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THE ORBIT SPACE OF A FUSION SYSTEM IS CONTRACTIBLE

Markus Linckelmann

Abstract. Given a fusion system F on a finite p-group P , where p is a prime, we show
that the partially ordered set of isomorphism classes in F of chains of non-trivial subgroups

of P , considered as topological space, is contractible, further generalising Symonds’ proof

[19] of a conjecture of Webb [23, 24] and its generalisation to non-trivial Brauer pairs
associated with a p-block by Barker [1].

1 Introduction

Let G be a finite group and let p be a prime divisor of the order of G. Denote by P
the partially ordered G-set of non-trivial p-subgroups of G and by sd(P) its barycentric
subdivision; that is, sd(P) is the G-poset of chains of non-trivial p-subgroups ordered by
inclusion of chains, on which G acts by conjugation; this is a simplicial complex intro-
duced by K. S. Brown [4] and frequently called p-subgroup complex or Brown complex.
P. Symonds proved in [19] a conjecture of Webb [23, 24] which states that the orbit
space sd(P)/G, viewed as topological space, is contractible, and L. Barker extended this
result in [1] to the G-poset of non-trivial Brauer pairs of a p-block of G. Even though
there need not be a G-action behind an abstractly given fusion system F on a finite
p-group P , it is possible to define a space associated with F which coincides with the
above orbit spaces in case F is the fusion system of a finite group or a p-block. The
construction of this space involves the subdivision construction from [13]. One purpose
of this paper is to show that the contractibiliy results on orbit categories carry over to
the general case; the terminology is explained below:

Theorem 1.1. Let p be a prime, let P be a finite p-group and let F be a fusion system
on P . Let C be a right ideal in F . Then the partially ordered sets [S(C)] and [S⊳(C)]
are contractible, when viewed as topological spaces.

Fusion systems have been introduced by Puig as an axiomatic description of fusion
in finite groups and blocks; see for instance [3], [14] or the appendix below for precise
definitions. A right ideal in a fusion system F on a finite p-group P is a full subcategory
C of F with the property that if Q, R are subgroups of P with Q belonging to C and
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2 MARKUS LINCKELMANN

HomF (Q,R) non-empty, then also R belongs to C; see 3.2 below. Examples of right
ideals in F include the full subcategory of all non-trivial subgroups of P and the full
subcategory of all F -centric subgroups of P (a subgroup Q of P is called F -centric if
CP (R) = Z(R) for any subgroup R of P which is isomorphic to Q in F). Given a
right ideal C in F , the subdivision S(C) is the category having finite chains of non-
isomorphisms in C as objects and “obvious” commutative diagrams as morphisms; see
§2 for details. The category S⊳(C) is the full subcategory of S(C) of chains of subgroups
Q0 < Q1 < · · · < Qm of P with the property that allQi are normal inQm. Chains of this
form have been introduced by Knörr and Robinson [11]; we view these chains as objects
of an appropriate category - see §4. All categories mentioned so far have the property
that endomorphisms of objects are isomorphisms - that is, they are EI-categories in the
terminology of [15]. One of the particular properties of any EI-category C is that the set
of isomorphism classes [C] of C is in fact a partially ordered set with the order relation
[X ] ≤ [Y ] if HomC(X, Y ) 6= ∅.

The proof of 1.1 follows the pattern of Symonds’ in [19]: we show in Theorem 5.12 that
constant covariant functors on [S(C)] are acyclic (that is, their cohomology vanishes in
positive degree) and in Theorem 6.1 that [S(C)] is simply connected. The contractibility
follows then from a theorem of Whitehead. Instead of trying to present the shortest proof
of Theorem 5.12 we take the opportunity in the Sections 4 and 5 to prove slightly more
general acyclicity results - this is the second purpose of this paper. The motivation for
doing so are certain open problems in block theory which admit functor cohomological
interpretations, such as the question of the existence of a “classifying space” associated
with any p-block - or, more generally, the question of the existence and uniqueness
of finite p-local groups associated with arbitrary fusion systems in the sense of Broto,
Levi, Oliver [3]. The proof of 1.1 is in any case not just a straightforward adaptation
of the proofs in [19], [1], because, as mentioned above, in the more general situation
of Theorem 1.1, the poset [S(C)] can no longer be viewed as G-orbit space for some
appropriate group G. Note also that, for instance, the Solomon fusion system [12] on a
Sylow-2-subgroup of Spin(7, 3) cannot be the fusion system of a finite group [17] and not
even of any 2-block of a finite group by [10]. See also [5], [16] for more “exotic” fusion
systems which cannot occur as fusion systems of finite groups.

2 Subdivisions and orbit spaces

We review in this Section the subdivision construction from [13] and its connection
with orbit spaces of subgroup complexes. We denote as usual by ∆ the category whose
objects are the totally ordered set [m] = {0, 1, .., m} and whose morphisms are the
non-decreasing monotone maps α : [m]→ [n], where m, n are non-negative integers.

Definition 2.1. The division category of a category C is the category D(C) defined as
follows. The objects of D(C) are the covariant functors σ : [m]→ C, where m runs over
the set of non-negative integers. A morphism in D(C) from σ : [m] → C to τ : [n] → C
is a pair (α, µ) consisting of a map α : [m] → [n] in ∆ and an isomorphism of functors



THE ORBIT SPACE OF A FUSION SYSTEM IS CONTRACTIBLE 3

µ : σ ∼= τ ◦ α. The composition of two morphisms (α, µ) : σ → τ and (β, ν) : τ → ρ
in D(C) is defined by (β, ν) ◦ (α, µ) = (β ◦ α, (να) ◦ µ), where να : τ ◦ α ∼= ρ ◦ β ◦ α
is the isomorphism of functors obtained from precomposing ν with α. The subdivision
category of a category C is the full subcategory of D(C) consisting of all faithful functors
σ : [m] → C. Given an object σ : [m] → C in D(C), the integer m is then called the
length of σ.

More explicitly, the objects of D(C) can be viewed as the chains of morphisms

σ = X0
ϕ0−−−−→ X1

ϕ1−−−−→ · · ·
ϕm−1
−−−−→ Xm

in C, and a morphism in D(C) from a chain of morphisms

σ = X0
ϕ0−−−−→ X1

ϕ1−−−−→ · · ·
ϕm−1
−−−−→ Xm

to a chain of morphisms

τ = Y0
ψ0−−−−→ Y1

ψ1−−−−→ · · ·
ψn−1
−−−−→ Yn

is a family µ = (µi)0≤i≤m where for each i there is α(i) ∈ {0, 1, .., n} such that α(i) ≤
α(j) if i ≤ j and such that µi : Xi → Yα(i) is an isomorphism which makes the obvious
diagrams commutative; that is,

µi+1 ◦ ϕi = ψα(i+1)−1 ◦ · · · ◦ ψα(i)+1 ◦ ψα(i) ◦ µi

for any i ∈ {0, 1, .., m − 1} such that α(i + 1) > α(i) and µi+1 ◦ ϕi = µi for any
i ∈ {0, 1, .., m− 1} such that α(i+ 1) = α(i).

Similarly, the objects of S(C) can be viewed as the chains of morphisms

σ = X0
ϕ0−−−−→ X1

ϕ1−−−−→ · · ·
ϕm−1
−−−−→ Xm

with the additional property that theXi are pairwise non-isomorphic, with 0 ≤ i ≤ m. In
particular, a necessary condition for σ to be in S(C) is that all ϕi are non-isomorphisms in
C. Note that this implies that if (α, µ) : σ → τ is a morphism in S(C), then automatically
the map α : [m]→ [n] has to be injective. Indeed, with the above notation, the equality
α(i + 1) = α(i) would imply that µi+1 ◦ ϕi = µi, which is impossible unless ϕi is an
isomorphism.

In this paper we will consider the subdivision construction only in the context of
EI-categories. Following [15], an EI-category is a small category C with the property
that every endomorphism of an object in C is an isomorphism. If in addition AutC(X)
acts regularly on HomC(X, Y ) for any two objects X , Y for which the latter set is non-
empty, we say that the EI-category C is regular (cf. [13, 2.1]). The set [C] of isomorphism
classes of objects of an EI-category C has a structure of a partially ordered set given
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by [X ] ≤ [Y ] whenever HomC(X, Y ) is non-empty, where [X ], [Y ] are the isomorphism
classes of objects X , Y in C. Another important property of EI-categories is that a non-
isomorphism composed with any morphism will always yield again a non-isomorphism,
which in turn implies that if there is a non-isomorphism from an object X to an object Y
in an EI-category C then X and Y cannot be isomorphic in C. Thus, for an EI-category
C, an object in D(C) of the form

σ = X0
ϕ0−−−−→ X1

ϕ1−−−−→ · · ·
ϕm−1
−−−−→ Xm

belongs to S(C) if and only if the morphisms ϕi, 0 ≤ i ≤ m− 1, are non-isomorphisms.
In other words, S(C) consists of all chains of non-isomorphisms in C.

Given an object σ : [m] → C with m positive, we define for any i ∈ [m] the object
σ\i in S(C) by “deleting” σ(i). Very formally speaking, σ\i : [m− 1]→ C is the functor
defined by

(σ\i)(j) =

{

σ(j), 0 ≤ j < i;

σ(j + 1), i ≤ j ≤ m− 1

and which maps a morphism j < k in [m−1] to either σ(j < k) or σ(j < k+1) or σ(j+1 <
k + 1) depending on whether j < k < i or j < i ≤ k or i ≤ j < k, respectively. There is

a canonical morphism (α, µ) : σ\i → σ in S(C) where α(j) =

{

j, 0 ≤ j < i;

j + 1, i ≤ j ≤ m− 1
and where µ is the family of identity morphisms (σ\i)(j) = σ(α(j)) for 0 ≤ j ≤ m−1. In
particular, we have [σ\i] < [σ] in [S(C)]. Clearly, if there is a morphism σ → τ between
two objects σ, τ in S(C) of lengths m, m + 1, respectivley, then any such morphism
factors uniquely as composition σ ∼= τ\i → τ of some isomorphism and the canonical
morphism for a unique i ∈ [m+ 1].

In general a morphism X → Y in a category C does not induce a group homomor-
phism between the automorphism groups of X and Y . One of the reasons for working
with regular EI-categories is the observation that taking automorphism groups is con-
travariant functorial:

Proposition 2.2. ([13, 2.2]) Let C be a regular EI-category. There is a contravariant
functor from C to the category of groups sending any object X in C to its automor-
phism group AutC(X) and any morphism ϕ : X → Y in C to the group homomorphism
AutC(Y ) → AutC(X) which sends σ ∈ AutC(Y ) to the unique ρ ∈ AutC(X) satisfying
ϕ ◦ ρ = σ ◦ ϕ.

