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 Introduction 

Addressing nonlinearities through a design spectrum-based analysis framework usually in-

volves either modification of the elastic design spectrum by applying strength reduction factors 

[14] or generation of an equivalent elastic SDOF system. Clearly, derivation of an equivalent 

linear SDOF system (ELS) allows for interpreting the inelastic response spectra as elastic re-

sponse spectra, utilizing the equivalent properties of the ELS [8]. In this setting, various deter-

ministic and statistical linearization techniques to determine the properties of ELS for various 

kinds of nonlinearity can be found in the literature [9]. More recently, Giaralis and Spanos [5] 

proposed a statistical linearization-based framework to estimate the peak inelastic response of 

an SDOF system exposed to seismic excitations compatible with a given elastic design spec-

trum.  

Abstract: An efficient nonlinear stochastic dynamics methodology has been 

developed for estimating the peak inelastic response of hysteretic multi-degree-of-

freedom (MDOF) structural systems subject to seismic excitations specified via a 

given uniform hazard spectrum (UHS), without the need of undertaking 

computationally demanding non-linear response time-history analysis (NRHA). The 

proposed methodology initiates by solving a series of inverse stochastic dynamics 

problems for the determination of input power spectra compatible in a stochastic 

sense with a given elastic response UHS of specified damping ratio. Relying on 

statistical linearization and utilizing an efficient decoupling approach the nonlinear 

N-degree-of-freedom system is decoupled and cast into (N) effective linear single-

degree-of-freedom (SDOF) oscillators with effective linear properties (ELPs): 

natural frequency and damping ratio. Subsequently, each DOF is subject to a 

stochastic process compatible with the UHS adjusted to the oscillator effective 

damping ratio. Next, an efficient iterative scheme is devised achieving convergence 

of the damping coefficients of all the N effective linear SDOF oscillators and the 

UHS corresponding to each DOF. Finally, peak inelastic responses for all N DOFs 

are estimated through the updated UHS for the N different sets of SDOF oscillators 

ELPs. The proposed approach is numerically illustrated using a yielding 3-storey 

building exposed to the Eurocode 8 (EC8) UHS following the Bouc-Wen hysteretic 

model. NRHA involving an ensemble of EC8 compatible accelerograms is conducted 

to assess the accuracy of the proposed approach in a Monte Carlo-based context. 

 

 

 



To circumvent undertaking computationally intensive non-linear response history analysis 

(NRHA) together with earthquake record selection and scaling [7] this paper puts forth an effi-

cient stochastic dynamics methodology to estimate the peak inelastic response of multi-storey 

buildings modelled as lumped-mass multi-degree-of-freedom (MDOF) hysteretic systems sub-

ject to elastic response UHS. Specifically, the proposed methodology involves the determina-

tion of a series of seismically induced stochastic processes characterized by power spectra 

compatible in a stochastic sense with the assigned elastic response UHS. Relying on statistical 

linearization and utilizing an efficient decoupling approach the nonlinear N-degree-of-freedom 

system is decoupled and cast into N effective linear single-degree-of-freedom (SDOF) oscilla-

tors with effective linear properties (ELPs); natural frequency and damping ratio. Particular 

attention is given to the stochastically derived ELPs for updating appropriately the damping 

dependent elastic response UHS and the stochastic content of the corresponding input seismic 

random processes. To this aim, an efficient iterative scheme is devised achieving convergence 

between the damping ratio coefficient of the effective linear oscillator corresponding to the 𝑗-

th DOF, and the UHS corresponding to the same 𝑗-th DOF and related to the same damping 

ratio coefficient. In this manner, both the linear oscillator ELPs and the corresponding UHS are 

iteratively updated, so that the required compatibility between the two is achieved. This signif-

icant feature of the proposed scheme is novel in comparison to other alternative treatments in 

the literature [5], and aims at enhancing the consistency and accuracy of the scheme. 

