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On stable equivalences and blocks with one simple module

Radha Kessar, Markus Linckelmann

Abstract

Using a stable equivalence due to Rouquier, we show that Alperin’s weight conjecture

holds for any p-block of a finite group with defect 2 whose Brauer correspondent has a unique

isomorphism class of simple modules.

1 Introduction

Throughout this paper we denote by O a complete discrete valuation ring with residue field k =
O/J(O) of prime characteristic p and quotient field K of characteristic zero. Given a finite group
G, a block algebra B of OG is an indecomposable direct factor of OG as O-algebra; we denote by
ℓ(B) the number of isomorphism classes of simple k ⊗O B-modules.

Theorem 1.1. Let G be a finite group and B a block algebra of OG having a defect group of order
at most p2. Denote by C the Brauer correspondent of B and suppose that K, k are splitting fields
for B, C. If ℓ(C) = 1 then ℓ(B) = 1, the inertial quotient of B is abelian, the decomposition
matrices of B and C are equal and there is a p-permutation equivalence between B and C inducing
an isotypy between B and C all of whose signs are positive.

Broué’s Abelian Defect Conjecture predicts more precisely that B and C are derived equivalent.
If true, a result of Roggenkamp and Zimmermann would imply that B and C are actually Morita
equivalent. This is known to hold if the defect groups of B are cyclic or Klein four because in
that case the hypothesis of having a unique isomorphism class of simple modules implies that B
and C are nilpotent, hence Morita equivalent to OP . In order to prove Theorem 1.1 we may
therefore assume that p is odd, that a defect group P of B is elementary abelian of rank 2 and
that the inertial quotient of B is non trivial. We will see that this forces the inertial quotient to
be abelian, and hence the Brauer correspondent C is a quantum complete intersection; see [3], [4],
[13]. The main ingredient to prove Theorem 1.1 is Rouquier’s stable equivalence between B and
its Brauer correspondent, obtained from “gluing” together various derived equivalences at local
levels. Since stable equivalences between block algebras preserve the character group L0(B) of
generalised characters which vanish on p-regular elements, isometry arguments turn out to work
particularly well for blocks with one simple module, because in that case the rank of L0(B) is
equal to |IrrK(B)| − 1 and hence this subgroup will contain enough information to reconstruct the
number of irreducible characters of any block stably equivalent to B.

Remark 1.2. By work of Kiyota in [14], if p = 3 then Alperin’s weight conjecture holds for
all blocks with an elementary abelian defect group of order 9 except possibly when the inertial
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quotient is cyclic of order 8 or quaternion of order 8 and the block is non principal (the case of
non principal blocks with semi-dihedral inertial quotient of order 16 is attributed to A. Watanabe
in [14, §0, Table 1]). In particular, with the notation of 1.1, Kiyota’s results imply that if p = 3
then ℓ(B) = 1 if and only if ℓ(C) = 1.

2 Notation and quoted results

We review in this section some classic background material, adapted to symmetric algebras, mostly
for the purpose of introducing our notation. Let A be an O-algebra which is finitely generated
free as O-module. The algebra A is called symmetric if A is isomorphic, as an A-A-bimodule,
to its O-dual A∗ = HomO(A,O). We denote by mod(A) the category of finitely generated left
A-modules, by Db(A) the bounded derived category of mod(A) and by mod(A) the relatively O-
stable category of mod(A) (identifying to zero, in mod(A), all relatively O-projective modules).
We denote by RK(A) and Rk(A) the Grothendieck groups of finitely generated K ⊗O A-modules
and k ⊗O A-modules, respectively. For any finitely generated module U over K ⊗O A or k ⊗O A
we denote by [U ] the image of U in RK(A) or Rk(A), respectively. The group RK(A) is free
of finite rank, having as basis the set of images, denoted IrrK(A), of simple K ⊗O A-modules in
RK(A). We set k(A) = |IrrK(A)|, the number of isomorphism classes of simple K ⊗O A-modules.
Similarly, the group Rk(A) is free of finite rank, having as basis the set of images, denoted Irrk(A),
of simple k ⊗O A-modules in Rk(A). We set ℓ(A) = |Irrk(A)|, the number of isomorphism classes
of simple k⊗OA-modules. We denote by PrO(A) the subgroup of RK(A) generated by the images
of modules of the form K ⊗O U , where U is a finitely generated projective A-module. Denote by
I a set of representative of the conjugacy classes of primitive idempotents in A; then {Ai | i ∈ I}
is a set of representatives of the isomorphism classes of projective indecomposable A-modules and
{Ai/J(A)i | i ∈ I} is a set of isomorphism classes of the simple k⊗O A-modules. For i ∈ I denote
by Φi the image of K ⊗O Ai in RK(A) and by ϕi the image of Ai/J(A)i in Rk(A). The set

IPrO(A) = {Φi | i ∈ I}

generates PrO(A) and we have Irrk(A) = {ϕi | i ∈ I}. Similarly,we denote by Prk(A) the subgroup
of Rk(A) generated by the images of modules of the form k ⊗O U , where U is a finitely generated
projective A-module; equivalently, Prk(A) is generated by the set {[k ⊗O Ai] | i ∈ I}. Assume in
addition that K ⊗O A is split semi-simple. We define a bilinear form

< , >A : RK(A) ×RK(A) −→ Z

on RK(A) by setting < [U ], [V ] >A= dimK(HomK⊗OA(U, V )) for any two finitely generated K⊗O

A-modules U , V and extending this to RK(A) in the obvious way. SinceK⊗OA is split semi-simple,
this form is symmetric, the set IrrK(A) is an orthonormal basis of RK(A), every finitely-generated
K ⊗O A-module is a finite direct sum of simple K ⊗O A-modules and any simple K ⊗O A-module
X is isomorphic to a direct summand of K ⊗O A. Intersecting a direct summand X of K ⊗O A
with the image 1K ⊗ A of A in K ⊗O A yields an O-free A-module Y satisfying K ⊗O Y ∼= X.
Thus, for any finitely generated K ⊗O A-module X there is an O-free A-module Y satisfying
K ⊗O Y ∼= X. Moreover, if Y ′ is another O-free A-module satisfying K ⊗O Y ′ ∼= X then k ⊗ Y
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and k ⊗ Y ′ have identical composition factors (with multiplicities) because the multiplicity dX
S of

a simple k ⊗O A-module S in a composition series of k ⊗O Y is equal to

dimk(HomA(Ai, k⊗O Y )) = rankO(HomA(Ai, Y )) = dimK(HomK⊗OA(K⊗OAi,X)) = dimK(iX)

where i is a primitive idempotent in A satisfying Ai/J(A)i ∼= S. We denote by

dA : RK(A) −→ Rk(A)

the decomposition map sending [X] to [k ⊗O Y ], where X is a finitely-generated K ⊗O A-module
and Y a finitely generated O-free A-module Y satisfying K ⊗O Y ∼= X. By the above remarks, for
χ ∈ IrrK(A) and i ∈ I there are unique integers dχ

i such that

dA(χ) =
∑

i∈I

dχ
i ϕi

and we have dχ
i = dimK(iX), where X is a simple K⊗OA-module such that χ = [X]. Again since

K ⊗O A is split, dχ
i is also the multiplicity of X in a decomposition of K ⊗O Ai, hence

Φi =
∑

χ∈IrrK(A)

dχ
i χ

The matrix D = (dχ
i ), with χ ∈ IrrK(A) and i ∈ I, is the decomposition matrix of A. The matrix

C = (dΦi

Sj
), with i, j ∈ I, is the Cartan matrix, denoted C, of A. The above considerations imply

the well-known fact C = Dt ·D. We denote by L0(A) the subgroup consisting of all Y ∈ RK(A)
such that < X,Y >A= 0 for all X ∈ PrO(A).

