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Abstract 

The work presented in this dissertation is motivated by the observation that the 
classical (re)insurance risk modelling assumptions of independent and identically 
distributed claim amounts, Poisson claim arrivals and premium income 
accumulating linearly at a certain rate, starting from possibly non-zero initial capital, 
are often not realistic and violated in practice. There is an abundance of examples in 
which dependence is observed at various levels of the underlying risk model. 

Developing risk models which are more general than the classical one and can 
successfully incorporate dependence between claim amounts, consecutively arriving 
at the insurance company, and/or dependence between the claim inter-arrival times, 
is at the heart of this dissertation. The main objective is to consider such general 
models and to address the problem of (non-) ruin within a finite-time horizon of an 
insurance company. 

Furthermore, the aim is to consider general risk and performance measures in the 
context of a risk sharing arrangement such as an excess of loss (XL) re insurance 
contract. There are two parties involved in an XL re insurance contract and their 
interests are contradictory, as has been first noted by Karl Borch in the 1960s. 
Therefore, we define joint, between the cedent and the reinsurer, risk and 
performance measures, both based on the probability of ruin, and show how the 
latter can be used to optimally set the parameters of an XL reinsurance treaty. 
Explicit expressions for the proposed risk and performance measures are derived 
and are used efficiently in numerical illustrations. 
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Chapter 1 

Introduction 

The core part of this dissertation is given in chapters 2 - 5 and is based on four 

pieces of research in the field of ruin theory and reinsurance. The purpose of the 

current introduction is to give an overview of the structure of the dissertation, to 

describe briefly the motivation behind the problems considered in each of the four 

chapters and to provide some background information about the research presented 

therein. 

This work is motivated by the observation that the classical (re)insurance risk 

modelling assumptions of independent and identically distributed claim amounts, 

Poisson claim arrivals and premium income accumulating linearly at a certain rate, 

starting from possibly non-zero initial capital, are often not realistic and do not hold 

in practice. There is an abundance of examples in which dependence is observed at 

various levels of the underlying risk model. Developing risk models which are more 

general than the classical one and can successfully incorporate dependence between 

claim amounts, consecutively arriving at the insurance company, and/or dependence 

between the claim inter-arrival times, is at the heart of this dissertation. 

The main objective of the research presented in this dissertation is to consider such 

general models and to address the problem of (non-) ruin within a finite-time 

horizon of an insurance company. Furthermore, the aim is to consider general risk 

and performance measures in the context of a risk sharing arrangement such as an 

excess of loss (XL) reinsurance contract. There are two parties involved in an XL 

reinsurance contract and their interests are contradictory, as has been first noted by 

Karl Borch in the 1960s. Therefore, we define joint, between the cedent and the 

rein surer, risk and performance measures, both based on the probability of ruin, and 
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illustrate how these measures can be used to optimally set the parameters of an XL 

reinsurance treaty. 

The dissertation is structured as follows. 

Chapter 2, entitled "Finite-time ruin probability in the case of continuous claim 

severities", provides an introduction to the subject of (classical) ruin theory with 

references to relevant research. Under the classical assumption of LLd. claim sizes, 

we have investigated the use of the method of local moment matching, to discretize 

the individual claim amount distribution, in combination with known explicit results 

for the finite probability of (non-) ruin for discrete claim amounts. Further, a more 

general risk model is introduced, according to which the premium income of an 

insurance company is represented by any non-decreasing, positive, real-valued 

function, the claim severities are modelled by any continuous joint distribution, 

claim arrivals follow a Poisson process and claim severities are independent of the 

claims arrival process. Under this model, a formula for the finite-time probability of 

ruin of an insurance company is obtained and its numerical performance is 

investigated. 

In Chapter 3, entitled "Excess of loss re insurance under joint survival optfmality", 

explicit expressions for the probability of joint survival up to time x of the cedent 

and the reinsurer, under an excess of loss reinsurance contract with a limiting and a 

retention level are obtained, under the reasonably general assumptions of the risk 

model of Chapter 2. By stating appropriate optimality problems, we show that these 

results can be used to set the limiting and the retention levels in an optimal way with 

respect to the probability of joint survival. Alternatively, for fixed retention and 

limiting levels, the results yield an optimal split of the total premium income 

between the two parties in the excess of loss contract. This methodology is 

illustrated numerically on several examples of independent and dependent claim 

severities. The latter are modelled by a copula function. The effect of varying its 

16 



dependence parameter and the marginals, on the solutions of the optimality 

problems and the joint survival probability, has also been explored. 

In Chapter 4, entitled "Optimal joint survival reinsurance: an efficient frontier 

approach", the problem of optimal excess of loss reinsurance with a limiting and a 

retention level is considered. It is demonstrated that this problem can be solved, 

combining specific risk and performance measures, under the general risk model of 

Chapter 2. As a performance measure, we define the expected profits at time x of the 

direct insurer and the rein surer, given their joint survival up to x, and derive explicit 

expressions for their numerical evaluation. The probability of joint survival of the 

direct insurer and the reinsurer up to the finite time horizon x is employed as a risk 

measure. An efficient frontier type approach to setting the limiting and the retention 

levels, based on the probability of joint survival considered as a risk measure and on 

the expected profit given joint survival, considered as a performance measure is 

introduced. Several optimality problems are defined and their solutions are 

illustrated numerically on several examples of appropriate claim amount 

distributions, both for the case of dependent and independent claim severities. 

In Chapter 5, entitled "Reinsurance and ruin under dependence of the claim inter­

arrival times", a framework which generalizes the risk model considered in Chapters 

2, 3 and 4 is introduced. We first consider independent, non-identically Erlang 

distributed claim inter-arrival times. Then, we allow for modelling dependence 

between the claim inter-arrival times by assuming that the latter are Erlang 

distributed with a random shape parameter. Explicit expressions for the probability 

of joint survival of the cedent and the reinsurer up to time x and the expected profit 

at x, given joint survival up to x, are obtained in both cases. 

Chapter 6 summarizes the conclusions and indicates directions for future research. 

The research presented in Chapter 3 has been published recently in the Insurance: 

Mathematics and Economics journal (see Kaishev and Dimitrova 2006). This work 
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has also been presented at the 9th International Congress on Insurance: Mathematics 

and Economics, Quebec city, Canada in 2005. 

Results presented in Chapter 4 is based on a paper co-authored with Dr Vladimir 

Kaishev which is currently under review in the Journal of Risk and Insurance (see 

Dimitrova and Kaishev 2007). This work has been presented at the 4th Conference 

in Actuarial Science and Finance, Samos, Greece in 2006. 
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Chapter 2 

Finite-time ruin probability 
continuous claim severities 

Summary 

. 
In the case of 

An introduction to the subject of (classical) ruin theory with references to relevant 

research is provided. Under the classical assumption of Li.d. claim sizes, we have 

investigated the use of the method of local moment matching, introduced by Gerber 

and Jones (1976) and Gerber (1982), in discretizing the individual claim amount 

distribution, in combination with known explicit results for the finite probability of 

(non-) ruin for discrete claim amounts, e.g. the formulae of Picard and Lefevre 

(1997) and Ignatov and Kaishev (2000). Further, a more general risk model is 

introduced, according to which the premium income of an insurance company is 

represented by any non-decreasing, positive, real-valued function, the claim 

severities are modelled by any continuous joint distribution and claim arrivals 

follow a Poisson process. Under this model, a formula for the finite-time probability 

of ruin of an insurance company is obtained and its numerical performance is 

investigated. 
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2.1 Introduction 

The business activity of an insurance company is characterized by two major cash 

flows. One incoming flow of premiums, charged to policyholders, and a second one, 

outgoing and comprised by the claim amounts, paid by the company in the case of 

occurrence of insurance events. Since, in most cases premiums are charged on 

preliminary known days and since, usually the number of policies in the insurance 

portfolios is considerable, it is natural to assume that the premium income of the 

company can be modelled by a positive, real-valued, deterministic function. As for 

the claims paid by the company, it is realistic to assume that such payments occur at 

random moments in time and their sizes are not known in advance and hence, they 

can also be modelled as a certain random quantities. 

Thus, an important problem which arises in practice is the problem of appropriately 

matching the aggregate premium income to the aggregate flow of claim payments. If 

these two cash flows are not appropriately matched, there may be a high chance that 

the company becomes insolvent. Insolvency is of course a broader concept. It has 

recently been at the focus of the attention of Regulators of Insurance and Financial 

businesses, in connection with their efforts to introduce a common platform of 

methods for estimating risk capital requirements based on Basel 11 and Solvency 11, 

(see e.g. Basel Committee on Banking Supervision 2006, and Linder and Ronkainen 

2004). For the purpose of this dissertation, we will restrict our attention to 

considering the so-called technical ruin of an insurance company. Technical ruin, 

occurs when the company's outgoing flow of aggregate claim payments exceeds its 

incoming aggregate premium income. The actuarial literature devoted to 

investigating and modelling technical ruin is vast and its importance in developing 

systems of early warning for possible insolvency has been widely recognized. 

Recently, the probability of ruin has also been used as a risk measure in determining 

capital requirements for mitigating operational risk (see Embrechts, Kaufmann and 

Samorodnitsky 2004, Kaishev, Dimitrova and Ignatov 2007), and in estimation of 
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the risk solvency margin in the spirit of Solvency II (see Loisel , Mazza and Rulliere 

2007). 

If we denote by T > 0 the moment of ruin, and by het) and St the total amount of 

premiums and claims up to time t ~ 0 respectively, we can illustrate the technical 

ruin by the following Fig. 1. 

h(t),S, 

35 

30 

25 

20 

15 

10 

5 

4-JL---'-----'---'----'-'----'------'----'- Time 
T x 

Fig. 1. The total premium income function het), the aggregate claim amount process 

St, and the moment of ruin, T. 

From a practical point of view, the probability that (technical) ruin of an insurance 

company will (not) occur up to a [mite moment of time x is more interesting than the 

case of infinite time horizon. The time interval [0, x] can be viewed as the 

management planning horizon and the finite-time probability of ruin within [0, x] 

can be used as a risk measure and its values can be regularly observed. Thus, 

changes in its level may trigger different managerial decisions , for example increase 

of the premiums charged by the company. Since, the planning horizon may be 

thought of as the sum of the time until the risk business is found to behave 'badly', 

the time until the management reacts and the time until a decision of a premium 

increase takes effect, it may be natural to regard x equal to four or five years as 

reasonable (see Burnecki, Mista and Weron 2005, and Grandell1991). 

So, clearly, it is important for an insurance company to be able to assess the 

probability that ruin will occur (or, respectively, will not occur) up to any a priori 
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defined time horizon, x. This problem has been at the focus of the attention of a 

large number of academic and applied actuaries, and mathematicians since the 

beginning of the last century. Contributions to the subject have been made by F. 

Lundberg (1903), O. Lundberg (1948), Cramer (1955), Seal (1969, 1978), Wikstad 

(1971), Gerber (1979), Biihlmann (1982), De Vylder and Goovaerts (1988), Dickson 

and Waters (1991), Dickson, Egidio dos Reis and Waters (1995), Willmot (1993), 

Grandell (1991), Picard and Lefevre (1997), Asmussen (1984, 1987,2000), Ignatov 

and Kaishev (2000, 2006), Nyrhinen (2001), Paulsen (2002), Albrecher and Boxma 

(2004), Pitts and Politis (2007), to mention only a few. 

However, it has to be noted that a vast proportion of the papers and monographs 

devoted to the evaluation of the probability of ruin have been restricted to the 

classical risk model when the premium income is modelled by a positive linear 

function, the claims are assumed independent of each other and identically 

distributed, and the time horizon has been considered infinity. In spite of the large 

number of research performed in this area, there are very few explicit ruin 

probability formulae (e.g. see Seal 1969, De Vylder and Goovaerts 1999, Picard and 

Lefevre 1997, Asmussen 2000, Ignatov, Kaishev and Krachunov 2001, 2004) and 

not very many are the efficient numerical procedures to calculate ruin probabilities, 

developed in the actuarial literature. In this connection, we will mention Wikstad 

(1971), Seal (1978), De Vylder and Goovaerts (1988), Dickson and Waters (1991), 

Kling and Goovaerts (1991), De Vylder (1999), Barndorff-Nielsen and Schmidli 

(1995) and Rulliere and Loisel (2004). 

The first objective of the present work (see section 2.2) is to review the literature 

and to assess the numerical efficiency of some of the methods for the evaluation of 

the finite-time ruin probability for the case of continuous claim severities developed 

in the literature. Further, our aim is to propose alternative methods for numerical 

evaluation of finite-time ruin probabilities in the case of the more general risk model 

of an arbitrary, non-decreasing, positive, real function, modeling the premium 
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income, claim severities following any continuous joint distribution (Le. both 

dependent or independent) and claim arrivals according to a Poisson point process. 

Section 2.3 is devoted to numerical methods in the case when the claims are 

assumed independent, identically distributed, having an arbitrary continuous 

distribution. The method proposed therein is to discretize the density function of the 

claim amounts by matching its first p ~ 1 moments to the corresponding p moments 

of the resulting discrete distribution and then to apply directly the finite-horizon ruin 

probability formula of Pi card and Lefevre (1997) or of Ignatov and Kaishev (2000). 

Mathematica modules implementing the proposed algorithm have been developed 

and used to produce numerical and graphical illustrations. The proposed procedure 

is compared numerically with the methods of De Vylder and Goovaerts (1988), 

Dickson and Waters (1991), Kling and Goovaerts (1991), Barndorff-Nielsen and 

Schmidli (1995) and De Vylder (1999), is performed. 

In Section 2.4, we look at new representations and numerical procedures for the 

evaluation of finite-time ruin probability in the case of dependent, continuous claim 

severities. A new explicit expression is obtained, which can be viewed as a 

continuous version of the formula of Ignatov and Kaishev (2000). Based on it, an 

alternative method for calculating ruin probabilities is given and compared with the 

existing competitors. 

2.2 An overview of methods for evaluation of finite-time 
ruin probabilities 

2.2.1 The basic model 

We will consider the following reasonable general finite-time rum probability 

model. Denote by RI, t ~ 0, the risk reserve process 
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where h(t) is a positive, non-decreasing, real function defined on IR+, representing 

the total premium income of an insurance company up to time t and 

NI 

SI = 2.: Yi' 
i=1 

is the aggregate claims amount at time t. The consecutive individual claims Yb Y2, ••• 

arrive at the insurance company at random moments in time Tb T2 , ••. with inter­

occurrence times, Tl = Tb T2 = T2 - Tb ... , assumed exponentially distributed r.v.s. 

with parameter A > 0, Le. it is assumed that the number of claims up to time t is 

represented by a homogeneous Poisson process, NI, with parameter A. The claim 

severities Yb Y2, ... are assumed to be independent of NI. The function het) is such 

that limHoo het) = 00. The latter is required so that the insurance company will not 

get ruined with probability 1 within an infinite time horizon. The function h(t) may 

be continuous or discontinuous, in which case h-1(y) = inf {z: h(z) ~ y}. The time 

of ruin, T, is defined as 

T := inf {t: t ~ 0, RI < O} 

and we will be interested in the probability of non-ruin, peT > x), in a finite time 

interval [0, x], x > o. 

Let us note that in the classical setting we have het) = u + et, where u ~ 0 is the 

initial reserve and c > 0 is the premium income rate, and the consecutive individual 

claim amounts Yb Y2, ••• are assumed to be independent and identically distributed 

(LLd.) random variables. 

The probability of ruin in the classical context is traditionally denoted as I/J(u, x), 

and defined as 

I/J(u, x) = peRt < 0, o::s; t ::s; x) = p(r < x), 

and the non-ruin probability is respectively 
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cp(u, x) = 1 -I{t(u, x) = Pr(T > x). 

A significant amount of research has been devoted to the study of infinite horizon 

probability of ruin 

I{t(u) = Pr(Rt < 0, t ~ 0). 

In this thesis, we will be interested in methods and explicit expreSSIOns for 

calculating the probability of ruin within a finite-time interval as a more practically 

appealing risk measure. 

2.2.2 Overview of existing methods for evaluation of p(r > x) 

Since, explicit closed-form expressions for the finite horizon probability of ruin are 

difficult to obtain in the general case, approximate solutions have been looked for. 

Some of the important results in this direction of research are those of Thorin and 

Wikstad (1973, 1977), Seal (1974), De Vylder and Goovaerts (1988), Dickson and 

Waters (1991), Kling and Goovaerts (1991), Barndorff-Nielsen and Schmidli 

(1995), De Vylder (1999). 

Wikstad (1971) was one of the first to glve values for the finite-time rum 

probabilities for continuous i.Ld. claim amounts. He based his numerical algorithm 

on the explicit formula of Thorin (1971) for (mixture of) exponential claim 

severities and his ideas have been used later by other authors using inversion of 

FourierlLaplace transform when solving the ruin problem. 

A very popular method for calculating the ruin probability is the model in which 

time is discretized and approximate values of the unknown probability are obtained 

fairly easily. De Vylder and Goovaerts (1988) derived a recursive approximation 

method which involves discretizing and re-scaling the risk process. Dickson and 

Waters (1991) improved the algorithm of De Vylder and Goovaerts (1988) by 

introducing an arbitrary discretization span, f3 > 0, and an alternative way of re­

scaling the time unit. 
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Let us briefly describe the method of De Vylder and Goovaerts (1988) which is 

developed within the classical ruin theory framework. Namely, the counting 

process, Nt, is Poisson with parameter A > O. The claim severities Yl , Y2, ... are Li.d. 

and independent of Nt• The risk process is 

where c > 0 is the premium income rate per unit of time such that 

c = A Jl (1 + 7]), 

where 7] ~ 0 is the so called security loading factor and Jl = E(Yk ), A = E(Tj). The 

probability of non-ruin in [0, x] which corresponds to initial risk reserve u is 

cPx(u) = P(V s ~ x : RsCu) ~ 0). 

where we use the alternative notation, Rs(u), for the risk process corresponding to 

the initial reserve u. The authors propose to discretize the time as follows. For 

n = 1, 2, ... , let 

cPl,n(U) = P(Rl (u) ~ 0, R2(u) ~ 0, ... , Rn(u) ~ 0) 

be the probability of non-ruin at the end of each of the first n years. Obviously, we 

have 

cPI,n(U) = P(Y1 :S U + c, Y1 + Y2 :S U + 2 c, ... , Y1 + Y2 + ... + Yn :S U + ne) (2.1) 

and 

(2.2) 

where cPl n(u - c) = 0 if u - c < O. , 

Taking into account the above inequalities (2.2), De Vylder and Goovaerts (1988) 

use the approximation 

(2.3) 
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The quantity cfJI,n(') involved in (2.3) can be evaluated as follows. Let G(y) be the 

distribution function of Yj , i = 1, 2, .... Then, from (2.1) it is clear that 

cfJI, I (u) = G(u + c) 

(U+C 

cfJI,n(U) = Jo cfJI,n-I(U + C - y) dG(y), (n ~ 2). 

If the claim severities are assumed to have a discrete distribution, we have 

U+C 

cfJI,n(U) = I: cfJI,n-1(u + C - j) Pj , 

j=O 

where Pj = P(Yj = j). 

(2.4) 

(2.5) 

The method presented above, for the case of continuous claim amounts, has been 

implemented in Mathematica following the recursive formula (2.4) and estimate 

(2.3). In their article, De Vylder and Goovaerts (1988) propose first to discretize the 

underlying continuous distribution following a certain algorithm (see equation (2.9)) 

and then to apply formula (2.5) and the estimate (2.3) in order to avoid the 

integration involved in evaluating (2.4). In Tables 1 and 2 these two approaches are 

compared with each other and also with the results obtained by Wikstad (1971), 

which have four correct digits after the decimal point. 

Table 1. peT < x) for different values of the premium income rate (c = 1 + -7). 

Y; ,.., Exp(1), A = 1, u = 0, x = 1. 

1] Wikstad De Vylder and Goovaerts De Vylder and Goovaerts 

(1971) (1988), (2.5) (1988), (2.4) 

0.05 0.4698 0.66497 0.674969 

0.10 0.4634 0.65989 0.666436 

0.15 0.4572 0.65495 0.658318 

0.20 0.4510 0.65015 0.650597 

0.25 0.4450 0.64549 0.643252 

0.30 0.4391 0.64096 0.636266 

1.00 0.3662 0.58982 0.567668 
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Table 2. peT < x) for different values of the premium income rate (c = 1 + ~). 

Yj - Exp(1), A = 1, u = 1, x = 1. 

TJ Wikstad De Vylder and Goovaerts De Vylder and Goovaerts 
(1971) (1988), (2.5) (1988), (2.4) 

0.05 0.2420 0.58693 0.564367 

0.10 0.2381 0.58412 0.561228 

0.15 0.2342 0.58141 0.558242 

0.20 0.2305 0.57878 0.555402 

0.25 0.2268 0.57622 0.552700 

0.30 0.2232 0.57374 0.550129 

1.00 0.1800 0.54615 0.524894 

As can be seen from Tables 1 and 2, the approximations, base both on (2.4) and 

(2.5), have very low accuracy for certain (small) values of the initial reserve u and 

the time horizon x, and hence, are not useful in such cases. A more extensive 

comparison for different choices of u, x and 1] is given in Table I in De Vylder and 

Goovaerts (1988). The authors provide no estimates of the error of approximation. 

In Barndorff-Nielsen and Schmidli (1995) a saddlepoint technique is applied to 

obtain approximations of the probability of ruin in a finite-time interval in the 

classical risk model. This method is reasonably accurate (as it can be seen from 

Table 6 in section 2.3.1) but it is more difficult to use because it requires many 

preliminarily calculations and verifications, and besides that, it is not valid for 

arbitrary continuous distribution of the claim amounts. 

De Vylder and Goovaerts (1999) obtain the following explicit analytic expression 

for the finite-time ruin probability in the classical risk model, where Yb Y2, ... are 

assumed Exp(1) distributed 
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cfJ(u, x) = 

1 - e-u- b L: L: qi (c X)il Ukl + e-u- b L: L: qi (U + c X)il Ukl -

i~ 1 Os.ks.i-l i~ 1 Os.ks.i-l 

e-u- b - cx L L: qi (U + c X)il (U + c xli -

i~ 1 Os.ks.i-l 

e-u- b L: L qi (U + C X)i-l I Uk 1+ 

i~ 1 Os.ks.i 

e-u- h - cx L: L: qi (U + c xi- 1 I (U + c X)kl + 

i~ 1 Osksi 

, ~ ~ ~ ~ .. . (i + n + k) (n + k) . I 2' k I 
e-u- Ilx L..JL..J L..J L..J ql+} (-1)' i n (cx)}-n U I+n+ - (2.6) 

i~ 1 j;d Osksj-l Osnsj 

-u-.\x-cx e 

L:L: ~ L: qi+j(_li(j~k)c~n)(CX)j+k-n/U2i+n/_e-U-Ax 
i~ 1 j~ 1 Osks}-l Osns}+k 

LL: L: L qi+j(_1)iC+~+k)(n:k)(CX)j-I-nIU2i+n+kl+ 
i~ 1 j~ 1 Osksj Osnsj-l 

-U-AX-CX e 

L:L L: L qi+j (_1)i (j - ~ + k) C ~ n) (c X)j-l+k-nl U2i+nl 

i~l j~l Osksj Osnsj-l+k 

In (2.6) the notation ak I = ak 
/ k! and q = 1 !77 is used. 

