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 

Abstract— Classifying and predicting Alzheimer’s disease (AD) 
in individuals with memory disorders through clinical and 
psychometric assessment is challenging especially in Mild 
Cognitive Impairment (MCI) subjects. Quantitative structural 
Magnetic Resonance Imaging (MRI) acquisition methods in 
combination with Computer-Aided Diagnosis (CAD) are currently 
being used for the assessment AD. These acquisitions methods 
include: i) Voxel-based Morphometry (VBM), ii) volumetric 
measurements in specific Regions of Interest (ROIs), iii) cortical 
thickness measurements, iv) shape analysis and v) texture analysis. 
This review evaluates the aforementioned methods in the 
classification of cases into one of the following 3 groups: Normal 
Controls (NC), MCI and AD subjects. Furthermore, the 
performance of the methods is assessed on the prediction of 
conversion from MCI to AD. In parallel, it is also assessed which 
ROIs are preferred in both classification and prognosis through 
the different states of the disease. Structural changes in the early 
stages of the disease are more pronounced in the Medial Temporal 
Lobe (MTL) especially in the entorhinal cortex, whereas with 
disease progression both entorhinal cortex and hippocampus offer 
similar discriminative power. However, for the conversion from 
MCI subjects to AD, entorhinal cortex provides better predictive 
accuracies rather than other structures, such as the hippocampus. 
 

Index Terms—Alzheimer’s disease, classification, computer-
aided diagnosis, entorhinal cortex, hippocampus, mild cognitive 
impairment, MCI, prediction, quantitative MRI. 

I. INTRODUCTION 

EMENTIA is a broad category of brain diseases that affect 
the brain by causing deterioration in memory, thinking, 

behavior, orientation, and as a result, a decline in a person’s 
daily functioning.  Alzheimer’s disease (AD) represents the 
most common form of dementia, and may contribute to 60–80% 
of cases. Other common types include vascular dementia, Lewy 
body dementia, and frontotemporal dementia (FTLD) [1]. AD 
is most often diagnosed in people over 65 years of age and it is 
the 6th leading cause of death in the United States (US). The 
greatest risk factors for AD are old age, family history and the 
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presence of Apolipoprotein e4 (ApoE4) gene in a person’s 
genome. Currently, there is no specific cure for the disease, and 
the condition of the patient worsens with the disease 
progression eventually leading to death. According to Braak 
and Braak [2], the most evident change is the progressive 
deposition of abnormal proteins, both between and within the 
nerve cells. In the early stages, the most common symptom is 
difficulty in remembering recent events, while advanced AD 
patients often suffer from loss of the ability to take care of 
themselves, communicate with others or even recognize their 
family members. Apart from challenging, the assessment, and 
most importantly, the early identification of the stage of AD, 
are essential to provide a future treatment. Unfortunately, when 
the diagnosis is based exclusively on the clinical and 
psychometric assessment, a patient will be diagnosed with AD 
when the brain tissue has already undergone widespread and 
irreversible synaptic loss [3]. 

Mini Mental State examination (MMSE) [4] and Clinical 
Dementia Rating (CDR) [5] are two of the most commonly used 
tests in the assessment of AD. MMSE consists of a series of 
clinical and psychometric assessment through 
neuropsychological tests which assess language and memory 
abilities, and the ability of solving problems. The maximum 
MMSE score is 30 points. A score less than 12 indicates severe 
dementia, 13 to 20 recommends moderate dementia, 20 to 24 
suggests mild dementia and 24 to 30 represents Normal 
Controls (NC). In parallel, CDR is used to describe memory, 
orientation, judgment, and problem solving, home and hobbies 
and personal care. A score of 0, represents normal controls, 0.5, 
very mild dementia, 1, mild dementia, 2, moderate dementia 
and 3, severe dementia. The revised criteria for the diagnosis of 
AD were proposed in 2007 by the National Institute of 
Neurological Disorders and Stroke–Alzheimer Disease and 
Related Disorders working group [6]. According to  [6] and due 
to the  uncertainty of clinical diagnosis,  the clinical assessment 
should include at least one supportive feature: (i) Medial 
Temporal Lobe (MTL) atrophy as seen in structural Magnetic 
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Resonance Imaging (MRI), (ii) Temporoparietal 
hypometabolism as seen in Positron Emission Tomography 
(PET), (iii) Positivity on amyloid imaging as seen in PET and 
iv) Abnormal neuronal cerebrospinal fluid (CSF) markers (tau 
and/or Aβ). 

As a consequence of the AD, structural changes initiate 
within the MTL of the brain [7], a region which includes 
anatomically related structures that are essential for declarative 
memory [8]. Many post mortem studies [2], [9], [10] have 
implicated entorhinal cortex and the transentorhinal region as 
early sites of involvement in Mild Cognitive Impairment (MCI) 
and in AD subjects. It was shown that the degenerative process, 
initiates from the entorhinal cortex, followed by the 
hippocampus, the amygdala and the  parahippocampal gyrus 
[8], [11], [12]. With the disease progression, these regions lose 
neuronal tissue with consequent brain atrophy [13].  

A definite diagnosis of AD relies on histological 
confirmation at post-mortem biopsy [6] and brain 
inaccessibility has driven a search for diagnostic imaging 
markers. Imaging, plays an important role in improving our 
understanding of AD, as it can provide an image of the brain of 
living patient which are affected by AD. Furthermore, imaging 
biomarkers, can be used for differential diagnosis due to the 
uncertainty of clinical tests in differentiating other subtypes of 
dementia such as FTLD [14], [15]. The entorhinal cortex and 
the hippocampus (Fig. 1), are the two most common Regions of 
Interest (ROIs) used in both in vivo and post-mortem 
investigations on the pathophysiology in AD. However, a visual 
qualitative assessment of MRI is not enough to estimate the rate 
of the tissue loss in the areas affected by the disease, and 
quantitative measures are essential for the assessment of the 
disease. Furthermore, the human eye cannot perceive the 
minimum degree of atrophy and without quantitative 
measurements, image evaluation is subjective. On the other 
hand, by using only MMSE tests, MCI, which represents a 
transitional period between normal ageing and clinical probable 
AD, cannot be easily identified through cognitive tests, mainly 
because these subjects do not have severe memory problems 
[6]. As the size of the MRI datasets increases and manual 
tracing is much more time consuming, Computer-Aided 
Diagnosis (CAD) systems can outline the areas of interest, 
usually by automated or semi-automated techniques, and can 
provide quantitative measurements.  

 

   
                        (a)                                (b)                                (c) 
Fig. 1.  Hippocampus and entorhinal cortex. (a) The hippocampus. (b) The CA1 
area within the hippocampus. (c) The entorhinal cortex with the hippocampus. 

 
This review describes the overall results, including accuracy, 

specificity, and sensitivity of the image-processing methods 
that assess AD as observed in structural MRI. Additionally, it 

describes the effectiveness of these methods in the prediction of 
conversion from MCI to AD. The rest of this review is 
organized as follows: Section II presents the CAD system 
pipeline and Sections III and IV the use of CAD systems in the 
diagnosis and prognosis of the disease, respectively. Section V 
concludes which methods and structures are suggested for both 
diagnosis and prognosis of AD. Section IV addresses and 
suggests future directions for the assessment of AD. 

II. COMPUTED-AIDED DIAGNOSIS SYSTEM PIPELINE 

The objective of CAD systems is to assist the radiologist in 
the interpretation of medical images as a supporting tool. 
Furthermore, CAD provide quantitative information for ROIs 
to produce accurate and complete pathology reports. In medical 
image analysis, the following steps: (i) image acquisition and 
pre-processing, (ii) ROI segmentation, (iii) feature extraction, 
(iv) classification and (v) interpretation,  are usually carried out 
to provide quantitative measurements of biomedical images. 
Medical image analysis steps and techniques used for the 
development of CAD systems for the assessment of dementia, 
are analyzed in this section. 

