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OPEN

ORIGINAL ARTICLE

An integrated brain–behavior model for working memory
DA Moser1,6, GE Doucet1,6, A Ing2, D Dima3,4, G Schumann2, RM Bilder5 and S Frangou1

Working memory (WM) is a central construct in cognitive neuroscience because it comprises mechanisms of active information
maintenance and cognitive control that underpin most complex cognitive behavior. Individual variation in WM has been associated
with multiple behavioral and health features including demographic characteristics, cognitive and physical traits and lifestyle
choices. In this context, we used sparse canonical correlation analyses (sCCAs) to determine the covariation between brain imaging
metrics of WM-network activation and connectivity and nonimaging measures relating to sensorimotor processing, affective and
nonaffective cognition, mental health and personality, physical health and lifestyle choices derived from 823 healthy participants
derived from the Human Connectome Project. We conducted sCCAs at two levels: a global level, testing the overall association
between the entire imaging and behavioral–health data sets; and a modular level, testing associations between subsets of the two
data sets. The behavioral–health and neuroimaging data sets showed significant interdependency. Variables with positive
correlation to the neuroimaging variate represented higher physical endurance and fluid intelligence as well as better function in
multiple higher-order cognitive domains. Negatively correlated variables represented indicators of suboptimal cardiovascular and
metabolic control and lifestyle choices such as alcohol and nicotine use. These results underscore the importance of accounting for
behavioral–health factors in neuroimaging studies of WM and provide a neuroscience-informed framework for personalized and
public health interventions to promote and maintain the integrity of the WM network.

Molecular Psychiatry advance online publication, 5 December 2017; doi:10.1038/mp.2017.247

INTRODUCTION
Working memory (WM) is the ability to store, update and
manipulate goal-relevant information.1,2 WM operations engage
multiple brain regions but they critically depend on the
coordinated activity of a dorsal cortical network anchored in the
dorsolateral prefrontal cortex (dlPFC), the parietal cortex (PAR) and
the dorsal anterior cingulate cortex (dACC).3–5 Within this network,
there is evidence of relative functional specialization according to
process; the dlPFC is hypothesized to be involved in encoding,
setting attentional priorities and manipulating information,6,7 the
PAR in maintaining attentional focus and storing information8,9

and the dACC in error detection and performance adjustment.10

Regional activation within this network is load dependent and
responds to the demand for maintenance, updating and
manipulation.4,11–13 In addition to regional activation, the WM
network can be characterized by its functional and effective
connectivity.14,15 Functional connectivity represents the statistical
dependence of regional changes in blood oxygen level-
dependent signal,16 whereas effective connectivity models the
influence that WM-network regions exert over each other.17

The study of WM is central to cognitive neuroscience because it
supports other higher-order cognitive abilities (including but not
limited to general fluid intelligence, learning, problem solving and
decision making),18 and lower-order mental operations that
require cognitive control.19 Individual variation in WM is
influenced by multiple variables including age, level of education,
personality traits,20–23 lifestyle choices24 and physical health
characteristics.22,25 In addition, WM deficits are a prominent

feature of neurological26 and psychiatric conditions27 including
psychotic, mood and anxiety disorders and neurodevelopmental
and neurodegenerative disorders.
The interrelationship between the function of the WM network

and its multiple behavioral and health correlates is of key
translational importance but has not been adequately addressed
because individual studies commonly focus on a limited number
of imaging and behavioral variables. This represents a major
drawback when making inferences about the nature of case–
control differences in psychiatric neuroimaging as patients
commonly differ systematically from controls on multiple beha-
vioral variables that are not related to primary disease
mechanisms.28

In this context, we sought to quantify brain–behavior relation-
ships with regard to WM using the unique data set of the Human
Connectome Project (HCP, www.humanconnectome.org). Smith
et al.29 have already demonstrated the value of this approach by
defining the covariation matrix between behavioral variables and
resting-state connectivity measures derived from 461 HCP
participants. They found that the strongest correlations between
the behavioral traits and the resting-state connectome concerned
higher-order cognitive abilities.29 An obvious implication of these
findings is that the correlations between brain connectivity and
behavior are primarily driven by brain networks that support
higher-order cognitive functions. Working memory and its
corresponding core brain network represent the logical first
candidate because of the known association of WM with multiple
higher-order cognitive functions. In order to test this hypothesis,
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we used sparse canonical correlation analyses (sCCAs) to
determine the covariation between brain imaging metrics of
WM-network activation and connectivity and nonimaging mea-
sures relating to sensorimotor processing, affective and non-
affective cognition, mental health and personality, physical health
and lifestyle choices derived from 823 HCP participants. We refer
to these two data sets as the neuroimaging and the ‘behavioral–
health’ data sets.
We chose a sparse multivariate approach because it retains

