

# City Research Online

## City, University of London Institutional Repository

**Citation:** Kessar, R. & Linckelmann, M. (2008). ZJ-theorems for fusion systems. Transactions of the American Mathematical Society, 360(06), pp. 3093-3107. doi: 10.1090/s0002-9947-08-04275-x

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1889/

Link to published version: https://doi.org/10.1090/s0002-9947-08-04275-x

**Copyright:** City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

**Reuse:** Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

City Research Online: <a href="http://openaccess.city.ac.uk/">http://openaccess.city.ac.uk/</a> <a href="publications@city.ac.uk/">publications@city.ac.uk/</a>

#### ZJ-THEOREMS FOR FUSION SYSTEMS

#### RADHA KESSAR, MARKUS LINCKELMANN

ABSTRACT. For p an odd prime, we generalise the Glauberman-Thompson p-nilpotency theorem [5, Ch. 8, Theorem 3.1] to arbitrary fusion systems. We define a notion of Qd(p)-free fusion systems and show that if  $\mathcal{F}$  is a Qd(p)-free fusion system on some finite p-group P then  $\mathcal{F}$  is controlled by W(P) for any Glauberman functor W, generalising Glauberman's ZJ-theorem [3] to arbitrary fusion systems.

#### 1 Introduction

Let p be an odd prime, let G be a finite group, let P be a Sylow-p-subgroup of G and let J(P) be the Thompson subgroup of P (generated by the set of abelian subgroups of P of maximal order). The p-nilpotency theorem of Glauberman and Thompson [5, Ch. 8, Theorem 3.1] states that G is p-nilpotent if and only if  $N_G(Z(J(P)))$  is p-nilpotent. By a theorem of Frobenius [4, 8.6], G is p-nilpotent if and only if P controls G-fusion in P, or equivalently, if and only if  $\mathcal{F}_P(G) = \mathcal{F}_P(P)$ , where the notation is as described in §2 below. The p-nilpotency theorem has been generalised to p-blocks of finite groups in [7], and the following theorem proves an analogue for arbitrary fusion systems.

**Theorem A.** Let p be an odd prime and let  $\mathcal{F}$  be a fusion system on a finite p-group P. We have  $\mathcal{F} = \mathcal{F}_P(P)$  if and only if  $N_{\mathcal{F}}(Z(J(P))) = \mathcal{F}_P(P)$ .

The proof of Theorem A is given in §4. A finite group A is said to be *involved* in another finite group G if there are subgroups H, K of G such that  $K ext{ } ext{ }$ 

<sup>1991</sup> Mathematics Subject Classification. 20C20.

subgroup of P, there is, up to isomorphism, a unique finite group  $L = L_Q^{\mathcal{F}}$  having  $N_P(Q)$  as Sylow-p-subgroup such that  $C_L(Q) = Z(Q)$  and  $N_{\mathcal{F}}(Q) = \mathcal{F}_{N_P(Q)}(L)$ .

**Definition 1.1.** A fusion system  $\mathcal{F}$  on a finite p-group P is called Qd(p)-free, if Qd(p) is not involved in any of the groups  $L_Q^{\mathcal{F}}$ , with Q running over the set of  $\mathcal{F}$ -centric radical fully normalised subgroups of P.

**Definition 1.2.** (cf. [8, 1.3]) A positive characteristic p-functor is a map sending any finite p-group P to a characteristic subgroup W(P) of P such that  $W(P) \neq 1$  if  $P \neq 1$  and such that any isomorphism of finite p-groups  $P \cong Q$  maps W(P) onto W(Q). A Glauberman functor is a positive characteristic p-functor with the following additional property: whenever P is a Sylow-p-subgroup of a finite group L which satisfies  $C_L(O_p(L)) = Z(O_p(L))$  and which does not involve Qd(p), then W(P) is normal in L.

Any of the maps sending a finite p-group P to Z(J(P)) or  $K_{\infty}(P)$  or  $K^{\infty}(P)$  are Glauberman functors, where J(P) is the Thompson subgroup of P, and where  $K_{\infty}$ ,  $K^{\infty}$  are as defined in [4, Section 12].

**Theorem B.** Let p be an odd prime, let W be a Glauberman functor and let  $\mathcal{F}$  be a fusion system on a finite p-group P. If  $\mathcal{F}$  is Qd(p)-free then  $\mathcal{F} = N_{\mathcal{F}}(W(P))$ .

For fusion systems of finite groups this is Glauberman's ZJ-theorem; for fusion systems of p-blocks of finite groups this has also been noted by G. R. Robinson, generalising [8, 1.4] where it was shown that the conclusion of Theorem B holds under the slightly stronger assumption that  $SL_2(p)$  is not involved in any of the automorphism groups  $Aut_{\mathcal{F}}(Q)$ , with Q running over the set of  $\mathcal{F}$ -centric radical subgroups of P. The proof of Theorem B, given in §7, follows the pattern of the proof of [8, 1.4].

Since there exist Glauberman functors mapping P to a subgroup W(P) satisfying  $C_P(W(P)) = Z(W(P))$  (for example,  $K_\infty$ ,  $K^\infty$  have this property), the above Theorem in conjunction with [1, 4.3] implies that a Qd(p)-free fusion system on a finite p-group P is in fact equal to the fusion system of a finite group L having P as Sylow-p-subgroup and satisfying  $C_L(O_p(L)) \subseteq O_p(L)$ . In particular, a Qd(p)-free fusion system is the underlying fusion system of a unique p-local finite group in the sense of [2].

### 2 Background material on fusion systems

Let p be a prime and let P be a finite p-group. Following the terminology of [10], a category on P is a category  $\mathcal{F}$  with the subgroups of P as objects and with morphism sets  $\operatorname{Hom}_{\mathcal{F}}(Q,R)$  consisting of injective group homomorphisms, for any two subgroups Q, R of P, such that the following hold. Composition of morphisms in  $\mathcal{F}$  is the usual composition of group homomorphisms, and for any morphism  $\varphi:Q\to R$  in  $\mathcal{F}$ , the induced isomorphism  $Q\cong \varphi(Q)$ , its inverse and the inclusion  $\varphi(Q)\subseteq R$  are all morphisms in  $\mathcal{F}$  as well. Given a category  $\mathcal{F}$  on P and a subgroup Q of P, we say that

- Q is fully  $\mathcal{F}$ -normalised if  $|N_P(Q)| \ge |N_P(\varphi(Q))|$  for every morphism  $\varphi: Q \to P$  in  $\mathcal{F}$ :
- Q is fully  $\mathcal{F}$ -centralised if  $|C_P(Q)| \ge |C_P(\varphi(Q))|$  for every morphism  $\varphi: Q \to P$  in  $\mathcal{F}$ :
  - Q is  $\mathcal{F}$ -centric if  $C_P(\varphi(Q)) = Z(\varphi(Q))$  for every morphism  $\varphi: Q \to P$  in  $\mathcal{F}$ ; and
  - Q is  $\mathcal{F}$ -radical if  $O_p(\operatorname{Aut}_{\mathcal{F}}(Q)) = \operatorname{Aut}_{\mathcal{O}}(Q)$ .

Following [2, 1.2], if  $\varphi: Q \to P$  is a morphism in a category  $\mathcal{F}$  on P, we denote by  $N_{\varphi}$  the subgroup of  $N_P(Q)$  consisting of all  $y \in N_P(Q)$  for which there is  $z \in N_P(\varphi(Q))$  such that  $\varphi(yuy^{-1}) = z\varphi(u)z^{-1}$  for all  $u \in Q$ . If Q, R are subgroups if P we denote by  $\operatorname{Hom}_P(Q,R)$  the set of all group homomorphisms from Q to R induced by conjugation with elements in P. If Q = R we write  $\operatorname{Aut}_P(Q) = \operatorname{Hom}_P(Q,Q)$ ; note that  $\operatorname{Aut}_P(Q) \cong N_P(Q)/C_P(Q)$ .

A fusion system on P is a category  $\mathcal{F}$  on P whose morphism sets contain all morphisms induced by conjugation with elements in P, and which has furthermore the following properties.

- (I-S)  $\operatorname{Aut}_{P}(P)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(P)$ ;
- (II-S) for every morphism  $\varphi: Q \to P$  such that  $\varphi(Q)$  is fully  $\mathcal{F}$ -normalised, there is a morphism  $\psi: N_{\varphi} \to P$  such that  $\varphi = \psi|_{Q}$ .

This concept is due to Puig [11]; the above definition appears in [12] and is equivalent to the definition of what is called a *saturated fusion system* in [2, 1.2]; in particular, it is shown in [12] that the axioms (I-S) and (II-S) imply the axioms used in [2, 1.2],

(I-BLO) if Q is a fully  $\mathcal{F}$ -normalised subgroup of P then Q is fully  $\mathcal{F}$ -centralised and  $\operatorname{Aut}_{P}(Q)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(Q)$ ;

(II-BLO) for every morphism  $\varphi: Q \to P$  such that  $\varphi(Q)$  is fully  $\mathcal{F}$ -centralised, there is a morphism  $\psi: N_{\varphi} \to P$  such that  $\varphi = \psi|_{Q}$ .