Proof. Both ϕ and σ ◦ ϕ are morphisms from X to Y . Since AutC(X) acts regularly on
HomC(X, Y ) there is a unique ρ ∈ AutC(X) satisfying ϕ ◦ ρ = σ ◦ϕ. The result follows.
�
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Proposition 2.3. ([13, 1.2, 1.3]) Let C be an EI-category and let σ : [m] → C and
τ : [n] → C be objects in S(C). If (α, µ), (α′, µ′) : σ → τ are two morphisms in S(C)
then α = α′, and there is a unique automorphism (Id[m], ν) of σ such that µ′ = µ ◦ ν.
In particular, S(C) is a regular EI-category.

Proof. We have σ ∼= τ ◦ α ∼= τ ◦ α′, hence σ(i) ∼= τ(α(i)) ∼= τ(α′(i)) for any i ∈ [m].
Since τ is faithful this forces α(i) = α(i′). The natural transformations µ, µ′ evaluated
at i ∈ [m] yield isomorphisms µ(i) : σ(i) ∼= τ(α(i)) and µ′(i) : σ(i) ∼= τ(α(i)). Thus
ν(i) = (µ(i))−1 ◦µ′(i) : σ(i) ∼= σ(i) is the unique automorphism of σ(i) satisfying µ′(i) =
µ(i)◦ν(i), and hence the family ν = (ν(i))i∈[m] is the unique automorphism of the functor
σ satisfying µ′ = µ ◦ ν. The uniqueness property of α applied to endomorphisms of σ
implies that every endomorphism of σ is of the form (Id[m], ρ) for some automorphism
ρ of the functor σ. Thus (Id[m], ν) is the unique automorphism of σ in S(C) satisfying
(α′, µ′) = (α, µ) ◦ (Id[m], ν), hence S(C) is regular. �

Since S(C) is an EI-category if C is so, the set of isomorphism classes [S(C)] of S(C)
has a structure of partially ordered set. If C is itself a poset then S(C) is just the usual
barycentric subdivision of C.

Definition 2.4. The orbit space of an EI-category C is the poset [S(C)] viewed as
topological space.

The connection with orbit spaces of subgroup complexes or Brauer pair complexes is
described in the following observation [13, 4.6] (we refer to [21] for the block theoretic
terminology):

Proposition 2.5. Let G be a finite group, let k be a field of positive characteristic p
and let b be a block of kG. Let P be a G-subposet of the G-poset of b-Brauer pairs.
Choose a maximal b-Brauer pair (P, eP ) and denote, for any subgroup Q of P , by eQ the
unique block of kCG(Q) satisfying (Q, eQ) ≤ (P, eP ). Let F be the fusion system on P
whose morphisms are the group homomorphisms ϕ : Q→ R between any two subgroups
Q, R of P for which there exists x ∈ G satisfying x(Q, eQ) ≤ (R, eR) and ϕ(u) = xux−1

for any u ∈ Q. Let C be the full subcategory of F consisting of all subgroups Q of P for
which the b-Brauer pair (Q, eQ) belongs to P. The map sending a chain of subgroups
Q0 < Q1 < · · · < Qm in C to the chain of b-Brauer pairs (Q0, eQ0

) < (Q1, eQ1
) < · · · <

(Qm, eQm
) in P induces an isomorphism of posets [S(C)] ∼= sd(P)/G.

The notation sd(P) stands for the barycentric subdivision of P; that is, sd(P) is the
G-poset of totally ordered sets of b-Brauer pairs in P, ordered by inclusion. If b is the
principal block of G then P can be identified with a G-set of p-subgroups of G. Thus
Proposition 2.5 explains in what way Theorem 1.1 is indeed a generalisation to arbitrary
fusion systems of the contractibility results of Symonds [19] and Barker [1].
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The last result in this Section is included for completeness and not needed for the
purpose of this paper; it implies that from a cohomological point of view one can always
work with the subdivision category:

Proposition 2.6. Let C be an EI-category. The inclusion functor S(C) →֒ D(C) has a
left adjoint.

Proof. We define a left adjoint Ψ : D(C) → S(C) of the inclusion functor as follows.
Given an object σ : [m] → C in D(C) let m′ be the smallest non-negative integer such
that there exists an object σ′ : [m′] → C in D(C) and a morphism (β, ν) : σ −→ σ′ in
D(C). Note that then β : [m] → [m′] is necessarily surjective, as we always can replace
[m′] by β([m]) and σ′ by its restriction to β([m]). Also, σ′ belongs to S(C). Indeed,
otherwise there would by an integer i such that 0 ≤ i < m′ and such that ϕi : σ′i → σ′i+1

is an isomorphism, where here σ′i = σ′(i) and ϕi = σ′(i < i+ 1). But then there would
be a morphism in D(C) from σ′ to the chain obtained by deleting σ′i+1 given by the
commutative diagram

X ′0
// · · · // X ′i

ϕi // X ′i+1
//

(ϕi)
−1

}}{{
{{

{{
{
{

X ′i+2
// · · · // X ′m

X ′0
// · · · // X ′i // X ′i+2

// · · · // X ′m

contradicting the minimality of [m′]. We want to show that the assignement Ψ(σ) = σ′

can be made functorial with the required adjunction property. Let σ : [m] → C and
τ : [n] → C be two objects in D(C). Let m′, n′ be minimal such that there are objects
σ′ : [m′] → C and τ ′ : [n′] → C in D(C) for which there are morphims (β, ν) : σ → σ′

and (γ, τ) : τ → τ ′ in D(C). By the above, σ′, τ ′ belong to S(C). In order to establish
the functoriality of Ψ we need to show that for any morphism (α, µ) : sigma → τ
in D(C) there is a unique morphism (α′, µ′) : σ′ → τ ′ making the following diagram
commutative:

σ
(α,µ)
−−−−→ τ

(β,ν)





y





y

(γ,τ)

σ′ −−−−→
(α′,µ′)

τ ′

If 0 ≤ i < [m] such that β(i) = β(i + 1) then σi ∼= σi+1, hence τα(i)
∼= τα(i+1) and

so τ ′γ(α(i))
∼= τ ′γ(α(i+1)). But since τ ′ is in S(C) this forces γ(α(i)) = γ(α(i+ 1)). Thus

there is a unique map α′ : [m′] → [n′] such that α′(β(i)) = γ(α(i)) for all i ∈ [m]. We
define µ′ to be the family of isomorphisms µ′β(i) : σ′β(i)

∼= τ ′α′(β(i)) = τ ′γ(α(i)) making the
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square of isomorphisms

σi
µi

−−−−→ τα(i)

νi





y





y

τα(i)

σ′β(i) −−−−→
µ′

β(i)

τ ′γ(α(i))

commutative. Clearly (α′, µ′) : σ′ → τ ′ is the unique morphism in D(C) making the
first diagram above commutative. Thus Ψ is a functor from D(C) to S(C). If τ is in
S(C), then in the above diagram, the morphism (γ, τ) : τ → τ ′ is an isomorphism, and
induces hence a bijection HomD(C)(σ, τ) ∼= HomS(C)(Ψ(σ), τ). It follows that Ψ is a left
adjoint of the inclusion S(C) →֒ D(C) as claimed. �

It is well-known (see e.g. [9, 5.1(ii)]) that whenever an inclusion functor has a left
adjoint, then the restriction along this inclusion functor induces an isomorphism on
cohomology of contravariant functors into Mod(k) for some commutative ring k. Thus
2.6 implies that H∗(D(C);F) ∼= H∗(S(C);F|S(C)) for any contravariant functor F :
D(C)→Mod(k). See the next Section for more details on functor cohomology.

3 Cohomology of subdivisions

Let k be a commutative ring. For a small category C denote by Ĉ the k-linear abelian
category of covariant functors from C to Mod(k), with natural transformations as mor-
phisms. Given two covariant functors F ,G : C →Mod(k) we denote by HomĈ(F ,G) the
k-module of natural transformations from F to G. Given any object X in C we denote
by kHomC(X,−) the obvious functor in Ĉ sending an object Y in C to the free k-module
kHomC(X, Y ) having the morphism set HomC(X, Y ) as k-basis. By Yoneda’s lemma we
have a canonical isomorphism HomĈ(kHomC(X,−),F) ∼= F(X) for any object X in C

and any functor F in Ĉ, which implies in particular that kHomC(X,−) is a projective

object in the category Ĉ and hence that Ĉ has enough projective objects. Given any
k-module A there is a unique constant functor, abusively again denoted by A, in Ĉ which
maps every object in C to A and every morphism in C to IdA. The map sending A to this
constant functor defines a functor Γ : Mod(k)→ Ĉ. The functor Γ is obviously exact and,

less obviously, has a right and left adjoint, namely the limit functor lim
←−
C

: Ĉ −→ Mod(k)

and the colimit functor lim
−→
C

: Ĉ −→ Mod(k), respectively. In particular, lim
←−
C

preserves

injectives and lim
−→
C

preserves projectives. By [6, 3.1] we have an isomorphism of functors

lim
←−
C

∼= HomĈ(k,−), where here k is understood as constant covariant functor on C. Thus

higher limits are right derived functors of HomĈ(k,−), which motivates the notation
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Hn(C;F) = lim
←−
C

n(F) for any functor F in Ĉ and any integer n ≥ 0. More explicitly,

Hn(C;F) is the cohomology in degree n of the cochain complex HomĈ(k, I), where I

is an injective resolution of F in Ĉ. By general abstract nonsense, this is isomorphic to
the cohomology in degree n of the cochain complex HomĈ(P,F), where now P is a pro-

jective resolution of the constant functor k in Ĉ. If C, D are two small categories and if
Φ : D → C is a covariant functor, then restriction along Φ induces a functor Φ∗ : Ĉ → D̂
sending a functor F in Ĉ to the functor F ◦ Φ in D̂. The functor Φ∗ is obviously exact,
and moreover, Φ∗ has a left adjoint Φ∗ and a right adjoint Φ!, also called the left and
right Kan extension of Φ∗. It is possible to describe Φ∗, Φ! explicitly in general (see
e.g. [6, Appendix]), but we will need an explicit description only in some very particular
cases of inclusions of certain subcategories. If D is a subcategory of C and Φ : D → C
the inclusion functor, we will write sometimes F|D instead of Φ∗(F).

