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Quantum Cognition and Decision Theories: A Tutorial
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Abstract

Models of cognition and decision making based on quantum theory have been the subject of much interest recently. Quantum
theory provides an alternative probabilistic framework for modelling decision making compared with classical probability theory,
and has been successfully used to address behaviour considered paradoxical or irrational from a classical point of view.

The purpose of this tutorial is to give an introduction to quantum models, with a particular emphasis on how to build these models
in practice. Examples are provided by the study of order effects on judgments, and we will show how order effects arise from the
structure of the theory. In particular, we show how to derive the recent discovery of a particular constraint on order effects implied
by quantum models, called the Quantum Question (QQ) Equality, which does not appear to be derivable from alternative accounts,
and which has been experimentally verified to high precision. However the general theory and methods of model construction we
will describe are applicable to any quantum cognitive model. Our hope is that this tutorial will give researchers the confidence to
construct simple quantum models of their own, particularly with a view to testing these against existing cognitive theories.

Keywords: quantum theory, order effects, similarity

1. Introduction1

Models of decision making based on the mathematics of2

quantum theory have attracted a large amount of interest re-3

cently (Busemeyer and Bruza, 2014; Aerts, 2009; Mogiliansky4

et.al., 2009; Yukalov and Sornette, 2011; Khrennikov, 2010;5

Pothos and Busemeyer, 2013; Wang et al., 2013). These mod-6

els have arisen in part as a response to the empirical chal-7

lenges faced by ‘rational’ decision-making models, such as8

those based on Bayesian probability theory (such examples are9

mostly associated with the famous Tversky-Khanaman research10

tradition. See e.g. Tversky and Kahneman (1974); Chater et al.11

(2006).) These quantum models posit that, at least in some cir-12

cumstances, human behaviour does not align well with classical13

probability theory or expected utility maximisation. However14

unlike, for example, the fast and frugal heuristics programme15

(see, e.g. Gigerenzer et al., 2011), quantum cognition aims16

not to do away with the idea of a formal structure underlying17

decision-making, but simply to replace the structure of classi-18

cal probability theory with an alternative theory of probabili-19

ties. This new probability theory has features, such as context20

effects, interference effects and constructive judgments, which21

align well with psychological intuition about human decision-22

making. Initial research involving quantum models tended to23

focus mainly on explaining results previously seen as para-24

doxical from the point of view of classical probability theory,25

and there have been a number of successes in this area (Pothos26

and Busemeyer, 2013; Wang et al., 2013; Trueblood and Buse-27

meyer, 2011; White et al., 2014; Pothos and Busemeyer, 2009;28

Aerts et al., 2013; Bruza et al., 2015; Blutner at al., 2013). More29

recently, the focus has switched to some extent to testing new30

predictions arising from quantum models, and designing better31

tests of quantum vs classical decision theories (Atmanspacher32

and Filk, 2010; Yearsley and Pothos, 2014, in preparation).33

One key success of quantum models of cognition has been34

the treatment of question order effects (Moore, 2002). ‘Order35

effects’ here describes a phenomenon where, for example, given36

two particular questions, each with a number of possible re-37

sponses, the expected distribution of responses to a particular38

question depends on whether it was asked first or second in the39

series. In other words, asking a prior question can influence the40

outcome of a subsequent one. We will explain in more detail41

below exactly how to characterise this effect.42

As we shall see, order effects arise naturally in quantum the-43

ory, and thus they can be accounted for by quantum cognitive44

models. However what is more remarkable is that quantum the-45

ory also predicts particular constraints on the probabilities that46

can be generated by these models, most notably in the form of47

the Quantum Question (QQ) Equality (Wang and Busemeyer,48

2013). These constraints seem to be extremely well satisfied in49

the data from real world experiments and surveys (Wang et al.,50

2014). Thus as well as being a natural application of quantum51

theory, question order effects also represent a striking empiri-52

cal confirmation of the idea of using quantum theory to model53

decisions.54

Although the mathematical machinery of quantum theory is55

not inherently more complex than that required by many other56

cognitive models, essentially linear algebra and a small amount57

of calculus, it is rather unfamiliar to most cognitive scientists.58

Our aim in this tutorial paper is therefore to introduce readers to59

the ideas and machinery of basic quantum theory, such that after60
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working their way through this tutorial readers will feel more61

confident making use of quantum models in their research.62

As well as existing cognitive scientists, we hope this tutorial63

may find a secondary audience in those researchers who already64

have a background in quantum theory gained from studying the65

physical sciences, who are interested in the application of these66

ideas in social science 1. To help these readers we have struc-67

tured our discussion of the basic formalism of quantum theory68

in a way which should feel familiar to anyone who first encoun-69

tered it in the context of the physical sciences (see for example70

Isham (1995) or the notes by Plenio available online). Hope-71

fully this should enable those already familiar with quantum72

theory to quickly grasp how to apply their existing knowledge73

to the construction of cognitive models.74

The material we will cover in this tutorial is essential back-75

ground to any application of quantum theory in judgment and76

decision making. We will pay particular attention to two im-77

portant but sometimes overlooked issues; first how exactly does78

one choose a particular framework of Hilbert space, basis vec-79

tors, initial state etc to suit the problem at hand, and what do80

these choices mean? Second, how are the various calculations81

actually carried out? Grasping both of these issues is essen-82

tial for any student of the field, and we hope this tutorial will83

help researchers bridge the gap between reading about quantum84

models and actually constructing them for themselves.85

There are a number of things we will not cover in this tuto-86

rial, which may be worth stating now. First, although we will87

mention it, we will not cover the dynamics of quantum systems88

in any detailed way; this is mainly a tutorial on quantum stat-89

ics. Quantum dynamics are relatively simple to grasp once one90

understands the material in this tutorial. Second, we will not91

touch upon ‘entanglement’ or issues around quantum informa-92

tion. Finally, some advanced topics, such as CP-Maps and the93

full theory of POVMs will not be covered, as they are best learnt94

about once one is familiar with the basics. They will be covered95

in a subsequent tutorial (Yearsley, in preparation).96

We will assume the reader has a good familiarity with linear97

algebra in the usual form of vectors, matrices etc, but for ref-98

erence, and to set notation, we give a brief summary of some99

important ideas in an appendix.100

The rest of this tutorial is structured as follows; in Section101

2 we introduce the basic elements of quantum cognition. In102

Section 3 we then expand upon some points, with the aim of103

guiding readers through the process of constructing a quantum104

model in practice rather than in theory. In Section 4 we give105

a brief introduction to order effects in quantum theory, and in106

Section 5 we expand on this to include a derivation of the QQ107

Equality. In Section 6 we give a brief introduction to POVMs,108

which can be used to represent noisy or imperfect measure-109

ments, and in Section 7 we apply these in the setting of order110

effects, our goal being to see to what extent the QQ Equality111

generalises to the case of more realistic noisy measurements.112

In Section 8 we briefly talk about another application of quan-113

tum theory to modelling similarity judgments. We summarise114

1Indeed one of the present authors (JMY) has such a background.

in Section 9. A number of mathematical details are contained115

in the Appendix.116

2. The basics of quantum cognition117

The aim of this section is to present the basic formalism of118

quantum cognition, including information about the state, the119

dynamics, and the description of measurements. Our goal here120

is to give a reasonably concise account of the essentials; in the121

next section we will return to each element in turn and ask in122

more detail what it means and how it may be specified for a par-123

ticular model. We hope this format will make it easy for readers124

to grasp the essential structure of quantum models. All of the125

material in this section is standard, and we will not give ref-126

erences for individual results/definitions. For a more compete127

account see Isham (1995) or for an alternative description with128

a more cognitive focus see Busemeyer and Bruza (2014).129

2.1. What is quantum cognition?130

Quantum cognition is a framework for constructing cogni-131

tive models based on the mathematics of quantum probability132

theory, which is itself a mathematical framework for assigning133

probabilities to events, much like classical probability theory134

(for a full account see Busemeyer and Bruza (2014)). For a135

given event, usually thought of as the outcome of some judg-136

ment process, and specification of the decision maker by means137

of a cognitive state, quantum cognition gives a real number be-138

tween 0 and 1 which is to be interpreted as the probability that139

the decision maker will make that particular choice. Quantum140

cognition also includes information about the set of possible141

dynamics, state transformations and measurements that can be142

performed on a system, although to a large extent this follows143

directly from the basic probabilistic structure.144

In its most conservative form, quantum cognition is simply145

an algorithm for computing probabilities, without any claim to146

reflect the underlying way decisions are made in the brain. In147

this way of thinking, the success or otherwise of the approach is148

to be judged purely by the empirical success of its predictions.149

However steps are being taken towards viewing quantum cogni-150

tive theories as process models, that do reflect in some way the151

process of arriving at a given decision (Kvam et al., 2015). The152

attraction of quantum models in this case stems in part from the153

fact they have features, such as contextuality, interference ef-154

fects, order effects and constructive judgments, to name a few,155

that seem to align well with the way we think human decision156

makers process information. However an important feature of157

quantum models of decision is that they generally do not as-158

sume the underlying processing that happens in the brain is rep-159

resented by quantum physics. In this sense that are distinct from160

so called quantum brain models (Hameroff and Penrose, 1996;161

Tegmark, 2000; Hagan et al., 2002; McKemmish et al., 2009).162

The ingredients of any quantum cognitive model are a space163

of possible thoughts/judgment outcomes etc with subspaces164

corresponding to particular beliefs/opinions/choices, together165

with a cognitive state that keeps track of a decision maker’s cur-166

rent state of mind, and a dynamics that specifies how this state167
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of mind changes with time/evidence presentation etc. From168

these ingredients we can compute probabilities for any relevant169

judgment outcome.170

In the following subsections we will introduce each element171

in turn.172

2.2. The Space173

The most basic ingredient in quantum cognition is a space174

of possible thoughts/beliefs/etc. This space is a finite dimen-175

sional Hilbert space2, which is essentially just a vector space176

equipped with an inner product 〈·|·〉. In quantum theory the177

Hilbert spaces we consider are complex spaces, which means178

they can be spanned by vectors whose entries are complex num-179

bers. It is usual to denote the Hilbert space by the symbolH .180

We will write the elements of H as |u〉. |u〉 is known as a
‘ket’, and is roughly analogous to a column vector in standard
linear algebra. The inner product of two vectors inH is denoted
as

〈|v〉 , |u〉〉 ≡ 〈v|u〉 (1)

which is roughly analogous to the dot product of two vectors in
linear algebra. The inner product induces a norm | · | onH via,

| · | : H → R

|u〉 →
√
〈u|u〉.

(2)

Technically our Hilbert space is an abstract space, i.e. it can
be spanned by many different possible sets of basis states. One
important point about this is that the object, |u〉, while a ‘vector’
in the technical sense, is not equal to a column vector, i.e.

|u〉 ,
(

a
b

)
. (3)

The reason for this is that the right hand side of Eq.(3) is defined181

relative to a particular basis, whereas the left hand side is basis182

independent. We will often abuse notation to write a ket as183

equal to a column vector etc, but when we do so we will always184

take care to specify the basis in which we are computing the185

vector.186

One particularly striking example of the difference between187

vectors in H and vectors/functions in a particular basis oc-188

curs when dealing with states of a particle moving along a line189

(Isham, 1995). Let |ψ〉 be the state of a particle in 1D. Then190

ψ(x) = 〈x|ψ〉 is the wave function of the particle in position191

space, and ψ̃(p) = 〈p|ψ〉 is the wave function in momentum192

space. ψ(x) and ψ̃(p) are equivalent representations of |ψ〉 (one193

is the Fourier transform of the other, and they carry the same194

information), but they live in different spaces and have different195

units, so they are certainly not equal, and neither are they equal196

to the abstract vector |ψ〉.197

2The restriction to finite dimensions is not strictly necessary. The exten-
sion to infinite dimensional spaces such as those required to model motion in
a continuous space requires only some extra mathematical precision. However
the spaces most often used in quantum cognition are finite, so we will mostly
restrict to this case in this tutorial. See below or Isham (1995); Reed and Simon
(1980) for more.

