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On simple modules over twisted finite category algebras

Markus Linckelmann and Micha l Stolorz

October 6, 2011

Abstract

The purpose of this note is to show that the recent proof, by Ganyushkin, Mazorchuk

and Steinberg, of the parametrisation of simple modules over finite semigroup algebras

due to Clifford, Munn and Ponizovskĭi carries over to twisted finite category algebras. We

observe that the parametrisations of simple modules over Brauer algebras, Temperley-Lieb

algebras, and Jones algebras due to Graham and Lehrer, can be obtained as special cases

of our main result. We further note that the notion of weights in the context of Alperin’s

weight conjecture extends to twisted finite category algebras.

1 Introduction

Let k be a commutative ring and C a small category. The set of idempotents in the morphism
set Mor(C) of C is partially ordered via e ≤ f if e, f are idempotent endomorphisms of the same
object in C such that e = e ◦ f = f ◦ e. For any idempotent endomorphism e of an object X
in C we denote by Ge the group of invertible elements in the monoid e ◦ EndC(X) ◦ e. Two
idempotent endomorphisms e ∈ EndC(X) and f ∈ EndC(Y ) are called isomorphic if there are
morphisms s ∈ f ◦HomC(X,Y ) ◦ e and t ∈ e ◦HomC(Y,X) ◦ f such that t ◦ s = e and s ◦ t = f .
The elements s and t determine a group isomorphism Ge

∼= Gf , sending u ∈ Ge to s ◦u ◦ t, with
inverse sending v ∈ Gf to t◦v ◦s. A different choice of s, t will lead to a possibly different group
isomorphism, but any two different choices will yield group isomorphisms which differ at most by
an inner automorphism of Ge. If U is a kC-module then eU is a module for the monoid algebra
k(e ◦ EndC(X) ◦ e), hence restricts to a module over the group algebra kGe. Two pairs (e, U),
(f, V ) consisting of idempotent endomorphisms e ∈ EndC(X), f ∈ EndC(Y ), a kGe-module U
and a kGf -module V are called isomorphic if there are morphisms s ∈ f ◦ HomC(X,Y ) ◦ e and
t ∈ e ◦HomC(Y,X) ◦ f such that t ◦ s = e and s ◦ t = f , and such that the isomorphism classes
of U , V correspond to each other through the algebra isomorphism kGe

∼= kGf induced by s
and t. Since inner automorphisms of an algebra stabilise all isomorphism classes of modules,
this property is independent of the choice of s and t.

Theorem 1.1. Let k be a commutative ring and C a finite category. The map sending a sim-
ple kC-module S to the pair (e, eS), where e is an idempotent endomorphism in C, minimal
with respect to eS 6= {0}, induces a bijection between the set of isomorphism classes of sim-
ple kC-modules and the set of isomorphism classes of pairs (e, T ) consisting of an idempotent
endomorphism e in C and a simple kGe-module T .
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For semigroup algebras this is due to Clifford [3], [4], Munn [16] and Ponizovskĭi [17]. If C
is a finite EI-category (that is, if all endomorphisms of objects are isomorphisms), the above
parametrisation specialises to the parametrisation, due to Lück, in terms of simple modules of
automorphism groups of objects (see [5, §11, B]), [15, §9], or also [23, 4.3]). For inverse semigroup
algebras and inverse category algebras this follows also from [21] and [14]. Our proof of Theorem
1.1 follows closely the lines of that given in [6] for semigroups, which has motivated the present
work. As in [6], this is based on Green’s work on Schur functors in [10, 6.2]. More precisely, if
e is an idempotent in a k-algebra A, then for any simple A-module S, either eS is zero or eS is
a simple eAe-module. This induces a bijection between the set of isomorphism classes of simple
A-modules not annihilated by e and the set of isomorphism classes of simple eAe-modules. If T
is a simple eAe-module then Ae ⊗eAe T has a unique simple quotient and HomeAe(eA, T ) has
a unique simple submodule, both isomorphic to a simple A-module S satisfying eS ∼= T . This
yields two explicit descriptions of the inverse map from the set of isomorphism classes of pairs
(e, T ) as in 1.1 to the set of isomorphism classes of simple kC-modules.

The methods work more generally for twisted finite category algebras. In order to describe
this, let C be a finite category, k a commutative ring and α a 2-cocycle of C with coefficients in
k×. That is, if s, t are morphisms in C for which the composition t ◦ s is defined, then α(t, s) ∈
k× such that if s , t , u are three morphisms in C for which the compositions t ◦ s and u ◦ t are
defined, we have the 2-cocycle identity α(u ◦ t, s)α(u, t) = α(u, t ◦ s)α(t, s). As a k-module, the
twisted category algebra kαC is equal to kC, endowed with the k-bilinear multiplication t · s =
α(t, s)t ◦ s if t ◦ s is defined, and t · s = 0 if not. The associativity of the multiplication in kαC is
equivalent to the 2-cocycle identity. The isomorphism class of kαC depends only on the class of
α in H2(C; k×). If e is an idempotent endomorphism of an object X in C, the image of e in kαC
need no longer be an idempotent, because e ·e = α(e, e)(e◦e) = α(e, e)e. Dividing this equation
by α(e, e)2 shows that ê = α(e, e)−1e is an idempotent in kαC. We use the same letter α for
the restriction of α to the monoid e ◦ EndC(X) ◦ e and its subgroup Ge. We have ê · kαC · ê =
kα(e ◦ EndC(X) ◦ e); in particular, the twisted group algebra kαGe is a unitary subalgebra of
ê · kαC · ê. Therefore, if U is a kαC-module, then êU is a kαGe-module. We will see in 5.2 and
5.4 below that if e, f are isomorphic idempotents in C there is an algebra isomorphism kαGe

∼=
kαGf which is uniquely determined up to an innner automorphism. Hence, as before, two pairs
(e, U), (f, V ) consisting of idempotents e ∈ EndC(X), f ∈ EndC(Y ), a kαGe-module U and a
kαGf -module V , are called isomorphic if e, f are isomorphic and if the isomorphism classes
of U , V correspond to each other through the induced isomorphism kαGe

∼= kαGf . With this
notation, Theorem 1.1 can be generalised as follows.