In their paper, De Vylder and Goovaerts (1999) give a couple of calculated values 

with precision up to twelve digits after the decimal point. Clearly, the 

implementation of (2.6) is hindered by some serious difficulties since (2.6) contains 

many infinite sums and requires the calculation of binomial coefficients for large 

values i. Furthermore, explicit formula (2.6) is valid in the case of exponentially 

distributed claim amounts with parameter a = 1 only. Formula (2.6) is derived from 
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an integral equation, but in the general case of arbitrary continuous distribution of 

Y1, Y2, ••• this equation is difficult to solve analytically as pointed out by the authors. 

Two alternative explicit fonnulae for exponentially distributed claims have been 

obtained by Seal (1972) and more recently by Asmussen (1984). Both expressions 

involve numerical integration. However, as noted by Asmussen (2000), Seal's 

fonnula may be unstable for large x. Here, we present the explicit result of 

Asmussen (1984), in the simplified case of e = 1 and Yj '- Exp( 1), 

I/I(u, x) = A e-(1-A)u _ ~ rr !I (e) h(e) de 
7r Jo jj(e) 

where 

!I(e) = A exp(2 {f x cose - (1 + A) x + u ({f cose - 1)) 

h(e) = cos(u {f sine) - cos(u...fA sine + 2 e) 

f3(() = 1 + A - 2 {f cos(). 

If e =1= 1 and Yj '-Exp(a), one can use the relations I/IA,c(U, x) = 1/1 ~ 1 (u, e x) and 
c' 

I/IA,a(U, x) = 1/1 ~ 1 (a u, a x). 
a' 

An alternative approach to calculating rum probabilities for continuous claim 

severities is to discretize the assumed continuous distribution and then, apply one of 

the known formulae which are valid for the discrete case. Following this approach, 

Kling and Goovaerts (1991) propose the following method for calculating ruin 

probabilities for continuously distributed claim amounts in a finite time interval. 

Let us consider the system of equations (see Seal 1969, and Gerber 1979) 

1 lCX 
l/J(O, x) = - G(s, x) ds 

ex 0 

(2.7) 

l/J(u, x) = G(u + e x, x) - e LX l/J(O, T) g(u + e (x - T), x - T) dT, 
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where G(s, x) represents the cumulative distribution function of the aggregate claim 

amount up to time x and g(s, x) is the corresponding aggregate claim density 

function if G(s, x) is absolutely continuous, or the frequency function if it is discrete. 

Obviously, if Gh(s, x) is a lattice distribution function with span h ~ 0, then the 

integrals appearing in the right-hand side of the equations (2.7) constitute finite 

summations, i.e. 

h t) I 10-
1 

( h t ) ifJ(O, _0 = - 2: Gh h j, _0 

c to }=O c 

( 
h to) ifJ huo, ~ = (2.8) 

10- 1 

( 
h to) ~ ( h TO) ( h (to - TO») Gh h (uo + to - 1), ~ -~ ifJ 0, ~ gh h (uo + to - TO), c 

where to = 1,2, .... 

As h --+ ° expressions (2.8) tend to the exact value for the probability of non-ruin 

given by (2.7), i.e. one can improve the precision of the numerical evaluation of 

formula (2.8) only by decreasing the span of the discretization. Kling and Goovaerts 

(1991) used the same discretization method as De Vylder and Goovaerts (1988) to 

find a lattice distribution. Namely, if F(y) is the generic cumulative distribution 

function of Yh Y2, ... , the value Fh(k h) of the discrete cdf Fh on the interval 

[k h, (k + 1) h) is fixed in such a way that 

(k+l)h 

hFh(k h) = f F(y) dy, 

kh 

1.e., 

L
(k+l)h 

Po + Plh + ... + Pkh = F(y)dy, 
kh 

(2.9) 
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where Pkh = P(Yj = k h), k = 0, 1, 2, .... 

Discretization (2.9) is a straightforward guess if one is to decide on how to discretize 

a continuous distribution and has been used also by De Vylder (1999) and others, as 

we will see in the next section. However, it has to be noted that by using (2.9) only 

the first moment of the corresponding continuous and discrete distributions are 

equated. In the next section, we consider another method of discretization which 

overcomes this restriction. 

A comparison of the methods discussed above is presented in Table 3. We see that 

among those methods the one of Kling and Goovaerts (1991) is the most accurate 

and its accuracy can be improved by decreasing further the span h since its 

behaviour is stable for relatively small values of h. The method of Dickson and 

Waters (1991), which is in one aspect a refinement and in another aspect a 

simplification of the method of De Vylder and Goovaerts (1988) (see section 2 of 

Dickson and Waters 1991), may become unstable as noted by Dickson (2005). For 

details of how to decrease the span h and how to change the monetary unit and the 

time unit respectively, can be found in Dickson and Waters (1991). 

Table 3. P(T<x) for different values of the premium income rate c and the initial 

capital u. Yi -Exp(1), A = 1, x = 1. (* h = 0.05) 

c/u Wikstad De Vylder & Goovaerts Dickson & Kling & Goovaerts PL_MLMM 
(1971) (1988)*, (2.5) Waters (1991)* (1991)* h = 0.1 

1.110 0.4634 0.6599 0.4485 0.4634 0.463383 

1.1/1 0.2381 0.5841 0.2301 0.2381 0.238160 

1.2/0 0.4510 0.6502 0.4364 0.4510 0.451004 

1.2/1 0.2305 0.5788 0.2228 0.2305 0.230589 

In the next section 2.3, a method for discretizing the distribution in the case of 

independent continuous claim severities is presented. In contrast with (2.9), this 

method allow for matching the moments of the discrete and the continuous 

distributions of the claim amounts up to an order higher than one (see section 
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2.3.1.1). Furthermore, based on a numerical study, it will be shown that this method 

combined with the formula of Picard and Lefevre (1997), gives faster convergence 

to the true value of the probability of non-ruin, compared to the methods discussed 

in this section. For comparison, some preliminary results are presented in the last 

column of Table 3, abbreviated PL_MLMM. 

2.3 Discretizing continuous independent claims 

In this section, we introduce two formulae for peT > x), which are valid when the 

claim severities are LLd. r.v.s., independent of the counting process NI' The purpose 

here is to develop appropriate numerical methods which are based on the 

discretization of the distribution of the claim amounts and on the subsequent use of 

exact survival probability formulae for discretely distributed claims. 

The two formulae are the one of Picard and Lefevre (1997) and the formula of 

Ignatov and Kaishev (2000) which give the survival probability for an arbitrary, 

increasing function of the premium income and an arbitrary, discretely distributed, 

independent (Picard-Lefevre, Ignatov-Kaishev) or dependent (Ignatov-Kaishev) 

claims. 

Let us note that De Vylder (1999) propose to use the discretization method (2.9) in 

combination with the Picard-Lefevre formula for the calculation of peT> x). In his 

paper, De Vylder (1999) discusses the classical case of h(t) = u + et and gives the 

corresponding special case of the Picard-Lefevre formula. 

2.3.1 The formula of Picard-Lefevre 

Picard and Lefevre (1997) consider the case when claim severities are modeled by 

integer valued r.v.s. Y., Y2, ... assumed LLd. with distribution function 

P(~ = j) = Pb j = 1, 2, .... In this case they obtained the following expression for 

the finite-time survival probability 
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00 

P(T> X) = e-Ax LA;(x) I/x:?v;}, 
i=O 

(2.10) 

where le} is the indicator of the event {.}, Vi = h-IU), i = 0, 1,2, ... and A;(x), 

i = 1, 2, .... are the generalized Appell polynomials defined as 

i-I 

A/(x) = L:APjAi-;Cx), Ao(x) = 1 
j=O 

with 

The generalized Appell polynomials, Aj(x), i = 1, 2,... are expressed as 

j 

Aj(x) = L:br ei-r(X), where 
r=O 

i (AX)k 
ei(x) = L: k! q;*k, i ~ ° ,eo = 1, q/k = P(YI + ... + Yk = j), k, j = 0, 1, 2, ... , 

k=O 

q/O = 0jO, qji = 0 for i> j, and br, r = 0, 1, ... , i are unknown coefficients. 

To find the values of b" r = 0, 1, ... , i, one has to solve the system 

i 

L:br ei-r(Vi) = 0iO' 
r=O 

In his paper, De Vylder (1999) gives a simplified and numerically efficient version 

of formula (2.10) for the ruin probability in the special case of a linear premium 

income function, het) = u + c t, 

l{I(u, x) = 1 -

L: ( L: 
(u + c x - i)) (2.11) 

e-h e;Cc x) + e j(j - u) X ei-/U + c x - j) . , 
(u+cx- J) 

OSjsu u+ I siS[u+c xl 

where [u + c xl is the integer part of u + c x. 
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The functions e j occurring in (2.11) are the polynomials with values 

~ [(A/Tei].i . ej(T) = L.J ., qj' } = 0,1,2, ... ; -00 < T < +00. 

O 
.. l. 

SIS) 

There has been a debate in the literature on the numerical properties of formula 

(2.11). For example, De Vylder (1999) found a critical value for u around 22 above 

which formula (2.11) behaved unstable. Ignatov, Kaishev and Krachunov (2001) 

found no critical values for u up to 120 using Mathematica. More recently, Rulliere 

and Loisel (2004) explained the inconsistency in opinion by the different software 

used in implementing (2.11). Mathematica is capable of adjusting the number of 

internal digits used in a calculation and returns an answer with a very-high 

precision. 

Thus, the exact finite-time ruin probability formula (2.11) for i.i.d. integer valued 

claim amounts and linear premium income function is efficient and stable for 

numerical evaluations using Mathematica. There are other alternatives and as noted 

by RullU:re and Loisel (2004), depending on the parameters involved, e.g. u, x, c, A 

etc., different formulas are the most appropriate. For further comments and 

comparisons, we refer the reader to Rulliere and Loisel (2004). 

In order to calculate p(r < x) in the case of continuous claim severities, one can 

discretize the continuous distribution of the claim sizes and then use (2.11). 

De Vylder (1999) proved that for any claim size distribution F(y), 

limh!O I{Ih(u, x) = l{I(u, x) (x > 0, A > 0, u ~ 0, c > 0), 

where I{Ih(U, x) is the finite-time ruin probability corresponding to the discretized 

claim size distribution Fh and l{I(u, x) is the ruin probability corresponding to the 

continuous claim size distribution F. 

In the following section, we will present an alternative method for discretizing F, 

which allows for matching higher moments of the continuous and the discrete 
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distributions for any chosen discretization span h. 

2.3.1.1 Discretization by the Method of Local Moment Matching (MLMM) 

In this section, we will show how to apply a method of discretization which matches 

higher order local moments of the continuous and discrete distribution and then use 

the Picard-Lefevre formula to obtain an (approximate) value for the ruin probability 

in the continuous case. We suggest to discretize the density function of the 

individual claim amounts by the method of local moment matching (MLMM) 

proposed in Gerber and Jones (1976) and Gerber (1982), (see also Klugman, Panjer 

and Willmot 1998). 

The idea is to construct a discrete distribution whose first p ~ 1 moments are 

matched with, correspondingly, the first p moments of the true continuous 

distribution ofthe claims. The method can be described as follows. 

Consider an arbitrary interval [Xb Xk + ph), k = 0, 1, ... , which consists of p sub-

intervals [Xb Xk + h), [Xb Xk + 2 h), ... , [Xk, Xk + p h). Clearly, the first p moments 

will be preserved, if masses, m~, m~, ... , m~, are located at the beginning of each sub-

interval, i.e. at the points Xb Xk + h, ... , Xk + ph, which satisfy the following 

system of p + 1 equations 

P LXk+Ph 
~(Xk + j ht mJ = y dF(y), r = 0, 1,2, ... , p. 
j=O Xk 

(2.12) 

Arranging the successive intervals so that xk+ 1 = xk + ph, k = 0, 1, ... with Xo = 0, 

and summing (2.12) over all k = 0, 1, ... will guarantee that p moments are 

preserved for the entire distribution. Furthermore, the probabilities 

(2.13) 

add to one. 

It is not difficult to prove (see e.g. Klugman, Panjer and Willmot 1998) that the 
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solution of the system (2.12) is given by 

L
Xk+Ph Y - Xk - i h 

m~ = n.. dF(y) , j = 0, 1, .. . , p. 
Xk .... . CJ - z) h 

,.,-) 

(2.14) 

The densities of Exp(O.I) and Gamma(2, 0.1) distributions and the respective 

discrete distributions, obtained using MLMM with span h = 1 and by matching only 

the first or the first and second moments, i.e. p = 1, 2, are given in Fig. 2 and Fig. 3. 

f (x ) =0 .l ce- O
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Fig. 2 Exp(O.l) distribution and the discrete distributions, obtained through MLMM 

by matching respectively the first or the first and the second moments. 
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Fig. 3 Gamma(2, 0.1) distribution and the discrete distributions, obtained through 

MLMM by matching respectively the first or the first and the second moments. 
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Obviously, applying the MLMM method, a discrete integer-valued distribution is 

obtained with P(Yj = 0) > 0. In order to be able to use it in the formula of Picard and 

Lefevre (2.11) one has to make sure that the assumption of having zero claim 

amounts with a probability zero is satisfied. The following theorem due to De 

Vylder (1999) indicates an elegant way of overcoming this drawback by modifying 

the resulting discrete claim size distribution. 

Theorem 1. The Picard-Lefovre formula (11) can be used in the case of partial 

claim amounts Yj, Y2, ... with values 0, 1, 2, ... and qi = P(YJ = i) ~ 0 

(i = 0, 1, 2, ... ). Assuming qo # 1, it is sufficient to replace the probabilities 

qo, qj, q2, ... with 0, q] , q2 , ... and A with A(1 -qo). 
(1 -qo) (1 -qo) 

Proof of Theorem 1. See De Vylder (1999), Theorem 3.0 

Let us note that Theorem 1 follows a well established approach of modifying a 

distribution known in statistics as zero-truncation (see e.g. Johnson, Kotz and 

Balakrishnan 1997). 

There is a second problem related to the direct use of the discrete distribution 

resulting from MLMM in Picard-Lefevre's formula. Following MLMM, one can 

decrease the discretization span h in order to increase the accuracy of the 

approximation. However, Picard-Lefevre's formula is valid only for integer claim 

sizes. Hence, the span has to be unity. In order to be able to increase the precision of 

our results, we propose to make a transformation of the monetary unit so as the 

claim amounts 0, h, 2 h, ... in the initial monetary unit will become 0, 1, 2, ... in the 

transformed monetary scale. This transformation has to be performed on the initial 

capital u and the premium income rate c, i.e. u and c from the initial scale will 

correspondingly become u / hand c / h in the transformed monetary scale. Since most 

often the premium income rate c satisfy the assumption 

c = A Jl (1 + 77), 
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where J1 = E(Yi ) and 1] > 0 is the security loading factor, to preserve the required 

proportion J1 has to become J1 / h. Obviously A and 1] do not depend on the monetary 

unit. 

Table 4. P(T<x) for different values of the premium income rate (c = 1 + 'I). 

Yi -Exp(1), A = 1, u = 10, x = 10, h = 0.25. 

TJ De Vylder and Goovaerts PL-MLMM Time, De Vylder 

(1999) (p = 2) seconds (1999) 

0.05 0.0366941 0.0367234 4.66 0.037067 

0.10 0.0319030 0.0319261 3.83 0.032238 

0.15 0.0277248 0.0277431 4.00 0.028025 

0.20 0.0240873 0.0241016 4.13 0.024356 

0.25 0.0209252 0.0209364 4.34 0.021165 

0.30 0.0181799 0.0181887 4.55 0.018394 

Table 5. P(T<x) for different values of the premium income rate (c = 1 + 'I). 

Yi -Exp(1), A = 1, u = 10, x = 10, h = 0.1. 

TJ De Vylder and Goovaerts PL-MLMM Time, DeVylder 

(1999) (p = 2) seconds (1999) 

0.05 0.0366941 0.0366989 31.42 0.036754 

0.10 0.0319030 0.0319068 31.08 0.031957 

0.15 0.0277248 0.0277279 33.06 0.027773 

0.20 0.0240873 0.0240898 34.94 0.024130 

0.25 0.0209252 0.0209272 37.06 0.020964 

0.30 0.0181799 0.0181815 39.28 0.018214 

The approach proposed above is implemented in Mathematica and the results are 

shown in Tables 4 and 5 in the case of exponential claims amounts, discretized 

using MLMM with P = 2 and span values of h = 0.25 and h = 0.1, and combined 

with the formula of Pi card-Lefev re (2.11). For convenience, we shall abbreviate this 

approach as PL-MLMM. The ruin probability values calculated by De Vylder 

(1999) using the discretization method (2.9) with the same span values h = 0.25 and 
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h = O.l, and combined with the formula of Pi card-Lefev re (2.11), are also presented. 

In Tables 4 and 5, the exact values for peT < x) calculated by De Vylder and 

Goovaerts (1999) using (2.6), are also given for comparison. 

As can be seen, for one and the same value of the discretization span, PL-MLMM 

with p = 2 produces more accurate values than those obtained by De Vylder (1999) 

using (2.9). It can also be seen that decreasing the discretization span from h = 0.25 

to h = 0.1 increases the accuracy of the results calculated using the PL-MLMM 

method but increases significantly the computational time. A serious weakness of 

both the method proposed by De Vylder (1999) and the PL-MLMM method is that 

in neither of the cases one can calculate the ruin probability with a predetermined 

accuracy. 

In Table 6, we give ruin probability values for different choices of the time interval 

x, obtained applying PL-MLMM with p = I and h = 0.5 in the case of gamma 

distributed claim severities and compare them with the corresponding values, 

obtained by Bamdorff-Nielsen and Schmidli (1995) using the saddlepoint 

approximation, and values obtained via Monte Carlo (MC) simulations. 

Obviously, one can increase the accuracy of the ruin probabilities presented in Table 

6 for the PL-MLMM method by decreasing the span h. However, using a relatively 

rough span of h = 0.5 we already get values for the ruin probability with the same 

accuracy or even better than those reported by Bamdorff-Nielsen and Schmidli 

(1995). 
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Table 6. P(T<x) for different values of the time interval x. Yj -Gamma (0.5, 0.5), 

A = 0.2, u = 3.74, C = 1, h = 0.5. 

x MC Bamdorff - Nielsen and Schmidli PL-MLMM 
(1995) (p = 1) 

0.5 0.0049 0.0050 0.0048420 

1.0 0.0087 0.0090 0.0087822 

1.5 0.0119 0.0123 0.0120020 

2.0 0.0144 0.0150 0.0146468 

2.5 0.0165 0.0172 0.0168312 

3.0 0.0184 0.0190 0.0186443 

3.5 0.0199 0.0205 0.0201564 

4.0 0.0211 0.0217 0.0214231 

4.5 0.0222 0.0227 0.0224885 

5.0 0.0231 0.0236 0.0233879 

5.5 0.0239 0.0243 0.0241497 

6.0 0.0245 0.0249 0.0247971 

6.5 0.0251 0.0255 0.0253488 

7.0 0.0256 0.0259 0.0258203 

7.5 0.0260 0.0263 0.0262243 

8.0 0.0263 0.0266 0.0265711 

8.5 0.0266 0.0269 0.0268696 

9.0 0.0268 0.0271 0.0271270 

9.5 0.0271 0.0273 0.0273494 

10.0 0.0273 0.0275 0.0275418 

To summarize, the following comments with respect to the efficiency of the 

proposed PL-MLMM algorithm can be made. 

The PL-MLMM method is valid for any continuous claim severity distribution. It is 

relatively simple to implement and fast to compute. Hence, it is an attractive 

alternative. Its major disadvantage is related to the exponential growth of the 

computational time as the discretization span decreases, in the cases when higher 

accuracy of the results are required. The computational time may also be prohibitive 

for high values of the initial capital u and the time horizon x. Our experience also 
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shows that the method of local moment matching (2.12) may become unstable for 

p ~ 4 and h :::;; 0.04. 

2.3.2 The formula of Ignatov-Kaishev 

As noted already, most of the methods for evaluation of ruin probabilities consider 

the classical linear premium income function h(t) = u + et. The formula of Picard 

and Lefevre (1997) is valid for any increasing function h(t) such that 

lim(-+oo het) = 00 and any LLd. positive integer-valued claim sizes, but its simplified 

version (2.11) has been derived under the classical assumption of het) = u + et. In 

this section, we present an alternative explicit expression for p(r > x), the formula 

of Ignatov and Kaishev (2000), which also holds under the general assumptions of 

non-decreasing het) but allows dependence in that it assume integer-valued claim 

sizes having any joint distribution. As we will see, when the claim amounts are 

assumed to be independent, not necessarily identical, random variables, the latter 

formula can be used in combination with the MLMM method to calculate p(r > x) 

for continuous claim severities, as described in the previous section. 

The formula of Ignatov-Kaishev (see Ignatov and Kaishev 2000, and Ignatov, 

Kaishev and Krachunov 2001) is valid for discrete claim amounts, assumed either 

dependent or independent, and any non-decreasing real function het) modeling the 

incoming flow of premiums up to time t. It has the following form 
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peT > x) = 

YI + ... +Yk-I :sn-l (2.15) 

where n = [hex)] + 1, [hex)] is the integer part of hex), Vn-l ~ X < Vm Vi = h-I(i), for 

i = 0, 1,2, ... , noting that 0 = Vo ~ VI ~ V2 •••• , and k IS such that 

YI + ... + Yk-l ~ n - 1, YI + ... + Yk ~ n, (1 ~ k ~ n), Z/ = vyl+ ... +Y/' 1= 1,2, ... and 

b ;CZb ... , Zj) is defined recurrently as 

(2.16) 

Since, in the case of independent claim severities the probability 

P(Y1 = Yb •.• , Yk- l = Yk-l; Yk ~ n - YI - ... - Yk-l) is in fact a product of the 

individual probabilities, we can again apply the discretization method MLMM with 

formula (2.15). We shall abbreviate the latter approach as IK_MLMM 

Tables 7 and 8 compare ruin probability values, calculated following the PL­

MLMM and the IK _ MLMM methods. Our numerical study suggests that the 

computation time of PL-MLMM and IK-MLMM significantly depends on the size 

of discretization step, the time interval x and especially on the size of the initial 

capital u. In particular, the running time for IK-MLMM may increase dramatically 

for large x and/or u but one has to bear in mind that the Ignatov-Kaishev's formula is 
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more general than the one due to Picard and Lefevre (1997) and hence, is not 

'optimized' for the special case of LLd. claim amounts. For small values of x and u 

the efficiency of the two methods, in tenns of time and accuracy is comparable and 

we can successfully use both modules. 

