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Abstract In Cognitive Science, conceptual blending has been proposed as an impor-
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constrained combination of available knowledge. It thereby provides a possible theo-

retical foundation for modeling high-level cognitive faculties such as the ability to un-

derstand, learn, and create new concepts and theories. Quite often the development of

new mathematical theories and results is based on the combination of previously in-

dependent concepts, potentially even originating from distinct subareas of mathemat-

ics. Conceptual blending promises to offer a framework for modeling and re-creating

this form of mathematical concept invention with computational means. This paper

describes a logic-based framework which allows a formal treatment of theory blend-

ing (a subform of the general notion of conceptual blending with high relevance for

applications in mathematics), discusses an interactive algorithm for blending within

the framework, and provides several illustrating worked examples from mathematics.

Keywords Concept Blending · Heuristic-Driven Theory Projection

1 Introduction

Conceptual blending theory (CB) [12] provides a mechanism by which novel ideas

and meanings are produced by combining familiar ideas in an unfamiliar way. For

instance, “trashcan basketball” integrates knowledge structures from trash disposal

and conventional basketball to yield a blend: the latter is comprised of structure from

each of the two domains as well as unique structure of its own [9]. The theory has

gained popularity as a way of explaining high-level cognitive and linguistic phenom-

ena, such as metaphor [17], analogy [3], and counterfactual reasoning [1], [18]. Even

if only a few of the assumptions made about the importance of blending mechanisms

within human cognition and intelligence turn out to be correct, a complete and im-

plementable formalization of CB and its defining characteristics would promise to

trigger significant development in artificial intelligence and any other field aiming at

modeling or re-implementing capacities related to human intelligence with compu-

tational means. The original approach of CB in [12], however, lacks a formal and

algorithmic account.

CB is also considered to play a crucial role in mathematical invention and theory

development. Lakoff and Núñez [17] present a blending-based account of the origin

and development of mathematical ideas, in which human mathematics is grounded in

the bodily experience of physical interactions in the world and inheritance or trans-

fer processes of these experiences to the domain of mathematical concepts. In this

account, humans start out with very simple notions and subsequently, by successive

combination of concepts, over time develop these into more and more complex the-

ories giving rise to the whole of mathematics as a discipline and academic field of

research (also see [2]). While the original account from [17] has been criticized and

further developed by other researchers over the last 15 years (see, e.g., [27] for a

reply and further development of the ideas from [17]), the basic intuition of com-

plex, abstract concepts arising from iterated combinations of simpler, more grounded

ones still holds and by now is regarded as largely uncontroversial. Based on this,

CB promises to offer a theoretical framework within which to further study and (if

possible) computationally re-implement the corresponding cognitive processes.
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When considering CB in mathematics, due to the axiomatized nature of mathe-

matics, the most relevant form of blending is the combination of theories (as opposed

to, e.g., multimodal blending of concepts and sensory modalities in arts or the blend-

ing of vague linguistic concepts). Mathematical concepts are commonly understood

as finitely axiomatized theories in a logical language, and combining concepts means

the combination of two concept axiomatizations. This form of concept blending will

consequently be referred to as theory blending.

This paper1 is structured as follows. In the remainder of this introduction we

briefly survey computational approaches to CB and give a short overview of an (un-

fortunately unfinished) formal account of CB developed by Goguen, and our related

overall approach to theory blending. In Section 2, we introduce the formal frame-

work that we use to model blending processes, and establish a notion of optimality

for blends that is inspired by cognitive criteria. In Sections 3 and 4, we present an al-

gorithm that, given two input theories, searches for all the optimal theory blends. We

also prove the correctness and completeness of our search algorithm, and make some

considerations of efficiency. As a proof of concept, we illustrate our algorithm with

three worked examples in Section 5. Section 6 contrasts and discusses our method

with related approaches and Section 7 finally presents our concluding remarks and

our plans for future research.

1.1 Computational Accounts of Concept Blending

The earliest computational models of concept blending, [31] and [25], were based on

Gentner’s structure-mapping theory (SMT) of analogy [13]. The former used seman-

tic network representations of domains and the latter genetic algorithms to search the

space of possible blends. Both, however, relied on handcrafted knowledge: a com-

mon issue in CB models. Besold et al. [3] and [4] show how work on computational

analogy models which use generalization followed by mapping (such as Heuristic-

Driven Theory Projection [28]), and amalgamation (combining solutions from multi-

ple cases in case-based reasoning), as opposed to SMT, can be used in blending. Other

key advances include determining the fundamental characteristics of a good blend:

for instance, Martins et al. [23] investigated criteria for creative concept blends, by

asking participants to rate human-generated concept blends in terms of some of the

optimality principles proposed in [12] and other principles connected to creativity.

Confalonieri et al. provide an alternative take on the problem [8], proposing to use

computational argumentation for evaluating concept blends; through an open-ended

and dynamic discussion, through which meaning is constructed and blends are re-

fined and improved. In a similar social context, Li et al. [19] provide a computational

perspective to the notion that blending theory must take communication contexts and

goals into consideration. That is, a blend may have a plurality of meanings, and can

only be properly understood within the context in which it arises. Li et al. use these

concepts to clarify, constrain and implement computational procedures which are

ambiguous in the original non-computational theory. Many models are open to the

1 The current paper is an extended and substantially enhanced version of [22].
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Fig. 1 Goguen’s version of concept blending (cf. [14]).

criticism that the input conceptual spaces consist of handcrafted knowledge: in [30],

Veale offers an alternative by introducing the notion of a conceptual mash-up, a form

of blending which uses a technique Veale calls “google-milking”. This uses common

questions on the web to find salient properties of a concept, which are then used to

drive the blend. This follows up previous work by Veale, [29], in which he developed

a CB model which automatically found its input spaces from Wikipedia and Wordnet,

and used blending theory to understand novel portmanteau words such as “Feminazi”

(Feminist + Nazi). Xiao and Linkola [32] have investigated blending in the context of

different forms of spaces and blends: their model of multi-media blending – Visman-

tic – takes in a subject and message, such as “electricity is green”, finds images for

each word on flickr, and applies juxtaposition, fusion and replacement to the photos

found, outputting an image which blends the two concepts. The question of what sort

of spaces can be blended is considered by Kutz et al. [16], who investigate the princi-

ples of blending at the level of ontologies, and show how the Ontohub/Hets ecosystem

can be used to support the generation and evalution of ontological blendoids.

1.2 Goguen’s Account of CB and Our Overall Approach

An early formal account on CB, especially influential to our approach, is the classical

work by Goguen using notions from algebraic specification and category theory [14].

We base our formal model, elaborated below, on Goguen’s logic-based approach.

This version of CB is depicted in Figure 1, where a blend of two inputs I1 and I2 is

shown. Each node in the figure stands for a representation of a concept or conceptual

domain as a theory, i.e., as a finite set of axioms in a formal language. We will call

the nodes “spaces”, so as to avoid terms with strong semantical load such as “con-

cept” or “conceptual domain”. Each arrow in the figure stands for a morphism, that

is, a potentially language changing (partial) function that translates at least part of the

axioms from its domain into axioms in its codomain, preserving their structure. Now,

while in practice all formal languages of interest have an established semantics and

the morphisms are therefore intended to act as partial interpretations of one theory

into another, Goguen’s presentation of CB stays at the syntactic level, which more

directly lends itself to computational treatment. The same will apply to our own ap-

proach. Given input spaces I1 and I2 and a generalization space G that encodes some

(ideally all) of the structural commonalities of I1 and I2, a blend diagram is completed

by a blend space B and morphisms from I1 and I2 to B such that the diagram (weakly)

commutes. This means that if two parts of I1 and I2 are translated into B and in ad-

dition are identified as ‘common’ by G, then they must be translated into exactly the

same part of B (whence the term ‘blend’).
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A standard example of CB, discussed in [14] and linked to earlier work on compu-

tational aspects of blending in cognitive linguistics (see, e.g., [31]), is that of the pos-

sible blends of HOUSE and BOAT into both BOATHOUSE and HOUSEBOAT (as well as

other less-obvious blends). Parts of the spaces of HOUSE and BOAT can be structurally

aligned (e.g. a RESIDENT LIVES-IN a HOUSE; a PASSENGER RIDES-ON a BOAT).

Conceptual blends are created by combining features from the two spaces, while re-

specting the constructed alignments between them. Newly created blend spaces are

supposed to coexist with the original spaces: we still want to maintain the spaces of

HOUSE and BOAT.