An important concept is the idea of an operator on a Hilbert
space. An operator on a space is a map which sends an element
of the space to another element of the same space. e.g.,

A : H → H
|u〉 → A |u〉

(4)

In a particular basis, the operator A will be represented by a198

matrix. Note though that in a similar way to states, an operator199

is not equal to a matrix, since the particular matrix depends on200

the choice of basis.201

An important property of operators in Hilbert space is that
they need not commute. Let A and B be two operators on H .
The commutator [A, B] is defined as,

[·, ·] : H ×H → H
[A, B]→ AB − BA

(5)

i.e. the commutator represents the difference between the two202

possible orders in which A and B could be applied to a state. A203

and B are said to commute if [A, B] = 0. Otherwise they are said204

to be non-commuting. That many important operators do not205

commute with each other, such as those representing position206

and momentum, is what lies behind many interesting features207

of quantum theory, such as the uncertainty principle.208

A basic overview of operators on Hilbert spaces is given in209

the appendix.210

Aside on Infinite Dimensional Spaces211

In this tutorial we will be working mainly with finite dimen-212

sional vector spaces, such as are appropriate for modelling fi-213

nite sets of possible question answers. However we may some-214

times need to model situations where the variables can take any215

value in a continuous range, such as the position of a slider,216

or situations where the set of possible outcomes is so large it217

may be more convenient to think of them as continuous, for218

example confidence judgments on a 0-100% scale, where the219

corresponding finite dimensional representation has 101 dimen-220

sions. In these cases we can extend the formalism to a infinite221

dimensional Hilbert space. Instead of vectors our space is now222

spanned by complex valued functions. Most of what we say223

in this tutorial still holds, but the maths becomes slightly more224

complex. Interested readers should consult any good book on225

quantum theory (e.g. Isham, 1995), or for the full mathematical226

glory, see Reed and Simon (1980).227

2.3. The Knowledge State228

The second ingredient in any quantum model is the specifi-
cation of the initial knowledge state of a participant, or group
of participants. This is given in the simplest case by a vector
|ψ〉 in H . This state vector encodes information about the cog-
nitive state of participants prior to any computation. This state
can also be written as an operator on the Hilbert space by taking
the outer product of |ψ〉 with itself, to give the density operator,

ρ = |ψ〉 〈ψ| (6)
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The main advantage of using density matrices to represent
knowledge states, rather than just vectors, is that it allows us
to deal with situations where we have some (classical) uncer-
tainty about the state. Suppose we have an ensemble of differ-
ent groups of participants and each group can be characterised
by the state vector |ψi〉 for i = 1, 2...N. Let the proportion of
participants in each group be ωi. Then the state of the whole
ensemble can be written as,

ρ =
∑

i

ωi |ψi〉 〈ψi| (7)

It is cumbersome to represent this type of ensemble using state229

vectors alone.230

Let us introduce some simple nomenclature. States that can231

be written in the form ρ = |ψ〉 〈ψ| for a single |ψ〉, i.e. that have232

ωi = 1 for some i and ω j,i = 0 are called pure states. States233

that cannot be written in this form, i.e. that have ωi , 0 for234

more than one i, are called mixed.235

The knowledge state plays a role roughly analogous to a prior236

probability distribution in classical theories. If the states |ψi〉 are237

orthonormal then the ωi play the role of the probabilities for the238

initial state to be one of the |ψi〉. The following properties of ρ239

guarantee that the ωi can be interpreted as probabilities in this240

way;241

• ρ = ρ†. This guarantees the ωi are real.242

• Tr(ρ) = 1. This guarantees
∑

i ωi = 1.243

• 〈ψ| ρ |ψ〉 ≥ 0, ∀ |ψ〉 ∈ H . This property, known as posi-244

tivity, guarantees the ωi are non-negative.245

A particularly important example of a knowledge state is the
case where the {|ψi〉} form an orthonormal basis forH and ω1 =

ω2 . . . = 1/D, where D is the dimension of the space. The
knowledge state can be written in this case as,

ρ =
1
D

11 (8)

where 11 is the identity operator, i.e. the operator that has the246

property that, for any A, 11A = A11 = A. This state corresponds247

to a state of maximum (classical) uncertainty, and it plays a248

similar role to a uniform prior in classical models. Note that it249

is possible to define the notion of the ‘entropy’ of a quantum250

state, in a similar way to the entropy of a classical probabil-251

ity distribution. This is beyond the scope of this tutorial, see252

Neilsen and Chuang (2000) or Yearsley (in preparation) for de-253

tails, however it can be shown that ρ = 1
D 11 does indeed give254

the maximum value of the entropy, equal to ln(D).255

We note that it is usual in quantum cognitive models to see256

the initial knowledge state represented as a pure state (e.g. in257

Busemeyer and Bruza (2014) density matrices are introduced258

only at the very end of the book). In the interests of complete-259

ness we will mainly work in this tutorial with density matrices,260

so that the initial state may be either pure or mixed. Where261

appropriate we will show how our expressions simplify in the262

case of pure states.263

2.4. Observables and Measurements264

The term observable in quantum theory refers to any quan-265

tity whose value can be measured by a suitable experiment.266

In quantum cognition observables are generally preferences or267

choices, such as whether a suspect if guilty or innocent, which268

of two gambles is preferred, or how confident a decision maker269

feels about a particular choice. The observables in a quantum270

cognitive theory are ultimately the same as they would be in a271

classical theory.272

Observables in quantum theory are represented by Hermitian
operators onH . An operator is Hermitian if

A = A† ≡ (AT )∗ (9)

The operation † is known as Hermitian conjugation. Hermitian273

operators are an important class because they have real eigen-274

values, which makes sense, since any measurement must have275

a result that is a real number.276

The expected value of the observable A for a participant with
a cognitive state given by ρ is equal to,

〈A〉 = Tr(Aρ) = 〈ψ| A |ψ〉 (10)

where the final equality holds if the cognitive state is pure.277

However if we perform a measurement of A we do not get the278

result 〈A〉 in general. An important feature of quantum theory279

is that the possible results of a measurement of any observable280

are one of its eigenvalues.281

Because the operators representing observables are self-
adjoint, the spectral theorem for self adjoint operators (see Ap-
pendix) tells us that A may be written as,

A =
∑

i

aiPA
i (11)

where the ai are the eigenvalues of A and PA
i are the projection

operators onto the subspaces corresponding to these eigenval-
ues. The probability of measuring A and getting the result ai is
given by,

p(ai) = Tr(PA
i ρ) = 〈ψ| PA

i |ψ〉 (12)

where again the last equality holds if the cognitive state is pure.282

A crucial feature of quantum theory is what happens to the
state when this measurement is carried out. Suppose we mea-
sure the observable A and we get the answer ai. Then the state
collapses to the new state,

ρ→
PA

i ρPA
i

Tr(PA
i ρ)

(13)

or

|ψ〉 →
PA

i |ψ〉

|PA
i |ψ〉 |

(14)

if the state is pure. This is known as the collapse postulate
in quantum theory and is responsible for much of the strange
non-classical behaviour of the theory. Note that if we take the
collapsed state and immediately preform another measurement
of A then we will get the answer ai again with certainty, since,

Tr
(
PA

j

PA
i ρPA

i

Tr(PA
i ρ)

)
= δi j (15)
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This means that measurements represented by projection oper-283

ators can also be used to prepare systems to be in a known state.284

These are often known as ‘ideal first kind’ measurements. That285

such operations can actually be carried out in practice is a criti-286

cal assumption in quantum cognition3.287

It is worth saying a little more about the role of the collapse
postulate, since anecdotally it seems to cause some concern
amongst cognitive scientists. On the surface it looks a lot like
Bayesian updating. Imagine that the initial state is a density op-
erator ρ which can be written as a weighted sum of projection
operators onto eigenvectors of a particular observable A, i.e.,

ρ =
∑

i

p(ai) |ai〉 〈ai| (16)

with {p(ai)} a probability distribution over the possible ai. Such
a decomposition is not guaranteed to be possible, because al-
though the |ai〉 form an orthonormal basis ρ need not be di-
agonal in this basis. However suppose it is possible for the
particular state under consideration. Then if we measure the
observable A and get the result a j then the state collapses to,

ρ→
∣∣∣a j

〉 〈
a j

∣∣∣ (17)

In other words, if one thinks of the ωi in Eq.(16) as defining a288

probability distribution over the set of states |ai〉, then the col-289

lapse looks exactly like a Bayesian updating of this probability290

distribution.291

The reason this interpretation doesn’t work in general is that292

a Bayesian update happens when one gets some new informa-293

tion about the state as a result of performing a measurement.294

Because of this, a Bayesian update may, at least in some cases,295

decrease the uncertainty, or entropy, associated with our de-296

scription of the system. In contrast, at least for pure quantum297

states, increasing our knowledge of an observable A will de-298

crease our knowledge of any observable that doesn’t commute299

with A. For pure states this means state collapse does not re-300

duce our uncertainty about the state, in contrast to a classical301

Bayesian update. That being said, there is an approach to un-302

derstanding the interpretation of quantum theory which empha-303

sises the connection between collapse and Bayesian updating,304

called Quantum Bayesianism (See, for example, Caves et al.305

(2002).) We will not discuss this further here since the inter-306

pretation of quantum theory is beyond the scope of this tuto-307

rial. The important point to take away from this discussion is308

that although the collapse postulate is a fundamentally quantum309

feature, it does have some similarities with more familiar ideas310

in classical probability theory.311

2.5. Evolution312

We will not be especially concerned in this tutorial with the313

evolution of quantum states. Nevertheless, for the sake of com-314

pleteness we note here the basics of quantum evolution.315

3Although one can argue that it is a critical assumption in any theory of
cognition, quantum or otherwise.