brain regional specificity similar to that seen in region of interest
analyses30 and it does not require data reduction, regardless of
the number of subjects and variables and can be used in smaller
samples (more typical in neuroimaging studies). We conducted
sCCAs at two levels: a global level, testing the overall association
between the entire imaging and behavioral–health data sets; and
a modular level, testing associations between modules (that is,
subsets) of the two data sets. The purpose of the modular analyses
was to facilitate extrapolation of our results to findings available in
the literature where similar smaller data sets are the rule. Based on
the prior evidence presented above, we hypothesized that
imaging and behavioral–health measures will show substantial
covariation revealing the interdependent nature of the two data
sets; we also hypothesized that correlations would be stronger
between neuroimaging and higher-order cognitive function,
supporting a key role for the WM-network activation and
connectivity.

MATERIALS AND METHODS
Participants
We used data from the HCP database (http://www.humanconnectome.org)
derived from 823 healthy participants (462 women) with a mean age of 29
years (range 22–37 years). All neuroimaging data were acquired on a
Siemens Skyra 3T scanner (Erlanger, Germany) and preprocessed following
standard HCP protocols.31 All the subjects provided informed consent.32

This study was approved by the institutional review board of the Icahn
School of Medicine at Mount Sinai.

HCP behavior and health measures
We used 116 variables corresponding to demographic characteristics, task
performance during sensorimotor processing, affective and nonaffective
cognition, mental health and personality, physical health and lifestyle
choices (Supplementary Table 1). For variables with both raw and age-
adjusted scores, we selected the age-adjusted measures only. We excluded
categorical variables (n= 130) where 490% of the sample endorsed the
same outcome or that were colinear (r40.9). For psychometric tests with
multiple correlated outcome variables we selected those that are more
commonly reported in the literature (see detail in Supplementary
Information).

WM-network activation
We analyzed functional magnetic resonance imaging data acquired while
participants performed the HCP version of the 2-back task33 using the
Statistical Parametric Mapping software, version 12 (SPM12) (www.fil.ion.
ucl.ac.uk/spm/software/spm12/) (details in Supplementary Information).
In order to identify WM-related activation, contrast images of the 2-back vs
0-back condition were generated from individual data sets and were
then entered into a random-effects group-level one-sample t-test.
Suprathreshold clusters were identified at Po0.05 with family-wise error
correction at voxel level. As expected based on previous literature,3,5 the
clusters identified were located bilaterally in the dlPFC, PAR, dACC,
the middle temporal gyrus and the visual cortex (VC) (Figure 1).
Spherical (radius = 4 mm) volumes of interest (VOIs) were prescribed,
centered on the group peak coordinates of each suprathreshold
cluster; the radius was chosen to ensure that the VOIs encompassed the
individual peak coordinates of all participants. Mean β-values were then
extracted and entered in further analyses (Figure 1 and Supplementary
Table 2).

Functional connectivity of the WM network
We computed the undirected, model-free functional connectivity of the
WM network from the task-based and resting-state data of each

Figure 1. Suprathreshold clusters of activation in the 2-back task. Data derived from the entire sample (n= 823); Po0.05 with family-wise error
(FWE) voxel-wise correction and minimum k= 30 voxels.
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participant. In each data set, we extracted the average time series of the
blood oxygen level-dependent signal from the WM-network VOIs
described above. Then, we calculated the Fisher’s Z-transformed Pearson’s
correlation between each pair of VOIs to create a resting-state and task-
related functional connectivity matrix for each individual.

Effective connectivity
We used dynamic causal modeling (DCM),34 implemented in the DCM12
toolbox to estimate the strength of task-specific modulation (2-back
vs 0-back) in the connections between the regions of the WM network.
We selected the VOIs in the dlPFC, PAR, dACC and VC, defined as described
above based on the results of the second-level analysis (see details in
Supplementary Information). This choice was also informed by evidence
from meta-analyses3,5,35 and previous DCM studies of this WM task.17,36

The time series of the homologous VOIs in each hemisphere were
averaged to create a 4-region layout of the WM network (Supplementary
Figure 2A). The coupling of any two VOIs was defined in terms of
intrinsic (task-independent) connections, whereas the impact of the WM
condition was modeled directly on the VC (driving input) and on the
strength of coupling between each pair of VOIs (modulatory input).
In addition, we included a nonmodulated model (null model) as a
control. Random-effects Bayesian model selection was used to compute
group-level exceedance and posterior probabilities. Finally, to accommo-
date any uncertainty about the models, we used random effects
Bayesian model averaging to obtain average connectivity estimates
(weighted by their posterior model probability) across all models and all
participants.37

