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On two theorems of Flavell

Radha Kessar, Markus Linckelmann

Abstract

We extend two theorems due to P. Flavell [6] to arbitrary fusion systems.

The fusion system of a finite group G at a prime p encodes the structure of a Sylow-p-subgroup
S together with extra information on G-conjugacy within S in category theoretic terms. From
work of Alperin and Broué [1] it emerged that fusion systems of finite groups are particular cases
of fusion systems of p-blocks of finite groups. In the early 1990’s, Puig introduced the notion of
an abstract fusion system on a finite p-group S as a category whose objects are the subgroups
of S and whose morphism sets satisfy a list of properties modelled around what one observes in
the case of fusion systems of finite groups and blocks. There are ‘exotic’ fusion systems which do
not arise as fusion system of a block. Benson [2] suggested that nonetheless any fusion system
should give rise to a p-complete topological space which should coincide with the p-completion of
the classifying space BG in case the fusion system does arise as fusion system of a finite group G.
Broto, Levi and Oliver laid in [4] the homotopy theoretic foundations of such spaces - called p-local
finite groups - and gave in particular a cohomological criterion for the existence and uniqueness of
a p-local finite group associated with a given fusion system. While the existence and uniqueness of
p-local finite groups for arbitrary fusion systems is still an open problem, there has been in recent
years a steadily growing body of work by many authors trying to add to the understanding of
fusion systems by extending classical concepts and results on the p-local structure of finite groups
(some of which were relevant for the classification of finite simple groups) to all fusion systems.
This is also the underlying philosophy of the present note. The following two theorems are Flavell’s
Theorem A and Theorem B in [6], extended to arbitrary fusion systems. Our general terminology
on fusion systems follows [7]; in particular, by a fusion system we always mean a saturated fusion
system.

Theorem 1. Let p be an odd prime, S a finite p-group, F a fusion system on S and α an
automorphism of S acting freely on S−{1}, which stabilises F and whose order is a prime number
r which does not divide the orders of the automorphism groups AutF(R) for all F-centric radical
subgroups R of S. Then F = NF(S).

The hypothesis that α stablises F means that for any two subgroups Q, R of S and any
morphism ϕ : Q → R in F the morphism α ◦ ϕ ◦ α−1|α(Q) : α(Q) → α(R) is again a morphism
in F . Moreover, a subgroup Q of S is called F -centric if CS(Q′) = Z(Q′) for all subgroups Q′ of
S such that Q′ ∼= Q in F ; a subgroup Q of S is called F -radical if Op(AutF (Q)) = AutQ(Q), the
group of inner automorphisms of Q. By Alperin’s fusion theorem, F is completely determined by
the automorphism groups in F of F -centric radical subgroups of S.
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Theorem 2. Let p be an odd prime, S a finite p-group and F a fusion system on S. Let T be a
subgroup of Z(S) such that NF(J(S)) ≤ NF (T ). Then one of the following hold:

(a) T is weakly F-closed.

(b) There exists a non-trivial cyclic p′-subgroup X of AutF(T ) such that X acts transitively on
[T,X ] − {1}.

Here J(S) is the Thompson subgroup of S; that is, J(S) is generated by all abelian subgroups
of S of maximal order, [T,X ] is the subgroup of T generated by the set of elements of the form
ψ(t)t−1, where ψ ∈ X and t ∈ T , and T is weakly F-closed if ϕ(T ) = T for all ϕ ∈ HomF (T, S). A
subgroup Q of S is called fully F-normalised if |NS(Q)| ≥ |NS(Q′)| for any subgroup Q′ of S such
that Q′ ∼= Q in F . In that case, by a result of Puig, there is a fusion system NF(Q) on NS(Q),
which is called the normaliser of Q in F . More precisely, for any two subgroups U , V of NS(Q),
the morphism set HomNF (Q)(U, V ) consists of all group homomorphisms ϕ : U → V for which
there exists a morphism ψ : QU → QV in F satisfying ψ|U = ϕ and ψ(Q) = Q. Moreover, NF(Q)
induces a fusion system NF(Q)/Q on NP (Q)/Q. Given two normal subgroups Q, Q′ of S such
that F = NF (Q) = NF(Q′) one checks that then F = NF(QQ′); we denote by Op(F) the largest
normal subgroup R of S such that F = NF (R). Similarly, if Q is a fully F -centralised subgroup of
S, there is a fusion system CF (Q) on CS(Q) such that for any two subgroups U , V of CS(Q), the
morphism set HomCF (Q)(U, V ) consists of all group homomorphisms ϕ : U → V for which there
exists a morphism ψ : QU → QV in F satisfying ψ|U = ϕ and ψ(Q) = IdQ. If Z is a subgroup of
Z(S) such that F = CF (Z) then F induces a fusion system, denoted by F/Z, on S/Z.