Table 7. P(T<x) for different values of the premium income rate c. Yj -Exp(O.l), 

A = 1, u = 1, x = 0.5, h = 0.2. 

c PL-MLMM Time, IK-MLMM Time, 

p=l seconds seconds 

1.00 0.356980 0.28 0.359827 0.28 

1.05 0.356664 0.28 0.359510 0.28 

1.10 0.356378 0.27 0.359221 0.30 

1.15 0.356116 0.27 0.358959 0.28 

1.20 0.355877 0.31 0.358718 0.33 

Table 8. P(T<x) for different values of the time interval x. Yi -Exp(O.l), A = 1, 

u = 0, C = 1.1, h = 0.1. The values obtained with IK_C have at least four correct 

digits after the decimal point. 

x PL-MLMM Time, IK-MLMM Time, IK_C Time, 

p=2 seconds seconds seconds 

0.5 0.385221 0.14 0.389395 0.11 0.385243 1.04 

1.0 0.612306 0.30 0.617426 0.33 0.612255 1.15 

1.5 0.749636 0.42 0.754590 0.61 0.749644 1.43 

2.0 0.834932 0.61 0.839226 1.04 0.834929 1.10 

2.5 0.889127 0.75 0.892700 2.53 0.889131 1.15 

3.0 0.924329 0.95 0.927220 8.35 0.924324 1.10 

3.5 0.947614 1.14 0.949887 17.02 0.947617 1.21 

4.0 0.963298 1.36 0.965076 77.56 0.963299 1.10 

In the next section, we derive an explicit expression for the probability of ruin in the 

case of any continuous claim amounts distributions. This expression can be viewed 

as a 'continuous' generalization of the fonnula of Ignatov and Kaishev (2000). In the 

last column of Table 8, we give the corresponding results obtained with this 
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'continuous version' of Ignatov-Kaishev's formula (abbreviated as IK_ C). As can be 

seen, in some cases it is even more time efficient than the methods based on MLMM 

for independent claim severities and as it will be shown in the next section, it 

produces ruin probability values with a preliminary chosen precision. The IK_ C 

values given in Table 8 have four accurate digits after the decimal point. 

2.4 Evaluation of ruin probabilities for continuous, 
dependent claims 

Our main objective in this section is to obtain a finite-time ruin probability formula 

and develop an appropriate numerical method based on this formula in a risk model, 

where the severities of individual claims may possibly be dependent, Le. can have 

any joint continuous distribution, their arrival times follow a Poisson process and 

h(t) is modelled by a non-decreasing, positive real function. Within this framework, 

an explicit expression for the probability of ruin has been derived by Ignatov and 

Kaishev (2004). We use the latter to test and compare the numerical efficiency of 

the alternative expression which we present here. 

2.4.1 An extension of the Ignatov-Kaishev's formula to the 
continuous case 

In what follows, we show how the ruin probability formula (2.15) can be extended 

to cover the case of any continuous individual claim severities distribution. Further 

an algorithm which allows to calculate peT < x) with any preassigned accuracy is 

developed. We illustrate the algorithm numerically on the example of exponentially 

and Inverted Dirichlet distributed claims severities. 

The Ignatov-Kaishev's formula given by (2.15) has been shown to be exact and 

numerically efficient in the case when the claims are assumed to have any discrete 

distribution (see Ignatov, Kaishev, Krachunov 2001, and Rulliere and Loisel 2004). 
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Having this in mind, we state the following theorem where an extension to the case 

of continuous claims severities Y., Y2, ••. , Yk with joint density h(y., ... , Yk) is 

presented. 

Theorem 2. The probability of survival within a finite-time horizon x for continuous 

claim amounts is given by 

peT > x) = 

-XA 00 rh (x) rh(x)-Yt r h(X)-Yt- ... -Yk-2 roo (k-l) 
e IJo Jo '''Jo Jhl I(-l)b j (z., ... , 

k=1 0 0 0 h(x)-Yt-···-Yk-t }=O (2.17) 

where z} = h-1(Yl + ... + Yj), j = 1,2, ... , h(y., ... , Yk) is the probability density 

function ofY}, Y2, ... , Yb and b/z}, ... , Zj) is defined recurrently as in (2.16). 

Proof of Theorem 2. A straightforward representation of peT > x) is given by 

00 

peT > x) = Ip(Nx = k) peT > x I Nx = k) 

k=O 

00 (A x)k 
= ~ e-h -- peT > x I {Tk S x} n {Tk+l > x}) 
~ k! 
k=O 

since {Nx = k} == {Tk S x} n {Tk+l > x}. Utilizing the fact that 

00 

{T> x} = n [(h- 1(Y1 + ... + Yj ) < Tj } U {x < Tj }] 
j=1 

and that (see e.g. Ignatov and Kaishev 2004) 

{T> x} n {Tk S x} n {Tk+l > x} 

00 

= [n{h- 1(Y1 + ... + Yj ) < T}} U {x < Tj }] n {Tk S x} n {Tk+l > x} 
}=1 
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k 

= [n {h-1(Y1 + ... + Yj ) < Tj }] n {Tk ~ x} n {Tk+l > x} 
j=l 

and using the property of conditional probabilities P(A I B) = P(A n B I B), we obtain 

P(T > x I {Tk ~ x} n {Tk+l > x}) 

Therefore, 

00 (1 x)k 
p(r> x) = ~ e-h 

-- peT > x I {Tk ~ x} n {Tk+l > x}) 
LA k! 
k=O 

47 



-I _ ( O::s; Yb ... , 0 ::s; Yk ) 
where Zj = h (YI + ... + Yj) and Dk = h . 

YI + ... + Yk::S; (x) 

Now, it can be shown that (see Ignatov and Kaishev 2004) 

where Ak(x; z}, ... , Zk), k = 1, 2, ... are the Appell polynomials defined as Ao(x) = 1, 

Ak' (x) = Ak-I(x) and Ak(Zk) = 0, k = 1,2, ... , hence 

p(r> x) = e-h LAk f··· f Ak(x; Zb ... , zk)fk(Yb ... , Yk)dYk ... dYI 
k=O V

k 

00 Lh(X)Lh(X)-YI 
-h~ =e L.J ... 

k=1 0 0 

Denote 

From Ignatov and Kaishev (2000), we see that 
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so that 

00 Lh(X)Lh(X)-YI 
p(r > x) = e-h I 

k=l 0 0 

Now, it remains to show that expression (2.17) coincides with (2.18). 

Expression (2.17) can be re-written as follows 

00 lh(X)Lh(X)-YI 
p(r > x) = e-xA I 

k=l 0 0 

!.(X)-YI- ... -Yk-2 roo C
k
-

1 
.f".k(Yl, 

Jhl JA ••• , Yk) dYk ••• dY2 dYl 
o h(X)-YI-... -Yk_1 

-XA 00 Lh(X)Lh(X)-YI r h(X)-YI- ... -Yk-2 (LOO 
= e I "")0 Ck- 1 !k(y)' ... , Yk) dYk-

k=l 0 0 0 0 

00 lh(X)Lh(X)-YI r h(X)-YI- ... -Yk-2 

= e-
XA I "'Jo (Ck- I -Ck- 2 +Ck- 2) 

k=l 0 0 0 

00 Lh(X)Lh(X)-YI rh(X)-YI- ... -Yk-1 

_e-XA L "")0 Ck- 1 !key), ... , Yk) dYk .•• dY2 dYl 
k=l 0 0 0 
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00 Lh(x>Lh(x>-YI 
-x'\ ~ 

= e L..J 
k=l 0 0 

00 Lh(x>Lh(x>-YI rh(X>-YI-"'-Yk-1 
_e-X

). L: ···Jo Ck-1/k(y., ... , Yk) dYk ... dYl 
k=l 0 0 0 

Noting that 

00 Lh(x>Lh(x>-YI r h(X>-YI-"'-Yk-2 
e-X'\.z= ···Jo Ck- 2/k-l(Y., ···,Yk-l)dYk-l···dYl 

k=l 0 0 0 

00 Lh(X)Lh(X)-YI rh(X)-YI-"'-Yk-2 

+e-XA 2: ··")0 Ck- 2 /k-l(Yt. ... , Yk-l) dYk-l ... dYl 
k=2 0 0 0 

for (2.17) we finally obtain 

00 Lh(X)Lh(X)-YI 
peT > x) = e-x

'\ .z= 
k=l 0 0 

which coincides with (2.18) and hence, the proof is completed. 0 
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Expression (2.17) involves infinite summation. Obviously, for numerical 

calculations it is necessary to truncate the summation with respect to k up to a finite 

integer n and give some estimate of the truncation error. The following theorem 

helps in determining the integer n for a given required accuracy E > O. 

Theorem 3. Assume that the individual claim amounts Yt , Y2, ••• are modelled by 

i.i.d. random variables. Then,for every E > 0 there exists an integer n > 0 such that 

P(T> x) - Pn(T > x) = P(Yt + ... + Yn =:; hex)) =:; E, 

where 

and 

(

Yl > 0, ... , Yk-l > 0, Yk > 0) 

[)k = Yl + ... + Yk-l =:; hex) = 

Yl + ... + Yk > hex) 

... , Yk) 

o =:; Yl < hex) 

o =:; Y2 < hex) - Yl 

o =:; Yk-l =:; hex) - Yl - ... - Yk-2 

h(x) - YI - ... - Yk-l =:; Yk < 00 

(2.19) 

Proof of Theorem 3. It is not difficult to see that the difference between (2.17) and 

(2.19) can be rewritten as 

P(T> x) - Pn (T > x) = 

(2.20) 

!k(y}' ... , Yk) dYk ... dY2 dYl . 

We recall that (see Ignatov and Kaishev 2000) the expression 
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can be viewed as certain conditional probability and hence, we can replace it with 

unity in (2.20) and obtain the bound 

(2.21) 

Let us now introduce the notation 

" _ ( Y} > 0, Y2 > 0, ... ) 
en - h Y} + ... + Yn S (x) 

We can now rewrite (2.21) as 

P(T>x)-Pn(T>x) 

= J ... f fn(y., ... , Yn) dYn'" dY2 dy} 

llk=n+l [)k 

= P(Y} + ... + Yn:s h(x» , (2.22) 

Further, we have that 

P(Yl :S hex»~ ~ P(Yl + Y2 S hex»~ ~ ... ~ P(Y} + '" + Yn :S h(x»--+ 0 , (2.23) 
n--.oo 
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since, the more claims occur up to time x, the less probable it is that their sum will 

remain below hex). From (2.22) and (2.23) it is not difficult to deduce that there 

exist n such that 

P(T> x) - Pn(T > x) ~ P(Y} + ... + Yn ~ hex»~ ~ E 

which completes the proof of the theorem.D 

Based on Theorems 2 and 3, we propose the following numerical method for 

computing ruin probabilities with any required accuracy. 

Step 1. Choose E > 0 and let k = 1. 

Step 2. Calculate 

P(Y} + ... + Yk ~ hex»~ (2.24) 

Step 3. If P(Y} + ... + Yk ~ hex»~ ~ E then set n = k and go to step 4. Otherwise, set 

k := k + 1 and go back to step 2. 

Step 4. Calculate Pn(T > x) using (2.19). 

As an illustration of the above proposed algorithm, let us consider the case of 

independent, identically Exp(a) distributed claim amounts, i.e. Yj -- Exp(a), 

i = 1,2, .... Substituting the exponential density in (2.23) for n = 1,2, 3, ... we get 

n-} h( j 
-ah(x) ~ (a x» 

P(Y} + ... + Yn ~ h(x» = 1 - e L...J ., 
j=O J. 

(2.25) 

The value n, found following the algorithm with (2.24) replaced by (2.25), should be 

substituted in (2.19) in order to obtain the non-ruin probability with the required 

accuracy E. 

Our empirical observations show that the ruin probability values obtained with 

formula (2.19) usually have more accurate digits than those guaranteed by the above 

algorithm. 
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In the classical risk model, when h(t) = U + et, the 'continuous version' of Ignatov­

Kaishev's formula given in Theorem 2 can be simplified for U = 0 and the numerical 

evaluation of finite-time ruin probabilities can be further speeded up by making a 

change of variables (y., ... , Yk) ----. (Ub ... , Uk) as follows, 

UI = YI YI = UI 

U2 = Y2 + YI 
(2.26) 

Uk = YI + ... + Yk 

1 0 o 0 

The Jacobian of the transformation I J I=det 
-1 1 o 0 

= I 1 I IS non-

o 0 -1 1 

singular and formula (2.17) becomes 

P(T> x) = 

(2.27) 

where Zj = h-I(uj) and Uj can be interpreted as the partial sums of the j-th 

consecutive individual claim amounts. 

We perform a second change of variables (Ub ... , Uk)----'(V., ... , Vk) in (2.27) as 

follows, 

VI = h-I(Ul) 

V2 = h-1(U2) 

Ul = h(Vl) 

U2 = h(V2) 
(2.28) 

Since, we assume that h(t) = et, we have h-1(t) =!.. and the Jacobian of the 
c 
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transformation 

cOO 0 

1 J 1= 
o c o 0 

::: 1 de 1 is again non-singular. After this second change of 

o 0 0 c 

variables, expression (2.27) becomes 

P(T> x)::: 

00 LXix LX Loo (k-l ) -XA k}} l-j-I (XA)'" 
e I ... c IC- 1) b/vb ... , v}),\ (~-;I) 

k= 1 0 VI Vk-2 X }=O 10-0 

(2.29) 

So, in the special case when h(t) ::: et, formula (2.17) simplifies to formula(2.29) 

which is easier to implement and use for numerical calculations. 

Table 9. P(T>x) for different values of the safety loading factor 'I. Yj '" Exp(1), 

J = 1, u = 0, x = 0.5. The precision of IK_C is at least four digits after the decimal 

point. 

11 IK_C Time, PL_MLMM Time, 

seconds h = 0.05, p = 1 seconds 

0.05 0.676611 2.20 0.676744 0.33 

0.10 0.679518 2.25 0.679529 0.44 

0.15 0.682389 3.62 0.682507 0.39 

0.20 0.685225 2.26 0.685237 0.49 

0.25 0.688026 2.25 0.688134 0.44 

0.30 0.690794 2.30 0.690808 0.49 

In Tables 9 and 10, rum probability values calculated usmg (2.29) and the 

PL_MLMM method are listed along with the corresponding computational times. 

It has to be noted that the results obtained using (2.29), i.e. column headed IK _ C, 

have guaranteed precision of four correct digits after the decimal point. The latter is 
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achieved by evaluating (2.29) up to k = 6, since following the algorithm described in 

this section with E = 0.00001, we stopped at n = 6 in (2.24). 

Table 10. P(T>x) for different values of the time interval x. Yj -Exp(O.l), A = 1, 

u = 0, c = 1.15. The precision of IK _ C is at least four digits after the decimal point. 

x IK_C Time, PL_MLMM Time, PL_MLMM Time, 

seconds h=O.I,p= 1 seconds h = 0.05, p = 1 seconds 

1 0.388631 2.31 0.388670 1.27 0.388631 3.46 

2 0.166419 2.42 0.166421 3.46 0.166419 11.48 

3 0.076906 3.29 0.076916 6.48 0.076908 34.22 

In addition to the guaranteed accuracy the IK _ C approach of calculating 

P(T> x) has yet another advantage. As we can see from Table 10, for particular set 

of values of the parameters of the risk model, IK _ C is faster in achieving six digits 

accuracy than PL _ MLMM for values of x > 1. This is remarkable because IK _ C 

turns out to be more general and more efficient than PL_MLMM for large values of 

x. 

2.4.2 The formula of Ignatov and Kaishev (2004) 

In this section, we will present the formula of Ignatov and Kaishev (2004). It is valid 

under the general assumptions of any joint continuous distribution of the claims 

severities (either dependent or independent), arbitrary non-decreasing income 

function and Poisson claim arrivals. Our purpose here will be to investigate the 

numerical efficiency of the latter formula and compare it with IK _C. Thus, the 

formula ofIgnatov and Kaishev (2004) has the following form 

P(T> x) = 

(2.30) 

where 
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1/10 = 1 

I/Ik = Ak(X, h-I(UI), ... , h-I(Uk))XCPk(uJ, ... , Uk), 

UI , U2, ••• are the partial sums of the individual claim amounts YJ, Y2, ••• , 

'Pk(UJ, ... , Uk) is the probability density function of Ub ... , Uk and 

Ak(X, h-1(UI), .•. , h-I(Uk)), k = 1,2, ... are the Appell polynomials defined as 

Ao(x) = 1 

Obviously, if h(YJ, ... , Yk) is the density function of the individual claims, then 

As in the previous section, in the special case of het) = et, in formula (2.30) we can 

make the same two changes of variables as given by (2.26) and (2.28), and rewrite 

(2.30) as 

peT > x) = 

e-Ax (1 + i).' LX LX '" LX c
k 

Pk(x, v" .. " Vk) 'i',(h(VI), .. " h(v,)) dv, .. , 
k=l 0 VI Vk_1 (2.31) 

Clearly, (2.31) is relatively simple and easy to evaluate. For example, in the case of 

independent, exponentially distributed claim amounts we have 
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In Table 11, numerical results obtained using (2.31) and PL_MLMM are given, 

along with the corresponding computational times. It has to be noted that the 

precision of the results obtained via PL _ MLMM can not be assessed as in the case 

ofIK_C. 

Table 11. P(T>x) for different values of the security loading factor ';' Yj --Exp(l), 

A = 1, u = 0, x = 1. 

1] Ignatov and Kaishev Time, PL_MLMM Time, 

(2004) Seconds h = 0.05, P = 1 seconds 

0.05 0.530242 3.52 0.530263 0.93 

0.10 0.536596 3.13 0.536617 0.99 

0.15 0.542840 3.52 0.542861 1.10 

0.20 0.548974 3.62 0.548996 1.15 

0.25 0.555002 3.35 0.555024 1.27 

0.30 0.560925 3.35 0.560947 1.26 

In the next section, we perform a more detailed comparison of the ruin probability 

values obtained by using the formula of Ignatov and Kaishev (2004) and the one 

proposed in the previous section (see (2.29)), both in the case of independent and 

dependent claim amounts. 

2.4.3 A numerical study 

In this section, we compare the numerical efficiency of different methods for 

computing of probabilities of ruin under the assumption of independent or 

dependent continuous claim severities. Namely, we compare the PL_MLMM 

method, we proposed in section 2.3, the extension of the formula of Ignatov and 

Kaishev (2000) which we proposed in section 2.4.1 and the explicit formula 

developed in Ignatov and Kaishev (2004). 
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2.4.3.1 Comparison - independent case 

In Table 12, we present ruin probability values calculated using the three different 

methods and compliment them with the corresponding computational times. The 

precision of IK _ C is at least four digits after the decimal point. 

Table 12. P(T>x) for different values of the time interval x. Yj --Exp(0.1), J = 1, 

u = 0, c = 1.1. 

x IK_C Time, Ignatov and Kaishev Time, PL_MLMM Time, 

seconds (2004) seconds h=O.I,p=1 seconds 

0.5 0.6147570 0.39 0.6147570 0.60 0.6148240 0.17 

1.0 0.3877450 0.77 0.3877450 3.68 0.3877470 0.44 

2.0 0.1650710 0.77 0.1650710 3.52 0.1650730 0.99 

3.0 0.0756765 0.82 0.0756768 3.57 0.0756791 1.97 

5.0 0.0185692 1.32 0.0185694 10.9 0.0185708 5.50 

The numerical results indicate that for values of the parameter a:5 0.5 of the 

exponential distribution and sizes of the time interval x ~ 2 the IK_C method is 

faster than the one of Ignatov and Kaishev (2004). Same is confirmed when we 

evaluate ruin probabilities with Pareto and Weibull distributed claim amounts 

(results not presented here). 

Table 13. P(T>x) for different values of the time interval x. Yj --Exp(l), J = 1, u = 0, 

c = 1.1. 

x IK_C Time, Ignatov and Kaishev Time, PL_MLMM Time, 
seconds (2004) seconds h = 0.05, p = 1 seconds 

0.5 0.679519 11.31 0.679519 4.29 0.679529 1.27 

1.0 0.536599 19.99 0.536599 14.39 0.536617 3.35 

1.5 0.457648 19.72 0.457652 14.34 0.457677 6.10 

2.0 0.407053 19.77 0.407077 14.44 0.407158 10.65 
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Table 13 contains numerical results for PCT > x), obtained with IK_C, PL_MLMM 

and the formula of Ignatov and Kaishev (2004) as well as their running times. The 

precision of IK_ C is guaranteed up to the third digit after the decimal point. Our 

numerical experience shows that for a ~ 1 the formula of Ignatov and Kaishev 

(2004) is more efficient in terms of time and accuracy than the other two 

alternatives, IK_C and PL_MLMM. 

2.4.3.2 Comparison - dependent case 

Finally, we illustrate the performance of the two explicit expressions for calculating 

finite-time survival probabilities assuming dependent claim severities, namely the 

IK_ C formula (2.29) and the one of Ignatov and Kaishev (2004). Following Ignatov 

and Kaishev (2004), we use the Inverted Dirichlet distribution which has the 

following density 

where gj > 0, i = 0, 1, ... , k, are the parameters of the Inverted Dirichlet distribution 

(see 10hnson and Kotz 1994) and [C.) is the gamma function. 

For the purpose of our numerical calculations, we set gj = 2, i = 0, ... , k. The 

probability density function of the two dimensional Inverted Dirichlet distribution, 

InvDir(2, 2, 2), is illustrated in Fig. 4. 
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o 

Fig. 4. The probability density function of the two dimensional Inverted Dirichlet 

distribution with parameters gj = 2, j = 0, I , 2, i.e. InvDir(2, 2, 2). 