Sparse canonical correlation analyses
A total of 200 imaging and 116 behavioral-health variables were z-
standardized and entered into sCCAs implemented using an in-house
script30 (see Supplementary Information). We used the same approach for
the global and the modular analyses. For each analysis, we computed the
sparse parameters by running the sCCA with a range of candidate values
(from 0.1x√p to 1x√p, at 0.1 increments, where p is the number of features
in that view of the data) for each imaging and behavioral–health data set
and then fitted the resulting models. We selected the optimal sparse
criteria combination based on the parameters that corresponded to the
values of the model that maximized the sCCA correlation value. We then
computed the optimal sCCA model and determined its significance
using permutations. Accordingly, the imaging data set was permuted
100 000 times before undergoing the exact same analysis as the original
data. The P-value was defined as the number of permutations that resulted
in a higher correlation than the original data divided by the total number
of permutations. Thus, the P-value is explicitly corrected for multiple
testing as it is compared against the null distribution of maximal
correlation values across all estimated sCCAs. For each permutation we
tested all sparsity criteria combinations as for the original data and then
extracted the sCCA correlation with the highest coefficient among the
tested options, independently of whether this combination was the same
as in the original data. In this way we ensured that we did not
underestimate the chance of a permutation achieving the same or higher
value than the original data. The threshold for statistical significance for
each analysis was set at Po0.05. When the overall sCCA was significant,
we investigated the weight of each variable (on both the imaging
and behavioral data sets). To do so, we computed Pearson’s correlations
between each variable and the mode of the opposing pattern (that is,
each behavioral–health variable to mode of the neuroimaging data set and
vice versa).

Reliability analyses
First, we tested the effect of potential confounders (sex, intracranial
volume, acquisition sequence, age) by performing the analysis with and
without regressing out these confounds. Second, we confirmed the
robustness of the results by randomly resampling half of the sample
(n=411) 5000 times and repeating the sCCA each time. Third, we excluded
overfitting by using the weights from each of the resampled data and
applied them to the other half of the sample. Fourth, we tested whether
alternative analyses using CCA would yield the same results. Fifth, to
further ensure the robustness of the DCM sCCA results, we tested an
alternative DCM model space. Sixth, we tested the specificity of our
findings by conducting further analysis examining the association of
behavioral–health variables to intrinsic functional connectivity. Seventh,

we conducted further analyses to assess whether our results might be
influenced by the fact that some HCP participants are related. For more
details on all reliability analyses see Supplementary Information and
Supplementary Figures 3 and 4.

RESULTS
The overall design of the study is shown in Supplementary
Figure 1. The global analysis considered the covariation of the
entire imaging and the entire behavioral–health data set. Modular
analyses examined the covariation between distinct subsets (that
is, modules) of imaging and behavioral–health data.

Behavioral–health data set
We used 116 variables that were considered as a single data set in
the global analysis and as 5 distinct subsets (that is modules)
corresponding to psychometric measures of sensorimotor proces-
sing, affective and nonaffective cognition, to mental health and
personality, and to physical health and lifestyle choices
(Supplementary Table 1).

WM-network activation
Conventional general linear analyses of the functional magnetic
resonance imaging data identified bilateral clusters located in the
dlPFC, dACC, PAR, VC and middle temporal gyrus corresponding
to the nodes of the 2-back WM network (Figure 1 and
Supplementary Table 2). The resulting variables (n= 24) comprised
the WM activation module (details in Supplementary Information).

Functional connectivity
We computed the functional connectivity of the WM network
based on the results of the second-level analysis described above
(and in Supplementary Information). This yielded 66 task-related
and 66 resting-state functional connectivity variables comprising
the task-related and resting-state functional connectivity module.

Effective connectivity
We used DCM to specify the strength of intrinsic (task-
independent) and WM-modulated connectivity of the WM
network. The exceedance and the posterior probabilities of the
models were computed using random-effects Bayesian model
selection. Bayesian model averaging was used to obtain average
connectivity estimates across all models for each participant
(details in Supplementary Information and Supplementary Figure
2b and c). This analysis generated 44 DCM measures that
comprised the effective connectivity module.

