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Advanced tools and concepts for quantum cognition: A tutorialI

James M. Yearsleya,b

aDepartment of Psychology, School of Arts and Social Sciences, City University London, Whiskin Street, London EC1R 0JD, UK
bJDM Lab, Department of Psychology, Vanderbilt University, Nashville, TN 37240-7817, USA

Abstract

This tutorial is intended to provide an introduction to some advanced tools and concepts needed to construct more realistic quantum
models of decision. The aim is to cover, in a format suitable for researchers with some limited exposure to quantum models of
cognition, the ideas of density matrices, POVM type measurements and open system dynamics. The central theme we explore is
how we might introduce noise into our quantum models, and the effect this has on model behaviour. These important ideas are likely
to be very useful for constructing more realistic cognitive models, but they are generally not covered by introductory accounts of
quantum theory. We hope that this tutorial will help to introduce these tools to other researchers interested in constructing quantum
models of cognition.

Keywords:

1. Preamble1

Recent years have seen a surge of interest in so-called quan-2

tum models of cognition and decision making (Busemeyer and3

Bruza, 2014; Aerts, 2009; Mogiliansky et.al., 2009; Yukalov4

and Sornette, 2011; Khrennikov, 2010; Pothos and Busemeyer,5

2013; Wang et al., 2013). These models are based on the math-6

ematics of quantum probability theory (QT), but abstracted7

from the usual physical content. These models have arisen in8

part as a response to the empirical challenges faced by ‘ratio-9

nal’ decision-making models, such as those based on Bayesian10

probability theory (such examples are mostly associated with11

the famous Tversky-Khanaman research tradition. See e.g.12

Tversky and Kahneman (1974); Chater et al. (2006).) These13

quantum models posit that, at least in some circumstances, hu-14

man behaviour does not align well with classical probability15

theory or expected utility maximisation. However unlike, for16

example, the fast and frugal heuristics programme (see, e.g.17

Gigerenzer et al., 2011), quantum cognition aims not to do away18

with the idea of a formal structure underlying decision-making,19

but simply to replace the structure of classical probability the-20

ory with an alternative theory of probabilities. This new prob-21

ability theory has features, such as context effects, interference22

effects and constructive judgments, which align well with psy-23

chological intuition about human decision-making. Initial re-24

search involving quantum models tended to focus mainly on25

explaining results previously seen as paradoxical from the point26

of view of classical probability theory, and there have been a27

number of successes in this area (Pothos and Busemeyer, 2013;28

Wang et al., 2013; Trueblood and Busemeyer, 2011; White et29

al., 2014; Pothos and Busemeyer, 2009; Aerts et al., 2013;30

IBased on a tutorial given at the 37th Annual Cognitive Science Society
Meeting, Pasadena, California, USA. July 23rd-25th, 2015.

Bruza et al., 2015; Blutner at al., 2013; Pothos et al., 2013,31

2015). More recently, the focus has switched to some extent32

to testing new predictions arising from quantum models, and33

designing better tests of quantum vs classical decision theories34

(Atmanspacher and Filk, 2010; Yearsley and Pothos, 2014, in35

press; Wang et al., 2014).36

Although good progress has been made in understanding37

how to build simple cognitive models using QT there has been38

less work done on developing more sophisticated or realistic39

models. Toy QT models can provide a good qualitative under-40

standing of some cognitive processes, but if the ultimate goal is41

to pit QT models against the current best models of cognition42

and decision making then the sophistication of QT models will43

need to grow to match such models. This necessitates a move44

beyond toy models to something more realistic. In addition,45

many of the current toy QT models have obvious conceptual46

problems beyond their over-simplicity; one simple example is47

that typical models for the evolution of cognitive variables are48

unitary, which means they have no fixed points. Under such a49

model no amount of evidence presentation can ever lead to a50

fixed belief state.51

The solution to these problems is to move to a slightly more52

sophisticated framework for QT modelling that can better rep-53

resent realistic decision making. However there is a challenge54

here; although this more sophisticated framework is not tech-55

nically or conceptually more demanding than that employed by56

toy QT models, it is considerably harder to access. Although57

there are a wealth of introductory accounts of quantum physics58

that can be easily accessed by cognitive scientists (eg (Isham,59

1995; Peres, 1998; Pelnio)) (and even a number specifically60

written for them, (Busemeyer and Bruza, 2014; Yearsley and61

Busemeyer, 2015)) it is much harder to find introductory ac-62

counts of some of the tools needed to build more realistic QT63

models.64
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The purpose of this tutorial is to try and give a brief intro-65

duction to some of these tools. The material presented consists66

mainly of advanced concepts and ideas from the physics lit-67

erature, some of which have made it into more sophisticated68

quantum cognitive models, but some of which are yet to find69

a concrete application. The idea is to present these ideas in a70

way which makes them accessible to cognitive scientists inter-71

ested in QT models. A key aim of this tutorial is also to make72

clear when and why these more sophisticated ideas need to be73

applied, so that researchers have a better understanding of the74

limits of the current toy QT models.75

Since the potential scope of this tutorial is vast, the presenta-76

tion style will be somewhat non-standard. Specifically we are77

aiming for a broad and shallow overview of several different78

topics, or a sort of ‘London Bus Tour’ of modern quantum me-79

chanics. We will be satisfied if we can point out some of the80

major landmarks, and suggest how readers may wish to explore81

the issues in more depth for themselves, as and when they feel82

it necessary.83

Some more general comments:84

1. These notes are not meant as an introduction to the whole85

of the Quantum Cognition program. In particular we as-86

sume prior familiarity with the basics of QT. For those87

with no previous exposure to QT, we recommend the book88

by Busemeyer and Bruza (2014) or the recent tutorial89

Yearsley and Busemeyer (2015) as a good place to start.90

For more detail about the maths, Isham (1995) is a good91

reference, alternatively there are many sets of excellent92

lecture notes available online Pelnio.93

2. The mathematics underlying some of the ideas presented94

here is extremely interesting. However since this is in-95

tended as an introductory account we will mostly avoid96

lengthy proofs or derivations, including them only when97

we feel they aid understanding.98

3. A comment on notation; we will be making use of bra-ket99

notation throughout. Thus state vectors will be written as100

|ψ〉. Also we won’t usually write hats on operators or use101

bold/underline to denote vectors - whether something is an102

operator, a vector or a number should be obvious from the103

context. Finally we will adopt the physicists’ convention104

of setting ~ equal to 1.105

4. A note on references; we have tried to include only the106

most useful references we could find. For the most part107

this means books or review papers where possible, but108

we’ve also included genuine research papers where they109

are useful/comprehensible. There is pretty much no limit110

to the number of references one could include, see e.g. Ca-111

bello (2000). Two sources are worthy of particular men-112

tion; 1) arXiv.org. Cognitive scientists may not be fa-113

miliar with this, but it’s a pre-print archive used by the114

physics/maths community as a place to upload papers prior115

to publication. Most are subsequently updated upon pub-116

lication to reflect the published versions. The upshot of117

this is that probably the majority of published physics pa-118

pers, dating back to the late 90’s, are available free from119

this one site. Where we can find it therefore, we have120

included the arXiv reference alongside the journal info,121

to make papers easier to track down. 2) The single text122

used most in putting these notes together is The Theory of123

Open Quantum Systems by H.-P.Breuer and F.Petruccione124

(2006). This is much more a physics text than a psy-125

chology one, but it’s nevertheless worth a special mention,126

since we’ve consulted it so frequently while preparing this127

tutorial.128

2. Introduction: Noise!129

The most commonly encountered toy models of QT are ide-130

alisations in a number of ways. The key one for the purpose131

of this tutorial is that they assume experimenters have perfect132

knowledge/control over the cognitive state of participants, the133

form and effect of measurements, and finally the details of any134

‘evolution’ of the state.135

In the real word (or even the real lab), things are rarely this136

simple. We want to show you some tools that can let you137

generalise the models you’ve come across so far to apply in138

more realistic situations. It turns out that doing this will also139

teach us some profound things about the meaning of the quan-140

tum approach to cognition, and how it differs from classical141

approaches. The theme of this tutorial is therefore ‘Noise’,142

specifically ‘Noise in the cognitive state’, ‘Noise in the mea-143

surements’ and finally ‘Noise in the evolution.’144

3. Noise in the cognitive state: Density matrices145

3.1. Introduction146

Let us begin with a simple motivating example. Suppose we147

wish to perform an experiment in the lab and the expected re-148

sults depend on whether participants are left or right-handed.149

Our PhD student collects an equal number of left and right150

handed participants and lets them into the lab one at a time. Un-151

fortunately the PhD student doesn’t tell us which participants152

are which, so all we know is that there’s a 50/50 chance of get-153

ting a left/right-handed participant each time. Suppose the cog-154

nitive state of the left handed participants is given by |L〉 and155

that of the right handed ones by |R〉 (and that these two states156

are orthogonal), what is the correct cognitive state to describe157

our unknown participants?158

You might guess the answer is,

ψ =
1
√

2
(|L〉 + |R〉) (1)

but this turns out not to be correct. You might have guessed this
because if I ask “What’s the probability that a participant given
by this state will say they are left/right-handed if we ask them?”
then the answer is;

p(le f t) = 〈ψ| PL |ψ〉 =
1
2

[〈L| PL |L〉 + 〈L| PL |R〉

+ 〈R| PL |L〉 + 〈R| PL |R〉]