If G is a finite group having P as Sylow-p-subgroup we denote by  $\mathcal{F}_P(G)$  the category on P whose morphism sets are the group homomorphisms induced by conjugation with elements in G; that is,  $\operatorname{Hom}_{\mathcal{F}_P(G)}(Q,R) = \operatorname{Hom}_G(Q,R)$  for any two subgroups Q, R of G. It is well-known and easy to verify that  $\mathcal{F}_P(G)$  is a fusion system; we call  $\mathcal{F}_P(G)$  the fusion system of the finite group G on P. In particular,  $\mathcal{F}_P(P)$  is the fusion system on P whose morphisms are exactly those induced by inner automorphisms in P. Note that  $\mathcal{F}_P(P) \subseteq \mathcal{F}$  for any fusion system on P.

Let  $\mathcal{F}$  be a fusion system on P and let Q be a subgroup of P. We denote by  $C_{\mathcal{F}}(Q)$  the category on  $C_P(Q)$  such that, for any two subgroups R, R' of  $C_P(Q)$ , the morphism set in  $C_{\mathcal{F}}(Q)$  from R to R' consists of all group homomorphisms  $\varphi: R \to R'$  such that there exists a morphism  $\psi: RQ \to RQ'$  in  $\mathcal{F}$  satisfying  $\psi|_R = \varphi$  and  $\psi|_Q = \mathrm{Id}_Q$ . Similarly, we denote by  $N_{\mathcal{F}}(Q)$  the category on  $N_P(Q)$  such that, for any two subgroups R, R' of  $N_P(Q)$ , the morphism set in  $N_{\mathcal{F}}(Q)$  from R to R' consists of all group homomorphisms  $\varphi: R \to R'$  such that there exists a morphism  $\psi: RQ \to RQ'$  in  $\mathcal{F}$  satisfying  $\psi|_R = \varphi$  and  $\psi(Q) = Q$ . By a result of Puig, if Q is fully  $\mathcal{F}$ -centralised then  $C_{\mathcal{F}}(Q)$  is a fusion

system on  $C_P(Q)$ , and if Q is fully  $\mathcal{F}$ -normalised then  $N_{\mathcal{F}}(Q)$  is a fusion system on  $N_P(Q)$ . Both statements are in fact particular cases of a more general result; see e.g. [2, Appendix, Prop. A6] for a proof. If  $\mathcal{F} = N_{\mathcal{F}}(Q) = N_{\mathcal{F}}(R)$  for normal subgroups Q, R of P then one easily checks that  $\mathcal{F} = N_{\mathcal{F}}(QR)$ . Thus the following definition makes sense:

**Definition 2.1.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P. We denote by  $O_p(\mathcal{F})$  the largest normal subgroup of P such that  $\mathcal{F} = N_{\mathcal{F}}(O_p(\mathcal{F}))$ .

**Lemma 2.2.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P. For any subgroup Q of P there is a morphism  $\varphi: N_P(Q) \to P$  in  $\mathcal{F}$  such that  $\varphi(Q)$  is fully  $\mathcal{F}$ -normalised.

Proof. Let  $\psi: Q \to P$  be a morphism in  $\mathcal{F}$  such that  $\psi(Q)$  is fully  $\mathcal{F}$ -normalised. Thus  $\operatorname{Aut}_P(\psi(Q))$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(Q)$ . Therefore  $\psi \circ \operatorname{Aut}_P(Q) \circ \psi^{-1}$  is conjugate to a subgroup of  $\operatorname{Aut}_P(\psi(Q))$ ; say  $\tau \circ \psi \circ \operatorname{Aut}_P(Q) \circ \psi^{-1} \circ \tau^{-1} \subset \operatorname{Aut}_P(\psi(Q))$  for some  $\tau \in \operatorname{Aut}_{\mathcal{F}}(\psi(Q))$ . Thus  $\varphi = \tau \circ \psi$  has the property that  $N_{\varphi} = N_P(Q)$ , hence  $\varphi$  extends to a morphism  $N_P(Q) \to P$ , and  $\varphi(Q) = \psi(Q)$  is fully  $\mathcal{F}$ -normalised.  $\square$ 

**Lemma 2.3.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P. For any fully  $\mathcal{F}$ -normalised subgroup Q of P and any morphism  $\varphi: N_P(Q) \to P$  the subgroup  $\varphi(Q)$  is fully  $\mathcal{F}$ -normalised.

*Proof.* If  $\varphi: N_P(Q) \to P$  is a morphism in  $\mathcal{F}$  then  $\varphi(N_P(Q)) \subseteq N_P(\varphi(Q))$ , hence this inclusion is an equality whenever Q is fully  $\mathcal{F}$ -normalised.  $\square$ 

Given two subgroups Q, R of P such that  $Q \leq R$  we denote by  $\operatorname{Aut}_{\mathcal{F}}(Q \leq R)$  the subgroup of  $\operatorname{Aut}_{\mathcal{F}}(R)$  consisting of all  $\varphi \in \operatorname{Aut}_{\mathcal{F}}(R)$  satisfying  $\varphi(Q) = Q$ . Restriction to Q induces a group homomorphism  $\operatorname{Aut}_{\mathcal{F}}(Q \leq R) \to \operatorname{Aut}_{\mathcal{F}}(Q)$ . The following Lemma is a reformulation of a well-known fact following from the extension axiom for fusion systems.

**Lemma 2.4.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P and let Q, R be subgroups of P such that  $QC_P(Q) \leq R$ . Suppose that Q is fully  $\mathcal{F}$ -centralised and that  $\operatorname{Aut}_R(Q)$  is normal in  $\operatorname{Aut}_{\mathcal{F}}(Q)$ . The group homomorphism  $\operatorname{Aut}_{\mathcal{F}}(Q \leq R) \to \operatorname{Aut}_{\mathcal{F}}(Q)$  induced by restriction from R to Q is surjective.

Proof. For any  $y \in N_P(Q)$  denote by  $c_y$  the automorphism of Q given by conjugation with y. Let  $\varphi \in \operatorname{Aut}_{\mathcal{F}}(Q)$ . Since  $\operatorname{Aut}_R(Q)$  is normal in  $\operatorname{Aut}_{\mathcal{F}}(Q)$ , for any  $y \in R$  there is  $z \in R$  such that  $\varphi \circ c_y \circ \varphi^{-1} = c_z$ . In particular, we have  $R \subseteq N_{\varphi}$ . Thus  $\varphi$  extends to a morphism  $\psi : R \to P$ . Then, for all  $u \in Q$ , we have  $(\varphi \circ c_y \circ \varphi^{-1})(u) = (\psi \circ c_y \circ \psi^{-1})(u) = \psi(y(\psi^{-1}(u))) = \psi(y)u$ , or equivalently,  $\varphi \circ c_y \circ \varphi^{-1} = c_{\psi(y)}$ . Since  $C_P(Q) \subseteq R$  we get  $\psi(R) = R$  and hence  $\psi \in \operatorname{Aut}_{\mathcal{F}}(Q \leq R)$ .  $\square$ 

**Lemma 2.5.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P. Suppose that  $\mathcal{F} = N_{\mathcal{F}}(Q)$  for some normal subgroup Q of P. Then Q is contained in any  $\mathcal{F}$ -centric radical subgroup R of P.

Proof. Let R be a fully  $\mathcal{F}$ -normalised centric radical subgroup of P. The hypothesis  $\mathcal{F} = N_{\mathcal{F}}(Q)$  implies that  $\operatorname{Aut}_{QR}(R)$  is normal in  $\operatorname{Aut}_{\mathcal{F}}(R)$ . Since R is radical, this forces  $\operatorname{Aut}_{QR}(R) = \operatorname{Aut}_{R}(R)$ , hence  $N_{QR}(R) \subseteq RC_{P}(R)$ . As R is also centric, we get  $N_{QR}(R) = R$ , and hence QR = R, or equivalently,  $Q \subseteq R$ .  $\square$ 

Besides  $C_{\mathcal{F}}(Q)$  and  $N_{\mathcal{F}}(Q)$  we need another particular case of Puig's result in [2, Appendix, Prop. A6].

**Proposition 2.6.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P and let Q be a fully  $\mathcal{F}$ -normalised subgroup of P. Then there is a fusion system  $N_P(Q)C_{\mathcal{F}}(Q)$  on  $N_P(Q)$  contained in  $N_{\mathcal{F}}(Q)$  such that, for any two subgroups R, R' of  $N_P(Q)$ , the morphism set  $\operatorname{Hom}_{N_P(Q)C_{\mathcal{F}}(Q)}(R, R')$  consists of all group homomorphisms  $\varphi : R \to R'$  such that there exists a homomorphism  $\psi : RQ \to R'Q$  in  $N_{\mathcal{F}}(Q)$  and an element  $y \in P$  satisfying  $\psi|_R = \varphi$  and  $\psi(u) = {}^yu$  for all  $u \in Q$ .

