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FINITE GENERATION OF HOCHSCHILD COHOMOLOGY OF HECKE

ALGEBRAS OF FINITE CLASSICAL TYPE IN CHARACTERISTIC ZERO

MARKUS LINCKELMANN

Abstract. We show that the Hochschild cohomology HH∗(H) of a Hecke algebra H of finite

classical type over a field k of characteristic zero and a non-zero parameter q in k is finitely
generated, unless possibly if q has even order in k× and H is of type B or D.

Mathematics Subject Classification (2000): 20C08, 16E40.

1. Introduction

The Hochschild cohomology of an algebra A over a field k is the graded k-algebra HH∗(A) =
Ext∗A⊗kA0(A,A), where A0 is the opposite algebra of A and where A is viewed as a left A ⊗k

A0-module via multiplication in A. By a result of Gerstenhaber in [16], HH∗(A) is graded
commutative; in particular, HH∗(A) is commutative if char(k) = 2. If char 6= 2, the Krull
dimension of HH∗(A) is, by definition, that of the even part of HH∗(A). For any A-A-bimodule
M , viewed as A⊗kA0-module in the obvious way, the graded k-module Ext∗A⊗kA0(A,M) becomes
a right module over HH∗(A) via the Yondeda product.

Theorem 1.1. Let H be a Hecke algebra of a finite Coxeter group (W,S) over a field k of
characteristic zero with non-zero parameter q in k. Suppose that all irreducible components of
W are of type A, B, D, and suppose in addition that if W involves a component of type B or
D then the order of q in k× is not even. Then, for any finitely generated H-H-bimodule M , the
HH∗(H)-module Ext∗H⊗kH0(H,M) is Noetherian. In particular, HH∗(H) is finitely generated
as a k-algebra.

If q = 1 or if q has infinite order then H ⊗k H0 is semi-simple, in which case HH∗(H) =
HH0(H) is finite-dimensional, and so we may assume that q is a primitve ℓ-th root of unity for
some integer ℓ ≥ 2. We can be more precise regarding the Krull dimension of the Hochschild
cohomology:

Theorem 1.2. Let H be a Hecke algebra of type An−1 or Bn (n ≥ 2), or of type Dn (n ≥ 4)
over a field k of characteristic zero and a parameter q of finite order ℓ ≥ 2 in k×; if H is of
type Bn or Dn suppose in addition that ℓ has odd order. Let m, a be the non-negative integers
satisfying n = ℓm + a and 0 ≤ a ≤ ℓ − 1. The Krull dimension of HH∗(H) is equal to m.

The above results have been motivated by work of Benson, Erdmann and Mikaelian [1],
describing the cohomology H∗(H) = Ext∗H(k, k) for Hecke algebras of type A, B , D with
the same restrictions on the parameter q as in 1.1 above, in terms of stable elements in the
cohomology of a maximal ℓ-parabolic subalgebra. As in [1], we make use of the transfer maps
for Hecke algebras from [6], interpreted as a special case of the transfer maps for symmetric

Date: May 9, 2011.

1



2 MARKUS LINCKELMANN

algebras in [2], [3]. A key result is J. Du’s Theorem 2.7 in [9], which we use to show that the
theory of vertices for modules over Hecke algebras in [9] admits a bimodule version, which then
allows us to play the problem back to maximal ℓ-parabolic subalgebras of H. Since these are
tensor products of Brauer tree algebras and semi-simple algebras, the result follows from well-
known properties of the Hochschild cohomology of self-injective algebras of finite representation
type. We refer to [15, §4.4, §8] for general background material and further references on Hecke
algebras. It would certainly be desirable to describe HH∗(H) more explicitly, possibly using the
stable elements methods in Hochschild cohomology in [20]). The Hochschild cohomology of tame
Hecke algebras is described in [13] and [25]. The main obstacle to a generalisation of the above
results to Hecke algebras of type B and D with even ℓ, Hecke algebras of exceptional types,
Hecke algebras over fields of positive characteristic, or Hecke algebras with unequal parameters,
is that we do not have appropriate versions of [9, Theorem 2.7] in these cases.

2. Traces for symmetric algebras

The trace maps used in the context of Hecke algebras in various sources such as [6], [9], as
well as Higman’s criterion extended to modules over Hecke algebras in [19], can be interpreted
as special cases of the trace maps and Higman’s criterion for symmetric algebras associated
with certain bimodules in [2], [3]. These trace maps are the degree zero components of transfer
maps for the Hochschild cohomology of symmetric algebras in [20]. They are special cases of
transfer maps defined by Chouinard in [5, §2] associated with a functor which has both a left
and a (possibly different) right adjoint. Higman’s criterion in the above mentioned cases arise as
special cases of Chouinard’s proposition [5, 3.2] and lemma [5, 3.3] (we will not need this degree
of generality in the present paper). We review this material in the special case of restrictions
to subalgebras - detailed proofs can be found in Broué [3]. Let k be a commutative ring. We
adopt the usual convention that if A, B are k-algebras, an A-B-bimodule is the same as an
A ⊗k B0-module, where B0 is the algebra opposite to B; equivalently, we always assume that
the left and right k-module structure of an A-B-bimodule coincide. A k-algebra A is called
symmetric if A is isomorphic, as an A-A-bimodule, to its k-dual A∗ = Homk(A, k) and if A is
finitely generated projective as a k-module. The image s of 1A under a bimodule isomorphism
A ∼= A∗ is called a symmetrising form for A; it has the property that s(ab) = s(ba) for all
a, b ∈ A and that the bimodule isomorphism A ∼= A∗ sends a ∈ A to the map sa ∈ A∗ defined
by sa(b) = s(ab) for all a, b ∈ A. Since the automorphism group of A as an A-A-bimodule is
canonically isomorphic to Z(A)×, any other symmetrising form of A is of the form sz for some
z ∈ Z(A)×. Given two symmetric algebras A, B and an A-B-bimodule M which is finitely
generated projective as a left A-module and as a right B-module, the functors M ⊗B − and
M∗ ⊗A − are left and right adjoint to each other. More precisely, any choice of symmetrising
forms s for A and t for B induces adjunction isomorphisms as follows. Composition with s and
t induces B-A-bimodule isomorphisms HomA(M,A) ∼= M∗ ∼= HomB0(M,B); similarly for M∗