A. Datasets and Preprocessing 

In AD research, many investigators obtain their data from 
online databases (Table I). These databases provide researchers 
with study data to define the progression of AD. One of the 
most comprehensive databases is the Alzheimer’s disease 
Neuroimaging Initiative (ADNI) [16], an ongoing, longitudinal, 
multicenter study. The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. 
Weiner, MD. The primary goal of ADNI has been to test 
whether serial MRI, PET, other biological markers, and clinical 
and neuropsychological assessment can be combined to 
measure the progression of MCI and early AD.  The ADNI 
image processing pipeline includes post-acquisition correction 
of gradient warping (Gradwarp) [17], B1 non-uniformity 
correction [18] depending on the scanner and coil type, and 
phantom based scaling correction [19]. For up-to-date 
information, see www.adni-info.org. Apart from ADNI,  the 
Australian Imaging Biomarker and Lifestyle flagship study of 
aging (AIBL) (http://aibl.csiro.au), has already enrolled 1100 
participants and collected over 4.5 years’ worth of longitudinal 
data. The Open Access Series of Imaging Studies (OASIS) [20] 
provides data to be used in the determination of diagnostic 
markers for the assessment of AD and the data are divided in 2 
sets. The cross-sectional MRI data in young, middle aged, non-
demented and demented older adults and the longitudinal MRI 
data in non-demented and demented older adults. 
AddNeuroMed [21] is a cross European, public/private 
consortium developed for AD biomarker discovery. It 
combines modalities and it uses animal models in biomarker 
research. 

Furthermore, two large dementia challenges where research 
groups could test and compare their algorithms in the AD 
assessment are the CADDEMENTIA [22] 
(http://caddementia.grand-challenge.org) and the Alzheimer’s 
Disease Bid Data (ADBD) DREAM challenge 
(http://dreamchallenges.org). 
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TABLE I 
OPEN SOURCE IMAGING DATA FOR AGING 

Name Subjects Data 

Alzheimer’s Disease 
Neuroimaging Initiative 

(ADNI) 
http://adni.loni.usc.edu/ 

483 NC, 
300 

eMCI, 
300 lMCI, 
550 MCI, 
350 AD 

Clinical and cognitive 
assessments, MRI, PET, 
Genetic, Biospecimen 

Australian Imaging 
Biomarker and Lifestyle 

flagship (AIBL) 
https://aibl.csiro.au/ 

768 NC, 
133 MCI, 
211 AD 

Clinical and cognitive 
assessments, MRI, PET, 

Biospecimen, 
Dietary/lifestyle assessment 

Open Access Series of 
Imaging Studies (OASIS) 

http://www.oasis-
brains.org/ 

73 NC, 
14 ADc, 
64 AD 

MRI 

 
AddNeuroMed 

http://www.innomed-
addneuromed.com 

232 NC, 
225 MCI, 
259 AD 

Clinical and cognitive 
assessments, Blood, MRI 

GLOSSARY: NC: Normal Controls; eMCI: early Mild Cognitive 
Impairment; lMCI: Late Mild Cognitive Impairment; MCI: Mild Cognitive 
Impairment; AD: Alzheimer’s disease; ADc: Subjects who converted to AD; 
MRI: Magnetic Resonance Imaging; PET: Positron Emission Tomography 

B. Region of Interest / Segmentation 

The role of segmentation in medical imaging is to separate an 
image into regions to study anatomical structures, to identify 
ROIs or to measure the volume of a tissue. For the automatic 
segmentation of gray matter (GM), white matter (WM) and 
CSF from MR images, three methodologies have been 
proposed: (i) statistical-based segmentation methods, (ii) 
learning-based segmentation methods and (iii) atlas-based 
segmentation methods. Atlas based segmentation methods are 
the most frequently used in medical image segmentation.  In 
atlas-based segmentation, an intensity template is registered 
non-rigidly to a target image and the resulting transformation is 
used to propagate the tissue class or anatomical structure labels 
of the template into the space of the target image [23]. The study 
by Babalola et al. [24] compared atlas-based and model based 
segmentation techniques and was tested on 270 subjects. The 
two atlas-based methods, classifier fusion and labelling (CFL) 
and expectation-maximization segmentation (EMS) using a 
dynamic brain atlas, performed significantly better than the 
model based methods, profile active appearance models (PAM) 
and Bayesian appearance models (BAM). Factors that affect 
accuracy in multi-atlas segmentation are presented in [23].  

Based on the aforementioned segmentation methods, several 
software "pipelined" image analysis   packages for automated 
brain tissue segmentation have been developed (Table II). 
These packages usually contain skull stripping, intensity non-
uniformity correction and automated segmentation. FreeSurfer 
[Martinos Center for Biomedical Imaging, Harvard-MIT, 
Boston USA] [25] is an open source software suite for 
processing and analyzing brain MRI images. It represents one 
of the most commonly used software in image analysis and it 
segments MRI scans automatically using a Bayesian approach 
[26]. Morey et al. [27] compared automated segmentation 
methods and hand tracing of the hippocampus and it was shown 
that Freesurfer is preferable compared to FSL/FIRST 
[Functional MRI Brain - FMRIB Software Library, abbreviated 
as FSL - FMRIB Integrated Registration and Segmentation 
Tool, Oxford University, Oxford UK] [28]. The Statistical 

Parameter Mapping (SPM) software (Wellcome Trust Centre 
for Neuroimaging, Institute of Neurology, UCL, London UKis 
a freely available suite of MATLAB used for segmentation, 
normalization, registration, volume measurements and other 
useful image analysis steps.   

The LONI Pipeline [29] is a graphical workflow environment 
which allows grid utilization and provides a significant library 
of computational tools. It was built to be used in complex 
neuroimaging analysis which requires deep knowledge about 
the input/output requirements of algorithms. The LONI 
Pipeline could be used to design, execute, validate, and deliver 
complex heterogeneous computational protocols.  

 
TABLE II 

SELECTED BRAIN SEGMENTATION SOFTWARE PACKAGES 
Name Description Studies 

FreeSurfer 
Open source software suite for processing 
and analyzing (human) brain MRI images 
https://surfer.nmr.mgh.harvard.edu/ 

[25], [27], [30], 
[31], [31]–[35] 

Statistical 
Parameter 
Mapping 
(SPM) 

MATLAB software package implementing 
statistical methods for analysis of 
functional and structural neuroimaging 
http://www.fil.ion.ucl.ac.uk/spm/ 

[36]–[46] 

LONI 
Pipeline 

Includes workflows that take advantage of 
all widely used tools available in 
neuroimaging, genomics, bioinformatics, 
etc. http://pipeline.loni.usc.edu/ 

[29], [32], [47]–
[49] 

C. Feature Extraction 

Thus, through feature extraction it is possible to retrieve 
important data that can assist the characterization of a 
pathology. Feature extraction methodologies analyze objects or 
images to extract the most prominent features that are 
representative of the various classes of objects.  

Table III lists selected methods that are currently used in the 
assessment of AD as described in [30], where these methods 
were compared. According to Cuingnet et al. [30], these 
approaches can be divided into three categories, depending on 
the type of features extracted from the MRI: (i) Voxel-based if 
the features derive from GM, WM or CSF, (ii) Vertex-based if 
the features derive from the cortical surface such as thickness 
measurements and (iii) ROI-based if the features are derived 
from ROIs. However, apart from the hippocampus, it should be 
noted that the entorhinal cortex is also a structure currently used 
by many studies for the assessment of AD. In this review, 
structural MRI features derived from Voxel Based 
Morphometry (VBM), cortical thickness, volume, shape and 
texture are described.  

In the assessment of AD, VBM has the advantage examining 
the whole brain and not a particular structure.  Specifically, it 
detects differences in the local composition between different 
brain tissue types such as GM and WM [50]. First, the brain 
images are segmented into their three main tissue components, 
GM, WM and CSF and then are spatially normalized to the 
same stereotactic space. This allows different brains to be 
compared directly through a voxel-wise statistical analysis over 
the entire brain. For technical and methodological information 
about VBM the reader is referred to [51]. Nowadays, VBM is 
used to examine the whole volume of the brain and to detect 
differences or similarities in images for two populations [52]. 
Furthermore, it is also used to calculate cortical thickness 
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changes on the entire cortex. A limitation of thickness 
measurements is that they cannot detect changes on subcortical 
structures such as WM or CSF therefore it is only used to detect 
the regional distribution of cortical atrophy. In general, some of 
the limitations of VBM include systematic registration errors 
during spatial normalization [53] and difficulties in detecting 
WM changes in T1 MRI sequences or pathologies that are not 
common in the majority of a population [54]. 