*Proof.* In the notation of [2, Appendix, Prop. A 6], this is the case where  $K = \operatorname{Aut}_P(Q)$  applied to the fusion system  $N_{\mathcal{F}}(Q)$  on  $N_P(Q)$ .  $\square$ 

We will frequently use Alperin's fusion theorem in the following form (see e.g. [2, Appendix, Theorem A 10] for a proof):

**Theorem 2.7.** (Alperin's fusion theorem for fusion systems) Let  $\mathcal{F}$  be a fusion system on a finite p-group P. Any isomorphism in  $\mathcal{F}$  can be written as a composition of isomorphisms  $\varphi: Q \cong Q'$  for which there exists a fully  $\mathcal{F}$ -normalised centric radical subgroup R of P containing Q, Q' and an automorphism  $\alpha \in \operatorname{Aut}_{\mathcal{F}}(R)$  such that  $\alpha|_{Q} = \varphi$ .

Let  $\mathcal{F}$  be a fusion system on a finite p-group P such that  $\mathcal{F} = N_{\mathcal{F}}(Q)$  for some normal subgroup Q of P. We define a category  $\mathcal{F}/Q$  on P/Q as follows: for any two subgroups R, S of P containing Q, a group homomorphism  $\psi: R/Q \to S/Q$  is a morphism in  $\mathcal{F}/Q$  if there is a morphism  $\varphi: R \to S$  in  $\mathcal{F}$  satisfying  $\psi(uQ) = \varphi(u)Q$  for all  $u \in R$ . The following result is due to Puig [11].

**Proposition 2.8.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P such that  $\mathcal{F} = N_{\mathcal{F}}(Q)$  for some normal subgroup Q of P. Then the category  $\mathcal{F}/Q$  is a fusion system on P/Q.

#### 3 On Central extensions of fusion systems

The following result is well-known.

**Proposition 3.1.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P and let Z be a subgroup of Z(P) such that  $\mathcal{F} = C_{\mathcal{F}}(Z)$ . Set  $\bar{P} = P/Z$  and  $\bar{\mathcal{F}} = \mathcal{F}/Z$ . For any subgroup Q of P containing Z the canonical map  $Q \to \bar{Q}$  induces a surjective group homomorphism

$$\operatorname{Aut}_{\mathcal{F}}(Q) \to \operatorname{Aut}_{\bar{\mathcal{F}}}(\bar{Q})$$

whose kernel is an abelian p-group, where  $\bar{Q}$  is the image of Q in  $\bar{P}$ . In particular, if Q is  $\mathcal{F}$ -radical then  $\bar{Q}$  is  $\bar{\mathcal{F}}$ -radical, if  $\bar{Q}$  is  $\bar{\mathcal{F}}$ -centric then Q is  $\mathcal{F}$ -centric, and if Q is  $\mathcal{F}$ -centric radical then  $\bar{Q}$  is  $\mathcal{F}$ -centric radical.

Proof. If  $\varphi$  is an automorphism of Q inducing the identity on Z and on  $\bar{Q}$  then, for all  $u \in Q$ , we have  $\varphi(u) = u\zeta(u)$  for some group homomorphism  $\zeta: Q \to Z$ , and hence the group of all such automorphisms is isomorphic to the abelian p-group  $\operatorname{Hom}(Q,Z)$  with group structure induced by that of Z. Thus if Q is  $\mathcal{F}$ -radical, the kernel of the map  $\operatorname{Aut}_{\mathcal{F}}(Q) \to \operatorname{Aut}_{\bar{\mathcal{F}}}(\bar{Q})$  is contained in  $\operatorname{Aut}_Q(Q)$ . Therefore, in that case,  $\operatorname{Aut}_{\mathcal{F}}(Q)/\operatorname{Aut}_Q(Q) \cong \operatorname{Aut}_{\bar{\mathcal{F}}}(\bar{Q})/\operatorname{Aut}_Q(\bar{Q})$ . Finally, if  $\bar{Q}$  is  $\bar{\mathcal{F}}$ -centric, for every subgroup R of P isomorphic to Q in  $\mathcal{F}$  we have  $C_{\bar{P}}(\bar{R}) = Z(\bar{R}) \subseteq \bar{R}$ , and therefore  $C_P(R) \subseteq R$ , which implies that  $C_P(R) = Z(R)$  and hence that Q is  $\mathcal{F}$ -centric. For the last statement we may assume that  $\bar{Q}$  is fully  $\bar{\mathcal{F}}$ -centralised. The kernel K of the canonical map  $\operatorname{Aut}_{\mathcal{F}}(Q) \to \operatorname{Aut}_{\bar{\mathcal{F}}}(\bar{Q})$  is a p-group. Thus, if Q is  $\mathcal{F}$ -radical then  $K \subseteq \operatorname{Aut}_Q(Q)$ . Let C be the inverse image in P of  $C_{\bar{P}}(\bar{Q})$ . That is, the image in  $\bar{P}$  of any element in C centralises  $\bar{Q}$ , and hence  $\operatorname{Aut}_C(Q) \subseteq K$ . This implies  $C \subseteq QC_P(Q)$ . Thus, if in addition Q is  $\mathcal{F}$ -centric we get that  $C \subseteq Q$ , and hence  $C_{\bar{P}}(\bar{Q}) \subseteq \bar{Q}$ , which shows that  $\bar{Q}$  is  $\bar{\mathcal{F}}$ -centric.  $\Box$ 

**Proposition 3.2.** Let  $\mathcal{F}$ ,  $\mathcal{F}'$  be fusion systems on a finite p-group P and let Z be a subgroup of Z(P) such that  $\mathcal{F} = C_{\mathcal{F}}(Z)$  and  $\mathcal{F}' = C_{\mathcal{F}'}(Z)$ . Suppose that  $\mathcal{F} \subseteq \mathcal{F}'$ . Then  $\mathcal{F} = \mathcal{F}'$  if and only if  $\mathcal{F}/Z = \mathcal{F}'/Z$ .

Proof. Suppose that  $\mathcal{F}/Z = \mathcal{F}'/Z$ . Let Q be an  $\mathcal{F}'$ -centric radical subgroup of P. Then, by 3.1, the kernel K of the canonical map  $\operatorname{Aut}_{\mathcal{F}'}(Q) \to \operatorname{Aut}_{\mathcal{F}'/Z}(Q/Z)$  is contained in  $\operatorname{Aut}_Q(Q)$ . Thus K is also the kernel of the canonical map  $\operatorname{Aut}_{\mathcal{F}}(Q) \to \operatorname{Aut}_{\mathcal{F}/Z}(Q/Z)$ . Since  $\operatorname{Aut}_{\mathcal{F}/Z}(Q/Z) = \operatorname{Aut}_{\mathcal{F}'/Z}(Q/Z)$  it follows that  $\operatorname{Aut}_{\mathcal{F}}(Q)$  and  $\operatorname{Aut}_{\mathcal{F}'}(Q)$  have the same order. The assumption  $\mathcal{F} \subseteq \mathcal{F}'$  implies  $\operatorname{Aut}_{\mathcal{F}}(Q) = \operatorname{Aut}_{\mathcal{F}'}(Q)$ . The equality  $\mathcal{F} = \mathcal{F}'$  follows then from Alperin's fusion theorem 2.7. The converse is trivial.  $\square$ 

**Corollary 3.3.** Let  $\mathcal{F}$  be a fusion systems on a finite p-group P, let Z be a subgroup of Z(P) such that  $\mathcal{F} = C_{\mathcal{F}}(Z)$  and let  $\mathcal{G}$  be a fusion system on P such that  $\mathcal{G} \subseteq \mathcal{F}$ . Set  $\bar{\mathcal{F}} = \mathcal{F}/Z$  and  $\bar{\mathcal{G}} = \mathcal{G}/Z$ . Let Q be a normal subgroup of P containing Z and set  $\bar{Q} = Q/Z$ . We have  $\mathcal{G} = N_{\mathcal{F}}(Q)$  if and only if  $\bar{\mathcal{G}} = N_{\bar{\mathcal{F}}}(\bar{Q})$ .

Proof. Suppose that  $\bar{\mathcal{G}} = N_{\bar{\mathcal{F}}}(\bar{Q})$ . Then  $\bar{Q}$  is contained in any  $\bar{\mathcal{G}}$ -centric radical subgroup of  $\bar{P}$ . It follows from the last statement in 3.1 that Q is contained in any  $\mathcal{G}$ -centric radical subgroup of P, and hence  $\mathcal{G} = N_{\mathcal{G}}(Q)$ . Since  $\mathcal{G} \subseteq \mathcal{F}$  this implies  $\mathcal{G} \subseteq N_{\mathcal{F}}(Q)$ . Clearly  $N_{\mathcal{F}}(Q)/Z = N_{\bar{\mathcal{F}}}(\bar{Q})$ , and thus  $\mathcal{G} = N_{\mathcal{F}}(Q)$  by 3.2. The converse is trivial.  $\square$ 

**Proposition 3.4.** Let P be a finite p-group, let Q be a normal subgroup of P and let  $\mathcal{F}$ ,  $\mathcal{G}$  be fusion systems on P such that  $\mathcal{F} = PC_{\mathcal{F}}(Q)$  and such that  $\mathcal{G} \subseteq \mathcal{F}$ . Let R be a normal subgroup of P containing Q. We have  $\mathcal{G} = N_{\mathcal{F}}(R)$  if and only if  $\mathcal{G}/Q = N_{\mathcal{F}/Q}(R/Q)$ .

