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ON DUALITY INDUCING AUTOMORPHISMS AND SOURCES OF

SIMPLE MODULES IN CLASSICAL GROUPS

RADHA KESSAR

1. Introduction

Let p be a prime number, k an algebraically closed field of characteristic p, P a finite

p-group and W an indecomposable kP -module. Given a finite group G and an indecom-

posable kG-module V , we say that (P,W ) is a vertex source pair for (G,V ) if there is an

inclusion P ↪→ G of groups, under which P is a vertex of V and W is a source of V .

Endo-permutation modules occur frequently as sources of simple modules of finite

groups. For instance, every simple module of a p-soluble group has endo-permutation

source; if V is a simple kG-module, where G is a finite group, lying in a nilpotent block

of kG, then V has endo-permutation source, and any 2-block of a finite group whose

defect groups are isomorphic to the Klein 4-group posesses a simple module with endo-

permutation source.

By results of T. Berger-W.Feit and independently of L. Puig, the proof of which invokes

the classification of finite simple groups, if W is an endo-permutation kP module which

occurs as a source of a simple kG-module, for a p-soluble group G, then the class of W is

a torsion element in the Dade group of P . Further, Mazza [8] has shown that any endo-

permutation kP -module whose isomorphism class is a torsion element of the Dade group of

P and which satisfies certain structural constraints identified by Puig does occur as source

of some simple module of some p-nilpotent group. By contrast, the question of which

endo-permutation modules occur as sources of simple modules in simple, quasi-simple or

almost simple groups has not been extensively studied.

The smallest interesting case is the case where P is elementary abelian of rank 2, since

if P is a finite cyclic group, there are no non-torsion endo-permutation kP -modules. In

this paper, we study two situations wherein simple modules of groups related to the finite

classical groups having vertex source pairs (P,W ), where P is elementary abelian of order

p2 and where W is endo-permutation occur and we prove that in both cases, W must

be a self-dual module and hence corresponds to an element of order at most 2 in the

corresponding Dade group.

Notation- Let H be a finite group. For a finite dimensional kH-module M , we denote

by M∨ the contragradient dual of M , that is M∨ is the kH-module given by M∨ :=

Homk(M,k) as k-vector space, and h.α(m) = α(h−1m), for α ∈M∨, h ∈ H and m ∈M .

If φ : G → H is an isomorphism of groups, and M is a kG-module, we will denote by
φM the kH-module Resφ−1M .

For a finite p-group, we denote by Dk(P ) the Dade group of P over k. For the defintion

and basic properties of the Dade group, we refer to [12]. Here, we merely recall that if
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W is an indecomposable kP -module, with vertex P , then the (isomorphism class) of W

defines a unique element [W ] of Dk(P ), the identity of Dk(P ) is [k], and that the inverse

of the element [W ] in Dk(P ) is the element [W∨]. In particular, if W is self-dual, then

[W ] has order at most 2 in Dk(P ).

Theorem 1.1. Let L be a finite symmetric group Sn or one of the finite classical groups

GLn(q), GUn(q), O2n+1(q), O
+
2n(q), O−2n(q), or Sp2n(q), where q is a prime power. Let G

be a subgroup of L containing the derived subgroup of L and let Z be a subgroup of Z(G).

Let P be an elementary abelian group of order p2, and let W be an indecomposable endo-

permutation kP -module. Suppose that there exists a simple kG/Z module with (P,W ) as

vertex source pair. Then W ∼= W∨, and if p is 2, then W ∼= k.

Before stating our next result, we recall the following standard facts from modular

representation theory. Let G be a finite group and N a normal subgroup of G such that

G/N is a p-group. Suppose that U is a simple projective kN -module whose isomorphism

class is stable under the conjugation action of G on N . Then the kN -module structure

on U extends uniquely to a kG-module structure. The kG module U is simple, and if

(P,W ) is a vertex source pair of (G,V ), then P is isomorphic to G/N and W is an

endo-permutation kP -module.

The question of whether any W that appears in the above context is torsion in the Dade

group of P has been investigated by Salminen in [10] and [11] for odd primes p. He has

reduced the problem to the case where P is elementary abelian of order p2 and where N

is a central p′-extension of a projective special linear or unitary group, or p = 3 and N is

a central extension of the simple group D4(q).

In this paper, we prove that groups of type A do not pose a problem.

Theorem 1.2. Let p be an odd prime. Let G be a finite group with a normal subgroup N

such that [G : N ] is elementary abelian of order p2. Suppose that N is a quasi-simple group,

with Z(N) a p′-group and such that N/Z(N) is isomorphic to PSLn(q) or to PSUn(q)

where q is a prime power not divisible by p. Suppose that U is a simple projective kN -

module which is G-stable and let (P,W ) be a vertex source pair for the kG-module U .