Theorem 1.2. Let k be a commutative ring and C a finite category. Let α be a 2-cocycle of C
with coefficients in k×. The map sending a simple kαC-module S to the pair (e, êS), where e
is an idempotent endomorphism in C, minimal with respect to êS 6= {0}, where ê = α(e, e)−1e,
induces a bijection between the set of isomorphism classes of simple kαC-modules and the set
of isomorphism classes of pairs (e, T ) consisting of an idempotent endomorphism e in C and a
simple kαGe-module T .

Theorem 1.1 is, of course, simply the special case of Theorem 1.2 applied to α = 1, but in
order to separate the rather tedious technicalities related to the 2-cocycle α from the structural
arguments underlying the proof, we first prove 1.1 and then adapt this proof to the twisted case.

2



Remark 1.3. Certain combinatorially defined algebras, such as Brauer algebras, Temperley-
Lieb algebras, their cyclotomic analogues, Jones algebras and partition algebras can be inter-
preted as twisted monoid algebras; see Wilcox [24]. In conjunction with Theorem 1.2 this yields
alternative proofs for the parametrisations of simple modules for these algebras, without refer-
ring to their cellularity. Denote by Bn(δ) the Brauer algebra over a field k with parameter δ ∈
k×, where n ≥ 2. By a result of Graham and Lehrer [7, (4.17)], the isomorphism classes of
simple Bn(δ)-modules are parametrised by pairs (t, λ), where t ≥ 0 is an integer such that n− t
is nonnegative and even, and where λ is a partition of t (a p-regular partition if the charac-
teristic p of k is positive). This is related to 1.2 as follows. Any integer t as above yields an
idempotent et in the semigroup BRn of diagrams which form a basis of Bn(δ); the idempotent et

corresponds to a diagram with t strictly vertical strands and with horizontal strands connecting
the remaining nodes (see [24, §8] for more details). This yields a set of representatives of the
isomorphism classes of idempotents in the semigroup BRn. Moreover, the group Get

corre-
sponding to the idempotent et is isomorphic to the symmetric group St. The 2-cocycle arising
in the Brauer algebra yields the trivial class upon restriction to St. The second component λ
corresponds to an isomorphism class of simple kSt-modules. Thus the parametrisation from
1.2 yields that in [7, (4.17)]. The Temperley-Lieb algebra TLn(δ) is the subalgebra of Bn(δ)
spanned by the submonoid TLn of BRn of diagrams in BRn which do not have any intersecting
strands. The semigroup TLn contains the idempotents et, and the coresponding groups Get

are
trivial. Thus, by 1.2, the isomorphism classes of simple TLn(δ)-modules are parametrised by
the set of integers t ≥ 0 such that n − t ≥ 0 is even; this is [7, (6.8)]. Similarly, one can use
1.2 to obtain the parametrisation of the isomorphism classes of simple modules over the Jones
algebra in [7, (6.17)] and over partition algebras in [25, 4.11]. The same approach should also
work for the cyclotomic Brauer algebras [11], [20] and cyclotomic Temperley-Lieb algebras [19]
with additional parameter m > 0. These algebras have idempotents as above, with associated
groups of invertible elements isomorphic to Z/mZ ≀ St and direct products of copies of Z/mZ,
respectively. Therefore 1.2 should yield again parametrisations, as in [19, 5.4], [20, 5.9], and [11,
Prop. 43], of the isomorphism classes of simple modules for these algebras.

Remark 1.4. Twisted fusion category algebras arise in the context of reformulations of Alperin’s
weight conjecture in [12], [13]. Theorem 1.2 suggests how to extend the notion of weights to
arbitrary twisted finite category algebras: with the notation of 1.2, a weight of kαC is a pair
(e, T ) consisting of an idempotent in C and a simple and projective kαGe-module T . Denote by
w(kαC) the number of isomorphism classes of weights of kαC. The isomorphism classes of weights
of kαC correspond to a subset of the isomorphism classes of simple kαC-modules, through the
correspondence in 1.2. Thus, if we choose an idempotent c in kαC which annihilates exactly all
simple modules which do not correspond to a weight, the resulting algebra c · kαC · c has exactly
w(kαC) isomorphism classes of simple modules. This algebra has been considered in the context
of finite EI-categories and fusion systems in [12], where it is shown to be quasi-hereditary (cf.
[12, 2.4, 4.5]). Combining 1.2 with Alperin’s weight conjecture yields a conjecture on the number
of isomorphism classes of simple modules of twisted finite category algebras over algebraically
closed fields of positive characteristic.