Lemma 2.1. Let A be an O-algebra which is finitely generated free as O-module such that K⊗OA
is split semi-simple. We have L0(A) = ker(dA). In addition, if the Cartan matrix C of k ⊗O A
is non singular then PrO(A) ∩ L0(A) = {0}, the decomposition map induces an isomorphism
PrO(A) ∼= Prk(A), and Rk(A)/Prk(A) is a finite abelian group of order |det(C)|.

Proof. Any element η in RK(A) can be written in the form [K ⊗O Y1] − [K ⊗O Y2] for some
finitely generated O-free A-modules Y1 and Y2. Since PrO(A) is generated by the images Φi of the
modules K⊗OAi, with i running over a set of representative I of the conjugacy classes of primitive
idempotents, we get that η ∈ L0(A) if and only if < Φi, η >A= 0 for all i ∈ I. This is equivalent
to rankO(iY1) = rankO(iY2), hence to dimk(k ⊗O iY1) = dimk(k ⊗O iY2) for all i ∈ I. This, in
turn, is just a reformulation of η ∈ ker(dA). If the Cartan matrix of k ⊗O A is non singular then
PrO(A) ∩ ker(dA) = {0}, thus dA induces an isomorphism PrO(A) ∼= Prk(A). The last statement
is an elementary fact.

A fundamental result of Brauer states that for group algebras, and hence block algebras, the
decomposition map is surjective. One of the numerous applications of this fact is Brauer’s reci-
procity, and this can be formulated for more general O-algebras. Let A be an O-free O-algebra of
finite rank over O, such that K ⊗O A is split semi-simple and such that k ⊗O A is split. Suppose
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that the Cartan matrix of A is non singular and that the decompostion map dA : RK(A) → Rk(A)
is surjective. The scalar product < , >A restricts to a bilinear form, still denoted

< , >A: PrO(A) ×RK(A) −→ Z

This bilinear form vanishes on PrO(A) × L0(A), hence induces a bilinear form

< , >′
A: PrO(A) ×Rk(A) −→ Z

Note that PrO(A) ∼= Prk(A) since the Cartan matrix of A is assumed to be non singular, so < , >′
A

can also be viewed as bilinear form from Prk(A) × Rk(A) to Z. If need arises we use the same
notation < , >′

A for the Q-bilinear form from Q ⊗Z PrO(A) × Q ⊗Z Rk(A) to Q obtained via
extension of coefficients. The following is Brauer’s reciprocity:

Proposition 2.2. Let A be an O-free O-algebra of finite rank over O such that K ⊗O A is split
semi-simple and such that k⊗OA is split. Suppose that the Cartan matrix of A is non singular, that
the decomposition map dA : RK(A) → Rk(A) is surjective, and that k⊗OA has no projective simple
module. Let I be a system of representatives of the conjugacy classes of primitive idempotents. For
any i ∈ I denote by Φi the image in PrO(A) of K ⊗O Ai and by ϕi the image of Ai/J(A)i in
Rk(A).

(i) We have < Φi, ϕj >
′
A= δi,j for any i, j ∈ I.

(ii) We have L0(A)⊥ = PrO(A).

Proof. Since dA is surjective, for any i ∈ I and any χ ∈ IrrK(A) there are integers mχ
i satisfying

ϕi =
∑

χ∈IrrK(A)

mχ
i · dA(χ) =

∑

j∈I

∑

χ∈IrrK(A)

mχ
i d

χ
j ϕj

which implies that
∑

χ∈IrrK(A) mχ
i d

χ
j = δi,j for all i, j ∈ I. We also have Φi =

∑
χ∈IrrK(A) dχ

i χ
and hence

< Φi, ϕj >
′
A=< Φi,

∑

χ∈IrrK(A)

mχ
j χ >A=

∑

χ∈IrrK(A)

dχ
i m

χ
j = δi,j

proving (i). The hypotheses imply that extending coefficients yields

Q ⊗Z RK(A) = (Q ⊗Z L
0(A)) ⊕ (Q ⊗Z PrO(A))

Let θ ∈ L0(A)⊥. Then, in Q ⊗Z RK(A), we have 1Q ⊗ θ =
∑

i∈I qi ⊗ Φi for some qi ∈ Q. For any
i ∈ I we have

qi =< θ, ϕi >
′
A=

∑

χ∈IrrK(A)

mχ
i < θ, χ >

which is an integer as θ ∈ RK(A). This shows (ii).

If A is a block algebra of a group algebra OG for some finite group G then by results of Brauer,
A satisfies the hypotheses of the above Proposition. In addition, if A has a non-trivial defect
group, then for any χ ∈ IrrK(A) there is λ ∈ L0(A) such that < λ,χ >A 6= 0. Indeed, if not then
χ ∈ L0(A)⊥ = PrO(A), but then χ would correspond to an irreducible character which vanishes on
all p-singular elements, hence which belongs to a block of defect zero. The following observation
is useful for explicit calculations of determinants of Cartan matrices:

4



Proposition 2.3. Let G be a finite group and B a block algebra of OG and denote by CB the
Cartan matrix of k ⊗O B. Let {ψs | 1 ≤ s ≤ r} be a basis of the abelian group L0(B) and denote
by F the matrix F = (< ψs, ψt >)1≤s,t≤r. We have det(F ) = det(CB).

Proof. Since the decomposition map dB : RK(B) → Rk(B) is surjective, with kernel L0(B) and
since PrO(B) ∼= Prk(B), the map dA induces an isomorphism of abelian groups

RK(B)/(L0(B) ⊕ PrO(B)) ∼= Rk(B)/Prk(B)

which is a finite abelian group of order |det(CB)|. Denote by {Φi | 1 ≤ i ≤ ℓ(B)} the canonical
basis of PrO(B) of the images of the projective indecomposable B-modules in some order. The
union {ψs | 1 ≤ s ≤ r}∪{Φi | 1 ≤ i ≤ ℓ(B)} is a basis of the subgroup L0(B)⊕PrO(B) of RK(B).
Writing this basis in terms of the canonical basis IrrK(B) of RK(B) yields a square matrix of the
form (E|D), where D is the decomposition matrix of B. The absolute value of the determinant of
this matrix is the order of the group RK(B)/(L0(B) ⊕ PrO(B)), hence equal to |det(CB)|. Any
column of E is perpendicular to any column of D, because L0(B) and PrO(B) are orthogonal
subgroups. Thus the product (E|D)t · (E|D) is a block diagonal matrix whose blocks are the
matrices Et ·E = F and Dt ·D = CB . This implies that det(CB)2 = det(E|D)2 = det(F ) det(CB),
whence the result.

