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Supplementary Material: Figures 

 

 

Figure 1. Representative frame of DIC-C2DH-HeLa videos.  This dataset presents low SNR and 

CR values characteristic of phase-enhancement microscopy techniques mostly because the 

average intensity of the cells is very similar to the intensity of the background. The signal inside 

the cells is highly heterogeneous due to DIC-highlighted internal structures and organelles. The 

cells are heterogeneous in intensity and shape since in most frames co-exist well spread, 

cuboidal, low intensity interphase cells (B) with rounded, bright cells undergoing mitosis. The 

cells are highly packed and show very low intensity changes between neighboring cells (black 

arrows). 

 

  



 

Figure 2. Representative frame of Fluo-C2DL-MSC videos. The SNR and CR values are low, due 

to the low level of emission of the fluorescent cytoplasmic reporter, especially in the long, thin 

filopodial extensions of the cell (white arrow). The intensity is also quite variable in different 

parts of the cell (see the different intensity of the nucleus and cytoplasm in cell A), and the 

cells present different levels of intensity (compare cells A and B), possibly due to different 

expression of the transfected fluorescent reporter. The shape of the cells is highly irregular 

due to the long filopodial extensions (e.g. white arrow). The cells show a significant degree of 

bleaching and move fast, causing low overlap of the cells between consecutive frames.  

  



 

Figure 3. Representative xy (top) and xz (bottom) slices of a frame of Fluo-C3DH-H157 videos.  

This dataset displays reasonably good values for most properties, with the exception of some 

signal decay due to photobleaching. The presence of prominent blebs, and some 

heterogeneity between cell intensities can also complicate accurately segmenting and 

delineating the cell boundaries. 

  



 

Figure 4. xy (top left and right) slices from two consecutive frames and one xz (bottom) slice of 

a frame of Fluo-C3DL-MDA321 videos.  The SNR and CR of this dataset are relatively low due to 

both low signal intensity and increased background, which affects the quality of the signal 

especially in the long migration-related filopodial extensions (e.g. white arrow). This noisy 

signal efficiency causes high internal heterogeneity. To complicate the segmentation and 

tracking even further, the images are acquired at low resolution, especially in the axial 

direction (see bottom panel), and also in the temporal dimension (compare the same cell, A 

and B in two consecutive frames) and suffer from significant photobleaching. 



 

 

Figure 5. Representative frame of Fluo-N2DH-GOWT1 videos. The signal inside the cell nuclei 

varies due to the existence of prominent, unlabeled nucleoli (white arrows) and the 

heterogeneity of the average cell intensities (see for instance the difference between the cells 

labeled A and B). 

  



 

Figure 6. Representative frame of Fluo-N2DL-HeLa videos. The image shows some of the 

challenges posed by this dataset, including signal heterogeneity between cells as shown by the 

presence of a large range of nuclear intensity, the low spatial resolution, high cell density, and 

the presence of division events highlighted by white arrows. 

 

  



 

Figure 7.  xy (top left and right) slices from two consecutive frames and one xz (bottom) slice 

of a frame of Fluo-N3DH-CE videos. The most significant problems of this dataset are high cell 

density, the low resolution in the axial direction (see xz bottom slice), low cell overlap between 

frames caused by large temporal acquisition step and the abundance of mitotic cells typical of 

a developing embryo (white arrows). 

  



 

Figure 8. Representative frame of Fluo-N3DH-CHO videos. The main challenges of this dataset 

are the internal heterogeneity of the staining, clearly visible in the images and caused by the 

fact that the nuclear staining does not label the nucleoli of the cells (white arrows), and a 

relatively high cell density. 

  



 

Figure 9.  Representative xy (top) and xz (bottom) slices of a frame of Fluo-N3DH-CE videos. 

The low spatial (visible in this image) and temporal resolution characteristic of light sheet 

microscopy, and the presence of frequent mitoses typical of a developing embryo render this 

dataset the most difficult of the challenge datasets. 

  



 

Figure 10. Representative frame of PhC-C2DH-U373 videos. At this level of resolution the SNR, 

CR, Heti and Hetb values are deficient, as expected for a contrast enhancement microscopy 

modality. All other values are either average or good, which seems to compensate the 

deficient values for the segmentation and tracking task. Especially beneficial seems to be a 

high spatial resolution, and a relatively low cells density (visible in the image) and a high 

temporal resolution. 

 

  



 

Figure 11. Representative frame of PhC-C2DL-PSC videos. Most of the parameters are in the 

average to low range, especially those already mentioned for brightfield modalities. The very 

low spatial resolution (visible in the image), to some extent compensated by a high temporal 

resolution, and significant number of division events (black arrows) make the cells in this 

dataset difficult to segment and track. 

  



 

Figure 12. Average overall performance (OP) of the top-3 performing algorithms, if available,  

binned per dataset across CTC editions. For all datasets except for the synthetic datasets (Fluo-

N2DH-SIM+ and Fluo-N3DH-SIM+), the target scores correspond to the average OP scores over 

the three individual manual annotations. For the two embryonic datasets (Fluo-N3DH-CE and 

Fluo-N3DL-DRO) there was only one tracking annotation available. Accordingly, the target 

scores for those datasets were calculated by considering 1.0 (i.e., perfect match to the 

provided tracking ground truth) as the tracking scores of the three individual manual 

annotations. Note that missing bars correspond to datasets not offered at a particular CTC 

edition. A decreasing trend for Fluo-N3DH-CE is caused by the fact that only two submissions 

were received for this dataset in CTC II, not allowing one to average the OP scores over the 

three best performing algorithms as in the case of the third CTC edition.  



 

 

Figure 1213. Robustness of the weighting used for SEG and TRA. The image shows the number 

of rank changes in the top-three ranked methods, as we change the weight given to SEG and 

TRA from 0 to 1, in 0.001 steps. 

  



 

Figure 1314. Example of the initial image (technically a labeled mask) used for one of the Fluo-

N3DH-SIM+ competition videos. The image is displayed using maximum intensity (label) 

projection. Note the presence of an extended boundary to allow cells to move away from the 

cell population. Cutting away this border introduces the effect that cells are leaving and 

entering in the final image sequence. 

 

 

  



Supplementary Material: Tables 

Name 

Released edition  
Objects of interest Modality/Magnification 

/Bit depth 

Frame size 

 [grid points] 

No. of  

frames 

Spatial 

resolution [μm] 

Temporal 

resolution 

[min] 

No. of 

tracks 

No. of 

objects 

DIC-C2DH-HeLa 

CTC II 

HeLa cells DIC/63×/8 512×512 115 0.19×0.19 10 17 (37) 1366 

(1157) 

Fluo-C2DL-MSC 

CTC I 

Rat mesenchymal stem 

cells 

SDC/20×/16 992×832 

 (1200×782) 

48 0.3×0.3 

(0.398×0.398) 

20 (30) 20 (15) 657 (258) 

Fluo-C3DH-H157 

CTC I 

H157 lung cancer cells SDC/63×/16 992×832×35 

(992×832×80) 

60 0.12×0.12×0.5 1 (2) 6 (10) 347 (143) 

Fluo-C3DL-MDA231 

CTC I 

MDA231 human breast 

carcinoma cells 

LSC/20×/16 512×512×30 12 1.24×1.24×6 80 46 (43) 452 (394) 

Fluo-N2DH-GOWT1 

CTC I 

Nuclei of GOWT1 

mouse stem cells 

LSC/63×/8 1024×1024 92 0.24×0.24 5 56 (51) 3014 

(2418) 

Fluo-N2DL-HeLa 

CTC I 

Nuclei of HeLa cells WF/10×/16 1100×700 92 0.645×0.645 30 400 (406) 13836 

(16538) 

Fluo-N3DH-CE 

CTC II 

Early C. elegans 

developing embryo 

LSC/63×/8 712×512×31 190 0.09×0.09×1 1 370 

(1167) 

10817 

(37682) 

Fluo-N3DH-CHO 

CTC I 

Nuclei of Chinese 

hamster ovarian cells 

LSC/63×/8 512×443×5 92 0.2×0.2×1 9.5 27 (30)  1008 

(985) 

Fluo-N3DL-DRO 

CTC III 

Developing Drosophila 

melanogaster embryo 

LS/16×/16 1272×603×125 50 0.4×0.4×2.03 0.5 203 (417) 9973 

(12002) 

PhC-C2DH-U373 

CTC II 

Glioblastoma-

astrocytoma U373 cells 

PhC/20×/8 696×520 115 0.65×0.65 15 7 (11) 531 (679) 

PhC-C2DL-PSC 

CTC II 

Pancreatic stem cells  PhC/4×/8 720×576 300 1.6×1.6 10 1299 

(1404) 

70268 

(76372) 

Fluo-N2DH-SIM+ 

CTC II 

Synthetic nuclei of 

HL60 cells 

WF/40×/16 660×718  

(664×790) 

110 (138) 0.12×0.12 28.8 155 (141) 5463 

(4767) 

Fluo-N3DH-SIM+ 

CTC II 

Synthetic nuclei of 

HL60 cells 

SDC/40×/16 720×728×59 

(702×716×59) 

150 (110) 0.12×0.12×0.2 28.8 136 (161) 4535 

(5410) 

Table 1. Technical features of the competition datasets used in the three editions of the Cell Tracking Challenge Note: spinning-disk confocal (SDC); laser-

scanning confocal (LSC); widefield fluorescence (WF); phase contrast (PhC); differential interference contrast (DIC); light-sheet (LS); The numbers in parentheses indicate 

particular values for the second video in a given dataset. 



 

Name 

Participating editions 

Affiliation(s) 

COM-US 

CTC I 

Compunetix Inc. Monroeville, PA, USA 

CUL-UK 

CTC III 

Research Centre in Biomedical Engineering, School of Mathematics, Computer Science 

and Engineering, City University of London, United Kingdom 

CUNI-CZ 

CTC I 

Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University 

in Prague, Prague, Czech Republic 

FR-Be-GE 

CTC III 

Computer Science Department and BIOSS Centre for Biological Signaling Studies, 

University of Freiburg, Germany  

FR-Ro-GE 

CTC III 

Computer Science Department and BIOSS Centre for Biological Signaling Studies, 

University of Freiburg, Germany 

HD-Har-GE 

CTC I, II 

Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, 

BIOQUANT, IPMB, University of Heidelberg and DKFZ, Heidelberg, Germany 

HD-Hau-GE 

CTC III 

Heidelberg Collaboratory for Image Processing, IWR, University of Heidelberg, Germany 

IMCB-SG (1-2) 

CTC II 
Institute of Molecular and Cell Biology, A*Star, Singapore 

KIT-GE 

CTC III 

Group for Automated Image and Data Analysis, Institute for Applied Computer Science, 

Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany  

KTH-SE (1-4) 

CTC I, II, III 

ACCESS Linnaeus Centre, KTH Royal Institute of Technology, Stockholm, Sweden 

Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, 

Stanford, USA  

LEID-NL 

CTC I, II, III 

Division of Image Processing, Department of Radiology, Leiden University Medical 

Center, Leiden, the Netherlands 

Erasmus MC — University Medical Center Rotterdam, Rotterdam, the Netherlands 

Intelligent Systems Department, Delft University of Technology, Delft, the Netherlands 

MU-CZ 

CTC II 

Centre for Biomedical Image Analysis, Masaryk University, Brno, Czech Republic 

Center for Applied Medical Research, University of Navarra, Pamplona, Spain 

NOTT-UK 

CTC II 

Department of Engineering, University of Nottingham, United Kingdom  

Department of Engineering, University of Nottingham, Ningbo, China 

PAST-FR 

CTC II, III 

BioImage Analysis Unit, Institut Pasteur, Paris, France 

UP-PT 

CTC III 

I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal 

Facultade de Engenharia, Universidade do Porto, Porto, Portugal 

Freiburg Institute for Advanced Studies, University of Freiburg, Germany  

UPM-ES 

CTC I 

Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de 

Madrid and Ciber-BBN, Madrid, Spain 

UZH-CH 

CTC III 

S3IT, University of Zurich, Switzerland 

Table 2. Cell Tracking Challenge participants across the three challenge editions. 