In Table 14, values of the survival probabilities calculated via 20 000 Monte Carlo 

simulations (see the column headed Simul.) and with the exact explicit formulae 

IK C and the one of Ignatov and Kaishev, are presented. For the chosen set of 

parameters, IK _ C is less computationally involved than the alternative. 

Table 14. PCT > x) for different values of the safety loading factor 17-

(Y" ... , Yk ) ~InvDir(2, ... , 2), A. = I, u = 0, x = 0.5. 

1] Simul. IK_C Time Ignatov and Kaishev Time, 

seconds (2004) second 

0.0 0.641302 0.641178 9.72 0.641180 29.44 

0.1 0.645116 0.645938 9.39 0.645942 51 .52 

0.2 0.651066 0.650711 15 .92 0.650712 54.37 

0.3 0.652333 0.655465 18.62 0.655467 53 .77 

0.4 0.661201 0.660185 15.05 0.660190 56.19 

It has to be noted that there are different ways of modelling the dependence 

between the claim amounts. For example by using copula function. The latter is 

illustrated in Chapter 3 and 4. 
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2.5 Discussion and conclusions 

It has to be noted that our aim in section 2.4 was not to study the numerical 

behaviour of the discussed methods for evaluating (non-) ruin probabilities in full 

but just to illustrate their performance under different assumption and values of the 

parameters of the risk model. The numerical study performed here is neither 

comprehensive nor exhaustive. But still, we believe that the following comments 

could be made. 

Our overall conclusion is that there is no one 'numerically most efficient' formula 

which is the 'best' choice for any set of parameters of the risk model. Depending on 

the specific assumptions one may need to use a different explicit expression or even 

a discretization method. A similar conclusion has been reached by Rulliere and 

Loisel (2004) for the case of discrete claim sizes. 

62 



Chapter 3 

Excess of loss reinsurance under joint survival 
optimality 

Summary 

Explicit expressions for the probability of joint survival up to time x of the cedent 

and the reinsurer, under an excess of loss re insurance contract with a limiting and a 

retention level are obtained, under the reasonably general assumptions of any non­

decreasing premium income function, Poisson claim arrivals and continuous claim 

amounts, modelled by any joint distribution. By stating appropriate optimality 

problems, we show that these results can be used to set the limiting and the retention 

levels in an optimal way with respect to the probability of joint survival. 

Alternatively, for fixed retention and limiting levels, the results yield an optimal 

split of the total premium income between the two parties in the excess of loss 

contract. This methodology is illustrated numerically on several examples of 

independent and dependent claim severities. The latter are modelled by a copula 

function. The effect of varying its dependence parameter and the marginals, on the 

solutions of the optimality problems and the joint survival probability, has also been 

explored. 

3.1 Introduction 

Several approaches to optimal reinsurance have been attempted in the actuarial 

literature, based on risk theory, economic game theory and stochastic dynamic 

control. Examples of research in each of these directions are the papers by Dickson 

and Waters (1996, 1997), Centeno (1991, 1997), Andersen (2000), Krvavych 
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(2001), by Aase (2002), Suijs, Borm and De Waegenaere (1998), and by Schmidli 

(2001, 2002), Hipp and Vogt (2001), Taksar and Markussen (2003). A common 

feature of most of the quoted works is that optimality is considered with respect to 

the interest of solely the direct insurer, minimizing his (approximated) ruin 

probability, under the classical assumptions of linearity of the premium mcome 

function and independent, identically distributed claim severities. 

Recently, a different reinsurance optimality model, which takes into account the 

interests of both the cedent and the reinsurer, has been considered by Ignatov, 

Kaishev and Krachunov (2004). As a joint optimality criterion they introduce the 

direct insurer's and the reinsurer's probability of joint survival up to a finite time 

horizon. Under this model, a volume of risks is insured by a direct insurer, who is 

entitled to receiving certain premium income in return for the obligation to cover 

individual claims. The latter are assumed to have any discrete joint distribution and 

poisson arrivals. It is further assumed that the cedent is seeking to share claims and 

premium income with a reinsurer under a simple excess of loss contract with a 

retention level M, taking integer values. In their paper, Ignatov, Kaishev and 

Krachunov (2004) have derived expressions for the probability of joint survival of 

the cedent and the rein surer and have demonstrated its applicability in the context of 

optimal reinsurance. 

Catastrophic events in recent years have caused insurance and reinsurance losses of 

increasing frequency and severity. As a result, some reinsurance companies have 

been downgraded with respect to their credit rating while others, such as the 6-th 

largest reinsurer worldwide Gerling Global Re, even became insolvent and went out 

of business. The latter developments have motivated even stronger the proposed 

idea of considering re insurance not solely from the point of view of the direct 

insurer, but taking into account the contradicting interests of the two parties, by 

jointly measuring the risk they share. 
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Our aim in this paper is to generalize the joint survival optimality reinsurance 

model, introduced by Ignatov, Kaishev and Krachunov (2004). We extend it here by 

considering an excess of loss (XL) contract in which the reinsurer covers each 

individual claim in excess of a retention level M, but up to a limiting level Land 

individual claim severities are not discrete but are modelled by continuous 

(dependent) random variables, with any joint distribution. Under these reasonably 

general assumptions we give closed form expressions for the probability of joint 

survival of the cedent and the reinsurer up to a fixed future moment in time. Based 

on these expressions, we state two optimality problems, according to which optimal 

values of M and L or alternatively, an optimal split of the total premium income, 

maximizing the probability of joint survival, can be obtained. These problems have 

been solved numerically, due to the infeasibility of their analytical solution. The 

derived joint survival probability formulae, conveniently allow the use of copula 

functions in modelling the dependency between claim severities. We have shown 

how varying the degree of dependence through the copula parameter(s) affects the 

optimal choice of the retention and the limiting levels, the optimal sharing of the 

premium income and also the probability of joint survival. 

The results presented in this paper comprise an extension of the model considered 

by Ignatov, Kaishev and Krachunov (2004), to the practically more important case 

of continuous, dependent claim severities. In addition, the more general XL contract 

considered here gives a refined control over the optimal structure of this risk sharing 

arrangement. For further details on XL contracts with one or more layers, see e.g. 

Bugmann (1997). 

The paper is organized as follows. In Section 3.2 we introduce the XL contract and 

the related joint survival probability model, considered further. Our main results are 

stated in Section 3.3 and illustrated numerically in Section 3.4, where we have 

introduced the copula approach to modelling dependence of consecutive claim 
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severities under reinsurance. The final Section 3.5 provides some concluding 

remarks and indicates questions for further research. 

3.2 The XL contract 

We will consider an insurance portfolio, generating claims with inter-occurrence 

times 'Tb 'T2, .... , assumed identically, exponentially distributed r.v.s with parameter 

A. Denote by TI = 'T., T2 = TI + T2, ... the sequence of random variables representing 

the consecutive moments of occurrence of the claims. Let Nt = :t:t {i : T; ~ t}, where :t:t 

is the number of elements of the set {.}. The claim severities are modeled by the non­

negative continuous r.v.s. W., W2, ... , Wh ... , with joint density function 

I/t(wJ, ... , Wk)' It will be convenient to introduce the random variables Y1 = W., 

Y2 = W1 + W2, ... representing the partial sums of consecutive claim severities. 

The r.v.s W., W2, ... , are assumed to be independent of Nt• Then, the risk (surplus) 

process Rt , at time t, is given by Rt = h(t) - Y N" where het) is a nonnegative, non­

decreasing, real function, defined on lR+, representing the aggregated premium 

income up to time t, to be received for carrying the risk associated with the entire 

portfolio. The function het) may be continuous or not. If het) is discontinuous we 

will define h-1(y) = inf {z: h(z) ~ y}. Clearly, het) represents a rather general class of 

functions and the classical case, het) = u + c t, with initial reserve u and premium 

rate c, is of course included. We will assume that the premium has been determined 

in such a way that the premium income defined by the function h(t) adequately 

corresponds to the aggregate claim amount, generated by the portfolio up to time t. 

For the purpose, the various premium rating principles (see e.g., Gerber, 1979 and 

Wang, 1995) or other practical rating techniques can be used. 

Without reinsurance, explicit formulae for the probability of non-ruin (survival) 

peT > x) of the direct insurer, in a finite time interval [0, x], x> 0, with the time T 
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of ruin, defined as 

T := inf {t: t > 0, Rt < O}, (3.1) 

were derived by Ignatov and Kaishev (2004) and by Kaishev and Dimitrova (2006). 

Here, we will be concerned with the case when the direct insurer wishes to reinsure 

his portfolio of risks by concluding an XL contract with a retention level M and a 

limiting level L, M ~ 0, L ~ M. In other words, the cedent reinsures the part of each 

claim which hits the layer m = L - M, i.e., each individual claim Wj is shared 

between the two parties so that Wj = W{ + W[ i = 1, 2, ... where W{ and W[ denote 

the parts covered respectively by the cedent and the reinsurer. Clearly, we can write 

wt = min(Wj , M) + max(O, Wj - L) 

and 

W[ = min(L - M, max(O, Wj - M)). 

Denote by Yf = Wf, Y~ = Wf + w~, ... and by Y1 = W1' Yf = W1 + Wf, ... the 

consecutive partial sums of claims to the cedent and to the reinsurer, respectively. 

Under our XL reinsurance model, the total premium income het) is also divided 

between the two parties so that het) = he(t) + h,(t), where heel), h,(t) are the premium 

incomes of the cedent and the reinsurer, assumed also non-negative, non-decreasing 

functions on lR+. As a result, the risk process, Rh can be represented as a 

superposition of two risk processes, that of the cedent 

(3.2) 

and of the reinsurer 

(3.3) 

i.e., Rt = R~ + R~. 
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There are two alternative optimization problems which may be stated in connection 

with an XL contract as the one described here. The first is, given M and m are fixed, 

how should then the premium income het) be divided between the two parties, so as 

to optimize a certain criterion measuring their joint risk or performance. And 

alternatively, if the total premium income h(t) is divided in an agreed way between 

the cedent and the reinsurer, i.e., hc(t) and hr(t) = h(t) - hc(t) are fixed, how should 

the parameters M and L of the XL contract be optimally set so as to minimize 

(maximize) the chosen joint risk or performance criterion. 

3.3 The probability of joint survival optimality 

In this section we will introduce some risk measures, assuming both the cedent and 

the re in surer jointly survive up to time x. 

Define the moments, r c and rr, of ruin of correspondingly the cedent and the 

re in surer as in (3.1), replacing Rt with R~ and R~ respectively. Clearly, the two 

events (rC > x) and (rr > x), of survival of the cedent and the reinsurer are 

dependent since the two risk processes R~ and R~ are dependent through the 

common claim arrivals and the claim severities Wj , i = 1,2, ... as seen from (3.2) 

and (3.3). Hence, as has been proposed in Ignatov, Kaishev and Krachunov (2004), 

it is meaningful to consider the probability of joint survival, p(rC > x, rr > x), as a 

measure of the risk the two parties share and jointly carry. The two optimization 

problems we have stated can now be formulated more precisely as follows. 

Problem 1. For fixed het), hc(t), hr(t) such that het) = hc(t) + hr(t), find 

max p(rC > x, rr > x) . 
L,M 

Problem 2. For fixed M, Land h(t), find 
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max P(TC > x, Tr > x) . 
hc(t), 

h(t)=hc(t)+hr(t) 

Problems 1 and 2 may be given the following interpretation. In Problem 1, the 

ceding company may wish to retain a certain fixed part, hc(t), of the premium 

income, h(t), and then to find values for M and L, defining the corresponding 

optimal portion of the risk it would need to accept, so as to have maximum chances 

of joint with the reinsurer survival, up to a finite time x. Alternatively, the values M 

and L may be fixed, according to the ceding company's risk aversion and/or 

according to decisions, driven by negotiations with the reinsurer or other market 

conditions, after which the optimal split of h(t), between the two parties would need 

to be defined, solving Problem 2. To explore Problems 1 and 2, next we will derive 

closed form expressions for the probability P(TC > x, Tr > x). 

Theorem 1. The probability o/joint survival o/the cedent and the reinsurer up to a 

finite time x under an XL contract with a retention level M and a limiting level L is 

P(TC > x, Tr > x) = 

(3.4) 

where 

wf = min(wi' M) + max(O, Wi - L), wj = min(L - M, max(O, Wj - M», and 

Ak(x; Vh ... , Vk), k = 1, 2, ... are the classical Appell polynomials Ak(x) 0/ degree 

k ~ 1, defined by 

Aa (x) = 1, A~ (x) = Ak-1 (x), Ak Ci\) = o. 
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Remark 1. Appell polynomials were introduced by P .E. Appell (1880) and up to a 

normalization, contain many classical sequences of polynomials, among which the 

Bernoulli, Hermite and Laguerre polynomials. The sequence of Appell polynomials 

(Ak(x): k = 0, 1, ... } are alternatively defined by a generating function 

where fey) = Lk=oAk(O) (1/ k!), (f(O)"* 0). and the values Ak(O), k = 0, 1, ... 

uniquely determine (Ak(x): k = 0, 1, ... }. 

Clearly, Theorem 1 establishes a promising link of the survival probability 

P(TC > x, Tr > x) to the wide and important class of Appell polynomials. This link, 

worth further exploration, may give new insights into the properties of formula 

(3.4), and in particular may lead to a substantial improvement of its numerical 

efficiency. For a more detailed account on Appell polynomials we refer to Kaz'min 

(2002). 

Proof of Theorem 1. The event of joint survival {TC > x, rr> x} can be expressed as 

00 

{TC > x, Tr > x} = n [{(h~l(YJ) < Ti ) n (h;l(Yj) < Ti )} U (x < Till 
j=1 

00 

= n [(max(h;I(YJ), h;I(Yj)) < Tj } U {x < Ti }] 

i=1 

Noting that.n = Uk=O {Nx = k}, applying the partition theorem we have 

P(TC > x, rr > x) = Lk=OP(Nx = k) P(TC > x, Tr > x I Nx = k) 

L:
OO 

(Axl .b (TC Tr I n = - e- P > x, > X {Tk ~ x} (Tk+l > x}) 
k! 

k=O 

In (3.6), we have used the fact that the event {Nx = k} == {Tk ::; x} n {Tk+1 > x}. 

(3.5) 

(3.6) 

Ifwe now express {TC > x, rr > x} in (3.6) using its representation given by (3.5) we 
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obtain 

Tc Tr ) ,"00 (Axl -AX 
P( > x, > x = ~k=O k! e 

p(nj:l [{max(h~l(rJ), h;l(rj)) < Tj } U {x < Tj }] I {Tk ~ x} n {Tk+l > x}) 

= t, (Ak~)* e-Ax p(~[(max(h~l(Yj), h;l(Yj)) < T1} U {x < Tjll) n 
(3.7) 

where in the last equality we have used that peA I B) = peA n B I B). Applying some 

algebraic manipulations on the event in (3.7) it can be shown that 

~ [(max(h~l(Yj), h;l(Yj)) < Tj} U {x < Tjll) n {Tk "xl n {Tk+l > xl 

= (6 (max(h~l (Yj), h;l (YJ)) < Tj}) n {Tk '" xl n {Tk+l > xl 

Substituting (3.8) back in (3.7) leads to 

P(TC > x, T' > x) 

(3.8) 

= 1:%"=0 (\~)k e-Ax p(n~=l [{max(h~l(rJ), h;l(rj)) < Tj } n {Tk ~ xl n {Tk+l > xl] I 
{Tk ~ xl n {Tk+l > xl) 

(3.9) 

It is known that (see Karlin and Taylor, 1981) 

where t 1 ~ .. , ~ t k are the order statistics of k independent, uniformly distributed 

random variables in the interval (0, x). From the independence of the two sequences 
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of random variables YJ, Yj, j = 1,2, ... and Tb k = 1,2, ... and applying (3.10) we 

can rewrite (3.9) as 

(3.11) 

The random variables TI ~ ... ~ Tk have a joint density (see Karlin and Taylor, 

1981) 

k! 

i1r- r- (tl, ... , tk) = { X< 
I,···, k 0 

if 0 ~ tl S ... ~ tk ~ x 

otherwise 

hence, introducing the notation 

we can express the probability on the right-hand side of (3.11) as 

= J ... J I{t(wt. ... , Wk) 

'Dk 

J ... J ~ dtk ···dt,dwk ... dw, 

min[max(h;;-I(y~),h;I(y;»),x]<tl <x 

min[ max( h;;-I (y~),h; 1 Cv.) ),x ]<tk<X 

tl S."S,tk 

(3.12) 

where min[max(h~l(yj), h;I(Yj)), x], j = 1,2, ... , k appear as lower limits of 

integration since max(h;l(yj), h;I(Yj)) can in general exceed x for some value 

Yj = yj + Yj = w~ + ... + wj + w'i + ... + wj = WI + ... + Wj' j = 1,2, ... , k. In this case 

min[max(h;l(yj), h;I(Yj)), x] = x, i.e., the integral in (3.11) vanishes as is necessary, 
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since such trajectories t 1-+ Yj cause ruin of at least one of the parties and therefore 

should not contribute to the probability of their joint survival. To simplify notation, 

we let Vj = min[zj' xl, Zj = max(h~l(yj), h;l(yj)), j = 1,2, ... , k and use (3.12) to 

rewrite (3.11) as 

P(TC > x, Tr > x) 

= e-h Lk=O (\~/ f .. · f I/!(wt. ... , Wk) f .. · f ~ dtk ... dtl dWk ... dWI 

'Dt VI<tl<X 

Vk<tt<X 

tIS ... stlr 

= e-h fAk J ... J I/!(wt. ... , Wk) Ak(x; Vb ... , Vk) dWk ... dWI 

k=O Vir 

where we have set 

(3.13) 

It can be seen directly that Ak(x; vI, ... , Vk) is a polynomial of degree k with a 

coefficient at the highest degree 1/ k!. Moreover, applying similar reasoning as in 

Theorem 1 of Ignatov and Kaishev (2004) it can be shown that Ak(X; Vb ... , Vk), 

k = 1, 2, .. , are the classical AppeU polynomials. 

The asserted joint survival probability formula now follows, appropriately rewriting 

the multiple integral in (3.13).0 

An alternative formula for P(TC > x, Tr > x) is provided by the following 

73 



Theorem 2. The probability of joint survival is 

P(Te > x, Tr > x) = 

_A X( 00 Lh(X)LhCX)-WI L h(X)-WI- ... -Wk-2 (00 _ 
e I ... Jhl B/(Zb ... , ZI-b x) 

k= I 0 0 0 h(X)-WI-",-Wk_1 (3.14) 

where 

- - ) ~/-I ( ,\)j b (- - ) (,,/- j-I (x At) . h B ( ) - 0 B () 1 B/(z., ... , Z/-b x = ~j=o -Il j Zb ... , Zj ~m=O ~,WIt o· = , I' = , 

I is such that ZI ~ ... ~ ZI_I ~ X < z/, 

. . . i-i+1 

- ) - ~J (-1 )J+I ) b· (- -)' h b 1 b lZb ... , Zj - ~i=1 (j-i+I)! I-I Zb ... , Zj_1 ,wlf 0 == , 

Zj and I/I(W., ... , Wk) are defined as in Theorem 1. 

Proof of Theorem 2. The probability of survival of the cedent without reinsurance 

(see Theorem 2 of Chapter 2, section 2.4.1) is given by 

peT > x) = 

00 f.h(X)f.h(X)-WI f.hCX)-WI- ... -Wk-2LOO 
~... peT > x I Wt = w., ... , 
~ 0 0 0 h(x)-wI-"'-Wk-I 
k=1 

where 

Wk- I = Wk-I; Wk ~ hex) - Wt - ... - Wk_t)x 

I/I(W., .'" Wk) dWk dWk_1 ... dW2 dWI 

By analogy with the reasoning in deriving (3.15) we can write 
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P(TC > x, Tr > x) = 

00 Lh(X)Lh(X)-Wl L h(X)-Wl- ... -Wk-2LOO 
C r L ... peT > X, T > X I WI = 

k= I 0 0 0 h(X)-Wl- .. ·-Wk_l 

W., ... , Wk- l = wk-l; Wk ~ hex) - WI - ... - Wk-l) 

I/I(W., •.• , Wk) dWk dWk-1 ... dW2 dWI 

Following equality (10) of Ignatov, Kaishev and Krachunov (2004), it is possible to 

show that 

(3.18) 

From (3.16) and (3.18) it can be concluded that 

(3.19) 

where Zj = max(h~l(yj), h;l(yj)), j = 1, ... , k. It is not difficult to see that there 

should exist an index 1:5 I :5 k, such that Zl :5 ... :5 Zt-l :5 X < Zt and since we 

consider the events of ruin of the cedent and the reinsurer up to time x only, hence 

we can rewrite (3.19) as 

(3.20) 

Formula (3.14) now follows from (3.18), (3.20) and (3.17) which completes the 

proof of Theorem 2.0 

The use of formulae (3.4) and (3.14) to compute P(TC > x, rr > x) is discussed in 

Section 3.4 where the case of independent and dependent claim severities are 

thoroughly explored. 
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3.4 Computational considerations and results 

In this section we demonstrate that using the results of Theorem 1 and 2, one can 

successfully find solutions to Problems 1 and 2, stated in Section 3.3, and optimally 

determine the parameters of an XL contract. A quick analysis of formulae (3.4) and 

(3.14) reveals that an attempt to use them in solving the optimization Problems 1 

and 2 analytically is confronted with considerable difficulties. For example formula 

(3.4) requires the maximization of a complex functional with respect to the function 

heel), with the constraint het) = he(t) + hr(t), and under the additional assumption of 

invertibility of he(t) and hr(t). This is a task which is hardly feasible, at least under 

the rather general definitions of h(t), he(t) and hr(t) assumed here. For this reason, in 

what follows we will use (3.4) and (3.14) to solve Problems 1 and 2 numerically. 

Formulae (3.4) and (3.14) have been implemented in Mathematica in the case of any 

joint distribution of the original claims and linear premium income function 

h(t) = u + et, where u is the total initial reserve and c is the total premium rate. Thus, 

Problems 1 and 2 have been solved with different joint distributions for the claim 

amounts and different choices for the rest of the model parameters. In the 

independent case, results for Exponential, Pareto and Weibull claim amount 

distributions are presented and the effect of their varying tail behavior on the 

probability of joint survival is assessed. In order to model dependence between 

claim severities, copula functions have been successfully used. The copula approach 

has allowed us to study how the assumption of dependence affects the solutions to 

Problems 1 and 2 and the probability of joint survival. For the purpose, a 

combination of Rotated Clayton copula with Weibull marginals has been 

implemented. 