The strategy to prove Theorem 2 is as in [7]: we show that a minimal counterexample is p-
constrained, hence a fusion system of a finite group and thus [6, Theorem B] applies. Theorem
1 follows from Theorem 2 exactly along the lines of the proof of [6, Theorem A]. We need the
following well-known statements:

Lemma 3. Let F be a fusion system on S. Suppose that T is a weakly F-closed subgroup of Z(S).
Then F = NF (T ).

Proof. Let R be an F -centric subgroup of S and let ϕ ∈ AutF(R). Since R contains Z(S), hence
T , the assumptions on T imply that ϕ(T ) = T . Alperin’s fusion theorem implies the lemma.

Lemma 4. Let F be a fusion system on S. For any subgroup Q of S there is a morphism
τ : NS(Q) → S such that τ(Q) is fully F-normalised.

Proof. See for instance [7, Lemma 2.2].

Lemma 5. Let F be a fusion system on S, let Z be a subgroup of Z(S) such that F = CF (Z).
Set S̄ = S/Z and F̄ = F/Z. We have F = NF(S) if and only if F̄ = NF̄(S̄).

Proof. This is a special case of more general results; see e.g. [7, Corollary 3.3].

Lemma 6. Let F be a fusion system on S, let Q be a subgroup of S and r a prime divisor of
|AutF (Q)|. Then there is an F-centric radical subgroup R of S such that r divides |AutF (R)|.
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Proof. We may assume thatQ is fully F -normalised. Then, by the Sylow axiom, the group AutS(Q)
of automorphisms of Q induced by conjugation with elements in NS(Q) is a Sylow-p-subgroup of
AutF (Q); hence Op(AutF(Q)) = AutR(Q) for a unique subgroup R of NS(Q) containing QCS(Q).
The extension axiom implies that any automorphism in AutF(Q) extends to an automorphism
in AutF(R). Thus AutF(Q) is a quotient of a subgroup of AutF (R); in particular, r divides
|AutF (R)|. Since Q < R unless R is F -centric radical, repeating this argument shows that r
divides |AutF(R)| for some F -centric radical subgroup R of S.

Proof of Theorem 2. We use the notation and hypotheses of 2. We argue by induction over the
number of morphisms in F . Let F be a minimal counterexample to 2. That is, T is not weakly
closed, and no non trivial cyclic p′-group X of AutF(T ) acts transitively on the non identity
elements in [T,X ]. Note that the latter of these two conditions passes down to any subsystem of
F on any subgroup of S containing T .

The purpose of the first part of the proof is to show that T ≤ Op(F); in particular, Op(F) 6= 1.
By Alperin’s fusion theorem, there exists a fully F -normalised subgroup Q of S such that T ≤ Q
and such that T is not weakly NF(Q)-closed. We choose Q with these properties such that NS(Q)
has maximal order (but we do not require Q to be centric). Note though that then NS(Q) is
centric, hence T ≤ Z(S) ≤ Z(NS(Q)); in particular, T ≤ J(NS(Q)).

Consider first the case where NS(Q) = S. Then J(NS(Q)) = J(S). Since NF(J(S)) ≤ NF(T )
by the hypotheses we get that NNF(Q)(J(S)) ≤ NNF (Q)(T ). This shows that NF(Q) is also a
counterexample, hence F = NF(Q). This implies T ≤ Q ≤ Op(F) 6= 1 in the case S = NS(Q).

Consider next the case where NS(Q) < S. By Lemma 4 applied to J(NS(Q)) there is a
morphism

τ : NS(J(NS(Q))) → S

such that τ(J(NS(Q))) is fully F -normalised. Note that

Q < NS(Q) < NS(NS(Q)) ≤ NS(J(NS(Q)))