  



 

Software  Description Link 

COM-US  algorithm  
CUL-UK algorithm  

CUNI-CZ algorithm  

FR-Be-GE algorithm 

 

FR-Ro-GE algorithm  

HD-Har-GE algorithm  

HD-Hau-GE algorithm  

IMCB-SG (1) algorithm 

 

IMCB-SG (2) algorithm  

KIT-GE algorithm  

KTH-SE  algorithm (1)   

KTH-SE  algorithm (2)   

KTH-SE  algorithm (3)   

KTH-SE  algorithm (4)   

LEID-NL algorithm  

MU-CZ algorithm 

 

NOTT-UK algorithm  

PAST-FR algorithm  

UP-PT algorithm   

UPM-ES algorithm  

UZH-CH algorithm  

Evaluation framework  

Image Parameter 

evaluation 

 

Table 3. Available software packages. 

 

 

 

 

 

 

 

  



Dataset  (Kendall) 

DIC-C2DH-HeLa 1.00 
Fluo-C2DL-MSC 0.76 
Fluo-C3DH-H157 0.64 
Fluo-C3DL-MDA231 0.50 
Fluo-N2DH-GOWT1 0.62 
Fluo-N2DL-HeLa 0.49 
Fluo-N3DH-CE 1.00 
Fluo-N3DH-CHO 0.31 
Fluo-N3DL-DRO 0.33 
PhC-C2DH-U373 0.60 
PhC-C2DL-PSC 0.79 
Fluo-N2DH-SIM+ 0.74 
Fluo-N3DH-SIM+ 0.52 

Global 0.55 

Table 4. Kendall’s  correlation coefficient calculated from the SEG and TRA scores. 

  



Supplementary Material: Cell Tracking Algorithms 

 

This supplementary document provides a description of all cell tracking methods evaluated in this study. 

In total, 17 teams participated with their own, custom developed methods. Generally speaking, cell 

tracking methods involve several steps: 1) preprocessing, in which the quality of raw image data is 

enhanced to facilitate further analysis; 2) cell segmentation (the spatial aspect), in which regions 

satisfying certain criteria are identified in every frame of the video; 3) cell tracking (the temporal aspect), 

in which the segmented cells are associated between frames based on another set of criteria to form 

tracks; and 4) post-processing, which allows better adaptation of a whole image analysis pipeline to a 

particular dataset; that are either performed sequentially or simultaneously [1-4]. Here, we introduce 

the principles underlying each step of each participating method. A complete list of parameters required 

by each method is  given Supplementary Data 4. Either Windows or Linux command line executable files 

of the methods are or will be publicly available through the challenge website. They can require other 

software to be pre-installed on your machine before running them. 

 

  



COM-US 

Authors: Craig Carthel, Stefano Coraluppi 

Email: stefano.coraluppi@compunetix.com 

Platform: Windows 

Prerequisites: None 

 

COM-US: SUMMARY 

Our approach includes distinct detection and tracking stages. The detection stage includes image pre-

processing (convolution-based low-pass filtering), image segmentation (with a computationally-efficient 

iterative histogram-processing approach), and object extraction (baricenters of all large-enough 

contiguous object regions). The automatic tracking employs the multiple-hypothesis tracking paradigm, 

and includes data association (with small hypothesis-tree depth), sequential track extraction (with 

feedback to data association processing to favor confirmed tracks), and track post-processing (to identify 

parent links). Tracking is based on a nearly constant position object motion model. We have not yet 

introduced feature-aided tracking for these datasets. Further refinement to track post-processing will be 

required for improved performance. 

 

COM-US: PREPROCESSING 

Each 2D or 3D frame is smoothed by image convolution with a unity-valued disk (2D) or ellipsoid (3D) 

followed by normalization. This removes spurious spikes from the image data. 

 

COM-US: SEGMENTATION 

The image segmentation process is motivated by the heavy computational burden associated with 

processing of the fairly large 2D or 3D images. Thus, we start by forming an intensity histogram for each 

image. Next, we identify the best-fit N-point approximation to the histogram. This is defined as a set of N 

intensity values, chosen such that the average displacement from an intensity value to the closest of the 

N points is minimized. The pixels that are mapped to the highest and lowest of the N values are retained 

and discarded, respectively. The remaining pixels are then approximated again with an N-point 

approximation. The procedure continues until the remaining histogram contains N or fewer values.  The 

middle value defines the detection threshold. All pixel values that match or exceed the detection 

threshold define the object region; all other pixel values define the background region. The object region 

mailto:stefano.coraluppi@compunetix.com


leads immediately to object detections, as each set of contiguous pixels defines an object. The 

barycenter of each contiguous object region is an object detected. Small objects are discarded. 

 

COM-US: TRACKING 

The automatic tracker takes as input the sequence of detection sets that result from the detection 

processing described above. The automatic tracker is based on a multiple-hypothesis tracking (MHT) 

paradigm that we have enhanced over the years, principally for defense surveillance applications; see [5] 

and references therein. Our approach relies on (1) sequential data-association and (2) track-extraction 

processing, with some feedback from the track-extraction module to the data-association module as 

described below. In the data-association module, all detections are accounted for in multiple-hypothesis 

processing that partitions the set of all detections. Each subset includes at most one detection per time 

point. Association decisions are based on identifying the maximum a posteriori (MAP) global hypothesis 

with a fixed delay; all competing global hypotheses that conflict with the MAP solution far enough in the 

past are discarded, while hypothesis diversity in the recent past is maintained. Track-oriented MHT does 

not require explicit enumeration of global hypotheses. Hypothesis management logic limits the 

hypothesis space by disallowing sufficiently unlikely associations and considering either a missed 

detection or an object death hypothesis in the absence of a measurement update. Hypothesis selection 

relies on local (track) hypothesis scores that in turn, depend on birth and death statistics, detection 

statistics, and object motion and localization statistics that are used in recursive Kalman filtering. 

Spurious false alarms are removed in the subsequent track-extraction stage. The processing entails a 

sliding-window M-of-N test that promotes tentative tracks to nearly-confirmed and, ultimately, to 

confirmed track status. This impacts track scoring in the data-association stage, thus introducing a 

feedback mechanism that enhances overall tracking performance by favoring nearly-confirmed and 

confirmed tracks over competing ones.  At most K missed detections are allowed before track 

termination. 

 

COM-US: POST-PROCESSING 

Although tracker processing does not rely on the detailed shape characteristics of object detections, it is 

important for these to be available at the tracker output for SEG performance evaluation. Thus, when a 

detection is available, the object state estimate is replaced by the latest detection. When a detection is 

not available (i.e., track coast), the object state estimate defines the single pixel that is labeled in the 

output file. While the single-pixel objects represent a node mismatch with respect to TRA processing, it is 



necessary to ensure proper individual and parentage link identification in our current processing scheme. 

Indeed, the final processing stage considers each object track in turn. For each track, we identify the 

closest potential sibling at the time of object birth. If the potential sibling is close enough, a parent link to 

the track at the previous time is introduced, if the track exists. Additionally, a parent link between the 

track at the previous time and the identified sibling replaces the individual link. A more effective track 

post-processing scheme that avoids the need for single-pixel coast-track objects could be considered as a 

future improvement. 

 

  



CUL-UK 

Authors: José Alonso Solís-Lemus, Constantino Carlos Reyes-Aldasoro 

Email: Constantino.Reyes-Aldasoro.1@city.ac.uk 

Platform: Linux 

Prerequisites: MATLAB Compiler Runtime 2013a (x64) 

 

CUL-UK: SUMMARY 

Our algorithm is based on PhagoSight, an open-source MATLAB package for the analysis of fluorescent 

neutrophil and macrophage migration in a zebrafish model [32]. The package consists of pre-processing, 

segmentation, tracking and, if necessary, post-processing and visualization steps.  

 

CUL-UK: PREPROCESSING 

Pre-processing steps are optional and can be determined by the user. The datasets can be reduced in 

size with a construction of a Gaussian pyramid where neighboring elements are averaged to form a new 

pixels, this process reduces the uncertainty of the intensity at the expense of the spatial resolution, and 

in addition can reduce the computational complexity of large datasets. A 3×3 Gaussian filter was applied 

to those datasets that were not reduced. The datasets which presented an uneven background intensity 

were applied a retrospective shading correction algorithm [33]. 

 

CUL-UK: SEGMENTATION 

Segmentation was performed with a hysteresis thresholding that generated three regions: voxels below 

a lower threshold (thresL) were classified as background, and those above a higher threshold (thresH) 

were classified directly as cells. The remaining voxels between these two levels were then classified as 

cells if they are in contact with voxels above the higher threshold, or as background otherwise. Both 

thresholds were automatically determined using Otsu's algorithm. A minimum size value (minSize) was 

selected to discard segmented elements that were small and thus considered as noise. It should be 

noted that the segmentation algorithm was designed to have an automatic value selection without user 

input, through an optimization of the threshold and minimum size selection. Those parameters are 

underlined in Supplementary Data 4. For other datasets, we selected the parameters manually through 

a particle swarm optimization [34]. 
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CUL-UK: TRACKING 

The segmented cells were tracked with a model-based tracking algorithm adapted from the keyhole 

tracking algorithm [35]. The algorithm links the objects in contiguous time points to form the tracks by 

means of a keyhole model, which predicts the most probable landing position of a cell at time t+1 

(“child”), from the position in times t (“parent”), and t-1 (“grandparent”). The most probable step for a 

cell that is moving from time t-1 to time t, is to follow the direction of the previous steps with the same 

velocity to time t+1. Assuming that a child (cell at time t+1) would move with similar direction and 

velocity as its parent (cell at time t), its landing position can be predicted. To consider for changes in 

speed, turns or random walk-like movements, two regions of probability where the child cell is most 

likely to land were defined: a narrow wedge (60° wide) oriented towards the predicted landing position, 

for straight-moving displacements, and a truncated circle (300°) that complements the wedge, for 

random-moving displacements, which together resemble a keyhole. The size of the keyhole at t+1 is 

determined by the distance between times t-1 and t. 

 

CUL-UK: POST-PROCESSING 

Temporal variation of intensity was analyzed as cells that disappear from their tracks and then re-appear 

a few points later. Collisions of cells were analyzed by measuring the volume of cells in time and splitting 

cells whose volume increased considerably. Finally, as the lack of proofreading and editing tools has 

been one of the main barriers in adopting automated and semi-automated methods, PhagoSight provide 

such tools, through which users can evaluate the output of algorithms and correct mistakes that can be 

visually detected.  

 

 

 

 

 

 

 

 

 

 



 

CUNI-CZ 

Authors: Pavel Křížek, Guy M. Hagen 

Email: Pavel.Krizek@lf1.cuni.cz 

Platform: Windows 

Prerequisites: MATLAB Compiler Runtime 2009a (x86) 

 

CUNI-CZ: SUMMARY 

Automated segmentation of objects like cells or cell nuclei and their tracking in time is an important 

procedure for biological research. For segmentation, we propose a simple method based on the k-means 

threshold selection algorithm combined with a sliding neighborhood approach. For tracking of 

segmented objects, we applied a simple method based on frame-by-frame association of nearest 

neighbors. The algorithm was originally designed for data from our Leica SP5 confocal and Andor 

spinning disk microscopes and is based on the experience the authors developed in previous projects.  

 

CUNI-CZ: PREPROCESSING 

Each raw camera image is slightly blurred by a Gaussian kernel with a user-defined standard deviation . 