In general, our experience has shown that expression (3.4) is computationally more 

efficient than (3.14) since it converges faster with respect to k, i.e., a small number 
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of tenus is required in the summation in order to reach a desired accuracy of the 

result. The multiple integration is less computationally involved and hence faster, 

since all limits of integration in (3.4) are finite whereas in (3.14) the inner most 

integral is infinite. However, it should be noted that the derived expressions for 

P(TC > x, Tr > x) are rather general and that in each particular case, when the input 

parameters are fixed, both fonuulae could be simplified and of course, depending on 

the software used for the implementation, the computational efficiency may turn to 

be in favour of (3 .14). 

3.4.1 Independent claim severities 

Here, we have assumed that claim amounts are independent and have three 

alternative distributions: lighter tailed Exponential and heavier tailed Pareto and 

Weibull distributions. The optimization Problems 1 and 2 have been solved in each 

of these cases and the effect of the different tail behaviour of the claim distributions 

on the optimal solutions have been studied. Sensitivity results with respect to the 

choice of other model parameters are also presented. 

The solution of the optimization Problem 2 in the case of exponentially distributed 

claim severities with parameter a = 1, Poisson intensity A = 1, finite time interval 

x = 2 and h(t) = u + C t, with total initial reserve u = 0 and premium rate C = 1.55, is 

illustrated in Fig. 1. For fixed combinations of values of the levels M and L, an 

optimal reinsurance premium rate, Cn is found, which maximizes P(TC > x, rr > x), 

given that h(t) = hcCt) + hr(t) = (1.5 5 - cr) t + Cr t. This is achieved by varying the 

proportion, hrCt) = Cr t, of the premium income, given to the reinsurer from 1 % to 

99%, i.e., Cr is varied from 0.1 to 1.5 with a step 0.1. In the left panel of Fig. 1 we 

present results for the case of an XL contract without a limiting level, i.e. L = 00, 

while the right panel refers to a retention level M and a limiting level L = M + 0.5. 

In both cases, the optimal premium rate er decreases when the retention level M 

increases. This complies well with the market principle that a smaller reinsurance 
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premium should be charged for a smaller proportion of the risk, taken by the 

reinsurer. Comparing the two cases L = 00 and L = M + 0.5 , it can be seen that in 

the latter case, the optimal solutions for Cr are shifted to the left since there is a 

fixed non-zero layer m = L - M = 0.5 , covered by the reinsur r. 

From both panels of Fig. 1 it can also be seen that each curve has a single global 

maximum of the joint survival probability. This suggests that the optimization 

Problem 2 has a unique solution, at least for the classical linear h(t). The proof of 

this interesting conjecture is hindered by the complexity of formulae (3.4) and (3.14) 

and in particular of the definitions of Yj , Zj, wf, wj', and is a subject of current 

investigation. 
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Fig. 1. Solutions to the optimality Problem 2: independent claim severities, Exp(J) 

distributed, A. = 1, x = 2, hU) = he(t) + hr(t) = (1.55 - cr) t + Cr t. 

Problem 2 has also been solved for different choices of the total initial reserve u and 

the initial reserves of the cedent, U c and the reinsurer, Ur . The impact of different 

initial reserves on P(TC > x, Tr > x) and hence on the optimal value of Cr is 

illustrated in the left panel of Fig 2, for fixed levels M = 0.5 , L = 00 and parameters 

as in Fig 1, i.e., Exp(1) distributed claim severities, A = 1 and x = 2. For this set of 

parameters, an optimal value, Cr , is found, which maximizes P(Te > x T r > x) , 

given that het) = U + C t , he(t) = Ue + (1.55 - cr) t, hr(t) = Ur + Cl' t, with U = Ue + Ur 

and C = Cc + Cl' = (1.55 - Cl') + Cr· Five curves are given in the left panel of Fig 2 

which correspond to five different choices of the pair of values Ue , U,., for which the 
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total reserve U = ue + Ur is correspondingly equal to 0.0, 1.0, 0.5 , 1.0, 1.0. There are 

two effects which can be observed. First, with the increase of the total reserve u, 

given (see curves corresponding to 

(Ue, ur ) = {(a, 0), (0.25, 0.25), (0.5 , 0.5)}), the probability of joint survival increases 

as can be expected. The second effect is that, for fixed value of the total reserve 

U = 1, the optimal reinsurance premium Cr is lower if Ue < Un increases when 

Ue = Un and goes further up if Ue > Ur . Hence, the conclusion is that if a direct 

insurance company wants to pay less in re insurance premium and at th same time 

wants to maximize its and the reinsurer's chances of survival , the company should 

seek for a reinsurer with initial reserves higher than its own reserves which is a 

practically meaningful business strategy. In the alternative case, Ue > Un the optimal 

reinsurance premium is much higher, since given the direct insurance company 

wants a maximum probability of joint survival, it has to pay much more in order to 

compensate the lower level of reserves kept by the reinsurer. But this clearly is not 

in favour of the direct insurer and is not what re insurance is about. 
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Fig. 2. Solutions to the optimality Problem 2: independent claim severities, Exp(l) 

distributed, A = 1, x = 2, C = 1.55, L = 00, M = 0.5; Left panel: u ~ 0, Right panel: 

u = Ue = Ur = 0, X = 0.5, 1, 2, 3, 4. 

In the right panel of Fig. 2, we illustrate the impact of the time horizon x on the 

probability of joint survival and Cr . As can be seen, P(Te > x, Tr > x) decreases for 

longer time horizons, which is natural to expect. On the other hand, increa ing x 
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from 0.5 to 3 results in higher reinsurance premium, whereas further increase of x 

does not affect Cr. This can be explained with the higher possibility of arrival of 

large claims to the reinsurer as x initially goes up. 

The solution of the optimization Problem 1 has been perfonned in the case of 

exponentially and Pareto distributed claim severities, both with unit mean, A = 1, 

x = 2 and h(t) = 1.55 t. Thus, in Fig. 3 two 3D plots are given, which illustrate the 

behaviour of the probability of joint survival as a function of M and m = L - M 

when the premium income is equally shared, Le. hc(t) = hr(t) for any t ~ O. The left 

panel of Fig. 3 refers to the case of exponentially distributed claim amounts, Wj , 

i = 1,2, ... with mean and variance E(W) = YeW) = 1, whereas the plot in the right 

panel is for Pareto claims with E(W) = 1 and YeW) = 3. As seen from both panels of 

Fig. 3, P(Te > x, rr > x) has a single global maximum with respect to M and m. As 

with Problem 2, the existence of a unique solution of Problem 1 can be conjectured, 

but the proof is related with similar difficulties. 

Solutions of Problem 1 for different choices of er, Le., for different proportions in 

which the total premium income is shared, are summarized in Table 1. As can be 

seen, giving higher proportion of het) to the reinsurer causes the optimal retention 

level, M, to drop and the optimal limiting level, m, to increase. The latter is not 

surprising as the cedent's retained risk should decrease when the premium income, 

passed on to the reinsurer, increases. 

Table 1. Optimal values of M and m, maximizing p(Te > x, rr > x) in the ease oj 

independent claim severities, Exp(J) distributed, with A = 1, x = 2, 

h(t) = he(t) + hr(t) = (1.55 - er) t + er t. 

maXM,m p (re> x, rr > x) Cr = 0.25 er = 0.50 er = 0.775 er = 1.00 Cr = 1.25 

M 0.4 0.3 0.3 0.2 0.001 

m 0.1 0.3 0.7 1.2 > 1.5 
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As can also be seen from Fig. 3, although the implemented Exponential and Pareto 

distributions have different variance and imply lighter and heavier tails of the claim 

severities, the two surfaces are very similar and the optimal values of M and rn, 

which maximize P(Te > x, Tr > x) in each case, are very close. This is explained by 

the similarity in the shape of the Exponential and Pareto densities, as can be seen 

from the left panel of Fig. 4, since all other model parameters are the same. We have 

also implemented Weibull distributed claims, which does not affect the form of the 

surface as well. It is interesting to note that the probability of joint survival is higher 

for Pareto distributed claim amounts, compared with the exponential case, given that 

other model parameters coincide. The probability p(Te > x, Tr > x) is even higher if 

the claim size follows Weibull distribution with the same mean, E( W) = I, and 

V(W) = 2.2. An illustration of the latter phenomenon is given in the right panel of 

Fig. 4. It can be explained by the fact that the time interval, [0, 2], is relatively short 

and P(TC > x, Tr > x) is affected most significantly by the distribution of the smaller 

but more probable claims rather than by the less probable extreme claims in the tail. 

This is in compliance with the order of the probabilities 0.955, 0.940, 0.917, 

computed as P( W S h(2» = P( W S 3.1) correspondingly for exponentially, Pareto 

and Weibull distributed claims. The shape of the three densities, given in the left 

panel of Fig. 4, are also in support of this explanation. Our experience shows that for 

higher x the tail behaviour is of more importance for P(TC > x, rr > x) and the order 

may reverse. 

The general conclusion based on these examples is that P(Te > x, rr > x) is a 

relevant reinsurance risk optimization criterion, which complies with some basic 

principles driving reinsurance risk assessment and pricing decisions. 
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Fig. 3. Solutions to the optimality Problem 1: independent claim severities, A = 1, 

x = 2, hCt) = hcCt) + hrCt) = (1.55 - cr) t + Cr t, Cr = 0.775. Left panel - exponentially 

distributed, E(W) = V(W) = 1; Right panel - Pare to distributed, E(W) = 1, 

V(W) = 3. 
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Fig. 4. Left panel - assumed probability density functions for the claim amounts Wi> 

i = 1, 2, ... ; Right panel - P(rc > x, Tr > x) as a function of the layer m, A = 1, 

x = 2, hCt) = hcCt) + hrCt) = (1.55 - cr) t + Cr t, Cr = 0.775. 
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3.4.2 Dependent claim severities 

In what follows, we provide some very interesting results for the probability of joint 

non-ruin and the solutions of Problems 1 and 2, assuming dependence between the 

claim severities WJ, W2, ... • We show how this dependence could be modelled, 

using copula functions. The effect on P(TC > x, Tr > x) of the degree of dependence, 

modelled by the underlying copula parameter, and of the choice of the marginals, is 

also studied. 

A difficulty, related to the copula approach is that, in general, a large number of 

consecutive claims may arrive at the insurance company and modelling their joint 

distribution will require highly multivariate copulas. The curse of dimensionality is 

overcome here due to the fast convergence of formula (3.4), for which only the first 

few terms in the summation with respect to k are needed, in order to compute 

P(TC > x, F > x) with a reasonable accuracy. This allows us to use up to a five­

variate copula in the numerical examples presented here. 

Let H denote the k-dimensional distribution function of the random vector of 

consecutive claim amounts (WJ, ... , Wk ) with continuous marginals Ft. ... , Fk • 

Then, one can use the well-known Sklar's theorem to represent H through a k­

dimensional copula C(Ub ... , Uk), 0 ~ U j ~ 1, which depends on a set of parameters 

6, as H(Wb ... , Wk) = C(F1(Wl), ... , Fk(Wk»' By changing the values of 6 within a 

specified range, one can control the degree of dependence, in general, from extreme 

negative, through independence, to extreme positive dependence. To measure the 

dependence in the tails of the distributions of two consecutive claims W1 and W2• 

one can use the upper and lower tail dependence coefficients, defined as 

AL = limu-+o+ C(u, u) / U 

.:tu = limu-+l- (1 - 2 U + C(u, u» / (1 - u) 
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where AL E (0, 1], Au E (0, 1]. The copula C has no upper (lower) tail dependence 

iff Au = ° (AL = 0). For example, in our context, Au > ° would mean that extremely 

large insurance losses are likely to occur jointly. For further properties of copulas 

and related dependence measures we refer to Joe (1997). An extensive account on 

some actuarial applications of copulas can be found in Frees and Valdez (1998). 

It should be noted that in most practical cases dependence between the components 

of the random vector (W., ... , Wk ) would imply dependence between the 

components of the random vector (Wf, ... , Wn and also between the components of 

(W[, ... , Wk), since Wj = wt + W[. So, the two risk processes, R~ and R~, which 

implicitly define P(Te > x, T' > x), would also incorporate dependent claims, 

namely (Wf, ... , Wn and (W[, ... , WI). However, since formulae (3.4) and (3.14) 

involve the joint density function iP'(W., ... , Wk) of the random vector (W), ... , Wk ), 

in order to compute P(Te > x, T' > x) under dependence, we express this density 

through the copula function as 

(3.21) 

where c(u}. ... , Uk) is the density of the copula C and [w,(w;), i = 1, ... , k are the 

marginal density functions. As can be seen from (3.21), the copula approach to 

modelling dependence between claim amounts is very convenient since it separates 

the dependence structure, incorporated into the copula, from the marginals. Thus, 

one can independently choose the copula and its parameter(s), and the marginals, 

and study separately the effect of these two choices on p(Te > x, Tr > x) and on the 

solutions of the optimality Problems 1 and 2. For the purpose, we have chosen C to 
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be the k-dimensional Rotated Clayton copula, eRCl, and FJ, ... , Fk to be identical 

Weibull(a, f3) marginals. 

Clayton and Rotated Clayton copulas are suitable for modelling dependence 

between claim severities. To see this, let us first introduce the Clayton copula, which 

is an Archimedean copula, with generator tP(t) = r O 
- I, (j > 0, defined as 

Cl . _ ('\'k -0 _ k I)-liB e (Ub ... , Ub (j) - ~i=l Uj + 

where ° ~ Uj ~ 1, i = 1, ... , k and (j E (0, 00) is a parameter. Its density is given by 

Cl • _ nK f(1/9+k) (flk -B-1) ("k ~B _ k )-I/O-k 
C (Ub •.. , Ub (j) - tf" r(1/o) j=l Uj "-'j=l U, + 1 

As (j -+ 0, the Clayton copula converges to the product copula with density 

c(u), ... , Uk) = 1, which, as seen from (3.21), corresponds to independent claim 

amounts. The degree of dependence increases as (j increases. Further properties of 

the Clayton copula and its application in finance can be found in Cherubini et al. 

(2004). 

In the general insurance context, it is of interest to consider the case in which the 

occurrence of large claims is highly correlated with the emergence of further large 

claims. Hence, it is meaningful to use a copula with upper tail dependence. 

However, the Clayton copula has lower tail dependence with coefficient AL = 2-1/B, 

which makes it convenient for modeling dependence in the left tails of the marginal 

distributions, i.e. between very small claims. A typical example would be the joint 

occurrence of a large number of small motor insurance claims caused by a common 

(catastrophic) event, e.g. hail or bad driving conditions. 

Based on the Clayton copula, one can model upper tail dependence using the 

multivariate Rotated Clayton copula, defined as 

(3.22) 
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with density cRCl(Ub ... , Uk; e) = cCl(l - UJ, ... , 1 - Uk; e) and e E (0, (0). The value 

e = 0 corresponds to independence as for CCl. A two dimensional ver ion of (3.22) 

has been considered by Patton (2004). The Rotated Clayton copula has upper tail 

dependence with coefficient Au = 2- 1
/8 and is uitable for modeling d pend nce 

between extreme insurance losses. The dependence structure, defined by a Rotated 

Clayton copula with parameter e = 5 is illustrated in the left pan I of Fig. 5 through 

a random sample of 500 simulated pairs (uJ, U2)' In the right panel, we give the 

corresponding simulated claim amounts with joint distribution function 

H(w\ , W 2) = CRCl(F\ (w \) F2(W2)' e) and identical Weibull(l , 1) marginals. The 

presence of positive dependence determined by e = 5 and of upp r tail dependence 

Au = 2-\ /5, are clearly visible. 
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Fig. 5, A random sample of 500 simulations from a bivariate Rotated Clayton 

copula, with dependence parameter fJ = 5, marginals F == Weibull(J, 1) == Exp(l), 

With the increase of e, the solution of the optimality Problem 2 does not change as 

illustrated in the left panel of Fig. 6 for fixed Weibull marginal with unit mean and 

variance. It can also be seen that, for any cr, P(Te > x, rr > x) goes up a e deviates 

from zero. This may seem unexpected but it should be mentioned that, as e 
increases, not only the tail dependence increases but so doe the d pendence 

throughout the whole range of claim amounts. As a result of this jointly mall 

claims occur with higher probability and through the risk proces es, R~ and R;, 
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affect more significantly P(TC > x, Tr > x) than the occurrence of jointly large 

claims. 
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Fig. 6. Solutions to the optimality Problem 2: dependent claim severities, 

CRC/(F (Wl), .. . , F (Wk); fl) distributed, marginals F:= Weibull(a, ft) , A = 1, x = 1, 

h(t) = hc(t) + hr(t) = (1.55 - er) t + er t, M = 0.25, L = M + 0.5. 

The solution of the optimality Problem 2 for Weibull marginals with mean 1 and 

increasing variance is given in the right panel of Fig. 6. As can b s en the optimal 

value for er slightly decreases as the variance increases. This is meaningful mce 

the variance of the cedent's claims increases with the variance of the original claim 

more significantly than that of the reinsurer and hence the rein urance premium 

should decrease. The latter effect is due to the fact that the reinsurer's liability i 

limited within the layer m. It can also be seen from the right panel of Fig. 6 that 

P(TC > x yr > x) increases as the variance increases which i a phenomenon, 

similar to the one illustrated in Fig. 4 and can be explained applying similar 

reasoning. 

87 



3.5 Conclusions and comments 

In this paper, we have demonstrated that the optimal retention and limiting levels 

and the optimal sharing of the premium income, obtained by maximizing the 

probability of joint survival of the cedent and the reinsurer in an excess of loss 

contract, assuming continuous claim severities, are sensible. It will be instructive to 

test this joint optimality criterion on real claim data. An interesting finding is the 

presence of unique solutions to Problems 1 and 2 in the examples of Section 304.1. 

Proofs of such conjectures are a subject of ongoing research. 

Let us note that in the model presented here the initial capital Uc = hc(O) and 

Ur = hr(O) should not necessarily be shared between the two parties. It has to be 

noted also that a re insurance company has typically many clients. However, often 

some of these clients choose to work (exclusively) with one particular big 

reinsurance company, such as for example Swiss Re, Munich Re etc., and they form 

a substantial part of the total business underwritten by the reinsurer. In such cases, 

when the joint survival of the two parties is critical, the model considered here can 

be applied on a bilateral basis. It is also appropriate and applicable in cases where 

the two parties involved in the contract are for example represented by e.g. a 

company (not necessarily an insurance company) and its captive or two parties 

exchanging risk in a syndicate like Lloyds. 

We have demonstrated that formulae (304) and (3.14), through their reasonable 

generality, conveniently allow to implement copulas in modelling dependence 

between consecutive claim severities. These are only first steps in this important 

new direction of research and a variety of open problems arrises. For example. it is 

interesting to explore how the solutions of Problems 1 and 2. and also 

P(TC > x, T' > x), will be affected by different dependence structures. In particular, 

will the upper and lower Fn!chet bounds lead to upper and lower bounds for 

P(TC > x, Tr > x)? 
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Finally, viewing p(rC > x, rr > x) as a risk measure, one could define a 

performance measure based on the expected profits, at the end of the time horizon x, 

of the insurer and the reinsurer and consider an optimality criterion which combines 

these measures and could be used to optimally set the parameters of a reinsurance 

contract. The latter is a subject of future investigation. 
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Chapter 4 

Optimal joint survival 
frontier approach 

Summary 

. 
relnsurance: an efficient 

The problem of optimal excess of loss reinsurance with a limiting and a retention 

level is considered. It is demonstrate that this problem can be solved, combining 

specific risk and performance measures, under some relatively general assumptions 

for the risk model, incorporating any non-decreasing premium income function, 

poisson claim arrivals and continuous claim amounts, modelled by any joint 

distribution. As a performance measure, we define the expected profits at time x of 

the direct insurer and the reinsurer, given their joint survival up to x, and derive 

explicit expressions for their numerical evaluation. The probability of joint survival 

of the direct insurer and the reinsurer up to the finite time horizon x is employed as a 

risk measure. An efficient frontier type approach to setting the limiting and the 

retention levels, based on the probability of joint survival considered as a risk 

measure and on the expected profit given joint survival, considered as a 

performance measure is introduced. Several optimality problems are defined and 

their solutions are illustrated numerically on several examples of appropriate claim 

amount distributions, both for the case of dependent and independent claim 

severities. 

4.1 Introduction 

An upward trend in insurance and reinsurance claims frequency and severity has 

recently been observed, mostly due to catastrophic events, such as hurricane Katrina 
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in the USA in 2005 and the winterstorm Kirill over northern Europe in 2007, 

causing enormous damage to households and infrastructure, measured in billions of 

dollars. As a result of this, both the insurance and reinsurance industry suffered 

severe losses, (see e.g. Zanetti, Schwarz and Lindemuth 2007 for an up-to-date 

account on world largest losses), and some companies became even insolvent. In 

order to cope with increasing future catastrophic risk, the industry faces the 

necessity of improving their internal risk models and especially, their 

implementation and use in the context of reinsurance. In particular, it becomes more 

clear that such models have to incorporate the interests of both insurance and 

reinsurance companies in order for them to maximize their chances of Uoint) 

survival. 

Coherent with these developments are the recent attempts in the actuarial literature 

to introduce joint risk and performance measures (see papers by Ignatov, Kaishev 

and Krachunov 2004, and Kaishev and Dimitrova 2006) which can be used in 

determining the parameters of a reinsurance contract. These studies are preceded by 

extensive research on optimal reinsurance performed in previous years, solely from 

the point of view of the direct insurer. Recent examples in this direction are the 

papers by Kaluszka (2004) and Verlaak and Beirlant (2003), who study mean­

variance optimality criteria, Gajek and Zagrodny (2004a) and Cao and Zhang (2007) 

who look at general risk measures, and Liang and Guo (2007), Gajek and Zagrodny 

(2004b), and Schmidli (2004) where the risk is measured by the probability of ruin. 

A summary on the variety of research techniques used in setting optimal reinsurance 

arrangements and further references can be found in Centeno (2004), Aase (2002) 

and Ignatov, Kaishev and Krachunov (2004). 

Recently, Ignatov, Kaishev and Krachunov (2004) and Kaishev and Dimitrova 

(2006) considered a reinsurance optimality model, which combines the 

(contradicting) interests of both the cedent and the reinsurer under an excess of loss 

contract. Under this model, claims generated by a volume of risks arrive according 
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to a Poisson process and the two parties share each individual claim and the total 

premium income in such a proportion that a certain joint optimality criterion is 

maximized (minimized). In their paper, Ignatov, Kaishev and Krachunov (2004), 

assumed that claim severities have any discrete joint distribution and considered a 

simple excess of loss without a policy limit. As a joint risk measure they proposed to 

use the probability of joint survival of the cedent and the reinsurer up to a finite time 

horizon and derived explicit expressions for this probability. As a joint performance 

measure, the expected profit of each of the parties at a finite-time horizon, given 

their joint survival up to this instant has also been considered. 