=
1
2

(2)
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and the same for right. (Here PL = |L〉 〈L| etc.)159

However this isn’t the correct state because what we’ve made160

here is a ‘quantum’ mixture (or superposition) of left and right,161

whereas what we were really looking for was a classical mix-162

ture. |ψ〉 tells us the participant is in some sense neither left nor163

right handed 1, at least until we ask, whereas of course what’s164

really happening is that each participant is definitely either left165

or right handed when they enter the lab, we just don’t know166

which.167

In other words, what we want to do is to add in classical un-168

certainty to our description of a quantum system. This section169

describes how to do this.170

3.2. The Density Matrix ρ171

Let’s see if we can get a clue about the right answer by look-172

ing at the statistics for the outcomes of our experiment on these173

participants. Suppose our experiment is represented by an op-174

erator O, and for left and right handed participants the expected175

result is l and r respectively. Since we have an equal number of176

left and right handed participants half the time we will get the177

result l and half the time we will get the result r. The average178

outcome across many experiments will therefore be,179

〈O〉 =
1
2
〈L|O |L〉 +

1
2
〈R|O |R〉 , (3)

=
l + r

2
.

We can write this result in a simpler way by introducing the
density matrix ρ,

ρ =
1
2

(|L〉 〈L| + |R〉 〈R|) (4)

Then the expected outcome of our experiment can be written
as,

〈O〉ρ = Tr(Oρ) (5)

where Tr denotes the trace of an operator. The trace of an op-
erator is defined by,

Tr(A) =
∑

i

〈φi| A |φi〉 (6)

where the {φi} form an orthonormal basis of the Hilbert space.180

It is easy to show that if the trace of an operator exists, it is181

independent of the choice of basis {φi}
2. (In terms of matrices,182

the trace of a matrix is just the sum of the diagonal terms.)183

1Some people often claim that a state such as |ψ〉 represents a situation
where the participant is both left and right handed at the same time. Simi-
larly, in physics people often say things like “The particle can be in two places
at once!” However this isn’t really correct. If a system has a property A that
means that the state must be an eigenstate of the projection operator PA onto the
subspace associated with that property. Thus if our state represented a partici-
pant who was left handed, we would have PL |ψ〉 = |ψ〉. Since this isn’t true for
PL or PR the correct conclusion is that |ψ〉 represents the state of a participant
who is neither left nor right handed, rather than one who is somehow both at
the same time.

2The trace operation has a bunch of fun and useful properties that you can
read about in any good text on quantum theory. The key ones for us are firstly
that it is cyclic, i.e. Tr(ABC) = Tr(BCA) = Tr(CAB) and secondly that for any
operator A, Tr(A |ψ〉 〈ψ|) = 〈ψ| A |ψ〉.

More generally, if we have a classical mixture of possible
states |ψα〉 which occur with probabilities ωα this ensemble can
be represented by a density matrix,

ρ =
∑
α

ωα |ψα〉 〈ψα| (7)

It turns out that every expression you might have previously184

encountered in quantum theory has an equivalent in terms of185

the density matrix. In fact density matrices represent the most186

general way of writing the equations of quantum theory, and187

they will prove extremely valuable for the rest of this tutorial.188

It is therefore worth noting a few properties of the density ma-189

trix, and the density matrix analogues of some of the familiar190

expressions in quantum theory.191

Properties of the density matrix:192

• It is a Hermitian 3 operator, ρ† = ρ.193

• It is normalised in the sense that Tr(ρ) = 1.194

• It is a positive operator, meaning,195

〈ψ| ρ |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H.196

These three properties essentially ensure that the eigenvalues of197

ρ are positive, real numbers which sum to 1, and thus have the198

interpretation of probabilities.199

As we mentioned above, all of the expressions you have en-
countered so far in quantum theory can be rewritten in terms
of the density matrix. For example, from the expression for
the time evolution of a vector, |ψ(t)〉 = U(t) |ψ0〉, where4

U(t) = e−iHt it follows that,

ρ(t) = U(t)ρU†(t) (8)

From this, it is easy to see that the analogue of the Schrödinger
equation for a density matrix is 5,

∂

∂t
ρ = −i[H, ρ] (9)

This is often known as a master equation. Finally if we perform
a measurement on the state represented by the density matrix ρ
the probability that we will get the answer represented by the
projection operator Pa is given by,

p(a) = Tr(Paρ) (10)

and if we do, the state collapses to the new state,

ρ′ =
PaρPa

Tr(Paρ)
. (11)

In the special case of ρ = |ψ〉 〈ψ| this is easily seen to be equiv-200

alent to the usual expression involving state vectors.201

3Technically self-adjoint, but the difference isn’t important here. Note that
the dagger operation means conjugate transpose, i.e. M†i j = (M ji)∗.

4Assuming a time independent H.
5The commutator [·, ·], is defined as [A, B] = AB − BA
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We mentioned above that our original guess at the state for202

an equal mixture of left and right-handed participants, 1
√

2
(|L〉+203

|R〉), wasn’t correct. Since this state can also be written as a204

density matrix, we can compare our guess, ρg, with the correct205

answer, ρc. Working in the {|L〉 , |R〉} basis, we have;206

ρg =
1
2

(|L〉 + |R〉)(〈L| + 〈R|) =

(
1/2 1/2
1/2 1/2

)
(12)

ρc =
1
2

(|L〉 〈L| + |R〉 〈R|) =

(
1/2 0
0 1/2

)
(13)