 Derivation of Design Spectrum Compatible Power Spectra 

Contemporary codes for the aseismic design of structures allow seismic motion representation 

by means of artificial accelerograms generated as parts of finite duration 𝑇𝑠 of samples of a 

stationary stochastic process which is characterized by a power spectrum compatible in a sto-

chastic sense with a given elastic response uniform hazard spectrum (UHS).  In this regard, the 

following nonlinear equation consists the basis for relating a pseudo-acceleration response 

spectrum 𝑆𝑎(𝜔𝑖, 𝜁𝑜) to an one-sided power spectrum corresponding to a Gaussian stationary 

stochastic process 𝑋𝑖(𝑡) [1]; that is, 

𝑆𝑎(𝜔𝑖 , 𝜁𝑜) = 𝜂𝛸𝑖𝜔𝑖
2√𝜆0,𝑋𝑖                                                                            (1) 

where 𝜂𝛸𝑖 and 𝜆0,𝑋𝑖 stand for the peak factor and the variance of the stationary stochastic re-

sponse process 𝑋𝑖(𝑡) of an elastic oscillator of natural frequency 𝜔𝑖 and damping ratio 𝜁𝑜. Fur-

ther, the spectral moment of zero order of the stationary response process that appears in Eq.(1), 

reads for the general case of 𝑛 order  

𝜆𝑛,𝑋𝑖 = ∫ 𝜔𝑛
∞

0

1

(𝜔𝑖
2 −𝜔2)2 + (2𝜁𝑜𝜔𝑖𝜔)

2
𝐺𝑋𝑖
𝜁𝑜(𝜔)𝑑𝜔.                                                  (2) 

The evaluation of the stochastically compatible power spectrum 𝐺𝑋𝑖
𝜁𝑜(𝜔), which does not appear 

explicitly in Eq.(1), necessitates a careful handling of the inverse stochastic dynamics problem. 

In this setting, several methods for generating a consistent power spectrum can be found in the 

literature [1,4]. Following the hypothesis of a barrier outcrossing in clumps, the peak factor 𝜂𝛸𝑖 

which is related with the first-passage problem is determined as  



𝜂𝛸𝑖(𝑇𝑠, 𝑝) = √2 ln{2 𝑣𝛸𝑖[1 − exp [−𝛿𝛸𝑖
1.2√𝜋 ln(2 𝑣𝛸𝑖)]]}                                           (3) 

where the mean zero crossing rate 𝑣𝛸𝑖 and the spread factor 𝛿𝛸𝑖 of the stochastic response pro-

cess 𝑋𝑖(𝑡) are defined as  

𝑣𝛸𝑖 =
𝑇𝑠
2𝜋
 √
𝜆2,𝑋𝑖
𝜆0,𝑋𝑖

(− ln 𝑝) −1                                                                     (4) 

and 

𝛿𝛸𝑖 = √1 −
𝜆1,𝑋𝑖
2

𝜆0,𝑋𝑖  𝜆2,𝑋𝑖
 .                                                                            (5) 

respectively. Τhe peak factor 𝜂𝛸𝑖 consists the critical factor by which the standard deviation of 

the considered elastic oscillator response should be multiplied to predict a level 𝑆𝑎 below which 

the peak response will remain, with probability 𝑝 (see Eq.(4)). This probability 𝑝 is reasonably 

set to be equal to 0.5. Besides this selection, there is the underlying compatibility criterion 

which prescribes that from an ensemble of stationary samples of duration 𝑇𝑠 of the stochastic 

process 𝑋𝑖(𝑡), half of the associated response spectra lie below the assigned pseudo-accelera-

tion response spectrum 𝑆𝑎 [5]. For the purposes of this study, the following approximate for-

mula for obtaining a reliable estimation of the variance of the response process 𝑋𝑖(𝑡) of an 

oscillator of natural frequency 𝜔𝑖 and damping ratio 𝜁𝑜 is used [18], i.e., 

𝜆0,𝑋𝑖 =
𝐺𝑋𝑖
𝜁𝑜(𝜔𝑖)

𝜔𝑖
3 (

𝜋

4𝜁𝑜
− 1) +

1

𝜔𝑖
4  ∫ 𝐺𝑋𝑖

𝜁𝑜(𝜔)𝑑𝜔
𝜔𝑖

0

.                                                 (6) 