Proof. Suppose  $\mathcal{G}/Q = N_{\mathcal{F}/Q}(R/Q)$ . In order to show the equality  $\mathcal{G} = N_{\mathcal{F}}(R)$  we proceed by induction over the order of Q. If Q = 1 there is nothing to prove. Suppose  $Q \neq 1$ . Since Q is normal in P, the group  $Z = Q \cap Z(P)$  is non trivial. The assumption  $\mathcal{F} = PC_{\mathcal{F}}(Q)$  implies that  $\mathcal{F} = C_{\mathcal{F}}(Z)$ . Set  $\bar{\mathcal{F}} = \mathcal{F}/Z$  and  $\bar{\mathcal{G}} = \mathcal{G}/Z$ . Similarly, set  $\bar{P} = P/Z$ ,  $\bar{Q} = Q/Z$  and  $\bar{R} = R/Z$ . Then  $\bar{\mathcal{F}}$ ,  $\bar{\mathcal{G}}$  are fusion systems on  $\bar{P}$  satisfying  $\bar{\mathcal{F}} = \bar{P}C_{\bar{\mathcal{F}}}(\bar{Q})$  and  $\bar{\mathcal{G}} \subseteq \bar{\mathcal{F}}$ . We have isomorphisms of fusion systems  $\bar{\mathcal{G}}/\bar{Q} \cong \mathcal{G}/Q$  and  $N_{\bar{\mathcal{F}}/\bar{Q}}(\bar{R}/\bar{Q}) \cong N_{\mathcal{F}/Q}(R/Q)$  induced by the canonical isomorphism  $\bar{P}/\bar{Q} \cong P/Q$ . Thus  $\bar{\mathcal{G}}/\bar{Q} = N_{\bar{\mathcal{F}}/\bar{Q}}(\bar{R}/\bar{Q})$ . By induction we get that  $\bar{\mathcal{G}} = N_{\bar{\mathcal{F}}}(\bar{R})$ , where  $\bar{R} = R/Z$ . But then 3.3 implies  $\mathcal{G} = N_{\mathcal{F}}(R)$  as required. The converse is trivial.  $\Box$ 

#### 4 Proof of Theorem A

Let p be an odd prime, let P be a finite p-group and let  $\mathcal{F}$  be a fusion system on P. We have  $\mathcal{F}_P(P) \subseteq N_{\mathcal{F}}(Z(J(P))) \subseteq \mathcal{F}$ . Thus if  $\mathcal{F} = \mathcal{F}_P(P)$  then trivially  $N_{\mathcal{F}}(Z(J(P))) = \mathcal{F}_P(P)$ . In order to prove the converse, let  $\mathcal{F}$  be a minimal counter example to Theorem A; that is, the number of morphisms  $|\mathcal{F}|$  of  $\mathcal{F}$  is minimal such that  $N_{\mathcal{F}}(Z(J(P))) = \mathcal{F}_P(P)$  but  $\mathcal{F} \neq \mathcal{F}_P(P)$ . We proceed in a series of steps as in [7].

**4.1.** Any fusion system  $\mathcal{G}$  on P which is properly contained in  $\mathcal{F}$  is equal to  $\mathcal{F}_P(P)$ .

*Proof.* Since  $N_{\mathcal{G}}(Z(J(P))) \subseteq N_{\mathcal{F}}(Z(J(P))) = \mathcal{F}_P(P)$  we have  $N_{\mathcal{G}}(Z(J(P))) = \mathcal{F}_P(P)$  and hence  $\mathcal{G} = \mathcal{F}_P(P)$  by the minimality assumption on  $\mathcal{F}$ .  $\square$ 

## **4.2.** We have $O_p(\mathcal{F}) \neq 1$ .

Proof. Since  $\mathcal{F} \neq \mathcal{F}_P(P)$ , Alperin's fusion theorem implies that there is a fully  $\mathcal{F}$ -normalised subgroup Q of P such that  $N_{\mathcal{F}}(Q) \neq \mathcal{F}_R(R)$ , where  $R = N_P(Q)$ . Amongst all such subgroups choose Q such that  $R = N_P(Q)$  has maximal possible order. We are going to show that R = P. Assume that  $R \neq P$ . We may choose Q such that Z(J(R)) is also fully  $\mathcal{F}$ -normalised; indeed, by 2.2 there is a morphism  $\varphi : N_P(Z(J(R)) \to P)$  such that  $\varphi(Z(J(R)))$  is fully  $\mathcal{F}$ -normalised, and since  $N_P(Q) = R \subseteq N_P(R) \subseteq N_P(Z(J(R)))$  it follows from 2.3 that  $\varphi(Q)$  is still fully  $\mathcal{F}$ -normalised. Having replaced Q by  $\varphi(Q)$ , consider the fusion system  $N_{\mathcal{F}}(Z(J(R)))$  on  $N_P(Z(J(R)))$ . Note that since R is a proper

subgroup of P it is also a proper subgroup of  $N_P(R)$ , hence of  $N_P(Z(J(R)))$ . The choice of Q implies that  $N_{\mathcal{F}}(Z(J(R))) = \mathcal{F}_{N_P(Z(J(R)))}(N_P(Z(J(R))))$ . Then in particular  $N_{N_{\mathcal{F}}(Q)}(Z(J(R))) = \mathcal{F}_R(R)$ . The minimality assumption on  $\mathcal{F}$  implies the contradiction  $N_{\mathcal{F}}(Q) = \mathcal{F}_R(R)$ . Thus R = P, or equivalently,  $Q \subseteq P$ . Since  $N_{\mathcal{F}}(Q) \neq \mathcal{F}_P(P)$  we get that  $N_{\mathcal{F}}(Q) = \mathcal{F}$  by 4.1, thus  $Q \subseteq O_p(\mathcal{F})$ .  $\square$ 

Set now  $Q = O_p(\mathcal{F})$ . Note that Q is a proper subgroup of P as the equality Q = P would imply the contradiction  $\mathcal{F} = N_{\mathcal{F}}(P) = N_{\mathcal{F}}(Z(J(P))) = \mathcal{F}_P(P)$ , where the second equality uses the fact that Z(J(P)) is characteristic in P. In particular,  $\operatorname{Aut}_{\mathcal{F}}(P) = \operatorname{Aut}_{N_{\mathcal{F}}(Z(J(P)))}(P) = \operatorname{Aut}_P(P)$ .

## **4.3.** We have $PC_{\mathcal{F}}(Q) = \mathcal{F}_P(P)$ .

Proof. Assume that  $PC_{\mathcal{F}}(Q) \neq \mathcal{F}_P(P)$ . Then  $\mathcal{F} = PC_{\mathcal{F}}(Q)$  by 4.1. It follows from 3.4 that  $\mathcal{F}/Q \neq \mathcal{F}_P(P)/Q = \mathcal{F}_{P/Q}(P/Q)$ . Since  $Q \neq 1$ , the minimality assumption on  $\mathcal{F}$  implies that  $N_{\mathcal{F}/Q}(Z(J(P/Q))) \neq \mathcal{F}_{P/Q}(P/Q)$ . Let R be the inverse image of Z(J(P/Q)) in P. Then  $R \leq P$  and  $N_{\mathcal{F}}(R) \neq \mathcal{F}_P(P)$ , by 3.4. But then  $N_{\mathcal{F}}(R) = \mathcal{F}$  by 4.1, contradicting the fact that R contains  $Q = O_p(\mathcal{F})$  properly.  $\square$ 

## **4.4.** The subgroup Q of P is $\mathcal{F}$ -centric.

Proof. Set  $R = QC_P(Q)$ . In order to show that Q is  $\mathcal{F}$ -centric it suffices to show that R = Q, since  $Q = O_p(\mathcal{F})$ . Assume that  $R \neq Q$ . Then  $R \leq P$  but  $N_{\mathcal{F}}(R) \neq \mathcal{F}$ . Thus  $N_{\mathcal{F}}(R) = \mathcal{F}_P(P)$  by 4.1. Since Q is normal in P it is in particular fully  $\mathcal{F}$ -normalised, and hence the restriction map  $\operatorname{Aut}_{\mathcal{F}}(R) \to \operatorname{Aut}_{\mathcal{F}}(Q)$  is surjective, by the extension axiom (II-S). Since  $N_{\mathcal{F}}(R) = \mathcal{F}_P(P)$  we have  $\operatorname{Aut}_{\mathcal{F}}(R) = \operatorname{Aut}_P(R)$ , hence  $\operatorname{Aut}_{\mathcal{F}}(Q) = \operatorname{Aut}_P(Q)$ . Let S be a fully  $\mathcal{F}$ -normalised centric radical subgroup of P. Then  $Q \subseteq S$  by 2.5. Let  $\sigma : \operatorname{Aut}_{\mathcal{F}}(S) \to \operatorname{Aut}_{\mathcal{F}}(Q) = \operatorname{Aut}_P(Q)$  be the restriction homomorphism. Then  $\ker(\sigma)$  is a subgroup of  $\operatorname{Aut}_{PC_{\mathcal{F}}(Q)}(S) = \operatorname{Aut}_P(S)$ . Thus  $\operatorname{Aut}_{\mathcal{F}}(S) = \operatorname{Aut}_P(S)$  as claimed. Alperin's fusion theorem yields the contradiction  $\mathcal{F} = \mathcal{F}_P(P)$ . Thus R = Q, or equivalently, Q is  $\mathcal{F}$ -centric.  $\square$ 