For a closed quantum system, evolution is generated by an
Hermitian operator H known as the Hamiltonian4. The evolu-
tion of a quantum state is governed by,

ρ(t) = U(t)ρ(0)U†(t) (18)

or
|ψ(t)〉 = U(t) |ψ(0)〉 (19)

where, if H is time independent, U(t) is given by,

U(t) = e−iHt (20)

The operator U(t) is unitary which turns out to be an extremely
important property. Unitary operators preserve the length of the
state vector, or more generally the trace of the density operator,
which means they conserve total probability. They also have an
inverse, U−1(t) = U†(t) = eiHt, so that,

U†(t)U(t) = U(t)U†(t) = 11. (21)

The reason this is important is the following: In practice we316

generate evolution of a cognitive state by the presentation of317

some stimuli. If we assume this evolution can be modelled by318

a Hamiltonian operator leading to a unitary evolution, then we319

also assume that this evolution is reversible. That means we are320

implicitly assuming there is some second set of stimuli that, if321

presented to a participant, could undo the change in cognitive322

state caused by the first set of stimuli (assuming no measure-323

ment intervenes). Whether this is reasonable or not depends on324

the experimental set up, but it is frequently not realistic.325

The solution is to model the cognitive state not as a closed326

system, but as an open one, where information can flow be-327

tween the cognitive system and some external system or envi-328

ronment. This allows for the possibility of irreversible evolu-329

tions not represented by unitary operators. It is also beyond the330

scope of this tutorial (Yearsley, in preparation). Concerns about331

reversibility notwithstanding, unitary evolutions are the most332

widely used in quantum models of decision, and have indeed333

proven to be very successful. However one should recognise334

that such a choice may not always be appropriate.335

There are two further points we want to make about evolu-336

tion. First we want to quickly discuss how to write expressions337

for the probabilities associated with measurements at different338

times, second we want to give two simple examples of useful339

Hamiltonians.340

If we start with an initial cognitive state ρ0, evolve for a time341

t and then perform a measurement of A, the probability we will342

get the outcome ai is given by any of the following expressions,343

p(ai, t) = Tr(PA
i U(t)ρ0U†(t)) (22)

= Tr(PA
i ρ(t)) (23)

= Tr(PA
i (t)ρ0) (24)

where,

ρ(t) = U(t)ρ0U†(t)

PA
i (t) = U†(t)PA

i U(t)
(25)

4Since H is Hermitian, it is an observable. In physics H corresponds to the
energy of a system, however its significance in cognition is less clear.
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Eq.(23) and Eq.(24) refer to the Schrödinger and Heisenberg344

pictures of evolution respectively. They differ in terms of345

whether one regards the evolution as changing the cognitive346

state, or the observables. For the most part we tend to work347

in the Schrödinger picture in quantum cognition, but both rep-348

resentations are equally valid.349

Now suppose we measure A at time t1, then we continue to
evolve our state, and now we also measure B at time t2. The
probability that we get the outcome ai at t1 and b j at t2 is,

p(ai, t1; b j, t2) = Tr(PB
j U(t2 − t1)PA

i U(t1)ρ0U†(t1)PA
i U†(t2 − t1))

= Tr(PB
j (t2)PA

i (t1)ρ0P†Ai (t1))
(26)

This can easily be extended to further evolutions and measure-350

ments. The Heisenberg picture of evolution comes into its own351

here.352

We want to conclude this section on evolution with a couple
of examples of useful Hamiltonians. The first is the Hamilto-
nian for a single particle evolving in some potential V(x), such
as might be appropriate for modelling a set of beliefs which
could take any value in a given range. In the x basis we have,

H = −
1

2m
∂2

∂x2 + V(x) (27)

Here m is some constant (the mass in physical terms) which353

gives rise to a sort of ‘inertia’ of our cognitive state, in other354

words it determines how quickly the state changes as a result of355

applying some force determined by V(x). This sort of Hamilto-356

nian has been used in studies of confidence judgments (Kvam357

et al., 2015). Good choices for the potential might be linear358

(V(x) = ax + b) which generates a constant force in a particular359

direction, or a quadratic (V(x) = ax2) which produces a state360

which oscillates around x = 0.361

Second, the Hamiltonian for a simple two state system can
be written (like any other Hermitian operator on this space) as
a weighted sum of the identity operator and the three Pauli ma-
trices,

H = a11 + bσx + cσy + dσz (28)

where

σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
(29)

and a, b, c, d are real numbers. Adding an overall scale to the
numbers just speeds up or slows down the evolution, which is
equivalent to rescaling the time. Thus only the ratios of the
different coefficient are important. Now, the term involving the
identity matrix just adds an overall phase to the state. Since the
absolute phase is unobservable we can ignore this term. The
terms involving σx, σy, σz generate rotations about the x, y, z
directions respectively, depending on the set up one might be
able to further simplify this expression by considering rotation
around only a single axis. Thus, for example, in Yearsley and
Pothos (2014) it was argued that the Hamiltonian,

H = bσx (30)

gives a reasonable general dynamics if one is interested only in362

the observable σz.363

3. What does it all mean?364

3.1. Introduction365

In the previous section we introduced the basics of quantum366

theory, as applicable to constructing theories of decision mak-367

ing. In theory this gives all the information you need to go and368

study existing quantum models, and even in principle to build369

models of your own.370

However much was left unsaid about the meaning of the var-371

ious objects introduced. As a consequence, while it should now372

be obvious that, for example, to build a quantum model of order373

effects one first needs to identify the Hilbert space, it is proba-374

bly less clear exactly how to do this in practice. What we want375

to do in this section is to fill in some of the gaps regarding the376

meaning of the various pieces of the quantum formalism. Our377

aim will be to give some clues about how to build a quantum378

model for a particular set of judgments.379

There are two possible positions one might find oneself in380

when attempting to construct a quantum model of a particular381

decision making process. First we might have in mind some ex-382

isting classical model, and want to explore a quantum analogue,383

either because the classical model is already empirically inade-384

quate, or simply because one is interested in whether a quantum385

model might produce novel predictions. The second position is386

that we might have little idea about any existing treatment of the387

problem, and we have to start modelling from scratch. In prac-388

tice we tend to encounter he latter more often than the former,389

but we will look at both scenarios here.390

3.2. Quantisation?391

Suppose we already have a classical model of a decision392

making problem, and we are interested in creating a quan-393

tum analogue. This is very similar to the typical situation in394

the physics literature, and physicists already have a reasonably395

straightforward process for constructing quantum models from396

classical ones. This process is known as ‘quantisation’ (The397

classic reference is Dirac, 1982), and we will describe it briefly.398

It is easiest to take a specific example, so we will look at399

confidence judgments than can be expressed on a 0 − 100%400

scale. We will assume the range of possible values is continu-401

ous, even if the set of possible responses is discrete. Assume402

we have some initial distribution of confidence levels, dynam-403

ics that might be generated by some evidence presentation, and404

then a judgment process that corresponds to splitting the scale405

into some intervals, e.g. 0% ≤ x < 10%, or 20% ≤ x < 30%406

etc. The precise details are unimportant, but the key is the clas-407

sical model gives us four things,408

1. The space of states. In this case they are probability distri-409

butions (functions) in the interval (0, 100).410

2. The initial state. Or at least what that allowable class of411

initial states looks like.412

3. The dynamics. Which we will assume can be written in413

terms of a classical Hamiltonian function.414

4. The observables. In this case the probabilities of lying in415

various intervals of the form [a, b].416
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Given these four features, we can now construct a fairly417

unique quantum analogue of this model. Let us explain how418

to do this5,419

• The Hilbert space is given by the set of complex val-420

ued functions on the interval (0,100), together with the421

condition that these functions are normalisable. Strictly422

H = L2([0, 100]). These are just the infinite dimensional423

analogues of column vectors.424

• The initial state is a normalised state |ψ〉 ∈ H .425

• The dynamics follow from the classical Hamiltonian. Sup-
pose we have H = f (x, p) where x an p are the classi-
cal position and momentum of the state. A typical exam-
ple might be a particle evolving in according to some po-
tential V(x) (representing the effect of evidence presented
maybe) H = p2/2m + V(x). To get the equivalent quan-
tum dynamics one makes the replacement6 x→ x̂, p→ p̂,
so H → Ĥ = p̂2/2m + V(x̂). Here p̂ is the operator in
Hilbert spaces corresponding to momentum, in the x basis
it is given by −i ∂

∂x . The dynamics are then given by the
Schrödinger equation,

−i
∂

∂t
|ψ〉 = Ĥ |ψ〉 (31)

• Finally, the observables are given by self adjoint operators
onH , but the most important one is simply x̂, which is the
operator corresponding to the confidence judgment. Typi-
cal judgments might be whether a participant’s confidence
was between a% and b%, which corresponds to the pro-
jection operator,

P̂[a,b] =

∫ b

a
dx |x〉 〈x| (32)

so that,

p(a, b) = 〈ψ| P̂[a,b] |ψ〉 =

∫ b

a
dx|ψ(x)|2 (33)

So much for this ideal situation. In practice we are unlikely426

to have a concrete classical model from which to work, and we427

have to be considerably more inventive to set up our quantum428

models. We will explain how to do this below.429

3.3. Building quantum models from scratch430

In the last section we saw that if one has a well defined classi-431

cal model of decision making, setting up a quantum analogue is432

a fairly straightforward process. However it is much more com-433

mon in practice to approach a modelling problem with little or434

no prior idea about how to model it. In this case one cannot start435

5To avoid confusion, in this subsection we use hats to denote operators.
6This hides a multitude of sins. If the classical Hamiltonian contains terms

like xn pm there is no unique quantisation, since classically this term does not
depend on the order of x and p, whereas of course in quantum theory it does.

with an existing classical model, and we need to find a different436

way to proceed.437

The difficulty we face is not so much that it is hard to build438

a quantum model, but that it is hard to constrain the possible439

choices. For simple models this is rarely a problem, but as the440

number of, say, responses grows so to does the number of pos-441

sible ways of encoding these responses as vectors in a Hilbert442

space. For this reason what we will describe below is a reason-443

ably algorithmic way to construct quantum models, but it may444

often be the case that the modeller has some extra information445

that suggests a particular structure to use. Remember that, pro-446

vided a few simple rules are followed, it is hard to produce a447

model that is ‘wrong’ in the sense of not being a valid quantum448

system. Some degree of experimentation when building models449

is therefore fine, and may indeed be necessary to get a model450

which works well.451

Here is a rough outline of how you might go about building452

a quantum model of a particular decision making process.453

3.4. Identify the observables454

Identify all the observables/measurements/judgments you455

wish to include in your model. An observable must be defined456

for any state. Decide which of them you expect to be able to457

define simultaneously, and for each set of simultaneously well458

defined observables decide how many distinct states there are.459

In other words, identify the commuting subsets of your observ-460

ables, and the associated eigenstates. If all observables com-461

mute you have a classical model.462

As an example, suppose we have three variables, A, α and B.463

Suppose A can take values a1, a2, α can take values α1, α2 and464

B can take values b1, b2, b3, b4. Suppose we expect to be able to465

define A and α simultaneously, but we don’t expect to be able466

to define either together with B. So our two sets of commuting467

observables are {A, α} and {B}.468

Now an important question is whether states with the same469

value of A might have different values of α or vice versa. If this470

isn’t the case then A and α are simple functions of one another471

and that’s not very interesting. Suppose instead that states with472

the same value of A can indeed have different values of α. Then473

there are four possible states defined by the set {A, α}, let’s de-474

note them {|a1, α1〉 , |a1, α2〉 , |a2, α1〉 , |a2, α2〉}, where e.g. state475

|a1, α1〉 has value a1 for observable A and value α1 for observ-476

able α.477

Once we have identified the sets of observables we can use478

these to determineH .479

Aside on degeneracy480

One possibility we are ignoring here is that all the commuting481

subsets we generate may have degenerate eigenspaces.482

It might happen that all eigenstates are degenerate because483

of some observable we have failed to account for. For ex-484

ample, as well as the operators A, α, B there may be some485

fourth operator C which commutes with all the other opera-486

tors and gives multiple possible flavours for all existing states,487

e.g. |b1, c1〉 , |b1, c2〉 .... This could happen if there is a mismatch488

between the way a judgment is elicited and the way that observ-489

able is represented cognitively, e.g. we may ask participants to490
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give preference judgments on a 1-9 scale when their preferences491