We perform this step in order to reduce noise and to smooth out the boundaries of segmented objects. 

If one z-stack consists of more images, then blurring is performed for each image in the z-stack 

separately and a maximal intensity projection is used as the final image. 

 

CUNI-CZ: SEGMENTATION 

The segmentation algorithm starts with threshold estimation. We applied an iterative threshold selection 

method based on the k-means algorithm [11] to the blurred camera image. In order to cover large 

intensity variations of cells and background, the threshold value is appropriately adopted in different 

parts of the image. We did this using a sliding neighborhood approach with a window size (box) given by 

the user and with a step of a half of the window size. The threshold value is estimated in each of the 

sliding windows. In this way, we obtain a discrete map of thresholds for different parts of the image. A 

smooth threshold map is obtained by bi-cubic interpolation of the discrete map. 

A binary image with masks of the cells is obtained by thresholding the blurred camera image using the 

generated smooth threshold map. After thresholding, we apply a fill hole transform [12] on the binary 

mailto:Pavel.Krizek@lf1.cuni.cz


image to fill regions with holes. Next, to split masks of cells belonging to one connected component (i.e., 

to separate two touching cells), we perform a watershed transform [13] computed on images obtained 

by one of the following two strategies. Either morphological opening by reconstruction [14] of the 

blurred camera image; or morphological opening by reconstruction of a distance transform [15] of the 

thresholded binary image. The size of the structuring element for the morphological opening operation is 

a user-defined parameter. Finally, cells are detected as connected components in the final binary image. 

Only connected components larger than a given minimum area (minArea) are taken into account. 

 

CUNI-CZ: TRACKING 

The tracking algorithm is based on the nearest neighbor approach. As a reference point for each 

segmented object, we used its center of gravity. We measured the pair-wise distances between the 

positions of the objects in the current frame and the positions of the objects in the previous frames. All 

distances are transformed to probabilities, with higher values corresponding to better position matches. 

With each object, we also associated a weight w such that w = 1 for an object which is still in the field of 

view, w = 0 for an object that divided into more objects so we do not need to track it further, and w  

(0,1) if the object disappears from the field of view. Combining probabilities with weights (distNorm) and 

the user-defined threshold (distThres), we can distinguish the following situations: 

 Many-to-one case (multiple cells overlap): Object in the current frame is marked with the label of 

the closest object from the previous frame. For other objects in the neighborhood we follow the 

one-to-none case. 

 One-to-one case (object migrates to a new position): We keep the track of the object and update 

its position. 

 One-to-none case (object disappears from the field of view): The position cannot be updated, 

but the weight of the object is decreased by 5%. 

 None-to-one case (object enters the field of view): A new object is created. 

 One-to-many case (object divides into two or more objects): Two or more new objects are 

created, and for the original object we set the weight to zero. 

 

CUNI-CZ: POST-PROCESSING 

No post-processing step is performed. 



FR-Be-GE 

Authors: Robert Bensch, Olaf Ronneberger 

Email: bensch@cs.uni-freiburg.de 

Platform: Linux 

Prerequisites: MATLAB 2014b (x64) 

 

FR-Be-GE: SUMMARY 

Our approach [44] for cell tracking focuses on the segmentation of cells in phase contrast microscopy 

images. The key feature of our algorithm is that it strongly favors dark-to-bright transitions at the 

boundaries of the (arbitrarily shaped) segmentation mask, which is effectively found by a fast min-cut 

approach. The small but essential difference to standard min-cut based approaches is that our graph 

contains directed edges with asymmetric edge weights. The tracking algorithm applies segmentation 

propagation to promote temporal consistency. Label propagation is performed by a greedy association 

of segments between two consecutive frames. We provide an open-source implementation for Matlab 

on our homepage [43].  

 

FR-Be-GE: PREPROCESSING 

Image intensities are normalized to the interval [0, 1] first. Then, images are background corrected by 

subtracting the smoothed image (large Gaussian kernel with standard deviation bgr of 20 pixels) from 

the original image. 

 

FR-Be-GE: SEGMENTATION 

Our segmentation approach exploits the fact that the true cell borders in positive phase contrast 

microscopy always appear as a dark-to-bright transition in outwards direction. It means that all borders 

with an inverse transition (bright-to-dark) are definitely not the sought cell borders. We set up a 

segmentation energy functional for a mask M:Ω{0,1} with Ω ⊂ ℝ2 and the given image I:Ωℝ. The 

functional contains a data cost Cobj:ℝℝ that depends on the intensity, and an edge cost Cedge:ℝℝ 

that depends on the intensity gradient at the mask border in outwards direction 

𝐸(𝑀) = 𝜆 ∫ 𝑀(𝑥) ∙
Ω

𝐶obj(𝐼(𝑥))𝑑𝑥 + ∫ 𝐶edge(〈𝑀(𝑥), −𝐼(x)〉)
Ω

𝑑𝑥  

where we define M to be a unit normal vector on the mask boundary and 0 elsewhere. The data cost 

for a gray value v is derived from the foreground intensity histogram P(v|O) and background intensity 

histogram P(v|B) from training regions. We define it as Cobj(v) = (P(v|B) − P (v|O))/(P(v|O) + P(v|B)). The 
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edge cost for the intensity derivative d is computed as 

Cedge(d) ={ exp (−
𝑑2

2𝜎2)        if 𝑑 > 0,                  

 1                             otherwise.               
 

This asymmetric edge term favors dark-to-bright transitions at the mask borders. To optimize the energy 

in (1), we discretize the edge term into eight directions (8 pixel neighborhood) and solve it by a min-cut 

[45] using the maxflow algorithm MATLAB-interface [46]. The min-cut parameters λ and σ are estimated 

by the best performing parameters on the training data found by grid-search. Region histograms (with 

Nbins = 120 bins) for computing the data costs in (1) are obtained from manual foreground and 

background scribbles drawn into a single frame of a training sequence (that is not contained in the 

segmentation ground truth). We use both training sequences (2 frames in total) for dataset PhC-C2DH-

U373 and only one training sequence (1 frame in total) for dataset PhC-C2DL-PSC. Finally, we optionally 

apply a hole-filling algorithm (holeFilling) and discard small segments below a pixel area threshold amin. 

 

FR-Be-GE: TRACKING 

Our tracking algorithm consists of two parts. Segmentation propagation promotes temporally consistent 

segmentation by propagating segmentation information to subsequent frames. Label propagation 

transfers the label of each segment to subsequent frames using a greedy association.  

 

Segmentation propagation. Min-cut segmentation yields a binary segmentation mask. Segmentation 

information is propagated from frame t to frame t + 1 in two fashions:  

 Foreground propagation (FP): The eroded mask is set as hard foreground constraint for the min-

cut segmentation in the next frame. This adds robustness to the region term in case of 

insufficient foreground evidence. The size of erosion must be chosen at least as large as the 

expected motion of the object boundary pixels between frames. The erosion is computed using a 

disk-shaped structuring element (radius serosion). 

 Non-merging constraint (NM): If it can be assumed that cells do not merge, it is reasonable to 

prevent separate objects from merging in the next frame. We achieve this by computing a 

distance transform on the segmentation mask and applying watershed transform seeded at the 

object locations. The boundaries of the herewith computed “support regions” of each object are 

set as hard background constraint.  

 



Label propagation. For propagating labels we use a greedy algorithm. Each segment in frame t 

propagates its label to the segment in frame t + 1 with the highest overlap (measured as intersection 

over union). If a segment in frame t + 1 receives multiple labels, it prefers the segment in frame t with 

the highest overlap and discards the other labels. If a segment receives no label, a new label is assigned. 

Additionally, the provided field of interest (FOI) specification is used to discard segments that lie 

completely outside the FOI (specified by the value E). However, we still use the tracking information 

from the full view to add parent links in case segments, which are tracked on the full view, reenter the 

FOI. 

 

FR-Be-GE: POST-PROCESSING 

No post-processing is carried out after tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FR-Ro-GE 

Authors: Olaf Ronneberger, Robert Bensch, Philipp Fischer, Thomas Brox 

Email: ronneber@informatik.uni-freiburg.de 

Platform: Linux 

Prerequisites: MATLAB 2014b (x64) 

 

FR-Ro-GE: SUMMARY 

Our approach for cell tracking is based on a deep convolutional neural network for segmentation and a 

greedy label propagation for tracking. The convolutional network takes the raw images as input and 

provides the final segmentation masks as output. The network architecture consists of a contracting path 

to capture context and a symmetric expanding path that enables precise localization. The network can 

be trained end-to-end from the few annotated images provided for the training datasets using extensive 

data augmentation with elastic deformations.  

 

FR-Ro-GE: PREPROCESSING 

In all datasets (except for PhC-C2DH-U373), the gray values are image-wise normalized (normInt) to unit 

range and zero median to compensate the changes in illumination during the recording. Two datasets 

(DIC-C2DH-HeLa and Fluo-C2DL-MSC) are downscaled (scaleFactor) to achieve a larger field of view and 

to compensate different recording resolutions. 

 

FR-Ro-GE: SEGMENTATION 

The segmentation is performed by a u-shaped deep convolutional network. It consists of a contracting 

path with a series of convolution, ReLU and max-pooling layers and an expansion path with a series of 

up-convolution, ReLU and convolution layers. In the expansion path, feature maps from the contracting 

path with the same resolution are copied (see [39] for the detailed architecture). The architecture of the 

network is an extension of the “fully convolutional network” [38]. One important modification in our 

architecture is that the upsampling part has a large number of feature maps, which allows the network 

to propagate context information to higher resolution layers. As a consequence, the expansive path is 

more or less symmetric to the contracting path, and yields the u-shaped architecture. The network does 

not have any fully connected layers and only uses the valid part of each convolution, i.e., the 

segmentation map only contains the pixels, for which the full context is available in the input image. This 

strategy allows the seamless segmentation of arbitrarily large images by an overlap-tile strategy. To 
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predict the pixels in the border region of the image, the missing context is extrapolated by mirroring the 

input image. The segmentation of a 512x512 pixel image takes less than a second on a standard laptop 

(equipped with a NVidia GTX 980m GPU). For the challenge contribution, we averaged the predicted 

segmentation maps of the input image and its mirrored versions. 

 

Training the Segmentation Network. The loss function for training is computed by a pixel-wise soft-max 

over the final feature maps combined with a weighted cross entropy loss function [39]. We pre-compute 

the loss-weight map for each ground truth segmentation map to compensate the unbalanced class-

frequency in the training data set, and to force the network to learn the small separation borders, that 

we introduce between touching cells. The loss-weight map is then computed as  

w(x) = wc(x) + w0 · exp (−(d1(x) + d2(x))2/(2σ2)), 

where wc is the weight map to balance the class frequencies, d1:ΩR denotes the distance to the border 

of the nearest cell and d2:ΩR the distance to the border of the second nearest cell. In our experiments, 

we set w0 = 10 and σ ≈ 5 pixels. The provided manual segmentation masks in the training data set do not 

cover all visible cells. To obtain a consistent background training set, we manually created “ignore” - 

regions that cover all unlabeled cells, and set the loss-weights to zero within these regions. In deep 

networks with many convolutional layers and different paths through the network, a good initialization 

of the weights is extremely important. Otherwise, parts of the network might give excessive activations, 

while other parts never contribute. For a network with our architecture (alternating convolution and 

ReLU layers), a good initialization is achieved by drawing the initial weights from a Gaussian distribution 

with zero mean and a standard deviation of √2/𝑁, where N denotes the number of incoming nodes of 

one neuron [36]. Data augmentation is essential to teach the network the desired invariance and 

robustness properties, when only few training samples are available. For microscopic images, we 

primarily need shift and rotation invariance and robustness to deformations and gray value variations. 

