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Abstract

We study ex-ante priority respecting (ex-ante stable) lotteries in
the context of object allocation under thick priorities. We show that
ex-ante stability as a fairness condition is very demanding: Only few
agent-object pairs have a positive probability of being matched in an
ex-ante stable assignment. We interpret our result as an impossibility
result. With ex-ante stability one cannot go much beyond randomly
breaking ties and implementing a (deterministically) stable matching
with respect to the broken ties. JEL-classification: C78, D47
Keywords: Matching; School Choice; Lotteries; Ex-Ante Stability

1 Introduction

A classical matching problem with many real-world applications is the as-
signment of indivisible objects to agents where objects are rationed according
to priorities. In applications, such as the school choice problem (Abdulka-
diroglu and Sönmez, 2003), priorities are often thick, i.e. many agents have
the same priority to obtain a certain object. Thus, one can sometimes not
avoid to treat agents differently ex-post even though they have the same
priorities and preferences. However, ex-ante, some form of fairness can be
restored by the use of lotteries. This has motivated researchers to study the
problem of designing priority respecting lotteries for allocating objects.

∗I thank Battal Doğan, Bettina Klaus, Flip Klijn, Jordi Massó, Panos Protopapas and
participants of the Sixth World Congress of the Game Theory Society for useful comments
on a previous version of the note. I gratefully acknowledge financial support by the Swiss
National Science Foundation (SNSF) under project 100018-150086.
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A minimal ex-ante fairness requirement for random assignments under
priorities is that the lottery should respect the priorities. One way of formal-
izing this requirement is the following: An agent i has ex-ante justified envy
if there is an object s where a lower priority agent j has a positive probability
of receiving the object and i would rather have the object s than another
object which he receives with positive probability in the lottery under con-
sideration. In this case, it would be natural to eliminate the justified envy,
i.e. changing the probability shares such that i has a higher chance of receiv-
ing s at the expense of the lower ranked agent j. Ex-ante stability requires
that there is no ex-ante justified envy. In the school choice set-up, ex-ante
stability has been introduced by Kesten and Ünver (2015). For the classical
marriage model the condition was first considered by Roth et al. (1993). He
et al. (2017) define an appealing class of mechanisms that implement ex-ante
stable lotteries.

Even though ex-ante stability is, in a sense, a minimal ex-ante fairness
requirement, it is demanding. In an environment with strict priorities (no
ties) and where each school has one seat to allocate, it follows from an earlier
result by Roth et al. (1993) that each student has a positive probability of
receiving a seat at, at most, two schools. In other words, an ex-ante stable
lottery is almost deterministic. We generalize this result to the more general
set-up with quotas and ties. With strict priorities, we show that an ex-ante
stable lottery is almost degenerate, since

• each agent has a positive probability at at most two distinct objects
for receiving a copy of that object.

• For each object all but possibly one copy are assigned deterministically.
For the one copy that is assigned by a lottery, two agents have a positive
probability of receiving it.

With ties in the priorities, ex-ante stability is naturally less demanding. How-
ever, ex-ante stability imposes a lot of structure on the lottery. We show that
the size of the support of an ex-ante stable lottery (the number of pairs be-
ing matched with positive probability) is determined by the number of ties
the lottery “uses” (i.e. how many agents who have equal priority at some
object are matched with positive probability to that object). More precisely,
we show that for each ex-ante stable lottery the size of the support is de-
termined by the size of the “cut-off” priority classes: Here, cut-off priority
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classes are the lowest priority classes at an object, such that an agent of that
priority class gets that object with positive probability.

The proofs in this paper use the graph representation of assignment prob-
lems due to Balinski and Ratier (1997). As far as we know, this representation
has not been used so far in the study of lotteries. We think that our results
demonstrate the usefulness of this particular representation for the study of
random assignments with priorities.

2 Model

There is a set of n agents N and a set of m object types M . A generic
agent is denoted by i and a generic object type by j. Of each object type j,
there is a finite number of copies qj ∈ N. We assume that there are as many
objects as agents,

∑
j∈M qj = n.1 Each agent i has strict preferences Pi over

different types of objects. Each object type j has a strict priority ranking
�j of agents. Later in Subsections 3.2 we will also consider the case where
object types have indifferences in their priorities.