Comparing the two expressions, we can see that they differ only207

in their ‘off-diagonal’ elements. Thus the difference between208

the classical mixture of left and right handed, and the quantum209

superposition of left and right handed is in some way encoded210

in these off-diagonal terms in the density matrix. It is tempt-211

ing therefore to think that the difference between classical and212

quantum descriptions of a system can be expressed in this way,213

and that quantum superpositions can be turned into classical214

mixtures by somehow removing these terms. We will discuss215

this further in a later section, but for now note that the situation216

is a bit more complicated than it seems. For a start, the prop-217

erties of the density matrix guarantee that it is diagonalisable,218

i.e. all density matrices are diagonal in some basis. The issue219

about whether a given density matrix represents a classical or a220

quantum mixture is therefore more about the basis in which it221

is diagonal Halliwell (2005); Zurek (1991).222

3.3. Using Density Matrices223

It might be useful at this point to give a short outline of224

two ways in which density matrices might be used to construct225

quantum models of decision. Our motivating example was use-226

ful for setting the scene and explaining what density matrices227

are, but it is obviously unrealistic. What is true however, is that228

the usefulness of density matrices is primarily in the area of229

modeling individual differences. We mean this less in the sense230

of explaining the behaviour of particular participants, and more231

in the sense of predicting the spread of results, rather than just232

average behaviour. Most quantum models in the literature are233

rather simple constructions that are concerned with predicting a234

particular average behaviour (for example the conjunction fal-235

lacy.) An important future direction for research will be under-236

standing the spread of participant behaviours, rather than just237

the average behaviour. Density matrices allow us to do this in238

two ways;239

• If we happen to know that some individual characteristic240

is important, and we know the distribution of this charac-241

teristic in our testing population, then we can make direct242

predictions about the average behaviour and the spread of243

behaviours by encoding these differences as an initial den-244

sity matrix, in a very similar way to our toy example of left245

and right handed participants.246

• Suppose instead we only think there might be some indi-247

vidual characteristic that is important, but we have no idea248

about its distribution in our testing population. Well then249

we can encode the differences in an initial density matrix250

again, but now leave the distribution of the characteristics251

as a free parameter, and try to fit this distribution from the252

data. In other words, if we think different groups of par-253

ticipants might show different behaviours, we can use a254

density matrix to perform a sort of mixed models analysis,255

and determine what distribution of individual differences256

best fits the data.257

To the best of our knowledge, neither of these approaches have258

been explored so far, but they obviously represent important259

next steps for the QT approach, if our ambition is to produce260

ever more accurate models.261

3.4. The Entropy of a Quantum State262

We introduced the density matrix as a way to capture a clas-
sical uncertainty about the quantum state. It is therefore natural
to ask about the entropy associated with a given density matrix.
The entropy of a classical state is a frequently used quantity,
and is obviously central to approaches like MaxEnt. Having a
quantum analogue is therefore very useful. However before we
do this we will first look at a simpler measure of uncertainty,
called the ‘purity’ of a quantum state. This is defined by,

γ = Tr(ρ2) (14)

If we write our density matrix in diagonal form, i.e. as,

ρ =
∑

i

pi |φi〉 〈φi| (15)

where the {φi} form a complete orthonormal basis, then,

γ = Tr(ρ2) =
∑

i

(pi)2 (16)

Either by diagnalising or by directly squaring the matrix, we
can see that,

γg = 1, γc =
1
2

(17)

where, recall, ρg was our guess for the mixture of left and right263

states, and ρc is the correct expression. Density matrices which264

can be written in the form ρ = |ψ〉 〈ψ| always have γ = 1 and265

are known as pure states, states which cannot be written in this266

form have γ < 1 and are called mixed. Clearly ρg is a pure state,267

whereas ρc is mixed. The purity of a density matrix turns out to268

be a useful approximate measure of the entropy of the state, but269

to see this we first need to define the entropy proper.270

For a classical probability distribution over a finite set of vari-
ables, {pi}, the classical Shannon entropy is given by 6,

S = −
∑

i

pi ln(pi) (18)

Now Eq.(15) suggests that we could define the quantum ana-
logue of the Shannon entropy in the same way as Eq.(18), but

6We assume here and throughout that 0 · ln(0) = 0.
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where the pi are now the ‘probabilities’ associated with the vari-
ous basis states |φi〉. In the basis where ρ is diagonal, this would
be equivalent to 7,

S = −Tr(ρ ln(ρ)) (19)

but recall the trace operation is basis independent, thus Eq.(19)
is valid generally. It is straightforward to compute the entropies
of our two quantum states,

S g = 0, S c = ln(2). (20)

Eq.(??) is know as the von Neumann entropy ((Neilsen and271

Chuang, 2000)). It is easily seen that in general pure states like272

ρg have zero entropy.273

We can now explain briefly one reason why the purity is such
a useful measure. Suppose our density matrix is close to being
pure i.e. ρ2 ≈ ρ. We can Taylor expand the logarithm as,

− ln(ρ) = (1 − ρ) + (1 − ρ)2/2 + (1 − ρ)3/3 + ... (21)

It follows that274

S = Tr(ρ − ρ2) + higher order terms (22)
= 1 − γ + higher order terms (23)

The quantity 1 − γ is often called the linear entropy, as it’s
the term that comes from the linear expansion of ln(ρ). The
linear entropy is a lower approximation to the von Neumann
entropy, but is much easier to calculate, since it doesn’t involve
diagonalising ρ. In Fig.1 we plot both the von Neumann entropy
and the linear entropy as a function of p, for the state,

ρ = p |L〉 〈L| + (1 − p) |R〉 〈R| (24)
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Figure 1: The von Neumann and linear entropies for the state Eq.(24).

For a classical probability distribution, the maximum entropy
state is the one with equal probability for any outcome. The
quantum analogue of this is a density matrix which is diagonal,
and where all the diagonal elements are equal. This state is
given (for a Hilbert space of dimension d) by,

ρmax entropy =
1
d


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =
1
d

11d (25)

7Note that if Ai j = Aiδi j then f (Ai j) = f (Ai)δi j. i.e. any function of a
diagonal matrix is itself a diagonal matrix.

where 11d is the identity matrix in d dimensions (we will usually
drop the subscript d since the number of dimensions should be
obvious.) It’s easy to see that,

S (ρmax entropy) = ln(d). (26)

which agrees with the classical result for a maximally uncertain276

state.277

3.5. Discussion278

The introduction of states with classical as well as quan-279

tum uncertainty represents a very significant development in280

the quantum formalism. We can now go ahead and represent281

a much more general variety of knowledge states, which proba-282

bly better reflect the kind of participants we might encounter in283

a realistic experiment.284

However the introduction of these states also gives us a285

chance to discuss what we think is one of the most powerful286

a priori reasons for considering quantum models of cognition287

and decision. At the heart of this argument is the difference be-288

tween classical and quantum uncertainties. Suppose we have289

a classical system such as a fair coin, where our best descrip-290

tion consists of a probability distribution for the two possible291

outcomes, head or tails. The probabilistic description reflects292

the fact that we are uncertain about the outcome of a given293

coin toss. Classical probability distributions have an associated294

Shannon entropy, and so classically the uncertainty about the295

outcome of the coin toss (probabilistic description) is related to296

a lack of knowledge (entropy) about the state of the system. In297

other words, classically we have,298

Uncertainty about outcomes
⇔

Lack of knowledge about state

Suppose we want to build a classical cognitive model of a299

participant’s preferences; specifically, let’s imagine we want a300

model of what type biscuit the author will choose to eat from301

the box he has in front of him, as a reward for finishing this sub-302

section. To simplify matters, suppose there are only two types,303

milk or dark chocolate. The author professes to be indiffer-304

ent between them currently, and experience (and the number of305

each kind left in the box) tells us he is equally likely to choose306

either variety. A classical description of the author’s cognitive307

state, which aimed to match his behaviour, would have to be308

a probability distribution which gave equal weight to milk and309

dark chocolate biscuits.310

There’s something odd about this though. To be clear, such a311

description would give the correct statistics for choices. How-312

ever recall our discussion above; this classical probability dis-313

tribution would have an associated entropy, and should be in-314

terpretable in terms of a lack of knowledge about the state. But315

wait, what information exactly is it that we lack? In the exam-316

ple of a coin toss above, if we toss a coin and ask you to guess317

heads or tails, there is of course a ‘correct’ answer, a proba-318

bilistic description reflects your lack of knowledge about the319

true state of the coin. Going back to our cognitive model, the320
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only knowledge you could be lacking here is the author’s true321

preference for his next biscuit type. In other words, every time322

you use a classical probability distribution to describe a system,323

you assume that there is a true state of the system, that you are324

ignorant of. This might be ok for coins, but it is far from ob-325

vious that this makes sense for decision makers. For example,326

according to a classical theory, the author really do have a defi-327

nite preference for my next biscuit, he’s just not telling himself328

what it is...329

We don’t want to build a quantum model of biscuits pref-330

erence here, but suppose we represent the author’s preference331

as the superposition state 1
√

2
(|milk〉 + |dark〉). This state has332

the same expected outcomes as the classical probability distri-333

bution, but critically it has zero entropy. That is, for a quan-334

tum superposition, although the best description of the expected335

measurement outcomes is probabilistic, there is no extra infor-336

mation that it is possible to gain that would improve your ability337

to predict a choice. In quantum theory,338

Uncertainty about outcomes
<

Lack of knowledge about state.