Remark 1.5. Let C be a finite category and k a complete local Noetherian commutative ring
with a residue field of prime characteristic p. Let S be a simple kC-module and e a minimal
idempotent in Mor(C) such that eS 6= {0}. Let (Q,V ) be a vertex-source pair for the simple
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kGe-module eS; that is, Q is a minimal subgroup of Ge such that eS is relatively kQ-projective
and V is an indecomposable kQ-module such that eS is isomorphic to a direct summand of
IndGe

Q (V ). By Green’s work in [9], the group Q is a p-group and the pair (Q,V ) is uniquely
determined up to conjugation in Ge; see for instance [2, 3.10] or [22, Chapter 3] for expositions
of these concepts. It is tempting to call (Q,V ) a vertex-source pair of the simple kC-module
S. In the context of finite group algebras, a vertex-source pair can be associated with any
indecomposable module. This raises the question how to generalise vertices and sources to
arbitrary indecomposable modules over the category algebra kC. For finite EI-categories, Fei
Xu has developed in [26] a notion of vertices and sources, where the vertices are certain full
subcategories.

2 Green relations for categories

The results in this section are translations of basic results from semigroups to categories. For
the most part the proofs, included here for the convenience of the reader, are straightforward
adaptations of the proofs in the semigroup case; see, for instance, the exposition in [18, Appendix
A]. Let C be a small category, with morphism set denoted Mor(C). For subsets M , M ′ of Mor(C)
we denote by M ◦ M ′ the (possibly empty) subset of Mor(C) consisting of all morphisms of the
form s ◦ s′, where s ∈ M and s′ ∈ M ′ such that this composition is defined. If M consists
of a single morphism s we write also s ◦ M ′ instead of M ◦ M ′; similarly for M ′. We use the
obvious generalisation of this notation for the composition of more than two subsets of Mor(C).
Following standard notation of the Green relations for semigroups [8], for any s, t ∈ Mor(C) we
write sL t if Mor(C) ◦ s = Mor(C) ◦ t, we write sR t if s ◦ Mor(C) = t ◦ Mor(C), and we write
sJ t if Mor(C) ◦ s ◦ Mor(C) = Mor(C) ◦ t ◦ Mor(C). A morphism s ∈ HomC(X,Y ) is called split
if there is a morphism t ∈ HomC(Y,X) satisfying s = s ◦ t ◦ s. (In the context of semigroups,
this property is called regular or von Neumann regular.) The morphism t need not be unique,
and also t need not be split itself, but one can always choose t to be split: just replace t by u =
t ◦ s ◦ t; an easy calculation shows that we still have s = s ◦ u ◦ s and in addition u = u ◦ s ◦ u.

Lemma 2.1. Let C be a finite category and X, Y objects in C. Two idempotent endomorphisms
e ∈ EndC(X) and f ∈ EndC(Y ) are isomorphic if and only if eJ f .

Proof. Suppose that e and f are isomorphic. That is, there are morphisms s ∈ f ◦HomC(X,Y )◦e
and t ∈ e ◦ HomC(Y,X) ◦ f such that t ◦ s = e and s ◦ t = f . Thus e = t ◦ f ◦ s, hence
Mor(C)◦e◦Mor(C) ⊆ Mor(C)◦f ◦Mor(C). Exchanging the roles of e and f yields the equality of
these two sets, whence eJ f . Conversely, suppose that Mor(C)◦e◦Mor(C) = Mor(C)◦f ◦Mor(C).
Since e is an idempotent, this equality implies that e = t ◦ s for some s ∈ f ◦ HomC(X,Y ) ◦ e
and some t ∈ e ◦ HomC(Y,X) ◦ f . Similarly, f = s′ ◦ t′ for some s′ ∈ f ◦ HomC(X,Y ) ◦ e and
some t′ ∈ e ◦ HomC(Y,X) ◦ f . Thus t′ ◦ s and t ◦ s′ are both in e ◦ EndC(X) ◦ e and we have
(t ◦ s′) ◦ (t′ ◦ s) = t ◦ (s′ ◦ t′) ◦ s = t ◦ f ◦ s = t ◦ s = e. Thus t ◦ s′ is left inverse to t′ ◦ s in
e ◦EndC(X) ◦ e. Since EndC(X) is finite this implies that t ◦ s′ is also right inverse to t′ ◦ s, thus
t′ ◦ s ◦ t ◦ s′ = e. Setting u = s′ ◦ t′ ◦ s and v = t ◦ s′ ◦ t′, a straightforward verification yields
v ◦ u = e and u ◦ v = f , whence e, f are isomorphic.

Lemma 2.2. Let C be a finite category and let s, t be morphisms in C such that t ◦ s is defined.
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(i) We have sJ (t ◦ s) if and only if sL (t ◦ s).

(ii) We have tJ (t ◦ s) if and only if t R (t ◦ s).

Proof. Suppose that sJ (t◦s). Then s = u◦t◦s◦v for some morphisms u, v. Note that u◦t and
v are endomorphisms of the target and source of s, respectively. Iterating the previous equation
yields s = (u ◦ t)n ◦ s ◦ vn for all positive integers n. Since Mor(C) is finite, there is a positive
integer n such that (u◦ t)n is an idempotent endomorphism. Thus s = (u◦ t)n ◦ (u◦ t)n ◦s◦vn =
(u ◦ t)n ◦ s, which is contained in Mor(C) ◦ t ◦ s, whence sL (t ◦ s). The converse implication in
(i) is obvious. Statement (ii) is proved analogously.