By [13, 3.2], the cohomology of covariant functors on [S(C)] can be computed in the same
way as the Bredon cohomology of subgroup complexes (as is done in work of Grodal [8]
and Symonds [19], for instance):

Proposition 3.1. (cf. [13, 3.2]) Let C be an EI-category, let k be a commutative ring
and let A : [S(C)] → Mod(k) be a covariant functor. There is a cochain complex of
k-modules (C(A), δ) with the following properties:

(i) For any integer n ≥ 0 component of C(A) in degree n is equal to

C(A)n = ⊕
[σ]
A([σ]) ,

where the direct sum is taken over the set of isomorphism classes [σ] of chains σ of
length n in S(C).

(ii) The differential δn−1 in degree n− 1 of C(A) is given by the k-linear map

δn−1 : C(A)n−1 −→ C(A)n

obtained by taking the alternating sum δn−1 =
∑

([σ],i)

(−1)iρ[σ],i over all pairs ([σ], i)

consisting of an isomorphism class [σ] of a chain σ of length n and an integer i such
that 0 ≤ i ≤ n, of the maps ρ[σ],i : A([σ\i]) → A([σ]) obtained from applying the
covariant functor A to the canonical morphism [σ\i]→ [σ] in [S(C)].

(iii) We have H∗([S(C)];A) ∼= H∗(C(A)); in other words, the complex C(A) computes
the higher limits of the functor A.

Note that the assignment A 7→ C(A) is exact functorial. We will need a refine-
ment of 3.1 which computes the cohomology of covariant functors on certain types of
subcategories of [S(C)].
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Definition 3.2. Let C be a category. A left ideal in C is a full subcategory D of C with
the property that if X is an object in C and Y an object in D such that the morphism
set HomC(X, Y ) is non-empty, then X belongs to the subcategory D as well. Dually, a
right ideal in C is a full subcategory D of C with the property that if X is an object in
D and Y an object in C such that the morphism set HomC(X, Y ) is non-empty, then Y
belongs to the subcategory D as well.

If F is a fusion system on a finite p-group P , where p is a prime, then the full
subcategory Fc of F -centric subgroups of P is a right ideal in F . IfD is a full subcategory
of an EI-category C then S(D) is a left ideal in S(C). See 4.3 for more examples of left
ideals. The following collection of more or less trivial statements is essentially a pretext
to introduce some notation.

Proposition 3.3. Let C be a small category and let D be a left ideal in C. Denote
by Φ : D → C the inclusion functor. Let k be a commutative ring and denote by Ĉ
and D̂ the k-linear abelian categories of covariant functors from C and D to Mod(k),
respectively.

(i) For any covariant functor G : D → Mod(k) there is a unique covariant functor
GC : C → Mod(k) such that GC vanishes on all objects outside D and coincides with G
upon restriction to D.

(ii) For any covariant functor F : C → Mod(k) there is a unique covariant functor
FD : C → Mod(k) such that the restrictions to D of the functors F , FD are equal and
such that FD vanishes outside D.

(iii) For any covariant functor F : C → Mod(k) there is a unique natural transformation
F → FD given by the identity maps F(X) = FD(X) for all objects X in D and by the
zero maps F(X)→ FD(X) = 0 for all objects X in C outside D.

(iv) The restriction functor Φ∗ : Ĉ → D̂ has an exact right adjoint Φ! : D̂ → Ĉ mapping a

functor G in D̂ to the functor GC in Ĉ; in particular, the restriction functor Φ∗ preserves
projectives.

(v) We have Φ∗ ◦ Φ! = IdD̂ and for any covariant functor F : C → Mod(k) we have
FD = Φ!(Φ

∗(F)). The identity Φ∗ ◦ Φ! = IdD̂ is the unit and the family of canonical
natural transformations F → FD is the counit IdĈ → Φ! ◦Φ∗ of a right adjunction of Φ!

to Φ∗

Proof. The uniqueness of GC in (i) is trivial. The fact that GC is actually well-defined
is an immediate consequence of D being a left ideal. Setting FD = (F|D)C shows
(ii). Statement (iii) is yet another trivial verification, using that D is a left ideal. The

assignment G 7→ GC defines an exact functor Ψ : D̂ → Ĉ, and one verifies that Ψ is
right adjoint to Φ∗. It is a general fact that left adjoints of an exact functor preserve
projectives. This proves (iv). Statement (v) is just a structural interpretation of the
previous statements. �

If Φ : D → C is a covariant functor between small categories, then the cohomology
of functors on C an D is related via a Grothendieck spectral sequence (see e.g. [6,
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Appendix] for a homological version). The following well-known result is a very special
case in which this spectral sequence collapses (and this is all we need for the purpose of
this paper).

Proposition 3.4. Let C be a small category and let D be a left ideal in C. Let k be
a commutative ring. Let k be a commutative ring and denote by Ĉ and D̂ the k-linear
abelian categories of covariant functors from C and D to Mod(k), respectively.

For any covariant functor F : C → Mod(k) which vanishes on all objects outside D the
restriction to D induces an isomorphism on cohomology H∗(C;F) ∼= H∗(D;F|D).

Proof. Denote by Φ : D → C the inclusion functor. Since Φ∗ is exact and, by
3.3.(iv), preserves projectives, if P is a projective resolution of the constant func-

tor k in Ĉ then its restriction Φ∗(P) is a projective resolution of the constant func-

tor k in D̂. Thus the adjunction implies an isomorphism of cochain complexes
HomĈ(P; Ψ(Φ∗(F))) ∼= HomD̂(Φ∗(P); Φ∗(F)). Now if F vanishes outside D then in
fact Ψ(Φ∗(F)) = F . Thus we get actually an isomorphism of cochain complexes
HomĈ(P;F) ∼= HomD̂(Φ∗(P); Φ∗(F)). Taking cohomology on both sides yields the
result. �

Definition 3.5. Let C be an EI-category, let k be a commutative ring and let Σ be
a left ideal in [S(C)]. For any covariant functor A : Σ → Mod(k) we define a cochain
complex of k-modules CΣ(A) by setting

CΣ(A) = C(A′) ,

where A′ = A[S(C)] : [S(C)]→ Mod(k) is the unique covariant functor whose restriction
to Σ is equal to A and which vanishes outside Σ. More explicitly,

CΣ(A)n = ⊕
[σ]∈Σ

|σ|=n

A([σ])

for any integer n ≥ 0.

Note that if D is a left ideal in S(C) then Σ = [D] is a left ideal in [S(C)], and hence
3.3 applies. In order to simplify notation, if A : [S(C)]→ Mod(k) is a covariant functor,
we write CΣ(A) instead of CΣ(A|Σ). Equivalently, CΣ(A) = C(AΣ), where AΣ is, as in
3.4, the unique covariant functor which coincides with A on Σ and vanishes outside Σ.
The cochain complex CΣ(A) is obviously a direct summand of C(A) as graded k-module,
but not as complex, in general. It is though a quotient complex:
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Proposition 3.6. Let C be an EI-category, let k be a commutative ring and let Σ be
a left ideal in [S(C)]. Let A : [S(C)] → Mod(k) be a covariant functor. The canonical
projections C(A)n → CΣ(A)n, where n ≥ 0, define an epimorphism of cochain complexes
of k-modules

C(A) −→ CΣ(A) .

Proof. The complex C(A) is functorial in A. The canonical natural transformation
A → AΣ from 3.3.(iii) induces the required epimorphism of complexes C(A)→ C(AΣ) =
CΣ(A). �

The point of all this is that the complex CΣ(A) computes the cohomology of A for
any covariant functor A : Σ→Mod(k), generalising 3.1 to left ideals in [S(C)].

Proposition 3.7. Let C be an EI-category, let k be a commutative ring and let Σ be a
left ideal in [S(C)]. Let A : Σ→ Mod(k) be a covariant functor. We have

H∗(Σ;A) ∼= H∗(CΣ(A)) .

Proof. Let A′ : [S(C)] → Mod(k) be the unique covariant functor which coincides with
A on Σ and which vanishes outside Σ. Then, by 3.4 and 3.1, we have H∗(Σ;A) ∼=
H∗([S(C)];A′) ∼= H∗(C(A′)) = H∗(CΣ(A)). �

4 Reduction to normal chains

Throughout this Section we fix a prime p, a finite p-group P and a fusion system
F on P . The purpose of this Section is to develop some techniques which reduce the
computation of suitable covariant functors defined on S(F) to certain subcategories.

Definition 4.1. Let C be a full subcategory of the fusion system F on P . We denote
by S<(C) the full subcategory of S(C) consisting of all chains of the form σ = (Q0 <
Q1 < · · · < Qm), where m is a non-negative integer and Qi a subgroup of P belonging
to C, for 0 ≤ i ≤ m.

We denote by S⊳(C) the full subcategory of S<(C) consisting of all chains σ = (Q0 <
Q1 < · · · < Qm) in S<(C) with the property that Qi is normal in Qm for 0 ≤ i ≤ m.
We denote by SΦ(C) the full subcategory of S<(C) consisting of all chains σ = (Q0 <
Q1 < · · · < Qm) in S<(C) with the property that the Frattini subgroup Φ(Qm) of Qm
is contained in Q0.

As before, if σ = (Q0 < Q1 < · · · < Qm) is a chain of subgroups of P the integer
|σ| = m is called the length of σ; if in addition m is positive, we write σ\i = (Q0 <
· · · < Qi−1 < Qi+1 < · · · < Qm), for any integer i such that 0 ≤ i ≤ m. Note that since
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Qm/Φ(Qm) is abelian, every chain in SΦ(C) belongs in fact to S⊳(C). Thus we have
inclusions of full subcategories

SΦ(C) ⊆ S⊳(C) ⊆ S<(C) ⊆ S(C) .

All four of the above categories are again EI-categories. We state two obvious results
for future reference:

Proposition 4.2. Let C be a full subcategory of the fusion system F on P . Suppose
that C is closed under isomorphisms in F . Then the inclusion S<(C) ⊆ S(C) is an
equivalence of categories. In particular, [S<(C)] ∼= [S(C)] as posets.

Proof. A chain of non-isomorphisms Q0
ϕ0−→ Q1

ϕ1−→ · · ·
ϕm−1
−→ Qm belonging to the

category S(C) is isomorphic to the chain R0 < R1 < · · · < Rm in S<(C) defined by
Rm = Qm and Ri = ϕm−1 ◦ · · · ◦ ϕi+1 ◦ ϕi(Qi) for 0 ≤ i < m. The result follows. �

Proposition 4.3. Let C be a full subcategory of the fusion system F on P . Suppose
that C is closed under isomorphisms in F . Then the categories SΦ(C) and S⊳(C) are left
ideals in S<(C).