Considering Eq.(6) and manipulating appropriately Eq.(1) yields 

𝑆𝛼
2(𝜔𝑖 , 𝜁𝑜) = 𝜂𝛸𝑖

2 𝜔𝑖𝐺𝑋𝑖
𝜁𝑜(𝜔𝑖) (

𝜋 − 4𝜁𝑜
4𝜁𝑜

) + 𝜂𝛸𝑖
2 ∫ 𝐺𝑋𝑖

𝜁𝑜(𝜔)𝑑𝜔
𝜔𝑖

0

                                    (7) 

which is further simplified by substituting the integral in Eq.(7) by a discrete summation. In 

this setting, the stochastically compatible power spectrum 𝐺𝑋𝑖
𝜁𝑜(𝜔) can be derived as 

𝐺𝑋𝑖
𝜁𝑜(𝜔𝑖) =

{
 
 

 
 4𝜁𝑜
𝜔𝑖𝜋 − 4𝜁𝑜𝜔𝑖−1

(
𝑆𝛼
2(𝜔𝑖 , 𝜁𝑜)

𝜂𝛸𝑖
2 − 𝛥𝜔∑𝐺𝑋𝑖

𝜁𝑜(𝜔𝑞)

𝑖−1

𝑞=1

) , 𝜔𝑖 > 𝜔𝑏
𝑙

0, 𝜔𝑖 ≤ 𝜔𝑏
𝑙

                         (8) 

where the discretization scheme 𝜔𝑖 = 𝜔𝑏
𝑙 + (𝑖 − 0.5)𝛥𝜔 is employed. The value of 𝜔𝑏

𝑙  is re-

lated with the lowest bound of the frequency domain of Eq.(3). Obviously, a preselection of an 

input power spectrum shape has to be preceded for deriving a stochastically compatible spec-

trum, according to the numerical scheme of Eq.(8). In the herein study the utilization of a more 

elaborate input power spectrum shape is deemed necessary in achieving better matching be-

tween the target design spectrum and the compatibly generated design spectrum 𝑆𝑎(𝜔𝑖, 𝜁𝑜) cal-

culated by Eq.(1) (see Figure 1). In this regard, the widely used Kanai-Tajimi spectrum 

appropriately modified by Clough and Penzien (CP) is considered herein [11]. Further, the val-



ues of 𝜔𝑖 range in the closed frequency interval [𝜔𝑏
𝑙 , 𝜔𝑏

𝑢]. Numerical experimentation con-

ducted in [5], indicates that for the case of a CP input spectrum, the value of the lowest bound 

𝜔𝑏
𝑙  is equal to zero. An upper cut-off frequency bound 𝜔𝑏

𝑢 is defined according to 

∫ 𝐺𝑋𝑖
𝜁𝑜(𝜔)𝑑𝜔

𝜔𝑏
𝑢

0

= (1 − 𝜀)∫ 𝐺𝑋𝑖
𝜁𝑜(𝜔)𝑑𝜔

∞

0

                                                         (9) 

where 𝜀 ≪ 1 (e.g. 𝜀 is equal to 10−3). In Figure 1a the target EC8 design spectrum is compared 

with the solution of the direct formulation of Eq.(1) utilizing the stochastically compatible 

power spectra 𝐺𝑋𝑖
𝜁𝑜(𝜔) for the cases of CP and white-noise (WN) input spectrum shape. Further, 

in Figure 1b the compatible power spectra for various spectral shapes are presented. 

 

Figure 1: (a) EC 8 design spectrum and the solution to the direct formulation of Eq.(1) 𝑆𝑎(𝜔𝑖 , 𝜁𝑜) for various 

spectral shapes (𝜁𝑜 = 5%, PGA= 0.36𝑔, Soil Conditions B). (b) Compatible design spectrum power spectra.   

 Inelastic Stochastic Design Spectrum Analysis 

In this section a novel stochastic dynamics methodology for conducting efficiently inelastic 

design spectrum-based analysis of MDOF nonlinear structural systems is developed. 