instead of M . The counit of M∗ ⊗A − as left adjoint to M ⊗B − is given by the composition
of B-B-bimodule homomorphisms M∗ ⊗A M ∼= HomB0(M,B) ⊗A M → B, where the first
isomorphism is induced by the isomorphism M∗ ∼= HomB0(M,B) and the second map sends
µ ⊗ m to µ(m), where µ ∈ HomB0(M,B) and m ∈ M . The counit of M as left adjoint to
M∗ is obtained similarly, and the units of the two adjunctions are obtained by dualising the
counits, exploiting the symmetry of A, B and the fact that (M ⊗B N)∗ ∼= N∗ ⊗B M∗, where
N is a B-A-bimodule which is finitely generated projective as a left B-module and as a right
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A-module. If A is free as a k-module and X a k-basis of A, then the symmetrising form s on A
determines a dual basis X∨ = {x∨ | x ∈ X} satisfying s(xx∨) = 1 for x ∈ X and s(xy∨) = 0
for x, y ∈ X, x 6= y. Let now A be a symmetric k-algebra with symmetrising form s and let
B be a unitary symmetric subalgebra of A such that A is finitely generated projective as a left
(or equivalently, as a right) B-module and such that the restriction of s to B is a symmetrising
form on B (or equivalently, as a B-B-bimodule, B has a complement in A contained in ker(s)).
(Such a subalgebra is called in [3, 5.1] a parabolic subalgebra of A; it is well-known that finite-
dimensional Hecke algebras are symmetric and that a parabolic subalgebra of a Hecke algebra in
the sense of [15, 4.4.7] is also parabolic in the sense of [3, 5.1], but the converse need not be true.)
Denote by µ : A ⊗B A → A the A-A-bimodule homomorphism induces by multiplication in A.
Dualising yields an A-A-bimodule homomorphism µ∗ : A∗ → (A⊗B A)∗. Denote by τA/B : A →
A ⊗B A the A-A-bimodule homomorphism given by composing the bimodule homomorphisms

A ∼= A∗ → (A ⊗B A)∗ ∼= A∗ ⊗B A∗ ∼= A ⊗B A

The image cA
B = τA/B(1A) in A ⊗B A is called the relative Casimir element. Since τA/B is an

A-A-bimodule homomorphism, we have a · cA
B = cA

B · a for all a ∈ A. Write cA
B =

∑
y∈Y y ⊗ y′

for some finite subset Y of A and elements y′ ∈ A for each y ∈ Y . For an A-A-bimodule M
write MA = {m ∈ M | am = ma (∀a ∈ A)}; similarly for B-B-bimodules. In particular, cA

B

belongs to (A⊗B A)A. Note that an A-A-bimodule homomorphism M → N sends MA to NA,
and hence any A-A-bimodule homomorphism A ⊗B A → M sends cA

B to an element in MA.
There is a trace map

trA
B : MB → MA

sending m ∈ MB to
∑

y∈Y ymy′. This map depends on the choice of s; since s is unique up

to an element in Z(A)×, this is true for trA
B as well. The image of trA

B is a Z(A)-submodule
of MA; in particular, if M = A the image of the trace map trA

B : AB → AA = Z(A) is an
ideal in Z(A). A quick way to see that trA

B defined in this way sends indeed MB to MA and
does not depend on any choice (other than that of the symmetrising form s) is as follows: any
element m ∈ MB determines a unique B-B-bimodule homomorphism B → M , sending 1B

to m. Through a standard adjunction, this corresponds to the A-A-bimodule homomorphism
A ⊗B A → M sending a ⊗ a′ to ama′, where a, a′ ∈ A. Thus the image of the relative Casimir
element cA

B is equal to trA
B(m), hence contained in MA and independent of the choice of the

elements y, y′. In particular, if U , V are A-modules then HomA(U, V ) becomes an A-A-module,
and the map trA

B applied to this bimodule is a map from HomB(U, V ) to HomA(U, V ) (and [1,
Lemma 2.10] is a special case of this observation). We have the following bimodule version of
Higman’s criterion in [3, 6.8]:

Lemma 2.1. Let A be a symmetric k-algebra with symmetrising form s and B a unitary sym-
metric subalgebra of A such that A is finitely generated projective as a left B-module and such
that the restriction to B of s is a symmetrising form of B. Then A is isomorphic to a direct
summand of A⊗B A as an A-A-bimodule if and only if the map trA

B : AB → Z(A) is surjective.
In particular, if trA

B(1A) is invertible in Z(A) then A is isomorphic to a direct summand of
A ⊗B A as an A-A-bimodule.

Proof. By a standard argument for relative projectivity (see e.g. [3, Theorem 6.8]), A is isomor-
phic to a direct summand of A⊗BA if and only if the map A⊗BA → A induced by multiplication
in A splits as an A-A-bimodule homomorphism (because this map represents the counit of the
adjunction between A ⊗B − and the restriction from A to B). Thus the dual τA/B of this map



4 MARKUS LINCKELMANN

is split injective if and only if A is isomorphic to a direct summand of A ⊗B A. Every A-A-
bimodule homomorphism A⊗B A → A is of the form a⊗a 7→ aca′ for some uniquely determined
element c ∈ AB , and precomposing such a homomorphism with τA/B yields an endomorphism

of A sending 1A to trA
B(c). Thus A is isomorphic to a direct summand of A ⊗B A if and only if

there is an element c ∈ AB such that trA
B(c) is invertible in Z(A). Since the image of trA

B is an
ideal in Z(A), this is equivalent to trA

B being surjective. �

If A is free over k and X a k-basis for A with dual basis denoted as above by X∨, the relative
Casimir element cA

k is equal to the sum
∑

x∈X x ⊗ x∨ in A ⊗k A. Slightly more generally we
have the following:

Lemma 2.2. Let A be a k-free symmetric k-algebra with symmetrising form s and let B be a
k-free unitary symmetric subalgebra of A such that A is free as a right B-module and such that
the restriction to B of s is a symmetrising form of B. Let X be a k-basis of A, with dual basis
X∨ = {x∨ | x ∈ X}. Suppose that X contains a basis Y of A as a right B-module such that
for b ∈ B and y, y′ ∈ Y we have s(y′by∨) = s(b) and s(y′by∨) = 0 if y′ 6= y. Then Y ∨ =
{y∨ | y ∈ Y } is a basis of A as a left B-module, we have cA

B =
∑

y∈Y y ⊗ y∨ and trA
B(a) =∑

y∈Y yay∨ for all a ∈ AB.