Especially, random elastic deformations of the training samples seem to be the key concept to train a 

segmentation network with a very low number of annotated images. We generate smooth deformations 

using random displacement vectors on a coarse 3 by 3 grid. The displacements are sampled from a 

Gaussian distribution with 10 pixels standard deviation. Per-pixel displacements are then computed 

using bicubic interpolation. Gray values of the input images are randomly scaled with a factor drawn 

from a Gaussian distribution with mean 1 and standard deviation 0.1. Drop-out layers at the end of the 

contracting path perform further implicit data augmentation. The augmented input images and their 

corresponding segmentation maps are used to train the network with the stochastic gradient descent 



implementation of Caffe [37]. Due to the unpadded convolutions, the input image is larger than the 

output by a constant border width. To minimize the overhead and make maximum use of the GPU 

memory, we favor large input tiles over a large batch size and hence reduce the batch to a single image. 

To compensate for instable gradients, we accordingly set a high momentum (0.99) such that a large 

number of the previously seen training samples determine the current optimization step. We start the 

training with an initial learning rate of 0.001 which is decreased by a factor of 10 every 20,000 iterations. 

After 60,000 iterations (approx. 10 hours on an NVidia Titan GPU) the training is finished. 

 

FR-Ro-GE: TRACKING 

For tracking, we use a greedy algorithm. Each segment in frame t propagates its label to that segment in 

frame t + 1 with the highest overlap (measured as intersection over union). If a segment in frame t + 1 

receives multiple labels, it prefers the segment in frame t with the highest overlap and discards the other 

labels. If a segment receives no label, a new label is assigned. For the dataset PhC-C2DH-U373, we 

applied two further processing steps that improved the results in our other submission. In each frame 

small segments below pixel area amin are discarded. Additionally, the provided field of interest (FOI) 

specification is used to discard segments that lie completely outside the FOI (specified by the value E). 

However, we still use the tracking information from the full view to add parent links in case segments, 

which are tracked in the full view, reenter the FOI. 

 

FR-Ro-GE: POST-PROCESSING 

No post-processing is carried out after tracking. 

 

 

 

 

 

 

 

 

 

 

 



HD-Har-GEa 

Authors: Nathalie Harder, Karl Rohr 

Email: k.rohr@dkfz.de 

Platform: Linux 

Prerequisites: None 

 

HD-Har-GE: SUMMARY 

Our approach for cell tracking in different types of 2D and 3D microscopy image sequences combines 

segmentation and tracking methods. Segmentation comprises filtering for noise reduction, region-

adaptive thresholding, and watershed transformation for splitting cell clusters. Tracking is based on local 

optimization using a cost function within spatio-temporal regions. The tracking algorithm first 

determines one-to-one correspondences, second, detects mitosis events based on a likelihood measure, 

and subsequently combines mitotic tracks. 

 

HD-Har-GE: PREPROCESSING 

To reduce the image noise, Gaussian filtering (standard deviation F) or median filtering (radius rm1) was 

applied. In the case of bright speckles within the cell nuclei or strongly varying contrasts of neighboring 

objects, intensity clipping was performed where the optimal clipping value was determined using Otsu or 

Renyi entropy thresholding. 

 

HD-Har-GE: SEGMENTATION 

After preprocessing, region‐adaptive thresholding was applied to obtain an initial segmentation. The 

approach uses small image regions (radius rinner) and computes local thresholds in enclosing larger 

regions with a size similar to the average object diameter (router). The sensitivity of the approach can be 

adapted to the image data based on the minimum intensity variance within image regions (2
min). 

Namely, local threshold values are computed if the variance within the respective region exceeds the 

minimum value, otherwise a global (usually higher) threshold is used. The segmentation result is further 

enhanced by median filtering (rm2) and hole filling. To split up cell clusters, a watershed transform after 

Euclidean distance transform is used. This approach is well suited for splitting up clusters of circular or 

spherical objects, however, for more elongated shapes it tends to result in over-segmentation. Thus, for 

data sets with elongated objects (e.g., complete cells) we usually skipped this step to avoid wrong splits.  

                                                           
a In CTC I the method was denoted as HEID-GE. 
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HD-Har-GE: TRACKING 

Our tracking approach exploits the information from cell segmentation and consists of three main steps: 

(1) Determination of one‐to‐one correspondences, (2) mitosis detection and establishment of one‐to‐

many correspondences [6], and (3) detection and merging of trajectories that do not cover all frames of 

an image sequence. In the first step, we use a local optimization procedure, where for each object, 

hypotheses are generated, namely triplets with all potential predecessors and successors within a limited 

Euclidean distance (expected maximum displacement dmax). These triplets are ranked and compared with 

other possible triplets. The rank of a hypothesis is determined based on a cost function, which includes 

the Euclidean distance, the morphological similarity, as well as the trajectory smoothness. The weights 

for these three components (w1, w2) are specified based on the properties of the image type. In the 

second step, appearing objects are investigated to detect mitosis events. Depending on the type of 

staining we exploit different measures (mitMeasure) for mitosis detection: The overlap‐distance ratio, an 

object morphology‐based likelihood measure, and a combination of both measures. The overlap‐

distance ratio (ODR) determines the ratio between the area overlap of potential mother and daughter 

cell objects and their centroid distances [7]. The object morphology‐based likelihood measure (Likelih) 

takes into account the sizes and the mean intensities of potential mother and daughter cells normalized 

to the average values of the whole population. The different terms can be weighted and adapted 

according to the image data, for example, to define whether mitotic cells are darker or brighter than the 

average object intensity value (extension of the likelihood measure for mitosis detection in [8]). The 

combined measure (Combi) exploits both the overlap‐distance ratio and the object morphology‐based 

likelihood measure. If a mitosis event is detected, the trajectories of mother and new daughter cell are 

merged.  

 

HD-Har-GE: POST-PROCESSING 

In the final step, trajectories that do not cover all frames of an image sequence are considered and 

merged if they are in close spatio-temporal vicinity. 

  



HD-Hau-GE 

Authors: Carsten Haubold, Martin Schiegg, David Stöckel, Steffen Wolf, Fred A. Hamprecht 

Email: carsten.haubold@iwr.uni-heidelberg.de 

Platform: Linux 

Prerequisites: None 

 

HD-Hau-GE: SUMMARY 

Our tracking-by-assignment approach, Conservation Tracking [40], incorporates a pixel-wise classification 

into foreground and background, followed by connected component extraction to obtain the 

segmentation. To solve the assignment problem, for each detection we build a graphical model 

containing random variables, which are connected to possible successors via transition nodes. The most 

probable configuration is found by running a global optimization. To cope with under-segmentation, a 

detection is allowed to contain more than one object. Two classifiers are trained to support the 

optimization in deciding how many cells each detection contains, and which cells possibly divide. The 

training of all these classifiers was facilitated by the open source software framework ilastik [41]. All 

three classifiers are Random Forests, trained by manual annotation of the Training datasets with 

interactive feedback in ilastik. Only 5 to 10 annotated examples for every case were required to reach 

the submitted quality. 

 

HD-Hau-GE: PREPROCESSING 

No preprocessing is carried out before segmentation. 

 

HD-Hau-GE: SEGMENTATION 

To extract detections from the raw data, we interactively train a random forest by sparsely annotating 

pixels (or voxels), and let it predict probabilities for all pixels indicating whether they belong to the 

foreground or background class. The annotations are drawn by the user with a brush tool, while the 

predictions are presented as interactive feedback. The annotations are refined by drawing additional 

strokes until the predictions yield properly segmented cells or nuclei. The random forest works with a set 

of features computed from the raw images (e.g., Gaussian gradient magnitude or the structure tensor 

eigenvalues). We threshold the pixel-wise probability for the foreground class at 𝜃𝑡ℎ𝑟𝑒𝑠ℎ, and extract the 

connected components to get the segmentation. We also filter detections that are too small and 

comprise less pixels than smin, or are larger than smax. 
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HD-Hau-GE: TRACKING 

The tracking routine [40] builds a graphical model of the detections and the possible transitions. 

Conservation Tracking is not restricted to tracking cells or nuclei, but can track arbitrary dividing or non-

dividing objects. It allows objects to merge, to split after a merge, and to divide. To be able to distinguish 

the very similar events of splitting and dividing, it uses two classifiers: one for object count per detection, 

and one for divisions. The first classifier is trained to detect how many cells or nuclei are combined into a 

segment. The division classifier learns, based on a mother cell and two children candidates in the next 

time frame, which features indicate a division. The classifiers are trained in a similarly interactive fashion 

as the pixel classification mentioned above: a user assigns the correct class to some detections in the 

GUI, and the current predictions for all other detections are presented as colored overlay over the data. 

By annotating more detections, the user can improve the classifiers to his/her satisfaction. The 

optimization procedure uses those classifiers as a guide, but can contradict them to conserve objects in 

the global temporal context. The classifier influence can be controlled using parameters as described 

below.  

 

Graphical Model and Global Optimization. As mentioned before, we build a probabilistic graphical model 

and add random variables for all detections and possible transitions. Every detection can contain 

between 0 and m objects. Each of these configurations denotes a state in the optimization, and has an 

energy value attached. This energy is the negative logarithm of the probability for this state as it was 

predicted by the object count classifier. It can be adjusted with the factor wdet (we use the same notation 

for parameters as in the original paper [40]). The energy of an appearing cell can be controlled via wapp, 

and disappearances by wvan. The energy decreases linearly from a distance of dborder to the border. Cells 

that have their center closer than dcrop to their border, are discarded. A transition node is created for 

every detection-pair in consecutive temporal frames, if the Euclidean distance d between their centers is 

less than dmax pixels. Transition probabilities are defined relative to the Euclidean distance d as 

ptr(d) ={
exp (−

𝑑

𝛼
)               if this transition is active,                  

1 − exp (−
𝑑

𝛼
)       otherwise.                                              

(1) 

Transition utility energies are thus −wtr · log(ptr(d)). Each detection node in the graph that is connected to 

two outgoing transition nodes, meaning there are two possible fates in t + 1, could possibly divide. Then, 



we add an extra random variable that captures whether this division is active. The negative logarithm of 

the division probability predicted by the classifier is used as energy there, scaled by wdiv. The optimal 

parameters for tracking (wapp, wvan, wdiv, wdet, and wtr) were obtained through structured learning on the 

training datasets, the other parameters were found by a grid search. We find the tracking solution with 

minimal energy by transforming the graph described above to an integer linear program with indicator 

variables for each detection-, transition- and division hypothesis. We integrate conservation constraints, 

and optimize using the commercial CPLEX solver [42]. 

 

HD-Hau-GE: POST-PROCESSING 

For the PhC-C2DL-PSC dataset, our segmentation was trained such that it separates most objects, and 

thus the detections did not cover the complete cells in the raw data. We applied a dilation operation to 

the segmentation with a structured disc element of radius rdilate = 2. We did not dilate the results of any 

other dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

IMCB-SG 

Authors: Pengdong Xiao, Weimiao Yu 

Email: xiaopd@hotmail.com 

Platform: Windows 

Prerequisites: MATLAB Compiler Runtime 2012a (x64) 

 

IMCB-SG: SUMMARY 

We developed two different algorithms for two different categories of datasets, namely two-dimensional 

spatio-temporal (2D+t) and three dimensional spatio-temporal (3D+t). For 2D+t case, we further 

classified the data sets into fluorescent and phase contrast types. For 3D+t case, we treat low signal to 

noise ratio (SNR) and highly non-uniform intensity data sets separately from normal data sets while 

conducting segmentation. It is performed using a seed controlled watershed approach. Tracking for 2D+t 

is realized by directly tracing the seeds; and tracking for 3D+t is conducted by frame-to-frame data 

association according to the minimization of a cost function using the Hungarian algorithm. 