The following observation is a useful tool to compute L0(B) for block algebras B with normal
defect:

Lemma 2.4. Let P be a finite p-group, E a p′-subgroup of Aut(P ) and α ∈ H2(E;O×). Set
A = Oα(P ⋊ E). Label the set IrrK(A) = {χi | 1 ≤ i ≤ k(A)} in such a way that the subset
IrrK(A|P ) = {χi | 1 ≤ i ≤ ℓ(A)} consists of all irreducible characters with P in their kernel. For
ℓ(A) + 1 ≤ j ≤ k(A) and 1 ≤ i ≤ ℓ(A) denote by ai,j the unique integers such that ResE(χj) =∑ℓ(A)

i=1 ai,jResE(χi), where ResE(χi) is the restriction to OαE of χi. Then the set

A = {χj −

ℓ(A)∑

i=1

ai,jχi | ℓ(A) + 1 ≤ j ≤ k(A)}

is a basis of the free abelian group L0(A).

Proof. Since E is a p′-group, every χi lifts a simple kαE-module Si, for 1 ≤ i ≤ ℓ(A), and hence
the numbers ai,j are the decomposition numbers corresponding to the characters χj and simple
module Si. Thus the set of characters of the projective indecomposable A-modules is

IPrO(A) = {χi +

k(A)∑

j=ℓ(A)+1

ai,jχj | 1 ≤ i ≤ ℓ(A)} .

A trivial verification shows that the elements in A are perpendicular to this set, hence belong to
L0(A). Since each element in A has one irreducible character appearing with multiplicity 1, the
set A is a basis of L0(A).
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3 On stable equivalences and isometries

It is a well-known fact that a stable equivalence between two block algebras induces an isometry
on the groups of generalised characters which are orthogonal to projective characters. Extending,
if possible, this isometry to an isometry between the character groups is one of the standard
strategies in character theory. We review this briefly and prove that an isometry obtained in this
way is always perfect in the sense of Broué [6]. Let A, B be O-algebras which are finitely generated
free as O-modules such that K ⊗O A, K ⊗O B are split semisimple. Then any B-A-bimodule M
which is finitely generated projective as right A-module induces group homomorphisms

ΦM : RK(A) −→ RK(B)

ϕM : Rk(A) −→ Rk(B)

satisfying ΦM ([K ⊗O U ]) = [K ⊗O M ⊗A U ] and ϕM ([k ⊗O U ]) = [k ⊗O M ⊗A U ] for any finitely
generated O-free A-module U . Moreover, we have dB ◦ΦM = ϕM ◦dA. If both A, B are symmetric
and M is a B-A-bimodule which is finitely generated projective as left B-module and as right A-
module then the functors M ⊗A − and M∗ ⊗B − between the categories mod(A) and mod(B)
of finitely generated modules over A and B, respectively, are both left and right adjoint to each
other. In that situation we say that M induces a stable equivalence of Morita type between A
and B if M ⊗A M∗ ∼= B ⊕W for some projective B-B-bimodule W and M∗ ⊗B M ∼= A ⊕ V for
some projective A-A-bimodule V . The functors M ⊗A− and M∗⊗B − induce inverse equivalences
between the relatively O-stable categories mod(A) and mod(B).

Proposition 3.1. Let A, B be symmetric O-algebras such that K ⊗O A and K ⊗O B are split
semi-simple and such that the Cartan matrices of k⊗O A and k⊗O B are non singular. Let M be
a B-A-bimodule which is finitely generated projective as a left B-module and as a right A-module.
Suppose that M induces a stable equivalence of Morita type between A and B.

(i) ΦM and ΦM∗ induce inverse isomorphisms RK(A)/PrO(A) ∼= RK(B)/PrO(B).

(ii) ϕM and ϕM∗ induce inverse isomorphisms Rk(A)/Prk(A) ∼= Rk(B)/Prk(B); in particular,
|det(B)| = |det(A)|.

(iii) ΦM and ΦM∗ induce inverse isometries L0(A) ∼= L0(B).

Proof. Since the Cartan matrix of k ⊗O A is non singular we have Pr(A) ∩ L0(A) = {0}, by
Lemma 2.1; similarly for B. Note that ΦM sends PrO(A) to PrO(B) and L0(A) = ker(dA) to
L0(B) = ker(dB), thus induces a group homomorphisms RK(A)/PrO(A) → RK(B)/PrO(B) and
Rk(A)/Prk(A) → Rk(B)/Prk(B). The map ΦM∗ ◦ ΦM is the map induced by tensoring with the
bimodule M∗ ⊗B M ∼= A ⊕W , where W is a projective A-A-bimodule. Thus ΦW maps RK(A)
to PrO(A), and hence for any χ ∈ RK(A) we have ΦM∗(ΦM (χ)) = χ + ζ for some ζ ∈ PrO(A).
Since ΦM∗ ◦ΦM maps L0(A) to itself and since Pr(A)∩L0(A) = {0} this implies that if χ ∈ L0(A)
then ζ = 0. Thus ΦM and ΦM∗ induce inverse isomorphisms RK(A)/PrO(A) ∼= RK(B)/PrO(B),
Rk(A)/Prk(A) ∼= Rk(B)/Prk(B) and L0(A) ∼= L0(B). Since the functors M ⊗A − and M∗ ⊗B −
are adjoint we get in particular for χ, χ′ ∈ L0(A) that

< ΦM (χ),ΦM (χ′) >B=< χ,ΦM∗(ΦM (χ′)) >A=< χ,χ′ >A

which shows that the isomorphisms between L0(A) and L0(B) are isometries.
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The surjectivity of the decomposition map is invariant under stable equivalences of Morita type:

Proposition 3.2. Let A, B be symmetric O-algebras such that K ⊗O A, K ⊗O B are split semi-
simple and such that k⊗OA, k⊗OB are split. Suppose there is a stable equivalence of Morita type
between A and B. Then the decomposition map dA : RK(A) → Rk(A) is surjective if and only if
the decomposition map dB : RK(B) → Rk(B) is surjective.

Proof. Let M be a B-A-bimodule which is finitely generated projective as left B-module and as
right A-module and which induces a stable equivalence of Morita type between A and B. Suppose
that dA is surjective. Then the map d̄A : RK(A)/PrO(A) → Rk(A)/Prk(A) induced by dA is
surejective. Thus, using the fact that dA and dB commute with the maps ΦM and ϕM as described
above, the map d̄B : RK(B)/PrO(B) → Rk(B)/Prk(B) induced by dB is surjective. Since Im(dB)
contains Prk(B) = dB(PrO(B)) it follows that dB is surjective.