3.1 Statistical Linearization 

Consider the N-DOF structural system governed by the nonlinear differential equation  

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒙(𝑡) + 𝒈[𝒙(𝑡), �̇�(𝑡)] = − 𝑭(𝑡),                                              (10) 

where �̈�(𝑡) denotes the response acceleration vector, �̇�(𝑡) is the response velocity vector and 

𝒙(𝑡) is the response displacement vector. For the sake of clarity, a distinction should be made 

between inter-story drifts vector 𝒚(𝑡) and the normalized by the nominal yielding displacement 

xy inter-story drifts vector 𝐱(t) that appears in Eq.(10); namely 𝐱(t) = 𝐲(t) 𝑥𝑦
−1. 𝐌, 𝐂 and 𝐊 

denote the (𝑁 × 𝑁) mass, damping and stiffness matrices, respectively; 𝐠[𝐱(t), �̇�(t)] is an ar-

bitrary nonlinear (𝑁 × 1) vector function of the variables 𝐱(t) and �̇�(t). 𝐅(t)T =
[f1(t), f2(t), … , f𝑁(t)] is a (𝑁 × 1) zero mean, stationary random vector process defined as 

𝐅(t) = �̅�𝛄𝑥𝑦
−1α̈g(t), where 𝛄 is the unit column vector, α̈g(t) is a stochastic stationary seismic 

excitation process characterized by a power spectrum 𝐺𝑋𝑖
𝜁𝑜(𝜔) and �̅� stands for the (𝑁 × 𝑁) 

mass matrix defined in absolute coordinates. In this regard, 𝐅(t) possesses the spectral density 

matrix of the diagonal form 

𝑺𝑭𝑭(𝜔) = 𝑚𝑗
2xy
−2𝐺𝑋𝑖

𝜁𝑜(𝜔) 𝚰𝑁𝒙𝑁,                    𝑗 = 1, 2. . . , 𝑁                         (11) 



In the following, a statistical linearization approach [11,15] is employed for determining the 

response power spectrum matrix 𝑺𝒙𝒙(𝜔). A linearized version of Eq.(10) is given in the form 

𝑴�̈�(𝑡) + (𝑪 + 𝑪𝒆𝒒)�̇�(𝑡) + (𝑲 +𝑲𝒆𝒒)𝒙(𝑡) = − 𝑭(𝑡).                                            (12) 

Next, relying on the standard assumption that the response processes are Gaussian, the elements 

of the equivalent linear matrices 𝑪𝒆𝒒 and 𝑲𝒆𝒒 are given by the expressions 

𝑐𝑗,𝑙
𝑒𝑞
= 𝐸 [

𝜕𝑔𝑗

𝜕�̇�𝑙
] ,                                                                                  (13) 

and 

𝑘𝑗,𝑙
𝑒𝑞
= 𝐸 [

𝜕𝑔𝑗

𝜕𝑥𝑙
] .                                                                                  (14) 

Further, the fourier transform of the response cross-correlations matrix defined by convoluting 

the impulse response function matrix with the vector of the applied stochastic seismic loads 

leads for the general case of a N-degree-of-freedom system in the celebrated frequency domain 

relation [11,15] 

𝑺𝒙𝒙(𝜔) = 𝑯𝒙(𝑖𝜔)𝑺𝑭𝑭(𝜔)𝑯𝒙
𝑇∗(𝑖𝜔),                                                             (15) 

where the superscripts (T) and (*) denote matrix transposition and complex conjugation, re-

spectively, and the non-symmetric frequency response function (FRF) matrix is defined as 

𝑯𝒙(𝑖𝜔) = [[(𝑲 + 𝑲𝒆𝒒) + 𝑴(𝑖𝜔)
2] + 𝑖𝜔(𝑪 + 𝑪𝒆𝒒)]

−1

.                                        (16) 