A semigroup satisfying the conclusions of 2.2 is called stable, but we do not use this termi-
nology here in order to avoid confusion with the notion of stable module categories.

Lemma 2.3. Let C be a finite category and let s, t ∈ Mor(C) such that sJ t. There is a
morphism u ∈ Mor(C) such that the composition u◦s is defined and such that we have sL (u◦s)
and (u ◦ s)R t.

Proof. Since sJ t there are morphisms u, v such that t = u◦s◦v. Since sJ t we have sJ (u◦s),
hence sL (u ◦ s) by 2.2. Similarly, we have (u ◦ s)J (u ◦ s ◦ v), hence (u ◦ s)R (u ◦ s ◦ v).

Lemma 2.4. Let C be a small category and let s, t be morphisms in C. Suppose that sR t or
sL t. Then s is split if and only if t is split.

Proof. Suppose that s is split; that is, s = s ◦ r ◦ s for some morphism r. If sL t there are
morphisms u, v such that s = u ◦ t and t = v ◦ s. Then t = v ◦ s = v ◦ s ◦ r ◦ s = t ◦ r ◦ s =
t◦r◦u◦t, and hence t is split. A similar argument shows that if sR t then t is split. Exchanging
the roles of s and t concludes the proof.

Lemma 2.5. Let C be a finite category and let J be a J -equivalence class of morphisms in C.
The following statements are equivalent.

(i) J contains an idempotent endomorphism of some object in C.

(ii) J contains a split morphism in C.

(iii) Every morphism in J is split.

(iv) J ◦ J ∩ J is nonempty.

Proof. The implication (i) ⇒ (ii) is clear since every idempotent is split. In order to show (ii)
⇒ (iii), let s, t in J and assume that s is split. Let u, v ∈ Mor(C) be such that t = u ◦ s ◦ v. By
2.3 we have sL (u◦s)R t and by 2.4 both u◦s and t are split. In order to show the implication
(iii)⇒ (iv) let s ∈ J such that s ◦ t ◦ s = s for some t ∈ Mor(C). Then (s ◦ t)J s hence s ◦ t, s ∈
J , and hence s = s ◦ t ◦ s ∈ J ◦ J ∩ J . For the implication (iv) ⇒ (i) let s, t ∈ J such that s ◦ t
is defined and in J . Then sJ (s ◦ t) and tJ (s ◦ t). By 2.2 we have sR (s ◦ t) and t L (s ◦ t),
hence there are two morphisms u, v ∈ Mor(C) such that s = s ◦ t ◦ u and t = v ◦ s ◦ t. Note that
t ◦ u ∈ J . Then t ◦ u ◦ t ◦ u = (v ◦ s ◦ t) ◦ u ◦ t ◦ u = v ◦ (s ◦ t ◦ u) ◦ t ◦ u = v ◦ s ◦ t ◦ u = t ◦ u.

A J -class J in the morphism set Mor(C) of a finite category C is called split if J satisfies
the equivalent conditions of Lemma 2.5. For e an idempotent endomorphism of an object X in
C we denote as before by Ge the group of invertible elements of the monoid e ◦ EndC(X) ◦ e.
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Lemma 2.6. Let C be a finite category, X an object in C and e an idempotent in EndC(X).
Denote by J the J -class of e in Mor(C). Then e◦EndC(X)◦ e ∩J = Ge and the complement
of Ge in the monoid e ◦ EndC(X) ◦ e is a two-sided ideal.

Proof. Let s ∈ e ◦ EndC(X) ◦ e. Then s = e ◦ s, and hence, by 2.2, we have eJ s if and only if
eR s. Since s = e◦s, the latter is equivalent to e = s◦u for some morphism u in e◦EndC(X)◦e,
which is in turn equivalent to s ∈ Ge as the monoid e◦EndC(X)◦ e is finite. The last statement
is obvious.

The set of idempotents in the morphism set Mor(C) of a small category C is partially ordered
via e ≤ f if e, f are idempotent endomorphisms of the same object in C such that e = e ◦ f =
f ◦ e. The set of J -classes in Mor(C) is partially ordered via J ≤ J ′ if J , J ′ are J -classes such
that for some (hence any) s ∈ J , s′ ∈ J ′ we have Mor(C) ◦ s ◦Mor(C) ⊆ Mor(C) ◦ s′ ◦Mor(C). If
J is the J -class of a morphism s, then the set Mor(C) ◦ s ◦ Mor(C) is the disjoint union of all
J -classes J ′ such that J ′ ≤ J . The map sending an idempotent to its J -class preserves these
partial orders; more precisely:

Lemma 2.7. Let C be a finite category and let J , J ′ be split J -classes in Mor(C).

(i) If e ∈ J and e′ ∈ J ′ are idempotents such that e ≤ e′ then J ≤ J ′.

(ii) If J ≤ J ′ then for any idempotent e′ ∈ J ′ there is an idempotent e ∈ J such that e ≤ e′.