Volumetric techniques are used to measure the volume of a 
structure; however, a major weakness of volume analysis is that 
the thickness or shape of a structure might change before its 
volume. According to [55] global hippocampal volumetry 
might not be always sensitive enough to follow changes within 
a single population, which may reflect conversion from a 
healthy state or disease progression. In differential diagnosis, 
VBM showed higher accuracy from volume measurements, in 
the ability to differentiate AD from FTLD [14], [15]. 

Shape analysis, is used in digital geometric models of 
surfaces and/or volumes of objects-of-interest in order to detect 
similarities or differences between the objects [56]. It examines 
the shape of a structure which gives not only more sensitivity 
to follow the progression of the atrophy, but also allows its 
evaluation in different subfields. Among the many techniques 
[56] used to obtain shape features of the human brain, 
Corresponding Spherical Harmonic Description (SPHARM), 
deformation-based morphometry and deformable models are 
the methods mainly used, mainly due to alignment factors.   

Texture is an indistinct concept often attributed to human 
perception of variation of the colour/intensity of a surface, 
quantifying properties such as smoothness, coarseness and 
regularity. It could be argued that texture refers to the spatial 
and statistical relationship of pixel values in an ROI. The early 
stage of AD is associated with small-scale changes in terms of 
Neurofibrillary Tangles (NFT’s) and amyloid-β (Aβ) plaque 
deposition [57]. According to Castellano et al. [58] these small-
scale changes, are able to form certain  textural patterns in MRI 
images recognizable by extracting texture descriptors from the 
image. In AD, texture analysis is less used than the other 
methods. However, the information provided by texture 
analysis cannot be visible through volume and shape properties 
[36], thus, it may have the advantage of detecting 
earlier, microscopic alterations [58]. Broadly, the approaches 
used to describe texture features in neuro MRI can be split into 
syntactic, statistical and spectral [59]. 

Statistical based approaches (Table IV), are mostly used and 
they  represent the texture indirectly by non-deterministic 
properties that prescribe the distributions and relationships 
between grey levels of an image [59]. According to Kovalev et 
al. [60] 3D texture features contain more spatial information, 
higher sensitivity and specificity compared to 2D techniques. 
3D texture features include the use of Law filters [61], RLMs 
[62], sub-band [63], [64], Gaussian-Markov Random Fields 
(GMRF) and a combination of co-occurrence matrices and 
Gabor filters [63]. For a review on 3D texture, the reader is 
referred to [65]. 

TABLE III 
SUMMARY OF STRUCTURAL MRI FEATURES BASED ON [30]  

Category Subcategory Tissue Description Studies 

Voxel 
based 

Direct 
GM 

GM+WM+CSF 
Probability maps of voxels of the tissue directly as features in the 
classification 

[37] 
[38] 

STAND-score 
GM, WM, and CSF tissue 

probabilities 
Selection steps and a sequence of feature aggregation is used to reduce 
dimensionality. 

Atlas based Mean tissue probabilities Uses labelled atlas to group the voxels into anatomical regions 

COMPARE 
GM 

GM+WM+CSF 
Creates homogeneously discriminative regions, in which the voxel 
values are aggregated to form the features of the classification 

Cortical 
Thickness 

Direct - 
Consists cortical thickness values at every vertex directly as features 
 [37] 

[31], [66] 
[31] 

Atlas based - Vertices are grouped into anatomical regions using an atlas 

ROI 
Hippocampus, entorhinal 

cortex, supramarginal gyrus 
Measures the cortical thickness in specific areas 

Volume 
and Shape 

Hippocampus 
and Entorhinal 

cortex 
- Discriminative power of the hippocampus and entorhinal cortex only 

[16], [39], [40], 
[49]– [53] 

[41], [54]– [56] 

GLOSSARY: STAND: Structural Abnormality Index; ROI: Region of Interest; GM: Gray Matter; WM: White Matter; CSF: Cerebrospinal Fluid 
 

TABLE IV 
SELECTED 2D TEXTURE FEATURES IN THE EVALUATION OF  MCI AND AD 

Category Subcategory Tissue Description Features Studies 

Statistical 

1st order 
gray-level 

- 
Contain information related to the gray-
level distribution of an image.  

Variance, Skewness, Kyrtosis, Mean, Gradient [76] 

2nd order  
Co-occurrence 

matrix 
(GLCM) 

Whole Brain, 
Hippocampus, 

Entorhinal 
cortex 

Describe how often 2 pixels with 
different values appear in the field of 
view separated by a distance d in 
direction θ (0°, 45°, 90° and 135°)  

Angular second moment, Contrast, Correlation, 
Sum of squares, Inverse different moment, Sum 
average, Sum variance, Sum entropy, Entropy, 
Difference variance, Information measures of 
correlation. 

[36], [77]–
[84] 

2nd order  
Run-length 

matrix (RLM) 
- 

Contain information about spatial 
relationships between groups of pixels 
having similar gray level values. 

Short runs emphasis, Long runs emphasis, Gray-
level non-uniformity, Run-length non-uniformity, 
Run percentage 

[78], [83]–
[85] 
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D. Classification methods 

Classification is used for the identification of patterns 
features of interest into the classes they belong. Moreover, 
machine-learning techniques have the potential to classify MR 
features without requiring a priori hypotheses from where this 
information may be coded in the images [86]. When classifiers 
are used, image samples are divided into two sets, training and 
testing [87]. The most popular statistical techniques used in 
CAD, include Discriminant Analysis (DA), Logistic 
Regression (LR), neural networks and Support Vector Machine 
(SVM). These techniques are presented in Table V. 

When the sample size is large, linear DA and LR have similar 
results, whereas in smaller samples DA performs better. 
Furthermore, DA is faster compared to LR. Regardless of the 
data distribution, LR performs well, and it should be used as the 
first choice to classify data [88]. On the other hand, DA is 
preferred when the variables are categorized and as long the 
assumptions are met. Furthermore, DA is preferred when the 
number of categories is big enough to let the estimated mean 
and variance be close to the population values of the continuous 
explanatory variables [88].  

SVMs were developed by Vapnik [89] and they represent 
pattern recognition algorithms, based on training, testing and 
performance evaluation. Compared to DA which is a more 
generative method as it focuses on all data points whereas, 
SVMs are more discriminative as they concentrate on the points 
that are difficult to classify. They can be used when the data 
have an unknown distribution [90] and one of their strongest 
advantages is that they provide excellent results in pattern 
recognition and good generalization performance. Furthermore, 
they offer a possibility to train generalizable, nonlinear 
classifiers in high-dimensional spaces using a small training set 
[91].  

Neural networks can be used as an alternative to LR. ANNs 
benefit from the availability of multiple training algorithms, 
they require less statistical training and they perform well in 
predicting medical outcomes. Limitations of ANNs include 
computational load, restricted potential to unmistakably detect 
possible causal relationships and overfitting suffering [92]. 

 
TABLE V 

CLASSIFICATION TECHNIQUES USED IN CAD MCI AND AD SYSTEMS 
Classifier Description Studies 

Discriminant 
Analysis [91] 

[93] 

Predict classification in a group 
based on continues variables 

[31], [66], [68], 
[72], [77], [94], 

[95] 

Logistic 
Regression [96] 

It examines relationships between 
a categorical Y and a continuous X 
variable 

[81], [97] 

Neural Networks 
Fit nonlinear models using nodes 
and layers. Could be very good 
predictors 

[78] 

Support Vector 
Machines [89], 

[98] 

Supervised, multivariate learning 
methods used for classification, as 
well as regression 

[32], [36]–[38], 
[40], [41], [75], 

[99] 

III. COMPUTER AIDED SYSTEMS FOR THE DIAGNOSIS OF 

ALZHEIMERS DISEASE 

Table VI tabulates CAD systems for the classification of 
MCI and AD. Quantitative MRI studies tabulated below are 
based on amyloid, volume, thickness, shape and texture 

analysis that are described in the following subsections. For 
each study the main author, ROI, data type, number of subjects 
and classification accuracy, sensitivity, and specificity are 
given. 