Let A, B be block algebras of OG, OH, respectively, where G, H are finite groups. Assume
that K, k are splitting fields for G and H. We show next that if an isometry L0(A) ∼= L0(B)
induced by a stable equivalence of Morita type extends to an isometry RK(A) ∼= RK(B), then this
is a perfect isometry. We use the following notation. If M is a B-A-bimodule which is finitely
generated projective as left and right module, then in particular, M is O-free of finite rank and
hence determines an element χM in RK(B⊗OA

0). We can also regard χM as the character of M as
O(H×G)-module, and then χM is perfect by a result of Broué in [6]; that is, for any (y, x) ∈ H×G
the character value χM (y, x) is divisible, in O, by the orders of CH(y) and CG(x), and χM (x, y) = 0
if exactly one of x, y is p-regular. Any simple K ⊗O A-module X and simple K ⊗O B-module
Y determines a simple K ⊗O (B ⊗O A0)-module Y ⊗K X∗, where X∗ = HomK(X,K), and if χ
is the image of X in RK(A) and η the image of Y in RK(B) we denote by η · χ∗ the image in
RK(B ⊗O A0) of Y ⊗K X∗. If Φ : RK(A) ∼= RK(B) is an isometry, then for any χ ∈ IrrK(A) we
have Φ(χ) = δχηχ for some δχ ∈ {±1} and some ηχ ∈ IrrK(B). Using the above notation we can
consider Φ as an element in RK(B ⊗O A0), denoted χΦ, by setting

χΦ =
∑

χ∈IrrK(A)

Φ(χ) · χ∗

Following Broué [6], the isometry Φ is called perfect if χΦ is perfect when viewed as character of
H ×G. One of the main features of a perfect isometry between the two blocks A and B is that it
induces an isomorphism of the centers Z(A) ∼= Z(B); see [6] for more details.

Proposition 3.3. Let G, H be finite groups, A a block algebra of OG and B a block algebra of
OH. Suppose that K, k are splitting fields for G and H. Let M be a B-A-bimodule which is
finitely generated projective as left B-module and as right A-module such that M induces a stable
equivalence of Morita type between A and B. Assume that the isometry L0(A) ∼= L0(B) induced by
ΦM extends to an isometry Φ : RK(A) ∼= RK(B). Then χΦ − χM ∈ PrO(A⊗O B0); in particular,
Φ is a perfect isometry.

Proof. For x ∈ G denote by c(x) the conjugacy class of x in G and by τx the restriction to A of
the O-linear map OG → O sending x′ ∈ c(x) to 1 and every other group element to 0. If x is
p-singular then τx ∈ K ⊗Z L

0(A), and if x runs over the p-singular elements of G then τx runs
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over a spanning set of the K-space K ⊗Z L
0(A) of K-valued central functions on K ⊗O A which

are orthogonal to PrO(A). Extend Φ, ΦM in the obvious way to K ⊗Z RK(A). Since Φ and ΦM

coincide on L0(A) we have ΦM (τx) = Φ(τx). Since ΦM is induced by tensoring with M we also
have

ΦM (τx)(y) =
1

|G|

∑

s∈G

χM (y, s)τx(s) =
|c(x)|

|G|
χM (y, x)

and a similar reasoning yields

Φ(τx)(y) =
|c(x)|

|G|
χΦ(y, x)

This shows that χΦ(y, x) = χM (y, x) for any p-singular x ∈ G and any y ∈ H. Exchanging the
roles of A, B shows that also χΦ(y, x) = χM (y, x) for any p-singular y ∈ H and any x ∈ G. Thus
χΦ −χM vanishes outside the p-regular elements of H ×G, hence belongs to PrO(A⊗OB

0). Since
χM is perfect by the assumptions on M this implies that χΦ is perfect.

In what follows, A, B are symmetric O-algebras such that K ⊗O A, K ⊗O B are split semi-
simple. Given a B-A-bimodule M which is finitely generated projective as right A-module, the
group homomorphism ΦM : RK(A) → RK(B) induced by the functor M⊗A− depends only on the
image [K⊗OM ] ofM in RK(B⊗OA

op) because we have an obvious isomorphismK⊗O(M⊗AU) ∼=
(K ⊗O M) ⊗(K⊗OA) (K ⊗O U) for any finitely generated O-free A-module U . Rouquier’s stable
equivalence for blocks of defect 2 is in fact induced by a complex rather than a bimodule; we
describe briefly how these are linked (what follows are well-known formalities, included for the
convenience of the reader). A bounded complex X of B-A-bimodules is said to induce a stable
equivalence, if the components of X are finitely generated projective as left B-modules, right
A-modules, and if there are isomorphisms of complexes of bimodules X ⊗A X∗ ∼= B ⊕ Z and
X∗ ⊗B X ∼= A ⊕ Y with Y and Z homotopy equivalent to bounded complexes of projective B-
B-bimodules and A-A-bimodules, respectively. By a result of Rickard in [20], there is a canonical
functor Db(B⊗OA

op) → mod(B⊗OA
op). The following well-known lemma shows that if M is the

image in mod(B ⊗O Aop) of a complex X inducing a stable equivalence, then M induces a stable
equivalence of Morita type between A and B.

Lemma 3.4. Let A, B be symmetric O-algebras and X a bounded complex of B-A-bimodules in-
ducing a stable equivalence. Then the image M of X in mod(B⊗OA

op) induces a stable equivalence
of Morita type.

Proof. A formal verification shows that the image of X∗ in mod(A ⊗O Bop) is isomorphic to M∗

and that the image of X⊗AX
∗ in mod(B⊗OB

op) is isomorphic to M⊗AM
∗. By the assumptions

on X, the image of X⊗AX
∗ in mod(B⊗OB

op) is isomorphic to B. Similary, the image of X∗⊗BX
in mod(A⊗O Aop) is isomorphic to A, whence the result.

The purpose of the next proposition is to show that if X is a splendid complex inducing a stable
equivalence between block source algebras A, B and if the isometry L0(A) ∼= L0(B) induced by the
image M of X in mod(B⊗OA

op) extends to an isometry RK(A) ∼= RK(B), then X can be modified
by a projective B-A-bimodule in such a way that the resulting image in the Grothendieck group of
B-A-bimodules is a p-permutation equivalence - and hence Φ is in fact part of an isotypy. In order
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to state this properly, we use the following notation. For U a bounded complex of finitely generated
O-free A-modules set [K⊗O U ] =

∑
i∈Z(−1)i[K⊗O Ui] ∈ RK(A), where Ui is the component of U

in degree i for i ∈ Z. If U , U ′ are quasi-isomorphic bounded complexes of finitely generated O-free
A-modules then K⊗OU , K⊗OU

′ are homotopy equivalent complexes of K⊗OA-modules (because
both are split and quasi-isomorphic asK⊗OA is split semi-simple and the functorK⊗O− is exact);
in particular, [K⊗OU ] = [K⊗OU