Furthermore, the cross–variance of the response due to a vector of stochastic excitation pro-

cesses characterized by power spectra of the form 𝐺𝑋𝑖
𝜁𝑜(𝜔) can be evaluated as 

𝐸[𝑥𝑗(𝑡)𝑥𝑙(𝑡)] = ∫ 𝑆𝑥𝑗𝑥𝑙

 ∞

−∞

(𝜔) 𝑑𝜔                                                              (17) 

where 𝑆𝑥𝑗𝑥𝑙(𝜔) is the (𝑗, 𝑙)𝑡ℎ element of the response power spectrum matrix 𝐒𝐱𝐱(ω). It can be 

readily seen that Eqs.(12-17) constitute a coupled nonlinear system of algebraic equations to be 

solved iteratively for the system response covariance matrix. Further for the 𝑗𝑡ℎ degree of free-

dom, using Eq.(8), Eq.(11), Eq.(15) and Eq.(17) yields 

𝐸[𝑥𝑗
2(𝑡)] = ∫ (|H𝑥j1(𝑖𝜔)|

2

m1
2 + |H𝑥j2(𝑖𝜔)|

2

m2
2 +⋯+ |H𝑥jd(𝑖𝜔)|

2

md
2) xy

−2
 ∞

−∞

𝐺𝑋𝑖
𝜁𝑜(ω)dω,       (18) 

and 

𝐸[�̇�𝑗
2(𝑡)] = ∫ 𝜔2 (|H𝑥j1(𝑖𝜔)|

2

m1
2 + |H𝑥j2(𝑖𝜔)|

2

m2
2 +⋯+ |H𝑥jd(𝑖𝜔)|

2

md
2) xy

−2
 ∞

−∞

𝐺𝑋𝑖
𝜁𝑜(ω)dω.  (19) 

To this end, Eqs.(18) and (19) provide with estimates of the normalized response displacement 

and velocity variance corresponding to each and every DOF of the nonlinear MDOF structural 

system subject to a vector of stochastic seismic excitation processes characterized by a power 

spectrum compatible in the stochastic sense delineated in section 2 with an assigned pseudo-

acceleration design/response spectrum Sα(ωi, ζo). 



3.2 Derivation of Effective Linear SDOF Oscillators Properties 

Modal analysis is typically employed for decoupling the coupled linear/linearized differential 

equation of motion, however the requirement of a special form of damping (e.g., Rayleigh) 

imposes limitations to the method. In this section, an efficient decoupling approach, which can 

readily address arbitrary forms of damping matrices, for determining a stochastically equivalent 

linear SDOF system for each DOF is outlined [10]. In the herein study an auxiliary effective 

linear oscillator corresponding to the 𝑗𝑡ℎ degree of freedom is defined as 

ẍj(𝑡) + 2ζef𝑗ωef𝑗 ẋj(𝑡) + ωef𝑗
2 xj(𝑡) = − α̈g(t),                                                    (20) 

where the variables ωef𝑗  and ζef𝑗  are the effective natural frequency and damping ratio, respec-

tively. In this regard, by equating the expressions for the variances of the response displacement 

and velocity of the auxiliary effective linear oscillator, expressed utilizing the FRF correspond-

ing to Eq.(20), with the corresponding ones determined via Eqs.(18-19) yields 

𝐸[𝑥𝑗
2(𝑡)] = ∫ |H𝑥ef𝑗

(𝑖𝜔)|
2

xy
−2

∞

−∞

𝐺𝑋𝑖
𝜁𝑜(𝜔)𝑑𝜔,                                                       (21) 

𝐸[�̇�𝑗
2(𝑡)] = ∫ 𝜔2 |H𝑥ef𝑗

(𝑖𝜔)|
2

xy
−2

∞

−∞

𝐺𝑋𝑖
𝜁𝑜(𝜔)𝑑𝜔.                                                  (22) 

where 

𝐻𝒙ef𝑗
(𝑖𝜔) = [(𝑖𝜔)2 + 𝑖2ζef𝑗ωef𝑗𝜔 +ωef𝑗

2 ]
−1

                                                     (23) 

Clearly, Eqs.(21) and (22) in conjunction with Eqs.(18) and (19) constitute a nonlinear system 

of two algebraic equations to be solved for the evaluation of the linear oscillator effective nat-

ural frequency ωef𝑗  and damping ratio ζef𝑗  coefficients. In this setting, determining the effective 

natural frequency ωef𝑗  is especially important for a number of reasons such as tracking and 

avoiding moving resonance phenomena [10,12], or developing efficient approximate tech-

niques for determining nonlinear system survival probability and first-passage PDF [13,17].  