Proof. Since A is free as right B-module, A∗ is free as left B-module, with basis dual to Y ,
and thus, since A is symmetric, A is free as left B-module with basis Y ∨. The isomorphism
A ∼= A∗ sends 1A to the symmetrising form s. The map µ∗ sends s ∈ A∗ to s ◦ µ, where
µ : A ⊗B A → A is induced by multiplication in A, as above. For any y, z ∈ Y such that y 6= z
we have (s ◦µ)(y ⊗ y∨) = s(yy∨) = 1 and (s ◦µ)(y ⊗ z∨) = s(yz∨) = 0. Note that the canonical
isomorphism (A⊗B A)∗ ∼= A∗⊗B A∗ exchanges the order of the two copies of A. By elementary
linear algebra, the image of s◦µ in A∗⊗B A∗ is equal to

∑
y∈Y sy ⊗sy∨ . Since the isomorphism

A∗ ∼= A sends sy to y, the image in A ⊗B A of the above element yields the formula for cA
B as

claimed. The formula for trA
B follows immediately. �

This lemma shows that the trace maps considered in the context of parabolic subalgebras of
Hecke algebras are indeed special cases of the general construction of trace maps for symmetric
algebras. In particular, as a consequence of the quoted result [9, Theorem 2.7] of Du, 2.1 can
be applied to maximal ℓ-local parabolic subalgebras of Hecke algebras of type A over a field of
characteristic zero.

3. Separably equivalent algebras

Definition 3.1. Two algebras A and B over a commutative ring k are called separably equivalent
if there is an A-B-bimodule M which is finitely generated projective as a left A-module and
as a right B-module and a B-A-bimodule N which is finitely generated projective as a left B-
module and as a right A-module, such that A is isomorphic to a direct summand of M ⊗B N
as an A-A-bimodule and such that B is isomorphic to a direct summand of N ⊗B M as a
B-B-bimodule.

The terminology is motivated by the fact that a finite-dimensional algebra A over a field k is
separable (that is, projective as an A ⊗k A0-module) if and only if it is separably equivalent to
k. Morita equivalent algebras are trivially separably equivalent. If A, B are symmetric algebras
and there is a derived equivalence or a stable equivalence of Morita type between them then A
and B are separably equivalent. A finite group algebra kG over a field of positive characteristic
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p is separably equivalent to the group algebra kP of a Sylow-p-subgroup P of G. Any block
algebra A of kG is separably equivalent to the group algebra kD of a defect group D of A. If A
and B are indecomposable algebras over a complete local commutative Noetherian ring k, then
as a consequence of the Krull-Schmidt theorem, the bimodules M and N in 3.1 can be chosen to
be indecomposable. If A and B are symmetric k-algebras one can always choose M and N such
that N ∼= M∗, simply by replacing M by M ⊕ N∗, but then M is no longer indecomposable.
Here is how one reunites both properties:

Proposition 3.2. Let A, B be indecomposable symmetric separably equivalent algebras over a
complete local commutative Noetherian ring k. There is an indecomposable A-B-bimodule M
which is finitely generated projective as a left A-module and as a right B-module such that A
is isomorphic to a direct summand of M ⊗B M∗ and B is isomorphic to a direct summand of
M∗ ⊗A M .

Proof. This is again a special case of a standard argument for relative projectivity. Since A, B
are indecomposable there are indecomposable bimodules M , N satisfying the properties in the
definition 3.1 of separably equivalent algebras. View M ⊗B − as a functor from Mod(B ⊗k A0)
to Mod(A⊗k A0). This functor has M∗ ⊗A − as a left and right adjoint. Since A is isomorphic
to a direct summand of M ⊗B N , it follows from the implication (ii) ⇒ (v) in [3, Theorem 6.8]
that A is isomorphic to a direct summand of M ⊗B M∗ ⊗A A ∼= M ⊗B M∗. A similar argument
applied to the functor −⊗A M and its left and right adjoint −⊗B M∗ concludes the proof. �

Proposition 3.3. Let A be a symmetric algebra over a commutative ring k with symmetrising
form s and B a unitary symmetric subalgebra of A such that A is finitely generated projective as
a left B-module and such that the restriction to B of s is a symmetrising form of B. If trA

B(1A)
is invertible in Z(A) then A and B are separably equivalent.

Proof. Set M = A, viewed as an A-B-bimodule. Then M∗ ⊗A M ∼= A, viewed as a B-B-
bimodule, and M∗ ⊗B M ∼= A ⊗B A, since A is symmetric. By [3, 5.2], B is isomorphic to a
direct summand of A as a B-B-bimodule, and by 2.1, A is isomorphic to a direct summand of
A ⊗B A. �

Let G be a finite group and B a G-algebra over a commutative ring k. The action of G
on B induces an action on Z(B), hence on Z(B)×. Let α ∈ Z2(G;Z(B)×), a 2-cocycle of G
with coefficients in Z(B)×, with respect to the induced action of G on Z(B)×. That is, α is a
map from G×G to Z(B)× satisfying the 2-cocycle identity α(x, y)α(x, yz) = (xα(y, z))α(x, yz)
for x, y, z in G. Set A = BαG; that is, A is the crossed product equal to the free B-module
⊕x∈GBx̂ with a B-basis {x̂ | x ∈ G} indexed by the elements of G and multiplication induced
by (bx̂)(cŷ) = α(x, y)b(xc)x̂y, for x, y ∈ G and b, c ∈ B. The 2-cocycle identity ensures that this
multiplication is associative. Up to an isomorphism preserving the image of B, the algebra A
depends only on the image of α in H2(G;Z(B)×). If we choose 1̂ = 1B then α is normalised;
that is, α(x, 1) = 1 = α(1, x) for all x ∈ G, and then α(x, x−1) = α(x−1, x) for all x ∈ G. It is
well-known (and easy to check) that if B is symmetric with a G-invariant symmetrising form t
then A is symmetric with symmetrising form s extending t to A by zero on the subspaces Bx̂
for x ∈ G − {1}.