The model has been extended further in the paper by Kaishev and Dimitrova (2006), 

where it was assumed that claim amounts have any continuous (dependent) joint 

distribution and the excess of loss has a retention and a policy limit. Under these 

assumptions, closed form expressions for the probability of joint survival have been 

derived. Based on these expressions, it was demonstrated that retention and limiting 

levels could be optimally set by maximizing the probability of joint survival, given 

the premium income is split in a preassigned proportion or alternatively, an optimal 

split of the premium income between the two parties could be determined, given 

fixed retention and limiting levels. 

In the present paper, we consider the model of Kaishev and Dimitrova (2006) and 

propose a Markowitz type efficient frontier solution to the problem of optimally 

setting the retention and limiting levels M and L, so that for a given level of the 

probability of joint survival the expected profits of the two parties are maximized. 

As an alternative, it is proposed to use an optimality criterion which provides for 

'fair' distribution of the expected profits based on the agreed allocation of the 

premium income. In order to implement these ideas, we derive explicit expressions 

for the expected profit of the cedent and the reinsurer at some future moment in 

time, given their joint survival up to this instant. 
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The paper is organized as follows. In section 4.2, we briefly introduce the model and 

recall the formulae for the probability of joint survival of Kaishev and Dimitrova 

(2006). In section 4.3, explicit expressions for the expected profits of the direct 

insurer and the reinsurer are derived. The optimality problems, which incorporate 

these joint risk and performance measures, are formulated in section 4.4 and their 

efficient frontier solutions are illustrated. Section 4.5 concludes the paper with some 

comments on the results and possibilities of future research. 

4.2 The excess of loss (XL) risk model of joint survival 

4.2.1 The model 

We consider an insurance portfolio, generating claims at some random moments of 

time. The claims inter-arrival times Th T2, •... are assumed identically, 

exponentially distributed r.v.s with parameter A. Denote by Tt = Tb T2 = Tt + T2, .•. 

the sequence of random variables representing the consecutive moments of 

occurrence of the claims. Let NI = # {i : T j :s;; t}, where # is the number of elements 

of the set {.}. The claim severities are mode led by the continuous r.v.s. W}, W2, ••• , 

W
h 

... with joint density function I/t(w), ... , Wk). For convenience, we will introduce 

also the random variables Y1 = Wt , Y2 = W1 + W2, ••• representing the partial sums of 

consecutive claim amounts. 

It is assumed that the r.v.s W), W2, ••• are independent of Nt• Then, the risk (surplus) 

process Rt , at time t, is given by RI = h(t) - Y N" where h(t) is a nonnegative, non­

decreasing, real function, defined on IR+, representing the aggregate premium 

income up to time t. The function het) may be continuous or not. If het) is 

discontinuous, we define h-t(y) = inf {z: h(z) ~ y}. Note that the classical case 

h(t) = u + et, with initial reserve u and premium rate c, is included in this rather 

general class of functions h(t). 
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In this paper, we will be concerned with the case when the insurance company 

wants to reinsure its portfolio of risks by concluding an XL contract with a retention 

level M ~ ° and a limiting level L ~ M. In other words, the cedent wants to rcinsure 

the part of each claim which hits the layer m = L - M, i.e. each individual claim Wj 

is shared between the two parties so that Wj = Wj
C + W[, i = 1, 2, ... , where W{ and 

W[ denote the parts covered respectively by the cedent and the reinsurer. Clearly, 

we can write 

Wr = min(Wj , M) + max(O, Wj - L) 

and 

W[ = min(L - M, max(O, Wj - M». 

Denote by Yf = Wf, Y~ = Wf + w~, ... and by yr = Wr, Yi' = Wr + Wi', ... the 

consecutive partial sums of claims to the cedent and to the reinsurer, respectively. 

Under our XL reinsurance model, the total premium income het) is also divided 

between the two parties so that h(t) = hc(t) + hr(t), where hc(t), hr(t) are the premium 

incomes of the cedent and the reinsurer, assumed also non-negative, non-decreasing 

functions on [J~+. As a result, the risk process, Rh can be represented as a 

superposition of two risk processes, that of the cedent 

(4.1) 

and of the reinsurer 

R; = hr(t) - YN, (4.2) 

i.e., Rt = R~ + R;. Note that the two risk processes R~ and R; are dependent through 

the common claim arrivals and the claim severities Wj , i = 1, 2, ... , as seen from 

(4.1) and (4.2). 

Under this model, explicit formulae for the probability of joint survival, 

P(TC > x, rr > x), of the cedent and the reinsurer within a finite time interval 
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[0, xl, x> 0, were derived by Kaishev and Dimitrova (2006). The moments, TC and 

Tr , of ruin of correspondingly the cedent and the reinsurer are defined as 

TC := inf {t: t > 0, R~ < O}, 

Tr := inf {t: t > 0, R~ < O}. 

Clearly, the two events (fC > x) and (rr > x), of survival of the cedent and the 

reinsurer are dependent and hence, P(fC > x, Tr > x), is a meaningful measure of the 

risk the two parties share and jointly carry. 

In section 4.2.3, we will define the expected profit for each of the two parties, given 

joint survival up to time x, and show how this performance measure can be used in 

combination with the risk measure P(TC > x, rr > x) in finding the optimal set of 

parameters related to an XL re insurance contract. 

4.2.2 The probability of joint survival 

There are two alternative optimization problems which have been stated in 

connection with the XL contract, considered here. The first is, given M and m are 

fixed, divide the premium income het) between the two parties, so as to maximize 

the probability of joint survival, P(TC > x, Tr > x). And alternatively, if the total 

premium income, h(t), is divided in an agreed way between the cedent and the 

reinsurer. i.e. hc(t) and hr(t) = het) - hc(t) are fixed. set the parameters M and L of 

the XL contract so as to maximize P(TC > x. rr > x). Obviously, both optimization 

problems are based solely on the joint risk measure P(TC > x, rr > x). To address 

these problems, Kaishev and Dimitrova (2006) derived explicit expressions for 

P(TC > X. Tr > x) given by the following theorems. 

Theorem 1. The probability o/joint survival o/the cedent and the reinsurer up to a 

finite time x under an XL contract with a retention level M and a limiting level L is 
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(4.3) 

where 

wf = min(wj, M) + max(O, Wj - L), wj = min(L - M, max(O, Wj - M)), and 

Ak(x; Vh ... , Yk), k = 1, 2, ... are the classical Appel/ polynomials Ak(x) of degree 

k, defined by 

Ao(x) = 1, 

For further properties of Appell polynomials we refer to Kaz'min (2002). An 

alternative formula for P(TC > x, rr > x) is provided by the following 

Theorem 2. The probability of joint survival of the cedent and the reinsurer up to a 

finite time x under an XL contract with a retention level M and a limiting level Lis 

P(TC > x, Tr > x) = 

-AX ~oo lh(X)lh(X)-Wl rh
(X)-Wl- ... -Wk-2l OO 

_ 

e ~ ... Jo B1(ZI, 
=1 0 0 0 h(X)-Wl-",-Wk_l 

... , ZI-b x) 
(4.4) 

where 

"I 1 ( A)j b (- - ) (~l-j-l (x,\t) . h B1(Zb ... , Z/-h x) = £...j-='o - j Zh ... , Zj £"'m=O -;;;r-' WIt Bo(·) == 0, B t(·) = 1, 

h h - <- < <-I is suc t at Zt ~ ... - ZI-t - X zl, 

. . . y-i+l 

- ) - ~l (-1 )1+1 J b (- -)' h b 1 b /Zh ... , Zj - £"'i=1 (j-i+I)! i-I Z), ... , Zi-I ,Wit 0 == , 
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Z j are defined as in Theorem 1. 

As noted in Kaishev and Dimitrova (2006), the above two expressions can be used 

interchangeably and depending on the specified parameters and the software used 

for implementation either (4.3) or (4.4) can be faster and less computationally 

involved. 

In the next section, we will supplement the risk measure P(rc > x, T' > x) by a 

performance measure and in section 4.3 we will demonstrate how the two measures 

can be combined into a single optimization problem, which incorporates the 

contradictory goals of maximizing the profit and minimizing the risk of the cedent 

and the reinsurer. 

4.3 The expected profit given joint survival 

Under the general model of an XL contract with a retention level M and a limiting 

level L, and assuming claims have any continuous joint distribution, we will be 

concerned here with the profit at time x, each of the parties are expected to make, 

given they both survive up to x. Considering a joint optimality criterion, based on 

expected profit given joint survival, is reasonable since with the eventual ruin of 

either of the parties the XL reinsurance contract will cease and this will affect the 

risk and profitability of the surviving party. So, obviously the two parties have 

mutually dependent performance with respect not only to the risk they carry but also 

with respect to their expected profits. Expected profit assuming joint survival was 

first considered by Ignatov, Kaishev and Krachunov (2004) in the case of a simple 

XL contract with one retention level and discrete integer-valued claims. 

In what follows, we will present some explicit expressions for these quantities and a 

result establishing the existence of values of M and L such that the expected profits 

of the two parties are in the same proportion as their premium incomes. First, we 
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will introduce some useful definitions and notation. Following Ignatov, Kaishev and 

Krachunov (2004), we will define the profits at time x of the cedent and the 

rein surer, correspondingly as the values, R~ and R~, of their risk processes, given by 

(4.1) and (4.2), at time x. Denote by lA and IB the indicator random variables of the 

events A = {re> x} and B = {rr > x}. There exists a suitable function l/J(u, v) such 

that the conditional expectation E(R~ I lA, IB) a~'l/J(lA' IB)' When lA == 1 and IB == 1, 

we obtain l/J(1, 1) = E[R~ I (re> x, rr > x)] which we will call the expected profit of 

the cedent at time x, given the two parties' joint survival up to time x. Similarly, 

E[R~ I (re> x, Tr > x)] denotes the reinsurer's expected profit at time x, given its 

and the insurer's joint survival up to time x. 

The following two theorems give explicit expressions for E[R~ I (re> x, Tr > x)] 

and E[R~ I (re> x, rr > x)] correspondingly. 

Theorem 3. The expected profit of the cedent at time x, under an XL contract with a 

retention level M and a limiting level L, given the joint survival of the cedent and 

the reinsurer up to time x, is 

(4.5) 

where y%, Vj, j = 1, ... , k and Ak(x; Vb ... , Vk) are defined as in Theorem 1. 

Proof. In view of the definitions (4.1) and (4.2) of the risk processes R~ and R~, and 

expression (4.3) for the probability of joint survival, we can express the 

unconditional expectation E(R~. lA' IB) as 
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Note that in equality (4.6), if k claims have occurred up to time x, where 

k = 1, 2, ... , the profit of the cedent at the end of the time horizon [0, x] is equal to 

hc(x) - L~=l wf, and if no claims have occurred, i.e. k = 0, the profit is equal to the 

premium income at time x, i.e. hc(x), which is accounted for by the first term of the 

sum in (4.6). The unconditional expectation (4.6) can be rewritten as 

For the conditional expectation E[Ri I (fC > x, rr > x)] we have 

E(R~·IA·IB) 
E[RC I (TC > x, T' > x)] = -----

x P(Tc>x,T'>x) 

(4.7) 

(4.8) 

Substituting (4.7) and (4.3) in (4.8), and after cancelling appropriate terms, recalling 

the notation L~=l wf = y%, we obtain the assertion of the theorem.o 

Similarly, for the expected profit of the re in surer we have 
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Theorem 4. The expected profit of the reinsurer at time x, under an XL contract 

with a retention level M and a limiting level L, given the joint survival of the cedent 

and the reinsurer up to time x, is 

(4.9) 

where Wt, Vj' j = 1, ... , k and Ak(x; Vb ... , Vk) are defined as in Theorem 1. 

Proof. The proof follows the same lines of reasoning as in Theorem 3, replacing the 

premium income and the claims to the cedent with the ones to the reinsurer.D 

Alternative fonnulae for E[R; I (re > x, Tr > x)] and E[R~ I (re > x, T' > x)] can be 

derived using expression (4.4) for P(TC > x, T' > x) and its derivation. They are 

given in the next two theorems. 

Theorem 5. The expected profit of the cedent at time x, under an XL contract with a 

retention level M and a limiting level L, given the joint survival of the cedent and 

the reinsurer up to time x, is 
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E[R; I (TC > x, Tr > x)] = 

00 Lh(X)Lh(X)-Wl r h(X)-Wl- ... -Wk-2L"" C 

hc(x) - {L: ... Jo Yk 
k= 1 0 0 0 h(X)-Wl-",-Wk_l 

B,(Zh ... , Z'-h X)I/t(W., ... , Wk)dwkdwk_l ... dw2dwl} / (4.10) 

00 lh(X)lh(X)-Wl rh(X)-WI-",-Wk-Z roo 

{L: ... Jo Jhl B,(Zb ... , Z'-b x) 
k=l 0 0 0 heX)-Wl-",-Wk_l 

I/t(W., ... , Wk) dWk dWk-l ... dW2 dWl} 

where Zj and B,(z., ... , z,_., x) are defined as in Theorem 2. 

Theorem 6. The expected profit of the reinsurer at time x, under an XL contract 

with a retention level M and a limiting level L, given the joint survival of the cedent 

and the reinsurer up to time x, is 

E[R~ I (TC > x, Tr > x)] = 

h,(x) - {i: r(X) r(X)-W, ···lh(X)-W,-... -w.-, L~ y\ 

k=IJo Jo 0 h(X)-WI-,,,-Wk_1 

B,(Z., ... , Z'-h x) I/t(W., ... , Wk) dWk dWk-1 ... dW2 dWI} / (4.11) 

00 lheX)lheX)-WI lheX)-WI- ... -Wk-2lOO _ 

{~... B,(z., ... , z,_., x) 
k= 1 0 0 0 h(X)-WI-",-Wk_1 

I/t(W., ... , Wk) dWk dWk-1 ... dW2 dWI} 

where Zj and B,(z., ... , ZI-h x) are defined as in Theorem 2. 

As with (4.3) and (4.4) for P(TC > x, Tr > x), the expressions (4.5), (4.9) and (4.10), 

(4.11) can be used interchangeably and depending on the specified parameters and 

the software used for implementation either of them can converge faster and be less 

computationally involved. 
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4.4 Combining the risk and performance measures in 
setting an optimal XL contract 

In this section, we will illustrate how the probability of joint survival up to time x 

and the expected profits at time x, given joint survival of the cedent and the 

reinsurer up to x, can be used in combination, correspondingly as risk and 

performance measures, in order to set (optimaUy) the parameters of an XL 

re insurance contract. Our approach is motivated by the mean-variance, portfolio 

optimization model of Markowitz (1952), in which an efficient frontier is found 

where the expected return from an investment portfolio over the investment horizon 

x is maximized for a given level of risk, measured by the variance of the portfolio 

return. 

We outline and discuss several alternative approaches of solving the optimal XL 

reinsurance problem. The solution under any of them is obtained as a reasonable 

compromise between the contradictory risk and performance optimality criteria. On 

one hand, it is in the interest of the direct insurance company to possibly maximize 

the risk and minimize the premium income it transfers to the reinsurer. On the other 

hand, the reinsurance company aims at minimizing the risk and maximizing the 

portion of the premium it charges. In this way, both companies are aiming at 

optimizing their individual risk and performance measures. At the same time, it is 

reasonable to assume that the two parties are rational investors and hence, are 

interested in decreasing their joint probability of ruin and increasing their expected 

profits, given joint survival. Here, we state three problems which illustrate different 

approaches for determining the values of the retention and the limiting levels, M and 

L, given a split of the premium income h(t) = hc(t) + hr(t), which balances the 

conflicting goals of the cedent and the reinsurer. The complexity of the expressions 

derived in Theorems 1 to 6 precludes the possibility of solving the stated problems 

analytically but as we will see, finding the numerical solutions is straightforward. 
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For convenience, throughout this section we will use the notation m = L - M for the 

layer covered by the reinsurer. 

In order to exemplify these approaches, formulae (4.3), (4.4), (4.5), (4.9), (4.10) and 

(4.11), given by Theorems 1 to 6, were implemented in Mathematica under two ets 

of model assumptions: one with independent exponentiaUy distributed claim 

amounts and one with dependent claim severities, modelled by a Rotated Clayton 

Copula, CRC1(F(Wl), .. . F(Wk); 8), with F == Weibull(a, {3) marginals and 

dependence parameter 8. In this way, we are able to study also th effect of 

dependence on the choice of the parameters of an XL contract. In both cases we 

have assumed linear premium income function h(t) = u + c t, where u is the total 

initial reserve and c is the total premium rate per unit of time. 

A random sample of 500 simulated data points from a bivariate Rotated Clayton 

copula, with dependence parameter 8 = 1 and Weibull(2.12, 1.14) marginals is 

presented in Fig.l. One of the properties of this particular type of copula is that it 

has an upper tail dependence and therefore, in our context it model.s positive 

dependence between large claim amounts. We refer the reader to Kaishev and 

Dimitrova (2006), where the expressions for a multidimensional Rotated Clayton 

copula and its density, together with some further applications in modell ing 

dependence among claims severities, can be found. 

0.8 3 

0.6 
. .... ,' .. 

'. ~ .::. . '.. . " , :.':: 
',' ':' . -. .' .~: . " .. 

o 0.2 0.4 0.6 0.8 

u / 

Fig. 1. A random sample of 500 simulations from a bivariate Rotated Clayton 

copula, with dependence parameter fJ = 1, marginals F == Weibull(2.12, 1.14). 
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Being able to calculate P(TC > x, rr > x), E[R~ 1 (TC > x, T r > x)] and 

E[R~ 1 (TC > x, T r > x)], the 'individual' approach of the cedent and the reinsurer for 

finding optimal values of M and m, given h(t) = hc(t) + hr(t), can be formulated as 

follows. 

Problem 1. For fixed het), hc(t), hr(t) such that h(t) = hc(t) + hr(t), find 

max E[. 1 (TC > x, Tr > x)] 
M,m (4.12) 

subject to P(TC > x, T r > x) = p . 

The expectation E[.I (fC > x, rr > x)] in (4.12) is taken with respect to either R~ or 

Solving Problem 1 simply means that the cedent and the reinsurer would choose 

points (MC, mC) and (Mr, mr) respectively from their 'individual' efficient frontiers. 

The efficient frontier in our context is the set of dominant pairs of retention and 

limiting levels, (M, L), in the sense that the latter provide the highest return, 

measure by E[. 1 (TC > x, rr > x)], for a chosen level of risk, measure by 

1 - P(TC > x, Tr > x). 

The solution of Problem 1 is illustrated in Fig. 2, where it is assumed that the risk 

for each of the two parties of the XL re insurance contract is measured by the 

complement of the probability of their joint survival up to time x. The probability of 

joint survival up to x in (4.12) should be fixed by the cedent and the reinsurer to an 

acceptable value p according to their 'joint' level of risk aversion. 
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Fig. 2. E[R~ I (re > x, T' > x)] and E[R~ I (TC > x, T' > x)] respectively plotted 

against 1 - P(TC > x, T' > x) in the case of (a) and (b) - independent claim 

severities, Exp(1) distributed, m = 0.0, 0.1 , 0.2, ... , 1.5, with A = I, x = 2, 

h(t) = hc(t) +hr(t) = (1.55 -cr)t +crt, er = 0.5; (e) and (d) - dependent claim 

severities, CRCI(F(w}), .. . , F(Wk); fJ) distributed with F == Weibull(2.12, 1.14) 

marginais and (J = I, m = 0.0,0.05,0.1, ... , 0.8, with A = I, x = J, 

h(t) = hc(t) + hrCt ) = (1 .55 - er) t + er t, er = 0.775. 

It is obvious that, given het) = hcCt) + hr(t) and fixed level p, such an 'indiv idual' 

approach may not lead to one and the same optimal solution CM, m) inc the 

interests of the two parties are contradictory. As can be seen from Fig. 2 if 

P = p. = max M, m PCTc > x T' > X) = minM. m (l - PCTc > x T' > X)) the olution to 

Problem 1 will be one and the same for the two parties and will coincide with the 

solution of Problem 1 of Kaishev and Dimitrova (2006). Howev r, as seen from F ig. 

2 Ca) and Cb) in the case of Li.d. Exp (1) distributed claim amounts for instance, if 
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p = 0.603 (the vertical blue line in Fig. 2 (a) and (b)), the reinsurer's solution is any 

pair (M, 0), a solution which is unacceptable for the direct insurer and indeed, leads 

to its lowest expected profit for this level of risk. Tables 1 and 2 provide a list of 

solutions (MC, mC) and (Mr, mr) of optimality problem (4.12) for different levels p, 

in the cases of independent and dependent claims severities, illustrated in Fig. 2 Ca), 

(b) and (c), (d) respectively. 

Table 1. Optimal values of M and m, maximizing E[R~ I (TC > x, T' > x)] or 

E[R~ I (TC > x, Tr > x)] respectively subject to P(TC > x, T' > x) = 1 - p, in the case 

of independent claim severities, Exp(1) distributed,. with A = 1, x = 2, 

het) = hc(t) + hr(t) = (1.55 - Cr) t + Cr t, Cr = 0.5. 

maxM.m E[. I (re > x, T' > x)] p* = 0.551 P = 0.585 P = 0.603 p = 0.70 

(MC, mC) (0.3, 0.3) (0.2,0.4) (0.1,0.4) (0.1, 1.5) 

(Mr, mr) (0.3, 0.3) (0.8,0.2) (M,O) (0.1, 1.5) 

Table 2. Optimal values of M and m, maximizing E[R~ I (TC > x, T' > x)] or 

E[R; I (TC > x, T' > x)] respectively subject to P(TC > x, T' > x) = 1 - p, in the case 

of dependent claim severities, CRC1(F(w]), ... , F(Wk),' 8) distributed with 

F:= Weibull(2.12, 1.14) marginals and (J = 1 , with A = 1, x =1, 

maxM.m E[. I (rC > x, Tr > x)] p* = 0.509 p=0.515 p = 0.54 p = 0.56 

(MC, mC) (0.3, 0.5) (0.2, 0.4) (0.1,0.6) (0.1,0.8) 

(Mr, mr) (0.3, 0.5) (0.3, 0.4) (0.4, 0.3) (0.5, 0.2) 
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Fig. 3. SRc and SRr respectively plotted against 1 - P(TC > x, F > x) in the case 0/ 

(aJ and (b) independent claim severities, Exp(1) distributed, 

m = 0.0, 0.1, 0.2, ... , i .5, with A = i , x = 2, h(t) = hc(t) + hrCt) = (1.55 - cr) t + cl' t, 

C
r 

= 0.5; (c) and (d) - dependent claim severities, eR '(F(w,), ... , F(wk); 8) 

distributed with F = Weibull(2.i2, 1.14) marginals and 8 = 1, 

m = 0.0, 0.05, O.i, ... , 0.8, with A = 1, x = 1, h(t) = hc(t) + hrCt) = (1.55 - Cl') t + Cl' t, 

Cl' = 0.775. 