A deterministic assignment is a mapping µ : N → M such that for
each j ∈M we have |µ−1(j)| = qj. A random assignment is a probability
distribution over deterministic assignments. By the Birkhoff-von Neumann
Theorem, each random assignment corresponds to a bi-stochastic matrix and,
vice versa, each such matrix corresponds to a random assignment (see Kojima
and Manea (2010) for a proof in the set-up that we consider). Thus each
random assignment is represented by a matrix Π = (πij) ∈ RN×M such that

0 ≤ πij ≤ 1,
∑
j∈M

πij = 1,
∑
i∈N

πij = qj,

where πij is the probability that agent i is matched to an object of type j.
The support of Π is the set of all non-zero entries of the matrix Π, i.e.

supp(Π) := {ij ∈ N ×M : πij 6= 0}.

We say that agent i is fractionally matched to object type j if there is
a positive probability of the pair being matched but they are not matched

1Our results can be generalized to the case where the number of objects and agents
differ by adding dummy agents and objects. See Aziz and Klaus (2017), for the details of
this construction.
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for sure, i.e. 0 < πij < 1. A random assignment represented by the matrix
Π = (πij) is ex-ante blocked by agent i and object type j if there is some
agent i′ 6= i with πi′j > 0 and i �j i

′ and some object type j′ with πij′ > 0
and j Pi j

′. A random assignment is ex-ante stable if it is not blocked by
any agent-object type pair.2

2.1 Graph representation

Next, we introduce the graph representation of Balinski and Ratier (1997).
In the following, a directed graph Γ is a pair (V (Γ), E(Γ)), where V (Γ) is a
finite set of vertices and E(Γ) is a set of ordered pairs of vertices called arcs.
For a random assignment Π, we construct a directed graph Γ(Π) as follows:
The vertices are the agent-object type pairs,

V = N ×M.

There are two kind of arcs. A horizontal arc connects two vertices ij and
ij′ that contain the same agent. A vertical arc connects two vertices ij and
i′j that contain the same object type. The direction of the arc is determined
by the preferences respectively priorities. A horizontal arc points to the
more preferred object type according to the agent’s preferences. A vertical
arc points to the agent with higher priority in the object type’s priority.
Moreover we only consider those arcs which origin in a pair ij with πij > 0.
Thus

E(Π) := {(ij, i′j′) ∈ V 2 : πij > 0, (i = i′, j′ Pi j or j = j′, i′ �j i)}.

Immediately from the definition of ex-ante stability we obtain the following
necessary and sufficient condition for ex-ante stability (see Figure 1).

Lemma 1. If Π = (πij) is ex-ante stable, then there cannot exist both a
horizontal arc (ij′, ij) and a vertical arc (i′j, ij) in Γ(Π) pointing to ij.

2For deterministic assignments, ex-ante stability is equivalent to the usual notion of
a stable matching. In particular, ex-ante stable assignments always exists, since stable
matchings always exist.
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P1 P2 P3 �1 �2 �3

2 1 3 2 1 1
1 2 2 1 2 2
3 3 1 3 3 3

1
3 0 2

3

0 2
3

1
3

2
3

1
3 0


1 2 3

1

2

3

Figure 1: The matrix represents a random assignment. Preferences and
priorities are as in the table in the middle. The random assignment has
several blocking pairs, for example the pair (21): Since π11 > 0 and π22 > 0,
agent 2 and object type 1 ex-ante block the random assignment. In the
corresponding directed graph, there is a horizontal arc from (2, 2) to (2, 1)
and a vertical arc from (1, 1) to (2, 1).

3 Results

3.1 Strict Priorities

We are ready to state and prove the main results for the case with strict
priorities. First we show that if Π represents an ex-ante stable random as-
signment, then it has small support.

Proposition 1. If priorities are strict, then for each ex-ante stable random
assignment Π we have

|supp(Π)| ≤ n+m.