Proposition 3.4. Let G be a finite group, B a symmetric G-algebra over a commutative ring k
having a G-invariant symmetrising form, and let α ∈ Z2(G;Z(B)×). Set A = BαG. If |G| · 1k

is invertible in k then A and B are separably equivalent.
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Proof. Clearly B is a direct summand of A as a B-B-bimodule. The homomorphism of left
A-modules σ from A to A⊗B A sending a ∈ A to a

∑
x∈G ax̂⊗ (x̂)−1 is in fact a homomorphism

of A-A-bimodules. If B is free as a k-module one could show this using 2.2, but one can show
this also in general by a direct calculation. Clearly σ is a homomorphism of A-B-bimodules, and
so we only need to check that for y ∈ G this map commutes with the right action of ŷ. The map
σ sends ŷ to

∑
x∈G ŷx̂ ⊗ (x̂)−1 =

∑
x∈G ŷx̂ ⊗ (ŷx̂)−1ŷ =

∑
x∈G α(y, x)ŷx ⊗ (ŷx)−1α(y, x)−1ŷ =∑

x∈G ŷx⊗(ŷx)−1ŷ. Since x runs over G, so does yx, and so this sum is equal to
∑

x∈G x̂⊗(x̂)−1ŷ
as required. Thus σ is indeed a homomorphism of bimodules from A to A⊗B A. Composed with
the homomorphism A⊗B A → A induced by multiplication in A this yields the endomorphism of
A given by multiplication with |G|. Since the image of |G| is invertible in k, the homomorphism
σ is split injective, and hence A is isomorphic to a direct summand of A ⊗B A as required. �

For the sake of completeness we include the following consequence of a result of Erdmann
and Nakano [12]:

Proposition 3.5. Let A, B be separably equivalent symmetric algebras over a field k. Then A
has finite (resp. wild) representation type if and only if B has finite (resp. wild) representation
type. In particular, if k is algebraically closed then A and B have the same representation type.

Proof. Let M be an A-B-bimodule such that M is finitely generated projective as a left A-
module, as a right B-module and such that A is isomorphic to a direct summand of M ⊗B M∗

and B is isomorphic to a direct summand of M∗⊗A M . Suppose that A has wild representation
type. The functors M ⊗B − and M∗ ⊗A − satisfy the hypotheses (hence the conclusion) of [12,
§2, Proposition], implying that B has wild representation type. Suppose next that A has finite
representation type. Let V be an indecomposable B-module. Then since B is isomorphic to a
direct summand of M∗⊗A M , V is isomorphic to a direct summand of M∗⊗A M ⊗B V . Thus V
is isomorphic to a direct summand of M ⊗A U for some indecomposable A-module U . Since A
has only finitely many isomorphism classes of indecomposable modules, the same is true for B.
Since (by a result of Drozd) a finite-dimensional algebra over an algebraically closed field k has
a uniquely determined representation type which is either wild, tame, or finite, the proposition
follows. �

The stable categories stmod(A), stmod(B) of finitely generated modules of separably equiv-
alent symmetric algebras A, B over a field have the same dimension as triangulated categories,
in the sense of [24]. A similar statement holds for bounded derived categories. This will be
a consequence of an obvious extension of the notion of separable equivalence to triangulated
categories in the next proposition, for which we will need the following notation. Let (C,Σ)
be a triangulated category and let U be an object in C. We denote by 〈U〉1 the full additive
subcategory of C consisting of all objects isomorphic to finite direct sums of summands of the
objects Σn(U), with n ∈ Z. For i ≥ 2 we define inductively 〈U〉i as the full additive subcategory
of C consisting of all objects isomorphic to direct summands of objects Z for which there exists
an exact triangle X → Y → Z → Σ(X) with X in 〈U〉i−1 and Y in 〈U〉1. Following [24, 3.6],
the dimension of C, denoted dim(C), is the smallest positive integer d for which there exists an
object U in C such that 〈U〉d+1 = C, provided there is such an integer. If no such integer exists,
C is said to have infinite dimension.

Proposition 3.6. Let F : C → D and G : D → C be exact functors between triangulated
categories C, D, such that IdC is a direct summand of the functor G ◦ F and IdD is a direct
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summand of the functor F ◦G. Let U be an object in C. Then F sends 〈U〉i to 〈F(U)〉i, for any
positive integer i. Moreover, if d is a positive integer such that 〈U〉d+1 = C then 〈F(U)〉d+1 =
D; in particular, C and D have the same dimension.

Proof. The first statement follows by induction over i from the fact that F is a an exact functor
of triangulated categories. Suppose that 〈U〉d+1 = C and let W be an object in D. Then W
is isomorphic to a direct summand of F(G(W )). Since G(W ) belongs to 〈U〉d+1 it follows that
F(G(W )), and hence W , belongs to 〈F(U)〉d+1, as required. �

Corollary 3.7. Let A, B be separably equivalent symmetric algebras over a field k. Then
dim(stmod(A)) = dim(stmod(B)) and dim(Db(mod(A)) = dim(Db(mod(B)).

Proof. Let M be an A-B-bimodule which is finitely generated projective as a left A-module
and as a right B-module such that A is isomorphic to a direct summand of M ⊗B M∗ and
B is isomorphic to a direct summand of M∗ ⊗A M . The functors M ⊗B − and M∗ ⊗A −
between mod(A) and mod(B) are exact and preserve projectives, hence induce exact functors
of triangulated categories between stmod(A) and stmod(B) satisfying the assumptions of 3.6.
Similarly for the bounded derived categories. Thus 3.7 is a special case of 3.6. �

4. Separability and finite generation of Hochschild cohomology

The purpose of this section is to show that finite generation of Hochschild cohomology carries
through separable equivalences. Let k be a commutative ring. If H∗ is a graded k-algebra,
we denote by Z(H∗) its center in the graded sense; that is, the degree n component of Z(H∗)
consists of all a ∈ Hn satisfying ab = (−1)nmba for all m ≥ 0 and all b ∈ Hm. Thus Z(H∗) is
graded-commutative, hence has a commutative quotient Z(H∗)/I modulo an ideal I generated
by nilpotent elements. If Z(H∗) is left or right Noetherian then I is finitely generated, hence
nilpotent, and the Krull dimension of Z(H∗) is, by definition, that of Z(H∗)/I or, equivalently,
if 1 6= −1 in k, the Krull dimension of Z(H∗) is defined as that of the (necessarily commutative)
even part of Z(H∗).

Theorem 4.1. Let A, B be separably equivalent symmetric k-algebras. Then ExtA⊗kA0(A,U)
is Noetherian as an HH∗(A)-module for any finitely generated A-A-bimodule U if and only if
ExtB⊗kB0(B, V ) is Noetherian as an HH∗(B)-module for any finitely generated B-B-bimodule
V . In that case, the Krull dimensions of HH∗(A) and of HH∗(B) are equal.