A still unsolved question is to find criteria to establish whether a certain blend

is better than other candidate blends. This question has lead to the formulation of

various competing optimality principles in cognitive linguistics (cf. [12]). While sev-

eral of them involve semantic aspects that escape Goguen’s and our own treatment

of CB, other principles can be reasonably approached even from a more syntactic

framework. For example, there is the Web Principle (maintain as tight connections as

possible between the inputs and the blend), the Unpacking Principle (one should be

able to reconstruct the inputs as far as possible, given the blend), and the Topology

Principle (the components of the blend should have similar relations to those that

their counterparts hold in the input spaces). These three principles, taken as a pack-

age, can be interpreted in terms of Figure 1 as demanding that the morphisms should

preserve as much representational structure as possible. For example, one can notice

that Figure 1 looks like the diagram of a pushout in category theory. Goguen actually

argued against forcing the diagram of every blend to be a pushout [14], but he did

claim that some forms of a pushout construction (in a 3
2
-category) capture a notion of

structural optimality for blends.

We will propose two alternative competing criteria for structural blend optimality

that also work in the spirit of the Web, Unpacking, and Topology principles, and

an algorithmic method for performing blending guided by those principles. We will

use a framework for computational analogy making between many-sorted first-order

theories, in order to obtain the generalization space G. Accordingly, our presentation

in the following will be restricted to CB over first-order theories.

2 Our Framework

According to Figure 1, the task of finding a blend diagram, given two inputs, requires

finding a generalization G, a blend space B, and the arrows of the diagram. In this

section, we present our approach to this problem. As will become clear, we will use

previous work on analogy-making in order to find G, so our new contribution will fo-

cus on the issue of finding B, given two input theories and a generalization G. Our ap-

proach establishes theory morphisms between the input theories and the blend theory

and shares similarity with specification morphisms and theory morphisms used in the

area of (algebraic) software specification. In this field, findings range from complex-

ity theoretic results concerning the existence of signature morphisms as presented

in [6] to expansions of conservative extensions of logical theories to specification

morphisms as described in [20] and semantic issues concerning theory morphisms
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mapping theories belonging to different institutions [10]. In contrast to this work, our

approach uses theory morphisms as a formal tool for modeling a cognitively inspired

application, namely conceptual blending, in order to give a formal approach for the

creative invention of new concepts in mathematics, a goal which is significantly dif-

ferent from the field of specification morphisms.

2.1 Generalization Finding

Our approach is based on Heuristic-Driven Theory Projection (HDTP), which is a

framework for computing analogical relations between two input spaces presented as

axiomatizations in (possibly distinct) many-sorted first-order languages [28]. HDTP

proceeds in two phases (Figure 2): in the mapping phase, the source and target spaces

are compared to find structural commonalities and a generalized space, G, is created,

which subsumes the matching parts of both spaces. In the transfer phase, unmatched

knowledge in the source space can be transferred to the target space to establish

new hypotheses. Our blending approach only needs the mapping phase of HDTP; the

transfer phase will be replaced by a new blending algorithm in which the two inputs

play a symmetric role. Accordingly, instead of talking about source and target spaces,

from now on we will refer to the input spaces simply as L and R, as mnemonics for

“left” and “right” in our graphical depictions of blend diagrams, but without implying

any asymmetry in the role of input spaces.

Generalization (G)

ss❢❢❢❢
❢❢❢

❢❢❢

++❳❳❳
❳❳❳

❳❳❳
❳

Source (L)
analogical transfer

// Target (R)

Fig. 2 HDTP’s overall approach to creating analogies (cf. [28]).

During the mapping phase in HDTP, pairs of formulae from L and R are anti-

unified, resulting in a generalization theory G that reflects common aspects of the in-

put spaces. Anti-unification [26] is a mechanism that finds least-general anti-unifiers

of expressions (formulae or terms). An anti-unifier of A and B is an expression E

such that A and B can be obtained from E via substitutions. E is a least-general anti-

unifier of A and B if it is an anti-unifier such that the only substitutions on E that yield

anti-unifiers of A and B act as trivial renamings of the variables in E . First-order anti-

unification, where only first-order substitutions are allowed, is not powerful enough

to capture structural commonalities and produce the generalizations needed in HDTP.

A special form of higher-order anti-unification is therefore used where, under certain

conditions, relation and function symbols can also be included in the domain of sub-

stitutions (see [28] for the details). The generalized theory G can be projected into the

original spaces by higher-order substitutions which are computed by HDTP during

anti-unification. In the language of theories and theory morphisms, what HDTP does

can be described as follows: based on (axiomatizations of) the two input theories, a

pair of (derived) signature morphisms ΣL
σL←− ΣG

σR−→ ΣR is computed, that induces a
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Table 1 The two axiomatizations, L and R, and the first generalization G used in Example 1. G comes

together with a left substitution λG = {a 7→ 1,≤ 7→ ≤L,+ 7→ +L} and a right substitution ρG = {a 7→
0,≤ 7→ ≤R,+ 7→+R} from which L and R can be recovered.

Axiomatization L

x≤L x (L1)
x≤L y∧y ≤L z→ x ≤L z (L2)
x≤L y∨y ≤L x (L3)
1≤L x (L4)
x+L y = y+L x (L5)
(x+L y)+L z = x+L (y+L z) (L6)
¬(x+L 1≤L x) (L7)
x≤L y∧y≤L x+L 1→ y= x∨y= x+L 1 (L8)

Axiomatization R

x≤R x (R1)
x≤R y∧y ≤R z→ x≤R z (R2)
x≤R y∨y ≤R x (R3)
0≤R x (R4)
x+R y = y+R x (R5)
(x+R y)+R z = x+R (y+R z) (R6)
x+R 0 = x (R7)
x <R y→∃z : x <R z∧ z <R y (R8)

Generalization G

x≤ x (G1)
x≤ y∧y ≤ z→ x ≤ z (G2)
x≤ y∨y ≤ x (G3)
a≤ x (G4)
x+ y = y+ x (G5)
(x+ y)+ z = x+(y+ z) (G6)

mapping between (combinations of) symbols of the signatures ΣL and ΣR. Further-

more, (axioms for) a generalized theory G are proposed in a way that assures that

σL : G→ L and σR : G→ R are theory morphisms.

It should be noted, that all processes in HDTP are syntax-based, and in its most

basic form, the axioms of L and R have to be chosen in a way that they exhibit a par-

allel structure allowing for simple matching. This is a rather strong assumption that

can be found in most analogy frameworks, but which seems artificial in many practi-

cal applications. In the context of HDTP, a “re-representation” mechanism has been

proposed by which formulae derived from the axioms may be used in the mapping

phase if the original axiomatizations do not yield a good analogical relation (cf. [28,

pp. 258]). Thus, syntactically different but semantically equivalent axiomatizations

may result in a good generalization. However, as this paper focuses on the blending

step, we will not further consider re-representation here, i.e. we expect the axioms of

the theories L and R to be given in a suitable form.

We will say that a formula of the input theories is covered by G if it is in the image

of the projection of G; otherwise it is uncovered. Two formulae (or terms) from the

input spaces that are generalized (i.e. anti-unified) to the same expression in G are

considered to be analogical. In analogy making, the analogical relations are used in

the transfer phase to translate uncovered facts from the source to the target space,

while blending combines uncovered facts from both spaces. The blending process

can thus build on the generalization and substitutions provided by the analogy engine,

and analogy can be considered a special case of blending.

Example 1 We will use a first working example based on the theories L and R from

Table 1, which describe basic properties of the standard order and addition of the

natural numbers (starting from 1) and the non-negative rationals, respectively. All the

axioms are implicitly universally quantified, and x <S y abbreviates ¬(y ≤S x), for

S ∈ {L,R}. The table also shows a generalized theory G over the signature {a,≤,+},
which reflects the fact that axiom (Li) is structurally like (Ri) when 1 ≤ i ≤ 6. In

standard mathematical terminology, theory G corresponds to an axiomatization of an

ordered commutative semigroup with minimal element a. Upon applying the left and

right substitutions to G, we will get the first six L-axioms and the first six R-axioms,

respectively, which are the covered formulae in this example.