3.3 Efficient Stochastic Iterative Scheme for Updated Design Power Spectra 

The proposed methodology incorporates an efficient iterative scheme which includes succes-

sive solution of an inverse stochastic dynamics problem for the determination of a series of 

seismically induced stochastic processes characterized by power spectra compatible in a sto-

chastic sense with the assigned elastic response UHS. Relying on statistical linearization and 

utilizing the efficient decoupling approach, the nonlinear N-degree-of-freedom system is de-

coupled and cast into (N) effective linear SDOF oscillators with effective natural frequency 

ωef𝑗  and damping ratio ζef𝑗 . Next, the derived effective damping coefficients ζef𝑗  redefine the 

damping ratios of the updated input elastic response UHS which in turn define stochastically 

compatible design spectrum power spectra. The aforementioned procedure establishes a cyclic 

relationship between the stochastically equivalent damping coefficients of the effective linear 

SDOF oscillators ζef𝑗
𝑜𝑢𝑡 and the damping ratios of the input elastic response UHS ζef𝑗

𝑖𝑛 . Lastly, the 

values of the derived effective linear coefficients attained at the last iteration when convergence 

has been achieved between ζef𝑗
𝑖𝑛  and ζef𝑗

𝑜𝑢𝑡, are used in conjunction with the corresponding UHS 

to approximate the peak inelastic system response of every DOF of the system.  



Concisely,  the developed stochastic dynamics framework includes the following steps: 

a) Determination of a series of seismically induced stochastic processes characterized by 

power spectra compatible in a stochastic sense with the assigned elastic response UHS. 

b) Statistical linearization treatment of the nonlinear MDOF system subject to a vector of 

stochastic seismic processes characterized by power spectra defined in the first step. 

c) Efficient decoupling approach for the determination of (N) effective linear SDOF oscil-

lators with effective natural frequency ωef𝑗  and damping ratio ζef𝑗  properties. 

d) Redefinition of a series of stochastic seismic processes compatible with the UHS ad-

justed to the oscillator stochastically derived effective damping ratios. 

e) An efficient iterative scheme is devised achieving convergence between the damping 

ratio coefficient of the effective linear oscillator corresponding to the 𝑗-th DOF, and the 

UHS corresponding to the same 𝑗-th DOF and related to the same damping ratio coeffi-

cient. 

In this regard, the analyst/engineer can readily resort to the updated elastic design/response 

UHS for reading spectral ordinates without the need for utilizing any additional reduction fac-

tors for considering the underlying nonlinearity of the system. Moreover, the problem of utiliz-

ing an arbitrary damping ratio of questionable value for the initial input elastic design UHS is 

addressed as the proposed iteration scheme provides with informed values of the effective 

damping ratios which are used in a straightforward manner for the redefinition of the most 

appropriate elastic response UHS and its successive spectral ordinates reading. 

The developed stochastic dynamics technique exhibits a number of noteworthy and novel char-

acteristics such as: (i) it accounts for nonlinear and MDOF structural systems, (ii) it provides 

with efficient inelastic peak response estimates by avoiding NRHA, (iii) it exhibits enhanced 

accuracy as compared to [5] due to the novel feature of updating the response UHS over the 

iterative process; the UHS is treated as a unknown variable of the system of nonlinear equations 

rather than a constant parameter, (iv) the latter point provides with updated values for the elastic 

response UHS.  Note that the attribute of identifying the most appropriate UHS to be used by 

the analyst/designer constitutes an additional advantage of the technique.  