Remark 4.2. Let A be a finite-dimensional algebra over an algebraically closed field k. The
property that HH∗(A,U) is Noetherian as an HH∗(A)-module for any finitely generated A⊗k

A0-module U is by [10, 2.4], equivalent to the property that HH∗(A) is Noetherian and that
Ext∗A(V,W ) is Noetherian as an HH∗(A)-module for all finitely generated A-modules V , W . By
[10, Theorem 2.5] this property forces A to be Gorenstein (that is, of finite injective dimension
as a left and right A-module).

The proof of 4.1 uses the following formal observations:

Lemma 4.3. Let A be a k-algebra, let U , V be A-modules and let U ′ be a nonzero direct
summand of U . If Ext∗A(U, V ) is Noetherian as a module over the graded k-algebra Ext∗A(U,U)
then Ext∗A(U ′, V ) is Noetherian as a module over the graded k-algebra Ext∗A(U ′, U ′).

Proof. Let e ∈ EndA(U) = Ext0A(U,U) be an idempotent corresponding to a projection of U
onto U ′. Then Ext∗A(U ′, U ′) ∼= e · Ext∗A(U,U) · e and Ext∗A(U ′,W ) ∼= Ext∗A(U, V ) · e. The result
follows from standard properties of Noetherian modules and rings. �
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Given two symmetric k-algebras A, B and an A-B-bimodule which is finitely generated
projective as a left A-module and as a right B-module, the functor M ⊗B − has as left and
right adjoint the functor M∗ ⊗B −. Applying this to the algebras A ⊗k A0 and B ⊗k B0 yields
immediately the following statement:

Lemma 4.4. Let A, B be symmetric k-algebras. Let M be an A-B-bimodule which is finitely
generated as a left A-module and as a right B-module. The functor M∗ ⊗A − ⊗A M from
Mod(A ⊗k A0) to Mod(B ⊗k B0) is left adjoint to the functor M ⊗B −⊗B M∗.

Lemma 4.5. Let A, B be symmetric k-algebras. Let M be an A-B-bimodule which is finitely
generated as a left A-module and as a right B-module. Let V be a B-B-bimodule. Consider
Ext∗B⊗kB0(M∗ ⊗A M,V ) as a right HH∗(A)-module by resticting its right ExtB⊗kB0(M∗ ⊗A

M,M∗ ⊗A M)-module structure via the algebra homomorphism HH∗(A) → ExtB⊗kB0(M∗ ⊗A

M,M∗ ⊗A M) induced by the functor M∗ ⊗A −⊗A M . The canonical adjunction isomorphism

Ext∗B⊗kB0(M∗ ⊗A M,V ) ∼= Ext∗A⊗kA0(A,M ⊗B V ⊗B M∗)

is an isomorphism of right HH∗(A)-modules.

Proof. The adjunction in 4.4 extends to an adjunction between the bounded derived categories
Db(A ⊗k A0) and Db(B ⊗k B0) of finitely generated A ⊗k A0-modules and B ⊗k B0-modules,
respectively. For any integer n ≥ 0, the elements in HHn(A) are morphisms A → A[n] in
Db(A ⊗k A0). The naturality of the adjunction isomorphism in the first argument yields the
compatibility with the HH∗(A)-module structure as stated. �

Proof of 4.1. By 3.2, there is an A-B-bimodule M which is finitely generated projective as a
left A-module and as a right B-module such that A is isomorphic to a direct summand of
M ⊗B M∗ and such that B is isomorphic to a direct summand of M∗ ⊗A M , as bimodules.
Suppose that ExtA⊗kA0(A,U) is Noetherian as a right HH∗(A)-module for any finitely gener-
ated A-A-bimodule U . Let V be a finitely generated B-B-bimodule. It follows from 4.5 that
ExtB⊗kB0(M∗ ⊗A M,V ) is Noetherian as a right HH∗(A)-module. Thus ExtB⊗kB0(M∗ ⊗A

M,V ) is Noetherian as a right ExtB⊗kB0(M∗ ⊗A M,M∗ ⊗A M)-module. Since B is isomorphic
to a direct summand of M∗ ⊗A M , it follows from 4.3 that ExtB⊗kB0(B, V ) is Noetherian as
a right HH∗(B)-module. Exchanging the roles of A and B shows the equivalence in the state-
ment. Suppose now that the two equivalent statements hold. In order to prove the equality
of the Krull dimensions we consider the adjunction isomorphisms Ext∗A⊗kA0(A,M ⊗B M∗) ∼=
Ext∗A⊗kB0(M,M) ∼= Ext∗B⊗kB0(B,M∗ ⊗A M) (cf. [21]). The functors − ⊗A M and M ⊗B −
induce algebra homomorphisms from HH∗(A) and HH∗(B) to Ext∗A⊗kB0(M,M). These homo-
morphisms are injective since A is a summand of M⊗BM∗ and B is a summand of M∗⊗AM . By
a result of Snashall and Solberg [26, Theorem 1.1], the images of these algebra homomorphisms
are contained in the center Z(Ext∗A⊗kB0(M,M)) as graded algebra, and by the assumptions,
this center is finitely generated as a module over both HH∗(A) and HH∗(B). Thus the Krull
dimensions of HH∗(A) and HH∗(B) are both equal to that of Z(Ext∗A⊗kB0(M,M)). �

If G is a finite group and k a Noetherian ring it is well-known (as a consequence of a theorem
of Evens and Venkov) that Extk(G×G)(kG,U) is Noetherian as an HH∗(kG)-module, and hence
4.1 has the following immediate consequence:

Corollary 4.6. Let G be a finite group, k a commutative Noetherian ring and A a symmetric
k-algebra. If A and kG and separably equivalent then Ext∗A⊗A0(A,U) is Noetherian as a right
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HH∗(A)-module for any finitely generated A-A-bimodule U ; in particular, HH∗(A) is finitely
generated as a k-algebra.

In order to check the equivalent properties in 4.1 it suffices to verify them for simple modules:

Proposition 4.7. Let A be a finite-dimensional algebra over a field k and U a finitely generated
A-module. The following are equivalent:

(i) For any finitely generated A-module V the Ext∗A(U,U)-module Ext∗A(U, V ) is Noetherian.

(ii) For any simple A-module S the Ext∗A(U,U)-module Ext∗A(U, S) is Noetherian.