Global sparse canonical correlation analysis
The global sCCA quantified the relationship between the two sets
of measurements comprising 200 neuroimaging variables and 116
behavioral variables. This analysis showed that the two data sets
were significantly associated (r= 0.50, P= 0.00002) (Figure 2a).
Among the behavioral–health variables, those with the highest
correlations (positive or negative) with the imaging variate are
shown in Figure 2b (and Supplementary Table 3); they included
psychometric measures of fluid intelligence, memory, reading/
language, visuospatial orientation, sustained attention, mental
flexibility and emotional recognition; behavioral traits relating to
aggression, physical characteristics relating to physical endurance,
body mass index and hemoglobin A1c and lifestyle choices
(alcohol use and smoking). Variables with positive correlation to
the imaging variate represented positive cognitive and physical
attributes, whereas negatively correlated variables represented
suboptimal health indicators and lifestyle choices. Among the
imaging variables, metrics of activation were more strongly
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correlated with the behavioral–health variate (Figure 2c and
Supplementary Table 4). Positive correlations were observed with
higher activation in the WM network during the 2-back condition
and negative correlations with higher WM-network activation
during the sensorimotor control condition; greater effective
connectivity between the VC to the dlPFC and PAR also showed
positive correlations with the behavioral–health variate, whereas
the opposite was the case with regard to increased effective
connectivity between the dACC and other WM-network regions
(Supplementary Table 4).

Modular sparse canonical correlation analyses
At this level, sCCAs were implemented to test the covariation of
each neuroimaging module to each of the behavioral modules
(Figures 1 and 3; Supplementary Tables 5 and 6 and
Supplementary Data Set). The results of these analyses largely
recapitulated those of the global sCCA. We found that the WM-
task activation variate was significantly associated with affective
and nonaffective cognition, mental health and personality,
physical health and lifestyle. The behavioral variables that were
most strongly associated with the WM-task activation were fluid
intelligence, language, memory and abstraction (nonaffective
cognition module), facial emotion recognition (affective cognition
module), openness (mental health and personality) and physical
endurance (physical health and lifestyle). The DCM variate was
only associated with the nonaffective cognition module (primarily
fluid intelligence, language and spatial orientation). Both task and
resting-state functional connectivity variates were primarily
associated with the physical health and lifestyle module; positive
correlations were observed with better endurance, higher

hematocrit and sleep quality (as measure in the total score of
the Pittsburgh Sleep Questionnaire), whereas higher body mass
index as well as high blood pressure and poor glucose control had
a detrimental effect. The association between physical health
measures was not specific to the WM network as it was also
observed in connection to whole-brain functional connectivity
(details in Supplementary Information).

Reliability analyses
For the global analysis, half of the sample (n= 411) was randomly
resampled 5000 times. The sCCAs repeated each time resulted in a
mean r-value = 0.53 (s.d. = 0.04). We used the weights of each
sCCA permutation to the respective 5000 sets of the remaining
half of the sample. These scores yielded a mean r-value = 0.39 (s.
d. = 0.06). For the modular analyses, no difference above 2 s.d. was
found between the averaged resampled data and the actual data,
for any of the significant models (Supplementary Table 7),
confirming the reliability of the present results. The sCCA results
were virtually unchanged regardless of whether we regressed out
or stratified the analysis to account for intracranial volume,
acquisition sequence, sex and age. We use sex to illustrate this; as
shown in Supplementary Information (Supplementary Table 8), no
differences were found in the global analysis between the main
results and results of separate sCCAs for men (n= 361) and women
(n= 462). Finally, the results remained unchanged when we used
alternative definitions of the DCM model space, when we
computed regular CCAs instead of sCCAs (Supplementary Table
9) and when accounting for family structure (details for all these
analyses in Supplementary Information).

Figure 2. Global sparse canonical correlation analysis. (a) Significant correlation between all imaging and behavioral–health variates (n= 823,
r= 0.50, P-value= 0.00002). (b) Top behavioral–health variables most strongly associated with the imaging variate. (c) Top WM-network
activation variables positively associated with the behavioral–health variate. The size of the sphere represents the degree of correlation. WM,
working memory.
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DISCUSSION
We used the rich data set of the HCP to quantify brain–behavior
covariation relevant to working memory. We found that cognitive
measures reflecting better general intellectual ability, visuospatial
skills, language, attention and mental flexibility were among the
behavioral measures with the strongest positive correlations to
imaging phenotypes indexing WM-network function. In contrast,
variables relating to aggression, substance use and suboptimal
cognition were among the behavioral measures with the
strongest negative correlations to imaging phenotypes indexing
WM-network function.
Fluid intelligence had the strongest positive correlation with