′]. ForX a bounded complex of B-A-bimodules which are finitely
generated projective as right A-modules, the functor X ⊗A − induces a group homomorphism
ΦX : RK(A) → RK(B) by setting ΦX([K ⊗O U ]) = [K ⊗O (X ⊗A U)]; one checks easily that
ΦX =

∑
i∈Z (−1)i ΦXi

, where Xi is the component of X in degree i. By the above remarks the
map ΦX depends only on the image [K ⊗O X] of X in RK(B ⊗O Aop), and hence if X → X ′ is a
quasi-isomorphism of bounded complexes of B-A-bimodules which are finitely generated projective
as right A-modules then ΦX = ΦX′ . Furthermore, if Y is a bounded complex of A-B-bimodules
which are finitely generated projective as right B-modules then ΦY ◦ ΦX = ΦY ⊗BX . If A, B
are block source algebras with a common defect group P , a complex of B-A-modules X is called
splendid if its components are finite direct sums of summands of the B-A-bimodules B⊗OQA, with
Q running over the subgroups of P . A p-permutation equivalence between A and B is essentially
a splendid generalised B-A-bimodule inducing an isomorphism RK(A) ∼= RK(B); this concept is
due to Boltje and Xu [5]. We refer to [16] for more details regarding the terminology involving
splendid complexes and p-permutation equivalences between source algebras.

Proposition 3.5. Let A, B be block source algebras with a common defect group such that K⊗OA,
K⊗OB are split semi-simple and such that k⊗OA, k⊗OB are split. Let X be a bounded complex
of B-A-bimodules inducing a stable equivalence, and let M be a B-A-bimodule such that M is
isomorphic, in mod(B ⊗O Aop), to the canonical image of X under Rickard’s functor Db(B ⊗O

Aop) → mod(B ⊗O Aop). If the isometry L0(A) ∼= L0(B) induced by M extends to an isometry
Φ : RK(A) ∼= RK(B) then there is a split bounded complex of projective B-A-bimodules W such
that Φ = ΦX⊕W and Φ−1 = Φ(X⊕W )∗ . If moreover X is splendid then the image of X ⊕W in the
Grothendieck group of B-A-bimodules is a p-permutation equivalence between A and B.

Proof. By construction of M , the characters [K ⊗O X] and [K ⊗O M ] differ by the character of
a generalised projective B ⊗O A-module, and the character [K ⊗O M ] differs from the character
determined by Φ by the character of a generalised projective B⊗OA-module. Thus there is a split
bounded complex of projective B-A-bimodules W such that [K ⊗O (X ⊕W )] is the character of
Φ, hence Φ = ΦX⊕W . Since tensoring by the dual of X⊕W is left and right adjoint to the functor
given by tensoring with X ⊕W , the statement Φ−1 = Φ(X⊕W )∗ follows immediately. Thus the
composition of the maps ΦX⊕W and Φ(X⊕W )∗ is the identity on RK(B), hence

[K ⊗O ((X ⊕W ) ⊗A (X ⊕W )∗)] = [K ⊗O B]

Since also
(X ⊕W ) ⊗A (X ⊕W )∗ ≃ B ⊕ Z ′

for some bounded complex Z ′ of projective B-B-bimodules this forces that [K ⊗O Z ′] = 0. But
if the character of a generalised projective B-B-bimodule is zero, then actually the generalised
bimodule is zero itself because the Cartan matrix of B is non-singular. Thus the image of Z ′ in the
Grothendieck group of B-B-bimodules (with respect to split exact sequences) is zero. Equivalently,
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the images of (X ⊕W ) ⊗A (X ⊕W )∗ and B in the Grothendieck group of B-B-bimodules are
equal. Since X is splendid and W consists of projective B-B-bimodules, the complex X ⊕W is
still splendid, and hence its image in the Grothendieck group of B-A-bimodules is a p-permutation
equivalence.

4 Stable equivalences and one simple module

Theorem 4.1. Let A, B be symmetric O-algebras such that K ⊗O A, K ⊗O B are split semi-
simple and such that k ⊗O A, k ⊗O B are split and have non singular Cartan matrices. Suppose
that ℓ(A) = 1 and that for any η ∈ IrrK(B) there is λ ∈ L0(B) such that < η, λ >B 6= 0. Denote
by d1, d2, .., dr the different dimensions of the simple K ⊗O A-modules and by mi the number of
isomorphism classes of simple K ⊗O A-modules of dimension di, where 1 ≤ i ≤ r. Assume that
di divides di+1 and that mi > 2di+1

di
for 1 ≤ i ≤ r − 1. Suppose that there is a stable equivalence

of Morita type between A and B. Then there is an isomorphism RK(A) ∼= RK(B) which maps
IrrK(A) onto IrrK(B) and induces an isomorphism PrO(A) ∼= PrO(B). In particular, ℓ(B) = 1
and the decomposition matrices of A and B are equal.

Proof. Since k ⊗O A has a unique isomorphism class of simple modules, the rank of PrO(A) is
one, and hence the rank of L0(A) is |IrrK(A)| − 1. Since the stable equivalence of Morita type
between A and B induces an isometry L0(B) ∼= L0(A) we get |IrrK(A)| ≤ |IrrK(B)|. Note that
|IrrK(A)| =

∑r
i=1 mi. Since k ⊗O A is also split it is a matrix algebra over its basic algebra. We

therefore may assume that A is basic. Similarly, we may assume that B is basic. Then A, as left
A-module, is projective indecomposable, and we have

[K ⊗O A] =
∑

χ∈IrrK(A)

dχ · χ

where dχ = dimK(X) if χ = [X] for some simple K ⊗O A-module X. For 1 ≤ i ≤ r denote by
Λi the subset of IrrK(A) of isomorphism classes of simple K ⊗O A-modules of dimension di. In
particular, |Λi| = mi. By regrouping simple modules of the same degree we may rewrite this in
the form

[K ⊗O A] =
r∑

i=1

di(
∑

χ∈Λi

χ)

Thus the elements χ−χ′, with χ, χ′ ∈ Λi, where 1 ≤ i ≤ r, and χ− di+1

di
χ′ with χ ∈ Λi+1, χ

′ ∈ Λi,

where 1 ≤ i ≤ r − 1 are all in L0(A). More precisely, if we choose an element χi ∈ Λi and set
Λ′

i = Λi − {χi} then the following set is a basis of the free abelian group L0(A):