Proof. Suppose that (ii) holds. We show (i) by induction over the composition length of V . If
V is simple there is nothing to prove. Otherwise there is a short exact sequence of A-modules
of the form

0 // W // V // S // 0

for some simple A-module S. This induces a long exact sequence of the form

· · · // Extn
A(U,W )

αn

// Extn
A(U, V )

βn

// Extn
A(U, S)

δn

// Extn+1
A (U,W ) // · · ·

The direct sum α = (⊕n≥0 αn) is a homomorphism of Ext∗A(U,U)-modules from Ext∗A(U,W ) to
Ext∗A(U, V ), and similarly for the direct sum β = ⊕n≥0β

n. By the assumptions and induction,
Ext∗A(U, S) and Ext∗A(U,W ) are Noetherian as Ext∗A(U,U)-modules. Thus Ext∗A(U, V ) is filtered
by a submodule of Ext∗A(U, S) and a quotient of Ext∗A(U,W ), both of which are again Noetherian,
and hence so is Ext∗A(U, V ). This shows that (ii) implies (i); the converse is trivial. �

In what follows, graded modules and algebras are graded in non-negative degrees. If H∗, K∗

are graded k-modules, we consider H∗ ⊗k K∗ as a graded k-module with degree n component
⊕i+j=n Hi ⊗k Kj . If H∗, K∗ are graded k-algebras, we consider H∗ ⊗k K∗ as graded k-algebra

with the multiplication (a ⊗ b)(c ⊗ d) = (−1)deg(b) deg(c)ac ⊗ bd, for homogeneous elements
a, c ∈ H∗ and b, d ∈ K∗. (This sign convention implies that the tensor product of two graded
commutative k-algebras is again graded commutative.) A graded commutative algebra H∗

over a field k with finite-dimensional degree zero component H0 is finitely generated as a k-
algebra if and only if it is left and right Noetherian. Thus the tensor product of two graded
commutative (left or right) Noetherian algebras H∗, K∗ over a field with finite-dimensional
degree zero components is again (left or right) Noetherian, and the Krull dimension of H∗⊗k K∗

is the sum of the Krull dimensions of H∗ and K∗. Note that the Krull dimension of the direct
product H∗ × K∗ is the maximum of the Krull dimensions of H∗ and K∗. If A, B are two
finite-dimensional algebras over a field k it is well-known that, with the above sign convention,
we have HH∗(A⊗k B) ∼= HH∗(A)⊗k HH∗(B) and hence, if the Krull dimensions of HH∗(A),
HH∗(B) are finite then the Krull dimension of HH∗(A ⊗k B) is finite and equal to the sum of
the Krull dimensions of HH∗(A) and HH∗(B); see for instance the proof of [4, Proposition 7.4].
Similarly, HH∗(A×B) ∼= HH∗(A)×HH∗(B), and hence the Krull dimension of HH∗(A×B)
is the maximum of the Krull dimensions of HH∗(A), HH∗(B) if these are finite. Thus finite
generation of Hochschild cohomology passes on to tensor products and direct products. We
will need a slightly more precise version of this fact for modules over Hochschild cohomology
algebras.

Proposition 4.8. Let A, B be finite-dimensional algebras over a field k having separable semi-
simple quotients. Set C = A⊗k B. Suppose that Ext∗A⊗kA0(A,U) is Noetherian as an HH∗(A)-
module for any finitely generated A-A-bimodule U and that Ext∗B⊗kB0(B, V ) is Noetherian as
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an HH∗(B)-module for any finitely generated B-B-bimodule V . Then Ext∗C⊗kC0(C,W ) is Noe-
therian as an HH∗(C)-module for any finitely generated C-C-bimodule W .

Proof. By 4.7 it suffices to show this if W is a simple C⊗kC0-module. Since A, B have separable
semi-simple quotients, every simple C ⊗k C0-module is of the form S⊗k T for a simple A⊗k A0-
module S and a simple B ⊗k B0-module T . The appropriate versions of Künneth’s theorem
imply that

Ext∗C⊗kC0(C,S ⊗k T ) ∼= Ext∗A⊗kA0(A,S) ⊗k Ext∗B⊗kB0(B, T )

and through the isomorphism HH∗(C) ∼= HH∗(A)⊗k HH∗(B) this is an isomorphism of right
HH∗(C)-modules. Since HH∗(A), HH∗(B) are graded commutative and Noetherian, the same
is true for HH∗(C). Thus finitely generated modules over HH∗(C) are Noetherian. Since the
tensor product of two finitely generated modules over HH∗(A) and HH∗(B), respectively, is
finitely generated as an HH∗(C)-module, hence Noetherian, the result follows. �

Given a finite-dimensional self-injective algebra A over a field k and a finitely generated A-
A-bimodule U we denote as usual by ΩA⊗kA0(U) the kernel of a projective cover PU → U of
U ; this is unique up to unique isomorphism in the stable category of A ⊗k A0-modules. The
following observation is well-known; we include a proof for the convenience of the reader.

Proposition 4.9. Let A be a finite-dimensional self-injective algebra over a field k such that
Ωn

A⊗kA0(A) ∼= A for some positive integer n. Then Ext∗A⊗kA0(A,U) is Noetherian as an

HH∗(A)-module for any finitely generated A-A-bimodule U ; in particular, HH∗(A) is finitely
generated.

Proof. A bimodule isomorphism Ωn
A⊗kA0(A) ∼= A represents an element in HHn(A). Thus

HH∗(A) is generated, as a k-algebra, by a k-basis of ⊕n
i=0 HHi(A), hence HH∗(A) is Noetherian

(as HH∗(A) is graded commutative). Similarly, Ext∗A⊗kA0(A,U) is generated, as an HH∗(A)-

module, by a k-basis of the finite-dimensional space ⊕n
i=0 Exti

A⊗kA0(A,U), hence the HH∗(A)-
module Ext∗A⊗kA0(A,U) is Noetherian. �

Remark 4.10. A finite-dimensional algebra A over a field k satisfying Ωn
A⊗kA0(A) ∼= A for

some positive integer n is automatically self-injective, by a result of Butler (see [17, 1.5] for a
more general result). Self-injective Nakayama algebras have this property by [11, §4.2, Lemma],
and hence so do Brauer tree algebras because a Brauer tree algebra is derived equivalent to a
symmetric Nakayama algebra (cf. [23]).