Then W ∼= W∨.

Combining the above with Salminen’s work thus proves that if p ≥ 5, then for a finite

group G, and a simple kG-module U with vertex-source pair (P,W ) such that ResGN (U)

is a simple projective kN -module for some normal subgroup N of p-power order, [W ] is a

torsion element in Dk(P ). We remark that this result is a special case of a long standing

conjecture on the finiteness of the number of source algebra equivalences of nilpotent

blocks of finite groups, a proof of which has been recently announced by Puig.

The proof of both Theorem 1.1 and Theorem 1.2 is based on the following elementary

proposition.

Proposition 1.3. Suppose that G is a finite group, M is an indecomposable kG module

with vertex source pair (P,W ) such that P is elementary abelian of order p2 and W is

an endo-permutation kP -module. If there exists an automorphism φ : G → G such that
φM ∼= M∨ as kG-modules, then W is self dual and if p = 2, W = k.

Theorem 1.1 is an easy consequence of the above proposition, once one observes that

the symmetric and classical groups have automorphisms which invert conjugacy classes.
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However, as will be explained in more detail later on in the paper, the proof of Theorem

1.2 is somewhat more subtle and relies on the following rather curious fact, which we state

below.

Notation- For our next result, G will denote either the general linear group GLn(q) or

the general unitary group GUn(q) for some prime power q.

If G = GLn(q) we set ε = 1 and if G = GUn(q), we set ε = −1. If G = GLn(q), set

N := SLn(q) and if G = GUn(q), set N = SUn(q). If q is a prime power not divisible by p

such that q = q′p for some q′, then if G = GLn(q), we let φ : G→ G be the automorphism

(aij)→ (aq
′

ij) and if G = GUn(q), we let φ : G→ G be the automorphism (aij)→ (aq
′

ij)
t−1

.

Note that since N is φ-stable and G/N is cyclic, any subgroup I of G containing N is

φ-stable, and we have a natural inclusion of groups I o 〈φ〉 ≤ G o 〈φ〉 . This is not, in

general, a normal inclusion.

Theorem 1.4. With the notation above suppose that p is an odd prime such that p|q − ε
and p|n. Suppose further that q = q′p for some prime power q′. Let c be a block of kN

with central defect group and let I(c) = StabG(c). If c is stable under φ, then I(c) o 〈φ〉
is a normal subgroup of Go 〈φ〉.

The paper is organized into six sections. In section 2, we prove Proposition 1.3 as well

as some other general results which are needed for the proofs of the main theorems. In

section 3, we will prove Theorem 1.1. Section 4 contains some block theoretic results which

will be needed for the proof of Theorem 1.2. In section 5, we recall some facts from the

representation theory of the finite general linear and unitary groups and their commutator

subgroups and prove Theorem 1.4. Theorem 1.2 is proved in the final section.

Acknowledgments. We thank Cedric Bonnafé and Markus Linckelmann for many

helpful discussions and suggestions and the referee for a careful reading of the manuscript.

2. A criterion for torsion

Notation- We keep the notation of the introduction. In addition, let (K,O, k) be a

p-modular system.

Definition 2.1. Let H be a finite group and let V be a kH-module. Then V is automorphi-

cally dual if there exists an automorphism φ : H → H such that φV ∼= V ∨ := Homk(V, k).

Clearly, any self-dual module is automorphically dual. Our results are based on the

observation that the converse holds for endo-permutation modules for elementary abelian

p groups of order p2.

Lemma 2.2. Let P be an elementary abelian p-group of order p2 and let W be an in-

decomposable endo-permutation kP -module with vertex P . If W is automorphically dual,

then W is self-dual.

Proof. Let φ : P → P be an automorphism of P such that φW ∼= W∨. The result is

an easy consequence of Dade’s classification of of endo-permutation modules for abelian

p-groups [2, 10.1 and 12.5]. By this classification, if p = 2, then W is isomorphic to

Ωn(P ) for some uniquely determined n ∈ Z whence φW is isomorphic to Ωn(k) and W∨
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is isomorphic to Ω−n(P ). But we are given that φW ∼= W∨. Hence n = 0. Now suppose

that p is odd. Then

[W ] = [Ωn(k)⊗k V ]

for some n ∈ Z and some self-dual kP -module V , with n and [V ] uniquely determined by

W whence

[ φW ] = [Ωn(k)⊗k φV ]

and

[W∨] = [Ω−n(k)⊗k V ∨] = [Ω−n(k)⊗k V ].

Thus, φW ∼= W∨ implies that n = 0 thanks to the uniqueness of n and [V ].