For the author’s money, this is one of the most powerful argu-339

ments for using quantum probability theory to model cognition.340

Now, time for that biscuit.341

3.6. Summary342

To recap; we introduced the concept of a density matrix,
which can be used to represent a state with both classical and
quantum uncertainty. In particular, if we have two different
groups of participants, represented by the pure states |P1〉 and
|P2〉, then we can form a mixed state by taking,

ρ = λ |P1〉 〈P1| + (1 − λ) |P2〉 〈P2| , 0 ≤ λ ≤ 1. (27)

Here λ gives the relative frequencies of the two types of partici-343

pants in our ensemble. If the two types occur equally frequently,344

then λ = 1
2 .345

All of the quantum theory you have encountered before can346

be rewritten in terms of density matrices, and we gave a few347

examples of common relations.348

We discussed the purity and entropy of a density matrix.349

Pure states always have zero entropy, but density matrices let us350

think about techniques such as entropy maximisation in quan-351

tum models.352

Finally we noted that quantum models break the connection353

between uncertainty and entropy, and this might represent a354

powerful argument for their use in cognition.355

4. Noise in the measurements: POVMs356

4.1. Introduction357

Designing good experiments is hard. Errors can creep into358

experiments because of participant quality, but they can also359

occur because of experimental design. One type of error occurs360

in studies where the questions have some sort of time pressure361

associated with them. Participants are forced to rush somewhat362

through the questions, and as such they sometimes click the363

wrong box or make other simple errors. Another type of error364

might occur when studies are very long, and participants loose365

focus and start giving inconsistent answers.366

Suppose we wish to model an experiment where we have par-367

ticipants express a preference for one of two alternatives, A or368

B, and that these are exhaustive and exclusive alternatives. In369

an ideal measurement these would be represented by projection370

operators PA = |A〉 〈A|, PB = |B〉 〈B|. Suppose instead our mea-371

surement isn’t ideal but, intentionally or otherwise, is subject to372

some noise. This means some participants who really prefer A373

will select option B, and vice versa.374

Let’s see how we might model this. What we want is an
operator EA, whose expectation value in the state |A〉 is close
to one, but which also has a non-zero expectation value in the
state |B〉, and likewise for EB. That is,

〈A| EA |A〉 = 1 − ε, 〈B| EA |B〉 = ε,

〈A| EB |A〉 = ε, 〈B| EB |B〉 = 1 − ε.
(28)

Where 0 ≤ ε ≤ 1 is some small error probability. Let us also
assume,

〈A| EA |B〉 = 0, etc. (29)

In the basis {|A〉 , |B〉} these operators can therefore be written
as,

EA =

(
1 − ε 0

0 ε

)
, EB =

(
ε 0
0 1 − ε

)
. (30)

Can we use these operators to describe a measurement process?375

It is easily seen that they are not projection operators, unless376

ε = 0 or 1, nevertheless they satisfy the following properties,377

• They are positive operators, which means they have posi-378

tive eigenvalues.379

• They are complete, in the sense that EA + EB = 1.380

These properties mean that for any density matrix ρ,

0 ≤ Tr(EAρ) ≤ 1 (31)

and ∑
i=A,B

Tr(Eiρ) = 1 (32)

The quantities Tr(Eiρ) can thus be interpreted as probabilities,381

and so EA and EB are good candidates to describe a measure-382

ment process.383

But what measurement process do they describe? Well there
are many ways to think about this, but probably the easiest is to
note that we can write,

EA = (1 − ε)PA + εPB, EB = εPA + (1 − ε)PB. (33)

In other words, we can write these operators like,

EA =
∑

i

pA(i)Pi (34)
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where pA(i) have (loosely) the interpretation of probabilities.384

So one way to think about these measurements is that instead385

of performing a measurement PA, we instead perform one of386

the possible measurements Pi with some probabilities pA(i). So387

these sorts of measurements look like noisy versions of ideal388

measurements.389

4.2. POVMs390

EA and EB together form a specific example of what are391

known as positive operator valued measures or POVMs for392

short Busch et al. (1995); Neilsen and Chuang (2000). POVMs393

are the most general type of measurements that can occur in394

quantum theory. What we want to do now is present an outline395

of the general theory of POVM measurements. After this we396

will go on to discuss some more concrete examples.397

The most general description of a measurement process in398

quantum theory is given in terms of a POVM, which is a set of399

operators {Ei}, that satisfy,400

• Positivity, 〈ψ| Ei |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H401

• Completeness,
∑

i Ei = 1.402

The probability that a measurement described by Ei gives a pos-
itive answer is then given by,

p(i) = Tr(Eiρ). (35)

A given POVM can have many different possible realisations.
A realisation φi is essentially the operation applied to the state
ρ→ φi(ρ), so that,

Tr(φi(ρ)) = Tr(Eiρ) (36)

The simplest realisation of a POVM {Ei} probably consists of
just taking the operator square roots of the Ei, i.e. writing

Ei = M†i Mi (37)

we have
φi(ρ) = MiρM†i . (38)

The Mi are often called ‘measurement operators’. It’s easy to
see from this why a given realisation of a POVM isn’t unique.
Suppose we use different measurement operators given by M′i =

UMi where U is an unitary operator. Then,

M′†i M′i = M†i U†UMi = M†i Mi = Ei (39)

so these new measurement operators form a realisation of the
same POVM, but,

φ′i(ρ) = UMiρM†i U† = Uφi(ρ)U† (40)

so the final state after the measurement is different in the two403

realisations.404

In the rest of these notes we will mostly ignore the issue of405

multiple realisations, by sticking to the choice Mi =
√

Ei. In406

practice the appropriate realisation can be determined from the407

details of the measurement process.408

The analogue of the collapse postulate in terms of POVMs
is simply that if a measurement of the POVM {Ei} yields the
outcome i, then the state collapses to,

ρ′ =
φi(ρ)

Tr(φi(ρ))
=

MiρM†i .
Tr(Eiρ)

, (41)

where the second equality holds for our simple choice of reali-409

sation Eq.(37)410

To return to our example above, for the POVM EA, in the
basis {|A〉 , |B〉} the associated measurement operator will be,

MA =

(√
1 − ε 0
0

√
ε

)
, MB =

(√
ε 0

0
√

1 − ε

)
, (42)

which is nice and simple.411

One feature of POVMs that is worth noting is that they rep-
resent measurements that are not perfectly repeatable, in the
sense that if we measure a variable and find the value x then
immediately measuring the same variable again will not yield
the result x with certainty. This is essentially because for the
elements of a POVM E2

A , EA. Suppose we start with an initial
state ρ = diag(1 − p, p). If we measure the POVM above and
get the outcome A then our state collapses to,

ρ′ =
1

(1 − ε)(1 − p) + εp

(
(1 − ε)(1 − p) 0

0 εp

)
. (43)

if we now perform another measurement of the POVM then the
probability we will get the outcome A again is,

Tr(EAρ
′) =

(1 − ε)2(1 − p) + ε2 p
(1 − ε)(1 − p) + εp

≤ 1 (44)

for small ε and p < 1 this goes as,

Tr(EAρ
′) = 1 −

ε

1 − p
+ O(ε2) (45)

so that this POVM measurement is not perfectly repeatable.412

4.3. Non-Orthogonal Measurements and ‘Maybe’413

One interesting property of POVMs, as opposed to a descrip-
tion of a measurement process based on projection operators,
is that the elements of a POVM need not be orthogonal. This
means that we can have more measurement outcomes than there
are dimensions in our Hilbert space. One application of this is
where we have a two dimensional set of choices, say A or B,
but more than two possible responses, say “prefer A”, “prefer
B” and “don’t know”. There are doubtless better ways of mod-
elling this situation, but let’s follow this through and see what
happens. The states associated with each outcome are given by,

Prefer A = |A〉

Prefer B = |B〉

Don’t know =
1
√

2
(|A〉 + |B〉)

or
1
√

2
(|A〉 − |B〉)

(46)
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They have associated projection operators PA, PB, P+ and P− in
what we hope is an obvious notation. Now these set of pro-
jection operators can’t form a description of a measurement,
because they are not normalised, i.e.∑

i=A,B,+,−

Pi = 2 (47)

but we can easily turn them into a POVM by normalising. The
POVM is therefore given by the set,

EA =
PA

2
, EB =

PB

2
, E+ =

P+

2
, E− =

P−
2
. (48)

Suppose our state is |+〉 = 1
√

2
(|A〉 + |B〉). Then we can show,

p(A) =
1
4
, p(B) =

1
4
, p(don’t know) =

1
2
. (49)