 

IMCB-SG (1): 2D+t datasets 

For 2D+t cell tracking, we use an approach of performing tracking first then followed by segmentation. 

 

Tracking. First, a Gaussian filter is used to smooth the images in spatial domain for two purposes. One is 

to remove noise and the other is to highlight the region of the interested objects. Window size and 

standard deviation are two parameters of the Gaussian filter that are set based on the structure of cells 

or nuclei in the images. Morphology operations are used to further remove background noise. For low 

contrast images, we use histogram equalization and contrast adjustment techniques to enhance the 

images. Second, we align the 2D images into 3D stacks such that the third dimension represents time. 

After the alignment, we use a convolution based Gaussian filter to smooth the images along time. The 

purpose we perform this step is to recover missing objects caused by low temporal resolution, weak or 

corrupted signal, or fast movement of cells or nuclei. After the first two steps, we use extended maxima 

transform to locate seeds based on image gradient. The extended maxima transform is a local maxima 

searching algorithm which can have different image features as input. We have tried both the distance 
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function based on obtained binary images and image gradient as input, and the result shows that image 

gradient performs better on most data sets. In the last step of the tracking, the trace of the above-

mentioned 2D seeds forms 3D segments which are our sought tracking trajectories. We apply a 

morphological opening operation to remove some small 3D segments that are considered as noise or 

artifacts caused by the processing. Tracking is realized by tracing the trajectories of the remaining 3D 

segments. Cell movement and mitotic events are all incorporated in the trajectories. 

 

Segmentation. In the segmentation stage, a thresholding technique is applied to obtain binary images for 

each 2D time frame. A global image threshold value by Otsu’s method is used to conduct thresholding. 

After thresholding, we use morphological opening to remove spurious objects. Based on the binary 

images obtained, we combine 2D seeds in each time frame and image gradient after Gaussian smoothing 

in both spatial and temporal domains to use the watershed algorithm to obtain final segmentation. The 

main purpose of using the seed controlled watershed algorithm is to solve the touching cell 

segmentation problem. In addition, for phase contrast images we use a linear imaging model to restore 

artifact free images by removing halos and shade-off from phase contrast images [28]. After the 

restoration, the artifact free images are used as input of our algorithms and the rest of the processing for 

segmentation and tracking is the same. 

 

IMCB-SG (2): 3D+t datasets 

For 3D+t data sets, we perform segmentation first and then follow by tracking. 

 

Segmentation. Segmentation is performed differently for normal datasets and for low signal to noise 

ratio (SNR) datasets with highly non-uniform intensity. During data preparation stage, isotropic 3D image 

stacks based on linear interpolation are prepared first before segmentation. Severe artifacts appear in 

data sets with low SNR and highly non-uniform intensity. Therefore, the proposed segmentation is 

performed separately for normal data sets and artifact data sets. For normal data sets, we apply a 3D 

Gaussian kernel to smooth the images and parameters are set according to the size of cells or nuclei. 

After that, we generate a histogram to determine a threshold value and apply thresholding to obtain 3D 

binary images. Morphological opening is used to remove small objects from the binary images. 

Furthermore, we use distance transform to compute Euclidean distance. By using the distance function 

as input, we apply extended maxima transform to find seeds in 3D. According to the seeds and the 

binary images obtained, the watershed algorithm is used to perform final segmentation. For data sets 



with low SNR and highly non-uniform intensity, we first use linear interpolation to down-sample image 

stacks. The main reason for conducting this step is that the following processing steps are very 

computationally expensive with original resolution. With reduced image resolution, we can perform 

Gaussian smoothing in 3D spatial domain efficiently. At the same time, we can also perform background 

removal by using morphological operation and contrast adjustment to enhance the images. After these 

preprocessing steps, we interpolate the down-sampled images back to their original size. Then, we 

conduct thresholding to obtain binary images, and use distance function or image intensity as input to 

detect seeds by using extended maxima transform. Final segmentation is realized by using a seed 

controlled watershed algorithm based on distance function and image intensity. 

 

Tracking. For tracking of 3D+t data sets, we have used two approaches to tackling the problem. The first 

approach is a nearest neighbor search based algorithm. We first define a region corresponding to a cell 

in the first time frame. According to the number of potential objects in the region of the next time frame, 

we determine whether it is a migration or mitosis. A recursive tracing technique is used to construct 

lineage trees of cell mitoses. The second approach is based on global matching using the Hungarian 

algorithm, which combines both Euclidean distance and overlapping volume. We deal with mapping 

cases of one-to-one, one-to-many, and many-to-one. For one-to-one case, we consider it as a migration. 

If it is a many-to-one case, we choose one with the least cost and the rest are considered as termination 

in this time frame. One-to-many case is considered as a mitotic event and if potential matches are bigger 

than two then new cell emerging situation is considered. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

KIT-GE 

Authors: Johannes Stegmaier and Ralf Mikut 

Email: johannes.stegmaier@kit.edu  

Platform: Windows 

Prerequisites: MATLAB Compiler Runtime 2014a (x64) 

 

KIT-GE: SUMMARY 

Our framework is based on the TWANG segmentation algorithm as described in [25, 26]. In particular, 

the algorithm performs a seeded segmentation of the provided image data that is capable of extracting 

fluorescently labeled objects from 2D or 3D images reliably and fast. Temporal associations were 

identified using a straightforward nearest neighbor matching as implemented in our open-source 

MATLAB toolbox Gait-CAD [27].  

 

KIT-GE: PREPROCESSING 

Noise reduction of the input images was performed using a 2D median filter (medianRad) and to smooth 

the segmentation results, an additional Gaussian filtering was applied (gaussVar). In the case of 3D 

images the median filtering was performed individually for each of the slices. For the Fluo-N2DH-GOWT1 

dataset an additional morphological closing was used to avoid holes in the segmentation (closingRad). 

Using a down-sampled version of the input image (width and height scaled by 0.25, depth unchanged for 

3D images), seed points were detected by identifying local maxima in the 8-neighborhood (2D)/26-

neighborhood (3D) of each pixel within a Laplacian-of-Gaussian (LoG) space-scale maximum projection, 

which was iteratively calculated using LoG filtered images of different discrete scales (LoGMin, LoGMax). 

We used a non-strict maximum detection to avoid misdetections caused by intensity plateaus and 

merged redundant seed points based on a minimum expected distance criterion. At each identified 

location, the mean intensity of a 7x7 window was calculated and used to discard low intensity seed 

points with a semi-automatically optimized binary threshold (seedThres). 

 

KIT-GE: SEGMENTATION 
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The actual segmentation of the spherical objects was performed on each image individually using the 

TWANG segmentation algorithm [25]. For every detected seed point, a cube with side lengths 

proportional to the radius of the respective blob was cropped from the preprocessed images and the 

regions were processed in parallel [26]. With the goal of a fast approximate segmentation of (hyper-) 

spherical objects, the cropped image regions were transformed to a representation that could be 

segmented by a simple adaptive thresholding. Therefore, a new image was formed based on a Gaussian 

weighted dot product of the seed point normal (a normalized direction pointing away from the seed 

point) with the normalized intensity gradient vector at that each pixel (pointing in the direction of the 

steepest intensity change) as described in [25] (gradStd, kernelSizeMult, and kernelStd). In this 

transformed image, the transition regions between individual nuclei obtained low intensity values, 

whereas pixels belonging to the currently considered nucleus obtained high intensity values that could 

be easily separated from the background using an adaptive binary threshold (Otsu’s method). 

 

KIT-GE: TRACKING 

The identification of temporal associations of the detected nuclei was derived with the tracking toolbox 

contained in the open-source MATLAB toolbox Gait-CAD [27]. Essentially, the centroids of identified 

segments were tracked by identifying nearest neighbors in subsequent frames. Matches were only 

considered as valid if maximum distance was not exceeded (maxDist). If the distance ratio of the closest 

and the second closest nearest neighbor was sufficiently small, the nucleus was considered a potential 

cell division candidate (neighDistRatio). Post processing routines for cell division detection and the fusion 

of fragmented tracks, however, are still under development and were disabled for the submitted 

tracking results. The tracking results were subsequently linked back to the segmentation images, i.e., the 

intensity values of all segmented regions within each image were set to the assigned tracking ID. 

 

KIT-GE: POST-PROCESSING 

No post-processing is carried out after tracking. 

 

 

 

 

 

 



 

 

 

 

KTH-SE 

Authors: Klas E. G. Magnusson, Joakim Jaldén, Helen M. Blau 

Email: klasma@kth.se 

Platform: Windows 

Prerequisites: MATLAB 2012b (x64) or higher 

 

KTH-SE: SUMMARY 

We have used a tracking by detection framework with three separate segmentation algorithms and a 

track linking algorithm based on the Viterbi algorithm. For the Fluo-N3DL-DRO dataset, we also used a 

detection pre-processing algorithm based on GM-PHD filtering, which allows us to use dynamic motion 

models in the track linking step. When possible, we used a search algorithm to optimize the 

segmentation parameters, but in some cases we got better results by optimizing the parameters 

manually in a graphical user interface. Automatically optimized parameter values are underlined in the 

text below as well as in the parameter configurations listed in Supplementary Data 4. 

 

KTH-SE: PREPROCESSING 

All images were converted to 64-bit double images with a saturation intensity of 1. 

 

KTH-SE: SEGMENTATION 

We used three different segmentation algorithms to generate the binary segmentation masks, which we 

then post-processed to extract cell regions. When possible, we used a search algorithm to optimize the 

segmentation parameters, but in some cases we got better results by optimizing the parameters 

manually in a graphical user interface. Automatically optimized parameter values are underlined in the 

descriptions below.  

 

Bandpass segmentation. To segment all of the Fluo datasets and PhC-C2DL-PSC, we used the bandpass 

filtering based segmentation algorithm that we presented in [47]. We performed the filtering by 

convolving the original image I with two different Gaussian filters GS and GB, with covariance matrices 
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ΣS = 𝜎S
2Σ and ΣB = 𝜎B

2Σ. In two dimensions, Σ is the 2×2 identity matrix, and in three dimensions 

Σ = diag(1, 1, 1/r2), where r is the ratio between the voxel height and the voxel width. The two filtered 

images are given by IS = I ∗ GS and IB = I ∗ GB, and the bandpass filtered image is computed as IBP = IS − αIB, 

where α is a free parameter. The binary segmentation mask is obtained by applying the threshold τ to IBP. 

To avoid under-segmentation of dim objects that are close to bright objects, we preprocessed some of 

the datasets using intensity clipping, where all pixel values above Imax are set to Imax. In Fluo-C2DL-MSC 

there was a bright background region in the upper part of the image, which was not removed entirely by 

the bandpass filter. To deal with this, we computed a background image by taking the minimum intensity 

for each pixel position, through the time dimension of the image sequence. We then subtracted this 

background image. In Fluo-N3DH-CE the noise properties are different in the different image 

dimensions, and therefore we used a 5×1×3 median filter to reduce the noise before we applied the 

bandpass filter. In Fluo-N3DH-CE and PhC-C2DL-PSC, we used different values for 𝜎S  and 𝜎B  for the first 

and the last image of the sequence, and used linear interpolation to compute different values for each 

image in between.  

 

Variance segmentation. To segment the cells in PhC-C2DH-U373, we computed a texture image 

representing the intensity variance in a region around each pixel in the original image. This technique has 

been used previously to segment cells in transmission microscopy images [48, 49]. But instead of just 

computing the variance in a neighborhood of each pixel, we weighted the surrounding pixels using a 

Gaussian kernel G with covariance matrix Σvar = 𝜎var
2 I2, where I2 is the 2 × 2 identity matrix. We computed 

the weighted local variance image V as (G ∗ I2)/ (G ∗ 1)- (G ∗ I)2/ (G ∗ 1)2, where I2 is an image with the 

squared pixel intensities and 1 is an image with all ones. The obtained variance image was thresholded 

using a threshold τvar to give a binary segmentation mask. We used the parameter values 𝜎var = 1.88 and 

τvar = 5.57E-5. To get rid of background features, we first subtracted a background image. The 

background image was computed as the median intensity for each pixel position, taken over the time 

dimension of the sequence. 