We conclude the proof of Theorem A as in [7]. Since  $\mathcal{F} = N_{\mathcal{F}}(Q)$  for some  $\mathcal{F}$ -centric normal subgroup Q of P it follows from [1, 4.3] that there is a finite group L having P as Sylow-p-subgroup such that  $Q \leq L$ ,  $C_L(Q) = Z(Q)$  and  $\mathcal{F} = \mathcal{F}_P(L)$ . Then  $N_{\mathcal{F}}(Z(J(P))) = \mathcal{F}_P(N_L(Z(J(P)))$ . Since  $N_{\mathcal{F}}(Z(J(P))) = \mathcal{F}_P(P)$  it follows from Frobenius' theorem [4, 8.6] that  $N_L(Z(J(P)))$  is p-nilpotent. But the nilpotency theorem [5, Ch. 8, Theorem 3.1] of Glauberman and Thompson implies then that L itself is p-nilpotent, or equivalently,  $\mathcal{F}_P(L) = \mathcal{F}_P(P)$ . This however yields the contradiction  $\mathcal{F} = \mathcal{F}_P(P)$ , and the proof of Theorem A is complete.

**Definition 5.1.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P and let W be a positive characteristic p-functor. Let Q be a subgroup of P. Set  $W_1(Q) = Q$  and  $P_1(Q) = N_P(Q)$ . For any positive integer i define inductively  $W_{i+1}(Q) = W(P_i(Q))$  and  $P_{i+1}(Q) = N_P(W_{i+1}(Q))$ . We will say that Q is  $(\mathcal{F}, W)$ -well-placed if  $W_i(Q)$  is fully  $\mathcal{F}$ -normalised for all positive integers i.

Note that for all positive integers i we have  $W_i(Q) \subseteq P_i(Q)$ , and if  $P_i(Q)$  is a proper subgroup of P then in fact  $P_i(Q)$  is a proper sugroup of  $P_{i+1}(Q)$ . In particular,  $P_i(Q) = P$  for i large enough. The following result generalises [4, 5.2], [8, 3.1].

**Proposition 5.2.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P, let W be a positive characteristic p-functor and let Q be a subgroup of P. There is a morphism  $\varphi: N_P(Q) \to P$  such that  $\varphi(Q)$  is  $(\mathcal{F}, W)$ -well-placed.

Proof. Set  $W_i = W_i(Q)$  and  $P_i = P_i(Q)$  for any positive integer i. Note that  $P_i = N_P(W_i)$  for any positive integer i. Let  $\varphi_1 : P_1 = N_P(Q) \to P$  be a morphism in  $\mathcal{F}$  such that  $W_1 = Q$  is fully  $\mathcal{F}$ -normalised. Thus, after replacing Q by  $\varphi_1(Q)$  we may assume that  $W_1 = Q$  is fully normalised. Assume now that for some positive integer n the subgroups  $W_i$  are fully  $\mathcal{F}$ -normalised for  $1 \le i \le n$ . Let  $\varphi_{n+1} : P_{n+1} = N_P(W_{n+1}) \to P$  be a morphism in  $\mathcal{F}$  such that  $W_{i+1}$  is fully  $\mathcal{F}$ -normalised. Since  $P_i = N_P(W_i) \subseteq P_{n+1}$  the subgroups  $\varphi_{n+1}(W_i)$  are still all fully  $\mathcal{F}$ -normalised. Note that in particular  $P_1 = N_P(Q) \subseteq P_{n+1}$ . Thus we may in fact assume that  $W_i$  is fully  $\mathcal{F}$ -normalised for  $1 \le i \le n+1$ . The result follows by induction.  $\square$ 

The next result generalises [4, 5.5], [8, 3.2] to arbitrary fusion systems, saying that if a positive characteristic p-functor controls fusion locally, it does so globally.

**Proposition 5.3.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P and let W be a positive characteristic p-functor. Assume that for any non-trivial fully  $\mathcal{F}$ -normalised subgroup Q of P we have  $N_{\mathcal{F}}(Q) = N_{N_{\mathcal{F}}(Q)}(W(N_P(Q)))$ . Then  $\mathcal{F} = N_{\mathcal{F}}(W(P))$ .

Proof. Suppose the conclusion does not hold. Then there is a fully  $\mathcal{F}$ -normalised non-trivial subgroup Q of P such that  $\operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(Q)$  is a proper subgroup of  $\operatorname{Aut}_{\mathcal{F}}(Q)$ . By the previous Proposition we may assume that Q is  $(\mathcal{F}, W)$ -well-placed. For any positive integer set  $W_i = W_i(Q)$  and  $P_i = P_i(Q)$ . Set  $\mathcal{F}_i = N_{\mathcal{F}}(W_i)$  and  $\mathcal{G}_i = N_{\mathcal{F}_i}(W_{i+1})$ . Since  $W_i$  is fully  $\mathcal{F}$ -normalised, the category  $\mathcal{F}_i$  is a fusion system on  $P_i = N_P(W_i)$ . Clearly  $W_{i+1} \subseteq P_i$ , and since  $W_{i+1}$  is fully  $\mathcal{F}$ -normalised,  $W_{i+1}$  is also fully  $\mathcal{F}_i$ -normalised, and so  $\mathcal{G}_i$  is a fusion system as well. Note that  $\mathcal{G}_i \subseteq \mathcal{F}_{i+1}$ . Clearly  $\mathcal{F}_1 \subseteq \mathcal{F}_i$ . In fact, by the assumptions, we have  $\mathcal{G}_i = \mathcal{F}_i$ . Thus  $\mathcal{F}_1 \subseteq \mathcal{F}_i \subseteq \mathcal{F}_{i+1}$ . If i is large enough then  $P_i = P$  and hence  $\mathcal{F}_i = N_{\mathcal{F}}(W(P))$ . But then also  $\mathcal{F}_1 \subseteq N_{\mathcal{F}}(W(P))$ . In particular,  $\operatorname{Aut}_{\mathcal{F}_1}(Q) = \operatorname{Aut}_{\mathcal{F}}(Q)$  is contained in  $\operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(Q)$ , contradicting our choice of Q.

## 6 On Qd(p)-free fusion systems

In this Section we prove that if a fusion system  $\mathcal{F}$  on a finite p-group P is Qd(p)-free, then so are  $N_{\mathcal{F}}(Q)$ ,  $N_P(Q)C_{\mathcal{F}}(Q)$  and  $N_{\mathcal{F}}(Q)/Q$  for any fully  $\mathcal{F}$ -normalised subgroup Q of P. In fact, the statements in this section remain true with Qd(p) replaced by any finite group, but we state them as needed in the proof of Theorem B. Given a fusion system  $\mathcal{F}$  on a finite p-group P and a fully  $\mathcal{F}$ -normalised centric subgroup Q of P we denote as before by  $L_Q^{\mathcal{F}}$  the p'-reduced p-constrained group from [1, 4.3] for which there is a short exact sequence

$$1 \longrightarrow Z(Q) \longrightarrow L_Q^{\mathcal{F}} \longrightarrow \operatorname{Aut}_{\mathcal{F}}(Q) \longrightarrow 1$$

such that  $N_P(Q)$  is a Sylow-p-subgroup of  $L_Q^{\mathcal{F}}$  and such that  $N_{\mathcal{F}}(Q) = \mathcal{F}_{N_P(Q)}(L_Q^{\mathcal{F}})$ . This short exact sequence is represented by an element in  $H^2(\operatorname{Aut}_{\mathcal{F}}(Q); Z(Q))$ . Since  $\operatorname{Aut}_P(Q)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(Q)$  and since Z(Q) is an abelian p-group, the restriction map  $H^2(\operatorname{Aut}_{\mathcal{F}}(Q); Z(Q)) \to H^2(\operatorname{Aut}_P(Q); Z(Q))$  is injective. In other words, the group  $L_Q^{\mathcal{F}}$  is, up to isomorphism determined by the group  $\operatorname{Aut}_{\mathcal{F}}(Q)$  and the p-group extension

$$1 \longrightarrow Z(Q) \longrightarrow N_P(Q) \longrightarrow \operatorname{Aut}_P(Q) \longrightarrow 1$$

**Proposition 6.1.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P. If Qd(p) is involved in the group  $L_Q^{\mathcal{F}}$  for some fully  $\mathcal{F}$ -normalised centric subgroup Q of P then Qd(p) is involved in the group  $L_R^{\mathcal{F}}$  for some fully  $\mathcal{F}$ -normalised centric radical subgroup R of P.