A. Quantitative MRI studies based on VBM 

VBM describes global changes or atrophy of deep cerebral 
structures. Evans et al. [100] revealed a mean Standard 
Deviation (SD) whole brain loss at 1.5% per year in AD patients 
compared to 0.5% per year in NC. On the other hand, MCI 
subjects had an intermediate rate of 1.1% loss per year. 
Interestingly in this study it was noticed that MCI patients who 
converted to AD had brain atrophy twice more than the MCI 
patients who did not progress to AD. 

Busatto et al. [101] used a fully automated VBM technique 
to evaluate GM abnormalities over the entire area of the 
temporal lobe in the classification of NC subjects from AD 
patients. Their results confirmed the findings of previous ROI-
based studies [11], [102], [103], where significant GM loss was 
detected bilaterally in the MTL region in AD patients. The 
entorhinal cortex was found to be the primary region where the 
neurodegenerative changes initiate in the earliest stages of AD.  

Karas et al. [34] used VBM and apart from the earlier 
findings in the atrophy of the hippocampus, they demonstrated 
global reduced GM volume including the cerebellum, medial 
thalamus and head of the caudate nucleus as well of the 
cingulum, in AD patients. Their findings collated with the 
histopathological staging of Braak et al. [9], [104]. Another 
study by Karas et al. [105] analyzed the patterns of GM loss in 
order to examine what characterizes MCI and what determines 
the differences with AD by using VBM methods. Apart from 
quantifying the extent of GM loss between MCI subjects and 
AD patients, the authors wanted to investigate if the 
hippocampal volume still changes in patients who converted to 
AD. The results of the study showed that MCI patients had GM 
loss in the MTL area, where the parietal and cingulate cortices 
were areas more related to AD patients. Whitwell et al. [42] 
compared the pattern of GM loss in MCI patients who 
progressed to AD within a fixed time of period (18 months from 
baseline scan), with the subjects who remained stable. 
Compared to NC, the subjects that progressed to AD, had 
bilateral GM loss in specific regions of the brain. Interestingly, 
the non-progressed MCI patients had no areas of GM loss when 
compared to the NC. Thus, VBM method might not be the most 
sensitive technique for the classification of normal and MCI 
patients. However, when the two groups (stable and progressed 
MCI) were directly compared, the progressed group showed 
more GM atrophy.  

Klöppel et al. [37] used a voxel based SVM approach to 
analyze the gray matter of NC and AD patients through 
modeling two different anatomical areas: in the first model they 
used data from the whole brain and on the second they used data 
from a hippocampus-centered ROI. Their method reached an 
accuracy of 90% when evaluated on 20 NC and 20 AD subjects. 

B. Quantitative MRI studies based on volume analysis 

Several studies, used hippocampal volumetric measurements 
and confirmed that hippocampal atrophy, can constitute a useful 
diagnostic biomarker. The studies that used AD patients and 
NC from the ADNI database, reported that the hippocampal 
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volumes were varying between 1600 mm3 [106] and 3000 mm3 
[107]. According to the study by Schuff et al. [106], the 
hippocampal loss was accelerated by 26.5 ± 4.5 mm3/year2 in 
AD and 12.1 ± 3.2 mm3/year2 in MCI, equivalent to −1.6 ± 
0.2%/year2 and 0.6 ± 0.2%/year2, respectively, relative to 
baseline volume. 

One of the first studies where MRI was used  to investigate if 
volumetric measurements in MTL could provide information 
for the classification of NC and AD patients took place in 1997, 
by Jack et al. [108]. Their study included 126 NC subjects and 
94 probable AD patients, where they estimated volume 
measurements of hippocampus, parahippocampal gyrus, and 
the amygdala. Their results showed a parallel structure decline 
with increasing age in control subjects for both women and men 
and in each case MTL volume in AD patients was significantly 
smaller compared to NC subjects (p<.001). The MTL structure, 
which performed better for this classification, was the 
hippocampus. In 2001, Galton et al. [67] confirmed that 
hippocampal atrophy is a useful diagnostic biomarker and they 
showed that there was a 50% hippocampal atrophy in AD 
patients. 

In [39], Colliot et al. used hippocampal volume to distinguish 
NC from MCI and AD patients. The technique used, was 
previously used by Chupin et al., [109], and it was fully 
automated where both the hippocampus and amygdala were 
segmented at the same time. The results of their study revealed 
significant hippocampal volume reductions in all groups of 
patients. Specifically, there was a 32% volume reduction 
between AD and NC, a 19% reduction between MCI and NC 
and finally, a 15% reduction between AD and MCI. 

Apart from hippocampus, other structures such as entorhinal 
cortex is used for the assessment of AD. However, because its 
controversial whether entorhinal cortex or hippocampus is more 
affected with the disease progression, the study by Juottonen et 
al. [68], used volumetric MRI on AD patients and NC subjects 
to investigate which of the two structures was more affected. 
Both structures had the ability to differentiate AD patients from 
NC subjects and no essential difference was found between the 
discriminative power of entorhinal cortex and hippocampal 
volumes. Specifically, the volume of entorhinal cortex in AD 
patients was 38% less on the right and 40% less on the left side, 
compared to NC subjects. Similar pattern of atrophy was 
noticed on the hippocampal volume where it was 33% less on 
the right and 35% less on the left side compared to NC subjects. 
Obviously, in the late states of the disease, both structures have 
similar atrophy rate. 

According to Pennanen et al. [72] the appropriate ROI 
selection should depend on the classification group. Thus, they 
investigated which structures of the brain can be used to best 
classify the three different study groups. Their results showed 
that entorhinal cortex atrophy was more severe, in comparison 
with hippocampus volume, in MCI subjects, whereas in AD 
patients the hippocampal atrophy was more pronounced. 
Specifically, the best overall classification (66%) between MCI 
and NC subjects was achieved with entorhinal cortex, whereas 
the best overall classification (82%) between MCI and AD 
patients and between NC and AD patients (91%) was achieved 
with hippocampal volume. Similar to [68] the left hippocampal 
atrophy appear to be more severe for all the subjects. 

C. Quantitative MRI studies based on thickness analysis 

Desikan et al. [31] carried out automated structural 
measurements of entorhinal cortex and supramarginal gyrus 
thickness in order to differentiate MCI subjects and AD patients 
from normal patients. They used baseline volumetric scans 
from two independent cohorts where images obtained from the 
OASIS [20] and the ADNI database [16]. Hippocampal 
volume, entorhinal cortex and supramarginal gyrus thickness 
indicated an average Area Under Curve (AUC) of 0.91 in the 
training cohort and an AUC of 0.95 in the validation cohort. It 
should be mentioned that their results were comparable or even 
more accurate from nuclear medicine techniques such as 
Fluorodeoxyglucose (FDG)- PET [110], [111]  or  amyloid-
binding  PET  studies [112], [113]. Furthermore, discrimination 
accuracy of MCI subjects in this study was comparable to  one  
prior  PET  study  utilizing  a radioactive  amyloid  and  tau  
protein  tracer  [113] and  two MRI  studies [95], [114].  

Lerch et al. [94] used an automated method to measure the 
cortical thickness across the entire brain and detect differences 
between AD patients and NC. Cortical thickness was declined 
in many areas of the brain; however, the parahippocampal gyrus 
and the medial temporal lobes were the areas most affected. 
Similarly with other studies [68], [72] it was found that the left 
side of the brain was more severely affected. Therefore, 
according to this study, cortical atrophy in the early stages of 
AD is not related only with MTL but with limbic system, the 
lateral temporal lobes and cortex as well. 