It turns out this example is not very realistic (e.g.414

p(don’t know) = 1
2 always!) but we hope it shows POVMs415

have potential for modeling this kind of measurement. We will416

see a better example in the next section.417

4.4. POVMs for Likert scales418

Many experimental conditions in psychology involve re-419

questing responses on a Likert scale. Belief and preference420

strengths are often elicited in this way, but they can be used421

to measure almost any cognitive variable.422

Likert scales pose an interesting problem for quantum mod-423

els, because it is somewhat unclear how to approach modeling424

the corresponding variables. Suppose one is interested in a vari-425

able x which we are going to take to be a belief that some event426

will happen, say that it will rain tomorrow. One might imagine427

measuring participant’s beliefs about this event in a number of428

different ways,429

1. Do you think it will rain tomorrow? (Yes, No)430

2. Do you think it will rain tomorrow? (Yes, No, Not Sure)431

3. On a 1-9 scale, where 1 is certainty of rain, and 9 is cer-432

tainty of no rain, how likely do you think it is that it will433

rain tomorrow?434

4. What percentage chance do you think there is of rain to-435

morrow?436

5. ...437

It is reasonably clear that these are all measuring the same un-438

derlying cognitive variable, belief in rain tomorrow. However if439

one assumes that the different response options are orthogonal440

then they appear to require vastly different dimensional Hilbert441

spaces, from 2 to 100 (or even an infinite dimensional space442

if one allows a continuous response option like a slider.) Our443

challenge is to come up with a unified way of modeling these444

different response types as arising from a single quantum vari-445

able. There are many way to do this. We will describe one of446

the simplest8.447

8An even simpler way is to ignore the issue and assume participants have

Suppose we allow the different responses on the Likert scale
to be non-orthogonal. Suppose we use an N point scale, we
can take the responses |x = 0〉 = |0〉 and |x = N〉 = |1〉 and the
intermediate responses to be,

|x = n〉 = cos
( nπ
2N

)
|0〉 + sin

( nπ
2N

)
|1〉 (50)

These states give rise to a set of projection operators {Pn} that448

can be turned into a POVM by normalising. The probabilities449

that a measurement of this variable will yield one of the re-450

sponses 1-9 for the states |0〉 and 1
√

2
(|0〉 + |1〉) are shown in Fig451

2, for the choice of a 9 point response scale. Note that there is
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Figure 2: Probabilities for each of the 1-9 options on a Likert scale assuming
the POVM based on Eq.(50).

452

obviously some spread in the choices, however if the true state453

is |0〉, say, then the probability of choosing either 1,2 or 3 on the454

scale is almost 63%.455

There are other, perhaps better ways of modeling Likert scale456

type judgments in quantum theory, in particular this approach457

rapidly looses its value as the number of responses becomes458

larger. Nevertheless we hope this semi-realistic example is use-459

ful in setting out where POVMs can be used in practice.460

4.5. Order effects in noisy measurements461

An important question is whether noise in the measurement462

process spoils the quantum features of that measurement. One463

example of such a quantum feature is order effects in survey464

designs (Wang et al., 2014), so we will briefly look at whether465

noise in the measurements spoils order effects. This is covered466

in more detail in Yearsley and Busemeyer (2015).467

A striking simple example of an order effect is to consider an
initial state |A〉 and two possible projective measurements, PB

direct access to the probability Tr(Pxρ). This is frequently done in quantum
models. However this is problematic for two reasons; first this probability is
an expectation value that only makes sense for an ensemble of systems, which
requires that participants have not a single belief state but a whole collection
that they can query. In other words, this is not actually quantum theory of a
single belief state anymore. Second, because this measurement is not modeled
in a proper quantum way, it is unclear what happens if we ask participants to
make sequential Likert scale type judgements. What does the state collapse to
after the first judgment?
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onto the state |B〉 and P+ onto the state, 1
√

2
(|A〉+ |B〉). It is easy

to see that (working for the rest of this subsection in the basis
{|A〉 , |B〉}),

p(+ and then B) =Tr(PBP+ρP+)

=Tr
((

0 0
0 1

) ( 1
2

1
2

1
2

1
2

) (
1 0
0 0

) ( 1
2

1
2

1
2

1
2

))
=Tr

((
0 0
1
4

1
4

))
=

1
4

(51)

Whereas,

p(B and then +) =Tr(P+PBρPB)

=Tr
(( 1

2
1
2

1
2

1
2

) (
0 0
0 1

) (
1 0
0 0

) (
0 0
0 1

))
=Tr

((
0 0
0 0

))
= 0.

(52)

This striking result arises from the fact that [PB, P+] , 0. So468

what happens if we replace this set of ideal measurements with469

a POVM?470

We let’s replace the projection operators with the following
9,

PB → EB =

(
ε 0
0 1 − ε

)
P+ → E+ =

( 1
2

1−2ε
2

1−2ε
2

1
2

) (53)

These have associated measurement operators,

MB =

(√
ε 0

0
√

1 − ε

)
M+ =


√

1−ε+
√
ε

2

√
1−ε−

√
e

2√
1−ε−

√
e

2

√
1−ε+

√
ε

2

 (54)

Now we can see that,

pε(+ and then B) =Tr(EBM+ρM+)

=
1
4

(
1 − 2(1 − 2ε)

√
ε
√

1 − ε
) (55)

and

pε(+ and then B) =Tr(E+MBρMB)

=
ε

2
(56)

We plot these results against the value of ε in Fig.3. The re-
sults are interesting. The key is that the difference in the values
of the probabilities, ie

δ = pε(+ and then B) − pε(+ and then B) (57)

9Readers are encouraged to convince themselves E+ is reasonable. Either
start with PB and rotate through π/4, or consider a combination of P+ and P−
as in Eq.(34).

(plotted as the dotted line) decreases sharply with increasing ε,471

i.e. with increasing noise. Note however that the value of ε is472

interpretable in terms of the ‘error’ probability of the measure-473

ment. Realistic experiments would probably have values of ε474

in the range 1-5% (as found in Yearsley and Pothos (in press)),475

and so order effects are still likely to be visible in such experi-476

ments, although they might appear smaller than you might have477

expected.
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Figure 3: pε (B and then +), pε (+ and then B), and their difference, plotted
against ε.

478

We don’t have space here to pursue this further, but it is clear479

that small amounts of noise will still allow order effects to be480

observed, even though very large amounts of noise rapidly kill481

off such effects. This has important implications for studies482

looking for these effects in the wild (Wang et al., 2014).483

4.6. Summary484

We have shown that the description of measurements in485

quantum theory can be generalised to non-orthogonal sets of486

measurements. These POVM type measurements can be used487

to describe noisy realistic measurements, where even partici-488

pants with a definite knowledge state may not make completely489

predictable decisions. They can also be used to model situations490

where there are simply more possible choices than orthogonal491

states in the space.492

We mentioned that one useful way to think about POVMs
was as averages over a set of projective measurements, e.g.