are actually encoded on a 0-100 scale in the brain.492

Although it seems like this might be a problem, it is actually493

unlikely to cause difficulty as long as the dynamics do not con-494

tain interactions between C and other observables. However a495

good general rule is to choose your observables to match the496

way you think the quantities are encoded in the brain, and then497

if necessary represent the measurements in a coarse grained498

way as projection operators onto large dimensional subspaces.499

3.4.1. IdentifyingH500

For the sets of simultaneously definable observables, find the501

set with the largest set of associated states. If two or more sets502

of commuting observables tie for the largest number of states503

then pick either, call this number D. Your Hilbert space then504

must have D complex dimensions, or in other wordsH = CD.505

To go back to our example, it turns out our two sets of com-506

muting observables {A, α} and {B} have equal numbers of dis-507

tinct states, four each, so we can work with either. Since the set508

{B} has four distinct states, we will need a 4D space for them509

to live in. This means we need a Hilbert space of four complex510

dimensions, so we have determined thatH = C4.511

What we have done here is used the spectral theorem for Her-512

mitian operators in reverse (see the appendix). We know that513

the eigenstates of an Hermitian operator span the Hilbert space514

in which it lives. Thus if we know that we have an observable515

with D distinct eigenvalues, that means it must live in a com-516

plex space with at least dimension D. The trick is then to look517

at our observables and find the one with the largest number of518

eigenvalues, this gives the minimum dimension of our Hilbert519

space. Care needs to be taken if we have commuting subsets520

of observables, like A and α above, since the number distinct521

states now depends on the degeneracy. (e.g. if A and α can522

each take one of three possible values, the number of vectors523

may vary between 3 and 9.)524

So in our example H = C4 and the states525

{|b1〉 , |b2〉 , |b3〉 , |b4〉} and {|a1, α1〉 , |a1, α2〉 , |a2, α1〉 , |a2, α2〉}526

form two orthonormal bases forH .527

3.4.2. The relationship between the observables528

Now by construction the eigenstates of B and those of the pair529

{A, α} span H , so we already know two different bases for our530

Hilbert space. The question is, what is the relationship between531

the sets of bases? Or in other words, we started by assuming532

that A and B could not be defined simultaneously, which means533

that they won’t commute as operators. So the question is, what534

is their commutator?535

Well the short answer is that we can’t tell you! This is536

essentially where the maths ends and the psychologist’s intu-537

ition has to take over. Quantum cognitive theories, like any538

other theory, require certain inputs from the modeller, and539

one of these is the relationship between the observable quan-540

tities. However although we can’t tell you exactly how to541

proceed, we can give you some clues about how to imple-542

ment different choices. One comes from the fact that since543

the two sets of vectors {|a1, α1〉 , |a1, α2〉 , |a2, α1〉 , |α2, α2〉}, and544

{|b1〉 , |b2〉 , |b3〉 , |b4〉} each form an orthonormal basis for H ,545

they must be related to each other by a unitary transform. A546

unitary transformation in the space CD has D2 parameters, so547

that gives us the maximum number of parameters to be fixed.548

However this number will often be much lower in practice, be-549

cause of simplifying assumptions we can make550

Another is that we may sometimes be able to make simplify-551

ing assumptions about the relationship between the states. Sup-552

pose for example we are dealing with emotion states from two553

different points of view, perhaps two different people, so that554

our states are {|Happy〉 , |S ad〉 , |Excited〉 , |S cared〉} from one555

point of view, and {|Happy′〉 , |S ad′〉 , |Excited′〉 , |S cared′〉}556

from a different point of view. It might be that we have rea-557

son to believe that e.g. |Happy′〉 is a mixture of |Happy〉 and558

|S ad〉 and |Excited′〉 is a mixture of |Excited〉 and |S cared〉, but559

that the change of perspective doesn’t mix e.g. |Happy〉 and560

|Excited〉. The unitary transformation can then be split into two561

separate transformations, each operating on a 2 dimensional562

subspace, and the number of parameters drops from D2 = 16 to563

2 ∗22 = 8. Another simplification occurs when we have a small564

number of observables compared with the dimension ofH . We565

may then be able to pick all our basis vectors to be real566

A further special case is when we think the different bases
are maximally mixed, in the sense that a basis state from one
basis is a mixture of all basis states from the other basis, so that
there is equal probability to measure this state to be in any of
the basis states for the other basis. In other words, if we have
two bases {|ei〉} and {| f j〉} then,∣∣∣∣〈ei| f j

〉∣∣∣∣2 =
1
D
, ∀i, j ∈ 1, 2...D (34)

If our two bases have this property then they are called mu-567

tually unbiased (mutually unbiased bases were introduced in,568

Schwinger (1960). For a more recent review see Bengtsson569

(2006)). There are only a fixed number of mutually unbiased570

bases in a given Hilbert space, which means only a fixed num-571

ber of options for choosing {| f j〉} given {|ei〉}. If the dimension572

of the Hilbert space, D, is a power of a prime number, then the573

number of mutually unbiased bases is D + 1. It is not known574

how many mutually unbiased bases there are for general D, but575

it is always less than or equal to D+1 (Durt, 2010). Thus in this576

case there are only a finite set of possible choices for the basis577

vectors.578

What exactly does the choice of relation between observables579

mean for a model? In a classical model all observable are com-580

patible, which means they can be defined at the same time. In581

quantum models observables are generally not compatible, and582

they cannot be defined simultaneously. Assuming one wants to583

use a quantum model in the first place, then presumably one584

is looking for incompatibility. The relationship between ob-585

servables in a particular model therefore determines two things;586

how much incompatibility one has, and whether the incompati-587

bility occurs equally across all states of those observables.588

As we will show for a specific example in Section 4, the de-589

gree of incompatibility, measured through non-commutation or590

order effects, depends on the overall size of the unitary rotation591

between bases for A and B. However if the unitary transforma-592

tion does not effect all basis states equally, it might be the case593
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that, for example, some subset of the possible outcomes of A594

commutes with a subset of the possible outcomes of B, so that595

although the observables are technically incompatible this may596

not be the case when acting on all possible states. In general597

deciding on the relationship between a given set of observables598

is a hard problem, that needs a lot of psychological insight to599

solve successfully.600

3.4.3. Identifying the initial state601

The initial state is straightforward to identify, at least in the-602

ory. The initial state can be fixed from the probabilities for the603

outcomes of measurements. So if one knows the initial mea-604

surement probabilities, one can identify the state.605

The problem is that there are 2D−2 free parameters in a pure606

quantum state, and D2 − 1 in a general density operator. By607

contrast, a complete set of measurements can fix at most D − 1608

parameters (see appendix for information on how to compute609

these). Thus to fix all the parameters of a pure state we need610

probabilities for at least two non-commuting observables, and611

we will need many more than that to fix a density operator.612

However, this is almost never the way things are done in prac-613

tice. Usually we set the initial state to be a particular eigenstate614

of one observable. How can we get away with this? The answer615

lies in recognising that because measurements change the state616

via the collapse postulate, measurements can be thought of a617

equivalent to state preparation (Peres, 1998).618

Suppose we have a D dimensional Hilbert space with some619

unknown initial cognitive state |ψ〉 and an observable A with620

eigenvectors |a1〉 , |a2〉 .... If we perform a measurement of the621

observable A on the initial cognitive state and get the result a1,622

then we know that the cognitive state has now collapsed to |a1〉.623

Thus we can use an initial measurement as a priming, to fix the624

cognitive state. Assuming not all participants give the same an-625

swer to this initial question, they will not all be in the same state626

afterwards. We can deal with this in one of two ways; if there627

is an extremely high probability of participants giving one an-628

swer, say a1, then we can simply screen out any participant who629

answers otherwise. Our cognitive state is then ρ = |a1〉 〈a1|.630

If, on the other hand, there are a spread of likely answers, we
can either model each participant separately with a cognitive
state corresponding to his/her initial answer, or we can use the
density operator,

ρ =
∑

i

ωi |ai〉 〈ai| (35)

where the {ωi} are equal to the probabilities that participants631

give each of the possible answers {ai} to the initial question. A632

special case of this is when there is equal likelihood of partici-633

pants being in any of the |ai〉, in which case the most appropri-634

ate initial state is the completely mixed state, corresponding to635

maximum ignorance, ρ = 1
D 11.636

We can then take this idea further. Suppose we have good637

reason to believe participants would, with extremely high prob-638

ability, answer the initial question in a particular way. One ex-639

ample might be if our experimental set up was something like640

a jury trial, and the initial question was prior to the presenta-641

tion of any evidence, since participants should overwhelmingly642

prefer innocent to guilty in the absence of any evidence. In643

this case since we are close to certain that participants would644

respond innocent if questioned, we can say their initial state645

must be very close to the ‘innocent’ eigenvector. However this646

rapidly becomes unreliable as our confidence in what the initial647

judgment would be drops from 100%. This is, in its simplest648

form, because it is impossible to tell the difference between a649

superposition of the form
√

a |0〉+
√

1 − a |1〉 and a mixed state650

of the form a |0〉 〈0| + (1 − a) |1〉 〈1| by only measuring in the651

{|0〉 , |1〉} basis.652

Nevertheless, the key is that the application of some quan-653

tum know how together with some psychological intuition can654

usually help us to identify the initial cognitive state in a straight-655

forward manner.656

3.4.4. Identifying the dynamics657

We shall briefly talk though how the dynamics might be spec-658

ified. In the same way as for the initial state above we shall659

begin with the technical story, and then we shall show how the660

problem can be simplified with some psychological intuition.661

Evolution is generated by a Hermitian operator, the Hamilto-
nian. For finite dimensional systems this is an D×D Hermitian
matrix, and thus has D2 parameters. We can fix some of these
parameters by using the transition probabilities,

p(i→ j; t) = |〈 j|U(t) |i〉 |2 (36)

There are D2/2 of these transition probabilities, so we either662

need them for two different bases, or for the same basis at two663

different times. In theory we know this information if we know664

the expected dynamics.665

In practice, in much the same way as we could assume a
simplified form for the initial state, we can probably assume a
simplified form for the dynamics. A standard assumption is that
the dynamics of a quantum system functions like a transforma-
tion between two known bases. e.g. it might rotate the states
{|0〉 , |1〉} to the states {|+〉 , |−〉} after some total time T . This
means,

U(T ) |0〉 = |+〉 =
1
√

2
(|0〉 + |1〉) (37)

so we can take,
U(T ) = exp

(
−i
π

4
σy

)
(38)

thus we conclude,

U(t) = exp
(
−i
πt
4T

σy

)
(39)

Again, we have seen that with some psychology intuition666

about the expected dynamics, we can fix the unitary operator667

controlling evolution fairly simply.668

3.5. The interpretation of quantum theory669

Despite all that we have said above, it is reasonable to feel670

like we have not really scratched the surface of what quantum671

theory means as a theory of cognition. What does superposi-672

tion really mean? Why are certain variables incompatible and673

what does that mean for the way they are actually encoded in674
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the brain? If wave function collapse is not exactly Bayesian up-675

dating then what is it? These questions about the meaning of676

the theory are in some ways the most interesting and important.677

Unfortunately we cannot cover these questions in this tuto-678

rial. The reason is essentially twofold; first, the primary pur-679

pose of this tutorial is to explain how to use quantum theory to680

model certain effects. Furthermore, addressing the meaning of681

the theory is generally best done once one has a good grasp of682

the way the theory works in practice, and so it is more prof-683

itable for the reader to return to this question once they have684

more experience with how the theory is used.685

Second, there is in fact no general agreement on how to in-686

terpret quantum theory as a theory of cognition. The confu-687

sion is partly inherited from physics, since the interpretation of688

quantum theory in physics is hardly without controversy, but689

it is also worsened by the fact that quantum theory is gener-690

ally regarded as an effective theory of cognition, where the ac-691

tually neuroprocessing may take place in an essentially classi-692

cal way. Thus, in cognition, quantum theory is regarded as an693

effective theory possibly arising from an underlying classical694

process. For various reasons this cannot be the case in physics695

(Isham, 1995; Bell, 2004), and thus it is not obvious whether696

the interpretative framework associated with quantum theory697

can be directly imported to quantum cognition in the same way698

as the mathematics (see Blutner and beim Graben (2014); beim699

Graben and Atmanspacher (2006) for some attempts to inter-700

pret quantum cognition as arising directly from classical neuro-701

physics). We hope that further research will help us to under-702

stand why quantum theory works, and what it tells us about the703

underlying process of cognition.704

4. Order Effects I705

The basic framework we have outlined so far can be used706

to build quantum models for any particular set up one wishes.707

However it is useful to look at specific examples to see how the708

theory works in practice. For the rest of this tutorial we will709

therefore focus on the particular example of order effects, but710

bear in mind this is just one possible application of these ideas.711

Order effects are a central feature of quantum theory because
of the non-commutation of operators. Recall; if A and B are
two operators onH then the commutator [A, B] is defined as,