8 M. Martinez et al.

2.2 Optimal Blends

There are two extreme cases of CB, depending on the portion of the input theories

covered by G. The first case (left side of Figure 3) occurs when the input spaces are

isomorphic, meaning that R is obtained from L via a renaming of symbols of the sig-

nature of L to symbols of the signature of R. In that case, all formulae of the theories

can be generalized and are completely covered by G, and the resulting blend will be

isomorphic to both of them. The other extreme case (right side of Figure 3) occurs

when no formulae can be aligned and therefore the generalized theory G is empty,

so no formulae of the input theories are covered. In this case, a blend can always be

obtained by taking the (possibly inconsistent) disjoint union of the input theories. In

practice, neither of the two extreme cases is of a real interest. The interesting proper

blends arise when only parts of the input theories are covered by G. In fact, one can

adjust the blend by changing the generalization, either by removing formulae from G

and so reducing its coverage, or by choosing altogether another G which associates

different formulae.

G ∼=
((◗

◗◗
◗◗

◗∼=
vv♠♠
♠♠
♠♠

L

∼= ((P
PP

PP

∼=
// R

∼=vv♠
♠♠
♠♠

L∼= R

/0

((P
PP

PP
P

vv♥♥
♥♥
♥♥

L

((P
PP

PP R

vv♥♥
♥♥
♥

L⊕R

Fig. 3 The two extreme cases of input spaces, along with their generalizations and blends.

Given the generalization G, the theories L and R can be split into their (non-

empty) covered parts L+
G and R+

G and uncovered parts L−G and R−G . The covered parts

are fully analogical, i.e. basically isomorphic, and make up the core of a blend B based

on G. The uncovered parts reflect the idiosyncratic aspects of the spaces, which we

would ideally want to integrate into B. However, due to the identifications induced by

G, adding all this to B may result in an inconsistent theory. To preserve consistency,

we may be forced to consider only consistent subsets of this ideal, fully inclusive,

blend. In view of this, we propose to define optimality of blends (see Definition 1)

using the following two optimality principles:

Compression Principle (CP) aim for blend diagrams in which B is as compressed as

possible, that is, where as many signature symbols are aligned by G as possible

and are actually integrated as a single symbol in B.

Informativeness Principle (IP) aim for blend diagrams in which B is as informa-

tive as possible, i.e., it includes a maximally consistent subset of the potentially

merged formulae (obtained by taking the union of the input theories and then col-

lapsing pairs of signature symbols that have been identified by the analogy into

one unified symbol).

Some remarks concerning the principles CP and IP are necessary here. Both prin-

ciples are inspired by Fauconnier and Turner’s work: For example, compression in

the blend space plays an important role in [12], e.g. in form of how to create com-

pressions, how to compress single relations by scaling, how to compress relations into
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other relations etc. Due to the fact that Fauconnier and Turner’s approach is informal

and does not contain any technical details, our principles can be seen as a possible for-

mal manifestation of the underlying ideas in [12]. Furthermore, different degenerated

examples of (non-)compressed and (non-)informative blends can be explained using

Fig. 3. Whereas a blend L⊕R is maximally informative, because a maximal subset

of the merged formulae is included (although the blend space might be inconsistent)

it is nevertheless non-compressed. L ∼= R is maximally compressed and maximally

informative, because all theories are essentially isomorphic. If we take for the blend

in this case not L or R but a proper subset of L (or alternatively R), in the extreme case

the empty set, such a blend would be non-informative and non-compressed. Note fi-

nally that IP renders a version of the Web and Topology principles formulated in the

introduction, while CP supports the Unpacking Principle.

Definition 1. We call a blend diagram optimal if its blend space is consistent and

satisfies CP and IP. That is, if it is consistent and as maximally compressed and in-

formative as possible.

2.3 Searching for Optimal Blends

Just as Figure 2 and Table 1 suggest, every generalization we use, say H, will come

in association with both a partial signature morphism λH from the signature of H to

ΣL, and a partial signature morphism ρH from the signature of H to ΣR. We will use

the notation H = 〈H,λH ,ρH〉 whenever we need to encode this full structure, and we

will say that H is a relaxation of G = 〈G,λG,ρG〉 if H ⊆ G, λH ⊆ λG, and ρH ⊆ ρG.

H
tt❥❥❥

❥❥
❥

��
**❚❚

❚❚
❚❚

L
**❚❚

❚❚
❚❚ R

tt❥❥❥
❥❥
❥

B

Fig. 4 An element of our search space.

With that in mind, we can now state the problem we want to solve. We take as

given two first-order theories L and R over signature ΣL and ΣR, respectively, and

a generalization G of these two theories (we have in mind a generalization found

by HDTP to be as good as possible in terms of coverage). We want to find, in an

algorithmic way, all the optimal blend diagrams of the form shown in Figure 4 that

satisfy all of the following constraints:

1. H is a relaxation of G.

2. The signature ΣB of B is a ‘right collapsed union’ of ΣL and ΣR, constructed thus:

add to ΣB all the uncovered symbols from both input signatures, and, in addition,

for each pair of symbols sL ∈ΣL and sR ∈ΣR that are aligned by the generalization

H, add the symbol from ΣR to ΣB. In the last case, we say that the two symbols

were collapsed into one.

3. The covered part of R, R+
H , must be a subset of B.
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4. Every formula in B that is not in L+
H must belong to AxH = TrH(L

−
H)∪R−H , where

TrH(L
−
H) is obtained from L−H by replacing every symbol of ΣL (covered by H)

by its counterpart in ΣR. This ensures that all formulae of AxH are built over the

signature ΣB.

Notice that applying condition (2) above to the theories of Example 1, yields that

ΣB will coincide with ΣR, since no symbol in ΣL is uncovered by the left substitution.

It is tempting to conclude, also from condition (2) above, that our approach is

biased towards one of the two input domains, as it always prefers choosing vocabulary

from the right input space when forming blends. However, as will become clear later,

the core of our algorithmic approach is unchanged if a different symbol collapsing

method is used to form the signature ΣB. Alternatively, we could extend our algorithm

with a final step that produces, for each discovered optimal blend, all of its “mirror”

blends, obtained by alternative choices of vocabulary. This is the reason why we claim

the treatment of the two input spaces is essentially symmetric.

With one more piece of notation that will also be useful later, we will be able

to reformulate our search problem in a more concise way. Let B = 〈H,λH ,ρH ,B〉
denote a blend diagram such as that of Figure 4. This notation does not explicitly

include all the morphisms of the diagram, but only those from the generalization to

the inputs, since all others are trivial to fill-in if needed (they are partial identity func-

tions betweeen signatures or translations using the TrH ). Then, we want an algorithm

that, given L, R and G, will explore (in search of all the optimal blends) the space

of all blend diagrams of the form B = 〈H,λH ,ρH ,B〉 for which the two following

conditions hold:

(i) H = 〈H,λH ,ρH〉 is a relaxation of the generalization G = 〈G,λG,ρG〉, in the

sense that H can be obtained from G by dropping one or more of the renamings

of symbols induced by G, so that H ⊆ G, λH ⊆ λG, ρH ⊆ ρG.

(ii) R+
H ⊆ B⊆ R+

H ∪AxH .

The above conditions can be summarized in plain language by saying that the search

space (given the fixed optimal generalization G provided by HDTP) is the collection

of all blend diagrams that are at least as informative as some 〈H,λH ,ρH ,R
+
H〉, where

〈H,λH ,ρH〉 is a relaxation of G. Making H larger means moving in the search space

towards more compressed blends, while letting H unchanged and enlarging B means

moving towards more informative blends.

An unconstrained way to algorithmically identify a list of optimal blends leads

to an explosion of possibilities to be tried, so good heuristics are needed in order to

choose which possibilities to test first (see also Section 4). Notice that for a given

generalization H, the formulae in AxH would give rise to 2|AxH | possible ways in

which a subset of zero or more of the |AxH | unpaired formulae from both L and

R can be formed (and thus a way in which a blend diagram in our search space,

with generalization space H, can be formed). Extending a generalization H with each

of these subsets results in 2|AxH | corresponding sets that eventually form a network

of theories isomorphic to the power set algebra of a set with |AxH | elements. This

network can thus be represented by a lattice LBH
= 〈BH ,⊆〉, where BH is the set of

all potential blends (based on AxH ) and ⊆ is the subset inclusion relation.
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3 Theory Blending Algorithm

Now we are ready to present and discuss our overall search strategy, depicted in

Figure 5 and further explained in the rest of this section. Given two inputs L and R

over first-order signatures ΣL and ΣR, respectively, we propose the following 4-stage

strategy to find optimal blends.