 

Ridge segmentation. To segment cells in DIC-C2DH-HeLa, we developed an algorithm inspired by the 

algorithm used to segment muscle fibers in [50]. We first applied a ridge detection filter similar to the 

filter described in [50], to highlight the boundaries between the cells. The ridge detection was done by 

smoothing the image with Gaussian kernels with standard deviations σ of 5, 6, 7, 8, 9, and 10 pixels and 



computing the Hessian at each pixel of the six resulting images. The ridge image ν0(σ) at the scale σ was 

then computed from the eigenvalues λ1 and λ2, where λ1 ≤ λ2, of the corresponding Hessians as  

v0(σ) ={
0                                                 if λ1 > 0,                  

exp (
−RB

𝛾2 ) (1 − exp (
−𝑆

𝛽2))                                  otherwise,                                              
 

where RB = |λ2|/|λ1| and S = (λ1)
2 + (λ2)

 2. We used γ=1 and β=10. The final ridge image was obtained by 

taking the pixel-wise maximum of ν0(σ) over all σ and smoothing using a Gaussian filter with a standard 

deviation of 1 pixel. Once we had the ridge image, we transformed the intensities using the function 

f(x) = asinh(20x), to enhance dim ridges, and divided by the mean intensity of the transformed image. 

Then, we thresholded the ridge image at T=0.75, and skeletonized the resulting binary mask to extract 

cell boundaries. To determine which of the resulting regions were cells and which were background, we 

computed a local variance image where each pixel value represented the sample variance in a 9×9 

neighborhood of the corresponding pixel in the original image. Regions with an average local variance 

above 0.0005 were considered to be cell regions. To fill in gaps in the skeletonized boundaries, we 

detected all end points of the skeleton and connected pairs of them by straight lines. End points were 

connected if they were no more than 50 pixels apart, and if the added line cut through a single segment, 

without generating a fragment smaller than 7500 pixels. If one of the new regions would become a 

background region, the size threshold was instead set to 200 pixels, as the operation would not split a 

cell in two. After joining end points, we removed cracks in regions by erasing all boundary pixels, which 

were bordering a single region. Then we merged the background regions and the border pixels into a 

single background region. Finally, we merged cell regions with less than 7500 pixels into adjacent cell 

regions until all cell regions either had at least 7500 pixels or were surrounded by background pixels.  

 

Post-processing. To break regions with multiple cells into individual cell regions, we applied a seeded 

watershed transform (watersheds) to the image intensity (wI), the bandpass filtered image (wB), or the 

distance transform (wS) of the binary segmentation mask. The pixel values in the distance transform are 

the Euclidean distances to the closest background pixels. For z-stacks, where the voxel height was 

different from the voxel width, we used the anisotropic distance transform [51], where the distance 

between z-planes is different from the distance between neighboring voxels in the same plane. In Fluo-

N3DH-CE and Fluo-N3DL-DRO, this did however give poor separation boundaries between the 

watersheds, as the distance between z-planes was too large. To avoid these problems, we inserted 

virtual z-planes between adjacent z-planes in the distance transform. We assigned values to the virtual z-

planes using linear interpolation, ran the watershed transform and then removed the virtual planes. We 



used nine virtual z-planes for Fluo-N3DH-CE and two for Fluo-N3DL-DRO. For all datasets, the watershed 

transform was constrained to the foreground pixels of the binary segmentation mask, to speed up the 

computation, and to avoid getting watersheds, which overlap with multiple cell regions. To avoid over-

segmentation, we applied Gaussian smoothing with a standard deviation of σW, and/or an h-minima 

transform with an h-value of Hmin. In Fluo-N2DH-GOWT1, we also removed watershed seeds with a 

distance transform value below 10 pixels, to further reduce over-segmentation. In Fluo-C2DL-MSC and 

PhC-C2DL-PSC, we applied an additional watershed transform, after the first one, to break even more 

clusters into individual cells. To get rid of regions without cells, we removed regions with fewer than Amin 

voxels, and regions where the summed voxel intensity was below Smin. To compute the summed voxel 

intensity, we subtracted the minimum value of the image, and summed all voxels inside the segmented 

region. In Fluo-N3DL-DRO, we also removed regions larger than 10000 voxels. For some datasets, we 

applied morphological operators to the extracted cell regions. We filled in holes in the segments of all 

datasets. In the Fluo-N2DH-SIM+-02 image sequence and in FluoN3DH-SIM+, we added all pixels inside 

the convex hulls of the original regions. Whenever a pixel was in the convex hull of multiple regions, we 

did not add it to any of them. In Fluo-N2DH-GOWT1 there were also pieces missing from the segments, 

but the true regions were not always convex, so to fill in missing parts, we instead applied morphological 

closing with a circular structuring element with a radius of 12.2 pixels. The variance-based segmentation 

of PhC-C2DH-U373 tends to give too large regions, due to the large kernel size used to compute the 

variance. To overcome this problem, we applied morphological erosion with a circular structuring 

element with a radius of 8.31 pixels. In DIC-C2DH-HeLa there was quite a lot of over-segmentation, but 

in many cases over-segmented regions were correctly segmented in adjacent images. We therefore tried 

to reduce the over-segmentation by looking for cases where multiple cells overlapped with the same 

region in an adjacent image. If the fragments were smaller than 15000 pixels and had at least 60 % of 

their pixels in common with the region in the adjacent image, they were merged into a single region. 

 

Parameter optimization. For many of the datasets we used an automated search algorithm to optimize 

the segmentation parameters. The search algorithm used a type of coordinate ascent with variable step 

length to optimize the individual parameters one at a time. The parameters were initialized using manual 

tweaking, and the step lengths were set to 10 % of the initial values. In each optimization iteration of the 

optimization, the algorithm goes through the parameters one at a time and tries both increasing and 

decreasing them by the corresponding step lengths. The parameters are adjusted to the best value if 

either of the options gives a better result. If a better segmentation is found, the step length is increased 



by 20 % and otherwise it is decreased by 20 %. We used SEG as utility function for the optimization and 

ran it for 25 iterations. For Fluo-C2DL-MSC, Fluo-N2DH-SIM+, and Fluo-N3DH-SIM+, the parameters 

were optimized separately for each image sequence, but for all other datasets, the optimization was 

performed over all image sequences simultaneously, on the average SEG. 

 

KTH-SE: TRACKING 

For all datasets except Fluo-N3DL-DRO, we applied our global track linking algorithm [49] directly to the 

detected cell regions. For Fluo-N3DL-DRO we used a newly developed detection preprocessing algorithm 

[52], which takes advantage of the dynamic nature of the nuclei motion by preprocessing the detected 

locations using a Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter [53]. Once we had 

preprocessed the locations, we linked them using the track linking algorithm presented in [49]. 

 

Global track linking. Our track linking algorithm is global in the sense that it considers all images of the 

sequence simultaneously when tracks are generated. The algorithm optimizes a probabilistically 

motivated scoring function by iteratively adding cell tracks to the image sequence. This is done by 

constructing a state space diagram representing all possible ways in which an additional cell track can be 

added to the image sequence [49]. The arcs of the state space diagram have scores associated with 

them, so that we can find the track that increases the scoring function the most by finding the highest 

scoring path through the state space diagram. Given that the state space diagram is a trellis graph, the 

highest scoring path can be found by solving a shortest path problem using the Viterbi algorithm. To 

prevent incorrectly created tracks from blocking the creation of correct tracks in subsequent iterations, 

the preexisting tracks can be edited using so called swap operations, when new tracks are created [49]. 

The scoring function is a sum of logarithmic probabilities of tracking events, which describe migration, 

mitosis, appearance, disappearance, and the number of cells in each detection. The probabilities of 

migration events are computed as described in [49], using a Brownian motion model where the location 

of a cell in one image is assumed to follow a Gaussian distribution with covariance matrix 𝜎V
2Σ, centered 

around the location of the cell in the previous image. We used the same Σ as in Bandpass Segmentation, 

except for Fluo-N3DH-CE, where we used Σ = diag(1, 1, 1/(4r)2), as there was significantly less motion in 

the z-dimension than in the other dimensions. The values for 𝜎V were set manually for all datasets. In 

Fluo-N3DH-CE, we used different values for 𝜎V  for the first and the last image of the sequence, and used 

linear interpolation to compute a different value for each image in between. The prior probabilities that 

the segmented regions contain zero, one, or more than one cell are denoted p0, p1, and p2. The 



probability that a cell undergoes mitosis in a region is denoted pS, and the probability that a cell appears 

or disappears randomly in a region is denoted pA. All of these probabilities were set manually. Once the 

Viterbi algorithm has finalized generating tracks, the segmented regions with multiple cells are separated 

using k-means clustering of the pixel coordinates as described in [49], so that each cell gets a region of its 

own. Then the track linking is updated, to account for the new centroid positions of the individual cells, 

by solving an assignment problem that maximizes the scoring function. For the image sequences which 

have FP=”yes”, we included segmented regions in the results even if the track linking algorithm found 

them to be false positives. This was done to maximize the TRA and SEG measures, which penalize false 

negatives more than false positives. 

 

Global track linking with detection preprocessing. The cells in Fluo-N3DL-DRO form a tissue which 

deforms as the embryo develops. Because of this, the nuclei follow smooth and predictable trajectories. 

The track linking procedure described in the previous section assumes that the nuclei follow Brownian 

motion, and can therefore not take the velocities of the nuclei into account when it predicts where they 

are going to be in the next frame. To enable tracking of fast moving nuclei, we therefore used the 

algorithm described in [52]. It first runs a GM-PHD filter on the centroids of the nuclei and then links the 

Gaussian components (which include velocity states) of the computed hypothesis densities into tracks 

using the track linking algorithm in [49]. For the GM-PHD we used the directed linear motion model 

previously used by us to track simulated microtubules in [52], with a scale factor q = 0.5 for the process 

noise, and an observation noise covariance of R = 4Σ. For the remaining parameters described in [52] we 

used the following values: pS = 0.9999, pD = 0.999, κ = 4E−6, wmin = 0.001, KLDmin = 1, Jmax = 10000, and 

𝜎V = 2. We first tracked all the nuclei using the algorithm described above, and then we selected the 

tracks that overlapped with one of the manually marked nervous system nuclei in the first image. For 

nervous system nuclei, which had no overlapping tracks, we selected the closest non-overlapping track. 

We also had the a priori information that all of the selected tracks should reach the end of the video. We 

therefore extended broken selected tracks by linking them to fragments of unselected tracks. This was 

done by propagating the state of the broken track to the frame after the break, using the directed linear 

motion model, and then linking it to the closest unselected track in that frame. This was done iteratively 

until all selected tracks reached the end of the image sequence. The extension of broken tracks was 

expected to improve the results significantly as the rate of false positive tracks was found to be very low 

on the training data before this step. The performance increases on the training data was however small. 

Tracking all cells is computationally more demanding than tracking just the cells that are counted 



towards the final score, but we wanted to take the opportunity to push the boundaries of our tracking 

solution using the Fluo-N3DL-DRO dataset. 