[·, ·] : H ×H → H
[A, B]→ AB − BA

(40)

A and B are said to commute if [A, B] = 0. Otherwise they are712

said to be non-commuting.713

Most operators in quantum theory do not commute with each714

other, and thus the order in which they are evaluated matters. If715

the two operators represent two possible survey questions, for716

example, then a lack of commutation means that the expected717

answers these questions depends on the order in which they are718

asked. Thus quantum theory can naturally incorporate order ef-719

fects via non-commuting operators (Atmanspacher and Römer,720

2012).721

As an example, let us consider a two dimensional Hilbert
space spanned by {|0〉 , |1〉}, and two projection operators given
by

P0 = |0〉 〈0| , P+ =
1
2

(|0〉 + |1〉)(〈0| + 〈1|). (41)

A striking example of order effects in this case occurs when the
initial state is |ψ〉 = |1〉. We have

p(+, 0) = |P0P+ |1〉 |2 = |
1
2

(|0〉 〈0| + |0〉 〈1|) |1〉 |2 =
1
4

(42)

but,

p(0,+) = |P+P0 |1〉 |2 = |
1
2

(|0〉 〈0| + |1〉 〈0|) |1〉 |2 = 0. (43)

If we examine the commutator, we see,

P0P+ =
1
2

(|0〉 〈0| + |0〉 〈1|)

P+P0 =
1
2

(|0〉 〈0| + |1〉 〈0|)
(44)

so
[P0, P+] =

1
2

(|0〉 〈1| − |1〉 〈0|) , 0 (45)

However this masks a more complicated structure. The com-
mutator of two operators is itself an operator. There may be
some states for which the expectation value of this operator is
0, and thus for which the order of operations does not matter,
even though the commutator does not vanish identically. In-
deed, it is easy to see that,

〈0| [P0, P+] |0〉 = 〈1| [P0, P+] |1〉 = 0 (46)

On the other hand, we can show that the largest order effects
come from the two eigenstates of the commutator, |±i〉, where,

|+i〉 =
1
√

2
(|0〉 + i |1〉), |−i〉 =

1
√

2
(|0〉 − i |1〉) (47)

and we have 7,

〈±i| [P0, P+] |±i〉 = ±
i
2
. (48)

In addition we have the following very important property:
Consider any two operators A and B, and look at the average
value of their commutator across a complete basis of H . This
is equivalent to computing the expectation value of the com-
mutator in a state where ρ = 1

D 11. Such a state corresponds to
an ensemble where participants are equally likely to be in any
initial knowledge state, i.e. there are no privileged states. We
see,

Tr([A, B]11) = Tr(AB − BA) = 0. (49)

In other words, this type of order effect averages out across722

Hilbert space. The presence of a particular order effect is there-723

fore as much about the initial state as it is about the operators724

7It is easy to see that for two Hermitian operators A and B, [A, B] is anti-
Hermitian, i.e. [A, B]† = −[A, B]. Anti-Hermitian operators have pure imagi-
nary eigenvalues, a fact that follows from a simple modification of Theorem 1
of the Appendix.
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in question. (We will see in a later section an example of a dif-725

ferent type of order effect which does not average out in this726

way.)727

The discussion so far might lead you to conclude that com-
mutation is a binary property, two operators either commute or
they do not. This is technically true, but it is more helpful to
think of commutation as a continuum. To explore this let’s con-
sider the projection operator Pθ, defined by

Pθ = U(θ)P0U(θ)† (50)

where, in the basis {|0〉 , |1〉},

U(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (51)

so Pθ is a unitary rotation of P0. In the basis {|0〉 , |1〉} we have,

Pθ =

(
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

)
(52)

We can show,

[P0, Pθ] =
1
2

sin(2θ)
(

0 1
−1 0

)
(53)

The eigenvectors of [P0, Pθ] are equal to the eigenvectors of(
0 1
−1 0

)
, i.e. they are the same as |±i〉 above, but the eigenvalues

are now given by λ± = ±
i sin(2θ)

2 The maximum order effects that
we can observe are therefore given by,

〈±i| [P0, Pθ] |±i〉 =
±i
2

sin(2θ). (54)

Therefore although strictly P0 and Pθ do not commute unless728

θ is a multiple of π/2, there is a sense in which they approx-729

imately commute for values of θ close to these. In a realistic730

experiment with some low level of noise in the experimental731

data, for these values of θ the maximum possible order effects732

may be too small to observe against the noise.733

Now thus far we have been interested in the expected value
of commutators as a measure of order effects. However when
we perform a sequence of measurements of two observables, A
and B this is not in fact what we obtain. Rather the probability
of getting a positive result for the measurement of A followed
by a positive one for the measurement of B is given by,

p(A and then B) = Tr(PBPAρPA) = |PBPA |ψ〉 |
2 (55)

where the second equality holds when the initial knowledge
state is pure. The probability for the same measurements in
the opposite order is given by,

p(B and then A) = Tr(PAPBρPB) = |PAPB |ψ〉 |
2 (56)

We are therefore interested in the quantity,

p(A and then B)−p(B and then A)
= Tr(PBPAρPA) − Tr(PAPBρPB)
= Tr({PAPBPA − PBPAPB}ρ)

(57)

The order effect we will observe in a measurement therefore
depends on the operator PAPBPA − PBPAPB. Note that this op-
erator is Hermitian. Using the same 2D Hilbert space as above,
and taking PA = P0 and PB = Pθ we can show, in the {|0〉 , |1〉}
basis,

P0PθP0 − PθP0Pθ = cos2(θ) sin(θ)
(

sin(θ) − cos(θ)
− cos(θ) − sin(θ)

)
(58)

The eigenvalues of this operator can be easily, if somewhat te-
diously, shown to be,

λ± = ± cos2(θ) sin(θ) (59)

The eigenvectors can be computed if required, but they are not734

necessary here. The key is that the maximum possible order735

effects that we can observe are given by the eigenvalues of this736

operator.737

It is worth looking in more detail at how these eigenvalues
behave with different values of θ. Firstly they are zero for θ =

0, π/2 as expected. The maximum value is,

max(cos2(θ) sin(θ)) =

sin
(
2 tan−1

(√
5 − 2

√
6
))

cos2
(
2 tan−1

(√
5 − 2

√
6
))

≈ 0.385
(60)

Which occurs at

θ = 2 tan−1
(√

5 − 2
√

6
)
≈ 35.2◦ (61)

Somewhat surprisingly then, the angle between the projectors738

P0 and Pθ at which the measured order effect is maximised is739

not the same as the angle at which the commutator attains its740

maximum value, which recall was π/4 radians or 45◦. Also, the741

maximum possible order effect, in the sense of the difference742

between the probabilities p(A and then B) and p(B and then A)743

is limited to about .385. This is significant because logically,744

since the probabilities themselves are bounded by 0, 1, one745

might have expected to be able to produce order effects of any746

size from 0 to 1.747

So far in this section, we have glimpsed how order effects748

may be modelled, and we have seen that there are some non-749

trivial restrictions on the type of effects that can be accounted750

for. In the next section we will introduce a precise test of the751

quantum account of order effects which allows the quantum ac-752

count to be compared with other models.753

5. Order Effects 2754

Designing a theory to fit existing data is relatively easy. What755

is much harder is to develop an a priori or parameter free test756

of a theory which would allow the theory to be falsified. As we757

will now show, quantum theory is very constrained with respect758

to the types of order effects it can account for. This leads to a759

remarkable equality between various probabilities which must760
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be satisfied if the probabilities are to be explained by quantum761

theory (Wang and Busemeyer, 2013; Wang et al., 2014).762

Our aim in this section is to show in detail how this con-763

straint, which is known as the Quantum Question, or QQ Equal-764

ity, is derived. The derivation in the original papers was rather765

long, here we will make use of the machinery of quantum the-766

ory we have discussed in this tutorial to give a simpler and767

hopefully more transparent derivation.768

Suppose we have two different measurements we can per-769

form, A or B, and crucially these measurements have two770

possible outcomes, A, Ā and B, B̄. Denote the projection771

operators corresponding to these measurement outcomes as772

PA, PĀ, PB, PB̄, with PA + PĀ = PB + PB̄ = 11. Let’s773

write the probabilities associated with these measurements as774

p(A, B), p(Ā, B)... where p(A, B) = Tr(PBPAρPA) etc.775

Now since these measurements don’t necessarily commute,

p(A, B) , p(B, A) (62)

However, slightly unexpectedly, the following is true,

p(A, B) + p(Ā, B̄) − p(B, A) − p(B̄, Ā) = 0 (63)

This is the QQ Equality (Wang and Busemeyer, 2013). (This776

equality also holds if we relabel A↔ Ā, or B↔ B̄, and the orig-777

inal form of the equality given in Wang and Busemeyer (2013);778

Wang et al. (2014) had B ↔ B̄, but the form given above is779

better to see the essential symmetry of the equality.)780

The QQ Equality holds because the following operator is
identically zero,

PAPBPA + PĀPB̄PĀ − PBPAPB − PB̄PĀPB̄ = 0 (64)

We give a proof of this below.781

This derivation makes use of the properties of commutators
and projection operators, which together imply,

[PA, PB] = [PA, (1 − PB̄)] = −[PA, PB̄] = [PB̄, PA]
= −[PB̄, PĀ] = [PĀ, PB̄] etc.