1. Generalization: Using the HDTP mapping phase, compute a generalization G that

is as strong as possible (i.e., identifies as many symbols as possible) together with

its associated substitutions2. As an example, see Table 1 and Example 1.

2. Identification: Based on the current generalization H ⊆G (initially set to G), build

a blend signature ΣB by forming the ‘right collapsed union’ of ΣL and ΣR de-

scribed in the previous section.

3. Blending: Construct the set of all formulae over ΣB that might be part of a blend.

For a generalization H ⊆ G, this will consist of every formula in R+
H (the covered

part of R) plus every formula in the uncovered parts of R and L (i.e., AxH =
TrH(L

−
H)∪R−H ). As an example, the set AxG = {R7,R8,L7t,L8t} corresponds to

the
∣

∣TrG(L
−
G)

∣

∣+
∣

∣R−G
∣

∣ = 4 uncovered formulae of Example 1. These 4 formulae

are listed at the bottom of the leftmost column of Table 2, which also shows the

candidate blends for the particular generalization G of that example.

For H ⊆G, the set R+
H∪AxH ∈BH would be the ideal blend that can be built using

the (possibly relaxed) generalization H, but it might be inconsistent. So, in this

(blending) step we also compute the set MaxCon of maximal consistent blends

B ∈ BH such that R+
H ⊆ B ⊆ R+

H ∪AxH . For the running example, this involves

exploring the 16 theories of the lattice LBG
depicted in Figure 6.

The user of the algorithm decides now if the produced blends are good enough

or the search must continue. In the first case we stop. If not, go to the next step

which will need the set MinInc of minimally inconsistent subsets of R+
H ∪AxH that

extends R+
H .

4. Relaxation: Reduce the set of symbols covered by the current generalization by

shrinking this generalization (some simple heuristics for this step are given be-

low), and return to step 2.

In search of maximally informative blends, the main idea of this 4-stage general strat-

egy is to scan the search space in “layers”. Each layer is determined by a generaliza-

tion, starting with the fixed generalization initially given by HDTP. Then, each time

the relaxation step is encountered, consequent generalizations are relaxed, meaning

that the scan starts all over with a weakened relaxation (i.e., those generalizations par-

tially losing their “compression”). This process of “layer scanning” corresponds to

the Identification–Blending–Relaxation cycle of steps depicted visually in Figure 5.

2 A simplified version of HDTP is used, where substitutions must preserve the arity of symbols.
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Generalization

Identification

Relaxation

Blending

L R

G

B

HDTP

MinInc

MaxCon

Satisfied?

Inputs (fixed)

Processed (changing)

Lattice of blends

Yes

No

Fig. 5 A depiction of the algorithm’s overall logical flow.

3.1 Blending-Stage Algorithms

In the rest of this section, we focus on step 3 only: step 1 is obtained from HDTP,

step 2 does not require further explanation, and step 4 will be discussed in Section 4.

The pseudocode of step 3 comprises the procedures shown in Algorithms 1 and 2.3

Algorithm 1 The COMPUTEBLENDS procedure that is used in the blending step.

1: procedure COMPUTEBLENDS(R+
H,AxH , Init,direction)

2: [MaxCon,MinInc] := [ /0, /0]

3: for each T ∈ Init do

4: [MaxCon,MinInc] = EXPLORE
(

R+
H ,AxH ,T,direction, [MaxCon,MinInc]

)

5: end for

6: return [MaxCon,MinInc]

7: end procedure

In Algorithm 1, we have a simple procedure COMPUTEBLENDS which, besides

the sets R+
H and AxH introduced above, needs a list ‘Init’ of initial blend candidates (so

each element of Init extends R+
H ). Init must have the property that every possible blend

based on the current generalization H is either a superset or a subset of one of the

elements of Init. This —plus the way in which Init will be changed in the relaxation

phase (more on this below)— guarantees that the algorithm will find all the optimal

blends if never asked to stop the search (at the end of step 3). At the very beginning of

the process (step 1 above) Init can be initialized, for example, to be the set of theories

that extend R+
G (a different choice will be used later in our worked example). When

a relaxation is needed (step 4 above) a new set Init is computed from MaxCon and

MinInc (more on this later). There is a fourth parameter (‘direction’) which is used to

direct the search (as explained soon).

3 A Prolog implementation of the algorithm is available at http://www.coinvent-project.eu/en/

publicationsmedia/other_media_public_appearances.html.

http://www.coinvent-project.eu/en/publicationsmedia/other_media_public_appearances.html
http://www.coinvent-project.eu/en/publicationsmedia/other_media_public_appearances.html


Algorithmic Aspects of Theory Blending 13

The first thing the procedure COMPUTEBLENDS does is to initialize as empty two

global sets MaxCon and MinInc (lines 2 and 3 in Algorithm 1), which will keep at all

times during the search the largest consistent theories and the smallest inconsistent

theories, respectively, that have been found up to the moment. After this initializa-

tion, the procedure enters into a loop in which for each initial theory T in Init, the

procedure EXPLORE (line 5 in Algorithm 1) will populate MaxCon and MinInc. After

execution, all blends that contain T or are contained in T , will be “classified cor-

rectly” by MaxCon and MinInc, i.e. each blend will be subsumed by some theory in

MaxCon if it is consistent, or will subsume some theory from MinInc if it is incon-

sistent (cf. Lemma 1 below). When the loop ends, MaxCon determines precisely the

optimal blends.

Algorithm 2 The EXPLORE procedure (cf. Algorithm 1).

1: procedure EXPLORE(R+
H,AxH ,T,direction,[MaxCon,MinInc])

2: if T 6∈↓MaxCon ∪ ↑MinInc then

3: if T is consistent then

4: MaxCon := {T}∪{M ∈MaxCon |M 6⊆ T}
5: else

6: MinInc := {T}∪{M ∈MinInc | T 6⊆M}
7: end if

8: end if

9: if T ∈↓MaxCon and (direction ∈ {up,both}) then

10: for each Axiom ∈ (AxH \T ) do

11: EXPLORE
(

R+
H ,AxH ,T ∪{Axiom},up

)

12: end for

13: else if T ∈↑MinInc and(direction ∈ {down,both}) then

14: for each Axiom ∈ T \R+
H do

15: EXPLORE
(

R+
H ,AxH ,T \{Axiom},down

)

16: end for

17: end if

18: return [MaxCon,MinInc]

19: end procedure

The EXPLORE procedure is given in Algorithm 2, where the notations ↑C and ↓C
are used for a given theory C: ↑C denotes the set of theories that contain some theory

from C, whereas ↓C denotes the set of theories that are contained in some theory

from C; lC is ↑C ∪ ↓C. As a first step in EXPLORE (cf., lines 2 to 8 in Algorithm 2),

if T is not yet classified by MaxCon or MinInc, consistency of T is checked and

either MaxCon or MinInc is updated accordingly. If T is consistent (inconsistent), a

recursive upwards (downwards) search towards extensions (subsets) of T is initiated.

The upward and downward searches are performed unless the ‘direction’ parameter

prohibits them. The calls to EXPLORE made when working with the first, strongest

generalization G use always the direction ‘both’, with the effect that upwards and

downwards searches are allowed. In the case of calls to EXPLORE after a ‘relaxation’

has been made, the direction is set to up (the reasons for this will be explained later)4.

4 There are standard ways to improve the efficiency of the above procedure (using ordered lists, for

example), but such discussion would lead us away from the main focus of this paper.
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3.2 Correctness and Completeness of the Blending Stage

The above claims about EXPLORE follow from the next result, in which R+
H and AxH

are fixed and “theory blend” refers to sets T such that R+
H ⊆ T ⊆ R+

H ∪AxH .

Lemma 1. The following pre- and post conditions hold true of the operation of

EXPLORE
(

R+
H ,AxH ,T,direction

)

, for all theory blends T :

(1) If all consistency checks can be accomplished, the procedure will terminate.

(2) If MaxCon and MinInc classify correctly before calling EXPLORE, then the same

holds afterwards.

(3) If a theory blend B is classified correctly by MaxCon and MinInc before calling

EXPLORE, then the same holds after executing EXPLORE.

(4) If direction = up and MaxCon and MinInc classify correctly before calling EX-

PLORE, then ↑T is classified correctly by MaxCon and MinInc after executing EX-

PLORE.