B = ∪r
i=1 {χi − χ′

i | χ
′
i ∈ Λ′

i} ∪ {χi+1 −
di+1

di

χi | 1 ≤ i ≤ r − 1}

Indeed, B is clearly linearly independent and has
∑r

i=1 (mi − 1) + r− 1 = |IrrK(A)| − 1 elements.
One checks that if a Z-linear combination of elements in B is divisible, in RK(A), by a positive
integer q then all coefficients of that Z-linear combination are divisible by q, which shows that
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B is indeed a basis of L0(A). Note that |Λi| > 2di+1

di
≥ 4 for 1 ≤ i ≤ r − 1. Denote by M a

B-A-bimodule which is finitely generated projective as left B-module and as right A-module such
that M and M∗ induce a stable equivalence of Morita type between A and B. In particular,
by Proposition 3.1, the map ΦM restricts to an isometry L0(A) ∼= L0(B). For any i such that
1 ≤ i ≤ r, the elements χ − χ′, with χ, χ′ ∈ Λi, have norm 2, and thus, are mapped by ΦM to
elements of norm 2, hence an element of the form η − η′ for some η, η′ ∈ IrrK(B). Thus if mi = 2
then Λi determines a unique subset ∆i = {η, η′} having exactly two elements, but this does not
determine a canonical bijection between Λi and ∆i. If mi ≥ 3 then Λi contains a third element
χ′′, and then < χ− χ′, χ− χ” >= 1, and hence χ− χ′′ is mapped to either η − η′′ or η′′ − η′ for
some η′′ ∈ IrrK(B) different from both η, η′. Thus, if mi ≥ 3 then there is a subset ∆i of IrrK(B)
and a sign δi ∈ {±} such that ΦM induces a uniquely determined bijection χ 7→ ηχ between Λi

and ∆i with the property
ΦM (χ− χ′) = δi(ηχ − ηχ′)

for all χ, χ′ ∈ Λi. This case applies to all indices i such that 1 ≤ i ≤ r − 1 because of the
assumption mi > 2di+1

di
. We denote by ηi the image, in ∆i, of χi under this bijection. If mr = 1 we

set ∆r = IrrK(B)−∪r−1
i+1 ∆i. Since |IrrK(A)| ≤ |IrrK(B)|, the set ∆r is non empty. After possibly

replacing M by ΩB⊗OA0(M) we may assume that δ1 = 1. We will show inductively that the signs
δi are all 1. Let i be an integer such that δi = 1 and such that 1 ≤ i ≤ r− 1. Consider the element

µi = χi+1 −
di+1

di

χi

in L0(A). We have < µi, χi − χ′ >A= −di+1

di
for all χ′ ∈ Λ′

i. Thus

ΦM (µi) = (a−
di+1

di

)ηi + a
∑

η∈∆′

i

η + Ψi

for some integer a and some element Ψi in RK(B) not involving any of the elements in ∆i. If
mi+1 ≥ 2 then Ψi 6= 0 because for any χ′ ∈ Λ′

i+1 we have < µi, χi+1 −χ′ >= 1 and hence Ψi must
involve one of the two characters occurring in Φi(χi+1 − χ′). Taking norms on both sides in the
above equality yields

1 +
d2

i+1

d2
i

≥ (a−
di+1

di

)2 + (mi − 1)a2 = mia
2 − 2a

di+1

di

+
d2

i+1

d2
i

which is equivalent to

1 ≥ mia
2 − 2a

di+1

di

Since mi > 2di+1

di
this implies

1 ≥ mia
2 − 2a

di+1

di

≥ mi(a
2 − a) ≥ 0
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and all numbers involved in these inequalities are integers, hence equal to 1 or 0. Thus a is either
1 or 0. Note that if Ψi 6= 0 (which happens in particular for 1 ≤ i ≤ r − 2) then the left most
inequalities are proper inequalities which forces a = 0, hence

ΦM (µi) = −
di+1

di

ηi + Ψi

Comparing norms again forces that the norm of Ψi is 1. If mi+1 ≥ 3 then for any χ′, χ′′ ∈ Λ′
i+1

we have
< Φ(µi), δi+1(ηi+1 − ηχ′) >=< µi, χi+1 − χ′ >A= 1

< Φ(µi), δi+1(ηχ′ − ηχ′′) >B=< µi, χ
′ − χ′′ >A= 0

which shows that ΦM (µi) involves ηi+1. Since µi cannot come from a module, the signs force

ΦM (µi) = ηi+1 −
di+1

di

ηi

hence δi+1 = 1. The only thing that remains to be seen is that we can exclude the pathological
case a = 1 and Ψi = 0. This can occur only for i = r − 1. What happens in that case is that
then mr = 1. By the assumptions, every element of IrrK(B) occurs in at least one element of
L0(B). Moreover, |IrrK(B)| ≥ |IrrK(A)|, so all elements η ∈ ∆r occur in ΦM (µr−1), contradicting
Ψr−1 = 0. The bijections Λi

∼= ∆i constructed above yield therefore an isometry Φ : RK(A) ∼=
RK(B) mapping IrrK(A) to IrrK(B). This implies that Irrk(B) has a unique element because
|IrrK(B)| − |Irrk(B)| is equal to the rank of L0(B), hence to the rank of L0(A) which in turn is
equal to |IrrK(A)|−|Irrk(A)| = |IrrK(A)|−1. Since Φ extends the isometry L0(A) ∼= L0(B) induced
by ΦM it must send PrO(A) to PrO(B). For the same reason the inverse of Φ sends PrO(B) to
PrO(A). Thus Φ induces an isomorphism PrO(A) ∼= PrO(B), and both groups are isomorphic to
Z. In particular, Φ maps the image in RK(A) of a projective indecomposable A-module to the
image in RK(B) of a projective indecomposable B-module. The statement on the decomposition
matrices follows.

5 Proof of Theorem 1.1

Definition 5.1 (cf. [12]). A finite group H is said to be of central type if H has an ordinary
irreducible character χ satisfying χ(1)2 = |H : Z(H)|.

Proposition 5.2. Let P be an elementary abelian p-group of order p2, and let E ≤ Aut(P ) be a
p′-group. Suppose that there exists a central extension

1 → Z → Ẽ → E → 1

with Z a cyclic p′-group such that there is a K-valued linear character of Z which is covered by a
unique irreducible character of Ẽ. Then E is abelian.
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Proof. The hypothesis implies that Z = Z(Ẽ) and that Ẽ is of central type. We first show that E
has abelian Sylow 2-subgroups. Let Ũ be a Sylow 2-subgroup of Ẽ, and let U := ŨZ/Z ∼= Ũ/Ũ∩Z,
a Sylow 2-subgroup of E. By [10, Lemma 2.2] or [8, Theorem 2], Ũ is also of central type and
Ũ ∩ Z = Z(Ũ). Now E and hence U is a subgroup of GL2(p). Let R be a Sylow 2-subgroup of
GL2(p) containing U . First suppose that p ≡ 3(mod 4). Then R has a cyclic subgroup R0 of index
2. So, U0 := R0 ∩ U is a cyclic subgroup of index at most 2 in U . On the other hand, by [10,
Corollary 3.2], either U = 1 or U0 is not self-centralising in U . Since U0 has index at most 2 in U ,
it follows that U is abelian.

Let us suppose now that p ≡ 1(mod 4). In this case, R ∼= (R1 × R2) ⋊ 〈t〉 where R1 = 〈g〉
and R2 = 〈h〉 are cyclic groups of equal order, t has order 2 and tgt−1 = g, tht−1 = gh−1. In
particular, R1 = Z(R). Set R0 = R1 ×R2 and for 0 ≤ i ≤ 2 set Ui = U ∩Ri. For any subgroup V
of R, denote by Ṽ the inverse image of V in Ũ and denote by XV the set of ordinary irreducible
characters of Ṽ covering θ. Note that if V1 ≤ V2 are subgroups of U , with V1 normal in V2, then
XV2

is the set of irreducible characters of Ṽ2 covering some character in XV1
.