Proof. Every subchain of a chain in S⊳(C) belongs to S⊳(C), and similarly, every sub-
chain of a chain in SΦ(C) belongs to SΦ(C). The result follows. �

The following definition is essentially the pairing considered by Knörr and Robinson
in the first part of the proof of [11, 3.3]:

Definition 4.4. Let C be a right ideal in the fusion system F on P . For any chain
σ = (Q0 < Q1 < · · · < Qm) in S<(C) we define a chain z(σ) in S<(C) as follows:

(i) if Φ(Qm) ⊆ Q0 we set z(σ) = σ;

(ii) if Φ(Qm) ⊆ Qi but Φ(Qm) * Qi−1 for some positive integer i and if Φ(Qm)Qi−1 = Qi
we set z(σ) = σ\i = Q0 < · · · < Qi−1 < Qi+1 < · · · < Qm;

(iii) if Φ(Qm) ⊆ Qi but Φ(Qm) * Qi−1 for some positive integer i and if Φ(Qm)Qi−1 <
Qi we set z(σ) = Q0 < · · · < Qi−1 < Φ(Qm)Qi−1 < Qi < · · · < Qm.

Note that in the alternative 4.4(ii) we necessarily have that i < m, because the
equality Φ(Qm)Qm−1 = Qm is impossible by standard properties of Frattini subgroups.
Thus z leaves the maximal subgroup occurring in σ unchanged. The only difference
between 4.4 and the pairing defined in [11] is the requirement 4.4(i) which garantees
that z leaves also the minimal subgroup occurring in σ unchanged; in particular, z(σ)
is again a chain belonging to S<(C). Clearly either z(σ) = σ or |z(σ)| = |σ| + 1 or
|z(σ)| = |σ| − 1. If |z(σ)| = |σ|+ 1 then z(σ) is obtained from inserting a subgroup into
σ, and hence [σ] < [z(σ)]. Similarly, if |z(σ)| = |σ| − 1 then [z(σ)] < [σ]. The following
Proposition (whose easy proof is left to the reader) collects some obvious properties of
the map z, essentially stating that z defines a pairing on isomorphism classes of chains
fixing those belonging to SΦ(C).
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Proposition 4.5. Let C be a right ideal in the fusion system F on P . Let σ, τ be chains
in S<(C).

(i) We have z(z(σ)) = σ.

(ii) We have z(σ) = σ if and only if σ belongs to SΦ(C).

(iii) We have σ ∼= τ if and only if z(σ) ∼= z(τ).

(iv) If [σ] < [z(σ)], any morphism σ → z(σ) in S(C) induces a group isomorphism
AutS(C)(σ) ∼= AutS(C)(z(σ)).

(v) We have σ ∈ S⊳(C) if and only if z(σ) ∈ S⊳(C).

As in the previous Section , we denote by C(A) the cochain complex of k-modules
which in degree n ≥ 0 is equal to

C(A)n = ⊕
[σ]∈[S(C)]

|σ|=n

A([σ])

with differential given by the maps (−1)iA([σ] < [τ ]) : A([σ]) → A([τ ]) for any two
chains σ, τ in S(C) of length n, n+ 1, respectively, for which there is an integer i such
that σ ∼= τ\i. By 3.7 the cohomology of C(A) is the cohomology of the functor A. Note
that in this context the complex C(A) is bounded with non-zero components at most in
the degrees 0, 1, · · · , a, where a is the unique integer such that pa = |P |.

Proposition 4.6. Let C be a right ideal in the fusion system F on P . Let k be a
commutative ring and let A : [S(C)] −→Mod(k) be a covariant functor.

There are unique cochain complexes of k-modules C⊳(A) and CΦ(A) such that

C⊳(A)n = ⊕
[σ]∈[S⊳(C)]

|σ|=n

A([σ]) ,

CΦ(A)n = ⊕
[σ]∈[SΦ(C)]

|σ|=n

A([σ]) ,

for any integer n ≥ 0, and such that the canonical projections C(A)→ C⊳(A)→ CΦ(A)
define epimorphisms of cochain complexes

C(A) −→ C⊳(A) −→ CΦ(A) .

Proof. This is Proposition 3.6 applied to the left ideals [S⊳(C)] and [SΦ(C)] in [S<(C)],
combined with the isomorphism of posets [S<(C)] ∼= [S(C)] from 4.2. �

The main result of this Section is the following Theorem which reduces the computa-
tion of the cohomology of certain covariant functors A : [S(C)] −→Mod(k) to the posets
[S⊳(C)] and [SΦ(C)].
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Theorem 4.7. Let C be a right ideal in the fusion system F on P . Let k be a commu-
tative ring and let A : [S(C)] −→ Mod(k) be a covariant functor. If A has the property
that for any σ in S(C) such that |σ| < |z(σ)| the unique morphism [σ] < [z(σ)] in
[S(C)] induces an isomorphism A([σ]) ∼= A([z(σ)]), then the canonical epimorphisms of
cochain complexes of k-modules C(A) → C⊳(A) → CΦ(A) are homotopy equivalences.
In particular, we have isomorphisms on cohomology

H∗([S(C)];A) ∼= H∗([S⊳(C)];A) ∼= H∗([SΦ(C)];A) .

The hypothesis in 4.7 on the functor A holds obviously whenever A is a constant
functor. But there are other functors fulfilling this hypothesis: by 4.5.(iv) we have
AutS(C)(σ) ∼= AutS(C)(z(σ)), and hence any functor A whose value at [σ] depends only
on AutS(C)(σ) will fulfill this hypothesis. We will describe some functors with this
property at the end of this Section. In order to prove 4.7 we filter the kernel of the
canonical epimorphism C(A) → CΦ(A) by subcomplexes C(q)(A) and show then that
subsequent quotients of this filtration are contractible; see Appendix B, Corollary B.2.
It is in this latter part that we will need the following combinatorial statement:

Lemma 4.8. Let σ = (Q0 < Q1 < · · · < Qm) and τ = (R0 < R1 < · · · < Rm) be
chains in S<(F) such that |z(σ)| < |σ| and |z(τ)| < |τ |. Let i, j be the unique positive
integers such that z(σ) = σ\i and z(τ) = τ\j. Suppose there is a non-negative integer
k such that z(σ) ∼= τ\k. Then exactly one of the following statements holds:

(i) k = m;

(ii) k < i < j;

(iii) σ ∼= τ .

Proof. Suppose that k < m. By the assumptions, we have an isomorphism of chains

Q0 < · · · < Qi−1 < Qi+1 < · · · < Qm ∼= R0 < · · · < Rk−1 < Rk+1 < · · · < Rm .

Since k < m we have in particular Qm ∼= Rm. Assume first that k > i. Then the
above isomorphism of chains implies isomorphisms Qi−1

∼= Ri−1 and Qi+1
∼= Ri. Since

Φ(Qm) * Qi−1 we also get Φ(Rm) * Ri−1, and since Φ(Qm)Qi−1 = Qi < Qi+1 we
get Φ(Rm)Ri−1 < Ri. This, however, would imply that |z(τ)| > |τ |, contradicting
the assumptions. Thus the case k > i cannot occur. Assume next that k < i. Then
Qi−1

∼= Ri. Again, since Φ(Qm) * Qi−1 we get Φ(Rm) * Ri, hence i < j, which is
alternative (ii). Assume finally that k = i. Then Φ(Rm) * Ri−1 but Φ(Rm) ⊆ Ri+1

and Φ(Rm)Ri−1 < Ri+1. Thus k = j, hence τ\k = z(τ). But z(τ) ∼= z(σ) implies τ ∼= σ
by 4.5 (iii), hence alternative (iii) holds. �

Proof of Theorem 4.7. Let q be a non-negative integer. We define a subcomplex C(q)(A)
of C(A) as follows. For n < q we set C(q)(A)n = {0}. For n > q we set C(q)(A)n =
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⊕
[σ]
A([σ]) with [σ] running over the set of isomorphism classes of chains σ in S(C)

satisfying |σ| = n and z(σ) 6= σ. In other words, C(q)(A)n is the canonical complement
of CΦ(A)n in C(A)n. In degree q we set C(q)(A)q = ⊕

[σ]
A([σ]) with [σ] running over the

set of isomorphism classes of chains σ in S(C) satisfying |σ| = q and |z(σ)| = q+1. One
easily checks that the differential of C(A) restricts to a differential on C(q)(A). Using
4.5.(ii), we have an obvious isomorphism of complexes

C(A)/C(0)(A) ∼= CΦ(A)

and, for any positive integer q, we have inlusions of subcomplexes

C(q)(A) ⊆ C(q−1)(A) ;

by construction, all these inclusions are degreewise split. Thus, in order to show that the
canonical epimorphism C(A)→ CΦ(A) is a homotopy equivalence, it suffices by Corol-
lary B.2, to show that for any positive integer q the quotient complex C(q−1)(A)/C(q)(A)
is contractible. The complex C(q−1)(A)/C(q)(A) has at most two non zero components,
namely those in the degrees q−1 and q. More precisely, the complex C(q−1)(A)/C(q)(A)
is of the form

· · · −→ 0 −→ ⊕
[ρ]∈M

A([τ ])
ǫ
−→ ⊕

[σ]∈N
A([σ]) −→ 0 −→ · · · ,

where M is the set of isomorphism classes [ρ] of chains ρ in S(C) satisfying |ρ| = q − 1
and |z(ρ)| = q, and where N is the set of isomorphism classes [σ] of chains σ in S(C)
satisfying |σ| = q and |z(σ)| = q − 1. It follows immediately from 4.5 that the map
z induces in fact bijections between the indexing sets M and N . In other words, the
complex C(q−1)(A)/C(q)(A) is of the form

· · · −→ 0 −→ ⊕
[σ]∈N

A([z(σ)])
ǫ
−→ ⊕

[σ]∈N
A([σ]) −→ 0 −→ · · · .