(5) If direction = down and MaxCon and MinInc classify correctly before calling

EXPLORE, then ↓ T is classified correctly by MaxCon and MinInc after executing

EXPLORE.

(6) If direction = both and MaxCon and MinInc classify correctly before calling EX-

PLORE, then lT is classified correctly by MaxCon and MinInc after executing EX-

PLORE.

Proof. To show (1) notice first that the recursion will only occur with strictly larger

(direction = up) or strictly smaller (direction = down) values for T . As the size of T

is limited by R+
H and R+

H ∪AxH the claim follows.

(2) follows directly, as MaxCon is only changed when a consistent blend T is

added. The case for MinInc is analogous.

(3) Let B be a consistent blend. By assumption B ∈↓MaxCon before executing

EXPLORE. MaxCon is only changed if T is consistent but T 6∈ MaxCon, in which

case MaxCon will become {T} ∪ {M ∈ MaxCon | M 6⊆ T}. Now either B ⊆ T or

B ⊆ M ∈ MaxCon with M 6⊆ T . In both cases B is classified correctly by the new

MaxCon. A similar argument holds for MinInc.

(4) We proceed by induction on the cardinality of AxH \T . If T is inconsistent,

no recursive call to EXPLORE is made. If T ∈↑MinInc there is nothing to prove. If

T /∈↑MinInc, observe that T will be added to MinInc, so at the end of the procedure

↑T will be classified correctly by MaxCon and MinInc. Now, if T is consistent and

T /∈↓MaxCon, then T will be added to MaxCon. Then, for each element A of AxH \T ,

a call EXPLORE
(

R+
H ,AxH ,T ∪{A},up

)

will be made. By inductive hypothesis, after

all these calls, every ↑ (T ∪{A}) is classified correctly by MaxCon and MinInc, and

so (since T is also classified correctly) ↑T is classified correctly.

(5) The argument is analogous to that for (4), now using induction on the cardi-

nality of T \R+
H .

(6) If T is consistent, an argument very close to that of (4) shows that ↑T is clas-

sified correctly, so T ⊆ T ′ for some T ′ ∈ MaxCon. Then ↓T is classified correctly as

well. A similar argument applies if T is inconsistent.



Algorithmic Aspects of Theory Blending 15

Table 2 The table shows some of the theories in the search space of possible blends. Maximal consistent

theories are starred. Formulae L7t and L8t result from transferring the uncovered formulae of axiomatiza-

tion L, according to generalization G.

TR T 1 T2 T 3 T4 T 5 T6 T 7 T8 T 9 TL

x≤R x (R1) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x≤R y∧y ≤R z→ x ≤R z (R2) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x≤R y∨y ≤R x (R3) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

0≤R x (R4) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x+R y = y+R x (R5) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

(x+R y)+R z = x+R (y+R z) (R6) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x+R 0 = x (R7) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x <R y→∃z : (x <R z∧ z <R y) (R8) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

¬(x+R 0≤R x) (L7t) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x≤R y∧y ≤R x+0→ y = x∨y = x+R 0 (L8t) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

Consistent: Y N Y ∗ N Y ∗ N N N Y Y Y ∗

4 “Relaxation” Revisited

In this section, we study the relaxation stage of our approach. As our framework

stands, the evaluation of blends in step 3 (i.e., “blending”) and the decision to stop

or continue with a relaxation, is mandatorily an interactive step that the user decides.

After a current generalization H ⊆G has been dealt with, and if the relaxation step is

needed, it is important to find a good weakening K of H and a good set Init with which

to continue to step 2 (i.e., “identification”). In principle, the framework allows for an

interactive implementation where the user decides which weakened generalization to

use next, or for an implementation that uses automated heuristics, such as building a

weakened generalization for which: (i) only one old symbol mapping is dropped, and

(ii) the fewest number of axioms become uncovered under the new generalization.

In any case, once a weakened generalization K ⊆ H has been fixed, the previously

found MaxCon and MinInc sets are used to compute an appropriate new Init set as

follows. Let TrH and TrK be the old and new translation functions. To form the set

Init, for each T in MinInc (and optionally for every minimal extension of MaxCon) add

to Init the theory that results from replacing in T every formula of the form TrH(φ)
in R−H by TrK(φ). This new Init is good in that every optimal blend for the weakened

generalization will be an extension of one of the Init elements. As we will see in

this section, this is why the exploration, after some relaxation has been made, can be

constrained to be upwards only.

4.1 Regarding COMPUTEBLENDS and EXPLORE

Let us denote by SH the subspace of blend diagrams of the form 〈H,λH ,ρH ,B〉, where

H ⊆ G and B ∈ BH . With H = 〈H,λH ,ρH〉 being fixed, it is clear that SH is isomor-

phic to the power set of AxH . The algorithm COMPUTEBLENDS, corresponding to

step 3 of our blending procedure, says how to move around a given SH so as to find

all the blend diagrams 〈H,λH ,ρH ,B〉 for which B is maximally consistent. Note that,
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before the relaxation step is ever reached, our blending procedure consists of explor-

ing SG, and Lemma 1 shows that COMPUTEBLENDS indeed finds all of the optimal

blends in this subspace (with the choice of parameters with which EXPLORE is in-

voked). Notice also that while restricted to stay within a subspace SH , we cannot

change compression, because the generalization is fixed, so optimal blends in SH are

fully determined by maximal informativeness (i.e., maximal consistency of the last

component B). The fact that after using EXPLORE for the first time MaxCon and Min-

Inc contain all the maximal consistent B’s and all the minimal inconsistent B’s from

SG, respectively, follows from Lemma 1 together with the condition that upon the

beginning of the procedure, Init must be an antichain of the power set of AxG. That is,

every B ∈ BG from SG is a subset or a superset of an element of Init.

To explain what happens when our procedure enters into relaxation stages, it will

be convenient to picture the full search space as being composed of all the subspaces

SH , ordered according to H, so that SH � SK if and only if K is a relaxation of H.

Notice that this entails that K ⊆ H and therefore |AxH | ≤ |AxK |. Thus, if SH � SK

then SH is a smaller space (in terms of cardinality) than SK , since these spaces are

isomorphic as lattices to the power sets of AxH and AxK , respectively. Now, assume

that all the optimal blends within an SH space have been found and, even more, all

of the maximal consistent B ∈ BH are stored in MaxCon while all of the minimal

inconsistent B∈BH are in MinInc. We want to move now to the larger (relaxed) space

SK , where K ⊂ H, and find all the optimal blends in that subspace. One way to do

it would be to identify a new Init that is an antichain of the power set of AxK and

proceed exactly as in the case of exploring the initial SG, in a mixed up and down

direction. We will show, however, that the antichain condition on Init is not really

needed anymore, and the results obtained for SH allow us to construct a new Init with

the property that every optimal blend must be ‘above’ one of the elements of Init in SK .

Thus, we will only need to focus on some “subregions” of SK . The strategy follows

from Definition 2 and Lemma 2, where we use the notation [H,B] as a shortcut for

〈H,λH ,ρH ,B〉; an element of SH .

Definition 2. Let K= 〈K,λK ,ρK〉 be a relaxation of H= 〈H,λH ,ρH〉 and let [H,B] =
〈H,λH ,ρH ,B〉 be an element of H. The splitting of B under K (denoted splitK [H,B])
is the set of all [K,B′] = 〈K,λK ,ρK ,B

′〉 such that:

(i) all the elements (formulae) of B that keep being covered by the relaxed gen-

eralization K and all the elements of B that were not originally covered by H

belong to B′, and

(ii) any other element of B′ must belong to (R+
H \R+

K )∪TrH(L
+
H \L+

K ).

So, suppose that upon relaxing from H to K, there is exactly one formula ϕ in

B∩R+
H which stops being covered by K. That is, unlike before the relaxation, ϕ is

not anymore a simple renaming of a formula in L+
K . Then there will be exactly four

elements of splitK [H,B], namely, the theories (B\ {ϕ})∪C, where C ⊆ {ϕ,ϕL} and

ϕL is obtained from ϕ by changing the left signature symbols that are no longer

aligned by K into their corresponding symbols in the left signature (according to

K). Similarly, it is easy to see that if the relaxation leads to n formulae in B which

are not covered anymore by the new generalization K, then splitK [H,B] will have

22n elements. It is just an observation that if K = 〈K,λK ,ρK〉 is a relaxation of H =
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〈H,λH ,ρH〉 and [K,B] ∈ SK , then there is a unique element [H,B′] ∈ SH such that

[K,B] ∈ splitK [H,B]. We call [H,B′] the contraction of [K,B] under H.