D. Quantitative MRI studies based on shape analysis 

Gerardin et al. [41] used hippocampal shape features instead 
of volume analysis and specifically, SPHARM coefficients 
were used to model the hippocampal shape. Their results 
revealed that shape analysis can detect local atrophy on the 
hippocampus, before it starts losing volume. Therefore, this 
technique may be more sensitive and in particular at the MCI 
stage. Shape analysis can be used to reveal atrophy on local and 
non-global areas of the hippocampus, and according to the 
authors, the classification accuracy between AD patients and 
NC subjects, was superior to studies that used volume analysis 
where classification accuracy was ranging from 80% to 90%. 
Furthermore, when MCI patients were involved in volume 
studies, the discriminative power was even lower, ranging from 
60% to 74%. However, these results were reported in volume 
studies where manual and not automated segmentation was 
used. 

Chetelat et al. [43] conducted a longitudinal study where MCI 
subjects were followed for 18 months. Their purpose was to 
project possible atrophy maps onto a 3D surface view of the 
hippocampus between MCI patients who converted or not to 
AD, compared to the profile of GM loss across normal aging. 
Their results showed that atrophy was more significant in 
converters than in non-converters, and this effect was more 
marked at follow-up. Interestingly, for both converters and non-
converters the hippocampal atrophy was more evident on the 
superior-lateral part of the hippocampus, called CA1. 
Histopathological studies [115] also agreed that there was a 
relatively higher degree of atrophy in that specific hippocampal 
subfield. Similar results, were observed by Apostolova and 
colleagues [74]. On the other hand, GM loss with increasing 
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age, was more severe on the inferior part of the hippocampus 
corresponding to the subiculum, something that was reported 
by Frisoni et al. [116] as well. Ferrarini et al. [75] used 
hippocampal shape-based markers in the CA1 region and by 
using SVMs on either one or both hippocampi, they 
discriminated AD patients from NC subjects with an overall 
accuracy of 90%, and stable MCI subjects from MCI converters 
with 80% accuracy. 

E. Quantitative MRI studies based on texture analysis 

Freeborough and Fox [77] used texture analysis for the 
classification of AD patients from NC. They extracted features 
by using GLCM for offset angles of 0o, 45o, 90o, and 135o. From 
each matrix, they derived 13 features and the mean and range 
of each feature over the four offset angles were completed. 
They indicated that texture analysis can reveal significant 
different values between NC and AD patients. 

Zhang et al. [78] used 3D texture features to identify NC from 
AD patients. Over 100 texture features were extracted from 
spherical ROIs placed within the area of the hippocampus and 
the entorhinal cortex, using image histograms, gradients, co-
occurrence matrices and RLM. To investigate the impact on the 
ROI selection, they placed 3D ROIs in three ways. The ROI that 
performed better included the regions of hippocampus and 
entorhinal cortex and part of CSF. The selection of a larger ROI 
which in this case included a part of the CSF, generated a higher 
classification accuracy. They achieved the highest accuracy 
mentioned in the literature, maybe due to the fact that they used 
severely affected AD subjects. 

Oliveira et al. [79] applied texture analysis on MCI subjects. 
In their analysis, they choose to use the thalamus and calossal 
due to their anatomic heterogeneity which is more suitable for 
texture analysis. The analysis was carried out separately for the 
two ROIs using manual segmentation and the MaZda tool [117] 
to extract the features. According to the authors, this method 
was more reliable than other techniques [77], [118], [119], 
where the whole brain texture was analyzed. The objective of 
their study was to classify NC from amnestic MCI subjects and 
mild AD patients and through their analysis they revealed 
differences between the thalamus and corpus callosum which 
differentiated the two groups of subjects. 

Simoes et al. [36] used a whole-brain approach by applying 
local statistical texture maps for the classification of MCI 
subjects from NC. Through SVM they achieved a mean 
accuracy of 87%. However, their sample was small (N=30). In 
the study by Sørensen et al. [81], the classification capabilities 
of hippocampal texture were evaluated using Receiver 
Operating Characteristic (ROC) curves with the corresponding 
AUC as performance measure. Texture analysis had an AUC of 
0.912 in discriminating NC vs AD and 0.764 between NC vs 
MCI. For the same groups the AUC curves for volume analysis, 
were 0.909 and 0.784 respectively. To the best of our 
knowledge, this is the only study that evaluated if there is a 
correlation between texture and the volume of the 
hippocampus, in MCI subjects.  Regarding prognosis, it was 
shown that hippocampal texture is superior rather than volume 
measurements with an AUC of 0.74 vs 0.67, respectively and 
their results were correlated with FDG-PET. 

TABLE VI 
SELECTED QUANTITATIVE MRI STUDIES IN THE CLASSIFICATION OF MCI AND AD SUBJECTS

Study ROI Data type Subjects Classification Acc. Se. Sp. 

Klöppel et al.  [37] GM VBM 20 NC, 20 AD NC vs AD 90% 85% 95% 

Colliot et al. [39] Hip. Volume 25 NC, 24 MCI, 25 AD 
NC vs AD 
NC vs MCI 
MCI vs AD 

84% 
66% 
82% 

84% 
66% 
83% 

84% 
65% 
83% 

Juottonen et al. [68] Hip. & Erc. Volume 32 NC, 30 AD NC vs AD 
Hp.: 86% 
Erc.: 87% 

80% 
80% 

91% 
94% 

Pennanen et al. [72] Hip. & Erc. Volume 48 AD, 65 MCI, 59 NC 
NC vs AD 
NC vs MCI 
MCI vs AD 

91% 
66% 
82% 

88 % 
66% 
81% 

93% 
65% 
83% 

Desikan et al. [31] 
Erc. 

Supramarginal gyrus 
Thickness 

49 NC, 48 MCI 
94 NC, 57 MCI 

NC vs AD NA 
74% 
90% 

94% 
91% 

Lerch et al. [94] 
Entire cortex 

Parahippocampal Gyrus 
Thickness 17 NC, 19 AD NC vs AD 

75% 
94% 

79% 
94% 

71% 
95% 

Gerardin et al. [41] Hip. Shape 23 NC, 23 MCI  25 AD 
NC vs AD 
NC vs MCI 

94% 
83% 

96% 
83% 

92% 
84% 

Ferrarini et al. [75] Hip. Shape 
50 NC, 15 MCI-c, 15 MCI-

non-c, 50 AD 
NC vs AD 

MCI vs AD 
90% 
80% 

92% 
80% 

NA 
NA 

Freeborough and 
Fox [77] 

Whole brain Texture 40 NC, 24 AD NC vs AD 91% 79% 100% 

Zhang et al. [78] Hip., Erc. & CSF Texture 17 NC, 17 AD NC vs AD 
64% - 
96% 

NA NA 

Simoes et al. [36] Whole brain Statistical texture maps 15 NC, 15 MCI NC vs MCI 87% 85% 95% 
GLOSSARY: Acc: Accuracy; Se: Sensitivity; Sp: Specificity; AUC: area under curve; NC: Normal Controls; MCI: Mild Cognitive Impairment; MCI-non-c: 

MCI non-converters; AD: Alzheimer’s disease; GM: Gray matter; CSF: Cerebrospinal Fluid; Hip: Hippocampus; Erc: Entorhinal Cortex; VBM: Voxel Based 
Morphometry 

IV. PREDICTION OF CONVERSION FROM MCI TO AD  

Recently, the task of predicting conversion from MCI to AD 
has received a lot of attention, mainly because, nowadays, large 
multi-center studies, such as the ADNI, provide longitudinal 
data to the research community. The MCI term was first 

introduced in the literature by Reisberg et al. [120]  in 1988  and 
two decades later, Farias et al. [121] showed that a 10%-15% 
rate of MCI subjects will progress to dementia. The biggest 
challenge in AD assessment is to predict if a patient will 
develop the disease. The identification of these patients is of 
great importance as they will be provided earlier with possible 
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preventive pharmaceutical (or nonpharmaceutical) 
interventions. Currently, many studies investigate the 
prediction of the conversion from MCI to AD using feature sets 
similar to the ones used for the classification of subjects. A 
selection of these studies can be found in Table VII. 