neuroimaging phenotypes of WM function both in the global and
modular analyses. This observation significantly enhances our
understanding of the relationship between fluid intelligence and
WM, a topic that has been debated for nearly three decades.38 We
show that even when multiple other variables are taken into
account, fluid intelligence remains strongly correlated with WM-
network functional integrity. This suggests that both cognitive
constructs are supported by common neural mechanisms. The
close link between intelligence and WM is further supported by a
recent study that examined individual variability in functional brain
connectivity;39 the WM-network connectome had the most distinc-
tive fingerprint at the individual level and was the most significant
predictor of fluid intelligence.39 Consistent with the notion that the
WM-network identified via the 2-back task has a domain-general
role,18,19 we found that WM-network activation and effective
connectivity were associated with a wide range of higher-order
functions relating to executive control of attention, visual orienta-
tion and language (see also Supplementary Discussion).
The global and modular analyses identified several lifestyle

choices and physical traits that showed significant covariation
with WM-network imaging metrics. Among lifestyle choices,
alcohol binge drinking and regular weekly smoking were
negatively correlated with WM-network function. Alcohol-related
WM dysfunction across the lifespan has been amply documented

in prior literature40,41 and is further supported by the current
study. Nicotine enhances attention and cognition, including WM,42

in a baseline-dependent manner such that individuals with lower
baseline function benefit the most from nicotine use.43 This
mechanism has been proposed to explain initiation and
maintenance of smoking. It is therefore possible that the negative
correlation between weekly smoking levels and WM-network
function reflects lower baseline WM-network function in smokers.
Alternatively, nicotine abstinence in smokers leads to reduced WM
performance compared with nonsmokers44 and is associated with
lower blood oxygen level-dependent signal in the frontoparietal
WM-network regions.45 Our results may therefore reflect some
aspect of abstinence-related WM-network dysfunction, as access
to nicotine is restricted during scanning. Better physical endur-
ance was positively associated with WM-network activation and
connectivity. Conversely, suboptimal blood pressure and glucose
control and higher body mass index had a negative effect on
functional connectivity. This close dependency between physical
traits and task-related brain activation, connectivity and resting-
state connectivity is not specific to WM as it was also observed in
connection to whole-brain resting-state connectivity as shown in
our supplementary analyses. The same correlation pattern has also
been reported in data from the 5000 participants of the
UKBiobank46 and is likely to reflect the fact that these imaging
metrics are directly derived from changes in the hemodynamic
brain responses and seem sensitive to cardiometabolic factors
that may affect blood oxygenation. These observations are of
potential translational value in view of recent studies47,48 showing
that increased physical activity could improve WM-related
performance and brain phenotypes. In addition, the role of
physical traits and lifestyle choices for WM-network function
bolsters arguments for accounting for these variables when using
neuroimaging to examine clinical populations before making
inferences about specific-disease related mechanisms.28

Age made a limited contribution to the results, likely because of
the restricted age range of the HCP participants. There was no
effect of sex on the sCCA models, in line with previous reports
that, unlike other aspects of brain structure and function, the WM-
network may not be sexually dimorphic.21,49

Our study has several limitations. The 2-back task does not
isolate distinctive components of WM (for example, goal main-
tenance, storage capacity, interference control). It is therefore
possible that the multifactorial nature of the 2-back task may lead
to greater overlap with fluid intelligence than might be the case
with other paradigms that map onto specific WM component (for
example, oculomotor delayed response37 and Sternberg spatial
memory tasks40 that dissociate encoding and maintenance
processes). Neuroimaging techniques include other modalities
(such as diffusion weighted imaging and magnetic resonance
spectroscopy) and other analytic methods (such as graph theory
and dynamic connectivity) that were not considered here.
Nevertheless, our study examined those modalities and analytical
methods that are most commonly used in neuroimaging studies
of WM. Finally, the correlational nature of the analyses does not
resolve causality, but the results are still important as they identify
modifiable potential risk factors for WM dysfunction.
In conclusion, we describe a brain–behavior model for WM that

demonstrates a positive association between WM-network func-
tion with variables reflecting better cognitive abilities and physical
well-being, whereas the opposite was the case for indicators of
suboptimal health and substance use. We confirm that the WM
network is closely linked to general intellectual ability and acts as
a domain-general network to support multiple higher-order
cognitive functions. The dependency of neuroimaging pheno-
types on behavioral–health measures suggests that such factors
should be considered as potential confounds in clinical studies
and as modifiable targets could inform personalized interventions
and public health efforts for the promotion of mental well-being.

Figure 3. Modular sparse canonical correlation analysis. The
connections between the modules are sized based on the r-values.
Yellow connections indicate significant associations at Po0.05;
orange connections indicate significant associations at Po0.01; red
connections indicate significant associations at Po0.001. DCM,
dynamic casual modeling; WM, working memory.
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