Proof. Let Q be a fully  $\mathcal{F}$ -normalised centric subgroup of P. We proceed by induction over the order of Q. If Q is  $\mathcal{F}$ -radical there is nothing to prove. Otherwise, let R be the unique subgroup of  $N_P(Q)$  containing Q such that  $\operatorname{Aut}_R(Q) = O_p(\operatorname{Aut}_{\mathcal{F}}(Q))$ . Then R is an  $\mathcal{F}$ -centric subgroup of P which properly contains Q. In particular,  $\operatorname{Aut}_R(Q)$  is normal in  $\operatorname{Aut}_{\mathcal{F}}(Q)$ , hence  $N_P(Q) \subseteq N_P(R)$ . Let  $\psi: N_P(R) \to P$  be a morphism in  $\mathcal{F}$  such that  $\psi(R)$  is fully  $\mathcal{F}$ -normalised. Then  $\psi(Q)$  is still fully  $\mathcal{F}$ -normalised. Thus we may assume that both Q and R are fully  $\mathcal{F}$ -normalised. Let  $L_{Q \leq R}$  be the inverse image of  $\operatorname{Aut}_{\mathcal{F}}(Q \leq R)$  in  $L_R^{\mathcal{F}}$ . That is, we have a short exact sequence of groups

$$1 \longrightarrow Z(R) \longrightarrow L_{Q \leq R} \longrightarrow \operatorname{Aut}_{\mathcal{F}}(Q \leq R) \longrightarrow 1$$

By 2.4 restriction from R to Q induces a surjective group homomorphism  $\operatorname{Aut}_{\mathcal{F}}(Q \leq R) \to \operatorname{Aut}_{\mathcal{F}}(Q)$ . Since Q is  $\mathcal{F}$ -centric, the kernel of this group homomorphism is  $\operatorname{Aut}_{Z(Q)}(R) \cong Z(Q)/Z(R)$  (cf. [10, 1.12]). Thus we have an exact commutative di-

agram



Since Q is fully  $\mathcal{F}$ -normalised,  $\operatorname{Aut}_P(Q)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(Q) \cong N_P(Q)/Z(Q)$ , hence its inverse image  $\operatorname{Aut}_P(Q \leq R) \cong N_P(Q \leq R)/Z(R)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(Q \leq R)$ . Note that since  $N_P(Q) \subseteq N_P(R)$  we have  $N_P(Q) = N_P(Q \leq R)$ , and this is a Sylow-p-subgroup of  $L_{Q \leq R}$ . Since a group extension by an abelian p-group is determined by its restriction to Sylow-p-subgroups it follows that  $L_Q^{\mathcal{F}} \cong L_{Q \leq R}$  is isomorphic to a subgroup of  $L_R^{\mathcal{F}}$ . Thus, if Qd(p) is involved in  $L_Q^{\mathcal{F}}$  it is involved in  $L_R^{\mathcal{F}}$ , too. The result follows by induction.  $\square$ 

**Proposition 6.2.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P, let Q be a fully  $\mathcal{F}$ -normalised subgroup of P and let  $\mathcal{G}$  be a fusion system on  $N_P(Q)$  such that  $N_P(Q)C_{\mathcal{F}}(Q) \subseteq \mathcal{G} \subseteq N_{\mathcal{F}}(Q)$ . Let R be a subgroup of  $N_P(Q)$  containing Q. Then R is fully  $\mathcal{G}$ -centralised if and only if R is fully  $\mathcal{F}$ -centralised. In particular, R is  $\mathcal{G}$ -centric if and only if R is  $\mathcal{F}$ -centric.

Proof. If R is fully  $\mathcal{F}$ -centralised then clearly R is fully  $\mathcal{G}$ -centralised. Suppose conversely that R is fully  $\mathcal{G}$ -centralised. Let  $\varphi: R \to P$  be a morphism in  $\mathcal{F}$  such that  $\varphi(R)$  is fully  $\mathcal{F}$ -centralised. Denote by  $\psi: \varphi(Q) \to Q$  the isomorphism which is inverse to  $\varphi|_Q$ . We have  $C_P(\varphi(Q)) \subseteq N_{\psi}$ , and we also have  $\varphi(R) \subseteq N_{\psi}$ . Indeed, for all  $r \in R$  and all  $u \in Q$  we have  $\psi(\varphi(r)\psi^{-1}(u)\varphi(r)^{-1}) = \psi(\varphi(rur^{-1})) = rur^{-1}$ . Since Q is fully  $\mathcal{F}$ -normalised,  $\psi$  extends to a morphism  $\tau: \varphi(R)C_P(\varphi(Q)) \to P$ . Note that  $\tau \circ \varphi$  restricts to the identity on Q; in particular,  $\tau \circ \varphi: R \to P$  is a morphism in  $\mathcal{G}$ . Thus  $S = \tau(\varphi(R))$  is a subgroup of  $N_P(Q)$  containing Q and isomorphic to R in  $\mathcal{G}$ . Since  $C_P(\varphi(R)) \subseteq C_P(\varphi(Q))$  we get  $\tau(C_P(\varphi(R)) \subseteq C_P(S)$ ; in particular  $|C_P(\varphi(R))| \le |C_P(S)|$ . As R was chosen fully  $\mathcal{G}$ -centralised, it follows that  $|C_P(S)| \le |C_P(R)|$ , hence  $|C_P(\varphi(R))| \le |C_P(R)|$ . However,  $\varphi(R)$  is fully  $\mathcal{F}$ -centralised, and thus so is R.  $\square$ 

**Proposition 6.3.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P, let Q be a fully  $\mathcal{F}$ -normalised subgroup of P and let  $\mathcal{G}$  be a fusion system on  $N_P(Q)$  such that  $N_P(Q)C_{\mathcal{F}}(Q) \subseteq \mathcal{G} \subseteq N_{\mathcal{F}}(Q)$ . If  $\mathcal{F}$  is Qd(p)-free, so is  $\mathcal{G}$ . In particular, if  $\mathcal{F}$  is Qd(p)-free, so are  $N_{\mathcal{F}}(Q)$  and  $N_P(Q)C_{\mathcal{F}}(Q)$ .

Proof. Suppose that  $\mathcal{F}$  is Qd(p)-free. Let R be a fully  $\mathcal{G}$ -normalised radical centric subgroup of  $N_P(Q)$ . By 2.5 we have  $Q \subseteq R$ . By 6.1 it suffices to show that  $L_R^{\mathcal{G}}$  is Qd(p)-free. By 6.2, R is  $\mathcal{F}$ -centric. By 2.3 there is a morphism  $\varphi: N_P(R) \to P$  such that  $\varphi(R)$  is fully  $\mathcal{F}$ -normalised. The plan is to show that  $L_R^{\mathcal{G}}$  is isomorphic to a subgroup of  $L_{\varphi(R)}^{\mathcal{F}}$ . Conjugation by  $\varphi$  induces a group isomorphism  $\operatorname{Aut}_{\mathcal{F}}(R) \cong \operatorname{Aut}_{\mathcal{F}}(\varphi(R))$  sending  $\rho \in \operatorname{Aut}_{\mathcal{F}}(R)$  to  $\varphi \circ \rho \circ \varphi^{-1}|_{\varphi(R)}$ . Restricting this to the subgroup  $\operatorname{Aut}_{\mathcal{G}}(R)$  of  $\operatorname{Aut}_{\mathcal{F}}(R)$  yields an injective group homomorphism

$$\Phi: \operatorname{Aut}_{\mathcal{G}}(R) \to \operatorname{Aut}_{\mathcal{F}}(\varphi(R))$$
.

Consider the canonical group extension

$$1 \longrightarrow Z(\varphi(R)) \longrightarrow L_{\varphi(R)}^{\mathcal{F}} \xrightarrow{\lambda} \operatorname{Aut}_{\mathcal{F}}(\varphi(R)) \longrightarrow 1$$

Let L be the pullback of  $\lambda$  and  $\Phi$ ; that is,

$$L = \{ (y, \alpha) \in L_{\varphi(R)}^{\mathcal{F}} \times \operatorname{Aut}_{\mathcal{G}}(R) \mid \lambda(y) = \Phi(\alpha) \}$$

The canonical projections yield a commutative diagram

Since  $L_{\varphi(R)}^{\mathcal{F}}$  is Qd(p)-free, so is L. It suffices thus to show that  $L \cong L_R^{\mathcal{G}}$ . Note that  $\operatorname{Aut}_P(\varphi(R))$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(\varphi(R))$  because  $\varphi(R)$  is fully  $\mathcal{F}$ -normalised, and similarly,  $\operatorname{Aut}_P(Q \leq R) = \operatorname{Aut}_{N_P(Q)}(R)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{G}}(R)$  because R is fully  $\mathcal{G}$ -normalised. Let S be the inverse image of  $\operatorname{Aut}_P(Q \leq R)$  in L. Then S is a Sylow-p-subgroup of L. The group L is determined, up to isomorphism, by  $\operatorname{Aut}_{\mathcal{G}}(R)$  and the short exact sequence of p-groups

$$1 \longrightarrow Z(\varphi(R)) \longrightarrow S \longrightarrow \operatorname{Aut}_{P}(Q \leq R) \longrightarrow 1$$

obtained from restricting the first row in the above diagram to Sylow-p-subgroups. In order to show that  $L \cong L_R^{\mathcal{G}}$  it suffices to show that this short exact sequence is equivalent to

$$1 \longrightarrow Z(R) \longrightarrow N_P(Q \le R) \longrightarrow \operatorname{Aut}_P(Q \le R) \longrightarrow 1$$