Proof. We prove the proposition by a double counting argument. Let U ⊆
V be the set of vertices ij that have an incoming horizontal arc in Γ(Π)
and positive probability πij > 0. For each i ∈ N , let Mi(Π) ⊆ M be
the set of object types j such that ij has an incoming horizontal arc and
πij > 0. By definition, we have |U | =

∑
i∈N |Mi(Π)|. Let i ∈ N . Either i

is deterministically matched or he is fractionally matched to multiple object
types. In the first case, we have Mi(Π) = ∅. In the second case, let j ∈Mi(Π)
be the least preferred object type (according to i’s preferences) among the
object types that are fractionally matched to i under Π. Since j is i’s least
preferred object type to which he is matched, there is for each such object
type j′ 6= j a horizontal arc pointing from ij to ij′. Thus, in either case,
|supp(Πi)| − 1 = |Mi(Π)| where supp(Πi) is the support of the i-row of Π.
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Summing over N we obtain

supp(Π)− n ≤
∑
i∈N

|Mi(Π)| = |U |. (1)

Next we bound |U | from above. Let j ∈ M and i, i′ ∈ N . Suppose
πij > 0, πi′j > 0 and furthermore that there is a horizontal arc pointing to
ij and another horizontal arc pointing to i′j. If there were a vertical arc
pointing from ij to i′j, we would have a contradiction to Lemma 1 and vice
versa if there were a vertical arc pointing from i′j to ij, we would also have
a contradiction to Lemma 1. Thus for each j there is at most one agent
i such that πij > 0 and ij has an incoming horizontal arc. Thus |U | ≤ m.
Combining this inequality with Inequality 1, we obtain the desired result.

The opposite direction is not necessarily true. There can exists random
assignment that satisfy the bound on the support, but are not ex-ante sta-
ble. The random assignment in Figure 2 is an example of such a random
assignment.

It follows from the bound on the support that ex-ante stable random
assignments under strict priorities are almost degenerate.

Corollary 1. If priorities are strict, then for each ex-ante stable random
assignment the following holds:

1. For each agent i there are at most two object types that are fractionally
matched to i.

2. For each object type j there are at most two agents that are fractionally
matched to j.

Proof. Suppose there is an ex-ante stable Π such that some agent i′ is frac-
tionally matched to at least three object types. Consider a minimal bi-
stochastic sub-matrix Π′ ⊆ Π containing i′, i.e. a minimal (in terms of number
of rows and columns) matrix (πij)(i,j)∈N ′×M ′ with i′ ∈ N ′ ⊆ N and M ′ ⊆ M
such that

1.
∑

j∈M ′ πij = 1 for any i ∈ N ′,

2. q′j :=
∑

i∈N ′ πij ∈ N for any j ∈M ′,

3.
∑

j∈M ′ q′j = |N ′|.
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
Figure 2: A bi-stochastic matrix representing a random assignment. The
object types corresponding to the second and to the third column have two
copies. The other object types have one copy. The agent i′ corresponding
to the first row is fractionally matched to three object types. The minimal
bi-stochastic matrix Π′ containing i′ is the 3× 3-matrix shaded in red. Note
that |supp(Π′)| = 7 > 3 + 3 = |N ′|+ |M ′|. Thus Π′ is not ex-ante stable and
therefore Π is not ex-ante stable.

By minimality, Π′ contains only fractionally matched agents (see Figure 2
for an example). Thus every agent in Π′ is fractionally matched to two or
more object types. Moreover, i′ is fractionally matched to at least three
object types. Thus |supp(Π′)| ≥ 3 + 2 · (|N ′| − 1) > 2 · |N ′| ≥ |N ′| +
|M ′| and, by Proposition 1, Π′ is not ex-ante stable. But each blocking
pair of Π′ is also a blocking pair of Π. Therefore, Π is not ex-ante stable,
contradicting our assumption. A symmetric argument shows the second part
of the corollary.

3.2 Thick Priorities

Now we consider the more general case where priorities can be weak. For each
object type j we have a weak (reflexive, complete and transitive) priority
order �j of the agents. We let i ∼j i

′ if and only if i �j i
′ and i′ �j i.

We let i �j i
′ if and only if i �j i

′ but not i′ �j i. The priorities �j of
an object type j partition N in equivalence classes of equal priority agents,
i.e. in equivalence classes with respect to∼j. We call these equivalence classes
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priority classes and denote them by N1
j , N

2
j . . . , N

`j
j with indices increasing

with priority. Thus for a > b, i ∈ Na
j and i′ ∈ N b

j we have i �j i
′. We use the

notation i �j N
k
j to indicate that i has higher priority at j than the agents

in the priority class Nk
j . The definition of ex-ante stability remains the same

as before, in particular, the object type j in the blocking pair must strictly
prioritize i over i′ in order to ex-ante block.