Proof. If e ≤ e′ then e = e ◦ e′, hence e ∈ Mor(C) ◦ e′ ◦ Mor(C) which implies J ≤ J ′, whence
(i). Suppose that J ≤ J ′. Then there are idempotents e ∈ J and e′ ∈ J ′ such that Mor(C) ◦ e ◦
Mor(C) ⊆ Mor(C) ◦ e′ ◦ Mor(C). In particular, e = u ◦ e′ ◦ v for some morphisms u, v. Since e,
e′ are idempotents we may choose u, v such that e ◦ u = u = u ◦ e′ and e′ ◦ v = v = v ◦ e. Then
v ◦ u is defined and v ◦ u ◦ v ◦ u = v ◦ e ◦ u = v ◦ u, hence v ◦ u is an idempotent isomorphic to
e. Moreover, we have e′ ◦ v ◦ u = v ◦ u = v ◦ u ◦ e′, hence v ◦ u ≤ e′, which proves (ii).

3 Proof of Theorem 1.1

Let C be a finite category. For any morphism s in Mor(C) we set

Is = {t ∈ Mor(C) | s /∈ Mor(C) ◦ t ◦ Mor(C)} .

In other words, Is is the union of all J -classes J such that Js 6≤ J , where Js is the J -class
containing s. In particular, Is ∩ Js = ∅. The set Is is a two-sided ideal in Mor(C) and depends
only on the J -class of s. For any kC-module U we denote by AnnC(U) the set of all morphisms
in C which annihilate U . The following Proposition collects the main steps of the proof of
Theorem 1.1.

Proposition 3.1. Let k be a commutative ring and C a finite category. Let S be a simple
kC-module and J a J -class, minimal with respect to JS 6= {0}. The following hold.

(i) J is split.

(ii) J is unique.

(iii) If e ∈ J , then AnnC(S) = Ie.

(iv) If e ∈ J is an idempotent, then e◦EndC(X)◦ e = Ge ∪ (e◦ Ie ◦ e), and this union is disjoint.
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Proof. (i) Let s ∈ J . As mentioned above, the set Mor(C) ◦ s ◦ Mor(C) is the disjoint union of
all J -classes J ′ such that J ′ ≤ J . Since any J -class strictly smaller than J annihilates S,
we have (kJ)S = k(Mor(C) ◦ s ◦ Mor(C))S. This is a nonzero submodule of the simple module
S, hence equal to S. Applying this twice yields S = k(J ◦ J)S; in particular, J ◦ J does not
annihilate S. Since J ◦ J is a subset of Mor(C) ◦ s ◦ Mor(C), it follows that J ◦ J must contain
an element of J since otherwise J ◦ J would annihilate S. Thus, by 2.5, the J -class J is split.

(ii) Let J ′ be another J -class such that J ′S 6= {0}. Then (kJ ′)S = k(J ′ ◦ J)S 6= {0}. All
elements in J ′ ◦J belong to J -classes contained in J . Thus J ′ ◦J ∩J 6= ∅, which forces J ≤ J ′.

(iii) Let s ∈ AnnC(S). Since s annihilates S, every element of Mor(C)◦s◦Mor(C) annihilates
S. Since J does not annihilate S, we have J 6⊆ Mor(C) ◦ s ◦Mor(C) and so s ∈ Ie. Conversely, if
s ∈ Ie then e 6∈ Mor(C) ◦ s ◦ Mor(C). Hence no J -class J ′ in Mor(C) ◦ s ◦ Mor(C) satisfies J ≤
J ′. Since, by (ii), J is the unique minimal J -class which does not annihilate S it follows that
Mor(C) ◦ s ◦ Mor(C) annihilates S, whence s ∈ AnnC(S).

(iv) As before we denote by Js the J -class containing a morphism s. Let s ∈ e◦EndC(X)◦e.
If s ∈ J then s ∈ Ge by 2.6. Suppose s 6∈ J . Then Js < Je = J , hence s annihilates S, by the
minimality of J subject to not annihilating S. It follows that s ∈ AnnC(S) = Ie, where the last
equality uses (iii). Since e is an idempotent, this implies s ∈ e ◦ Ie ◦ e.

Proof of Theorem 1.1. Let S be a simple kC-module. Let e be a minimal idempotent endomor-
phism of an object X in C such that eS 6= {0}. By [10, 6.2], eS is a simple k(e ◦ EndC(X) ◦ e)-
module. By 2.7, the J -class J of e is minimal such that JS 6= {0}. Thus eS is annihilated by
e ◦ Ie ◦ e, and hence, eS remains simple as a kGe-module. Again by [10, 6.2], the module S is,
up to isomorphism, determined by the isomorphism class of the pair (e, eS), and hence the map
sending S to (e, eS) becomes injective on isomorphism classes. It becomes also surjective since
any simple kGe-module T can be viewed as a simple k(e ◦ EndC(X) ◦ e)-module in such a way
that the complement of Ge in e ◦ EndC(X) ◦ e annihilates T .