A. Prediction based on VBM 

Davatzikos et al. [114] used high-dimensional image analysis 
and pattern classification methods, and proved that there was a 
subtle, distributed, structural pattern change in MCI subjects 
which could be identified and measured before clinical 
symptoms. Their analysis included a number of MTL 
structures, the cingulate and parts of the orbitofrontal cortex. 
Similar to [52] and [109] the CA1 area, appeared to be more 
affected and it showed more diagnostic accuracy from the total 
hippocampal volume. In contrast to [68], [69], [72] where 
lateralized hippocampal atrophy was mainly observed, the 
study by Davatzikos et al. [114] indicated bilateral hippocampal 
atrophy. When the results were cross-validated, the analysis 
showed a 90% predictive power. One more recent study by 
Davatzikos et al. [44] where VBM was used, a lower 
classification accuracy (56%) was achieved  maybe due to the 
fact that the SVM was trained on NC and AD patients. In [99], 
Misra and colleagues used VBM analysis to evaluate the 
volume of WM and GM in 103 MCI subjects which they were 
followed up for 15 months in order to predict which individuals 
will convert to AD. They evaluated their results via cross-
validation and achieved a classification accuracy of 82%. 
However, the number of progressive MCI patients was low 
(N=27) thus, the results of this study are not directly 
comparable to other studies that used the ADNI image set. Plant 
et al. [45], used 3 different classifiers including SVM, Bayes, 
and Voting Feature Intervals (VFI). When the anterior cingulate 
gyrus and orbitofrontal cortex were included in the 
measurements, the best predictive accuracy obtained was 75%. 
Duchesne et al. [122] used only MTL in their VBM analysis 
and their results were better compared to other studies (see 
Table VII) that used the whole brain.  

Koikkalainen et al. [123] used Tensor-Based Morphometry 
(TBM) to classify stable from progressive MCI subjects. They 
selected ROIs using statistical maps of differences on their test 
set, and they achieved an overall accuracy of 72%. However, 
their results may be biased as the training and testing were not 
completely independent. Chetelat et al. [46] longitudinally 
assessed (for 18 months) the possible structural changes in MCI 
patients and then compared these changes between the non-
converter and converter subjects. A fully automated VBM 
analysis was carried out and results were similar to the changes 
observed by other VBM studies such as [105]. Interestingly, 
(perhaps due to methodological issues) in contrast with most of 
the ROI volume studies, they did not detect any hippocampal 
volume differences between AD and MCI patients, suggesting 
a plateau has been reached.  

B. Prediction based on volume analysis 

Chupin et al. 2009 [40] used an automated segmentation 
technique of the hippocampus and amygdala and  hippocampal 
volume was calculated to predict the conversion from MCI to 
AD. An overall classification accuracy of 64% was achieved, 
indicating that global hippocampal volume evaluation may not 

be an accurate measure for prognosis, mainly due to the fact 
that hippocampal volume is variable in young and older adults, 
which in turn may have implications on the final results [124]. 

The study by Tapiola et al. [125] used MCI patients who were 
followed-up for 34 months to investigate the predictive value of 
different methods on conversion from MCI to AD. They used 
MRI-derived volumes of MTL structures, WM lesions, MMSE 
scores and APOE genotype. Interestingly, their results revealed 
that only MTL volume was able to predict the patients at high 
risk for developing the disease.  Similar results were observed 
in the study by deToledo-Morrell et al. [97] where hippocampal 
and entorhinal cortex volumes were compared to determine 
which of the two regions could differentiate stable from 
progressive subjects. Twenty-seven MCI patients were 
followed after baseline diagnosis for 36 months and 10 of them 
converted to AD. The results showed that both hippocampus 
and entorhinal cortex could make the prediction, however, the 
entorhinal cortex was the best predictor with a rate of 93.5%.  

Killiany et al. [12] investigated the most frequent ROIs used 
in volume analysis for the assessment of AD, the hippocampus 
and the entorhinal cortex. Patients with mild AD at baseline 
were included as well. The measures between the two ROIs 
were different for each of the pairwise comparisons between the 
groups. The entorhinal cortex volume was able to differentiate 
the subjects that will probably develop the disease with an 
accuracy of 84%, whereas the hippocampal volume could not. 
The study suggested that more neuronal changes occur within 
the entorhinal cortex during the preclinical phase of AD, and as 
the disease spreads, atrophic changes develop within the 
hippocampus as well. Similarly to the study by Pennanen et al. 
[72] the hippocampal volume loss in MCI subjects was 8% 
whereas in entorhinal cortex volume loss was almost double. 

Devanand et al. [126] measured hippocampal and entorhinal 
cortex atrophy for the prediction of conversion from MCI to 
AD. In this large longitudinal study, 163 MCI patients and 63 
NC subjects were followed for 5 years. Their results confirmed 
most of the findings of other studies that used smaller samples 
[12], [127] where hippocampal and entorhinal cortex had more 
atrophy in MCI converters to AD compared to NC and MCI 
non-converters. Specifically, entorhinal cortex volume in 
converters was 17% lower than in non-converters and 29% 
lower than in NC. For hippocampal volume, the percentages 
were 11% and 14% respectively.  Interestingly, it was observed 
that when both regions were used together with cognitive 
scores, the prediction accuracy was improved to 87.7%. Both 
hippocampal and entorhinal cortex volumes, contributed to the 
prediction, however, the entorhinal cortex remained highly 
significant even after controlling for age and cognitive 
measures. On the other hand hippocampal volume correlated 
with cognitive measures and thus, less significant for 
prediction.   

Killiany et al. [95] found that entorhinal cortex and superior 
temporal sulcus including the anterior cingulate gyrus (which is 
not yet known at which stage of the disease starts to involve), 
were the most useful regions for prediction of  conversion to 
AD.  These areas were used to determine if quantitative MRI 
measures at baseline could be used to determine whether 
subjects in the prodromal phase of the disease could be 
accurately identified before they develop AD. A discrimination 
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accuracy of 93% between NC and the subjects with memory 
difficulty who eventually developed the disease was achieved. 
The discrimination accuracy of the subjects with memory 
difficulty who did not developed the disease, between the NC 
and the converters was 85% and 75% respectively. Entorhinal 
cortex and the superior temporal sulcus ROIs were the best 
discriminators when NC were included. 

C. Prediction based on thickness analysis 

Querbes et al. [66] used baseline normalized thickness index 
on a large sample of patients for the prediction of conversion 
from stable MCI to AD and compared it to the predictive values 
of the main cognitive scores at baseline.  Their results showed 
that subtle structural changes could be detected and used to 
predict the outcome even 2 years before the clinical symptoms 
appear with a predictive value of 73%. This study, had the 
advantage of using a cross validation procedure. However,  
according to Eskildsen et al, [128] the results of the study, most 
likely show an overestimated accuracy as some subjects are 
used both for training and testing. Bakkour et al. [35] 
investigated the abnormalities of the cortex on patients with 
questionable AD and tried to detect which neocortical measures 
were better for early diagnosis and predictive power. A total of 
49 questionable AD patients were longitudinally followed-up 
for 2.5 years and according to their results 20 patients converted 
to mild AD while 29 remained stable. The MTL cortical 
thickness achieved the best performance.  

In a very similar study [128], patterns of cortical thickness 
measurements were used for the prediction of AD. It was 
observed that atrophy patterns differed with the disease 
progression, thus by learning these differences, the prediction 
accuracies could be improved. MCI subjects who had scans at 
6, 12, 18, 24 and 36 months prior to the diagnosis of AD were 
selected from the ADNI database and they were grouped into 
time-homogenous groups of progressive MCI. Then, these 
patients where compared with MCI subjects who remained 
stable during their longitudinal study period. Interestingly, it 
was noted that even at 36 months prior to the AD diagnosis, the 
hippocampus could not be used for prediction of the disease. 
On the other hand, the entorhinal cortex was the area affected 
first, followed by hippocampus. In other studies, such as [40], 
[44], [66], [99], [129], the baseline data for analysis were not 
homogeneous with respect to the “time to conversion”, since 
the progressive MCI patients would convert anytime over the 
course of 6 months to 4 years follow-up. According to the 
authors, such heterogeneity may conceal the neurodegenerative 
processes that could be attributed to the different sub-stages of 
AD. For example, the pattern of atrophy could differ one year 
before diagnosis compared to the pattern two years earlier. 