This complex is contractible if and only if its differential ǫ is an isomorphism. We
can view ǫ as a square matrix of its components ǫ[z(σ)],[τ ] : A([z(σ)]) → A([τ ]), where
[σ], [τ ] ∈ N . The diagonal entries ǫ[z(σ)],[σ] : A([z(σ)] → A([σ]) of this matrix are
isomorphisms, by the assumptions on the functor A. In order to show that ǫ is an
isomorphism all we have to observe is that we can order the set N in such a way that
the matrix representing ǫ is an upper triangular matrix. This is where the combinatorial
Lemma 4.8 will be used. We associate with every chain σ such that [σ] ∈ N a pair of
positive integers (mσ, iσ) defined as follows: if σ = (Q0 < Q1 < · · · < Qm) we set
mσ = |Qm|, and we denote by iσ the unique positive integer satisfying z(σ) = σ\iσ.
This makes sense as |z(σ)| < |σ| for [σ] ∈ N . Of course, the pair (mσ, iσ) depends only
on the isomorphism class [σ]. We consider now the set of pairs of positive integers as
totally ordered set with the lexicographic order; that is, for any two pairs (m, i), (n, j)
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of positive integers m, n, i, j, we have (m, i) < (n, j) if m < n or if m = n and i < j.
In this way the assignment [σ] 7→ (mσ, iσ) is a map from N to the totally ordered set of
pairs of positive integers. It is well-known (and easy to see) that there is a total order
4 on the set N such that the map [σ] 7→ (mσ, iσ) is monotone; that is such that in
particular [σ′] ≺ [σ] if mσ′ < mσ or if mσ′ = mσ and iσ′ < iσ. We will show that
the total order 4 on N has the property that ǫ becomes an upper triangular matrix.
Indeed, let [σ], [τ ] be different elements in N . As pointed out before, the diagonal
entry ǫ[z(σ)],[σ] is an isomorphism. Suppose that the entry ǫ[z(σ)],[τ ] is non zero. Then
necessarily z(σ) ∼= τ\j for some integer j ≥ 0. If j = q then mσ < mτ , hence [σ] ≺ [τ ]. If
j < q then j < iσ < iτ by 4.8, hence again [σ] ≺ [τ ]. This proves that the entry ǫ[z(σ)],[τ ]

lies above the diagonal of the matrix representing ǫ. Thus ǫ is an isomorphism, and by
the above observations, this implies that the canonical epimorphism C(A)→ CΦ(A) is
a homotopy equivalence. Since z preserves S⊳(C) by 4.5.(v), the same arguments show
that the canonical epimorphism C⊳(A)→ CΦ(A) is a homotopy equivalence. But then
the canonical epimorphism C(A)→ C⊳(A) must be a homotopy equivalence as well. �

We conclude this Section by describing a certain class of functors fulfilling the hy-
potheses of 4.7. The following observation is from [13, 1.2, 1.3, 2.3] and combines 2.2
and 2.3 above:

Proposition 4.9. Let C be an EI-category. There is a canonical contravariant functor
from S(C) to the category of groups sending a chain σ ∈ S(C) to its automorphism group
AutS(C)(σ).

Proof. This follows from 2.2 and 2.3. �

Proposition 4.10. Let C be an EI-category, let k be a commutative ring and let A be
a k-module. Then, for any integer q ≥ 0 there is a canonical covariant functor

Aq : [S(C)] −→Mod(k)

such that Aq([σ]) = Hq(AutS(C)(σ);A) and such that Aq maps a morphism [σ] < [τ ]
in [S(C)] to the map Hq(AutS(C)(σ);A)→ Hq(AutS(C)(τ);A) obtained from restriction
along any group homomorphism AutS(C)(τ) → AutS(C)(σ) given by a morphism σ → τ
in S(C), for any two chains σ, τ in S(C).

Proof. All we have to check is that the morphism Aq([σ] < [τ ]) does not depend on the
choice of the morphism σ → τ in S(C). If (α, µ), (α′, µ′) : σ → τ are two morphisms
in S(C) then, by 2.3, we have α = α′, and there is an automorphism (Id, ρ) of σ such
that (α′, µ′) = (α, µ) ◦ (Id, ρ). Since inner automorphisms of AutS(C)(σ) act trivially on
Hq(AutS(C)(σ);A), the result follows. �

Note that with the notation of 4.10, the functor A0 is the constant covariant functor
on [S(C)] taking the value A. By combining our previous results, we can reduce the
calculation of the cohomology of functors of the form Aq to normal chains.
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Theorem 4.11. Let C be a right ideal in the fusion system F . Let k be a com-
mutative ring and let A be a k-module. For any integer q ≥ 0 the covariant func-
tor Aq : [S(C)] → Mod(k) has the property that for any chain σ in S(C) satisfying
[σ] < [z(σ)], the induced k-linear map Aq([σ]) → Aq([z(σ)]) is an isomorphism. In
particular, we have isomorphisms

Hn([S(C)];Aq) ∼= Hn(C⊳(Aq))

for any integer n ≥ 0.

Proof. If [σ] < [z(σ)], any morphism σ → z(σ) in S(C) induces an automorphism
AutS(C)(z(σ)) ∼= AutS(C)(σ) by 4.5.(iv) and hence an isomorphism Aq([σ]) ∼= Aq([z(σ)]).
The last statement follows from 4.7. �

5 Normal chains in fusion systems

Throughout this section we fix a prime p, a finite p-group P and a fusion system F
on P . Given a chain σ = (Q0 < Q1 < · · · < Qm) of subgroups Qi of P , we denote as
before by σ\i = (Q0 < · · · < Qi−1 < Qi+1 < · · · < Qm) the subchain of σ obtained from
deleting Qi in σ, and we denote in addition by σ≤i = (Q0 < · · · < Qi) the subchain of
σ obtained from truncating σ at Qi, where i is any integer such that 0 ≤ i ≤ m. Note
that if a chain σ = (Q0 < · · · < Qm) of subgroups Qi of P belongs to S⊳(F), so do the
chains σ\i and σ≤i for all i such that 0 ≤ i ≤ m; this is just a way to rephrase 4.3.

A subgroup Q of P is fully F -normalised if |NP (Q)| ≥ |NP (Q′)| for any subgroup
Q′ of P which is isomorphic, in the category F , to Q. By [13, 1.6] this is equivalent
to requiring that AutP (Q) is a Sylow-p-subgroup of AutF (Q) and that Q is fully F -
centralised (that is, |CP (Q)| ≥ |CP (Q′)| for any subgroup Q′ of P isomorphic to Q in
F). Moreover, if Q is fully F -normalised then by a result of Puig we have a fusion
system NF (Q) on NP (Q) (see the appendix A below, or [3, Appendix] for more details
and proofs). We use this to define inductively for normal chains of subgroups of P the
notion of fully F -normalised chains.

Definition 5.1. A chain σ = (Q0 < Q1 < · · · < Qm) in S⊳(F) is called fully F -
normalised if Q0 is fully F -normalised and if either m = 0 or the chain σ\0 = (Q1 <
· · · < Qm) is fully NF (Q0)-normalised.

This makes sense as Q0 is normal in all Qi, 0 ≤ i ≤ m.

Definition 5.2 Let σ = (Q0 < Q1 < · · · < Qm) be a normal chain in S⊳(F). We set
NP (σ) = ∩

0≤i≤m
NP (Qi) and CP (σ) = CP (Qm). We denote by AutP (σ) the canonical

image of NP (σ) in AutS⊳(F)(σ); that is, AutS⊳(F)(σ) ∼= NP (σ)/CP (σ). We denote
by NF (σ) the category on NP (σ) whose morphism sets consist, for any two subgroups
R, S of NP (σ) of all morphisms ϕ : R → S in F for which there exists a morphism
ψ : QmR→ QmS in F such that ψ(Qi) = Qi for 0 ≤ i ≤ m and ψ|R = ϕ.
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Proposition 5.3. Let σ = (Q0 < Q1 < · · · < Qm) be a chain in S⊳(F). If σ is fully F-
normalised then NF (σ) is a fusion system on NP (σ) and AutP (σ) is a Sylow-p-subgroup
of AutS⊳(F)(σ).

Proof. We show first that NF (σ) is a fusion system on NP (σ). If m = 0 this is a result of
Puig (mentioned in the appendix A, or, with proofs, in [3, A.6]). If m > 0 then NF (σ) =
NNF (Q0)(σ\0) is a fusion system by induction. We show in a similar way that AutP (σ)
is a Sylow-p-subgroup of AutS⊳(F)(σ). For m = 0 this is clear either by the Sylow axiom
(I-BLO) as formulated in [3, 1.2] (see also the appendix A below), or by the consequence
[13, 1.6] of Stancu’s version in [18]. For m positive, we observe first that the inclusion of
the chain σ\0 into σ induces a group isomorphism AutS⊳(F)(σ) ∼= AutS⊳(NF (Q0))(σ\0).
This group isomorphism restricts to an isomorphism AutP (σ) ∼= AutNP (Q0)(σ\0). By
induction, AutNP (Q0)(σ\0) is a Sylow-p-subgroup of AutS⊳(NF (Q0))(σ\0). The previous
isomorphisms imply the result. �

Proposition 5.4. Let σ = (Q0 < Q1 < · · · < Qm) be a chain in S⊳(F). Let i be an
integer such that 0 ≤ i < m. The following are equivalent:

(i) The chain σ is fully F-normalised.

(ii) The chain σ≤i = (Q0 < · · · < Qi) is fully F-normalised and the chain (Qi+1 < · · · <
Qm) is fully NF (σ≤i)-normalised.

Proof. We proceed by induction over i. For i = 0 this is part of the definition. Sup-
pose i > 0. Assume first that (i) holds. Then the chain σ\0 = (Q1 < · · ·Qm) is fully
NF (Q0)-normalised, and hence, by induction, the chain (σ\0)≤i−1 = (Q1 < · · · < Qi) is
fully NF (Q0)-normalised and the chain (Qi+1 < · · · < Qm) is fully NNF (Q0)((σ\0)≤i−1)
-normalised. Since Q0 is fully F -normalised, it follows that σ≤i is fully F -normalised.
Since NNF (Q0)((σ\0)≤i−1) = NF (σ≤i) we also get that (Qi+1 < · · · < Qm) is fully
NF (σ≤i)-normalised. Thus (i) implies (ii). Assume now that (ii) holds. Then in par-
ticular Q0 is fully F -normalised and (σ≤i)\0 = (σ\0)≤i−1 = (Q1 < · · · < Qi) is fully
NF (Q0)-normalised. Since also (Qi+1 < · · · < Qm) is fully NF (σ≤i)-normalised and
NF (σ≤i) = NNF (Q0)(Q1 < · · · < Qi) it follows by induction that σ\0 is fully NF (Q0)-
normalised. Thus σ is fully F -normalised. �

We define now a pairing on fully normalised normal chains:

Definition 5.5. Let σ = (Q0 < Q1 < · · · < Qm) be a fully F -normalised chain in
S⊳(F). We define a chain n(σ) in S⊳(F) as follows:

(a) if σ = Q0 = P we set n(σ) = σ;

(b) if Q0 < P and Qm = NP (σ) we set n(σ) = σ\m = σ≤m−1 = (Q0 < · · · < Qm−1);

(c) if Q0 < P and Qm < NP (σ) we set n(σ) = (Q0 < · · · < Qm < NP (σ)).
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Proposition 5.6. For any fully F-normalised chain σ in S⊳(F) the chain n(σ) is again
fully F-normalised.