(65)

Note however that the use of commutators is just a mathemati-782

cal convenience.783

Now for the derivation. We begin with,

[PA, PB] − [PA, PB] = 0 (66)

Inserting two copies of the identity gives,

[PA, PB]PA + [PA, PB]PĀ − PB[PA, PB]− PB̄[PA, PB] = 0 (67)

Now we use the property of the commutator noted above, to
get,

[PA, PB]PA + [PĀ, PB̄]PĀ − PB[PA, PB]− PB̄[PĀ, PB̄] = 0 (68)

Expanding out the commutators gives,

PAPBPA + PĀPB̄PĀ − PBPAPB − PB̄PĀPB̄ = 0 (69)

which is Eq.(64). Since this operator is identically zero, it fol-
lows that for any density operator ρ,

Tr({PAPBPA + PĀPB̄PĀ − PBPAPB − PB̄PĀPB̄}ρ) = 0 (70)

By the linearity and cyclic property of the trace this gives,

p(A, B) + p(Ā, B̄) − p(B, A) − p(B̄, Ā) = 0 (71)

Where p(A, B) = Tr(PBPAρPA) etc.784

This QQ Equality was first introduced by Wang and Buse-785

meyer (2013), and it was strongly supported experimentally in786

a very compelling paper by Wang et al. (2014). That the QQ787

Equality is obeyed by real world data is surprising in view of788

the fact that it does not follow from general contextual proba-789

bility theories, but can only (apparently) be derived assuming790

the particular structures of quantum theory. This means observ-791

ing that the QQ Equality is obeyed in the wild provides very792

good evidence that human decision-making can be described793

by quantum theory in particular, rather than just a contextual794

probability theory in general.795

It is worth asking exactly what properties of quantum theory796

the derivation relies on. That is, exactly what properties does797

the QQ Equality test? The key ones appear to be the properties798

of the projection operators representing measurements, specif-799

ically the fact that they are orthogonal and idempotent. This800

raises the question of whether the QQ Equality still holds if801

the measurement operators do not have these ‘ideal’ properties,802

such as one might expect to be appropriate for more realistic803

measurements. We will address this question in a later section.804

Another property that this derivation relied upon was that the805

measurements had binary outcomes. Despite extensive work,806

we have not been able to prove a generalisation of this result807

for measurements with more than two possible outcomes. It808

remains unclear whether any such analogue exists, but it would809

obviously be of huge interest to resolve this question.810

6. A brief introduction to POVMs811

The measurements we have been dealing with so far are ideal812

measurements, in the sense that they are perfectly idempotent813

and perfectly orthogonal. This means if the cognitive state of a814

participant happens to be an eigenstate |ai〉 of an operator A, if815

we perform a measurement of the observable represented by A816

we will get the result ai with probability 1.817

Realistic experiments are never this straightforward, and818

there is always some irreducible noise that means that real mea-819

surements are not exactly ideal. The reason for this could be820

as simple as the presence of response errors; for example if821

an experiment is performed under conditions where speed is822

emphasised. Alternatively noise could enter because different823

response options are not viewed as orthogonal, or because it824

is impossible to separate out the cognitive variable one is inter-825

ested in from others which are also effectively ‘measured’ when826

a decision is made. In order to account for this we need to gen-827

eralise the ideal measurements we have been using so far. The828

correct way to do this in quantum theory is via the use of what829
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are known as Positive Operator Valued Measures or POVMs830

for short.831

This tutorial is not the place to give a full introduction to832

POVM measurements8. However the noise inherent in real-833

istic measurements can play an important part in determining834

whether we observe order effects in experiments, and it is there-835

fore worth presenting a bare bones account that will enable us to836

see how noise in the measurements interacts with order effects.837

Suppose we wish to model an experiment where we have par-838

ticipants express a preference for one of two alternatives, A or839

B, and that these are exhaustive and exclusive alternatives. In840

an ideal measurement these would be represented by projection841

operators P0 = |0〉 〈0|, P1 = |1〉 〈1|. Suppose instead our mea-842

surement isn’t ideal but, intentionally or otherwise, is subject to843

some noise. This means some participants who really prefer 0844

will select option 1, and vice versa.845

Let’s see how we might model this. What we want is an
operator E0, whose expectation value in the state |0〉 is close to
one, but which also has a non-zero expectation value in the state
|1〉, and likewise for E1. That is,

〈0| E0 |0〉 = 1 − ε, 〈1| E0 |1〉 = ε,

〈0| E1 |0〉 = ε, 〈1| E1 |1〉 = 1 − ε.
(72)

Where 0 ≤ ε ≤ 1 is some small error probability 9. Let us also
assume,

〈0| E0 |1〉 = 0, etc. (73)

In the basis {|0〉 , |1〉} these operators can therefore be written as,

E0 =

(
1 − ε 0

0 ε

)
, E1 =

(
ε 0
0 1 − ε

)
. (74)

Can we use these operators to describe a measurement process?846

It is easily seen that they are not projection operators, neverthe-847

less they satisfy the following properties,848

• They are positive operators, which means they have posi-849

tive eigenvalues.850

• They are complete, in the sense that E0 + E1 = 11, where,851

recall, 11 is the identity operator overH .852

These properties mean that for any density operator,

0 ≤ Tr(Eiρ) ≤ 1 (75)

and ∑
i=0,1

Tr(Eiρ) = 1 (76)

8The best book JMY has read on POVMs is Busch et al. (1995), however
this is currently out of print. A popular alternative is Neilsen and Chuang
(2000). See also Yearsley (in preparation).

9An important point here is that we are assuming the errors are unbiased,
i.e. the probability of incorrectly answering 1 when the state is |0〉 is the same
as the probability of incorrectly answering 0 when the state is |1〉. This need
not hold in general, but this would describe a something other than pure noise,
so we will ignore this possibility here.

The quantities Tr(Eiρ) can thus be interpreted as probabilities,853

and so E0 and E1 are good candidates to describe a measure-854

ment process.855

But what measurement process do they describe? Well there
are many ways to think about this, but probably the easiest is to
note that we can write,

E0 = (1 − ε)P0 + εP1, E1 = εP0 + (1 − ε)P1. (77)

In other words, we can write these operators like,

E0 =
∑

i

p0(i)Pi (78)

where p0(i) have (loosely) the interpretation of probabilities.856

So one way to think about these measurements is that instead857

of performing a measurement P0, we instead perform one of858

the possible measurements Pi with some probabilities p0(i). So859

these measurements look like noisy versions of ideal ones.860

E0 and E1 are specific examples of elements of POVMs. The
probability that a measurement described by Ei gives a positive
answer is then given by,

p(i) = Tr(Eiρ). (79)

Suppose we perform a measurement of Ei, what is the resulting
state after the measurement? Writing,

Ei = M†i Mi (80)

we can show that if we get a positive answer to the measurement
described by Ei then the state collapses to,

ρ′ =
MiρM†i
Tr(Eiρ)

. (81)

The Mi are often called ‘measurement operators’. The decom-861

position of Ei into Mi is not unique; there in fact many different862

realisations of a given POVM in terms of a set of measurement863

operators Mi. We ignore this issue here, and simply take the864

simplest, Mi =
√

Ei. For more details see Yearsley (in prepara-865

tion); Busch et al. (1995).866

To return to our example above, in the basis {|0〉 , |1〉} the mea-
surement operator associated with E0 will be,

M0 =

(√
1 − ε 0
0

√
ε

)
(82)

which is nice and simple.867

7. Order Effects and POVMs868

We are now ready to explore the extent to which the presence869

and size of order effects depends on whether the measurements870

are perfect. We will start with the simple case, and then move871

on to consider whether the QQ Equality still holds for imperfect872

measurements.873
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We will replace the projection operators PA, PB, with the fol-
lowing POVMs 10,

PB → EB =

(
ε 0
0 1 − ε

)
P+ → E+ =

( 1
2

1−2ε
2

1−2ε
2

1
2

) (83)

These have associated measurement operators,

MB =

(√
ε 0

0
√

1 − ε

)
M+ =


√

1−ε+
√
ε

2

√
1−ε−

√
e

2√
1−ε−

√
e

2

√
1−ε+

√
ε

2

 (84)

Now we can see that,

pε(+ and then B) =Tr(EBM+ρM+)

=
1
4

(
1 − 2(1 − 2ε)

√
ε
√

1 − ε
) (85)

and

pε(B and then +) =Tr(E+MBρMB)

=
ε

2
(86)

We plot these results against the value of ε in Fig.(1). The re-874

sults are interesting. The key is that the difference in the values875

of the probabilities (plotted as the dotted line) decreases sharply876

with increasing ε, i.e. with increasing noise. Note however that877

the value of ε is interpretable in terms of the ‘error’ probabil-878

ity of the measurement. Realistic experiments would probably879

have values of ε in the range 1-5%, and so order effects are still880

likely to be visible in such experiments, although they might881

appear smaller than one might have expected.
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Figure 1: pε (B and then +), pε (+ and then B), and their difference, plotted
against ε.

882

10Readers are encouraged to convince themselves E+ is reasonable. Either
start with EB and rotate through π/4, or consider a combination of P+ and P−
as in Eq.(78).

We don’t have space here to pursue this further, but it is clear883

that small amounts of noise will still allow order effects to be884

observed, even though very large amounts of noise rapidly kill885

off such effects. This has important implications for studies886

looking for these effects in the wild.887

If the noise inherent in realistic measurements can kill off888

order effects, can it also disrupt the important QQ Equality that889

we introduced previously to test the quantum explanation for890

such effects? It is obviously vital to know the answer to this if891

we want to understand whether we expect to see this equality892

obeyed under realistic conditions.893

What we want to do is to examine what happens to the op-894

erator in Eq.(64) when we replace the projectors with POVMs.895

Clearly the derivation that led to Eq.(64) will no longer hold,896

but it is unclear whether this means the equality is no longer897

valid.898

We are going to restrict ourselves in what follows to a very
simple class of POVMs, in particular we will take, in the basis
{|A〉 , |Ā〉}

EA =

(
1 − ε 0

0 ε

)
, EĀ =

(
ε 0
0 1 − ε

)
. (87)

and in the basis {|B〉 , |B̄〉}

EB =

(
1 − η 0

0 η

)
, EB̄ =

(
η 0
0 1 − η

)
. (88)

We will also chose the measurement operators to have a simple
form. Eg in the {|A〉 , |Ā〉} basis

MA =

(√
1 − ε 0
0

√
ε

)
. (89)

This is useful because it means we can write,

EA = (1 − ε)PA + εPĀ, MA =
√

1 − εPA +
√
εPĀ (90)

etc. This choice of POVM is special because of the fact that the899

EA etc can be written as sums of commuting projection opera-900

tors. This means they are in some sense very close in behaviour901

to the more usual projective measurements11. The significance902

of this is discussed in Busch et al. (1995).903

We will now see what happens when we replace the projec-
tors with POVMs in Eq.(64). We will use the trick of replacing
the POVMs with sums of projection operators, as above. This
then lets us write,

MAEBMA + MĀEB̄MĀ − MBEAMB − MB̄EĀMB̄ =

(
√

1 − εPA +
√
εPĀ)((1 − η)PB + ηPB̄)(

√
1 − εPA +

√
εPĀ)

+ (
√
εPA +

√
1 − εPĀ)(ηPB + (1 − η)PB̄)(

√
εPA +

√
1 − εPĀ)

− (
√

1 − ηPB +
√
ηPB̄)((1 − ε)PA + εPĀ)(

√
1 − ηPB +

√
ηPB̄)

− (
√
ηPB +

√
1 − ηPB̄)(εPA + (1 − ε)PĀ)(

√
ηPB +

√
1 − ηPB̄)

(91)

11We are grateful to an anonymous referee for emphasising this point.
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Some rather tedious algebra gives,

MAEBMA + MĀEB̄MĀ − MBEAMB − MB̄EĀMB̄ =

(PAPBPA + PĀPB̄PĀ − PBPAPB − PB̄PĀPB̄)((1 − ε)(1 − η) + εη)
+ (PAPB̄PA + PĀPBPĀ − PBPĀPB − PB̄PAPB̄)((1 − ε)η + ε(1 − η))

+ (PAPBPĀ + PĀPBPA + PAPB̄PĀ + PĀPB̄PA)
√
ε
√

1 − ε

− (PBPAPB̄ + PB̄PAPB + PBPĀPB̄ + PB̄PĀPB)
√
η
√

1 − η
(92)

The first term on the right hand side of this equation is propor-
tional to the original QQ operator Eq.(64) and thus vanishes.
The second term is also proportional to the QQ operator, with
B and B̄ interchanged, and thus this also vanishes. What we are
left with is,

MAEBMA + MĀEB̄MĀ − MBEAMB − MB̄EĀMB̄ =

(PAPBPĀ + PĀPBPA + PAPB̄PĀ + PĀPB̄PA)
√
ε
√

1 − ε

−(PBPAPB̄ + PB̄PAPB + PBPĀPB̄ + PB̄PĀPB)
√
η
√

1 − η

(93)

By using the properties of projection operators, we see e.g.,

PAPBPĀ = PA(1 − PB̄)PĀ = −PAPB̄PĀ (94)

etc. From this we can see that the both the terms on the right
hand side of Eq.(93) also vanish, and so finally we see,