�

Lemma 2.3. Let M be an indecomposable kG module and let (S, V ) be a vertex-source

pair for M . Then (S, V ∨) is a vertex-source pair for M∨.

Proof. Let H be a subgroup of G and let U be a kH-module such that M is a summand

of IndGH(U). Then M∨ is a summand of (IndGH(U))∨ ∼= IndGH(U∨). The result follows �

Lemma 2.4. Suppose that G is a finite group, M is an indecomposable kG module with

vertex source pair (P,W ). If M is automorphically dual, then so is W .

Proof. Let φ : G→ G be such that φM ∼= M∨. By Lemma 2.3, (P,W∨) is a vertex source

pair for the kG-module M∨. On the other hand, by transport of structure, ( φP, φW )

is a vertex source pair for the kG-module φM . Thus, by hypothesis, both (P,W∨) and

( φP, φW ) are vertex source pairs for M∨. So, there exists g ∈ G such that P = gφP

and W∨ ∼= gφW . The result follows by considering the automorphism (y → gφ(y)g−1) of

P . �

Now we can prove Proposition 1.3:

Proof. By hypothesis, M is automorphically dual. Hence by Lemma 2.4, W is automor-

phically dual. The result follows by Lemma 2.2 �

3. Proof of Theorem 1.1

We keep all the notation of the previous sections.

Lemma 3.1. Let G be a finite group and τ : G → G an automorphism such that τ(g) is

conjugate to g−1 for all g ∈ Gp′. If N is a normal subgroup of G which is τ -stable, then

every simple kN -module is automorphically dual.

Proof. First, letM be a simple kG-module amd let φM be the Brauer character ofM . Then

by hypothesis, the Brauer character φ τM of τM satisfies φ τM (g) = φM (g−1) = φM∨(g) for

all g ∈ Gp′ . Hence M is automorphically dual. Now, let U be a simple kN -module and let

M be a simple kG-module such that U is a summand of ResNM . Then U∨ is a summand

of ResNM
∨ and τU is a summand of ResN

τM . But as shown above, τM ∼= M∨, hence
τU and U∨ are covered by the same simple kG-module. Thus there exists g ∈ G such that
gτU ∼= U∨. The result follows by considering the automorphism y → gτ(y)g−1 of N .

�
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Lemma 3.2. Let L be a finite symmetric group Sn or one of the finite classical groups

GLn(q), GUn(q), O2n+1(q), O
+
2n(q), O−2n(q), or Sp2n(q), where q is a prime power. Let

G be a subgroup of L such that [L,L] ≤ G and let Z be a central subgroup of G. Every

simple module kG/Z-module is automorphically dual.

Proof. First, note that since Z(G) is cyclic, it suffices to show that every simple kG-module

is automorphically dual. In each case above, there is an automorphism τ : L → L such

that τ(x) is conjugate to x−1 for all x ∈ L: If L is a symmetric group, then take τ to

be the identity map. If L is an orthogonal group, or L is a symplectic group Sp2n(q),

where q is a power of 2, then by results of Gow (Lemma 2.1 and Lemma 2.2 of [6]) and

Wonenburger [13], every element of L is conjugate to its inverse, hence again τ may be

taken to be the identity map. If L = Sp2n(q) where q is odd, then by Lemma 2.1(b) of

[6], every element of L is the product of two skew symplectic involutions. Hence, we may

take τ to be conjugation by any fixed skew-symplectic involution. If L = GLn(q) we take

τ to be the transpose inverse map. Finally, if L = GUn(q) we let τ be the map which

raises every entry of every matrix to its q-th power (considering GUn(q) as the fixed point

subgroup of GLn(F̄q) under the map which sends a matrix (aij) to the matrix ((aqij))
−t).

It is easy to check that in each case G is τ -stable. Now the result follows from Lemma

3.1. �

Now we can prove Theorem 1.1:

Proof. Immediate from Lemma 3.2 and Proposition 1.3. �

4. Some results from block theory

Notation We keep the notation of the previous sections. Let G be a finite group. By a

block of kG (or of OG), we will mean a primitive idempotent of the center Z(kG) of the

group algebra kG (or of the center Z(OG) of the group algebra OG).

Lemma 4.1. Let H be a finite group, and let N , J be normal subgroups of H such that

N ≤ J . Suppose that H/J is a p-group and that J/N is a cyclic p′-group. Suppose further

that b is an H-stable block of kN of defect 0. Then there is a block f of kJ which is H

stable and such that bf = f . Further, if J/N is central in H/N , then any block f of kJ

such that bf = f is H-stable.