For each random assignment Π and priority profile �= (�j)j∈M , we define
priority cut-offs c(Π) = (cj(Π))j∈M by

cj(Π) := min{c ∈ {1, . . . , `j} : ∃i ∈ N c
j with πij > 0},

i.e. cj(Π) is the lowest priority of an agent that is matched to j under Π. We

define cut-off priority classes N(Π) = (Nj(Π))j∈M by Nj(Π) := N
cj(Π)
j

and define for each agent i ∈ N the set Mi(Π) := {j ∈ M : i ∈ Nj(Π)} of
cut-off object types.

We now generalize Proposition 1 to the case with thick priority classes.

Theorem 1. If Π is ex-ante stable then

|supp(Π)| ≤ n+
∑
j∈M

|Nj(Π)|.

Proof. Again we use the graph representation as introduced in Section 2.
We model indifferences in priorities by undirected edges, i.e. unordered pairs
of vertices. Now there are two kind of vertical edges: Vertical arcs pointing
from a vertex ij to i′j such that i′ �j i and neutral vertical edges connecting
vertices ij and i′j such that i ∼j i

′. Neutral edges do not have a direction.
Note that Lemma 1 remains to hold.

Again we use a double counting argument. As before, let U ⊆ V be the
set of vertices ij that have an incoming horizontal arc and positive probability
πij > 0. The same argument as in the proof of Proposition 1, shows that

|supp(Π)| − n ≤ |U |. (2)

Next we bound |U | from above in terms of the sizes of cut-off classes. For
each j ∈M , let Ñj(Π) ⊆ N be the set of agents i such that ij has an incoming
horizontal arc and πij > 0. By definition, we have |U | =

∑
j∈M |Ñj(Π)|. Let

j ∈ M and suppose i, i′ ∈ Ñj(Π). If there were a vertical arc pointing from
ij to i′j we would have a contradiction to Lemma 1 and vice versa if there
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were a vertical arc pointing from i′j to ij we would also have a contradiction
to Lemma 1. Thus, in this case ij and i′j are connected by a neutral edge.
Thus, each i ∈ Ñj(Π) is in the same indifference class at j. Moreover, by
Lemma 1, for each i ∈ Ñj(Π) there is no vertical arc from a i′j with πi′j > 0
pointing to ij. Therefore Ñj(Π) ⊆ Nj(Π). Thus for each j ∈ M we have
|Ñj(Π)| ≤ |Nj(Π)|. Summing over M we obtain

|U | =
∑
j∈M

|Ñj(Π)| ≤
∑
j∈M

|Nj(Π)|.

Combining this inequality with Inequality 2, we obtain the theorem.

Note that Theorem 1 generalizes Proposition 1. If the profile � is strict
then for each j ∈ M we have |Nj(Π)| = 1. Therefore, the second term on
the right hand side of the inequality is m. The following example illustrates
Theorem 1.

Example 1. Consider five agents, five object types, each with a single copy
(qj = 1 for each object type), and the following preferences and priorities.

P1 P2 P3 P4 P5 �1 �2 �3 �4 �5

1 1 1 2 5 1, 2, 3 5 3, 5 4 1

4 2 2 5 3
... 2, 3, 4

... 1 2

5 5 3 4 2 1
... 3

2 3 5 3 1 4, 5
3 4 4 1 4

In Figure 3, we consider a random assignment that is ex-ante stable for
the above preferences and priorities. In this random assignment, the upper
bound on the size of the support holds with equality.
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1
3 0 0 1

2
1
6

1
3

1
3 0 0 1
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1
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1
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2
1
6
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6

2
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6
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1

2
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Figure 3: The red vertices have an incoming horizontal arc. In this example:∑
j∈M |Nj(Π)| = 3 + 3 + 2 + 1 + 2 = 11. Thus, the right-hand side of the

inequality in the theorem is 5 + 11 = 16. In this example the bound is sharp
and the inequality holds with equality: |supp(Π)| = 16.
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