MAEBMA + MĀEB̄MĀ − MBEAMB − MB̄EĀMB̄ = 0 (95)

Therefore for any density operator ρ we have,

Tr({MAEBMA + MĀEB̄MĀ−MBEAMB−MB̄EĀMB̄}ρ) = 0 (96)

and thus,

pε,η(A, B) + pε,η(Ā, B̄) − pε,η(B, A) − pε,η(B̄, Ā) = 0 (97)

Where pε,η(A, B) = Tr(EBMAρMA) etc.904

Therefore we have shown the QQ Equality still holds when905

the measurements are given by these simple types of POVM.906

This is an important result, since it helps to explain why the907

equality seems to hold so well in real world data sets (Wang et908

al., 2014).909

Note that this result relied on the POVMs having unbiased er-910

rors. If we relax this condition then the QQ equality no longer911

holds. This corresponds, for example, to having systematic er-912

ror that bias the result towards or away from A, and similarly913

for B. We will not explore this possibility further here.914

In summary, using realistic noisy measurements does effect915

the size and presence of order effects. In general adding noise916

to a quantum system tends to make it look more classical, and917

this case provides a good example of that. (For a good introduc-918

tion to the quantum to classical transition see Halliwell (2005).919

For a classic review we recommend Zurek (1991).) However920

for realistic levels of noise order effects should still be visible,921

and crucially the QQ Equality will still hold provided the noisy922

measurements remain unbiased.923

8. Order Effects in Similarity Judgments924

In this final section we want to explore the presence of order
effects in a slightly different context, namely that of similar-
ity judgments. Similarity judgments are an important part of
many other more complicated cognitive processes such as cate-
gorisation. In a classic paper Tversky (1977) demonstrated that
human similarity judgments have a number of properties that
one would not expect from the simplest classical models. The
most important for us is that similarity can sometimes display
asymmetry, in other words, if S im(A, B) denotes the similarity
of A to B, then,

S im(A, B) , S im(B, A) (98)

In particular, so the theory goes (Tversky, 1977), S im(A, B) ≥925

S im(B, A) if we have more knowledge about B than about A.926

In an attempt to model this interesting finding, Pothos et al.
(2013) came up with a model of similarity judgments based on
quantum theory (see also Pothos et al. (2015)). Their model
works as follows, suppose we have a space of conceptsH , with
subspaces representing the concepts A and B defined by the pro-
jection operators12 PA and PB. Then the judged similarity of A
to B, given our initial knowledge state is ρ, is given by,

S im(A, B) = Tr(PBPAρPA)/Tr(PAρ) (99)

or

S im(A, B) =
|PBPA |ψ〉 |

2

|PA |ψ〉 |2
(100)

if the state is pure13. In actual fact Pothos et al didn’t include the927

normalisation factor in the denominator of Eq.(99). However928

they left the question of normalisation open, so we may explore929

any reasonable choice of normalisation.930

The initial knowledge state is to be set such that the state is
‘unbiased’. Specifically “in the absence of priming manipula-
tion or contextual influence, we require the state vector to be
neutral between the compared concepts” (Pothos et al., 2013).
One might expect that this means the initial state is set such
that,

Tr(PAρ) = Tr(PBρ) (101)

and this is indeed what Pothos et al had in mind. However there931

are other ways to interpret this. They go on to say “Such an as-932

sumption is equivalent to that of a uniform prior in a Bayesian933

model.” Now the concept of a uniform prior is rather slippery,934

because it depends on what exactly it is uniform over. In this935

case there are two obvious choices; the prior could be uniform936

over the whole knowledge space, so one is equally likely to937

be thinking about any thought in the space, or it could be uni-938

form over the concepts under consideration, which, recall, are939

represented by subspaces of dimension potentially greater than940

12One might also use smeared projectors or POVMs instead of projection
operators if there is some uncertainty about the concept boundary.

13This assumes that the similarity between a stimulus and itself is always
judged to be 1. If desired, this assumption can be dropped by using POVMs in
place of the projection operators.
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one. A uniform prior over the whole knowledge space would be941

given by the density operator ρ = 1
D 11, whereas a uniform prior942

over the concepts under consideration would be given by a den-943

sity operator satisfying Eq.(101). One advantage of the former944

is that it is guaranteed to exist, whereas the latter is not. At any945

rate, in the absence of further information we will explore both946

possibilities.947

This similarity measure looks like a quantum version of a
conditional probability. It has two nice properties, it is nor-
malised in the sense that,

S im(A, A) = 1 (102)

and also in the sense that,∑
i

S im(A, Bi) = 1 (103)

if the set {Bi} is complete, i.e.
∑

i Bi = 11.948

Now the key factor responsible for asymmetry in this model949

is that PA and PB may have different dimensions. This corre-950

sponds in cognitive terms to a participant having greater knowl-951

edge about one of the stimuli. Greater knowledge implies more952

possible thoughts connected with that stimuli, which means a953

higher dimensional subspace for that stimuli. What we want to954

do is explore how the asymmetry depends on the relationship955

between the different subspaces corresponding to PA and PB. A956

full analysis is given in Pothos et al. (2013), what we want to957

do is explore a simple analytically tractable example.958

As our example, we will take a three dimensional Hilbert
space of possible thoughts, and PA and PB to be one and two
dimensional respectively. It is useful to choose a basis of eigen-
states of B, so that,

PB =

0 0 0
0 1 0
0 0 1

 (104)

The bases formed by the eigenstates of A and B are related by a
unitary transform U, so in the basis of eigenstates of B we can
also write,

PA = U†

1 0 0
0 0 0
0 0 0

 U = U†PB̄U (105)

The relationship between PA and PB, and therefore the asym-959

metry, depends on the unitary transformation U.960

There appear to be several possible choices for U. How-
ever the only important component of any transformation is that
which rotates PA towards the plane defined by PB. Anything
else is equivalent to a relabelling of the coordinates. Therefore
without loss of generality we can choose the transformation to
simply rotate PA towards one of the states in PB. Since the set
up is symmetric we can choose,

U =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (106)

this gives,

PA =

 cos2(θ) − cos(θ) sin(θ) 0
− cos(θ) sin(θ) sin2(θ) 0

0 0 0

 (107)

Now we need to ensure we have an allowable initial state.961

Recall we have two choices, either our initial state is propor-962

tional to the identity, or we must choose it so that 〈PA〉 = 〈PB〉.963

Let us start with the simpler case, of ρ = 1
3 11. Clearly,

Tr(PBPAρPA) =
1
3

Tr(PAPB) = Tr(PAPBρPB) (108)

so the numerators of the two similarities, Eq.(99), are equal.
However we can also see,

Tr(PAρ) =
1
3

Tr(PA) =
1
3
, Tr(PBρ) =

1
3

Tr(PB) =
2
3
. (109)

Thus we have,

S im(A, B)
S im(B, A)

=
Tr(PBPAρPA)Tr(PBρ)
Tr(PAPBρPB)Tr(PAρ)

= 2. (110)

We see therefore that in the case S im(A, B) is always larger than964

S im(B, A) by a factor of two. In general the ratio of the similari-965

ties is the inverse of the ratio of the dimension of the subspaces,966

and thus the inverse of the ratio of the ‘degree of knowledge’ we967

have about A and B, as desired 14. Turning back to our specific968

example, S im(A, B) is easily computed to be sin2(θ).969

In summary, this choice of initial state is interesting because970

it always gives rise to the expected asymmetry. It also produces971

a particularly simple expression for the similarities. However972

it is an open question whether the observed asymmetry shares973

this behaviour.974

Now let us turn to the more challenging case. It is easiest to
start by looking at the eigenvectors of A − B. Once we have
these we can take a combinations that give zero expectation
value for A − B, and which are thus unbiased. In the B basis
the eigenvectors are given by,

|v1〉 =

001
 , |v2〉 = N2


(cos(θ)−1)

sin(θ)
1
0

 , |v3〉 = N3


(cos(θ)+1)

sin(θ)
1
0

 .
(111)

with eigenvalues, −1,− cos(θ) and cos(θ) respectively. Here N2
and N3 are normalisation factors given by,

N2 =

√
sin2(θ)

2(1 − cos(θ))
, N3 =

√
sin2(θ)

2(1 + cos(θ))
(112)

We will choose a pure initial state for simplicity, and we will
also choose the state to be real. Then the following (unnor-
malised) set of states have zero expectation value with respect
to the operators A − B,

|ψa〉 = a
√

cos(θ) |v1〉 +
√

1 − a2 |v2〉 + |v3〉 (113)

14This way of achieving asymmetries can also be implemented classically.
Pothos et al (2013) argue that this might not represent a good solution. However
we are only interested here in exploring the structure of the theory.
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(a) Similarities for the choice a = 0. The two similarities coincide in this
case, so there is no asymmetry.
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(b) Similarities for the choice a = 1. S im(A, B) is always greater than
S im(B, A), apart from at the end points θ = 0, π/2.

Figure 2: Plots of S im(A, B) and S im(B, A) against θ for two choices of a.

where 0 ≤ a ≤ 1. Thus these states have the same expectation975

value for the operators A and B and are ‘unbiased’ in the sense976

of Pothos et al. Note that there is not a single state with this977

property, but crucially rather a whole family of possible states.978

Now we can compute the similarities S im(A, B) etc accord-979

ing to Eq.(99). We save the reader the algebra involved in this,980

but note it is quite straightforward to run in MatLab or similar.981

We plot the special cases of a = 0 and a = 1 in Fig.(2), the982

general case interpolates between these two extremes. The im-983

portant point is that we generally have S im(A, B) ≥ S im(B, A),984

with equality in the case a = 0 and for the values θ = 0, π/2.985

We see that with this choice of initial state the similarities986

show a rather more complex behaviour. The ratio of the simi-987

larities is now a function of θ, as well as of the new parameter988

a. Thus in this case the degree of asymmetry predicted depends989

on how incompatible A and B are.990

The purpose of this section was to introduce a different type
of order effect, which occurs in models of similarity judgments,
that behaves in a slightly different way to the order effects we
see in survey designs. Recall, measured order effects in survey
designs result because the operator,

∆ = PAPBPA − PBPAPB (114)

is non-zero. However, although ∆ , 0 it is traceless, which991

means that the average of ∆ over the whole Hilbert space is992

zero. In other words, order effects in survey designs are gen-993

erally balanced, for every cognitive state which gives rise to a994

particular asymmetry, there is another state which gives the op-995

posite result. In contrast, the order effects that produce asym-996

metries in similarity judgments do not have this property, and it997

can be that case that S im(A, B) ≥ S im(B, A) for all states in the998

cognitive space.999

9. Summary1000

Order effects are an important feature of the study of human1001

decision making. But order effects are just one of many dif-1002

ferent kinds of phenomena addressed by quantum models of1003

cognition. Others include the conjunction fallacy, violations of1004

total probability, over and under extension effects in concep-1005

tual combinations, etc. We hope this tutorial has convinced you1006

that quantum models represent a useful and potentially power-1007

ful way to model these phenomena. The existence of order or1008

asymmetry effects strongly suggests that theories beyond classi-1009

cal probability theory are needed to model this type of decision1010

making. However simply exchanging non-contextual for con-1011

textual probability theories leaves us with too many feee param-1012

eters, and no underlying sense about why these effects occur.1013

Quantum models, on the other hand, are both more constrained1014

than the general case of a contextual probability theory, and1015

also offer the possibility of achieving an understanding of why1016

such effects occur in terms of incompatibility of mental repre-1017

sentations. So far, it has been the success of quantum models at1018

predicting observed constraints on various phenomena that has1019

been most persuasive. In the future, we hope that these models1020

will also impress by the story they can tell about the reasons1021

behind the occurrence of other puzzling violations of classical1022

probability theory in human decision making.1023

As well as having a particular focus on order effects, we hope1024

this tutorial has also been useful to researchers looking to con-1025

struct quantum models for other purposes. We have strived to1026

set out in as clear a way as possible how and why quantum1027

models are constructed to address particular questions. While1028

it is impossible to cover every possible scenario one might en-1029

counter when trying to set up a model, hopefully this tutorial1030

will have given the reader the confidence to experiment with1031

constructing quantum models of their own.1032
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Appendix A. Review of Linear Algebra1038

In this appendix we give a brief review of some relevant con-1039

cepts from linear algebra. Our aim is not to cover all possible1040

topics, but just to recap some key ideas. In particular we will1041

show how some familiar ideas may be expressed in a basis in-1042

dependent way, which means they can be computed directly in1043

terms of the elements of Hilbert space.1044
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A Hilbert space H is essentially a complex vector space
which is a complete metric space with respect to the inner prod-
uct,

〈·|·〉 :H ×H → C
(|u〉 , |v〉)→ 〈u|v〉

(A.1)

with the usual properties (see Isham (1995); Reed and Simon1045

(1980) for a fuller account.) The elements ofH are denoted |u〉1046

and are known as ‘kets’.1047

An operator on Hilbert space is a map from the space to itself.