4 Green relations for extensions of categories

Let C be a finite category and A an abelian group, written multiplicatively. Let α be a 2-cocycle
of C with coefficients in A. That is, α is a map from pairs of composable morphisms in C to
A satisfying the 2-cocycle identity. More precisely, if s, t are morphisms in C such that t ◦ s is
defined, then α(t, s) is an element in A, with the property that if t, s, u are morphisms in C such
that t ◦ s and u ◦ t are defined, then α(u ◦ t, s)α(u, t) = α(u, t ◦ s)α(t, s). The extension category
of C by A associated with α is the category Ĉ with object set Ob(Ĉ) = Ob(C) and morphism set
Mor(Ĉ) = Mor(C)×A, such that the composition in Ĉ is defined by (t, b)◦(s, a) = (t◦s, baα(t, s)),
for any two morphisms s, t in C for which t◦ s is defined and any a , b ∈ A. There is a canonical
functor Ĉ → C which is the identity on objects and which sends a morphism (s, a) in Ĉ to the
morphism s in C. The isomorphism class of the extension Ĉ of C by A depends only on the class
of α in H2(C;A). See [1], or also [23] for an introductory survey on extensions and cohomology
of small categories, as well as further references. We will use in the sequel the elementary fact
that if e, f are idempotent endomorphisms of objects X, Y , respectively, in C, then e, f are
isomorphic if and only if there are morphisms s ∈ HomC(X,Y ) and t ∈ HomC(Y,X) satisfying
e = t◦s and f = s◦ t. Indeed, if there are such morphisms s, t, then the morphisms s′ = f ◦s◦e
and t′ = e ◦ t ◦ f are easily seen to still satisfy t′ ◦ s′ = e and s′ ◦ t′ = f , hence e and f are
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isomorphic. The converse is trivial. The following observation shows that equivalence classes
of Green relations in Ĉ are precisely the inverse images of Green relations in C. We keep the
notation above.

Lemma 4.1. Let s, t be morphisms in C and let a, b ∈ A.

(i) We have sL t if and only if (s, a)L (t, b).

(ii) We have sR t if and only if (s, a)R (t, b).

(iii) We have sJ t if and only if (s, a)J (t, b).

(iv) The morphism s is split if and only if (s, a) is split.

Proof. Suppose that sL t. Then there is a morphism u such that s = u ◦ t. A short calculation
shows that (u, aα(u, t)−1b−1) ◦ (t, b) = (s, a). Exchanging the roles of s and t yields that
(s, a)L (t, b). The converse implication in (i) is trivial. The statements (ii) and (iii) are proved
similarly. For (iv), suppose that s = s◦u◦s for some morphism u in C. Setting b = a−1α(s, u)α(s◦
u, s)−1 one checks that (s, a) = (s, a) ◦ (u, b) ◦ (s, a), hence (s, a) is split. The converse in (iv) is
clear.

Note that 4.1 implies also that the Green relations in Ĉ satisfy the conclusion of 2.2 (that is,
Ĉ is ‘stable’ in the semigroup sense, although Ĉ need no longer be finite because A need not be
finite).

Lemma 4.2. Let X, Y be objects in C, let e ∈ EndC(X) and f ∈ EndC(Y ) be idempotents and
let s ∈ f ◦ HomC(X,Y ) ◦ e. We have α(s, e) = α(e, e) and α(f, s) = α(f, f).

Proof. The 2-cocycle identity applied to s, e, e yields α(s ◦ e, e)α(s, e) = α(s, e ◦ e)α(e, e). Since
s◦e = s and e◦e = e, the first equality follows from cancelling α(s, e) on both sides. The second
equality follows similarly from the 2-cocycle identity applied to f , f , s.

Lemma 4.3. (i) The canonical functor Ĉ → C induces a bijection between the set of idempotents
in Ĉ and the set of idempotents in C. The inverse of this bijection sends an idempotent e in C
to the idempotent (e, α(e, e)−1) in Ĉ.

(ii) For any two idempotents e, f in C we have e ≤ f if and only if (e, α(e, e)−1) ≤ (f, α(f, f)−1).

(iii) For any two idempotents e, f in C we have e ∼= f if and only if (e, α(e, e)−1) ∼= (f, α(f, f)−1).

Proof. Let e, f be idempotent endomorphisms of objects X, Y , respectively, in C. Let a ∈
A. Since (e, a) ◦ (e, a) = (e, a2α(e, e)), the unique idempotent in the inverse image of e in the
morphism set of Ĉ is (e, α(e, e)−1), whence (i). Suppose that e ≤ f ; that is, X = Y and e◦f = e =
f ◦ e. Using the equality α(e, f) = α(f, f) from 4.2 we get that (e, α(e, e)−1) ◦ (f, α(f, f)−1) =
(e, α(e, e)−1). A similar argument yields (f, α(f, f)−1) ◦ (e, α(e, e)−1) = (e, α(e, e)−1), hence
(e, α(e, e)−1) ≤ (f, α(f, f)−1). The converse in (ii) is obvious. Suppose next that e ∼= f .
Let s ∈ f ◦ HomC(X,Y ) ◦ e and t ∈ e ◦ HomC(Y,X) ◦ f such that t ◦ s = e and s ◦ t = f .
Set b = α(s, t)−1α(f, f)−1. Then (s, 1) ◦ (t, b) = (f, bα(s, t)) = (f, α(f, f)−1). The 2-cocycle
identity applied to s, t, s yields α(s, t ◦ s)α(t, s) = α(s ◦ t, s)α(s, t). Since t ◦ s = e we have
α(s, t ◦ s) = α(s, e) = α(e, e), where the last equality uses 4.2. Similary, α(s ◦ t, s) = α(f, f).
Thus α(e, e)α(t, s) = α(f, f)α(s, t). This equality implies that (t, b)◦(s, 1) = (e, α(e, e)−1). This
shows that (e, α(e, e)−1) and (f, α(f, f)−1) are isomorphic. The converse in (iii) is obvious.
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5 Proof of Theorem 1.2