As S is the inverse image in L of  $Aut_P(Q \leq R)$ , we have

$$S = \{(u, c_v) \in N_P(\varphi(R)) \times \operatorname{Aut}_P(Q \le R) \mid c_u = \Phi(c_v) \},$$

where  $c_u$ ,  $c_v$  are the automorphisms of  $\varphi(R)$ , R, induced by conjugation with u, v, respectively. The equality  $c_u = \Phi(c_v)$  is equivalent to  $c_u = \varphi \circ c_v \circ \varphi^{-1}|_{\varphi(R)} = c_{\varphi(v)}$ . Thus  $S = \{(\varphi(v), c_v) \mid v \in N_P(Q \leq R)\}$ . Hence the map  $\psi : N_P(Q \leq R) \to S$  sending  $v \in N_P(Q \leq R)$  to  $(\varphi(v), c_v)$  is an isomorphism making the diagram

$$1 \longrightarrow Z(R) \longrightarrow N_P(Q \le R) \longrightarrow \operatorname{Aut}_P(Q \le R) \longrightarrow 1$$

$$\downarrow^{\varphi} \qquad \qquad \parallel$$

$$1 \longrightarrow Z(\varphi(R)) \longrightarrow S \longrightarrow \operatorname{Aut}_P(Q \le R) \longrightarrow 1$$

is commutative. The isomorphism  $L \cong L_R^{\mathcal{G}}$  follows.  $\square$ 

**Proposition 6.4.** Let  $\mathcal{F}$  be a fusion system on a finite p-group P and let Q be a normal subgroup of P such that  $\mathcal{F} = N_{\mathcal{F}}(Q)$ . If  $\mathcal{F}$  is Qd(p)-free then  $\mathcal{F}/Q$  is Qd(p)-free.

Proof. Let R be a subgroup of P containing Q such that R/Q is  $\mathcal{F}/Q$ -centric fully normalised. We show first that then R is  $\mathcal{F}$ -centric fully normalised. Let  $\varphi: R \to P$  be a morphism in  $\mathcal{F}$  and let  $y \in C_P(\varphi(R))$ . Then  $yQ \in C_{P/Q}(\varphi(R)/Q) = Z(\varphi(R)/Q)$ , hence  $y \in \varphi(R)$ , which implies that R is  $\mathcal{F}$ -centric. Since  $N_{P/Q}(R/Q) = N_P(R)/Q$  it follows also that R is fully  $\mathcal{F}$ -normalised. Consider the group extension

$$1 \longrightarrow Z(R) \longrightarrow L_R^{\mathcal{F}} \longrightarrow \operatorname{Aut}_{\mathcal{F}}(R) \longrightarrow 1$$

The fusion system of  $L = L_R^{\mathcal{F}}$  on  $N_P(R)$  is equal to  $N_{\mathcal{F}}(R)$ , and hence the fusion system of  $\bar{L} = L_R^{\mathcal{F}}/Q$  is equal to  $N_{\mathcal{F}}(R)/Q = N_{\mathcal{F}/Q}(R/Q)$ . Now R/Q is centric in  $\mathcal{F}/Q$ , hence R/Q is a p-centric subgroup of the finite group  $\bar{L}$ . Thus

$$C_{\bar{L}}(R/Q) = Z(R/Q) \times C$$

where  $C = O_{p'}(C_{\bar{L}}(R/Q))$ . Let  $S = C_R(R/Q)$  be the inverse image of Z(R/Q) in R, let K be the inverse image of C in L and let  $C_L(R/Q)$  be the inverse image of  $C_{\bar{L}}(R/Q)$  in L. Then  $C_{\bar{L}}(R/Q)$  is the kernel of the composition of canonical maps

$$L \longrightarrow \operatorname{Aut}_{\mathcal{F}}(R) \longrightarrow \operatorname{Aut}_{\mathcal{F}/Q}(R/Q)$$

and we have  $C_{\bar{L}}(R/Q) = SK$  and  $S \cap K = Q$ . It follows that the canonical maps induce an exact commutative diagram of the form

The second row, when restricted to Sylow-p-subgroups, yields the exact sequence

$$1 \longrightarrow Z(R/Q) \longrightarrow N_{P/Q}(R/Q) \longrightarrow \operatorname{Aut}_{P/Q}(R/Q) \longrightarrow 1$$

and hence  $L/K \cong L_{R/Q}^{\mathcal{F}/Q}$ . This group is obviously Qd(p)-free as it is a quotient of the Qd(p)-free group  $L = L_R^{\mathcal{F}}$ . Thus the fusion system  $\mathcal{F}/Q$  on P/Q is Qd(p)-free.  $\square$ 

- **Remark 6.5.** For future reference we point out that the proofs of 6.1, 6.3 and 6.4 yield the following slightly more precise statements about the groups  $L_Q^{\mathcal{F}}$ , where  $\mathcal{F}$  is a fusion system on a finite p-group P.
- (1) If Q is a fully  $\mathcal{F}$ -normalised centric subgroup of P and  $Q \subseteq R \subseteq N_P(R)$  such that  $\operatorname{Aut}_R(Q) = O_p(\operatorname{Aut}_{\mathcal{F}}(Q))$ , then there is a morphism  $\varphi : R \to P$  such that both  $\varphi(Q)$ ,  $\varphi(R)$  are fully  $\mathcal{F}$ -normalised, and for any such  $\varphi$  the group  $L_{\varphi(Q)}^{\mathcal{F}}$  is isomorphic to a subgroup of  $L_{\varphi(R)}^{\mathcal{F}}$ .
- (2) If Q is a fully  $\mathcal{F}$ -normalised subgroup of P and  $\mathcal{G}$  a fusion system on  $N_P(Q)$  such that  $N_P(Q)C_{\mathcal{F}}(Q) \subseteq \mathcal{G} \subseteq N_{\mathcal{F}}(Q)$ , then for any fully  $\mathcal{G}$ -normalised centric radical subgroup R of  $N_P(Q)$  there is a morphism  $\varphi: R \to P$  in  $\mathcal{F}$  such that  $\varphi(R)$  is fully  $\mathcal{F}$ -normalised centric, and for any such  $\varphi$  the group  $L_R^{\mathcal{G}}$  is isomorphic to a subgroup of  $L_{\varphi(R)}^{\mathcal{F}}$ .
- (3) If Q is a normal subgroup of P such that  $\mathcal{F} = N_{\mathcal{F}}(Q)$ , then for any fully  $\mathcal{F}/Q$ -normalised centric subgroup R/Q of P/Q, its inverse image R in P is fully  $\mathcal{F}$ -normalised centric, and the group  $L_R^{\mathcal{F}}$  has a quotient isomorphic to  $L_{R/Q}^{\mathcal{F}/Q}$ .

## 7 Proof of Theorem B

Given a fusion system  $\mathcal{F}$  on a finite p-group P we denote as before by  $|\mathcal{F}|$  the number of morphisms in  $\mathcal{F}$ . We argue by induction over  $|\mathcal{F}|$ . Let  $\mathcal{F}$  be a counterexample to Theorem A with  $|\mathcal{F}|$  minimal. That is,  $\mathcal{F}$  is Qd(p)-free,  $N_{\mathcal{F}}(W(P)) \neq \mathcal{F}$ , where W is a Glauberman functor, but  $N_{\mathcal{F}}(W(P')) = \mathcal{F}'$  for any Qd(p)-free fusion system  $\mathcal{F}'$  on some finite p-group P' such that  $|\mathcal{F}'| < |\mathcal{F}|$ . We show first that

**7.1.** 
$$O_p(\mathcal{F}) \neq 1$$
.

*Proof.* If  $O_p(\mathcal{F})=1$  then for any non trivial fully  $\mathcal{F}$ -normalised subgroup Q of P we have  $N_{\mathcal{F}}(Q)<\mathcal{F}$ . Using 6.3 we get that  $N_{\mathcal{F}}(Q)$  is Qd(p)-free. Hence  $N_{\mathcal{F}}(Q)=N_{N_{\mathcal{F}}(Q)}(W(N_P(Q)))$  by the induction hypothesis. Then 5.3 implies the contradiction  $\mathcal{F}=N_{\mathcal{F}}(W(P))$ . This proves 7.1.  $\square$ 