Proof. We proceed by induction over the length of σ. If σ = Q0 = P then n(σ) = σ,
so there is nothing to prove. If σ = Q0 and Q0 < P then n(σ) = Q0 < NP (Q0), and
since Q0 is fully F -normalised, NP (Q0) is fully NF (Q0)-normalised as it is the unique
maximal subgroup on which NF (Q0) is defined. Suppose that |σ| ≥ 1. If Q0 < P and
Qm = NP (σ) then n(σ) = (Q0 < · · · < Qm−1) is fully F -normalised by 5.4. Assume
that Q0 < P and Qm < NP (σ). We have NP (σ) = NNP (Q0)(σ\0) > Qm, hence, by
induction, the chain n(σ)\0 = (Q1 < · · · < Qm < NP (σ)) is fully NF (Q0))-normalised.
Since σ is fully F -normalised, in particular Q0 is fully F -normalised, and hence n(σ) is
fully F -normalised. �

Proposition 5.7. For any fully F-normalised chain σ in S⊳(F) we have n(n(σ)) = σ.

Proof. If σ = Q0 = P there is nothing to prove. Assume that Q0 < P . If Qm = NP (σ)
then n(σ) = (Q0 < · · · < Qm−1) and Qm−1 < Qm ≤ NP (n(σ)), and hence n(n(σ)) =
(Q0 < · · · < Qm−1 < NP (n(σ))). In order to show that this is σ, we need to show
that Qm = NP (n(σ)). Now if Qm < NP (n(σ)) then Qm < NNP (n(σ))(Qm) = NP (σ),
contradicting the equality Qm = NP (σ), so this is not possible. Finally, if Qm < NP (σ)
then n(σ) = (Q0 < · · · < Qm < NP (σ)), and then NP (n(σ)) = NP (σ), so n(n(σ)) = σ.
�

The next results are dedicated to showing that the above pairing on fully normalised
chains passes down to isomorphism classes of chains.

Proposition 5.8. Let σ = (Q0 < · · · < Qm) and τ = (R0 < · · · < Rm) be two chains
in S⊳(F) which are isomorphic in S⊳(F). Assume that τ is fully F-normalised. Then
there is an isomorphism ϕ : σ ∼= τ in S⊳(F) which can be extended to NP (σ).

Proof. Let ψ : σ ∼= τ be an isomorphism in S⊳(F); that is, ψ is a family of isomorphisms
ψi : Qi ∼= Ri such that ψi = ψm|Qi

, where 0 ≤ i ≤ m. Since R0 is fully F -normalised,
there is an automorphism α of R0 in F such that α ◦ ψ0 : Q0

∼= R0 can be extended
to a morphism γ : NP (σ) → P . Thus, up to replacing σ by γ(σ), we may assume
that Q0 = R0. Then σ and τ are in fact isomorphic in NF (Q0), hence so are σ\0 and
τ\0. By induction, there is an isomorphism π : σ\0 ∼= τ\0 in N(NF(Q0)) which can be
extended to NNP (Q0)(σ\0) = NP (σ). Since π(Q0) = Q0, clearly π induces the required
isomorphism σ ∼= τ . �

Proposition 5.9. Let σ = (Q0 < Q1 < · · · < Qm) be a chain in S⊳(F) and let i be an
integer such that 0 ≤ i ≤ m. Let ϕ : Qi → P be a morphism in F such that ϕ(σ≤i) is
fully F-normalised. Then there is a morphism ψ : Qm → P such that ψ(σ≤i) = ϕ(σ≤i)
and such that ψ(σ) is fully F-normalised.
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Proof. Induction over m − i. For m − i = 0 take ψ = ϕ. Suppose that m > i.
By 5.8 we may assume that ϕ extends to a morphism τ : NP (σ≤i) → P . Clearly
Qm ⊆ NP (σ≤i). Set σ′ = τ(σ). Then σ′≤i = ϕ(σ≤i) is fully F -normalised, and by

induction, τ(Qi+1) < · · · < τ(Qm) is isomorphic, in NF (σ′≤i), to a fully NF (σ′≤i)-
normalised chain. The result follows from 5.4. �

Proposition 5.10. Let σ = (Q0 < · · · < Qm) and τ = (R0 < · · · < Rn) be two fully
F-normalised chains in S⊳(F). We have σ ∼= τ if and only if n(σ) ∼= n(τ).

Proof. Suppose there is an isomorphism ψ : σ ∼= τ . If σ = Q0 = P then σ = τ and
there is nothing to prove. Assume that NP (σ) = Qm. Then n(σ) = σ\m = (Q0 <
· · · < Qm−1). Clearly ψ induces an isomorphism σ\m ∼= τ\m, so all we have to show in
this case is that n(τ) = τ\m, or equivalently, Rm = NP (τ). If Rm < NP (τ), there is,
by 5.8, an isomorphism τ ∼= σ which can be extended to a morphism π : NP (τ) → P .
However, this would imply that NP (σ) contains π(NP (τ), which is strictly bigger than
Rm, contradicting the equality Qm = NP (σ). This shows that n(τ) = τ(m) and hence
n(σ) ∼= n(τ) in this case. Assume now that Qm < NP (σ). Again by 5.8 the isomorphism
ψ : σ ∼= τ can be chosen in such a way that it extends to a morphism π : NP (σ) → P ,
and then, as before, we have π(NP (σ)) ⊆ NP (τ). Exchanging the roles of τ and σ yields
π(NP (σ)) = NP (τ), and hence again, n(σ) ∼= n(τ). Conversely, if n(σ) ∼= n(τ) then
σ ∼= τ by the previous argument combined with 5.7. �

The following result shows that covariant functors on [S⊳(C)] which are invariant
under the pairing induced by n are acyclic. Clearly constant functors have that property.

Theorem 5.11. Let C be a right ideal in the fusion system F on P and let k be a
commutative ring. Let A : [S⊳(C)] → Mod(k) be a covariant functor. Suppose that for
any fully F-normalised chain σ in S⊳(C) such that |σ| < |n(σ)| the unique morphism
[σ] < [n(σ)] in [S⊳(C)] induces an isomorphism A([σ]) ∼= A([n(σ)]). Then the canonical
epimorphism C⊳(A) → A([P ]) is a homotopy equivalence, where A([P ]) is considered
as complex in degree zero. In particular, the functor A is acyclic.

Proof. The pattern of the proof follows closely that of 4.7. We have H∗([S⊳(C)];A) =

H∗(C⊳(A)) by 3.7. For any integer q ≥ 0 we define a subcomplex C
(q)
⊳ (A) of C⊳(A) as

follows: for n < q we set

C
(q)
⊳ (A)n = 0 ;

for n > q we set

C
(q)
⊳ (A)n = C⊳(A)n = ⊕

[σ]
A([σ])

with [σ] running over the set of isomorphism classes of chains σ in S⊳(C) such that
|σ| = n; for n = q we set

C
(q)
⊳ (A)q = ⊕

[σ]
A([σ])
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with [σ] running over the set of isomorphism classes of chains σ in S⊳(C) such that
|σ| = q and such that |n(σ)| = q + 1. It is easy to see that the differential on C⊳(A)

restricts to a differential on C
(q)
⊳ (A). We clearly have

C⊳(A)/C
(0)
⊳ (A) ∼= A([P ]),

viewed as complex concentrated in degree zero, and

C
(q−1)
⊳ (A) ⊆ C

(q)
⊳ (A)

for any positive integer q. By construction, the inclusions C
(0)
⊳ (A) ⊆ C⊳(A) and

C
(q−1)
⊳ (A) ⊆ C

(q)
⊳ (A) are degreewise split. Thus, by Corollary B.2, it suffices to show

that the quotient complex C
(q−1)
⊳ (A)/C

(q)
⊳ (A) is contractible, for q a positive integer.

This quotient complex is of the form

· · · −→ 0 −→ ⊕
[ρ]∈M

A([ρ])
ǫ
−→ ⊕

[σ]∈N
A([σ]) −→ 0 −→ · · ·

whereM is the set of isomorphism classes of fully F -normalised chains ρ in S⊳(C) such
that |ρ| = q − 1, |n(ρ)| = q, and where N is the set of isomorphism classes of fully
F -normalised chains σ in S⊳(C) such that |σ| = q, |n(σ)| = q− 1. The map n induces a

bijection between the sets M, N , and hence, the quotient complex C
(q−1)
⊳ (A)/C

(q)
⊳ (A)

is of the form

· · · −→ 0 −→ ⊕
[σ]∈N

A([n(σ)])
ǫ
−→ ⊕

[σ]∈N
A([σ]) −→ 0 −→ · · ·

In order to see that this is contractible we only have to observe that the differential ǫ in
degree q − 1 is an isomorphism. We consider ǫ as a matrix of its components ǫ[n(σ)],[τ ] :
A([n(σ)])→ A([τ ]), where [σ], [τ ] are elements in N . The diagonal entries ǫ[n(σ)],[σ] of
this matrix are isomorphisms, by the assumptions on A. In order to show that ǫ is an
isomorphism it suffices to show that N can be ordered in such a way that this matrix is a
lower triangular matrix. Choose any total order 4 on N with the property that [τ ] ≺ [σ]
if mτ < mσ , where as before mτ , mσ are the orders of the maximal terms occurring in
the chains τ , σ, respectively. For the component ǫ[n(σ)],[τ ] : A([n(σ)]) → A([τ ]), to be
non zero we must have τ\j ∼= n(σ) for some j. If j = q then τ\j = n(τ), hence σ ∼= τ .
If j < q then mτ = mn(σ) < mσ. Thus this entry is below the diagonal. Consequently,
ǫ is an isomorphism, which concludes the proof. �

As a direct consequence of 4.7 and 5.11 we get the acyclicity result needed for the
proof of Theorem 1.1.
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Theorem 5.12. Let C be a right ideal in the fusion system F on P . Then
Hn([S(C)]; Z) = Hn([S⊳(C)]; Z) = Hn([SΦ(C)]; Z) = {0} for any positive integer n,
where Z is considered as constant covariant functor.