5. Proof of Theorem 1.1 and Theorem 1.2

Let k be a field of characteristic zero and q a non-zero element in k. Let H = H(W, q) be
a Hecke algebra over k with parameter q of the finite Coxeter group (W,S). That is, H has a
k-basis {Tw | w ∈ W} indexed by the elements of W such that T1 is the unit element of H, with
multiplication given by TwTw′ = Tww′ if w,w′ ∈ W such that the length of ww′ is the sum of
the length of w, w′, and the quadratic relations (Ts)

2 = qT1 + (1 − q)Ts for s ∈ S. If S is a
disjoint union of two non-empty subsets S1, S2 such that any element in S1 commutes with any
element in S2, then the subgroups Wi of W generated by Si, for i = 1, 2, can be identified with
the Coxeter groups (Wi, Si), and W = W1 × W2. If we denote by Hi the corresponding Hecke
algebra of Wi, for i = 1, 2, then H ∼= H1 ⊗k H2. Thus, by 4.8, we may assume that (W,S) is
irreducible, hence of type An−1 or Bn or Dn (n ≥ 4). Assume first that H = H(Sn, q) is of type
An−1. If q = 1 or if q has infinite order in k× then H is semi-simple (by [8, 4.3]), hence separable
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as char(k) = 0. Thus, in that case, H⊗kH
0 is again semi-simple, and hence Ext∗H⊗kH0(H,M) =

Ext0H⊗kH0(H,M) is finite-dimensional for any finitely generated H ⊗k H0-module, so 1.1 and
1.2 hold trivially. Assume that q is a primitive ℓ-th root of unity for some integer ℓ ≥ 2. It
is well-known (cf. [15, Proposition 8.1.1]) that H is symmetric, with a canonical symmetrising
form, such that the restriction of this form to the Hecke algebra H′ of a parabolic subgroup
of Sn is the canonical symmetrising form of H′; in other words, parabolic subalgebras in the
context of Hecke algebras (cf. [15, 4.4.7]) are indeed parabolic subalgebras in the sense of [3,
5.1]. As in [1], denote by B a maximal ℓ-parabolic subalgebra H(λ, q) of H, where λ is the
partition (ℓm, 1a), with n = ℓm + a and 0 ≤ a ≤ ℓ − 1. An immediate consequence of a result
of Du [9, Theorem 2.7] in conjunction with 2.1 is the following observation:

Proposition 5.1. With the notation above, the symmetric algebras H and B are separably
equivalent. More precisely, B is a direct summand of H as a B-B-bimodule, and H is isomorphic
to a direct summand of H⊗B H as an H-H-bimodule.

Proof. The fact that B is a direct summand of H as a B-B-bimodule is a general fact of parabolic
subalgebas (as an immediate consequence of the distinguished double coset representatives [15,
2.1.7], [19, (2.28)]). Du’s result [9, Theorem 2.7] says that trHB (1) is invertible in Z(H). It follows
thus from 2.1 that H is isomorphic to a direct summand of H⊗B H, completing the proof. �

It follows therefore from 4.1 that in order to prove 1.1 and 1.2 for the Hecke algebra H of type
An−1 it suffices to prove the conclusion for the maximal ℓ-parabolic subalgebra B instead. The
algebra B in turn is the tensor product of m copies of the Hecke algebra H(Sℓ, q), and thus, by
4.8, it suffices to prove 1.1 and 1.2 for H(Sℓ, q). This is a product of a Brauer tree algebra and
a semi-simple algebra (cf. [14], [27]), and so both results hold as the Hochschild cohomology of
a Brauer tree algebra is periodic (cf. [11] and 4.9, 4.10). This concludes the proof of 1.1 and 1.2
in the case of type An−1. For the types B and D we proceed as in [1, §6], playing the problem
back to type A. Suppose that H is of type Bn and that either the order of q is infinite or that
its order ℓ is not even. By [7, Theorem 4.17], H is Morita equivalent to the direct product of
tensor products of Hecke algebras of type A of the form

n∏

j=0

H(Sj , q) ⊗k H(Sn−j , q)

where S0 is the trivial group, by convention. As a consequence of 4.8, the theorems 1.1 and 1.2
follow in this case from the fact that they hold in type A. Suppose that H is of type Dn for
some odd integer n ≥ 5. Then by [22, Theorems 3.6, 3.7] (made explicit in [18]), the algebra H
is Morita equivalent to the algebra

n∏

j=(n+1)/2

H(Sj , q) ⊗k H(Sn−j , q)

and so the results in type A imply again both 1.1 and 1.2. Suppose finally that H is of type Dn

for some even integer n ≥ 4. Then, by the main result in [18], H is Morita equivalent to the
algebra

A(n/2) ×

n∏

j=(n+1)/2

H(Sj , q) ⊗k H(Sn−j , q)
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where A(n/2) is a subalgebra of H(Sn, q) generated by H(Sn/2, q)⊗kH(Sn/2, q) and an invertible
element in H(Sn, q) which exchanges the two factors in this tensor product and whose square is
in the center of this subalgebra. In other words, the explicit description of A(n/2) in [18, Remark
2.4] shows that A(n/2) is a crossed product of the form (H(Sn/2, q)⊗kH(Sn/2, q))αC2, where C2

is a cyclic group of order 2 and α a 2-cocycle of C2 with values in Z(H(Sn/2, q)⊗k H(Sn/2, q))
×.

It follows from 3.4 that A(n/2) and H(Sn/2, q)⊗k H(Sn/2, q) are separably equivalent. Thus 1.1
and 1.2 follow yet again from the corresponding results in type A. This concludes the proof of
both theorems.

6. Further remarks

The purpose of this section is to sketch some arguments which may be used to show the finite
generation of HH∗(A) in some situations in which it is not known that Ext∗A⊗kA0(A,U) is Noe-
therian for all finitely generated A-A-bimodules U . Let k be a commutative Noetherian ring and
let A be a k-algebra. An A-module U is called relatively k-injective if every A-homomorphism
from U to another A-module V which is split injective as k-homomorphism, is split injective
as A-homomorphism. An injective module is relatively k-injective, and if k is a field the con-
verse holds as well. Dually, U is relatively k-projective if every A-homomorphism V → U
which is split surjective as k-homomorphism is split surjective as A-homomorphism. If A is
symmetric, the classes of relatively k-projective A-modules and relatively k-injective A-modules
coincide (and the content of this section can be generalised to the class of not nexessarily sym-
metric algebras with this property). Slightly generalising earlier notation, we denote now by
stmod(A) the k-stable category of the category mod(A) of finitely generated A-modules; that
is, stmod(A) has the same objects as mod(A), and for any two finitely generated A-modules U ,
V , the homomorphism space in stmod(A) from U to V is the quotient space HomA(U, V ) =
HomA(U, V )/Hompr