We set now  $Q = O_p(\mathcal{F})$  and  $R = QC_P(Q)$ . We observe next that

## **7.2.** Q < R.

*Proof.* If  $Q = R = QC_P(Q)$  then Q is  $\mathcal{F}$ -centric, and we have a short exact sequence of finite groups

$$1 \longrightarrow Z(Q) \longrightarrow L_Q \longrightarrow \operatorname{Aut}_{\mathcal{F}}(Q) \longrightarrow 1$$

where  $L_Q$  is a finite group having P as Sylow-p-subgroup such that  $C_{L_Q}(O_p(L_Q)) \subseteq O_p(L_Q)$  and such that  $\mathcal{F}_P(L_Q) = \mathcal{F}$ . But  $L_Q$  is Qd(p)-free by the assumptions. Glauberman's Theorem implies that  $\mathcal{F}_P(L_Q) = \mathcal{F}_P(N_{L_Q}(W(P)))$  and hence  $\mathcal{F} = N_{\mathcal{F}}(W(P))$ , contradicting our choice of  $\mathcal{F}$ .  $\square$ 

The next step is to prove that

**7.3.** 
$$\mathcal{F} = PC_{\mathcal{F}}(Q)$$
.

Proof. Assume that  $PC_{\mathcal{F}}(Q) < \mathcal{F}$ . Note that then  $PC_{\mathcal{F}}(Q) = N_{PC_{\mathcal{F}}(Q)}(W(P))$  by induction. We will show that this implies that  $\mathcal{F} = N_{\mathcal{F}}(W(P))$ , contradicting our choice of  $\mathcal{F}$ . To show this, we will prove by induction over [P:S] that for any  $\mathcal{F}$ -centric radical subgroup S of P we have  $\operatorname{Aut}_{\mathcal{F}}(S) = \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$ . The equality  $\operatorname{Aut}_{\mathcal{F}}(P) = \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(P)$  is clear because W(P) is a characteristic subgroup of P. Let S be an  $\mathcal{F}$ -centric radical subgroup of P. Note that then S contains Q. By Alperin's fusion theorem, any automorphism of S can be written as product of automorphisms of fully  $\mathcal{F}$ -normalised centric radical subgroups of P of order at least |S|, and hence we may assume that S is fully  $\mathcal{F}$ -normalised. Restriction from S to Q induces a group homomorphism

$$\rho: \operatorname{Aut}_{\mathcal{F}}(S) \longrightarrow \operatorname{Aut}_{\mathcal{F}}(Q)$$
.

Set  $A = \rho^{-1}(\operatorname{Aut}_S(Q))$ . Since  $\operatorname{Aut}_S(Q)$  is normal in  $\operatorname{Im}(\rho)$  it follows that A is a normal subgroup of  $\operatorname{Aut}_{\mathcal{F}}(S)$ , and clearly  $A \subseteq \operatorname{Aut}_{PC_{\mathcal{F}}(Q)}(S)$ . Also, since  $\operatorname{Aut}_P(S)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_{\mathcal{F}}(S)$ , the intersection  $\operatorname{Aut}_P(S) \cap A$  is a Sylow-p-subgroup of A. Setting  $T = N_P(S) \cap SC_P(Q) = N_{SR}(S)$  yields

$$\operatorname{Aut}_P(S) \cap A = \operatorname{Aut}_T(S)$$
.

The Frattini argument implies that

$$\operatorname{Aut}_{\mathcal{F}}(S) = A \cdot N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_{T}(S))$$
.

By our initial induction on fusion systems, we get  $A \subseteq \operatorname{Aut}_{PC_{\mathcal{F}}(Q)}(S) \subseteq \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$ . Thus, in order to prove 7.3 we have to prove that  $N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_T(S)) \subseteq \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$ . We have to consider two cases, depending on whether S contains R or not.

Suppose first that S does not contain R. Then T has bigger order than S. By induction, we get  $\operatorname{Aut}_{\mathcal{F}}(T) = \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(T)$ . Now every automorphism if S which normalises  $\operatorname{Aut}_{T}(S)$  extends to T, by the extension axiom, and so  $N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_{T}(S))$ 

is contained in the image of the restriction map  $\operatorname{Aut}_{\mathcal{F}}(S < T) \to \operatorname{Aut}_{\mathcal{F}}(S)$ . Thus indeed  $\operatorname{Aut}_{\mathcal{F}}(S) = \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$  in this case.

Consider second the case where  $R \subseteq S$ . Set  $B = \rho^{-1}(\operatorname{Aut}_Q(Q))$ . Then B is normal in  $\operatorname{Aut}_{\mathcal{F}}(S)$  and  $B \subseteq \operatorname{Aut}_{PC_{\mathcal{F}}(Q)}(S) \subseteq \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$ . As before, since  $\operatorname{Aut}_P(S)$  is a Sylow-p-subgroup of  $\operatorname{Aut}_P(S)$ , the intersection  $\operatorname{Aut}_P(S) \cap B$  is a Sylow-p-subgroup of B. We claim that  $\operatorname{Aut}_P(S) \cap B = \operatorname{Aut}_R(S)$ . Indeed, if we denote by  $c_y$  the automorphism of S given by conjugation with an element  $y \in N_P(S)$ , we have  $\operatorname{Aut}_P(S) \cap B = \{c_y \mid y \in N_P(S), \text{ there is } x \in Q \text{ such that } c_y|_Q = c_x|_Q\} = \{c_y \mid y \in R\} = \operatorname{Aut}_R(S)$ . The Frattini argument implies that

$$\operatorname{Aut}_{\mathcal{F}}(S) = B \cdot N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_{R}(S))$$
.

Since we know already that B is contained in  $\operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$  we need to show that  $N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_R(S))\subseteq \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$ . To see this we prove first that  $N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_R(S))\subseteq \operatorname{Aut}_{N_{\mathcal{F}}(R))}(S)$ . Indeed, let  $\varphi\in N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_R(S))$  and let  $x\in R$ . As before, denote by  $c_x$  the automorphism of S given by conjugation with x. Since  $\varphi$  normalises  $\operatorname{Aut}_R(S)$  we have  $\varphi\circ c_x\circ \varphi=c_z$  for some  $z\in R$ . But since  $R\subseteq S$  we also have  $\varphi\circ c_x\circ \varphi^{-1}=c_{\varphi(x)}$ . Thus  $z^{-1}\varphi(x)\in C_P(S)=Z(S)\subseteq R$ , and hence  $\varphi(R)=R$ . This shows the inclusion  $N_{\operatorname{Aut}_{\mathcal{F}}(S)}(\operatorname{Aut}_R(S))\subseteq \operatorname{Aut}_{N_{\mathcal{F}}(R))}(S)$ . From here we observe that, by induction applied to the fusion system  $N_{\mathcal{F}}(R)$ , we get  $\operatorname{Aut}_{N_{\mathcal{F}}(R)}(S)\subseteq \operatorname{Aut}_{N_{\mathcal{F}}(W(P))}(S)$  as required.

Thus the assumption  $PC_{\mathcal{F}}(Q) < \mathcal{F}$  yields the contradiction  $\mathcal{F} = N_{\mathcal{F}}(W(P))$ , which concludes the proof of 7.3.  $\square$ 

We use 3.4 to finish the proof of the Theorem. Since  $\mathcal{F} = PC_{\mathcal{F}}(Q)$  is Qd(p)-free, so is the fusion system  $\mathcal{F}/Q$  on P/Q by 6.4. Thus, by induction, we have  $\mathcal{F}/Q = N_{\mathcal{F}/Q}(W(P/Q))$ . Denoting by V the inverse image of W(P/Q) in P we get from 3.4 that  $\mathcal{F} = N_{\mathcal{F}}(V)$ . Hence  $V \subseteq Q = O_p(\mathcal{F})$ . But  $W(P/Q) \neq 1$ , hence V contains Q properly. This contradiction concludes the proof of Theorem B.  $\square$ 

#### References

- 1. C. Broto, N. Castellana, J. Grodal, R. Levi, B. Oliver, Subgroup families controlling p-local finite groups, preprint (2004).
- 2. C. Broto, R. Levi, B. Oliver, *The homotopy theory of fusion systems*, J. Amer. Math. Soc. **16** (2003), 779–856.
- 3. G. Glauberman, A characteristic subgroup of a p-stable group, Canadian J. Math. **20** (1968), 1101–1135.
- 4. G. Glauberman, Global and local properties of finite groups, Finite simple groups (eds. Powell-Higman), Academic Press, London, 1971, pp. 1–64.
- 5. D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980.
- 6. B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin Heidelberg New York, 1982.
- 7. R. Kessar, M. Linckelmann, A block theoretic analogue of a theorem of Glauberman and Thompson, Proc. Amer. Math. Soc. 131 (2003), 35–40.
- 8. R. Kessar, M. Linckelmann, G. R. Robinson, Local control in fusion systems of p-blocks of finite groups, J. Algebra 257 (2002), 393–413.

- 9. B. Külshammer, L. Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), 17–71.
- 10. M. Linckelmann, Simple fusion systems and the Solomon 2-local groups, J. Algebra, to appear.
- 11. L. Puig, Unpublished notes.
- 12. R. Stancu, Equivalent definitions of fusion systems, preprint (2003).

RADHA KESSAR, MARKUS LINCKELMANN
DEPARTMENT OF MATHEMATICAL SCIENCES
MESTON BUILDING
ABERDEEN, AB24 3UE
U.K.