Thus τ maps NS(Q) to NS(τ(Q)). Since Q is fully F -normalised, it follows that τ(NS(Q)) =
NS(τ(Q)). Thus both τ(Q) and J(NS(τ(Q))) = τ(J(NS(Q))) are fully F -normalised. Next,
observe that τ(T ) = T . Indeed, by Alperin’s fusion theorem, τ is a composition of restrictions of
automorphisms of fully F -normalised subgroups of S whose order is at least that of NS(J(NS(Q))),
which is bigger than the order of NS(Q). By the maximality assumptions on Q we therefore have
τ(T ) = T . Since T is not weakly NF(Q)-closed, there is ϕ ∈ AutF (Q) such that ϕ(T ) 6= T .
Then, setting ψ = τ ◦ ϕ ◦ τ−1 and using τ(T ) = T we get that ψ(T ) 6= T , and hence T is not
weakly NF (τ(Q))-closed. Therefore, after possibly replacing Q by τ(Q), we may assume that
both Q and J(NS(Q)) are fully F -normalised. The point of making this assumption is that then
NF (J(NS(Q))) is a fusion system on NS(J(NS(Q))). We claim that NF(J(NS(Q))) ≤ NF(T ).
Since Q was chosen with NS(Q) of maximal order subject to T not being weakly NF (Q)-closed, T
is weakly NF (J(NS(Q)))-closed. As T ≤ J(NS(Q)) this is equivalent to NF(J(NS(Q))) ≤ NF(T ).
But then also NNF (Q)(J(NS(Q))) ≤ NNF (Q)(T ), hence NF(Q) is a counterexample to Theorem 2
as well, a contradiction to the minimality of F . This shows that T ≤ Op(F) 6= 1.

The second part of the proof consists of showing thatOp(F) is in fact F -centric. SetQ = Op(F).
Since T is not weakly F -closed there is ϕ ∈ AutF(Q) such that ϕ(T ) 6= T . The morphism ϕ
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extends to a morphism ψ ∈ AutF(QCP (Q)). Thus T is not weakly NF(QCP (Q))-closed, and
hence NF (QCP (Q)) is also a counterexample to Theorem 2. By the minimality of F it follows
that F = NF(QCP (Q)), or equivalently, QCP (Q) ≤ Op(F) = Q, which implies that Q is F -centric.

It follows now from [3, Proposition C] that F = FS(L) for some finite group L. But then
Flavell’s Theorem B in [6] applies, showing that F cannot be a counterexample. This contradiction
concludes the proof of Theorem 2.

Proof of Theorem 1. We show that Theorem 2 implies Theorem 1, closely following the proof of
[6, Theorem A]. As before we argue by induction over the number of morphisms in F . Let F be a
minimal counterexample to 1; that is, with the notation and hypotheses of 1 we have NF (S) < F .

We first show that Op(F) = 1. Suppose not; that is, F = NF (Q) for some non trivial normal
subgroup Q of S. Since α stablises F it stablises Op(F). Choose a minimal α-stable normal
subgroup V of S such that F = NF(V ). Since Z(V ) is then also α-stable satisfying F = NF(Z(V )),
the minimality of V implies that V is abelian. The subgroup Ω1(V ) generated by all elements of
order p in V is then again α-stable and satisfies F = NF(Ω1(V )). The minimality of V implies
that V is elementary abelian and that V is a simple module for the group AutF (V ) ⋊ 〈α〉 over Fp.
By Lemma 6, the prime r does not divide the order of AutF (V ). Using that AutF(V ) and 〈α〉
have coprime orders one checks easily that V is in fact a faithful simple AutF (V ) ⋊ 〈α〉-module
over Fp. Since α acts freely on V −{1}, the hypotheses of [5, Theorem A] are satisfied, and hence
[AutF (V ), α] is a 2-group. Since α acts freely on S − {1} we have S = [S, α]. Thus the image of
S = [S, α] in AutF (V ) is contained in the 2-group [AutF(V ), α], and hence must be trivial as p is
odd. Therefore S centralises V , or equivalently, V ≤ Z(S). It follows that CF (V ) is an α-stable
fusion system on S satisfying the hypotheses of Theorem 1. If CF (V ) = F then the fusion system
F̄ = F/V on S̄ = S/V inherits the hypotheses in 1, and hence F̄ = NF̄(S̄) by induction. Lemma
5 implies that F = NF(S), a contradiction. Thus CF (V ) < F , and hence CF (V ) = NCF (V )(S)
by induction. Since F = NF(V ) and fusion in V ≤ Z(S) is controlled by AutF (S) it follows again
that F = NF(S), so the assumption Op(F) 6= 1 leads to a contradiction.

Set T = Ω1(Z(S)). Assume first that T is weakly F -closed. Then, by Lemma 3, we have
F = NF(T ), contradicting Op(F) = 1. Thus T is not weakly F -closed. Clearly NF(S) ≤
NF (J(S)) < F , and hence NF(S) = NF(J(S)) by induction. As T = Ω1(Z(S)) ≤ J(S) it
follows that NF (J(S)) ≤ NF (T ). Since T is not weakly F -closed, Theorem 2 implies that there is
a non trivial cyclic p′-subgroup X of AutF(T ) which acts transitively on the non identity elements
in [T,X ]. Now T can be viewed as module of AutF(T )⋊〈α〉 over Fp. Then [6, Theorem 3.2] implies
that α has a non trivial fixpoint in T , a contradiction. This completes the proof of Theorem 1.
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