 

KTH-SE: POST-PROCESSING 

To remove segmentation errors that were due to over-segmentation in the watershed transforms, we 

iteratively merged region fragments without cells into adjacent regions with cells, after the tracking had 

been completed. We took this idea one step further in the image sequence FluoC2DL-MSC-01, where we 

also merged region fragments without cells in image t, into cells with which they overlapped in one of 

the images t − 3, t − 2, t − 1, t + 1, t + 2, and t + 3. The fragments were merged with the regions of the 

cells in image t, provided that the cells were present in that image. The merging was done iteratively 

until no more fragments could be merged. 
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Authors: Oleh Dzyubachyk, Erik Meijering 
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Platform: Windows 

Prerequisites: MATLAB Compiler Runtime 2012a (x64) 

 

LEID-NL: SUMMARY 

The developed method is based on the model-evolution approach, where the segmentation and tracking 

tasks are performed simultaneously. The level sets are chosen as the model due to their ability to 

provide high-quality segmentation on different types of images and natural ability to handle topological 

changes. In general, the framework follows that described in our earlier publication [10]. The algorithm 

was tailored to each particular data sequence by selecting a suitable set of parameters. In addition, 

several additional features were implemented and used in different combinations for each particular 

data sequence. For example, one of such additional built-in routines helps overcoming the situation 

when the level set segments two just divided nuclei as one object. Also special attention has been paid 

to segmenting the nuclei entering the field of view, which were detected by producing a rough estimate 

of the image foreground at each time step. Several methods, including various thresholds and other fast 

binary segmentation methods, were added to the algorithm for this purpose. Selection of the most 

appropriate binary segmentation method for the initial binary segmentation and detection of nuclei 

entering the field of view was performed empirically.  

LEID-NL: PREPROCESSING 

No data preprocessing is performed. 

LEID-NL: SEGMENTATION AND TRACKING 

The presented cell tracking and segmentation algorithm is based on the method described in our earlier 

publication [10]. Within this approach, segmentation and tracking are encapsulated into a single task by 

the model-evolution approach. More precisely, each object being tracked is represented by a model, 

which is fitted to the data at every time point. During such fitting, information of different nature, like 

image data or regularity information, can be combined into a single energy functional, which is 

subsequently minimized via the gradient descent method. Level-sets were chosen as the model for their 

ability to provide high-quality segmentations for wide range of microscopy data and natural topology 

change, which is important for handling cell division events. 
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In the current version of the algorithm, several modifications have been introduced in comparison with 

the method presented in [10]. The most important modifications are described below (see also “Post-

processing”). 

Separation of touching cells. In out method, the position of the optimal separation plane between two 

touching cells is detected based on the minimum of the Radon transform of the intensity image in the 

local window containing both objects. For large objects, this operation can be rather computationally 

expensive. To make the separation more efficient, in this implementation of our method, we reduced 

the space of possible locations of the dividing plane by forcing it to pass through a preselected point. This 

point is calculated as the one corresponding to the intensity minimum on the segment connecting the 

markers of the objects being separated. 

Initial segmentation and detection of entering cells. In our method, both the initial segmentation and the 

detection of objects entering the field of view, is performed based on a rough estimation of the image 

foreground. This is achieved by binary segmentation of the image, which can be done in many different 

ways. To improve the flexibility of the method, we made this step dependent on the type of the data 

being processed. Thus, we have extended our algorithm with a wide range of binary segmentation 

methods, in particular various thresholds. The most appropriate method for each data sequence is 

selected empirically. 

Inter-scan cell motion compensation. The model-evolution approach, that our method is based on, 

assumes sufficient overlap between the two regions occupied by an object at every two consecutive time 

points. However, in some cases, for example when the objects are relatively small and fast moving, 

and/or the temporal resolution is low, this condition is violated. In order to compensate for the inter-

scan motion, we have developed a scheme that estimates the new position of each object at the next 

time point based on its current position. This operation is performed before the evolution of each 

contour, and consists of two main steps: 1) Marker detection, and 2) Joint estimation of the new position 

of all the objects. In a similar way, we deal with the cases when in the data sets with DNA staining, e.g. 

Fluo-N2DL-HeLa, two daughter cells move far away from the final position of the mother cell. For 

detection of such events, we supply our algorithm with different prior information, in particular, that the 

daughter cells typically move in the direction perpendicular to the major axis of the mother cell. 

 

 



LEID-NL: POST-PROCESSING 

Even though level-sets can naturally change their topology, splitting or not-splitting of the contour in 

each particular case depends on several factors, in particular image data and energy weights. In some 

cases, too strong regularization can preclude the contour from splitting. This happens either in the cases 

when the energy minimum corresponds to the situation when one level-set engulfs two proximate 

objects, or when the desired energy minimum is not reached due to the contour evolution getting stuck 

in a local energy minimum. In cell segmentation, such cases are quite often encountered when two 

daughters do not move far apart from each other. To better handle such cases, we have extended our 

algorithm with an additional post-processing step. The level-sets that might be engulfing two separate 

cells after the convergence of the contour evolution are detected by low solidity, defined as the ratio of 

the total volume to the volume of the convex hull of their shapes. Subsequently, an additional round of 

contour evolution is performed on these objects with relaxed regularity constraints, starting from the 

current state. The contours that do split into two disjoint parts as result of such additional contour 

evolution are labeled as belonging to divided objects, otherwise the old contour state, before the 

additional evolution round, is kept. 
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Platform: Windows (x64) 
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MU-CZ: SUMMARY 

The method follows the tracking by model evolution paradigm. It is based on the minimization the Chan-

Vese model in a fast level set-like framework that is integrated with a topological prior allowing 

simultaneous tracking of multiple cells over time. 

MU-CZ: PREPROCESSING 

To reduce the amount of noise in the analyzed 2D and 3D time-lapse sequences, every single frame was 

preprocessed using a Gaussian filter with the standard deviation of one pixel in each direction. 

 

MU-CZ: SEGMENTATION AND TRACKING 

The method used for analyzing some of the competition datasets is built on our previously published cell 

tracking scheme [18, 19]. It follows the tracking by model evolution paradigm, in which the segmentation 

and tracking steps are solved simultaneously, exploiting final results of individual frames as initial 

conditions for the analysis of the following frames. The approach is based on the minimization of the 

Chan-Vese model in a fast level set-like framework that is integrated with a topological prior allowing 

simultaneous tracking of multiple cells over time. In comparison to the published approach [18, 19], 

several modifications have been introduced to deal with specific features of the analyzed competition 

datasets. They are described in more detail in the rest of this section. 

 

Clustered cells in the first frame. One of the main limitations of the original tracking scheme is its inability 

to correctly track cells being clustered in the first frame, calling for manual interaction with the user. To 

fully automatize the whole process, a cluster separation routine based on the evolution of topologically 

inflexible implicit active contours has been employed [20].    

 

Capturing entering cells. The original approach assumes that new cells entering the field of view are 

border components disjoint with the existing cells. However, due to low temporal resolution and various 

experimental setups, entering cells do not necessarily touch the image border when they first appear in 
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the field of view in some of the analyzed competition datasets. Therefore, the condition for selecting 

entering cell candidates has been slightly modified omitting the necessity of being border components in 

a binary mask obtained using a weighted 2-means clustering.    

 

Compensation for time-variant fluorescence intensity. In the analyzed simulated datasets, we have often 

observed a phenomenon of time-variant average fluorescence intensity within individual nuclei. This 

especially holds shortly before and after division events, when the amounts of fluorescently stained DNA 

materials dramatically change. To partly compensate for this phenomenon, the background weight in the 

Chan-Vese model (2) is temporarily multiplied by a user-defined constant (mult). 

 

MU-CZ: POST-PROCESSING 

Based on the instructions from the challenge organizers, all tracked objects outside a specified field of 

interest (borderSize) are systematically discarded from the tracking results, not to be penalized during 

the TRA measure evaluation. 
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NOTT-UK: SUMMARY 

This algorithm is designed to automatically track the changes in cell shape and position in a time-lapse 

video. The segmentation is based on local thresholding and has an excellent performance in low quality 

images. To track the detected cells in different frames, a frame-by-frame association using Euclidean 

distance as criterion is implemented.  

 

NOTT-UK: PREPROCESSING 

Due to the low quality conditions of the cell images, an existing enhancement method based on 

morphological operations [21], Top-Hat and Bottom-Hat, is performed before segmentation. The method 

can enhance the image contrast, which leads to better segmentation outcomes. 

 

NOTT-UK: SEGMENTATION 

Our segmentation algorithm is designed using local thresholding technique. The enhanced cell image will 

be firstly separated into sub-images. Then, the method will detect if there are cells or parts of cells in 

each of the sub-images by comparing their standard deviations with the one from the whole image. If 

there are objects detected in the processing sub-image, the method will perform the same enhancement 

approach used in the pre-processing step to deeply improve image quality. Followed that, Otsu 

thresholding technique is used to segment the sub-image. After all of them are processed, the outcomes 

will be placed together to generate the result. For some of the databases, such as Fluo-N2DH-GOWT1, 

even with enhancements, there are still cells in fragmentation. In that case, the proposed method 

detects the fragmented cells by calculating their roundness. If this parameter is lower than a pre-set 

value, the detecting area will be further enhanced and segmented to regenerate the shape of the cell 

being processed. Differently from other databases, the segmentation approach for Fluo-C2DL-MSC is 

established on the global thresholding technique. Because the gray scale distribution of the images in 

this database is relatively uniform compared to the others, it is more computationally efficient to use 



global thresholding, instead of the local one. The pre-processing step is the same for this database. After 

that, Otsu thresholding is used to each of the frames to generate segmentation results. 

 

NOTT-UK: TRACKING 

Cell tracking is achieved by a frame-by-frame association. A segmented time-lapse sequence, which cells 

are all detected in each frame, is the input for the proposed approach. Center of gravity of the cell is 

chosen to represent cell’s position. Hence, the method is designed to firstly calculate the centers of cells 

in the processing frame and the ones in the previous frame. Then, for every cell in the current frame, the 

approach calculates the Euclidean distances from the cell’s center to the ones in the previous frame, and 

links the nearest ones to it. Obviously, this method may lead to many issues, such as one-to-many 

correspondence, in experiments. Therefore, related judgment criteria are designed for it. After cell 

linking in neighbor frames, if two or more cells are pointing to the same one in the previous frame, a 

division of the cell is deemed to happen. New labels are assigned to each of the cells in the processing 

image (one-to-many). In addition, if the minimum distance exceeds a pre-set threshold, which is the cell 

radius in our experiments, the processing cell is regarded as a new one appeared in the current frame 

and marked with new label (none-to-one). Conversely, cells in the previous frame will be marked as 

disappeared, if there is no cell in the current frame linked to them (one-to-none). Apart from frame-by-

frame tracking, for the 3D database, like Fluo-N3DH-CHO, links between different layers are also needed. 

To achieve that, our proposed method starts with segmentations of the different layers. Then, it sums up 

the outcomes into one image, and performs cell tracking with the neighbor frame. According to the 

obtained labeled graph, the method finally marks the cells in different layers with corresponding labels. 

 

NOTT-UK: POST-PROCESSING 

No post-processing step is performed. 
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PAST-FR: SUMMARY 

Our approach to cell tracking is based on the theory of deformable models. It permits a precise analysis 

of the cell shape, in addition to keeping cell identity and determining its center of mass. Each cell 

contour is pre-detected automatically in the first image of each video, then optimized by minimizing an 

energy-functional composed of various terms related either to the image (homogeneous regions, image 

gradients, etc.) and regularization terms (contour smoothing, shape constraints, etc.). This process is 

then repeated for every subsequent frame, while the pre-detection step is re-used to detect objects 

entering the field of view. Therefore, our method does require that a minimal overlap exists between the 

successive positions of each cell. While active contours are known to be computationally demanding, we 

implement a discrete formalism, whereby the contour is defined as a closed polygonal line to enable fast 

computations and small memory footprint [29, 30]. 

 

PAST-FR: PREPROCESSING 

First, the high intensity variations in the image data are reduced by capping the lower and upper nI% 

pixel values. Second, median filtering within a neighborhood of radius rM is performed. 