Proof. The first two equalities follow from 4.7 and the rest follows from 5.11. �

We conclude this section with a characterisation of fully normalised chains in the
cases where the underlying fusion system is that of a finite group or that of a block. The
notation for fusion systems of finite groups and blocks is as in [14, §2]. Proposition 5.13
is the particular case of Proposition 5.14 applied to the principal block, but the proof of
5.14 in general relies on a non trivial block theoretic fact, [11, 3.1], which is not needed
in 5.13, and which is why we choose to state both cases separately.

Proposition 5.13. Let G be a finite group, let p be a prime divisor of the order of G
and let P be a Sylow-p-subgroup of G. Let σ = (Q0 < Q1 < · · · < Qm) be a chain of
subgroups of P such that Qi E Qm for 0 ≤ i ≤ m. Then σ is fully FP (G)-normalised if
and only if NP (σ≤i) is a Sylow-p-subgroup of NG(σ≤i) for 0 ≤ i ≤ m.

Proof. Set F = FP (G). For m = 0 this is well-known; see e.g. [14, 2.2.(iii)].
For 1 ≤ i ≤ m we observe that NP (σ≤i) = NNP (Q0)((σ\0)≤i−1) and NG(σ≤i) =
NNG(Q0)((σ\0)≤i−1). Thus, by induction, σ\0 is fully NF (Q0)-normalised if and only if
NP (σ≤i) is a Sylow-p-subgroup of NG(σ≤i) for 1 ≤ i ≤ m. The result follows. �

Proposition 5.14. Let G be a finite group, let p be a prime divisor of the order of G,
let k be a field of characteristic p, let b be a block of kG and let (P, eP ) be a maximal
b-Brauer pair. For any subgroup Q of P denote by eQ the unique block of kCG(Q)
satisfying (Q, eQ) ⊆ (P, eP ). Let σ = (Q0 < Q1 < · · · < Qm) be a chain of subgroups of
P such that Qi E Qm for 0 ≤ i ≤ m. Then σ is fully F(P,eP )(G, b)-normalised if and
only if NP (σ≤i) is a defect group of the block algebra kNG(σ≤i, eQi

)eQi
for 0 ≤ i ≤ m.

Proof. Set F = F(P,eP )(G, b). For this statement to make sense we need to in-
voke [11, 3.1] which implies that eQi

remains indeed a block of kNG(σ≤i, eQi
) for

0 ≤ i ≤ m. If m = 0 the result is again well-known; see e.g. [14, 2.4.(iii)]. For
1 ≤ i ≤ m we observe thatNP (σ≤i, eQi

) = NNP (Q0)((σ\0)≤i−1, eQi
) andNG(σ≤i, eQi

) =
NNG(Q0)((σ\0)≤i−1, eQi

). Thus, by induction, σ\0 is fully NF (Q0)-normalised if and
only if NP (σ≤i) is a defect group of kNG(σ≤i, eQi

)eQi
for 1 ≤ i ≤ m. The result follows.

�

6 Simple connectedness

Theorem 6.1. Let F be a fusion system on a finite p-group P , where p is a prime. Let
C be a right ideal in F . Then the partially ordered sets [S(C)] and [S⊳(C)], viewed as
topological spaces, are simply connected.
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Proof. We first observe that [S(C)] = [S<(C)] is path connected. Let σ = (Q0 < Q1 <
· · · < Qm) be a chain of subgroups of P belonging to C. Set τ = (Q0 < Q1 < · · · <
Qm < P ) if Qm < P and τ = σ if Qm = P . Consider P as chain of length zero in S(C).
We have morphisms in S(C)

σ −→ τ ←− P ,

which implies that in [S(C)] there is a path from [σ] to [P ]. Thus [S(C)] is path connected.
If σ is in S⊳(C) we show by induction over [P : Qm] that there is a path from [P ] to [σ].
If Qm = P there is a morphism P → σ given by IdP , and hence a path from [P ] to [σ].
If Qm < P then Qm < NP (Qm), and the diagram

σ = (Q0 < · · · < Qm)← Qm → (Qm ⊳ NP (Qm))← NP (Qm)

defines a path in [S⊳(C)] from [σ] to [NP (Qm)]. By induction, there is also a path from
[NP (Qm)] to [P ]. Thus S⊳(C) is path connected as well.

It remains to show that the fundamental groups of [S(C)] and of [S⊳(C)] are trivial.
We choose [P ] as basepoint in [S(C)]. Let T be a loop in [S(C)] starting and ending at
[P ]. It is well-known (and easy to see) that up to replacing T by a homotopic path, we
may assume that T is contained in the 1-skeleton of [S(C)]. Then T is homotopic to the
image of a path in S<(C) from P to P given by a diagram of morphisms in S<(C) of the
form

P = σ0 → σ1 ← σ2 → · · · ← σ2n = P

for some integer n ≥ 0, where the σi are chains in S<(C) for 0 ≤ i ≤ 2n. We observe
first that we may always assume that the chains σ2k have length zero, where 0 ≤ k ≤ n,
without changing the homotopy class of the path T . For k = 0 or k = n this holds
trivially. Let k be an integer such that 1 ≤ k ≤ n− 1. If

σ2k−1 = (Q0 < · · · < Qm) ,

σ2k = (R0 < · · · < Rn) ,

σ2k+1 = (S0 < · · · < Sl) ,

there is an obvious commutative diagram in S<(C) of the form

σ2k−1 ←−−−− σ2k −−−−→ σ2k+1
∥

∥

∥

x





∥

∥

∥

σ2k−1 ←−−−− Rn −−−−→ σ2k+1

which shows that we may replace σ2k by the chain Rn of length zero without affecting
the homotopy class of the path T . Next we note that we may assume that the σ2k+1

have length 1, for 0 ≤ k ≤ n− 1, without changing the homotopy class of T . The chains
σ2k, σ2k+2 have length zero, so choose notation such that σ2k = Q and σ2k+2 = S for
some subgroups Q, S of P . Let σ2k+1 = (R0 < · · · < Rn). The morphism σ2k → σ2k+1
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is given by an isomorphism Q ∼= Ri for a unique integer i between 0 and n. Similarly, the
morphism σ2k+1 ← σ2k+2 is given by an isomorphism Rj ∼= S for some unique integer
j. If i = j then Q ∼= S and the portion of the path of T given by Q = σ2k → σ2k+1 ←
σ2k+2 = S is homotopic to the constant path at [Q] = [S], so we may eliminate this
portion from the path. If i < j we get an obvious commutative diagram in S(C) of the
form

σ2k −−−−→ σ2k+1 ←−−−− σ2k+2
∥

∥

∥

x





∥

∥

∥

Q −−−−→ (Ri < Rj) ←−−−− S

which shows that we may replace σ2k+1 by the chain of length 1 of the form (Ri < Rj)
without changing the homotopy class of T . A similar argument works if i > j. The next
step is to show that we may in fact assume that the σ2k+1 are of the form σ2k+1 = (Q ⊳

S); that is, with Q normal in S. If Q is not normal in S then there is a subgroup R of
S such that Q < R < S. By the previous arguments, we may assume that σ2k = Q and
σ2k+2 = S, and that the morphisms σ2k → σ2k+1 and σ2k+1 ← σ2k+2 are given by the
identity maps on Q and S, repsectively. Thus, we get a commutative diagram in S<(C)
of the form

σ2k // σ2k+1 σ2k+2oo

Q // (Q < S)

��

Soo

Q // (Q < R < S) Soo

Q // (Q < R)

77ppppppppppp

Roo

OO

// (R < S)

ggNNNNNNNNNNN

Soo

which shows that the part of the path T from [Q] to [S] is homotopic to the path
represented by the bottom line of the above diagram. Since the indices [R : Q] and
[S : R] are both smaller than [S : Q], we can assume that after applying the above
argument a finite number of times, that the chains σ2k+1 are in S⊳(C). This shows in
particular that the path T is homotopic to a path in [S⊳(C)]. We keep the assumption
that all σ2k have length zero, 0 ≤ k ≤ n, and that all σ2k+1 have length one and are
in S⊳(C). If n is 0 or 1, then clearly the path T is homotopic to the constant path at
[P ]. We assume therefore that n ≥ 2. We choose now k such that σ2k = Q with Q
having smallest possible order. If Q = P we are done, so we may assume Q < P . Then
necessarily 1 ≤ k ≤ n− 1, and, up to isomorphism, the part of the chain

σ2k−2 → σ2k−1 ← σ2k → σ2k+1 ← σ2k+2
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is of the form
R→ (Q ⊳ R)← Q→ (Q ⊳ S)← S

for some subgroups Q, R, S of P . What we will show is that the path from [R] to [S]
represented by this diagram is homotopic to a path represented by a diagram involving
only subgroups of P which are strictly bigger than Q. If we can do this, we are done,
because then after a finite number of steps we are down to a path represented by a
diagram involving only P , and that yields the homotopy class of the constant path at
[P ]. First, we may assume that R and S are different. Indeed, if R = S then the
path represented by (Q ⊳ R) ← Q → (Q ⊳ S) is homotopic to the constant path at
[Q ⊳ R] = [Q ⊳ S], and so the path represented by the above sequence is homotopic
to the constant path at [R] = [S]. If R, S are different, then at least one of them is
smaller than NP (Q). Suppose that R < NP (Q). Then R < NNP (Q)(R) = NP (Q ⊳ R).
Set R1 = NP (Q ⊳ R). Then the chain Q ⊳ R ⊳ R1 belongs to S⊳(C). Consider the
commutative diagram

R // (Q ⊳ R)

��

Qoo

(Q ⊳ R ⊳ R1)

R // (R ⊳ R1)

77ooooooooooo

R1
oo //

OO

(Q ⊳ R1)

ggOOOOOOOOOOO

Qoo

This shows that we may replace R by R1. But then, after a finite number of steps, we
actually may assume that R = NP (Q). The same argument shows that we also may
assume that S = NP (Q). Then in particular R = S, and by the previous argument, this
concludes the proof. �

Remark 6.2. Even though [SΦ(C)] is acyclic, the above proof does not show that
[SΦ(C)] is contractible, because the homotopy in the last diagram above goes via the
chain Q ⊳ R ⊳ R1 which need not be in SΦ(C).