It has to be noted that, instead of solving (4.12), an alternativ 'individual' approach 

for each of the two parties could be to try and find their set of values (M' , m') which 

gives the highest 'return per unit of risk taken'. The latter means that (M' m') would 

provide the highest Sharpe ratio defined a 

SRC = E[R; I (TC > x, yr > x)] / (1 -p(Te > x, yr > x)) and 

SRr = E[R~ I (TC > x, r r > x)] / (l -P(TC > x, Tr > x)) respectively. However, this 

would again lead to possibly two different optimal solutions, (MC', mC 
') and 
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(Mr ' , mr '), for the direct insurer and the reinsurer respectively and ther for , it 

suffers the same drawback as Problem 1. For instance, in Fig. 3 (c) and (d) w s e 

that the combination (0.1, 0.5) gives the maximum value of SRc, wher as max SR' i 

achieved for (0.3 , 004). 

Another approach to the optimal remsurance problem, which giv s a common 

solution CM' m') for the two parties involved in an XL reinsurance arrang ment 

could be to use the total expected profit of the cedent and th r insurer a an 

optimization criterion for fmding values of M and m, given h(t) = hc(t) + hr(t). 

Namely, the optimality problem could be to find 

max {E[R~ I (TC > x, Tr > x)] + E[R: I (Te > x, T
r 

> x)]} 
M,m 

subject to P(Te > x rr > x) = p. 

2.9 
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0.55 060 

(a) 

065 

I -P(1~ >X. 1" >x) 
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~ , .• 5 

~ 
i;j" . .. .~;" 

S'" 
050 0.52 

(b) 

0.5'" 056 

I - p(r >x. 7· >x) 

Fig. 4. E[R~ I (Te > x, Tr > x)] +E[R~ I (Te > x, Tr > x)] plotted 

(4.13) 
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058 

against 

1 - P(Te > x, rr > x) in the case of (a) - independent claim severities, Exp(l) 

distributed, m = 0.0, 0.1, 0.2, ... , 1.5, with A = 1, X =2, 

h(t) = hc(l) + hr(t) = (1.55 - cr) t + Cr t, Cr = 0.5,' (b) - dependent claim severities, 

CRC/(F(w}), ... , F (Wk); fJ) distributed with F == Weibull(2.12, 1.14) marginals and 

fJ = 1, m = 0.0, 0.05, 0.1, ... , 0.8, with A=l , x = 1, 
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However, such a criterion seems not to be 'fair' with respect to both the cedent and 

the reinsurer, since as can be seen form Fig. 4, depending on the level p, (4.13) 

could be maximized due to maximizing the expected profit of only one of the two 

parties at the expense of the other. For example, when p = 0.603 (the vertical blue 

line in Fig. 4 (a» a solution of (4.13) is any point (M, 0), which is not adequate for 

the cedent, as has been already mentioned with respect to Problem 1, since it pays a 

non-zero reinsurance premium against zero reinsurance coverage. In Fig. 4 (a) and 

(b), the contradictory goals of maximizing p(Te > x, Tr > x) and maximizing 

E[R; \ (Te > x, yr > x)] + E[R~ \ (Te > x, yr > x)], as functions of M and rn, are also 

illustrated. 

In fact, optimality problem (4.13) does not explicitly manage the size of a possible 

loss and as such, does not prevent the two parties from taking very risky positions. 

One may consider adding an additional inequality condition which could limit the 

size of the Goint or individual) loss up to a certain level. The latter, however, would 

almost certaily make it much harder to find a jointly optimal solution even if it 

exists. In addition, criterion (4.13) does not explicitly take into account the 

infonnation of how the premium income h(t) is split between the two parties. The 

conditional on joint survival up to x, expected profits of the cedent, 

E[R; I (Te > x, yr > x)], and of the rein surer, E[R~ I (Te > x, T r > x)], can be used in 

defining the following criterion for optimally setting the XL levels M and L, which 

takes into account the way in which h(/) is split and transfers it into the ratio of the 

expected profits at time x. 

Problem 2. For fixed h(t), he(/), hr(/) such that h(t) = he(/) + hr(t) with hc(t) == a h(t), 

hr(t) == (1 - a) h(t), 0 :::; a:::; 1, i.e. given that at any I;;:: 0 the cedent retains 100 a % 

of het) and the rest 100 (1 - a) % is taken by the rein surer, find values of M and rn 

such that 
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E[R; I (TC > x, T r > x)] 
--------=q 
E[R; I (TC > x, T r > x)] 

(4.14) 

where 

hc(t) a h(t) a 
q = hr(t) = (1 - a) h(t) = 1 - a . 

(4.15) 

In order to be able to address this optimality problem, we will use the explicit 

formulae for the corresponding expected profits given in Theorems 3 to 6. First, we 

will prove the following theorem, which states the existence of a solution to 

Problem 3. 

Theorem 7. If the total premium income, h(t) = hc(t) + hr(t), is shared between the 

cedent and the reinsurer in such a way that hc(t) / hr(t) = q, for any t z 0, where 

q d? 0, then there always exist M d? ° and L 2 M, such that 

E[R; I (TC > x, Tr > x)] / E[R~ I (TC > x, Tr > x)] = q. (4.16) 

Proof. Varying 0 :s; a :s; 1 in (4.15) one can see that 0 :s; q :s; 00. Applying equations 

(4.5) and (4.9), established by Theorems 3 and 4 respectively, to express the 

numerator and the denominator of the ratio in (4.16), it is easy to verify that, given 

hit) / hr(t) = q for any t ~ 0, the expected profits of the two parties will be in the 

same proportion, q, if and only if 

( 

00 J,h(X)J,h(X)-WI rh(X)-WI-",-Wk-1 c _ 
2:;tk ... Jo Yk Ak(; Vh ... , Vk) 
k=l 0 0 0 

if/(w" ... , w,)dw, ... dW2dW,)1 

( 

00 J,h(X)J,h(X)-WI rh(X)-WI-",-Wk-1 _ _ 

2:,{k ... Jo Yk Ak(x; Vb ... , Vk) 
k=l 0 0 0 

(4.17) 

if/(w" ... , w,) dw, ... dW2 dW,) = q 
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Note that the numerator and the denominator in (4.17) depend on M and L through 

y%, Yk and Ak(x; Vb ... , Vk)· From their definitions, given in Theorem 1, it can be 

seen that y%, Yk and Ak(x; VI, •.. , Vk) are continuous functions of M and L, and hence 

both the numerator and the denominator in (4.17) are also continuous functions of 

M andL. 

Varying M ~ 0 and L ~ M, the left-hand side of (4.17) takes the whole range of 

values from 0 to 00, e.g. when M = 0, L = 00 we have y% = 0, 0 < Yk < 00 for every 

k = 1,2, ... and hence the left-hand side of (4.17) is zero. On the other extreme 

when M = L, we have Yk = 0, 0 < y% < 00 for every k = 1, 2, ... and hence the left­

hand side of (4.17) is infinity. Therefore, there should exist a pair M and L, for 

which the left-hand side of (4.17) will be equal to q and so, the ratio of the cedent's 

and the reinsurer's expected profits will be equal to q. This completes the proof of 

the theorem.D 

In summary, Theorem 7 states that there always exist a solution to Problem 2, 

however the following remarks should be made. 

Remark 1. The solution to Problem 2 may not be unique. There may exist a whole 

curve of combinations of M and rn, for which the ratio of the expected profits of the 

cedent and the reinsurer is equal to q. We will refer to it as the 'fair' curve. For an 

illustration of this phenomenon see the right panels in Fig. 5, 6 and 7, where the 'fair' 

curve is the intersection between the plane q = hc(t) / hr(t) = const and the surface 

E[Ri I (rC > x, rr > x)] / E[R~ I (rC > x, rr > x)] as a function of M and rn. 

Remark 2. The numerator and the denominator in (4.17) coincide with the 

unconditional expectations E[ y~x . lA· I B] and E[ y~x . lA· I B] which in fact are the 

unconditional expected aggregate claim amounts at time x of the cedent and the 

reinsurer respectively, assuming they both survive up to x. So, as is natural to 

expect, in order for the expected profits to be in proportion q, it is necessary for the 
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expected aggregate claim amounts to be in proportion q, since the premium income, 

h(t), has been shared in the same proportion. 
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Fig. 7. Solutions to the optimality Problem 2, in the case of dependent claim 

severities, CRCl(F(w}), .. . , F(Wk); 8) distributed with F == Weibull(2. 12, 1.14) 

marginals and 8 = 1, with A = 1, x = 1, h(t) = hc(t) + hr(t) = (1.55 - Cl') t + Cl' f, 

Cl' = 0.775, q = 1. 
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As can be seen from the right panels of Fig. 6 and 7, given a fixed split of the 

premium income q = he(l) / hr(l) = 1 for all l ~ 0, the value of m which lies on the 

'fair' curve in the case of dependence between the claim amounts (Fig. 7) may be 

either smaller or larger, compared to the value of m in the independent case (Fig. 6), 

depending on the retention level M. For example, for M = 0.2, in the case of LLd. 

claim severities m = 0.5, whereas in the case of dependent claim sizes m = 0.4, 

which means that the size of the layer covered by the reinsurer is smaller for the 

same fixed split of h(t). Our experience shows that the effect of dependence 

modelled through a copula function is complex and may be different for different 

choices of copulas, marginals and values of the dependence parameter (for further 

comments see Kaishev and Dimitrova 2006). 

Having a whole curve of solutions which provide for a 'fair' distribution of the 

expected profit at x, given joint survival up to x, the cedent and the reinsurer face the 

necessity of choosing one particular pair (M', m') from the 'fair' line. In such a 

situation, the most natural choice would be the pair of values of the parameters 

(M, m) with the highest probability of joint survival, Le. the solution of the 

following problem. 

Problem 3. For fixed h(t), he(t), hr(t) such that h(t) = he(t) + hr(t) with he(t) = a h(t), 

hr(t) = (1 - a) het), 0 ~ a ~ I, so that he(t) / hr(t) = q, find 

min [I - P(Te > x, Tr > x)] 
M,m 

E[R~ I (Te > x, T
r > x)] 

subject to E[R~ I (Te > x, T r > x)] = q. 

(4.18) 

It is clear that there always exists a unique solution to Problem 3. As illustrated in 

Fig. 8 (a) and (b), it is (0.2, 0.3) in the case of LLd. claim sizes and 

q = he(t)/ hr(t) = 1.05 t/0.5 t = 2.1, and (0.25,0.5) in the dependent case with 

q = he(t)/ hr(t) = 0.775 t /0.775 t = 1. 
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Fig, 8. Solutions to the optimality Problem 3, in the case of (aJ - independent claim 

severities, Exp(1) distributed, m = 0,0, 0.1, 0.2, ... , 1.5, with A = 1 x = 2, 

h(t) = hcCt) + hrCt) = (1.55 - cr) t + Cr t, Cr = 0.5, q = 2.1; (b) - dependent claim 

severities, CRCI(F(w 1)' .'" F(Wk); fJ) distributed with F = Weibull(2.12 1.14) 

marginais and fJ = 1, m = 0.0, 0.05, 0.1, ... , 0.8, with A = 1 x = 1, 

hCt) = hc(t) + hrCt) = (1.55 - cr)t + Cr t, Cr = 0.775, q = 1. 

4.5 Comments and conclusions 

In the present paper we have shown how the problem of optimal XL rein urance 

can be solved, combining specific risk and performance mea ure under a relativ \y 

general assumptions for the risk model. As a performance measur w hav defin d 

the expected profits at time x of the direct insurer and the reinsurer giv n their joint 

survival up to x and derived explicit expression for their numerical evaluation. Th 

results of Kaishev and Dimitrova (2006) for the probability of joint survival of th 

direct insurer and the reinsurer up to time x have been recalled and employ d a a 

risk measure. Three optimality problems have been defined and their olution have 

been numericall illustrated and discussed under the assumption of both dep ndent 

and independent claim severities. It is interesting to mention that th ef£ ct of 

dependence of the claim everities is rather complex and difficult to pr dict bas d 

on purely intuiti reasoning. Henceforth, the model pr sented here provid a v ry 
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promising framework for future exploration of the effect of dependence on the 

optimal choice of the parameters of reinsurance contracts. It should also be noted 

that inverse optimality problems in which the two parties set the retention and the 

limiting levels and seek for an optimal sharing of the total premium income between 

them can also be formulated and solved using the techniques and the formulae 

described in sections 4.3 and 4.4. 
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Chapter 5 

Reinsurance and ruin under dependence of the 
claim inter-arrival times 

Summary 

A framework which generalizes the model considered in Chapters 2, 3 and 4 is 

introduced. We first consider independent, non-identically Erlang distributed claim 

inter-arrival times. Then, we allow for modelling dependence between the claim 

inter-arrival times by assuming that the latter are Erlang distributed with a random 

shape parameter. Explicit expressions for the probability of joint survival of the 

cedent and the reinsurer up to time x and the expected profit at x, given joint 

survival up to x, are derived in both cases. 

5.1 Introduction 

The excess of loss (XL) re insurance model, considered in Chapter 3 and Chapter 4, 

incorporates any non-decreasing premium income function and continuous claim 

amounts, modelled by any joint distribution. The latter are relatively general 

assumptions, compared to the classical risk model of linear premium Income 

function and independent, identically distributed claim severities. However, under 

both models claim arrivals follows a homogeneous Poisson process with parameter 

A, i.e. the claim inter-arrival times are EXp(A) distributed. In this paper, we deviate 

from this classical assumption and study the case of independent, non-identically 

Erlang distributed claim inter-arrival times. Then, the latter assumption is 

generalized by introducing dependence between the claim inter-occurrence times. 

Such models have been considered recently by Ignatov and Kaishev (2007). Under 
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both risk models, we derive explicit expressions for the probability of joint survival 

of the cedent and the reinsurer up to time x and the expected profit at time x, given 

joint survival up to time x. It is shown, that these expressions can be used in finding 

the optimal parameters of an XL reinsurance treaty, considering optimality Problems 

similar to the ones defined in Chapters 3 and 4. 

It has to be noted that the two risk models specified here are not Sparre Andersen 

models since the premium income is assumed to follow a positive, non-decreasing 

function and claim severities are assumed to have any continuous joint distribution. 

Furthermore, the second model deals with dependence between the claim arrivals. 

As is well-known, the Sparre Andersen model assumes independent, identically 

distributed claim inter-occurrence times, with a general distribution (not necessarily 

exponential), and independent, identically distributed claim sizes with premium 

income modelled by a straight line. A great deal of research in the area of ruin 

theory has been performed under the Sparre Andersen framework and different 

results have been obtained in the case of independent ErIang(2) or Erlang(n) 

distributed claim inter-arrival times. Some recent examples include Dickson (1998), 

Gerber and Shiu (1998), Dickson and Hipp (1998, 2001), Cheng and Tang (2003), 

Sun and Yang (2004), Li and Garrido (2004), Wei and Yang (2004), Gerber and 

Shiu (2005) and Li and Dickson (2006). Recently, a general Sparre Andersen model 

with any inter-arrival claim density has been considered by Pitts and Politis (2007) 

and generalizations of the Gerber and Shiu (1997) results have been obtained. 

The paper is organized as follows. In the next section, the risk model with non­

identical, independent Erlang distributed claim inter-arrival times and the related 

notations are introduced. Then, formulae for the probability of joint survival and the 

expected profits are derived in sections 5.2.2 and 5.2.3 respectively. In section 5.3, 

the risk model with dependent claim inter-arrival times is defined and in sections 

5.3.2 and 5.3.3, expressions for the joint risk and performance measures are 

obtained. Section 5.4 discusses the problems which can be formulated in order to 
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find the optimal parameters of an XL re insurance treaty within the presented general 

risk models. 

5.2 The risk model with independent Erlang distributed 
claim inter-arrival times 

5.2.1 The model 

We consider an insurance portfolio, generating claims at some random moments of 

time. The claim severities are modeled by the continuous random variables W 1, W 2, 

... , W h'" with joint density function !/J(W., ... , Wk) and cumulative distribution 

function F WI""'W. (W., •.. , Wk) or briefly F(w., ... , Wk)' For convenience, we will 

introduce also the random variables Y 1 = W 1, Y 2 = W 1 + W 2, ... representing the 

partial sums of consecutive claim amounts. 

The claims inter-arrival times T., T2, ... are assumed independent, gamma distributed 

r.v.S with parameters gj E ~ and A > 0, i.e. Tj-Gamma(gj, A) with density 

.V· tK.-1 e-At 
• 1 2 

f, (t) = , z = , , .... 
T, f(g,) 

This means that the claim inter-occurrences are assumed to have an Erlang 

distribution, each with a shape parameter gi and rate A, i.e. T; - Erlang(gi). Denote by 

Tt = rb T2 = Tt + T2, ... the sequence of random variables representing the 

consecutive moments of occurrence of the claims. Let Nt = # {i: T; s t}. where # is 

the number of elements of the set {.}. It is assumed that the random variables W t. 

W 2, ... are independent of Nt• 

Then, the risk (surplus) process Rt, at time t, is given by Rt = h(t) - Y N,' where het) 

is a nonnegative, non-decreasing, real function, defined on !R+, representing the 
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aggregate premium income up to time t. The function h(t) may be continuous or not. 

If h(t) is discontinuous, we will define h-1(y) = inf {z : h(z) ~ y}. 

In this paper, we will be concerned with the case when the insurance company 

wants to reinsure its portfolio of risks by concluding an XL contract with a retention 

level M ~ ° and a limiting level L ~ M. In other words, the cedent wants to reinsure 

the part of each claim which hits the layer m = L - M, i.e. each individual claim Wi 

. - -c -r. -c 
is shared between the two partIes so that Wj = Wj + Wj, I = 1,2, ... , where W/ and 

W; denote the parts covered respectively by the cedent and the reinsurer. Clearly, 

we can write 

w~ = min(Wj, M) + max(O, Wj - L) 

and 

W; = min(L - M, max(O, W; - M)). 

Denote by r~ = W~, r~ = W~ + W~, ... and by ~ = W~, r; = W~ + W;, ... the 

consecutive partial sums of claims to the cedent and to the reinsurer, respectively. 

Obviously, Yj = Y~ + y;, i = 1,2, .. , . Under our XL reinsurance model, the total 

premium income h(t) is also divided between the two parties so that 

h(t) = hc(t) + hr(t), where hc(t), hr(t) are the premium incomes of the cedent and the 

rein surer, assumed also non-negative, non-decreasing functions on IR+. As a result, 

the risk process, Rh can be represented as a superposition of two risk processes, that 

of the cedent 

-c -c 
Rt = hc(t) - Y i;, (5.1) 

and of the reinsurer 

(5.2) 

i.e., Rt = R~ + R;. Note that the two risk processes R~ and j( are dependent through 
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the common claim arrivals and the claim severities W i, i = 1, 2, ... , as seen from 

(5.1) and (5.2). 

The moments, rC 
and T, of ruin of correspondingly the cedent and the reinsurer are 

defined as 

rC := inf {t: t > 0, 1<~ < O}, 

T := inf {t: t > 0, 1<; < O}. 

Under this model, explicit formulae for p(fC > x, T > x), x> 0, and for 

E[1<~ I (te > x, T > x)] and E[1<: I (tC > x, T > x)], are derived in the next two 

sections. 

In order to do this, we need to introduce the sequence Tt, T2, •.. of independent, 

Exp(A) distributed random variables with mean 1 / A, such that 

(5.3) 

Denote Tt = Tb T2 = Tt + T2, .••• Clearly, we have that Tg\+ ... +g; = ti, i = 1, 2, .... 

Recall that (5.3) follows from the fact that a Gamma (gj, A) distributed random 

variable, where gi is a positive integer, can be expressed as a sum of gj independent 

Exp(A) distributed random variables. 

Let us also introduce the random variables WJ, W2, ••• independent of Tb T2, ••. , such 

that 

W[= { 
Wi, 
0, 

if 1 = gt + ... + gj, i = 1, 2, 

otherwise 

If we then define 

W! = min(W[, M) + max(O, W[- L), 

W[ = min(L - M, max(O, W[- M)), I = 1,2, ... , 
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and 

Y[ = L~=l Wj, I = 1,2, ... , 

it is not difficult to see that we will have Yf ~ Y~ ~ ... and Y1 ~ Y2' ~ ... , both 

-e -r 
independent of Tb '2, ... , such that Y;l+ ... +g; = Yj and Y;l+ ... +g; = Yi' i = 1,2, ... , and 

- -e T'/' ye yr . - 1 2 
Y. = y. + 1, ;' = g + +g + g + +g' I - , , •••• 

" 1 .. , I 1'" I 

5.2.2 The probability of joint survival under independent 
Erlang inter-arrival times 

The following theorem gives the probability of joint survival of the cedent and the 

reinsurer up to time x, under the model of any non-decreasing premium income 

function, independent Erlang (gj) distributed claim inter-arrivals and continuous 

claim severities, modelled by any joint distribution. Within this framework, an 

explicit formula for the probability of non-ruin of the direct insurer only has been 

recently obtained by Ignatov and Kaishev (2007). 

Theorem 1. The probability o/joint survival o/the cedent and the reinsurer up to a 

finite time x under an XL contract with a retention level M and a limiting level L is 

p(fe > x, T > x) = 

where v j = min(i j' x), 
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o 
{ max (h;; 1 (YD, h;: 1 (j{) ) 

if 1 ~ j < gl, (gl ;: 1 ) 

if gl + ... + gi ~ j < gl + ... + gj+b i = 1, 2, ... 

,r "j -r 
J'j = ~i=1 Wi' wf = min(wi, M) + max(O, Wi - L), 

w~ = min(L - M, max(O, Wi - M)), j = 1, ... , I, and 

A,(x; Vb ... , v,), 1= 1,2, ... are the classical Appell polynomials A/(x) of degree I, 

defined by 

Ao(x) = 1, A~(x) = A'-1 (x), A,(v,) = o. 

Remark 1. It is straightforward to verify that in the case of gi = 1, i = 1, 2, ... 

formula (5.5) coincides with (3.4). 