Let C be a finite category, k a commutative ring and α a 2-cocycle of C with coefficients in
k×. Denote by kαC the corresponding twisted category algebra of C over k and by Ĉ the
corresponding extension category of C by k×. The map sending a morphism (s, λ) in Ĉ to λs
induces a surjective algebra homomorphism kĈ → kαC. For any subset M of Mor(C) denote
by kαM the k-submodule spanned by M in kαC. For M , N two subsets of Mor(C) we have
kαM · kαN = kα(M ◦ N). In particular, if M is a 2-sided ideal in Mor(C) then kαM is a
2-sided ideal in the algebra kαC. As before, for any morphism s in C we denote by Is the set
of all morphisms t such that s /∈ Mor(C) ◦ t ◦ Mor(C) and for any kαC-module U we denote by
AnnC(U) the set of all morphisms in C which annihilate U . By the previous remarks, AnnC(U)
is a 2-sided ideal in Mor(C). We keep the notation above. Proposition 3.1 carries over to twisted
category algebras:

Proposition 5.1. Let S be a simple kαC-module and J a J -class, minimal with respect to
JS 6= {0}. The following hold.

(i) J is split.

(ii) J is unique.

(iii) If e ∈ J , then AnnC(S) = Ie.

(iv) If e ∈ J is an idempotent, then e◦EndC(X)◦ e = Ge ∪ (e◦ Ie ◦ e), and this union is disjoint.

Proof. Using the preceding remarks one sees that the proof of 3.1 carries over without any
change. Alternatively, one can prove this by interpreting S as a simple module for the category
algebra kĈ through the canonical homomorphism kĈ → kαC, where Ĉ is the extension of C by
k× corresponding to α. Although Ĉ need not be finite, the conclusions of the results from §2
needed for the proof of 3.1 are easily seen to hold for Ĉ instead of C.

We need to verify that there is a well-defined notion of isomorphism classes of pairs (e, êS)
as in the statement of 1.2. More precisely, we will show in the following two Propositions that
isomorphic idempotents e, f in C give rise to an isomorphism of twisted group algebras kαGe

∼=
kαGf which is uniquely determined up to an inner algebra automorphism.

Proposition 5.2. Let e, f be idempotent endomorphisms of objects X, Y , respectively, in C,
let s ∈ f ◦ HomC(X,Y ) ◦ e and t ∈ e ◦ HomC(Y,X) ◦ f satisfying t ◦ s = e and s ◦ t = f . For
x ∈ Ge set β(x) = α(x, t)α(s, x◦ t)α(e, e)−1α(t, s)−1. The map sending x ∈ Ge to β(x)(s◦x◦ t)
induces a k-algebra isomorphism kαGe

∼= kαGf .

Proof. Since the map sending x ∈ Ge to s ◦ x ◦ t is a group isomorphism Ge
∼= Gf , the map

sending x ∈ Ge to β(x)(s ◦ x ◦ t) induces a k-linear isomorphism kαGe
∼= kαGf . It remains

to show that this map is multiplicative. Let x, y ∈ Ge. The image of the product x · y =
α(x, y)(x ◦ y) is equal to α(x, y)β(x ◦ y)(s ◦ x ◦ y ◦ t). The product of the images of x, y in kαGf

is equal to α(s ◦ x ◦ t, s ◦ y ◦ t)β(x)β(y)(s ◦ x ◦ y ◦ t). Thus we need to show the equality

α(x, y)β(x ◦ y) = α(s ◦ x ◦ t, s ◦ y ◦ t)β(x)β(y)

We consider first the left side of this equation, which is equal to α(x, y)α(x ◦ y, t)α(s, x ◦ y ◦
t)α(e, e)−1α(t, s)−1. The 2-cocycle identity applied to x, y, t in the first two factors of this
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product yields the expression α(y, t)α(x, y ◦ t)α(s, x ◦ y ◦ t)α(e, e)−1α(t, s)−1. The 2-cocycle
identity applied to s, x, y ◦ t in the second and third factor of this product yields the equality

α(x, y)β(x ◦ y) = α(y, t)α(s, x)α(s ◦ x, y ◦ t)α(e, e)−1α(t, s)−1

We need to show that this is equal to α(s◦x◦ t, s◦y ◦ t)β(x)β(y). The 2-cocycle identity applied
to s◦x◦ t, s, y ◦ t yields α(s◦x◦ t, s◦y ◦ t) = α(s◦x, y ◦ t)α(s◦x◦ t, s)α(s, y ◦ t)−1. The 2-cocycle
identity applied to s ◦ x, t, s in the middle term of this expression yields α(s ◦ x ◦ t, s ◦ y ◦ t) =
α(s ◦ x, y ◦ t)α(s ◦ x, t ◦ s)α(t, s)α(s ◦ x, t)−1α(s, y ◦ t)−1. Using t ◦ s = e and α(s ◦ x, e) =
α(e, e) from 4.2 yields α(s ◦ x ◦ t, s ◦ y ◦ t) = α(s ◦ x, y ◦ t)α(e, e)α(t, s)α(s ◦ x, t)−1α(s, y ◦ t)−1.
Multiplying this equation by β(x)β(y) yields α(s ◦ x ◦ t, s ◦ y ◦ t)β(x)β(y) = α(s ◦ x, y ◦ t)α(s ◦
x, t)−1α(x, t)α(s, x ◦ t)α(e, e)−1α(t, s)−1α(y, t). The 2-cocycle identity applied to s, x, t in the
second, third and fourth factor shows that this is indeed equal to α(x, y)β(x◦y) as required.