7 Split exact sequences

Webb’s split exact sequences [24] and their generalisations and variations in work of
Bouc [2], Grodal [8], Symonds [20], Villaroel-Flores and Webb [22] can be obtained in
some special cases for arbitrary fusion systems by combining 4.7 and 5.11 as follows:

Theorem 7.1. Let p be a prime, let F be a fusion system on a finite p-group P and
let C be a right ideal in F . Let k be a commutative ring and let A : [S(C)] → Mod(k)
be a covariant functor. Suppose that for any chain σ in S<(C) the canonical morphism
between [σ] and [z(σ)] induces an isomorphism A([σ]) ∼= A([z(σ)]), and suppose that for
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any fully F-normalised chain τ in S⊳(C) the canonical morphism between [σ] and [n(σ)]
induces an isomorphism A([σ]) ∼= A([n(σ)]). There is a split exact sequence

0 −→ A([P ]) −→ ⊕
[σ]∈[S(C)]

|σ|=0

A([σ]) −→ ⊕
[σ]∈[S(C)]

|σ|=1

A([σ]) −→ ⊕
[σ]∈[S(C)]

|σ|=2

A([σ]) −→ · · · .

Proof. The hypotheses on A imply that, by 4.7 and 5.11, the canonical epimorphism
C(A) → A([P ]) is a homotopy equivalence. The mapping cone of this morphism is
therefore contractible - and this is precisely a sequence of the form as described in the
statement. �

Appendix A: fusion systems

Let p be a prime.

Definition A.1. Given a finite p-group P , a category on P is a category F whose objects
are the subgroups of P and whose morphism sets HomF (Q,R) are sets of injective
group homomorphisms from Q to R, where Q, R are subgroups of P , with the following
properties:

(i) the composition of morphisms in F is given by the usual composition of group
homomorphisms;

(ii) if Q ⊆ R then the inclusion map from Q to R is a morphism in F ;

(iii) if ϕ : Q→ R is a morphism in F then so is the induced isomorphism Q ∼= ϕ(Q) and
its inverse.

IfQ, R are subgroups of P we denote by HomP (Q,R) the set of group homomorphisms
from Q to R induced by conjugation with elements in P , and we write AutP (Q) =
HomP (Q,Q).

Definition A.2. Given a category F on a finite p-group P and a subgroup Q of P we
say that

- Q is fully F -normalised if |NP (Q)| ≥ |NP (Q′)| for any subgroup Q′ of P such that
there is an isomorphism Q′ ∼= Q in F ;

- Q is fully F -centralised if |CP (Q)| ≥ |CP (Q′)| for any subgroup Q′ of P such that
there is an isomorphism Q′ ∼= Q in F ;

- Q is F -centric if CP (Q′) = Z(Q′) for any subgroup Q′ of P such that there is an
isomorphism Q′ ∼= Q in F ;

- Q is F -radical if Op(AutF (Q)) ⊆ AutQ(Q);
- Q is weakly F -closed if for every morphism ϕ : Q→ P we have ϕ(Q) = Q;
-Q is strongly F -closed if for every morphism ϕ : R→ P we have ϕ(R∩Q) = ϕ(R)∩Q;

Following the notation in [3], if ϕ : Q→ P is a morphism in F we denote by Nϕ the
subgroup of all elements y in NQ(P ) for which there exists an element z ∈ NP (ϕ(Q))
such that ϕ(yuy−1) = zϕ(u)z−1 for all u ∈ Q. Note that QCP (Q) ⊆ Nϕ ⊆ NP (Q).
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Definition A.3. A category F on a finite p-group P is called a fusion system if
HomP (Q,R) ⊆ HomF (Q,R) for all subgroups Q, R of P and if in addition the two
following properties hold:

(I-S) AutP (P ) is a Sylow-p-subgroup of AutF (P );

(II-S) every morphism ϕ : Q → P such that ϕ(Q) is fully F -normalised extends to a
morphism ψ : Nϕ → P in F (that is, ψ|Q = ϕ).

The concept of a fusion system on a finite p-group is due to L. Puig; the above axioms
(I-S) and (II-S) appear in Stancu [18]. As observed in [18] - see also [14, §1] for proofs
- the axioms I-S and II-S are equivalent to the a priori stronger axioms used by Broto,
Levi and Oliver in [3, 1.2]

(I-BLO) if Q is a fully F -normalised subgroup of P then Q is fully F -centralised and
AutP (Q) is a Sylow-p-subgroup of AutF (Q);

(II-BLO) given any subgroup Q of P , every morphism ϕ : Q → P such that ϕ(Q) is
fully F -centralised extends to a morphism ψ : Nϕ → P in F (that is, ψ|Q = ϕ).

If G is a finite group and P a Sylow-p-subgroup of G we denote by FP (G) the category
on P whose morphism sets are the group homomorphisms induced by conjugation with
elements in G; that is, HomFP (G)(Q,R) = HomG(Q,R) for any two subgroups Q, R
of P . It is well-known and easy to verify that FP (G) is a fusion system on P . In
particular, FP (P ) is the fusion system on P consisting precisely of all morphisms given
by conjugation with elements in P . For any fusion system F on P we have FP (P ) ⊆ F
by the first part of A.3.

One of the most fundamental properties of fusion systems is Alperin’s fusion theorem,
which says that any isomorphism in a fusion system F on a finite p-group P can be
written as the composition of isomorphisms ϕ : Q → R for which there is a radical
F -centric subgroup S of P containing both Q, R and an automorphism α of S in F
such that ϕ is the restriction to Q of α. See e.g. [3] or [21] for proofs and more precise
statements.

Definition A.4. Given a category F on a finite p-group P and a subgroup Q
of P we define the category NF (Q) on NP (Q) by HomNF (Q)(R,R

′) = {ϕ : R →
R′| ϕ extends to a morphism ψ : QR → QR′ in F such that ψ(Q) = Q}, for
any two subgroups R, R′ of NP (Q). Similarly, we define the category CF (Q) on
CP (Q) by HomCF (Q)(R,R

′) = {ϕ : R → R′| ϕ extends to a morphism ψ : QR →
QR′ in F such that ψ|Q = IdQ}.

We have clearly inclusions of categories CF (Q) ⊆ NF (Q) ⊆ F . If F = NF (Q)
for some subgroup Q of P , then clearly Q is strongly F -closed. The converse of this
statement is not true, in general.

The following result is due to Puig; see [3, Appendix, Lemma A.6] for a proof.

Proposition A.5. Let F be a fusion system on a finite p-group P and let Q be a
subgroup of P . If Q is fully F-centralised, then CF (Q) is a fusion system on CP (Q) and
if Q is fully normalised, then NF (Q) is a fusion system on NP (Q).
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Appendix B: Some homological background

Let C be an abelian category and let 0 −→ X
f
−→ Y

g
−→ Z −→ 0 be a short exact

sequence of chain complexes over C. Then Z is quasi-isomorphic to the mapping cone
C(f) of f ; in particular, Z is acyclic if and only if f is a quasi-isomorphism. It is not
true, in general, that C(f) ≃ Z. Thus, even if Z is contractible this does not necessarily
imply that f is a homotopy equivalence. One can however show that if the above exact
sequence is split in each degree then C(f) ≃ Z. For the purpose of this paper, we need
only a particular case of this fact, of which we give a direct proof for the convenience of
the reader:

Theorem B.1. Let C be an abelian category and let 0 −→ X
f
−→ Y

g
−→ Z −→ 0

be a degreewise split exact sequence of chain complexes over C. Then f is a homotopy
equivalence if and only if Z ≃ 0.

Proof. Let δ, ǫ, ζ be the differentials of X , Y , Z, respectively. Since the exact sequence in
the statement is degreewise split, there are graded morphisms u : Y → X and v : Z → Y
of degree zero such that IdY = fu+vg, but u, v need not commute with the differentials
of the complexes. Composing this identity with f on the right yields f = fuf , hence
uf = IdX because f is a monomorphism. Similarly, gv = IdZ .

Suppose first that f is a homotopy equivalence. Let f ′ : Y → X be a homotopy
inverse of f . That is, IdX ∼ f ′f and IdY ∼ ff ′, or more explicitly, there are graded
morphisms a : X → X and b : Y → Y of degree 1 such that

IdX − f
′f = aδ + δa , IdY − ff

′ = bǫ+ ǫb .

We first show that we may assume a = 0, or equivalently, that f ′f = IdX . To see
this, we replace f ′ by f ′ + auǫ + δau. Clearly f ′ ∼ f ′ + auǫ + δau, and we have now
(f ′ + auǫ + δau)f = ff ′ + aufδ + δauf = ff ′ + aδ + δa = IdX , where we used the
equality uf = IdX . Therefore we may indeed assume that f ′f = IdX . That is, f is a
split monomorphism as chain map. Consequently g is a split epimorphism as chain map.
Let g′ : Z → Y be a chain map satisfying gg′ = IdZ . Set c = gbg′. Clearly c is a graded
morphism of degree 1 from Z to Z. Composing the identity IdY −ff ′ = bǫ+ǫb on the left
by g and on the right by g′ yields IdZ = gg′ = gbǫg′+gǫbg′ = gbg′ζ+ζgbg′ = cζ+ζc ∼ 0,
hence Z ≃ 0.

Suppose conversely that Z ≃ 0. Then there is graded morphism c : Z → Z of degree
1 such that IdZ = cζ + ζc. Set now g′ = ǫvc + vcζ. Since gv = IdZ we get that
gg′ = gǫvc+ gvcζ = ζgvc+ cζ = ζc+ cζ = IdZ . Thus g is a split epimorphism of chain
complexes. Therefore there exists a chain map f ′ : Y → X satisfying IdY = g′g + ff ′.
In particular, composing this identity by f on the right yields, as above, the equality
f ′f = IdX . Moreover, ff ′ = IdY − g

′g = IdY − (ǫvc+ vcζ)g = IdY − ǫvcg− vcgζ ∼ IdY .
This shows that f ′ is a homotopy inverse of f which concludes the proof. �

We reformulate this in the form as used in the proofs of 4.7 and 5.11:
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Corollary B.2. Let C be an abelian category, let X be a chain complex over C and
for any q ≥ 0 let X(q) be a subcomplex of X such that X(q) ⊆ X(q−1) for q ≥ 1 and
such that X(q) = 0 for q large enough. Suppose that the inclusions X(0) ⊆ X and
X(q) ⊆ X(q−1) are degreewise split and that the quotients X(q−1)/X(q) are contractible
for q ≥ 1. Then X(0) is contractible and the canonical epimorphism X → X/X(0) is a
homotopy equivalence.
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