 

PAST-FR: SEGMENTATION AND TRACKING 

The analysis of each frame involves three steps. First, the cells are pre-detected using a hierarchical k-

means approach [31] that involves smoothing using a Gaussian filter with a large radius rG, quantization 

of image intensities into 10 classes, and extraction of connected components in each class in the 

ascending order, the size of which falls within a pre-defined size range [aMin, aMax]. Next, a contour of 

spatial sampling s for each previously unknown cell is initialized. Finally, all contours are deformed 

according to image gradients (weighted by wg), image homogeneity (weighted by wh) and regularization 

(weighted by wr), while division events are automatically detected and tracked when a contour splits. 
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PAST-FR: POST-PROCESSING 

No post-processing step is performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UP-PT 

Authors: Tiago Esteves, Maja Temerinac-Ott, Pedro Quelhas 

Email: dee11017@fe.up.pt 

Platform: Windows 

Prerequisites: MATLAB Compiler Runtime 2012b (x86) 

 

UP-PT: SUMMARY 

We track cells in 2D and 3D microscopy image sequences based on Laplacian of Gaussians (LoG) local 

detection and detection-association tracking. The detection-association is based on a Euclidean distance 

nearest neighbor search for detections between consecutive frames. The cells in all data modalities are 

detected using LoG filtering which enhances the image’s blob like structure which corresponds to cell 

locations [23]. To improve the cell’s shape estimation after Log detection we resort to automatic image 

threshold or to the Sliding Band Filter (SBF) as better suited to the data modality under analysis [22]. The 

SBF is a local convergence filter, capturing edge convergence on a band around a certain location, which 

can also detect blob like structure, but which can adapt to a wider range of shapes than the LoG filter. 

 

UP-PT: PREPROCESSING 

We rescale each image (imScale) for speed purposes. We reduce image noise by applying a Gaussian 

filter with a specific standard deviation (LOGsigma). 

 

UP-PT: SEGMENTATION 

We perform detection using scale non-maxima suppression, where we vary the scale of the LoG filter 

between the expected range of the cell radius (Rmin, Rmax) [22, 23]. In the first frame, we specify the 

cells to track by considering local maxima from the filter response above a specific threshold 

(initDetectTH). In the remaining frames, we consider all the detections with a filter response above a 

lower threshold (detectTH) to ensure the detection of all the cells being tracked. Given all detections, we 

then perform cell shape estimation based on a local convergence filter (SBF option) [22, 23] or based on 

image thresholding (Otsu option) specifying the method to use in the parameter getCellShape. For SBF 

parametrization, we set the range of filter scales to be the same as in the LoG (Rmin and Rmax), setting 

the bandwidth of the filter (q) and the number of orientations (N) to values verified to be adequate to 

the data [22, 23]. The SBF is applied in the image only to the locations of LoG detection for a better cell 

shape estimation for each detection. When a good shape estimation can be obtained using automatic 
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thresholding, we apply Otsu’s method, in which we decide if we want to smooth the image again or not 

(filterShape) previous to image thresholding. For each LoG detection, we select a region (ROI) around the 

specific cell location where the size of this region is given by multiplying the estimated cell size by a 

specific factor (windowSize). Finally, within the selected ROI we focus on the bigger segmented region (in 

terms of area) and we get the boundary information, which corresponds to the boundary estimate for 

the detected cell. In case of 3D data, the detection and shape estimation is performed in all the slices of 

each data volume that has image entropy higher than a predefined value (entropyE). Detections that 

appear near the same location (x,y) within z-axis are considered imaging slices of the same cell. Cells that 

are detected in less than a certain number of slices (minSlices) are discarded. During the process of 

saving the results, we also have the possibility of increasing the estimated cell size by dilating sizeComp 

times the segmentation result. 

 

UP-PT: TRACKING 

Our tracking is based on a detection-association approach [24]. We perform the association of the 

closest detections in consecutive frames based on the Euclidean distance. If the detection does not have 

a neighbor within a minimum distance (4*detection_radius), we stop tracking it. 

 

UP-PT: POST-PROCESSING 

Based on the detection-association result, we get the final cell tracking information by performing the 

next steps: merging of incomplete tracks that are in close spatio-temporal vicinity; removal of tracks that 

have less than four frames; merging each track that does not start in the first frame with the closest 

track that starts in a previous time point (mitosis event). For the Fluo-N3DL-DRO dataset, we only 

consider tracks that start from the first frame and we remove all the others. 
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UPM-ES: SUMMARY 

We propose an algorithm exploiting general and robust features of cell and cell nuclei data of 

fluorescence time-lapse microscopy. To achieve that we apply spatio-temporal mathematical 

morphology [16], [17] to exploit the characteristic size range of cells and the redundancy and coherence 

of trajectories at the same time, just by working with spatio-temporal structuring elements (SEs) in the 

extended domain –particularly to 2D+t challenge datasets. With this strategy, filtering, segmentation and 

tracking are intrinsically coupled. Filtering uses the spatial information through grayscale area openings 

that limit the range of characteristic sizes within the image. On the other hand, the temporal consistency 

of the trajectories is exploited using a novel proposed stochastic spatio-temporal morphological 

reconstruction that enhances coherent structures through time to improve the “trajectory-to-noise” 

ratio. After this filtering, a simple threshold is enough to perform an initial segmentation that is refined 

through a “merge or split” filtering with binary dilations and erosions that allow us to keep the 

characteristic size range. Trajectories are found by labeling the binary image in 2D+t with spatio-

temporal connectivity. Each trajectory is identified with a label making it possible to analyze different 

spatial frames of the image to detect divisions and check that the topology is consistent. By isolating 

each label we can impose constraints and generate the graph. This is an effective method to perform 

tracking, keeping coherence of trajectories. 

 

UPM-ES: PREPROCESSING 

The characteristic noise of microscopy images is a highly non-linear salt and pepper like noise. We apply 

a non-linear median filter of radius rM to reduce this effect. The main point of this work is to use spatio-

temporal coherence of data to improve the image quality to perform the tracking. Spatial 

characterization is exploited using a used gray-scale spatial area opening of radius rAO to remove small 

flat regions that could generate over-segmentation. The temporal coherence is exploited with a novel 

strategy: “stochastic spatio-temporal morphological reconstruction”. This process provides a “trajectory-
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to-noise” ratio enhancement as coherent spatio-temporal structures are highlighted over those that do 

not keep that kind of coherence such as noise: 

 Extract regional maxima (already pruned with the residue) 

 Perform 2D+t morphological reconstruction having the regional maxima of one frame as 

markers for the reconstruction 

 Sum up the reconstructed images from each step in the 2D+t domain 

The resulting images weight the spatio-temporal connectivity of the structures in the image. Thus, 

trajectories are enhanced over noise. This method is especially effective for images with high temporal 

resolution or featuring smooth migration dynamics. 

 

UPM-ES: SEGMENTATION 

After the trajectory-to-noise ratio enhancement, we simply apply thresholding to binarize obtaining the 

subsequent candidate segmentations by finding connected components in 2D. Threshold T is set at the 

level that provides a more concentrated histogram of segmentations areas (in 2D). The initial 

segmentation is polished with a morphological closing of radius rC and filling holes. Then, we perform a 

step of “merge or split” using binary dilation and erosion as a hierarchical clustering according to the 

size. A maximum size (MSize) is set for objects to be eroded rEP and a minimum size (mSize) for objects to 

be dilated rDP, a residue size (rSize) is used for a final binary area opening to avoid over-detection, so 

segmentations keep the size constrains in the data while keeping intrinsic consistency temporally. 

 

UPM-ES: TRACKING 

As explained, both filtering and segmentation are performed intrinsically contributing to the tracking, as 

alternative to decoupled segmentation and tracking. We use spatio-temporal SEs to find and label 

connected components in 2D+t as trajectories in the segmented image after erosion for safe labeling rSL. 

Labels are re-dilated rSL and isolated by thresholding being able to check the 2D objects in each frame 

and refine the trajectories to create the graph: 

 No object found: 

o If no previous detection, the trajectory has not started yet 

o If trajectory was registered before, then it is over and we close the graph 

 One object found: 

o If no registered before, the graph branch starts here 

o If registered, the trajectory keeps on and we update the branch 



 More than one object found. We perform another 2D+t labeling forward from the current time 

point. This is done to re-evaluate the topology of the trajectory for the current point: 

o If one trajectory (2D+t object) is detected, it means that it reconnects after this step, so 

it is not robust to annotate mitosis and we update the branch. 

o If more than one trajectory is detected, it means that indeed there is a division and new 

branches are opened in the graph. We update the initial 2D+t label images with the new 

labels got by the forward labeling and keep on the loop. 

For now, the method cannot identify over division detection. On the other side, the method is really 

robust to not generate cross-links or consider false positive detections generating undesired links in the 

graph. In general, this approach is a straightforward and effective way to perform cell tracking with 

datasets with a suitable time-step that keeps spatio-temporal coherence of cell trajectories. The 

extension to 3D+t depends only on computation capabilities and efficient implementation of the 

algorithm. 

 

UPM-ES: POST-PROCESSING 

No post-processing step is performed. 
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Prerequisites: MATLAB R2014b (x64) 

 

UZH-CH: SUMMARY 

Our cell tracking algorithm consists of two traditional steps: Segmentation and tracking. In segmentation, 

we combine watershed segmentation with Otsu thresholding. Later, the identified objects are tracked in 

a frame-by-frame fashion. There, two consecutive frames are taken into account and the objects are 

matched to each other via a modified nearest-neighbor algorithm. No post-processing step is executed. 

 

UZH-CH: PREPROCESSING 

To increase the signal-to-noise ratio (SNR), we first adjust the contrast of the image by mapping the 

intensity values in the input image frame to new values in the modified image such that 1% of data is 

saturated at low and high intensities. Following that, we blur the resulting image with a Gaussian filter of 

width w. Lastly, we compute the mean intensity and subtract that from the image. Where negative 

intensities occur, we take their absolute values. 

 

UZH-CH: SEGMENTATION 

Our segmentation is based on seeded watershed segmentation. To find the seed locations, the image is 

first complemented and its negative distance transform is calculated. Using this, we compute a seed 

mask by applying an extended-minima transform with the depth level of h. This gives us regional minima, 

which are connected components of pixels that have constant intensity. These minima are used as seed 

points for individual watershed basins. We use this mask to start the watershed transform and obtain 

the segmented image. After that, we apply a downscaled Otsu thresholding with the downscaling factor 

of d. To clean up artifacts, we neglect objects that are smaller than 10 pixels and fill segmented objects 

to avoid holes in them. 

 

UZH-CH: TRACKING 

Our tracking is based on a nearest-neighbor search algorithm where the nearest neighbors are chosen in 

a spatiotemporal manner (i.e., closest objects in the next time frame). We compute all-to-all distances 
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between the objects in frame t and t+1. A maximum distance (maxDist) thresholding of 50 pixels is 

applied and for each object Ot found in t, we get a first set of possible candidates in t+1. Here, we limit 

the maximum number of neighbors (maxNeigh) to five in 2D. Depending on the number of candidates 

and their relative sizes compared to the object, we formulate three main scenarios: (i) disappearing, (ii) 

self-tracking, and (iii) division. If no spatiotemporal neighbors are found or if a single candidate is found, 

but it is more than twice the size of Ot, then the object is disappearing. If only a single candidate with an 

acceptable size (i.e., less than 2*object size), is linked to Ot, we call this case self-tracking. Whenever we 

are left with more than two possible candidates, we create all possible two-pairings and check which 

pair’s mean centroid is closest to the Ot. If this closest pair’s total size is not larger than twice the size of 

Ot, we accept this cell division. 

 

UZH-CH: POST-PROCESSING 

No post-processing is carried out after tracking. 
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