A (U, V ), where Hompr
A (U, V ) is the space of all A-homomorphisms from U to

V which factor through a relatively k-projective A-module. If A is symmetric then the category
stmod(A) is triangulated, with suspension functor Σ sending a finitely generated A-module U
to the cokernel of a k-split embedding U → IU of U into a relatively k-injective A-module
IU . Such a module IU always exists; for instance, one could take IU = Homk(A,U) with the
map U → IU sending u ∈ U to the map a 7→ au. For two k-algebras A, B we denote by
perf(A,B) the category of A-B-bimodules which are finitely generated projective as left A-
modules and as right B-modules. If A and B are finitely generated projective as k-modules
then the category perf(A,B) contains the finitely generated projective A-B-bimodules. If A,
B are symmetric k-algebras then all relatively k-projective modules in perf(A,B) are actually
projective A-B-bimodules and the category stperf(A,B) is a thick subcategory of the k-stable
category stmod(A ⊗k B0); in particular, stperf(A,B) is again triangulated, with suspension
functor, denoted abusively again by Σ, sending a bimodule M in stperf(A,B) to the cokernel
of a relatively k-injective envelope M → IM of M in the category of A-B-bimodules.

Proposition 6.1. Let A, B be symmetric algebras over a commutative Noetherian ring k and
let M be an A-B-bimodule which is finitely generated projective as a left A-module and as a right
B-module. Suppose that B is isomorphic to a direct summand of M∗ ⊗A M as a B-B-bimodule
and that M ⊗B M∗ belongs to the thick subcategory of the k-stable category of A-A-bimodules
generated by A. If HH∗(A) is finitely generated as a k-algebra then so is HH∗(B).

The proof of 6.1 uses the following two lemmas.
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Lemma 6.2. Let A be a symmetric algebra over a commutative Noetherian ring k and U ,
V finitely generated A-modules such that Ext∗A(U, V ) is Noetherian as an Ext∗A(U,U)-module.
Then Ext∗A(U,W ) is Noetherian as an Ext∗A(U,U)-module for any A-module W belonging to the
thick subcategory 〈V 〉 of the stable module category stmod(A) generated by V .

Proof. Clearly Ext∗A(U, V ′) is Noetherian as an Ext∗A(U,U)-module for any direct summand
V ′ of V . We observe next that Ext∗A(U,Σn(V )) is Noetherian as an Ext∗A(U,U)-module, for
any integer n. Indeed, we have Extn

A(U, V ) = HomA(U,Σn(V )) if n is a positive integer and
Extn

A(U, V ) = {0} if n is a negative integer. Therefore, if i and n are integers such that both i
and i − n are positive then Exti

A(U, V ) ∼= Exti−n
A (U,Σn(V )). Thus the kernel and cokernel of

the obvious graded map of degree −n from Ext∗A(U, V ) to Ext∗A(UΣn(U)) extending the above
isomorphisms are finitely generated as k-modules, and hence Ext∗A(U,Σn(V )) is Noetherian.
Let X → Y → Z → Σ(X) be an exact triangle in mod(A). Suppose that Ext∗A(U,X) and
Ext∗A(U, Y ) are Noetherian as Ext∗A(U,U)-modules. The maps in the exact triangle induce a
long exact sequence

· · · // Extn
A(U,X)

αn

// Extn
A(U, Y )

βn

// Extn
A(U,Z)

δn

// Extn+1
A (U,X) // · · ·

The direct sum β = (⊕n≥0 βn) is a homomorphism of Ext∗A(U,U)-modules from Ext∗A(U, Y )
to Ext∗A(U,Z), and similarly for the direct sum δ = ⊕n≥0δ

n. Thus, by the assumptions, both
the image and the kernel of δ are Noetherian Ext∗A(U,U)-modules, hence so is Ext∗A(U,Z). The
result follows. �

Lemma 6.3. Let A be a symmetric algebra over a commutative Noetherian ring k. Denote by
T the thick subcategory of stperf(A,A) generated by the A-A-bimodule A. If M , N belong to T
then so does M ⊗A N .

Proof. Every module in the subcategory T of stperf(A,A) is obtained from applying a finite
number of times the shift functor Σ with respect to A ⊗k A0, taking direct summands, direct
sums, and completing triangles. Thus we may filter T by full additive subcategories Tm, m ≥ 0,
defined inductively as follows: we denote by T0 the full additive subcategory of T consisting
of all finite direct sums of summands of the A-A-bimodules Σn(A), where n ∈ Z. If Tm is
defined for some m ≥ 0, we define Tm+1 as the full additive subcategory of finite direct sums
of summands of bimodules W for which there exists an exact triangle M → N → W → Σ(M)
such that M , N belong to Tm. Clearly every module in T belongs to Tm for some m ≥ 0.
What we will show is that if M belongs to Tt and N belongs to Ts then M ⊗A N belongs to
Tt+s. We do this by induction over t + s. For t + s = 0 this is clear because T0 is closed under
taking tensor products over A; indeed, Σm(A) ⊗A Σn(A) ∼= Σm+n(A) in stperf(A,A) for any
two integers m, n. Suppose t + s ≥ 0. Let again M → N → W → Σ(M) be an exact triangle
in stperf(A,A) such that M , N belong to Tt. Let X be a bimodule in Ts. Then the triangle
M ⊗A X → N ⊗A X → W ⊗A X → Σ(M) ⊗A X is exact, and by the assumptions, M ⊗A X,
N ⊗A X are in Tt+s. Thus W ⊗A X is in Tt+s+1. This holds then clearly for any W in Tt+1 and
any X in Ts. By reversing the roles of t and s one concludes the proof. �

Proof of 6.1. By the assumptions, M⊗BM∗ is in the thick subcategory of stperf(A,A) generated
by A. Thus, by 6.3, M ⊗B M∗ ⊗A M ⊗B M∗ is in the thick subcategory of stperf(A,A). It
follows from 6.2 that ExtA⊗kA0(A,M⊗BM∗⊗AM⊗BM∗) is Noetherian as an HH∗(A)-module.
Therefore, by 4.5, ExtB⊗B0(M∗ ⊗A M,M∗ ⊗A M) is Noetherian as an HH∗(A)-module, hence
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Noetherian itself because any left or right ideal in this algebra is, in particular, an HH∗(A)-
submodule. Since B is isomorphic to a direct summand of M∗ ⊗A M it follows from 4.3 that
HH∗(B) is Noetherian, hence finitely generated as a k-algebra. �
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