A : H → H
|u〉 → A |u〉

(A.2)

An important operator is the identity operator denoted 11. It is
defined by,

11A = A11 = A, ∀A : H → H . (A.3)

The eigenvectors, {|ai〉} and eigenvalues ai of A are defined
by,

A |ai〉 = ai |ai〉 (A.4)

The object 〈u| is known as a ‘bra’. It is not technically an el-
ement of H , but can be thought of either as an element of the
dual space, or as a functional that maps elements of H to the
complex numbers,

〈u| : H → C
|v〉 → 〈v|u〉

(A.5)

Hermitian conjugation of an operator is a useful concept in
linear algebra. The Hermitian conjugate of an operator A† is
defined by,

〈A |u〉 , |v〉〉 =
〈
|u〉 , A† |v〉

〉
, ∀ |u〉 , |v〉 ∈ H . (A.6)

In a particular basis, where A is represented by some matrix,

A† = (AT )∗ (A.7)

where AT is the transpose of A.1048

Hermitian conjugation has the following properties,1049

1. (A†)† = A1050

2. (A + B)† = A† + B†1051

3. (AB)† = B†A†1052

4. (cA)† = c∗A† for c ∈ C1053

It is useful to define,

〈u| = |u〉† (A.8)

From Eq.(A.4) we can see that,

A |ai〉 = ai |ai〉

→ (〈ai| A)† = (〈ai| ai)†

→ A† |ai〉 = a∗i |ai〉

(A.9)

Thus the eigenvectors of A† are the same as those of A, but the1054

eigenvalues are the complex conjugates.1055

A useful class of operators in quantum theory are those which
are Hermitian or more generally Self-Adjoint 15. An operator is
Hermitian if,

A† = A (A.10)

We can now state a number of useful theorems about Hermi-1056

tian operators.1057

Theorem 1. The eigenvalues of an Hermitian operator are1058

real.1059

Proof: Let |ai〉 be any non-zero eigenvector of A, with eigen-
value ai.

A |ai〉 = ai |ai〉 (A.11)

Then,

〈A |ai〉 , |ai〉〉 = 〈ai |ai〉 , |ai〉〉 = a∗i 〈|ai〉 , |ai〉〉 = a∗i 〈ai|ai〉

(A.12)
But because A is Hermitian,

〈A |ai〉 , |ai〉〉 =
〈
|ai〉 , A† |ai〉

〉
= 〈|ai〉 , A |ai〉〉

= 〈|ai〉 , ai |ai〉〉 = ai 〈ai|ai〉
(A.13)

Thus,
0 = (ai − a∗i ) 〈ai|ai〉 (A.14)

and since |ai〉 is non-zero, we must have ai = a∗i .1060

Note that the converse is also true, i.e. an operator is Hermi-1061

tian if its eigenvalues are real.1062

Theorem 2. The eigenvectors corresponding to two different1063

eigenvalues are orthogonal.1064

Proof: Let

A |a1〉 = a1 |a1〉 , A |a2〉 = a2 |a2〉 (A.15)

with a1 , a21065

Then,

〈|a2〉 , A |a1〉〉 = 〈a2, a1 |a1〉〉 = a1 〈a2|a1〉 (A.16)

But because A is Hermitian the left hand side is,

〈A |a2〉 , |a1〉〉 = 〈a2 |a2〉 , |a1〉〉 = a∗2 〈a2|a1〉 = a2 〈a2|a1〉 (A.17)

Thus,
(a1 − a2) 〈a2|ai〉 = 0 (A.18)

and since a1 , a2, we must have 〈a2|a1〉 = 0.1066

Another important class of operators are those which are
Unitary. An operator U is unitary if,

U†U = UU† = 11 (A.19)

15The distinction is only important for Hilbert spaces with an infinite number
of dimensions. In these spaces it is not necessarily true that an operator and its
adjoint have the same domain. Thus self-adjoint means that the domains of an
operator and its adjoint match, and that the operators are equal on this shared
domain (Reed and Simon, 1980).
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i.e. U† = U−1. The exponential of (i times) an Hermitian oper-
ator is a Unitary operator,(

eiH
)†

= e(iH)† = e−iH† = e−iH =
(
eiH

)−1
(A.20)

(We will explain how to define the exponential of an operator1067

below.)1068

A final important class of operators are those which are Pro-
jection operators or projectors. An Hermitian operator P is a
projector if,

P2 = P (A.21)

We are now ready to state probably the most important theo-1069

rem in quantum theory.1070

Theorem 3. The Spectral Theorem for Hermitian (Self-1071

Adjoint) Operators.1072

The set of all eigenvectors of a Hermitian (self-adjoint) op-
erator A defined on a Hilbert space H of dimension D forms
an orthonormal basis for H . Thus, any vector |ψ〉 ∈ H can be
expanded as,

|ψ〉 =

D∑
i=1

〈ai|ψ〉 |ai〉 . (A.22)

The operator A itself can be written in the important form,

A =

D∑
i=1

ai |ai〉 〈ai| (A.23)

That is, any Hermitian (self-adjoint) operator may be written1073

as a sum of projection operators onto subspaces spanned by1074

the eigenvalues of A, each projection operator being multiplied1075

by the associated eigenvalue.1076

Proof: The spectral theorem is a classical result in linear1077

algebra. See any good book on linear algebra if you are inter-1078

ested.1079

Note: This analysis assumes the eigenvalues are not degen-1080

erate, i.e. that each eigenvector has a unique eigenvalue. All1081

the theorems in this appendix can be trivially extended to the1082

case where the spectrum of A is degenerate, see any good text-1083

book on linear algebra or quantum theory Isham (1995); Reed1084

and Simon (1980).1085

This theorem is important because Hermitian operators and1086

their associated eigenspaces play a key role in quantum theory1087

because of the association of Hermitian operators with observ-1088

ables. The spectral theorem says that any observable quantity1089

defines a basis for the knowledge space, so that the space can1090

be partitioned into subspaces each of which have a well defined1091

value of the observable.1092

An important example of a Hermitian operator is the identity
operator, 11. This can be thought of as an operator where all the
eigenvalues are 1. Since it is Hermitian the spectral theorem
applies, and so we can write,

11 =

D∑
i=1

|φi〉 〈φi| (A.24)

where the {|φi〉} are any orthonormal basis for the space. The1093

trick of inserting copies of the identity is often used in compu-1094

tations.1095

We can use this result to show that any state in the Hilbert
space can be expanded in terms of the eigenstates of any ob-
servable. Consider an observable A, from the above we know,

11 =

D∑
i=1

|ai〉 〈ai| (A.25)

Now consider this operator acting on any state vector,

|ψ〉 = 11 |ψ〉 =

D∑
i=1

|ai〉 〈ai|ψ〉 =

D∑
i=1

ψA
i |ai〉 (A.26)

The square norms of the ψA
i can be interpreted as the proba-1096

bilities that a measurement of the observable A would give the1097

result ai.1098

Since this decomposition of |ψ〉 can be performed in any ba-1099

sis, we can write any state as a superposition of the eigenstates1100

of any observable in our theory.1101

One important consequence of the spectral theorem is that it
lets us compute/define functions of operators. For example sup-
pose we want to define A2 where A is some Hermitian operator.
Well we can write,

A2 =

D∑
i=1

ai |ai〉 〈ai|

D∑
j=1

a j|a j〉〈a j| =

D∑
i, j=1

aia j〈ai|a j〉 |ai〉 〈a j|

=

D∑
i, j=1

aia jδi j |ai〉 〈a j| =

D∑
i=1

a2
i |ai〉 〈ai|

(A.27)

which is very simple. In general,

An =

D∑
i=1

an
i |ai〉〈ai| (A.28)

This suggests the following, suppose we take any function
f (·), which can be defined in terms of a power series, i.e.

f (x) = α0 + α1x + α2x2 + ... (A.29)

then we can define,

f (A) = α0 + α1A + α2A2 + ...

=

D∑
i=1

{
α0 + α1ai + α2a2

i + ...
}
|ai〉 〈ai|

=

D∑
i=1

f (ai) |ai〉 〈ai|

(A.30)

With sufficient care this can then be extended to essentially all1102

functions. So we can take square roots, exponentials, trig func-1103

tions of operators etc with abandon.1104

One final operation we need to define is trace of an operator.

Tr(A) =
∑

i

〈φi| A |φi〉 (A.31)
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where the {|φi〉} form an orthonormal basis forH . The trace of1105

an operator is independent of the basis in which it is computed.1106

The trace operation has the following useful properties,1107

1. Tr(ABC) = Tr(BCA) = Tr(CAB), etc.1108

2. Tr(A |ψ〉 〈ψ|) = 〈ψ| A |ψ〉1109

In a particular basis, where A is represented by a matrix, the1110

Trace of A is simply the sum of the diagonal elements of the1111

matrix. One important consequence is that the trace of a pro-1112

jection operator is simply the dimension of the subspace onto1113

which it projects.1114

Appendix B. Number of degrees of freedom associated with1115

states, operators, etc.1116

Let us briefly explain how to compute the number of param-1117

eters associated with some objects in quantum theory. This is1118

useful information for understanding the number of measure-1119

ments needed to fix a particular state, or indeed how many pa-1120

rameters a quantum theory has in total, to compare with a clas-1121

sical theory.1122

A pure state |ψ〉 is a complex vector in a D dimensional space.1123

As a column vector in a particular basis it would have D com-1124

plex entries, which means 2D parameters to fix. However we1125

also have two constraints. The first is that the state be nor-1126

malised, the second is that the overall phase of a state is unob-1127

servable, so we can set it to 0 (Isham, 1995). This means a pure1128

state has a total of 2D − 2 free parameters.1129

An observable is an Hermitian operator, which in a particular1130

basis can be written as a D × D matrix with complex entries,1131

which would require 2D2 parameters to specify. However we1132

have the constraint that an observable must be Hermitian, which1133

in terms of matrix elements means Ai j = A∗ji. This reduces the1134

number of parameters to be specified to D2.1135

Finally, a density operator is an Hermitian operator, together1136

with the condition that it must be trace normalised (Tr(ρ) = 1.)1137

This is one extra constraint, so reduces the number of parame-1138

ters by one. The number of free parameters in a density operator1139

is therefore D2 − 1.1140
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