are represented along the x-axis. The graph plotted using a
solid line in blue represents the time required for our ranked
SE scheme, whereas, the dashed line in red represents our
unranked SE scheme. It can be seen that both the variations
show a linear growth with the increase in the number of
documents. However unranked scheme is inefficient as com-
pared to the ranked one. The ranked index generation requires
15.45 seconds for 2000 documents whereas the unranked index
generation requires 7.22 seconds.

Figure 2, illustrates the time required for the ranked index
generation for 2000 documents, while gradually increasing the
number of keywords starting with 10,000 and scaling them to
120,000. Therefore, in scenarios where only a small set of
keywords are required to be searched, the index generation
can be made extremely efficient. For 10,000 keywords, the
ranked index generation requires only 4.83 seconds, whereas,
for 120,000 keywords the time increases to 14.7 seconds.

Fig. 1. Computational time for the index generation.

Fig. 2. Computational time for ranked index generation with variable
keywords.

It is to be noted that the index generation is a one time
process and does not need to be generated for every query.

2) Build Trap Algorithm: Figure 3 demonstrates the com-
putational time that our proposed RMSE scheme requires for
trapdoor generation. We start with 1 keyword and scale it to 20
keywords. The time in seconds is along the y-axis, whereas,
the number of keywords are along the x-axis. It can be seen
that the RMSE scheme shows a linear growth with the increase
in the number of disjunctive keywords. Hence for generating
a trapdoor containing 20 keywords, we require 0.317seconds.

3) Search Outcome Algorithm: Search Outcome algorithm
refers to the computational time required for performing
disjunctive search and obtaining ranked documents.

Figure 4 shows the computational time while searching
for the keyword “about time” at the BTCS. The time in
seconds is along the y-axis, whereas, the number of documents
are along the x-axis. We gradually increase the number of



Fig. 3. Computational time for the trapdoor generation.

ranked documents required. The label placed with each node
shows the number of documents that contain the desired
disjunctive keywords. For example, out of 2000 documents,
1679 documents contain the keyword “about time”. With the
increase in the number of documents, searching shows a linear
growth and for 2000 documents requires mere 0.040 seconds.

Fig. 4. Computational time for searching the keywords “about time”.

Based on the above computational complexity analysis and
the computational time analysis, it is obvious that our scheme
is extremely lightweight as compared to existing schemes.

VII. CONCLUSION

In this paper, we have presented a ranked based disjunctive
multi-keyword searchable encryption scheme. The scheme
uses an inverted index for the searching and is based on
a probabilistic trapdoor that helps resist distinguishability
attacks and any privacy breeches. The security analysis yields
that our scheme resists distinguishability attacks. We have
successfully implemented and deployed our scheme onto the
British Telecommunication’s Public Cloud Server offering. We

have tested our scheme over the Switchboard-1 Telephone
Speech Corpus. The computational complexity analysis yields
that our scheme is not only scalable but is also lightweight
as compared to similar existing schemes. Our scheme can be
adapted to the telecom domain for the efficient and effective
multi-keyword disjunctive searching.
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