Proof of Theorem 1. For the event of joint survival {te > x, t r 
> x} we have 

00 

{te > x, T > x} = n [{(h~l(y~) < fj) n (h~l(y~) < fj)} U {x < f j }] 
j=1 

00 

00 

= n [{max(h~I(Y~l+ooo+gJ, h;I(Y;l+ooo+gJ) < Tgl+ooo+gJ U {x < Tgl+ooo+gJ] (5.6) 
j=1 

Denote 

o 
Q'j = { ye 

gl+ ooo+gj 

if 1 ~ I < gl, (gl ;: 1 ) 

if gl + ... + gi ~ I < gl + ... + gi+b i = 1,2, ... 
(5.7) 

and 

if 1 ~ I < gl, (gl =1= 1 ) 
if gl + ... + gi ~ I < gl + ... + gi+b i = 1,2, 

(5.8) 
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Note that from (5.7) and (5.8) it follows that Qf *- 0 for I ~ g., whereas Q'i could be 

zero for 1 ~ I < gl + ... + gk+., k > 0 if for example the first k claims W., ... , W k are 

smaller than the retention level M and hence, Y;I = ~ = 0, ... , Y;I+ ... +gk = ~ = O. 

For the j-th event in (5.6) we have that 

for any s = 0, 1, ... , gj+l - 1, which is equivalent to 

for any gl + ... + gj ~ I < gl + ... + gj+!' Therefore, for any j = 1,2, 

g\+ ... +gj+l-l (5.9) n [(max(h~I(Qf), h;I(Qi)) < T1} U {x < T1}] • 

l=g\+ ... +gj 

In addition, we also have that for 1 ~ I < gl, (gl *- 1 ), 

{max(h~I(Qf), h;I(Qi)) < T/} U {x < T/} = 

{max(h~I(O), h;I(O)) < T/} U {x < T/} = {O < T/} U {x < T1} = n 

and hence 

gl-1 n [(max(h~I(Qf), h;I(Qi)) < T1} U {x < T/l] = n . (5.10) 
/=1 

Thus, from (5.6), (5.9) and (5.10) we obtain 

00 

{re> x, T> x} = n[{max(h~I(0), h;I(Qi)) < T/} U {x < T/l] (5.11) 
/=1 
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Note that (5.11) has the same form as equality (3.5). From (5.7), we see that the 

sequence 

can be alternatively expressed as 

o :s 0 :s ... :s 0 :s Y~l :s Y~l :s ... :s Y~l :s Y~1+g2 :s Y~1+g2 :s ... :s Y~1+g2 :s ... 
gl-l g2 g3 

or as 

(5.12) 

Similarly, from (5.8) the sequence 

can be expressed as 

o :s 0 :s ... :s 0 :s Y;l :s Y;l :s ... :s Y;l :s Y;1+g2 ~ Y;1+g2 ~ ... ~ Y;1+g2 ~ ... 
~-l ~ ~ 

or as 

(5.13) 

Note that from (5.12) and (5.13) we see that both sequences of random variables (!r 

and Q'i, 1= 1, 2, ... , are independent of Tt, 1= 1,2, ... and are also non-decreasing. 

Hence, (5.11) has the same form as equality (3.5) and the random variables (!r and 

Q'i, I = 1,2, ... fulfill the same requirements as Yj and Yj, j = 1, 2, ... from (3.5). 

Therefore, from (5.11), (3.5) and (3.13) it follows that 
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(5.14) 

where 

( ° ~ W}, ... , ° ~ Wt ) 
2)/= , 

Wl + ... + Wt ~ h(x) 

AI(x; v}, ... , VI) are classical Appell polynomials A/(x) of degree I, and 

- . [- ] - - (h-l( C) h-1(,,r)) C - "j C ,,r - "j r' - 1 2 1 vj=mmzj,x,zj-max c Yj' r Yj 'Yj-","i=lWj,Yj-","i=lwi,J- , , ... , . 

From the definition (5.4) it follows that the sequence 

can be expressed as 

or 

0,0, ... ,0, art. 0, ... ,0, ar2,0, ... ,0, 

Hence, 

dFw W(Wl, ... , Wt) = 1>.... 1 

dFO,O, ... ,O,W
I
,O •...• O,W2.0 •... ,O •...• WbO •...• o (0, 0, .'" 0, lilt, 0, ... , 0, ... , 

g,-I g, g, 1-(g,+ ... +g.)+1 gl-l g2 (5.15) 
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and Z j can be expressed as 

Z. = { max(h~I(O), h;ICO») 
} (h-1C- C

) h-1C- r») max c Yi' r Yi 
(5.16) 

if I ~ j < gb (gl =1= I ) 

if gl + ... +gi~j<gl +···+gi+b i= 1,2, ... 

j = 1,2, ... , I. 

So, in view of(5.15) and (5.16), we can re-write formula (5.14) in the terms of the 

original claim severities as follows 

(5.17) 

where 

The asserted formula (5.5) now follows, appropriately rewriting the multiple integral 

in (5.17) and noting that and that 

AI(x; Vb ... , VI) = A/(x; 0, ... ,0) = xl/I!, for 1 ~ I < gl.D 

In the next section, we give expressions for the expected profit of the cedent and the 

reinsurer respectively under the risk model considered here. 
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5.2.3 The expected profit given joint survival under 
independent Erlang inter-arrival times 

In this section, we will present some explicit results for the performance measures of 

the direct insurer and the reinsurer, as defined in Chapter 4, section 4.3, under the 

risk model described in section 5.2.1. Following the notation introduced in section 

4.3 and section 5.2.1, we will define the profits at time x of the cedent and the 

re in surer, correspondingly as the values, 'R~ and k:, of their risk processes, given by 

(5.l) and (5.2), at time x. Denote by E[k~ I (re> x, t r 
> x)] the expected profit of 

the cedent at time x, given the two parties' joint survival up to time x. Similarly, 

E[ k: I (te > x, rr > x)] denotes the reinsurer's expected profit at time x, given its 

and the insurer's joint survival up to time x. 

The following two theorems give explicit expressions for E[ k~ I (r > x, T > x)] 

and E['R: I (re> x, T > x)] correspondingly. 

Theorem 2. The expected profit of the cedent at time x, under an XL contract with a 

retention level M and a limiting level L, given the joint survival of the cedent and 

the reinsurer up to time x, is 

A,(x ; v" ... , v,) if/(w" ... , Wt) d Wk ... d W, d W1 ) / 
(5.18) 

(
1 + L A' ~ + f. g, ''''f;' -1 A' [<X) f.h<X)-W, ... [<X)-W,-... -;.._' A ,( 

1=1 k=1 I=gl+ ... +gk 
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where 5'%, v}, j = 1, ... , I and A,(x; VI> ... , VI) are defined as in Theorem 1. 

Proof of Theorem 2. Denote by lA and 18 the indicator random variables of the 

events A = {rC > x} and B = {f' > x}. In view of the definitions (5.1) and (5.2) of 

the risk processes R~ and i?;, expression (5.5) for the probability of joint survival and 

its derivation, we can express the unconditional expectation E( i?: . lA' 18) as 

(5.19) 

The unconditional expectation (5.19) can be rewritten as 

E(i?:.IA .18 ) = e-h hc(x) 

(
1 + 1: AI ~ + fg'+"I;-'-' AI [(Xl[(Xl-W, ... [(Xl-ii'-"'-W'-'AI(X; 

1=1 k=1 '=gl+·.·+gk 

(5.20) 

For the conditional expectation E[i?: I (rC > x, T > x)] we have 

[-CI(-C ;;.,r )] E(k:.IA·IB) 
E Rx T >x, 1 >x = ------

peY >x, T >x) 
(5.21) 
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Substituting (5.20) and (5.5) in (5.21), and after cancelling appropriate terms, 

recalling the notation L7=1 wf = Y~, we obtain the assertion of the theorem.D 

Similarly, for the expected profit of the reinsurer we have 

Theorem 3. The expected profit of the reinsurer at time x, under an XL contract 

with a retention level M and a limiting level L, given the joint survival of the cedent 

and the reinsurer up to time x, is 

E[ i?: I (re > x, T > x)] = 

hr(x) - [i: g'+--L"-' AI [(XI [(XI-W, ... 1h(XI-W,-----ii •. ,y; 
k= I I=g, + ... +gk 

AI(x; ii" ... , iiill//(;h, ... , Wk) dWk ... dW2 d W, ) / 

[

1 + ~ AI ;; + i: g'+--L"-' AI [(XI [(XI-W, ... [(XI-W,- ___ -w,., A
I
( 

1= I k= I I=g, + ... +gk 

where Yk' Vj, j = 1, ... , I and AI(x; v., ... , VI) are defined as in Theorem 1. 

(5.22) 

Proof of Theorem 3. The proof follows the same lines of reasoning as in Theorem 

2, replacing the premium income and the claims to the cedent with the ones to the 

reinsurer.D 

In the next section, we will look at a generalization of the risk model described in 

section 5.2.1 to the case of dependent inter-arrival times. 

5.3 The risk model with dependent claim inter-arrival 
times 
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5.3.1 The model 

The risk model, as specified in section 5.2.1, can be further generalized by 

introducing a dependence between the Erlang claim inter-arrival times, 

Ti - Erlang(gi), i = 1, 2, ... through a randomization of the shape parameters gj. This 

can be done as follows. 

Recall that gj, i = 1, 2, ... are positive integers. Then, consider the integer-valued 

random variables Gb G2, ... , independent of Tb 1'2, ... , with joint probability mass 

function 

(5.23) 

Now, it is not difficult to see that the claim inter-occurrence times 1'1 = I1 + ... + IG1, 

1'2 = TG1+l + ... + IG1+G
2

, ... are dependent random variables. For instance, we have 

that 

1 
E(T2) = E(E(T21 G2» = E('I) E(G2) = - E(G2), 

A 

E(TI 1'2) = E(('I + ... + IGJ (IG1+I + ... + IG1+G2)) = 

E(E(('I + ... + TGJ (IG1+I + ... + TG1+GJ I Gb G2)) = 

~L:Pgbg2 E(('I + ... + Tg) (lg1+1 + ... + Ig1+g2)) = 
gl g2 

so that 

Cov(TI' 1'2) = 
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Hence, 

Corr(Tl, T2) = 

Corr(G1 G2)· 

since 

Var(Tl) = Var(E(Tl + ... + TG\ I G1)) + E(Var(Tl + ... + TG\ I G1)) = 

Var(E(Tl) G1) + E(Var(Tl) G1) = 

In principle, a large class of multivariate discrete distributions can be used to 

introduce dependence in the model through (5.23), e.g. the Dirichlet-compound 

multinomial distribution (see Johnson, Kotz and Balakrishnan 1997, p.80), the 

multivariate logarithmic series distribution (see Johnson, Kotz and Balakrishnan 

1997, p.158), and the multivariate P6lya-Eggenberger distributions (see Johnson, 

Kotz and Balakrishnan 1997, p.200), subject to appropriate 'zeros-truncation' as 

described in Johnson, Kotz and Balakrishnan (1997, p.21). As an example we will 

consider the 'zeros-truncated' multinomial distribution (MDzT) of Ignatov, Kaishev 

and Krachunov (2001). 

The joint probability mass function of the MDzT distribution with parameters m and 

db ... , ds is defined as 

d gs - 1 (1 - d - - d )m+s-g\-... -g, 
sI'" s , 
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for gi ~ 1, i = 1, 2, "" s, positive integers, gl + '" + gs :s;; m + sand 

P(G1 = gb ... , Gs = gs) = 0 otherwise, where m ~ 1 is a positive integer and 

di E R+, i = 1, ... , s, are such that d1 + ... + ds < 1. 

We have 

E( Gz) = 1 + m dz, 

Hence, 

1 
- (m ((m - 1) dz + 1) d1 + m dz + 1 - (1 + m d1)(1 + m dz)) = 
A,z 

and 

Obviously, after the 'zeros-truncation' the covariance matrix {Cov(Gj , Gj»Y >-1 
I,j-

coincides with the covariance matrix of the standard (non-truncated) multinomial 

distribution. 

The joint probability mass function of the MDZT distribution with parameters 

m = 15 and d l = dz = 1/3 is plotted in Fig. 1. 
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(a) (b) 

Fig. 1. The joint probability mass function of the MDZT distribution for: (aJ -

m = 15 and d1 = d2 = 1/ 3; (b) - m = 15 and d1 = d2 = 1 /10,' 

5.3.2 The probability of joint survival under dependent inter­
arrival times 

Under the general risk model, specified in the previous section, which involves 

dependence between the claim sizes as well as between the claim inter-occurrence 

times, an expression for the probability of joint survival of the cedent and the 

reinsurer can be obtained. Within this more general framework, an explicit formula 

for the probability of non-ruin of the direct insurer only is derived in Ignatov and 

Kaishev (2007). 

Following the notations, introduced In sections 5.2.1 and 5.3 .1, we can state the 

following theorem. 

Theorem 4. The probability of joint survival of the cedent and the reinsurer up to a 

finite time x under an XL contract with a retention level M and a limiting level L is 
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( 2:
00 2:k 2: lh(X)lh(X)-Wl lh(X)-Wl- ... -Wk-l 

-.b 1 + p Al A ( . e gl> ... ,gs· • • I X , 

k=1 1=1 (gl> ... ,gs)E{is(l) 0 0 0 (5.24) 

° 
{ max (h~ 1 CYf), h;: 1 CV;») 

if 1 ~ j < g., (gl * 1 ) 

if gl + ... + gi ~ j < gl + ... + gi+b i = 1, 2, 

wf = min(wj, M) + max(O, Wi - L), 

W~ = min(L - M, max(O, Wj - M», j = 1, ... , I, and 

AI(x; v., ... , VI), / = 1, 2, ... are the classical Appel/ polynomials AI(x) of degree I, 

defined by 

Proof of Theorem 4. The proof follows using the same reasoning as in the proof of 

Theorem 1, conditioning on the random variables Gb G2, ••• and applying the total 

probability fonnula.D 

5.3.3 The expected profit given joint survival under 
dependent inter-arrival times 

The following two theorems give explicit expressions for E[ k~ I (fC > x, T > x)] 

and E[k: I (fC > x, T > x)] correspondingly, under the general risk model with 

dependent claim arrivals, introduced in section 5.3 .1. 
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Theorem 5. The expected profit of the cedent at time x, under an XL contract with a 

retention level M and a limiting level L, given the joint survival of the cedent and 

the reinsurer up to time x, is 

E[R~ I (rC > x, T > x)] = 

( 

00 k Ilh(X)lh(X)-WI lh(X)-WI- ... -Wk-1 -c 
hc{x) - L L L Pgj, ... ,gs A ... Yk 

o 0 0 k= 1 1= 1 (gj, ... ,gs)E{}s(/) 

(5.25) 

( 

00 Ik lh(X)lh(X)-WI lh(X)-WI- ... -Wk-1 
1 + ~ ~ P Al ... A ( L..J L..J gl, .. ·,gs I o 0 0 k= 1 1= 1 (gJ, ... ,gs)E{}s(l) 

where y~, (Js(l), Vj, j = 1, ... , I and AI{x; Vb ... , VI) are defined as in Theorem 4. 

Proof of Theorem 5. Follows the same line of conclusions as in the proof of 

Theorem 2.0 

Theorem 6. The expected profit of the cedent at time x, under an XL contract with a 

retention level M and a limiting level L, given the joint survival of the cedent and 

the reinsurer up to time x, is 
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E[k: I (rC >x, T> x)] = 

h x _ (~ ~ ~ 1\.1 Lh(X)Lh(X)-WI ... Lh(X)-WI-... -wk-1 -
r() L.JL.J L.J Pgb ... ,g, ~ 

o 0 0 k=1 1=1 (gb ... ,g,)E{i,(l) 

(5.26) 

(
1 + ~ ~ ~ I\.ILh(X)Lh(X)-WI ... Lh(X)-WI-".-Wk-I

A L.J L.J L.J Pgb .. ·,g, l( 
o 0 0 

k= 1 1= 1 (gb ... ,g,)E{i,(/) 

where y~, gs(l), Vj' j = 1, ... , I and Al(x; Vb ... , VI) are defined as in Theorem 4. 

Proof of Theorem 6. Follows the same line of conclusions as in the proof of 

Theorem 3.0 

5.4 The optimal XL reinsurance contract 

The results obtained in Theorems 1 to 6 can be used to find the optimal values of the 

parameters of an XL reinsurance contract, considered under the risk models 

described in section 5.2.1, (Ml), and section 5.3.1, (M2). Furthermore, any of the 

optimality Problems 1 and 2 defined in section 3.3, and Problems 1, 2 and 3 defined 

in section 4.4, can be re-formulated here within the framework of both models (MI) 

and (M2), as follows. 

Problem 1. For fixed het), hc(t), hr(t) such that het) = hc(t) + hr(t), find 

max p( rC 

> x, T > x) . 
L,M 

Problem 2. For fixed M, Land het), find 
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max p(rC 
> x, T > x) . 

hc(t), 

h(t)=hc(t)+hr(t) 

Problem 3. For fixed h(t), hc(t), hr(t) such that h(t) = hc(t) + hr(t), find 

max E[.I (rC > x, T > x)] 
M,m (5.27) 

subjectto p(Y > x, T > x) = p. 

Problem 4. For fixed het), hc(t), hr(t) such that het) = hc(t) + hrCt) with hc(t) = a h(t), 

hr(t) = (1 - a) h(t), 0 :s; a :s; 1, i.e. given that at any t ~ 0 the cedent retains 100 a % 

of het) and the rest 100 (1 - a) % is taken by the reinsurer, find values of M and m 

such that 

E[k: 1 (rC > x, T > x)] 
---=-~----- = q 
E[k: I (rC > x, T > x)] 

(5.28) 

where 

hc(t) a h(t) a 

q = hr(t) = (1 - a) het) = 1 - a . 
(5.29) 

Problem 5. For fixed het), hc(t), hr(t) such that h(t) = hc(t) + hr(t) with hc(t) = a h(t), 

hr(t) = (1 - a) het), 0 :s; a ~ 1, so that hcCt) / hr(t) = q, find 

min [1 - p( rC 

> x, T > x)] 
M,m 

. E[k:l(rc>x,T>x)] 
subject to = q . 

E[ k: 1 (rC > x, T > x)] 

(5.30) 

Due to the high complexity of explicit formulae (5.5), (5.18), (5.19) and (5.24), 

(5.25), (5.26), solving Problems 1-5 numerically seems to be the only feasible 

approach. 
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5.5 Comments and conclusions 

In this paper, we introduce two models, (Ml) and (M2), which generalize the 

classical assumption of Poisson claim arrivals. The first model, (M!), assumes that 

claims arrive at random moments Tj, such that Tj = Tj - Tj- l -- Erlang(gj), 

i = l, 2, ... with possibly different shape parameters gj, i = l, 2, .... In the second 

model, (M2), we introduce dependence between the claim inter-arrival times by 

randomizing the Erlang parameters gj through a multivariate integer-valued 

distribution. 

An excess of loss re insurance with a retention and a limiting level is considered, and 

explicit expressions for the probability of joint survival and the expected profits of 

the direct insurer and the reinsurer are obtained under both models (M!) and (M2). 

It is shown how these risk and performance measures can be used in optimally 

setting the parameters of an XL reinsurance treaty. 
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Chapter 6 

Conclusions and Future Research 

In this thesis we have considered general risk models which incorporate dependence 

between claim amounts and/or dependence between the claim inter-arrival times. 

Under such models, we have addressed the problem of (non-) ruin within a finite­

time horizon of an insurance company. 

In Chapter 2, we have provided an overvIew of some existing approaches to 

evaluating the probability of finite-time ruin in the classical framework. We have 

investigated the use of the method of local moment matching for discretizing the 

individual claim amount distribution and then combined it with the formulae of 

Picard and Lerevre (1997) and Ignatov and Kaishev (2000) in order to evaluate ruin 

probabilities for continuous claim amount. Further, under a more general risk model, 

an extension of the formula of Ignatov and Kaishev (2000) to the case of continuous 

case has been obtained and its numerical performance has been investigated. 

In Chapter 3, we have derived explicit expressions for the probability of joint 

survival up to time x of the cedent and the rein surer, under an XL reinsurance 

contract with a limiting and a retention level, under the reasonably general 

assumptions of the risk model of Chapter 2. We have stated some optimality 

problems, and have shown how the latter results can be used to set the limiting and 

the retention levels in an optimal way with respect to the probability of joint survival 

or how, for fixed retention and limiting levels, the results can yield to an optimal 

split of the total premium income between the two parties. This methodology was 

illustrated numerically on several examples of independent and dependent claim 

severities. 
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Under a general risk model, in Chapter 4, we have demonstrated how the problem of 

optimal reinsurance can be solved, combining the expected profits at time x of the 

direct insurer and the reinsurer, given their joint survival up to x, and the probability 

of joint survival of the direct insurer and the reinsurer up to the finite time horizon x. 

Explicit expressions have been derived and used for their numerical evaluation. We 

have introduced an efficient frontier type approach to setting the limiting and the 

retention levels, based on the probability of joint survival considered as a risk 

measure and on the expected profit given joint survival, considered as a 

performance measure. Several optimality problems are defined and their solutions 

are illustrated numerically, both for the case of dependent and independent claim 

severities. 

In Chapter 5, we further generalized the risk model considered in Chapters 2, 3 and 

4. We first looked at the case of independent, non-identically Erlang distributed 

claim inter-arrival times and then, we allowed for modelling dependence between 

the claim inter-arrival times by assuming that the latter are Erlang distributed with a 

random shape parameter. Explicit expressions for the probability of joint survival of 

the cedent and the reinsurer up to time x and the expected profit at x, given joint 

survival up to x, were obtained in both cases. 

The research presented in the current thesis forms part of a continuous research 

programme which has led to a number of publications in the area of Actuarial 

Science and Insurance. These include the papers by Kaishev and Dimitrova (2007), 

Kaishev, Dimitrova and Haberman (2007), Dimitrova, Kaishev and Penev (2008), 

Kaishev, Dimitrova, Haberman and Verrall (2007), Kaishev, Dimitrova and Ignatov 

(2007). 

Future research may look at an even more general risk model where cross-over 

dependence between the claim inter-occurrence times and claim sizes is allowed for. 

A model which incorporates such dependence but assumes that the claim amounts 
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are Li.d. random variables has recently been considered by Albrecher and Boxma 

(2004). 

Another possible direction of expanSIOn of the risk model is to introduce a 

deterministic or stochastic interest in the risk model and look for appropriate 

generalization of the presented results. 
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