If U0 = U , then U is abelian and we are done. We assume therefore that U0 has index 2 in U .
If U0 is cyclic, then by the same argument as above, U is abelian. Thus, we may assume that U0

is of rank 2, say U0 is a direct product of a cyclic group of order 2α and a cyclic group of order
2β with α ≥ β. We claim that β = α − 1. Indeed, let V be a cyclic subgroup of U0 of order 2α.
Since U/U0 has order 2, XU0

has two elements which are transitively permuted by Ũ (otherwise
there would be at least two characters of Ũ which cover characters of XU and hence cover θ). Thus
there are at most two orbits in the action of Ũ0 on XV . Since V is cyclic of order 2α, |XV | = 2α

and since |U0 : V | = 2β each orbit of Ũ0 on XV has at most 2β elements. Thus, α ≥ β ≥ α− 1. If
β = α, then |Ũ/Z(Ũ)| = |U | = 22α+1 is not a square, a contradiction to Ũ being of central type.
Thus, β = α− 1, proving the claim.

We note here also that if V is a cyclic subgroup of U0 of order 2α which is normal in U , then
the fact that there is only one orbit of Ũ on XV along with the fact that |U : V | = 2α = |XV |
means that Ũ acts faithfully, freely and transitively on XV . In particular, CŨ (Ṽ ) = Ṽ .

Next, we claim that U1 = U ∩ R1 has order 2α. For this, first we note that since U0/U1 is
a subgroup of R0/R1, U0/U1 is cyclic. So, U1 has order at least 2α−1. Suppose if possible that
U1 has order 2α−1. Then U1 has a complement in U0 (any 〈v〉 such that the coset of v generates
U0/U1 is a complement to U1 in U0). Write U1 = 〈ga〉 and let W = 〈gihj〉 be a complement to U1

in U0. The order of W being 2α, it follows that the order of hj is greater than or equal to the order
of gi for otherwise, the unique involution of 〈g〉 (which is also the unique involution of U1) would
be a power of gihj . So, denoting by n2 the 2-part of a natural number n, we have that i2 ≥ j2. In
particular, (j + 2i)2 = j2. Let s be an element of U − U0. Since sgihjs−1 = gj+2ig−ih−j ∈ U0 we
get that gj+2i ∈ U1, that is, (j + 2i)2 ≥ a2. So, i2 ≥ j2 = (j + 2i)2 ≥ a2 which means that the
order of gihj is less than or equal to the order of ga. This proves the claim.

So, U1 is a cyclic normal subgroup of U of order 2α contained in U0. Hence, by the above
remarks, CŨ (Ũ1) = Ũ1. Write Ũ ∩ Z = 〈z〉 and let ũ ∈ Ũ0 be a generator of Ũ1/Ũ ∩ Z. Since

U1 ≤ Z(U), the rule ṽ → [ũ, ṽ] defines a homomorphism from Ũ → Ũ∩Z, with kernel CŨ (Ũ1) = Ũ1.

Since Z is cyclic, this means in particular that Ũ/Ũ1 and hence U/U1 is cyclic. Let v ∈ U be such
that vU1 generates U/U1. Then, v /∈ U0, so v = gihjt for some i and j. Then v2 = g2ihjthjt =
g2ihjgjh−j = g2i+j ∈ R1 ∩ U = U1. This means that α = 1, hence U has order 4 and is abelian.
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Suppose, if possible that E is not abelian. Since E is a p′-group, the faithful two-dimensional
representation of E on the field of p elements represented by the inclusion E ≤ Aut(P ) is absolutely
irreducible and lifts to a faithful 2-dimensional irreducible representation of E over C. By the
classification of the non-abelian finite subgroups of GL2(C) (see for instance [9, Theorem 26.1]),
either E has a normal abelian subgroup of index 2 or E/Z(E) is isomorphic to one of A4, S4 or
A5 and Z(E) consists of scalar matrices (considering E as subgroup of GL2(C)). In particular,
Z(E) is cyclic. But A4, S4 and A5 all have non-abelian Sylow 2-subgroups, whereas by the above
E has abelian Sylow 2-subgroups. Thus, E has a normal abelian subgroup, say N of index 2. So
the Sylow l-subgroups of E for odd primes l are abelian, normal in E and centralise each other.
Furthermore, we have shown above that the Sylow 2-subgroups of E are abelian. Thus it suffices
to show that any 2-element of E centralises the Sylow l-subgroup of E for any odd prime l.

Let l be an odd prime, Q the Sylow l-subgroup of E and u a 2-element of E. Since Q is
abelian and normal in E, Q = CQ(u) × [〈u〉, Q]. Let Q̃ be the Sylow l-subgroup of Ẽ, so that

Q := Q̃Z/Z and let ũ be a 2-element in Ũ lifting u. By [10, Lemma 2.2], Q̃ is of central type
with Z(Q̃) = Z ∩ Q̃. So Q is non-cyclic, hence of l-rank 2. By conjugating Q into the subgroup of
diagonal matrices in GL2(C), we see that Q/Z(GL2(C)) ∩Q is cyclic. Thus, CQ(u) is non-trivial.
Also, we may assume that [〈u〉, Q] is non-trivial as otherwise u centralises Q and we are done.
Thus, both CQ(u) and [〈u〉, Q] are non-trivial cyclic groups. Let Q̃1 be the inverse image of CQ(u)

in Q̃ and let Q̃2 be the inverse image of [〈u〉, Q] in Q̃. Both Q̃1 and Q̃2 are abelian groups; along
with Z ∩ Q̃, they generate Q̃ and Z(Q̃) = Z ∩ Q̃. Hence CQ̃2

(Q̃1) ≤ Z ∩ Q̃. Now , ũ stablises the

normal series 1 ≤ Z ∩ Q̃ ≤ Q̃1, Q̃1 is an l-group and u is an l′ -element. Hence, ũ centralises Q̃1.
Also, ũ centralises Z ∩ Q̃ = CQ̃2

(Q̃1). Thus by the A× B-lemma (applied with A = 〈u〉, B = Q̃1

and P = Q̃2), it follows that ũ centralises Q̃2 and hence Q̃.

Proposition 5.3. Let P be an elementary abelian p-group of order p2, and let E ≤ Aut(P ) be an
abelian p′-group. Suppose that there exists a central extension

1 → Z → Ẽ → E → 1

with Z a cyclic p′-group such that there is a K-valued linear character θ of Z which is covered by
a unique irreducible character of Ẽ. Then |E| = l2 for some natural number l dividing (p− 1). Let
eθ ∈ OZ be the central idempotent corresponding to θ and set A := O(P ⋊ Ẽ)eθ, m := p−1

l
. The

degree of an element of IrrK(A) is either l or l2 and IrrK(A) has 2p− 1 elements of degree l and
m2 elements of degree l2.