 Numerical Application 

One of the widely used models in earthquake engineering is the Bouc-Wen model [11] that 

allows to include hysteretic phenomena. Ηaving adopted basic shear-beam idealizations, the 

𝑗𝑡ℎ inter-story restoring force can be given as the composition of an elastic and a hysteretic part 

𝛷𝑆𝑗(𝑡) = 𝛼𝑘𝑗𝑦𝑗(𝑡)𝑥𝑦
−1 + (1 − 𝛼)𝑘𝑗𝑧𝑗(𝑡),                                                           (24) 

where the parameter 𝛼 stands for the rigidity ratio, 𝑘𝑗 is the initial elastic stiffness, 𝑦𝑗(t) is the 

inter-story drift and 𝑥𝑦 is the yielding displacement. The additional hysteretic variable z𝑗(t) is 

a state variable so that each story of the structure is now described by a triplet of state variables, 

i.e. inter-story drift, velocity and hysteretic variable. The constitutive law is introduced by 

żj(t) = xy
−1 {Αẏj(t) − βẏj(𝑡)|zj(𝑡)|

n
− γ|ẏj(𝑡)|zj(𝑡)|zj(𝑡)|

n−1
}.                                 (25) 

where the parameters Α, β, γ and 𝑛 are capable of representing a wide range of hysteresis loops 

(in the herein study Α = 1, β = γ = 0.5, n = 1 and α = 0.15). In this section, the proposed 

methodology is numerically illustrated using a yielding three-storey building structure which is 

modeled as a nonlinear/hysteretic three-DOF structural system subject to stochastic seismic 



excitations defined by the Eurocode 8 (EC8). All floors are assumed to be rigid and have a 

constant height equal to 3 m. The masses of the plates are lumped at the floor levels and a value 

of mplate = 9.5 × 104kg is considered herein. The Young’s modulus and the mass density are 

taken equal to 30 × 109Pa and 2.5 × 103 kg/m3 respectively. The yielding displacement 𝑥𝑦 is 

equal to 5c𝑚. Further, columns cross-section dimensions for a given floor are assumed to be 

equal, and thus, a design vector 𝐫 can be defined, having one component for every story, i.e. 

the width of the square cross-sections. Considering the normalized inter-story drifts xj as well 

as the additional states zj, the three-DOF hysteretic structural system is governed by Eq.(10), 

where the nonlinear vector function is defined as 

𝒈[𝒙(𝑡), �̇�(𝑡)] = [𝟎𝟏×𝑵 �̇�𝟏×𝑵] 
𝑇 .                                                                  (26) 

Next, a pseudo-acceleration design/response spectrum prescribed by EC8 for soil conditions B, 

damping ratio 𝜁𝑜 = 5%, and peak ground acceleration (PGA) equal to 0.36𝑔 is initially con-

sidered (Figure 1). In the ensuing analysis the duration 𝑇𝑠 is taken equal to 20𝑠, whereas the 

discetization step is set to 𝛥𝜔 = 0.1 𝑟𝑎𝑑𝑠−1. The parameters values of the CP input shape 

power spectrum are 𝜉𝑔 = 0.78,  𝜔𝑔 = 10.78 𝑟𝑎𝑑𝑠
−1,  𝜉𝑓 = 0.92 and 𝜔𝑓 = 2.28 𝑟𝑎𝑑𝑠

−1. For 

illustration purposes a multi-storey building structure characterized by the following design 

vector 𝐫 = [25, 25, 25 ]𝑇  𝑐𝑚 is considered. Note that the convergence rate is reasonably fast, 

and the stabilization of the estimates of the effective damping ratio ζef𝑗  elements, which are 

function of ζef𝑗
𝑖𝑛  is achieved after six iterations. The convergence process is terminated when 

successive values of the estimated effective damping ratio display difference lower than a 

threshold 𝛽 (e.g. 𝛽 = 10−4). Lastly, the values of the stochastically derived ELPs attained at the 

last iteration when convergence has been achieved between ζef𝑗
𝑖𝑛  and ζef𝑗(ζef𝑗

𝑖𝑛 ) are plotted on the 

updated inelastic response spectrum of 𝑆𝑎−𝑑 format presented in Figure 2. 

 

Figure 2: Inelastic design/response spectrum in 𝑆𝑎−𝑑 (𝑇𝑒𝑓𝑗 ,  𝜁𝑒𝑓𝑗) format for PGA= 0.36𝑔 and soil conditions B. 