Lemma 5.3. Let e, f be idempotent endomorphisms of objects X, Y , respectively, in C, let s ∈
f ◦ HomC(X,Y ) ◦ e and t ∈ e ◦ HomC(Y,X) ◦ f satisfying t ◦ s = e and s ◦ t = f . We have
α(t, s)α(e, e) = α(s, t)α(f, f). In particular, if e = f then α(t, s) = α(s, t).

Proof. This follows from 4.2 and the 2-cocycle identity applied to the morphisms t, s and t.

Proposition 5.4. Let e, f be idempotent endomorphisms of objects X, Y , respectively, in C.
Let s, s′ ∈ f ◦HomC(X,Y )◦e and t, t′ ∈ e◦HomC(Y,X)◦f satisfying t◦s = e = t′◦s′ and s◦t =
f = s′ ◦ t′. For x ∈ Ge set β(x) = α(x, t)α(s, x ◦ t)α(e, e)−1α(t, s)−1. For y ∈ Gf set β′(y) =
α(y, s′)α(t′, y◦s′)α(f, f)−1α(s′, t′)−1. The map sending x ∈ Ge to β(x)β′(s◦x◦t)(t′◦s◦x◦t◦s′)
induces an inner automorphism of the k-algebra kαGe.

Proof. We will show that the map sending x ∈ Ge to β(x)β′(s ◦ x ◦ t)(t′ ◦ s ◦ x ◦ t ◦ s′) coincides
with conjugation by a = t′ ◦ s in kαGe. Note that t ◦ s′ is the inverse of t′ ◦ s in the group Ge

but not necessarily in the algebra kαGe. More precisely, since the unit element in kαGe is equal
to α(e, e)−1e, the inverse of a = t′ ◦ s in kαGe is equal to a−1 = α(e, e)−1α(t ◦ s′, t′ ◦ s)−1(t ◦ s′).
We have

a · x · a−1 = α(e, e)−1α(t ◦ s′, t′ ◦ s)−1α(t′ ◦ s, x)α(t′ ◦ s ◦ x, t ◦ s′)(t′ ◦ s ◦ x ◦ t ◦ s′)

Thus we need to show the equality

β(x)β′(s ◦ x ◦ t) = α(e, e)−1α(t ◦ s′, t′ ◦ s)−1α(t′ ◦ s, x)α(t′ ◦ s ◦ x, t ◦ s′)

Bringing all terms with an inverse sign to the other side and cancelling one factor α(e, e) shows
that this equality is equivalent to the equality

α(x, t)α(s, x ◦ t)α(s ◦ x ◦ t, s′)α(t′, s ◦ x ◦ t ◦ s′)α(t′ ◦ s, t ◦ s′) =

α(t, s)α(f, f)α(s′, t′)α(t′ ◦ s, x)α(t′ ◦ s ◦ x, t ◦ s′)

The 2-cocycle identity for s, x ◦ t, s′ applied to the second an third factor on the left side shows
that the left side is equal to

α(x, t)α(x ◦ t, s′)α(s, x ◦ t ◦ s′)α(t′, s ◦ x ◦ t ◦ s′)α(t′ ◦ s, t ◦ s′)
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The 2-cocycle identity for x, t, s′ applied to the first and second factor, and the 2-cocycle identity
for t′, s, x ◦ t ◦ s′ applied to the third and fourth factor of this expression show that the left side
above is equal to

α(t, s′)α(x, t ◦ s′)α(t′, s)α(t′ ◦ s, x ◦ t ◦ s′)α(t′ ◦ s, t ◦ s′)

The 2-cocycle identity for t′, s, t ◦ s′ applied to the third and fifth factor yields the expression

α(t, s′)α(x, t ◦ s′)α(t′, s′)α(s, t ◦ s′)α(t′ ◦ s, x ◦ t ◦ s′)

The 2-cocycle identity for s, t, s′ applied to the first and fourth factor (using s ◦ t = f and
α(f, s′) = α(f, f) from 4.2) yields

α(f, f)α(s, t)α(x, t ◦ s′)α(t′, s′)α(t′ ◦ s, x ◦ t ◦ s′)

The 2-cocycle identity for t◦s′, x, t◦s′ applied to the third and fifth factor yields the expression

α(f, f)α(s, t)α(t′ ◦ s, x)α(t′ ◦ s ◦ x, t ◦ s′)α(t′, s′)

Using 5.3 twice shows that this is equal to the expression on the right side of the above equation.

Proof of Theorem 1.2. The above results in this section imply that the proof of 1.1 carries over
to twisted category algebras. Let S be a simple kαC-module and e a minimal idempotent
endomorphism of an object X in C such that êS 6= {0}, where ê = α(e, e)−1e. By [10, 6.2], êS
is a simple kα(e ◦ EndC ◦ e)-module. By 2.7, the J -class J of e is minimal such that JS 6=
{0}. Thus êS is annihilated by e ◦ Ie ◦ e, and hence, êS remains simple as a kαGe-module. By
5.2 and 5.4, we have a well-defined notion of isomorphism between pairs of the form (e, êS).
Again by [10, 6.2], the module S is, up to isomorphism, determined by the isomorphism class
of the pair (e, êS), and hence the map sending S to (e, êS) becomes injective on isomorphism
classes. It becomes also surjective since, by 5.1, any simple kαGe-module T can be viewed as a
simple kα(e ◦EndC(X) ◦ e)-module in such a way that the complement of Ge in e ◦EndC(X) ◦ e
annihilates T .
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