EA =
∑

i

pA(i)Pi (58)

where the {Pi} are a complete and orthogonal set of projection
operators and the pA(i) are positive numbers such that,∑

A

pA(i) = 1. (59)

which ensures the POVMs are normalised.493

POVMs are likely to be a very important tool as we strive494

to make the predictions of the quantum models more accurate.495

They are also particularly relevant if an experimental set up in-496

volves asking participants the same questions repeatedly, see ?497

for an example.498
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5. Noise in the Evolution: CP Maps499

5.1. Introduction500

The final type of noise we will consider is noise in the evo-501

lution of the state. In a typical experiment we manipulate the502

cognitive state of a participant by presenting some kind of stim-503

uli. Although we might have good control over the stimuli we504

present, we have much less certainty about how particular par-505

ticipants respond to these stimuli. In addition, we usually as-506

sume that different preferences and beliefs are more or less in-507

dependent of one another, so that, e.g., a model of chocolate508

biscuit preference can consider this belief state as an isolated509

system, independent of, e.g. preference for tea or coffee.510

In reality, things are not this simple. We therefore need more511

realistic models of evolution that can help us answer two ques-512

tions;513

1. What effect does the interaction between different be-514

liefs/preferences have on the evolution of a cognitive state?515

2. How do we model evolution when we are unsure about the516

effect of a stimuli on a particular participant?517

It will turn out that these two questions have essentially the518

same answer. In addition an important motivation for consider-519

ing noisy evolutions turns out to be the following question,520

3. How do we model evolutions that are irreversible, or that521

cause a general initial state to tend towards some final fixed522

state which is independent of the initial one?523

This question arrises because the usual unitary evolution we524

consider is reversible, ie for any unitary evolution U(t) = e−iHt
525

there is another unitary evolution given by U†(t) such that526

U(t)U†(t) = U†(t)U(t) = 1. There are of course many situ-527

ations in cognition where we might wish to model evolutions528

that are (effectively) irreversible, eg decays. This is particularly529

apparent when we cause a cognitive state to evolve by present-530

ing some stimuli, e.g. some extra information, whose effects531

we can’t undo.532

Again, somewhat remarkably, we will find that the answer533

to question 3 is the same as the answers to questions 1 and534

2. We will also find that this way of incorporating noise into535

cognitive models has some very profound consequences for the536

‘quantum-ness’ of the systems under study.537

5.2. CP Maps538

Generally speaking, in quantum theory noisy evolutions are539

motivated by considering a system of interest S which inter-540

acts with some other less well controlled system which we541

call an environment E. We will follow the same reasoning,542

although it’s reasonable to have concerns about how well the543

physics/cognition analogy works here. In the end though the544

key point of this subsection is that there is a standard form for545

these noisy evolutions which guarantees that they make mathe-546

matical sense. In practice we just pluck noisy evolutions out of547

thin air to do a particular job, our only concern being that they548

match this standard form. However it’s useful to have some549

idea about where they come from 10.550

The idea is that we want to study the system S which inter-551

acts with an environment E about which we have little or no552

interest in or information on. What one does then is to specify553

the dynamics of the joint system+environment, including in-554

formation about the evolution and initial states to arrive at a de-555

scription of the density matrix of the whole, ρS +E. This density556

matrix contains information about the environment, which we557

don’t want, so to get at a description of just the system we per-558

form an operation called a partial trace, where we sum over the559

environmental degrees of freedom, essentially throwing away560

the information we don’t want, to leave us with an effective561

description of the dynamics of the system only in terms of a562

reduced density matrix ρS .563

We are interested in the effect this has on the master equation
for the system alone, i.e. the evolution equation for the reduced
density matrix ρS . For the complete density matrix ρS +E we
have,

∂

∂t
ρS +E = −i[HS +E, ρS +E] (60)

where HS +E is the joint Hamiltonian of the system plus envi-
ronment. When we perform the partial trace to remove the en-
vironmental degrees of freedom this becomes,

∂

∂t
ρS = −i[HS , ρS ] +LρS (61)

where L is a super-operator which encodes the extra dynamics
that come from the system-environment interaction. The most
general form this equation can take is the so-called ‘Lindblad’
form (Lindblad, 1976),

∂

∂t
ρS = − i[HS , ρS ]

+
∑

k

(
LkρS L†k −

1
2

L†k LkρS −
1
2
ρS L†k Lk

) (62)

where {Lk} are a set of operators called the ‘Lindblad’ operators,564

which model the effect of the environment.565

The key feature of evolution according to the Lindblad equa-566

tion is that it preserves the properties of the density matrix567

which are important if it is to describe a real cognitive system.568

The most important (in the sense of difficult to achieve) prop-569

erty is positivity, which recall means that all the eigenvalues of570

ρ are non-negative. For this reason master equations of the form571

Eq.(62) are known as ‘Completely Positive’ or CP-maps 11. In572

the next sections we will consider a number particularly useful573

CP-maps, designed to model specific types of evolution.574

5.2.1. Some Extra Detail575

We add a few extra points here for interested readers.576

10It’s worth noting that this will be pretty wooly. The full mathematical
treatment is complex and irrelevant for usage we want to make of the formalism.

11Actually Eq.(62) has an additional property not needed to preserve the
properties of the density matrix, which is that it is continuous in time. Evo-
lutions of the form Eq.(62) are therefore only a subset of possible CP-maps.
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In the derivation of Eq.(61) we assume that we can separate
out the system and environmental degrees of freedom in the
system. So we can write the total Hilbert spaceH = HS ⊗HE.
We can therefore choose a basis for the Hilbert space which
consists of tensor products of basis vectors from the system and
environment, i.e.

∣∣∣φi j

〉
= |S i〉 ⊗

∣∣∣E j

〉
, where {|S i〉} form a basis

forHS , and likewise for the environmental degrees of freedom.
The partial trace over the environmental degrees of freedom is
therefore defined as,

TrE(A) =
∑

j

〈
E j

∣∣∣ A
∣∣∣E j

〉
(63)

and the reduced density matrix for the system alone is given by,

ρS = TrE(ρS +E). (64)

A couple of further points to note. First, most derivations of
Eq.(61) for real systems assume that the initial density matrix
can be factorised as

ρS +E(t = 0) = ρS (t = 0) ⊗ ρE(t = 0). (65)

In other words the assumption is that the system and environ-577

ment were independent to begin with, at time t = 0. This can578

have some funny effects on the dynamics. For example, one of579

the features of noisy evolutions is that they tend to kill of en-580

tanglement between different parts of the system. However if581

you take two systems and allow them to interact, they will tend582

to become entangled with each other. These models of noisy583

evolutions can therefore have some funny behaviour at short584

times, that results from assumptions made about the initial state585

to simplify the analysis.586

Another point to note is that in order to make the transition587

from Eq.(60) to Eq.(61) tractable one often has to make sim-588

plifying assumptions about the dynamics. Typical assumptions589

are that the interaction between the system and environment is590

weak, and also that it is Markovian. Thus many explicit models591

of noisy evolutions are Markovian. If you have good reason to592

believe the system you are trying to model does not have this593

property, you should be extra careful in your choice of CP map.594

Finally, if you are interested in seeing how a derivation of595

the master equation for a real system/environment interaction596

proceeds, I strongly recommend the paper by Halliwell (2007),597

for a simple introduction. This gives a simplified derivation of598

the master equation for quantum Brownian motion, that is, the599

dynamics of a system coupled to a thermal environment. The600

full blown analysis can be found in the classic paper by Caldeira601

and Leggett (1983), and also in Breuer and Petruccione (2006);602

Hu et al. (1992). A nice introductory tutorial can be found in603

Kryszewski and Czechowska-Kryszk (2008).604

5.3. A CP-Map for Irreversible Evolutions605

In this section we want to introduce a tractable example of a606

master equation we could use to describe a real cognitive sys-607

tem. The example we will discuss is a simple two-level system608

{|1〉 , |2〉}, that might be used to model a binary variable. For the609

rest of this section we’ll work in this basis.610

Now a good model for the noisy evolution of such a sys-
tem is given by the so-called Quantum Optical Master Equation
(QOME), which describes the evolution of a two level system
interacting with a thermal (i.e. random) system of other sys-
tems. The dynamics of this system are described by a master
equation of the form Eq.(62) with,

L1 = a
(
0 1
0 0

)
, L2 = b

(
0 0
1 0

)
(66)

and with the specific choice a =
√
ωN, b =

√
ω(N + 1)611

where ω and N are constants.612

However the full dynamics of the QOME is complex (For a613

full solution see Yu (1998); Breuer and Petruccione (2006).). So614

instead of considering the full dynamics of a system interacting615

with an environment, what we will do here is to use a special616

case of this master equation to solve an important problem in617

quantum models of cognition - how do we model an irreversible618

evolution?619

To keep things simple, we will specialise to the following620

situation: We have an initial state |ψ0〉 = 1
√

2
(|1〉 + |2〉), and621

we want to imagine evolving the state in an irreversible way,622

maybe by giving the participants new information that cannot623

be taken back, so that the state tends towards |1〉. Unitary evo-624

lution won’t work here, first since it’s reversible, and second625

since evolving for long enough could cause the state to ‘over-626

shoot’ and move back towards |2〉.627

It turns out that one solution to this problem is given by a
special case of the QOME, with a =