Lemma 2. Let K = 〈K,λK ,ρK〉 be a relaxation of H = 〈H,λH ,ρH〉.

1. If [K,B′] ∈ SK and B′ is inconsistent, then B in the contraction [H,B] of [K,B′]
under H is also inconsistent.

2. If [H,B]∈ SH , B is consistent, and [K,B′]∈ splitK [H,B], then B′ is also consistent.

Proof. As for (1), it is a simple observation that, if there exists a way to formally

derive a contradiction from B′ using first-order logic, then there also exists a deriva-

tion of a contradiction from B, since B is equivalent to B′ with the addition of some

equality and/or equivalence axioms of the form

∀x( f (x) = g(x)) or ∀x(R(x)↔ T (x))

which capture the alignment (identification) of more symbols by H.

Part (2) follows from the fact that saying that [K,B′] ∈ splitK [H,B] is the same as

saying that [H,B] is the contraction of [K,B′] under H. The contrapositive of part (1)

tells us that B being consistent entails that B′ is consistent as well.

Back to our blending procedure, Lemma 2 tells us that, if we are after the list of

all [K,B′] ∈ SK that are optimal blends (i.e., maximally informative and compressed),

it will be enough for us to explore the regions of SK that are above (i.e., preceed) one

of the elements of the set MinIncH in the informativeness order (see Equation 1).

MinIncH =
⋃
{splitK [H,B] : B minimally inconsistent in SH} (1)

For if B′ is consistent but B in the contraction of [H,B] of [K,B′] was also consistent,

then [K,B′] would not be maximally compressed. So, B in the contraction of [K,B′]
under H must be inconsistent.

Now, should we want to relax K after being done with searching optimal blends

in SK , we would like to have the list of all [K,B′] ∈ SK where B′ is minimally in-

consistent, to be used in that new relaxation stage. But, when can B′ be minimally

inconsistent? Again, Lemma 2 gives us that if B′ is inconsistent, then B in the con-

traction of [K,B′] under H must be inconsistent. So, same as the search for optimal

blends, the search of minimally inconsistent B′s from SK can be restricted to the re-

gion of the subspace SK formed by the blends that are more informative than at least

one of the elements of MinIncH .

The above are the reasons why in all the relaxation stages procedure EXPLORE is

called only with direction parameter up (there is downwards exploration only in the

initial pre-relaxation stage). Since each splitK [H,B] has a minimum element, it would

be enough in the relaxation stage to initialize Init with all those minimum elements

and explore upwards in SK .
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4.2 Some Considerations of Efficiency

The above remarks show that the pruning we make when fixing a (relaxed) general-

ization H and exploring the associated subspace SH is not only a pruning of SH itself,

but is simultaneously a pruning of all the relaxed spaces SK that might be potentially

explored in later stages by relaxing H to K ⊂ H. Remember that the subspaces that

result from relaxations are larger in size. In fact, remember that an SH is isomorphic

to a power set, so the size of these spaces grows exponentially with the number of

axioms that need to be “split” when doing a relaxation. So it seems wise to proceed

as we currently do, that is, to start by exploring the space SG associated with the

most compressed generalization (therefore the smaller subspace), knowing that we

are pruning much larger spaces at the same time. These same ideas also justify a

heuristics for choosing first, among all possible relaxations of a given H, those that

would yield the smallest size for the induced split sets.

In spite of all this, the complexity, in the worst case, for exploring the initial

space SG keeps being very high if the task is really to find all the optimal blends,

as one can come up with examples of AxG = {ϕ1, . . .ϕ2n} such that each formula of

the form
∧

ψ∈G ψ∧∧
ψ∈C ϕ is consistent for each subset C of AxG with |C| = n, but∧

ψ∈G ψ∧∧
ψ∈D ϕ is inconsistent for each subset D of AxG with |D| = n+ 1. Such a

case would yield a list MinInc with
(2n)!
(n!)2 elements, a quantity that is asymptotically

similar to 4n√
πn

. This is an intrinsic problem, which of course motivates the task of

trying to find heuristics for exploring the search space in a more directed way that

would lead to finding the “most interesting” blends first, so that in many cases one

could stop at an interesting finding and not try to complete the search for all the

remaining optimal blends in the space.

Our algorithm involves testing theories in first-order logic with equality for incon-

sistency; this is well-known to be undecidable in general. In our examples the incon-

sistencies will be discovered quickly5, but in more elaborate situations, a resource-

bounded check for inconsistency may model reasonably well the experience of math-

ematicians who can work productively with theories that are believed to be consistent

and later revise their results in case an inconsistency is found. Research on Nelson

Oppen methods (see [21] for a survey) reveals conditions under which the satisfiabil-

ity and decidability of two theories is preserved when taking their union. The basic

case requires the signatures of the two theories to be disjoint, but this can sometimes

be relaxed. Some of these technical results might end up being useful to our work.

5 Worked Examples

5.1 Axiomatizing Arithmetical Properties

To illustrate the algorithm and suggest at least one improvement to it, we come back

to take the theories shown in Table 1. Remember that L is based on the additive nat-

5 HDTP and an implementation of the blending phase module are available on request. The blending

module uses prover9 to check for consistency.
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ural numbers (starting from 1) and R on the non-negative rational numbers. Thus,

the notion of ‘number’ in L is discrete with least element 1, whereas in R it is dense

with least element 0 (as the neutral element for addition). We will find all the optimal

blends of L and R. The example shows that our approach isolates just a few optimal

blends among many candidates, and that the short list includes (although not exclu-

sively) the ones that one would expect a mathematician to judge as most interesting.

The first stage of the procedure was already partially described in the previous

section. It explores the potential blends based on the generalization G of Table 1.

Figure 6 shows a lattice of the blends and Table 1 lists the axioms of each candidate

blend. Our set of initial theories will be formed by the minimal extensions of theory

R and the minimal extensions of (the transferred version of) theory L. That is, Init :=
{T1,T 3,T7,T 4}. The sets MaxCon and MinInc are initialized as empty and we start

to explore the initial theories. The first is T 1, which is inconsistent:

x+R 0 = x (R7)

¬(x+R 0≤R x) (L7t)

¬(x≤R x) (Substitution)

x≤R x (R1)

The last two lines are clearly contradictory. The algorithm adds T 1 to MinInc. How-

ever, knowing that the inconsistency arises from only the axioms R1,R7, and L7t, it

is better to add the smaller T 5 to MinInc than adding T 1 itself. Thus, MinInc:= {T5}.
Now, as the algorithm prescribes, we recursively explore (downwards) every the-

ory obtained from T 1 by deleting one axiom. These theories are TR,T 2, and T 5: TR

is consistent and T5 6⊆ T R, so MaxCon := {TR}; T 2 is consistent, not contained in

T R, and does not extend T 5, then we update MaxCon := {T R,T2}; and T 5 extends

the only member of MinInc, so we do nothing. This ends the analysis of T1.

AxG = T6

T7 T3 T1 T4

TL T5 T2 T8 T9 TR

{L7t} {L8t} {R7} {R8}

/0

Tx = consistent

Tx
= maximal

consistent

Tx = inconsistent

Tx
= mininal

inconsistent

Fig. 6 The lattice LBG
of the ‘blends’ that appear in the given example.

The second initial theory is T 3. This theory is not a subset of TR or T 2, and does

not extend T 5. In addition it is inconsistent, as shown by the third and last lines of the
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following proof, which uses all the axioms of T3 not covered by the generalization.

¬(x+R 0≤ x) (L7t)

¬(x+R 0≤ x)→∃z : (x <R z∧ z <R x+R 0) (R8)

x <R z∧ z <R x+R 0 (FOL)

¬(z≤R x)∧¬(x+ 0≤R z) (Def.≤R)

x≤R z∧ z≤R x+R 0 (FOL + R3)

z = x∨ z = x+R 0 (MP with L8t)

z≤R x∨ x+R 0≤R x (FOL + R1 + Def. ≤R)

We update MinInc:= {T 5,T3}, and recursively explore (downwards) every theory

obtained from T 3 by erasing one axiom, namely T L,T 2, and T8:

1. TL is consistent and does not extend T R nor T 2, then MaxCon:= {TR,T 2,TL}.
We are in the “downwards” mode, so we stop.