The study by Desikan et al. [130] identified MCI patients who 
converted to AD within two years after baseline with an overall 
accuracy of 91%. They used automated MRI-based software 
tools to compute measurements of MTL cortex thickness and 

volume on 64 ROIs among the two hemispheres of 324 MCI 
subjects. Furthermore, they compared their results with CSF 
samples and PET measures and remarkably, they showed that 
structural MRI could better predict the disease progression. In 
a comparable study by Vemuri et al. [131] where structural 
MRI and CSF biomarkers on 399 subjects were used, the results 
were similar. It was found that the Structural Abnormality 
Index (STAND) score [38], could predict with higher accuracy 
the time to conversion, compared to CSF. 

D. Prediction based on shape analysis 

Costafreda et al. [32] used an automated procedure to extract 
3D hippocampal shape morphology. In their prediction model, 
only hippocampus was used which, achieved a predictive 
performance comparable or superior to other studies [45], [99], 
[122] that employed a multi-region or whole brain approach. 
This was similar to the accuracy achieved using other predictive 
models based on non-automated techniques. Similarly to [73] 
and [131], where morphometric pattern analysis was used, the 
results were significantly better from studies that suggested that 
3D shape analysis is better for the disease prognosis. 
Furthermore, this study and others [133]–[135] suggested that 
hippocampal head atrophy may be an early sign of risk and 
could be used to predict if a subject will develop the disease. 

E. Multimethod studies 

Cuingnet et al. [30] compared most of the aforementioned 
methods used for classification. They obtained data from the 
ADNI database and they used volume and shape analysis, VBM 
and cortical thickness methods to predict the conversion to AD. 
By using SVM they achieved predictive accuracies between 
58%-71%. In a similar pattern, Wolz et al. [129] used baseline 
scans from the entire MCI population of the ADNI cohort. 
Several methods were used for prediction obtaining accuracies 
in the range of 56%-68%. When using the same subject groups 
with [30], they obtained better classification accuracies.  

F. Prediction using texture features 

Sørensen et al. [81], tried to detect the accumulated effects 
caused by NFTs and Aβ plaques, on the hippocampus as 
changes in the statistical properties of the images intensities. 
Furthermore, they tested the capability of hippocampal texture 
in the detection of early cognitive decline and whether texture 
analysis could reflect changes in hippocampal glucose 
metabolism in FDG-PET. Texture appeared to have higher but 
not significantly different AUC compared to hippocampal 
volume for the prediction of MCI to AD within 12 months. 
However, hippocampal texture was significantly better 
compared to volume, for the prediction of MCI to AD within 
24 months, showing an AUC of p=0.005 and p=0.002 
respectively. Interestingly, structural texture changes, 
correlated to a reduction of glucose metabolism and the 
function of the hippocampus.  
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TABLE VII 
SELECTED QUANTITATIVE MRI STUDIES IN THE PREDICTION OF CONVERSION FROM MCI TO AD 

Study ROI Data type Follow-up (months) Converters/Total 
MCI 

Acc. Se. Sp. 

Davatzikos et al. [44] Whole brain VBM 0-36 69/239 56% 95% 38% 

Misra et al. [99] Whole brain VBM 0-36 27/103 82% NA NA 

Plant et al. [45] Whole brain VBM 0-30 9/24 75% 56% 87% 

Duchesne et al. [122] MTL VBM 0-28 11/31 81% 70% 100% 

Koikkalainen et al. [123] Whole brain TBM 0-36 154/369 72% 77% 71% 

Chupin et al. [40] 
Hip. & 

Amygdale 
Volume 0-18 76/210 64% 60% 65% 

deToledo-Morrell et al. [97] Hip. & Erc. Volume 0-36 10/27 93% NA NA 

Killiany et al. [12] Erc. Volume 0-36 13/73 84% NA NA 

Devanand et al. [126] Hip. & Erc. Volume 0-36 37/139 88% 83% NA 

Killiany et al. [95] Erc., STS Volume 0-36 19/79 93% 95% 90% 

Querbes et al. [66] Cortex Thickness 0-24 72/122 73% 75% 69% 

Eskildsen et al. [128] Cortex Thickness 0-36 - 67%-76% NA NA 

Bakkour et al. [35] Cortex Thickness 0-30 20/49 NA 83% 65% 

Desikan et al. [130] Neocortex Thickness & Volume 0-36 
TC: 60/162 

VC: 58/162 

AUC: 0.82 

AUC: 0.84 

74% 

87% 

84% 

66% 

Ferrarini et al. [75] Hip. 
Volume 

3D Shape 
0-33 15/30 

73% 

80% 

63% 

80% 

77% 

80% 

Costafreda et al. [32] Hip. 3D Shape 0-12 22/103 80% 77% 80% 

Cuingnet et al. [30] Whole brain VBM - - 
 

71% 77% 78% 

- Hip. Atlas based 0-18 76/210 67% 62% 69% 

- Cortex Thickness - - 70% 32% 91% 

Wolz et al. [129] Whole brain TBM - - 64% 65% 62% 

- Whole brain Manifold-based learning - - 65% 64% 66% 

- Hip. Atlas based 0-48 167/405 65% 63% 67% 

- Cortex  Thickness - - 56% 63% 45% 

- Combination Combination - - 68% 67% 69% 

Sørensen et al. [81] Hip. 
Texture 

Texture & Volume 

0-12 

0-24 - 

AUC: 0.74 

AUC: 0.74 
NA NA 

GLOSSARY: ROI: Region of interest; MCI: Mild Cognitive Impairment; VBM: Voxel Based Morphometry; TBM: Tensor Based Morphometry; Acc: Accuracy; 
Se: Sensitivity; Sp: Specificity; MTL: Medial Temporal Lobe; Hip.: Hippocampus; Erc.: Entorhinal Cortex; STS: Superior Temporal Sulcus; TC: Training Cohort; 
VC: Validation Cohort; AUC: Area Under Curve 

V. CONCLUDING REMARKS 

Cerebral atrophy, as captured in structural MRI, is a 
promising biomarker in the assessment of early AD. Many 
studies [11], [72], [95], [136] proved that MTL is an area which 
showed atrophy even in the preclinical stage of the disease. 
Although hippocampal formation might be the most frequently 
used structure for the assessment of AD, the earlier involvement 
of the entorhinal cortex was proved by many studies [12], [67], 
[68], [97], [101], [125], [137].  

The necessity of quantitative MRI image processing and 
visualization, derives from the fact that the human eye cannot 
perceive the subtle anatomical changes affecting the structures 
of the brain, thus it detects atrophy after the brain has already 
undergone irreversible synaptic loss. All the aforementioned 
studies agree that medical image analysis is essential in the 
assessment of AD and can be used either for classification 
between subjects or for the prediction of conversion from MCI 
to AD. 
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A. Classification of MCI and AD versus NC subjects 

Comparison of Hippocampus and entorhinal cortex in NC 
versus AD group: Overall, it appears that both entorhinal cortex 
and hippocampal volume classification accuracy is comparable 
in distinguishing NC subjects from AD patients. Both structures 
have similar reduction in atrophy. Furthermore, for this group, 
whole brain approaches such as VBM and thickness, remained 
competitive with hippocampal-based approaches, due to the 
fact that in the advance stages, atrophy is more widespread. 

Shape analysis also gave very good results, comparable to 
GM VBM for the classification between NC subjects and AD 
patients. However, the best classification accuracy (96.4%) for 
this group, was reported by Zhang et al. [78] for texture 
analysis. 