√
γ some constant and

b = 0, that is,

∂

∂t
ρ = γ

(
LρL† −

1
2

L†Lρ −
1
2
ρL†L

)
(67)

with L =

(
0 1
0 0

)
, and we’ve assumed there is no unitary part

to the evolution. The solution, for the initial condition given
above, is,

ρ(t) =

(
1 − 1

2 e−γt 1
2 e−

γt
2

1
2 e−

γt
2 1

2 e−γt

)
(68)

As we can easily see, the solution tends to |1〉 at large times,628

and it doesn’t overshoot. |1〉 is therefore a fixed point of the629

evolution. This solution therefore describes a state evolving630

towards |1〉, and getting there asymptotically. Solutions for de-631

cays towards other states can be obtained by applying unitary632

transformations to the Lindblad operators.633

One interesting feature of this evolution is that it does not634

preserve the purity of the state, and by extension also the en-635

tropy. Typically the entropy initially increases, before decreas-636

ing again as the state tends to the known final state. The reason637

for this is subtle but is essentially due to the fact that this system638

is not closed but is modeled as interacting with a much larger639

system. The total entropy of system plus environment will al-640

ways increase, as it should. We plot the behavior of the entropy641

and purity in Fig.4.642

In summary then, this particular example of a master equa-643

tion can be very fruitfully used to model irreversible evolutions,644
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Figure 4: Evolution of the entropy, purity and value of ρ22(t) for the evolution
in Eq.(68).

which are common place in the lab, but impossible to model via645

unitary transformations. There are many other possible master646

equations for modeling this sort of evolution, but they all have647

in common that they represent noisy, non-unitary evolution.648

5.4. A CP-Map for Uncertain Stimuli: The Montevideo Master649

Equation650

In this section we want to consider a second type of noisy651

evolution, which is not so readily interpretable in terms of a652

system/environment interaction. However we shall see that it653

too can be modeled in terms of a master equation of Lindblad654

form.655

Suppose we wish to model the evolution of a system caused656

by the presentation of certain stimuli. Suppose we can present657

our stimuli in a continuous manner, so it could be that the658

change in the cognitive state depends on the length of time659

for which the stimuli are presented. Alternatively it could be660

that the stimuli are discrete, but individually weak, so that pre-661

sentation of multiple stimuli can be closely approximated by a662

continuous in time master equation like Eq.(61). Either way,663

suppose the stimuli are fixed, but their effect on the participants664

is unknown. We might be able to assume that the effect of the665

stimuli is on average to produce a shift in a certain direction,666

but the size of that shift is unknown. This is equivalent to say-667

ing that we have a definite evolution but we are unsure, for each668

participant, how long that participant’s state is evolved for.669

Specifically, we will assume that the effect of evolution of
a state for a time t is not to produce the change ρ(0) →
e−iHtρ(0)eiHt but rather,

ρ(t) =

∫
dspt(s)e−iH(t+s)ρ(0)eiH(t+s) (69)

where pt(s) is a probability distribution centered around 0, re-670

flecting the distribution of ‘evolution times’ for our participants,671

and we have assumed the underlying evolution about which we672

are uncertain is unitary. If pt(s) = δ(s) we recover standard673

unitary evolution. We have allowed this probability distribu-674

tion to depend on t also to reflect the fact that the uncertainty675

in the evolution time, i.e. the width of pt(s), might depend on676

the time evolved for, so that longer average evolution times are677

associated with larger uncertainties.678

We want to be able to represent this evolution in the form of a
semi-group 12, in other words, if ρ(t) = Lt(ρ(0)), then we want,

Lt(Ls(ρ(0))) = Lt(ρ(s)) = ρ(t + s) = Lt+s(ρ(0)). (70)

In other words, Lt · Ls = Lt+s. Writing this in terms of Eq.(69)
we see that we can express this evolution in one of two ways,

ρ(t1 + t2) =

∫
dspt1+t2 (s)e−iH(t1+t2+s)ρ(0)eiH(t1+t2+s) (71)

or

ρ(t1 + t2) =

∫
ds2 pt2 (s)e−iH(t2+s2)ρ(t1)eiH(t2+s2)

=

∫
ds1ds2 pt2 (s2)pt1 (s1)

× e−iH(t1+t2+s1+s2)ρ(0)eiH(t1+t2+s1+s2)

=

∫
dsdzpt2 (s − z)pt1 (z)

× e−iH(t1+t2+s)ρ(0)eiH(t1+t2+s)

(72)

Eq.(71) and Eq.(72) are equivalent if,

pt1+t2 (s) =

∫
dzpt1 (z)pt2 (s − z) (73)

which constrains the possible form for pt(s). One natural choice
is the following,

pt(s) =

√
1
πσt

e−
s2
σt (74)

where σ > 0 is some constant. This is easily seen to be nor-
malised and to obey Eq.(73). Note also that,

lim
t→0

pt(s) = δ(s) (75)

in the sense of distributions. (δ(s) here is the Dirac delta func-679

tion 13.)680

We want to show that this evolution can be written in the
form of a master equation. We start with Eq.(69), differentiate
both sides with respect to t, and use the very useful property,
for small t 14,

pt(s) =

√
1
πσt

e−
s2
σt = δ(s) +

σt
4
δ′′(s) + ... (76)

to obtain,

∂ρ

∂t
= −i[H, ρ] −

σ

4
[H, [H, ρ]]

= −i[H, ρ] +
σ

2
(HρH −

1
2

H2ρ −
1
2
ρH2)

(77)

12All physical evolutions have to be expressible in terms of semi-groups,
which means that the product of two evolutions is also an evolution. If an
evolution also has an inverse, then it is representable as a group, not just a
semi-group. Unitary evolutions have this form.

13Defined by
∫ ∞
−∞

dxδ(x − x0)φ(x) = φ(x0) for any smooth function φ.
14Despite the fact that this expansion is very useful, we know of very few

places where it is discussed. The one reference we have for this is page 703 of
Kleinert (2006), but this is a horrific textbook on path integral methods in quan-
tum theory, and hardly a good go to formula book. If in doubt, just integrate
this expression against a smooth test function and you can see why the result is
true.
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So the master equation for this evolution is indeed of Lindblad681

form, with L = L† =
√
σ
2 H.682

As an aside, we’ve called Eq.(77) the ‘Montevideo’ master683

equation, because it crops up as part of a particular approach to684

the foundations of quantum mechanics called the ‘Montevideo685

Interpretation’ MVI (2001). The derivation of this equation in686

that context is rather different, but the net result is much the687

same.688

Let’s see what the solution of this master equation looks like,
for a particular choice of Hamiltonian H. Let’s choose H =

γ

(
1 0
0 −1

)
. This can be thought as generating rotations about

the z-axis. We wont derive the solution to the master equation
here, although it’s pretty easy and we encourage you to try this
as an exercise.15. The solution is,

ρ(t) =

(
ρ11(0) e−2iγt−σγ2tρ12(0)

e2iγt−σγ2tρ21(0) ρ22(0)

)
(78)

where ρ11(0) etc are the initial values of those components of ρ.689

This solution tells us a lot of interesting information. Firstly,
the evolution does nothing to the diagonal components of the
density matrix. Secondly the evolution has the effect both of
causing an oscillation in the off diagonal components of ρ, and
of causing them to decay in magnitude. A nice illustration of
this is to choose the state we introduced way back in Section
2, which, recall, was a superposition of left and right handed.
Making the identification |L〉 → |A〉 , |R〉 → |B〉 we have,

ρg =

( 1
2

1
2

1
2

1
2

)
(79)

If we evolve this state according to Eq.(77) we get, for t → ∞,

lim
t→∞

ρg(t) =

( 1
2 0
0 1

2

)
= ρc (80)

where, recall, ρc was the correct answer for a mixture of left690

and right handed participants. In other words, this sort of noisy691

evolution turns quantum superposition states into classically in-692

terpretable mixtures!693

In summary then, this Montevideo master equation describes694

a very useful sort of evolution, which corresponds to evolv-695

ing with a stimuli whose exact effect on participants we do not696

know. Amongst other things, this has the effect of killing off the697

off-diagonal terms in the density matrix, and thus making our698

superposition states look more like classical mixtures.699

5.5. Discussion700

The result we’ve just seen, that a particular type of noisy701

evolution appears to turn quantum superpositions into classi-702

cal mixtures, turns out to be pretty general. This effect goes by703

the name of ‘decoherence’, and is an important part of the story704

15To solve a matrix differential equation, first write down the differential
equations for each component. You will generally then have a coupled set of
equations. Clever changes of variables usually allow you to solve these easily.