2. T2 is a member of MaxCon, so we stop.

3. T8 is consistent and not contained in a member of MaxCon. We set MaxCon:=

{TR,T2,T L,T 8}. Again, we are in the “downwards” mode, so this branch stops.

This ends the analysis of T3, the second initial theory.

The third initial theory is T 7, but the analysis of it stops immediately as it ex-

tends T5 ∈ MinInc. We are left with the initial theory T 4, which is consistent and not

contained in MaxCon. Then MaxCon is updated by deleting the subsets of T 4 (TR

and T 8) and adding T4: MaxCon := {T4,T2,T L}. Then we recursively explore (up-

wards) for possible consistent extensions of T 4. The only proper extension of T4 is

T 6, which extends elements of MinInc. The first stage of the algorithm ends thus:

– Solutions: T 2, T4, and T L.

– Minimally inconsistent theories: T 5 and T3.

Note that T L is just a signature renaming of theory L, T 4 a case of analogi-

cal transfer but not a proper blend, and T 2 a proper blend intuitively describing the

rationals larger than some nonzero number, which is not more interesting than the

rationals starting with zero, to which L corresponds. It is then fair to assume that

the user will decide to continue the search. In the second search stage, some of the

contradictions found in stage 1 will be avoided by weakening the signature of the gen-

eralization in the relaxation step. The weakening heuristics described in the previous

section suggest dropping the identification between 0 and 1, as this is the dropping

that would diminish coverage the least. The new generalized theory changes only in

that (G4) is not an axiom of it anymore. The result of transferring all of the axioms of

axiomatization L to the R side involves the introduction of a new symbol of constant

(1) to the R-side; cf. Table 3.

The set of initial theories will consist of the smallest versions, under the new

signature, of the theories associated with the elements of MinInc from stage 1. More

in detail, under the new signature there are four versions of each old theory T j from

the first stage. We call them T j0, T j1, T j2, or T j3 depending on which subset of
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Table 3 Formulae Lxxx result from transferring the uncovered formulae of L according to the weakened

generalization that does not identify 0 and 1. Maximal consistent theories are starred.

T30 T50 T 51 T52 T53 T 10 T 11 T12 T13 T 62 T72

(R1)− (R3),(R5),(R6) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

0≤R x (R4) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x+R 0 = x (R7) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x <R y→∃z : (x <R z∧ z <R y) (R8) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

1≤R x (L4tt) ⊠ ⊠ ⊠ ⊠

¬(x+R 1≤R x) (L7tt) ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

x≤R y∧y ≤R x+1→ y = x∨y = x+R 1 (L8tt) ⊠ ⊠ ⊠ ⊠

Consistent: N Y N Y N Y N Y ∗ N N Y ∗

{R4,L4tt} they contain: T j0 includes no element from {R4,L4tt}, R j1 includes only

L4tt, R j2 includes only R4, and R j3 includes the two axioms. Only some of these

theories are shown in Table 3. Our set of initial theories in this stage will then be

Init := {T30,T50}. The sets MaxCon and MinInc are reset to the empty set.

Every maximally compressed solution blend with respect to the new generaliza-

tion must extend one of the initial theories. We explore each one of these initial the-

ories in the “upwards” mode. We start with T 30. This theory is inconsistent because

the proof used in stage 1 to see that T 3 is inconsistent still goes through when using

1 instead of 0 throughout, and L7tt instead of L7t. We update MinInc := {T30}.
Then we test the second and last initial theory, T 50. The theory is consistent

but may not be maximal. We update MaxCon:= {T 50}, and explore T 50’s minimal

extensions:

1. T51 is inconsistent and does not extend T 30, therefore MinInc := {T30,T51}.
2. T10 is consistent and extends T 50. Set MaxCon:= {T10} and explore the three

minimal extensions of T 10, thus: T60 and T 11 extend the elements T 30 and T 51

of MinInc, so nothing is done in these cases; and T 12 is consistent and properly

extends T 10. Thus, we update MaxCon:= {T12} and test the minimal extensions

of T 12. There are only two cases of such a minimal extension: Adding L4tt to

T12 yields a theory that extends the element T51 of MinInc; and Adding L8tt

yields the theory T62, which is inconsistent because it extends T30 ∈ MinInc.

3. T70 = T 50∪ {L8tt} is consistent. So we update MaxCon:= {T 12,T70}, and

explore the minimal extensions of T 70. They are: T 60 (which extends T 30 ∈
MinInc), T71 (which extends T 51 ∈ MinInc), and T 72 (maximal consistent). Af-

ter these explorations, MaxCon:= {T12,T72}, and MinInc:= {T 30,T51}.
4. T52 is a subset of T 12 ∈ MaxCon, so we stop.

The second stage ends with new solutions T 12 and T 72, which, we claim, are the

two mathematically interesting blends of the given theories: there are distinguished

numbers 0 and 1, with 0 the unit for addition, and 1 strictly greater than 0; T 72

is discrete, with a zero element immediately below 1, while T 12 is dense, with a

distinguished unit size.
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Axiomatization L Axiomatization R

(L1) (∀a,b)a∗L b = b∗L a (R1) (∀a,b)a+R b = b+R a

(L2) (∀a,b,c)(a∗L b)∗L c = a∗L (b∗L c) (R2) (∀a,b,c)(a+R b)+R c = a+R (b+R c))
(L3) (∀a)a∗L 1 = 1∗L a = a (R3) (∀a)a+R 0 = 0+r a = a

(L4) (∀a)1|La (R4) (∀a)(∃−a)a+(−a) = (−a)+a = 0

(L5) (∀a,b,c)a|Lb→ a|b∗L c (R5) ∀a¬(0|Ra)
(L6) (∀a,b,c)a|Lb∧b|Lc→ aLc (R6) (∀a,b,c)(a|Rb∧b|Rc→ a|Rc)

(R7) (∀a)(a 6= 0)→ a|Ra∧a|R−a

(R8) (∀a,b,c)a|Rb∧a|Rc→ a|R(b+R c)
(R9) (∀a,b,c)(a∗R b)∗R c = a∗R (b∗R c)
(R10) (∀a,b,c)a∗R (b+R c) = a∗R b+R a∗R c

Table 4 Explicit axiomatizations of a monoid (and a ring) with (additive) divisibility relations, respec-

tively.

5.2 Commutative Ring with Unity and Compatible Divisibility Relation

We will combine two concepts emerging as a formal union of typical concepts in

abstract algebra and number theory. The first concept L is a commutative monoid

with divisibility relation and the second one R is a ring with (additive) divisibility

relation (compare Table 4).

We will obtain inconsistent theories in the case that all axioms of L and R are

mapped to the blend space and HDTP works with the analogical substitutions

1. ∗L→+R; |L→ |R.
2. ∗L→∗R; |L→ |R.

The first case is obtained when HDTP finds four direct analogical matches be-

tween (L j) and (R j), for j = 1,2,3,6. It is straightforward to prove that in this case

1 = 0, since 1 would be also a neutral element for the addition operation in R. So,

the axioms (R4) and (L5) would generate a contradiction. Besides, the generic space

consists of four axioms and, therefore, our algorithm suggests as a maximal con-

sistent blend the concept defined by the axiomatization R plus the axiom TrR(L5).
Furthermore, the axioms (R8),(R10) and TrR(L5) imply that

(∀a,b)(a 6= 0)→ (a|Rb).

So, a trivial model for this concept is a ring with two elements 0 and 1. In particu-

lar, in this case the relation |R becomes almost trivial. Effectively, if we consider any

ring with at least two elements, the relation |R defined by a|Rb if and only if a 6= 0, is

a model of this theory.