Comparison of hippocampus and entorhinal cortex in NC 
versus MCI group: Both the hippocampus and entorhinal cortex 
can be used for the classification of patients between NC and 
MCI subjects. However, entorhinal cortex can provide better 
classification as it deteriorates earlier than hippocampus which 
is consistent with many studies [9], [10], [57], [71], [125]. 
According to Gomez-Isla et al. [138] some entorhinal cortex 
layers can undergo 40% to 60% neuronal depopulation even in 
the earlier phase of AD. Indeed, the study by Pennanen et al. 
[72] revealed that the entorhinal cortex degenerated twice more 
rather than the hippocampus between NC and MCI. Thus, when 
AD patients are not included in the classification group, 
entorhinal cortex is the suggested structure to be used. All 
methods appear to have lower classification accuracy in this 
group of patients, because in MCI subjects the changes are 
difficult to be identified. Shape analysis appears to be a better 
technique compared to volume analysis, with similar results to 
voxel based methods. However, to the best of our knowledge, 
the best classification accuracy (87%) mentioned in the 
literature, between NC and MCI patients was achieved by 
Simoes et al. using texture features on the whole brain [36]. 

Comparison of Hippocampus and entorhinal cortex in MCI 
versus AD group: Both hippocampus and entorhinal cortex 
have the potential to discriminate MCI subjects from AD 
patients [70]. The study by  Du et al. [72] suggested than the 
entorhinal cortex does not provide  any further advantages for 
this classification. The study by Pennanen et al. [72] used 
hippocampal volume, but  when they included entorhinal cortex 
to their model, the overall classification was not improved. 

Shape analysis and voxel based morphometry studies appear 
to have similar results for the classification between AD 
patients from NC and MCI versus AD. It is suggested that in 
the advanced stages of the disease, the atrophy is more 
widespread, thus apart from ROI methods, whole-brain 
methods should be considered as well. 

B. Prediction of conversion from MCI to AD 

Most of the studies [12], [67], [68], [97], [101], [125], [137]  
have been using quantitative MRI measures within the area of 
MTL to determine if a subject will develop the disease and the 
results agree that  entorhinal cortex is a better predictor 
compared to other structures such as the hippocampus. The best 
discrimination accuracy between normal and patients with 
memory difficulty, who eventually developed the disease, was 
achieved by two volume studies of deToledo-Morrell [97] and 

Killiany et al. [95], with an overall predictive accuracy of 
93.5% and 93% respectively.  

In the prediction of progression of the disease, the highest 
accuracies were achieved when both entorhinal cortex and 
hippocampus were combined in the analysis. VBM methods 
and cortical thickness gave lower accuracy compared to the 
other methods, and, there is ‘lack of research’ regarding the use 
of texture analysis in the prediction of progression from MCI to 
AD.  

C. Conclusion 

In conclusion, entorhinal cortex can provide better results in 
the classification of NC from MCI subjects, as the atrophy is 
more severe compared to the hippocampus in the early stages 
of the disease. For the discrimination accuracy of AD patients 
from NC, and AD patients from MCI subjects, volumetric 
measurements of the hippocampus seem to be preferred mainly 
because entorhinal cortex is a very small region that is difficult 
to delineate when it is atrophied. Furthermore, image artifacts 
and/or anatomic ambiguities can obscure the boundaries of the 
entorhinal cortex. However, the hippocampus segmentation is 
more specific and it provides more robust and accurate results 
for these two groups. On the other hand, entorhinal cortex is a 
better predictor of conversion from MCI to AD. 

VI. FUTURE WORK 

Nowadays, apart from classification, many researchers are 
concentrating in the prediction of the disease as well. It is very 
important to identify specific MRI diagnostic biomarkers to 
predict whether MCI subjects will eventually convert to AD 
patients. Perhaps the initiation of serial MRI scans at annual or 
longer intervals to investigate the disease progression will 
provide insight in predicting the MCI subject that will develop 
the disease. 

Interestingly, for the disease progression, with the use of 
medical image analysis, morphometric measures derived from 
structural MRI, can provide similar, results with cellular or 
metabolic markers such as CSF, amyloid Aβ and FDG-PET. A 
systematic and quantitative meta-analysis by Schroeter et al. 
[139] involved 1,351 patients and 1,097 NC from 40 studies. 
The aim of the study was to reveal the prototypical neural 
correlates of AD and its prodromal stage. The analysis included 
data from studies that used structural MRI and studies that 
measured reduction in glucose utilization or in perfusion with 
PET. It was suggested that atrophy in the (trans-) entorhinal 
area/hippocampus and hypometabolism / hypoperfusion in the 
inferior parietal lobules could predict most reliably the 
progression from amnestic MCI to AD. Although, in a meta-
analysis [140] PET was a better disease predictor than MRI. 
However, there should be enough clinical information to justify 
irradiation of a subject and this a major drawback for PET 
imaging. After the first symptoms appear, it was found that the 
evaluation and predictive accuracy was better using structural 
based biomarkers [131], [132], [141]. However, other studies 
[12], [72], [114] revealed that structural MRI can also be used 
before clinical symptoms appear and in some cases it could be 
more accurate rather than metabolic markers [130]–[132]. 
Marcus et al., [142] supports that amyloid PET imaging  should 
be perform in subjects with suspected AD because it was shown 
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that Aβ plaques could also appear on non-demented elderly 
subjects. The presence of Aβ plaques in elderly non-demented 
subjects was also noticed in the study of Pike et al., [143]. 
Overall, the effectiveness of structural MRI compared to PET 
in predicting MCI conversion to AD is controversial. 

Nowadays, medical image analysis has become a 
computationally rich process due to the additional new 
challenges e.g. to predict if an MCI subject will convert to an 
AD patient. These processes include many intricate steps run 
on increasingly larger datasets with the use of many different 
tools. Graphical workflow environments such as LONI’s 
Pipeline [29], facilitates numerous resources developed at other 
institutions such as, FSL/Oxford [28] or Freesurfer/Harvard 
[25]. Combination of these tools can be used to analyze images 
efficiently and effectively. The advantages and possibilities of 
such workflow environments have not yet been investigated 
extensively. 

In classification, the most challenging task appears to be the 
classification between NC and MCI subjects as the 
classification accuracy of most of the studies is lower compared 
to other group of subjects (see Table VI). In the study by 
Davatzikos et al. [114], evaluation of WM areas of the brain 
both in the temporal lobe and in the superior and middle frontal 
gyri, appeared to be necessary for the accurate classification of 
MCI subjects. However, apart from the hippocampus and 
entorhinal cortex, limited studies have investigated the 
aforementioned areas. 

Imaging biomarkers are meaningless if they are not correlated 
with clinical assessment. The combination of two provide better 
predictive accuracy [144]–[146]. It is also noted that are very 
few studies [30], [129] that combine volume, thickness, shape, 
intensity, and texture in multivariate assessment of the disease, 
which in turn may result to better classification and prediction 
accuracies. Martinez Torteya et al. [80] used images from the 
ADNI database with their corresponding segmentation masks, 
provided by [147], to establish ROIs for every image. For each 
ROI they used 9 texture-related features together with 13 
morphometrical features and 28 signal distribution related 
features. They revealed an MCI to AD progression biomarker 
which yielded an AUC of 0.79 The same is true for the 
combination of imaging biomarkers derived from structural and 
functional imaging modalities [111], [148] as well as for the 
combination of MRI with genomic analysis towards 
personalized medicine and targeted drugs development. 

The use of texture analysis, especially of 3D texture, is also 
very restricted, when compared to the other methods, regarding 
the assessment of AD. However, some of the best classification 
accuracies were achieved with textures features [36], [78], [81] 
and it should be investigated more in the assessment of AD. 

Research on the assessment of AD mainly involves 
volumetric 3D T1-weighted sequences. However, there are 
several other MRI strategies such as Diffusion Weighted 
Imaging (DWI) MRI, and Diffusion Tensor Imaging (DTI) 
[149] that have yet to be investigated in large cohorts studies. 

Finally, deep learning is the new trend in medical image 
analysis that is becoming the methodology of choice in many 
studies. Deep learning algorithms are based on neural networks 
of several layers of neurons through which a signal is 

propagated and can also be used for segmentation, registration, 
classification and other tasks in the assessment of AD  [150].  

Quantitative MRI can have a great impact in the assessment, 
evaluation and treatment of AD especially if approaches 
described in this review move from the experimental stage to 
the clinical soon. Similarly, quantitative MRI biomarkers could 
also contribute in dementia differential diagnosis. 
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