of why we don’t see quantum effects like interference in our705

everyday lives (Zurek, 1991).706

In the world of cognitive modeling, this effect is also likely to707

be significant. Quantum effects are generally not robust when708

states are allowed to interact with an environment, or when the709

evolution is otherwise not well controlled. This has two impli-710

cations; first, it suggests that care might be needed to ensure711

cognitive states remain quantum during experimental manipu-712

lations. Failure to do so could mean no quantum effects are713

visible. Second, it suggests an explanation for why some cog-714

nitive variables do not show quantum effects, perhaps certain715

preferences/beliefs are just to hard to isolate, and the inevitable716

interaction between them and other thoughts quickly kills off717

any quantum behaviour before it can be observed. This is a718

worthy subject for future research.719

5.6. A CP-Map for continuous variables720

Most of the variables we study in cognitive science are dis-721

crete, either by definition, as for a ‘yes’, ‘no’ question, or be-722

cause having a finite number of response options for a vari-723

able such as preference strength is more practical than treating724

that variable as continuous. However there are some occasions725

where it might be more appropriate to work with truly continu-726

ous cognitive variables. First, it may be the case that we really727

have a variable that we think of as being continuous, for exam-728

ple preference strength. We could in principle allow a response729

via a slider or something else with a continuous set of response730

options, but even if we only allow participants a finite set of731

response options it may be more appropriate to treat the under-732

lying variable as continuous. After all, it seems reasonable that733

changing the number of options on a Likert scale should not734

change the underlying variable being measured. Second, it is735

hard to construct simple quantum models of discrete variables736

when the variables can take a large number of values, simply737

because the Hamiltonian involves many parameters. An alter-738

native is to start with a continuous variable and discretize, this739

can quickly lead to a sensible Hamiltonian for the discrete vari-740

able. A good recent example of this can be found in Kvam et741

al. (2015).742

To cover these cases we need to develop a CP Map for con-743

tinuous evolutions that is both simple enough to be useful and is744

reasonably general. Thankfully this problem has already been745

considered in physics. The general setting is a quantum version746

of Brownian motion, in a high temperature limit. For full details747

of this see Caldeira and Leggett (1983); Hu et al. (1992). The748

key is that under certain conditions this full evolution reduces749

to,750

∂

∂t
ρ = −i[H, ρ] − D[x, [x, ρ]] (81)

where H is the Hamiltonian for the closed system, and D is
a positive constant that controls the strength of the system-
environment coupling. In the (x, y) basis, and assuming a
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Hamiltonian of the form H =
p2

2m + V(x), this reads,

∂

∂t
ρ(x, y) =

i
2m

(
∂2ρ(x, y)
∂x2 −

∂2ρ(x, y)
∂y2

)
+ i(V(x) − V(y))ρ(x, y) − D(x − y)2ρ(x, y)

(82)

A good account of a simplified derivation of this equation,751

suitable for a general audience, can be found in Halliwell752

(2007). This master equation can be discretized, either to gen-753

erate a candidate evolution for a discrete variable, or simply to754

allow for numerical solution. It may then be solved using stan-755

dard techniques. Analytic solutions also exist for Eq.(82) in756

some situations.757

Eq.(82) may be written in Lindblad form with operators758

L ∼ x. Evolution according to this master equation therefore759

tends to make the density matrix diagonal in the x basis. In760

other words, if the variable x represents, say, a particular level761

of confidence as in Kvam et al. (2015), then the effect of this762

evolution will be to collapse superpositions states involving dif-763

ferent levels of confidence.764

5.7. Summary765

In this section have have explored the idea of noisy evolu-766

tions in quantum cognition. The idea behind such evolutions is767

that interactions between the system under study and other cog-768

nitive variables can influence the evolution of the system we769

are interested in in a profound way. We saw that the most gen-770

eral type of evolutions in quantum cognition are those that can771

be written in the form of a master equation of Lindblad form.772

We saw that these evolutions, also called CP-maps, may also be773

used to describe irreversible changes to the state, and the effect774

of presenting stimuli of unknown strength.775

We also saw that we can use CP-maps to model irreversible776

evolutions, such as we might realistically come across in the777

lab. It is an open question whether the sort of models we have778

presented match data from real experiments, but the ideas seem779

promising.780

Finally we noted that generally noisy evolutions have the ef-781

fect of diminishing the ‘quantum-ness’ of a system. This might782

have implications for attempts to observe quantum effects in783

more complex cognitive variables. It might also explain why784

some such variables do not appear to show any quantum effects.785

6. Conclusion786

That concludes our whistle stop tour of some topics in mod-787

ern quantum theory! Let’s see if we can recap and draw out any788

major themes.789

In the real world, or even the real lab, all cognitive processes790

involve some level of noise. We’ve discussed ways in which791

we can incorporate noise into quantum systems via the state,792

the measurements and the evolution. Along the way we also793

learned some practical lessons, such as how to compute the en-794

tropy of a state, how to model non-orthogonal measurements,795

and how to model evolution where we are unsure about the796

strength of a stimuli.797

Overall we hope that the reader has learnt about some inter-798

esting tools and ideas that can be applied to modeling realistic799

cognitive systems using QT. We look forward to seeing these800

appear in future research.801

6.1. Theme 1: QT can be adapted to cover realistic experi-802

ments803

Realistic experiments involve inhomogeneous groups of par-804

ticipants, experimental error and noise and interactions between805

the variables we would like to study, and those we are less inter-806

ested in. QT can be adapted to incorporate all of these things.807

The way is open therefore to a whole new level of modeling808

which aims to reproduce not just the average result, but also the809

statistical distribution of results for a given trial.810

Having the tools to model realistic experiments also let’s us811

think about taking QT out of the lab and into the real world. In812

particular having an idea about how the qualitative behaviour813

of a quantum system differs when there is noise present should814

help us decide where QT might be applicable in the wild. The815

tools we’ve covered here can also be used to address other prob-816

lems in quantum cognitive modeling, such as how to model817

non-orthogonal measurements.818

Overall then, this tutorial will hopefully have some practical819

value for readers who wish to go on to use QT to model deci-820

sion making. It should also prove useful to those simply read-821

ing research papers in quantum cognition in helping to decide822

whether modeling assumptions are reasonable or not.823

6.2. Theme 2: QT features are robust in the presence of small824

amounts of noise, but not against large amounts825

We haven’t often mentioned this explicitly, but it is clear that826

most quantum features are robust against reasonable levels of827

noise. This is good to know, as it gives us hope that quantum828

ideas might be applicable in all sorts of real world situations.829

However it’s also very interesting to see how quantum features830

can break down when there is too much noise, and the descrip-831

tion reverts to looking much like a classical one. This has im-832

portant implications, both on a practical level, for the types of833

variables we can hope to see QT effects with, and on a more834

fundamental level, for our understanding of why some variables835

appear quantum, and some do not.836

6.3. Theme 3: Adding noise to QT teaches us interesting things837

One thing we hope we hope to have communicated in this tu-838

torial is that exploring the effects of adding noise to a quantum839

system does more than simply teach us how to model careless840

participants. In some ways the real structure of QT is only re-841

vealed when we introduce density matrices, POVMs and CP-842

maps. One particularly important thing we learn is about the843

connection between classical and QT systems. Studying ideal844

QT systems might lead you to believe that they are diametri-845

cally opposed to classical ones, and the only overlap is for idea846

cases such as sets of commuting operators. However once we847

learn about adding noise to a QT system, we can appreciate that848

classical systems are in some general sense a special case of QT849

ones, and that it is even possible in some sense to dynamically850
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transition between QT and classical dynamics. Of course, we851

have only scratched the surface of this subject, and we’d caution852

against overgeneralising from the simple cases presented here,853

but nevertheless we hope that through this tutorial you can be-854

gin to glimpse the possibility of a unified approach to decision855

making, that incorporates both the quantum and the classical.856

Now that would make an exciting research project...857
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