The second case appears when HDTP finds as analogical matches (L2)− (R9)
and (L6)− (R8). It gives the most representative and rich blend. In fact, the algo-

rithm finds as maximal consistent theory the concept of a commutative ring with

unity and compatible divisibility relation, which can be seen as a formally interesting

combination of the former two concepts, since it could be described as a fundamental

notion in commutative algebra, i.e., a commutative ring with unity enriched with a

natural arithmetical structure given by a divisibility relation and congruent with the

corresponding binary operations.
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Axiomatization L Axiomatization R

(L1) (∀a,b)a+L b = b+L a (R1) (∀a,b)a+R b = b+R a

(L2) (∀a,b,c)(a+L b)+L c = a+L (b+L c) (R2) (∀a,b,c)(a+R b)+R c = a+R (b+R c)
(L3) (∀a)a+L 0L = 0L +a = a (R3) (∀a)a+R 0R = 0R +R a = a

(L4) (∀a,b)s(a) = s(b)→ a = b (R4) (∀a,b)inv(a) = inv(b)→ a = b

(L5) (∀a)¬(s(a) = 0L) (R5) (∀a)inv(a)+R a = 0R

(L6) (∀a,b)s(a+L b) = s(a)+L b

Table 5 Axiomatizations for the concepts of quasi-natural numbers as a commutative monoid with suc-

cessor function (L) and Abelian group with inverse function (R).

5.3 Partial Axiomatization of the Integers

Let us consider as our first concept a partial axiomatization of the natural numbers

by means of the addition operation and a successor function (see [5] for a similar

axiomatization). Besides, we define as second space the concept of an Abelian group

with the axioms explicitly defined through an inverse unary function (see Table 5).

In this case, HDTP finds natural analogical matches between the first four axioms

of both theories, which defines the generic space. It generates the signature morphism

+L→+R; s→ inv; 0L→ 0R.

Our algorithm finds the blend consisting of the union of both theories as a minimal

inconsistent theory. In fact, (R5) implies inv(0R) = 0R, which contradicts

TrG(L5) : (∀a)¬(inv(a) = 0R).

Furthermore, the set of maximal consistent theories consists basically of a space

isomorphic to L and the space obtained after subtracting the former axiom, which

gives the theory of Abelian groups with elements of order at most two. Effectively,

the axioms TrR(L6) and (R5) imply

(∀a)inv(a+R a) = inv(a)+R a = 0R.

So, for any element a = inv(inv(a)), it holds 2a = 2inv(inv(a)) = 0R.

In conclusion, the resulting blending gives a genuine theory with at least one

new algebraic property which cannot be derived from any of the input spaces alone,

namely the fact that two is an upper bound for the order of each element of the space.

Now, in the interactive approach as well as in the one using automated heuristics,

the next most suitable relaxation to be considered is the following one:

+L→+R; 0L→ 0R.

The reason is that it drops the axiom concerning the unary function symbols. So,

we obtain in this case just the three first axioms of both concepts in the generic space.

Again, the blended theory consisting of all the axioms inherits an equivalent kind of

contradiction as in the former substitution.

Now, in the collection of maximal consistent theories our algorithm generates

as the most relevant spaces the one obtained by subtracting the same axiom TrR(L6),
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which turns out to be a partial axiomatization of the integers with a successor function

s and an implicitly defined predecessor function, namely inv(s(inv(−)) (for a similar

approach see [5]), which has also an intrinsic mathematical value.

Furthermore, the other two maximal consistent theories are not of the same rel-

evance from a mathematical point of view, since both of them exclude the possibil-

ity of comparing simultaneously the common addition operation and the functions s

and inv. Therefore, the corresponding models are trivial formal meta-intersections of

models coming from sub-theories of each of the input spaces.

6 Evaluation

Blending is widely discussed as an important cognitive mechanism in cognitive lin-

guistics and other branches of cognitive science as it allows to convincingly explain

phenomena of learning and creativity. However, most current approaches to blend-

ing are on a purely conceptual level, with only few of them implemented, of which

most use idiosyncratic formalisms for knowledge representation, tailored to their re-

spective blending mechanisms. For a quantitative evaluation (focusing on the quality

of outputs, runtime behavior etc.) we would need comparable other systems. These

systems should perform the same sort of blending of mathematical theories with the

same type of (in)consistency checking we deal with. To the best of our knowledge

there are no systems that are applicable precisely to the same type of problems con-

sidered in this paper. Rather such system address related problems, which we briefly

describe in the following paragraphs.

The approach presented in this paper is, together with [5], one of the first attempts

to perform blending of theories provided in classical first-order logic, addressing

problems like inconsistent blend candidates and the relaxation of unsatisfying blends.

In comparison to [5], our algorithm has the advantage of being more sensible to con-

sistency and being able to generate semi-automatically the generic space. The model

in [5] requires that the user specifies manually the generic space and, after that, it

computes using HETS [24] just one possible blend theory in terms of a colimit con-

struction (which has the additional benefit of allowing blended, and therefore, new

axioms). Moreover, in the case that the resulting colimit gives an inconsistent theory,

the user should modify manually the whole diagram of theories by hand, which is, in

general, not the case in our algorithm.

A related approach to searching for blends in a similar framework is described in

[11]. The authors use Answer Set Programming (ASP) to compute a generic space

for given input spaces. Tools from the HETS system are used to compute blends

and check for consistency of the resultant theories. The subsequent weakening of in-

put theories is guided by ASP, until consistent blends are found. The authors work

with input spaces with prioritized content (priorities for predicates, axioms etc.), in-

dicating the relative importance of aspects of the given theories. This is an important

aspect of mathematical blending, as some conceptual aspects are regarded as more

important to a given mathematical concept than others. The priorities guide a heuris-

tic search for good blends. Unlike in our approach, there is no attempt to take into

account all consistent blends. Ideally, we would like to work with such prioritized
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inputs, and also make use of the global properties of the MinInc, MaxCon so as to

reduce search. We will investigate this possibility in the future.

Further approaches towards creativity and theory formation in mathematics are

Colton’s HR system [7] and Pereira’s blending approach for modeling creativity [25].

The HR system, in its newest version HR3, does not use blending as a method-

ology, but a mixture of production rules, inductive as well as deductive reasoning

mechanisms, and randomization features. Due to the different methodologies the ap-

proaches are very hard to compare. Our account also differs from that given in [25], as

the mappings in the latter “do not have to rely on similarity: they can present conflicts

that are striking, surprising or even incongruous” [25, p. 90].

A final note concerns the choice of the representation language of our approach.

The use of first-order logic is motivated by its ability to express many non-trivial

mathematical theories. The approach can support mathematicians by suggesting in-

directly new concepts with interesting mathematical value (e.g. [15]). Of course, first-

order logic also introduces problems, like its semi-decidability which can in princi-

ple make the algorithm fail. However, modern theorem provers are often not even

restricted to first-order theories but support higher-order logic as well. Furthermore,

the overall approach presented in this paper is not dependent on the choice of first-

order logic. It can be applied to logical formalisms like Description Logics, which

often are decidable and guarantee acceptable runtime at the price of lower expressiv-

ity.

7 Concluding Discussion

We presented a new algorithmic way of performing theory blending, based on the

HDTP framework. Our approach is inspired by Goguen’s treatment of CB, but dif-

fers from his in various aspects. First, our system generally outputs fewer blends

focusing on maximal informativeness and compression as optimality criteria. By this

we capture some aspects from [12]’s “optimality principles” for blends. Second, our

algorithm uses only the weakenings of a fixed generalization, while Goguen seems

to require the exploration of many (possibly mutually incompatible) starting general-

izations.

Our interest in this topic lies in particular in the blending of mathematical theo-

ries, as a means of understanding certain developments in the history of mathematics,

as described by Alexander [2], and also as part of general mathematical cognition,

as suggested by Lakatos [17]. Our approach performs CB as theory blending. There-

fore, it is especially appealing for applications in mathematics (such as the automated

creation of mathematical concepts and conjectures) and logic-based AI. We demon-

strated how traditional optimality criteria for CB can be spelled out in this setting.

Also, we can add consistency as a further criterion to judge the quality of blends. As

discussed, some relaxations of our algorithms (e.g. using bounded checks) may yield

a better fit with human performance. We will also need to study more heuristics for

the generalization relaxation stage, since they will affect the order in which optimal

blends will be detected, and so the time needed to make the mathematically-oriented

user satisfied by the produced blends.
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It is desirable to thoroughly evaluate interactive tools supporting working mathe-

maticians in quantitative experiments. Unfortunately, this is currently very hard, be-

cause there are not many systems available that can generate new and interesting

mathematical concepts (compare Section 6 for an overview), there is no generally

accepted set of benchmark problems that can be used for a quantitative evaluation,

and the focus and underlying methodology of potential systems coming into consid-

eration varies quite significantly. Nevertheless, we believe that future research should

make an attempt to design quantitative experiments in this field. Our own experiments

could be used as a first benchmark.
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