Proof. By [8, Lemma 2], E is a direct product of two isomorphic groups. In particular, |E| = l2

for some l. If E acts irreducibly on P , (where P is viewed as a vector space over the field of p
elements), then E = CE(E) is cyclic, a contradiction. Thus, P is a direct product P1 × P2 of two
1-dimensional E-invariant spaces. Hence E is conjugate to a subgroup of the group H of diagonal
matrices in GL2(p), l divides (p− 1) and E is a direct product of cyclic groups of order l. But H
has a unique subgroup isomorphic to the direct product of two cyclic groups of order l, hence E
is conjugate to that unique subgroup. In other words, E = E1 × E2, where E1 acts faithfully and
regularly on P1 and centralises P2 and E2 acts faithfully and regularly on P2 and centralises P1.

Set N = P ⋊ Ẽ and consider an irrreducible K-valued character ξ = ξ1 × ξ2 of P , where ξi
is an irreducible character of Pi, i = 1, 2. If ξ1 and ξ2 are both trivial, then there is exactly
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one character of N covering ξ × θ and that has dimension l. Supose that ξ1 is trivial and ξ2 is
non-trivial. The inertial subgroup of ξ × θ is the inverse image Ẽ1 of E1 in Ẽ, Ẽ/Ẽ1 is cyclic of
order l and |Ẽ : Ẽ1| = l. Thus, there are l irreducible characters of Ẽ covering ξ × θ, each of
dimension l. Also, the Ẽ-orbit of ξ has l-elements. Thus, there are 2(p− 1) irreducible characters
covering characters of the form ξ1 × ξ2 × θ where exactly one of ξ1 and ξ2 is trivial, and they all
have dimension l. Finally, if neither ξ1 nor ξ2 is trivial, then the inertial subgroup of ξ in Ẽ is Z,
hence there is exactly one character of N covering ξ × θ and it has dimension l2. The Ẽ-orbit of ξ
has size l2. Thus, there are m2 characters of N covering characters of the form ξ1 × ξ2 × θ where
none of ξ1 and ξ2 is trivial, and each of these has dimension l2.

Proof of Theorem 1.1. Since the theorem is well known when P is cyclic, we may assume that P is
elementary abelian of order p2. By Rouquier’s work [21, 6.3] (see also [16, Theorem A.2]) there is
a stable equivalence of Morita type between B and C given by a splendid complex (in the slightly
more restrictive sense of the notion “splendid” as used in [16]). By the structure theory of blocks
with normal defect groups [15], [17, 14.6] and Proposition 5.2 the Brauer correpondent C of B has
as source algebra a twisted group algebra of the form A = Oα(P ⋊E) for some abelian p′-subgroup
E of Aut(P ) and some α ∈ H2(E;O×). Then for a suitable central extension

1 → Z → Ẽ → E → 1

of E by a cyclic p′-group Z, determined by α, the algebra A is isomorphic to a block algebra
O(P ⋊ Ẽ)eθ for some block eθ of P ⋊ Ẽ. By Proposition 5.3, A and a source algebra of B satisfy
the hypotheses of Theorem 4.1, with a stable equivalence which is induced by a splendid complex.
Thus, by 3.5, this stable equivalence induces a p-permutation equivalence. Since the blocks B, C
have the same local structure it follows from [16, Theorem 1.4] that this p-permutation equivalence
induces an isotypy.

6 Block cohomology need not be an Ext-algebra

One of the technical difficulties with non principal p-blocks is that they do not have, in general, a
canonical module which would play the role of the trivial module. If there were such a module, one
reasonable expectation would be that its Ext-algebra should be isomorphic to the block cohomology
because this is what happens in the principal block case. In the context of a block algebra B which
has, up to isomorphism, a unique simple module S, it may be tempting to think that S would
play that role. However, even the smallest known and well understood example in [3], [4] of a
non nilpotent block with one isomorphism class of simple modules has the property that its block
cohomology is not isomorphic to the Ext-algebra of a module over that block, and this is what we
are going to describe in this section. Let k be an algebraically field of odd prime characteristic p
and let P = Cp × Cp be an elementary abelian group of order p2. Set G = P ⋊Q8, where Q8 is a
quaterion group of order 8 with Z(Q8) acting trivially on P and with Q8/Z(Q8) ∼= C2 ×C2 acting
in such a way that each factor C2 inverts a generator of the corresponding factor Cp of P . Then
CG(P ) = P × Z(Q8). Thus kG has two blocks, namely the principal block b0 = 1

2 (1 + z) and the
block b1 = 1

2 (1 − z), where z is the generator of Z(Q8). The block algebra B1 = kGb1 has, up

to isomorphism, a unique simple module S. We have dimk(S) = 2; more precisely, ResG
Q8

(S) is
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the unique 2-dimensional simple kQ8-module. Both blocks have the same local structure, namely
the fusion system of the group G, and hence the block cohomology of B1 is H∗(B1) ∼= H∗(B0) =
H∗(G, k).

Proposition 6.1. With the notation above, there is no finitely generated B1-module V such that
Ext∗B1

(V, V ) ∼= H∗(B1).

Proof. Suppose that there is a finitely generated B1 module V such that Ext∗B1
(V, V ) ∼= H∗(B1).

Then in particular Ext0B1
(V, V ) ∼= EndB1

(V ) ∼= H0(B1) ∼= k. But since all composition factors of
V are isomorphic to S this implies V ∼= S. The generator z of Z(Q8) acts as −1 on S, hence also
on its dual S∗, and thus as identity on S ⊗k S

∗. This shows that S ⊗k S
∗ is a module over the

principal block algebra B0. we have B0
∼= k(P ⋊ (C2 × C2)), and hence B0 has four pairwise non

isomorphic simple modules all of which have dimension one. Since P acts as identity on S it follows
that S ⊗k S

∗ is a semi-simple four-dimensional B0-module. By a result of Benson and Carlson
[2, Theorem 2.1] or [1, Theorem 3.1.9], the trivial B0-module occurs exactly with multiplicity 1 in
S⊗kS

∗. The remaining three summands are non-trivial one-dimensional modules. If one regards S
and S⊗k S

∗ as kQ8-modules, then S is stable under any automorphism of Q8, hence so is S⊗k S
∗.

The one-dimensional non trivial kQ8-modules are permuted transitively by an automorphism of
order three of Q8. Thus, as B0-module, S⊗k S

∗ = k⊕T1 ⊕T2 ⊕T3 is a direct sum of four pairwise
non-isomorphic simple B0-modules of dimension one, with k the trivial module. We have

Ext∗B1
(S, S) ∼= Ext∗kG(k, S ⊗ S∗) ∼= H∗(G; k) ⊕ Ext∗kG(k, T1 ⊕ T2 ⊕ T3)

Since the Ext-quiver of B0 is connected, the summand Ext∗kG(k, T1 ⊕ T2 ⊕ T3) is not zero. But
then Ext∗B1

(S, S) cannot be isomorphic to H∗(B1).
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