Further, proposed methodology based data are compared with pertinent Monte Carlo simulation 

data utilizing an ensemble of 1,000 realizations. Specifically, non-stationary time-histories sto-

chastically compatible with the design spectrum consistent power spectrum of Eq.(8) [6], for 

the case of CP input spectral shape (see Figure 1) are generated based on the spectral represen-

tation technique in [16]. Next, the nonlinear differential equation of motion (Eq.(10)) is numer-

ically integrated via a standard fourth order Runge-Kutta scheme, and finally, system response 

statistics are obtained based on the ensemble of the response realizations. Relevant results are 



presented in Table 1, illustrating a satisfactory achieved degree of accuracy. The error in the 

estimation of the peak inelastic displacement (PID) response is defined as 

𝑒𝑟𝑟𝑜𝑟𝑗,𝜅 =
|𝑃𝐼𝐷𝑗,𝑘

𝑨𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍
− 𝑃𝐼𝐷𝑗

𝑴𝑪𝑺|

𝑃𝐼𝐷𝑗
𝑴𝑪𝑺

,                                                             (27) 

where 𝑘 stands for the iteration index. 

Table 1: Error (%) in the estimation of the peak inelastic displacement responses through the iterations of the 

proposed methodology. Comparison with MCS-based results 

Iteration 1st 2nd 3rd 4th 5th 6th MCS (cm) 

1st DOF 6.52 7.37 4.25 4.82 4.67 4.67 7.06 

2nd DOF 7.57 0.16 0.48 0.16 0.16 0.16 6.21 

3rd DOF 7.97 0.16 1.33 1.16 1.16 1.16 6.02 

For the cases of a relatively weak non-linearity (e.g. 2nd and 3rd DOF) it is seen from Table 1 

that the proposed methodology is particularly accurate. As the degree of non-linearity increases 

(e.g. 1st DOF) the achieved degree of accuracy will tend to decrease, remaining however, within 

reasonable levels.     

The proposed methodology can be seen as a system identification procedure which rede-

fines/updates incrementally the elastic design/response UHS, considering appropriately the un-

derlying nonlinearity of the system. In this regard, the analyst/engineer can readily resort to the 

standard graphical spectral ordinates reading [3], without the need of utilizing any additional 

reduction factors. Note in passing that the proposed scheme can be applied in a straightforward 

manner to address cases of nonlinear structural systems having a large number of DOFs. Fur-

ther, the proposed methodology is characterized by considerable versatility since it is liberated 

from the dependency on the damping ratio of the imposed elastic design/response spectrum, as 

well as the form of damping itself. 

 Concluding Remarks 

An efficient nonlinear stochastic dynamics methodology has been developed for estimating the 

peak inelastic response of hysteretic multi-degree-of-freedom (MDOF) structural systems sub-

ject to seismic excitations specified via a given uniform hazard spectrum (UHS), without the 

need of undertaking computationally demanding non-linear response history analysis (NRHA). 

The proposed methodology initiates by solving a series of inverse stochastic dynamics prob-

lems for the determination of input power spectra compatible in a stochastic sense with a given 

elastic response UHS of specified damping ratio. Relying on statistical linearization and utiliz-

ing an efficient decoupling approach the nonlinear N-degree-of-freedom system is decoupled 

and cast into (N) effective linear single-degree-of-freedom (SDOF) oscillators with effective 

linear properties (ELPs): natural frequency and damping ratio. Subsequently, each DOF is sub-

ject to a stochastic process compatible with the UHS adjusted to the oscillator effective damping 

ratio. Next, an efficient iterative scheme is devised achieving convergence of the damping co-

efficients of all the N effective linear SDOF oscillators and the UHS corresponding to each 

DOF. Finally, peak inelastic responses for all N DOFs are estimated through the UHS for the 

N different sets of SDOF oscillators ELPs. 

The accuracy of the developed approach is numerically demonstrated using a yielding 3-storey 

building exposed to the Eurocode 8 (EC8) UHS following the Bouc-Wen hysteretic model. 



NRHA involving an ensemble of EC8 non-stationary compatible accelerograms is conducted 

to assess the accuracy of the proposed approach in a Monte Carlo-based context. 
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