Proof. Let W be the unique simple kNb-module. Then W is H-stable and hence W is

J-stable. Now J/N being a cyclic p′-group means that W extends in [J : N ] ways to

a kJ-module and these are all the simple kJ-modules covering W . Let S be the set of

isomorphism classes of these extensions. Since W is H-stable, H acts on S by conjugation.

Since the normal subgroup J of H is clearly in the kernel of this action, H/J acts on S.

But H/J is a p-group and |S| = [J : N ] is prime to p, so this action must have a fixed

point. In other words, there exists a kJ-module V such that ResJN (V ) ∼= W and such that
xV ∼= V for all x ∈ H. Let f be the block of kJ containing V . Then f has the required

properties.

Now, suppose that J/N is central in H/N , let V be as above be an H-stable extension

of W to J , and let U be any extension of W to J . Then, there is a 1-dimensional kJ/N -

module Z such that U ∼= V ⊗k InfJJ/N (Z), where InfJ/NZ is the inflation to J , via the
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canonical map J → J/N , and where V ⊗k InfJJ/N (Z) has the kJ-module structure given

by x.(v⊗z) = xv⊗xz, for x ∈ J , v ∈ V and z ∈ InfJJ/N (Z). Since J/N is central in H/N ,
gJZ ∼= gJZ, and hence gU ∼= U for any g ∈ H. The result now follows as above. �

In the sequel, we will use the following fact about block idempotents without comment:

If N is a normal subgroup of a finite group G, such that G/N is a p-group, then any block

of kG is a central idempotent of kN , and consequently, if b is a block of kN which is stable

under the conjugation action of G on N , then b is a block of kG.

Lemma 4.2. Let L be a finite group, and let G be a subgroup of L and N , J be normal

subgroups of L. Suppose that L = JG, J ∩G = N , that G/N is a p-group and that J/N

is a cyclic p′-group. Suppose further that b is an L-stable block of kN of defect 0 and that

f is an L-stable block of kJ such that bf = f . Then,

(i) The blocks kGb and kLf are nilpotent.

Furthermore, letting U be the unique (upto isomorphism) kGb-module and V the unique

(upto isomorphism) simple kLf -module, and letting P be a defect group of kGb, we have

(ii) ResLG(V ) ∼= U .

(iii) P is a defect group of kLf .

(iv) The map

kGb→ kLf, a→ af

is an interior P -algebra isomorphism, and induces an isomorphism of interior P -algebras

between a source algebra of kGb and that of kLf .

(v) There is a pair (P,W ) which is a vertex-source pair of the kG-module U and which

is also a vertex-source pair for the kL-module V .

Proof. Since G/N is a p-group, and b is a G-stable block of kN , it is clear that kGb is a

nilpotent block, and that P ∼= G/N . Since J/N is a p′ group, and f covers b, kJf is a

block of defect 0. Also, L/J = GJ/J ∼= G/N , and G/N is a p-group, so it follows that

kLf is nilpotent with defect groups isomorphic to G/N ∼= P . Now, b = TrGP (x), for some

x ∈ (kG)P . Since f ∈ Z(kL) this yields

f = bf = TrGP (xf).

The fact that [L : G] is prime to p, then gives

f = TrLG(
1

[L : G]
f) = TrLP (

1

[L : G]
xf),

from which it follows that P is contained in a defect group of kLf . But P is isomorphic

to the defect groups of kLf , proving (iii).

Now, ResGN (U) is the unique (upto isomorphism) simple kNb-module, so the fact that

b is L-stable, means that ResGN (U) is J-stable. Since J/N is a cyclic p′-group, ResGN (U)

extends in precisely [J : N ] ways to a kJ-module, each of which has the same dimension

as U , and furthermore, these [J : N ] extensions are the only simple kJ-modules whose

restriction to N contain direct summands isomorphic to ResGN (U). On the other hand,

ResLJ (V ) is a simple kNf -module, so the fact that fb = f means that ResLJ (V ) is one of

these [J : N ] extensions. Thus,

ResGN (ResLG(V )) = ResJN (ResLJ (V )) = ResGN (U).
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But U is the unique extension of ResGN (U) to a kG-module, hence ResLG(V ) ∼= U , proving

(ii).

We now prove (iv). Note that the second assertion of (iv) is an immediate consequence

of the first assertion of (iv) and (iii). Thus, it suffices to prove that the map a→ af is an

isomorphism of interior P -algebras between kGb and kLf . Since f is a central idempotent

of kL, the map is clearly a P -algebra homomorphism. Furthermore, since by (i), (ii) and

(iii) both kLf and kGb are nilpotent, with defect groups of the same order and with simple

modules of the same k-dimension, it follows that kLf and kGb have the same k-dimension,

thus it suffices to prove that the map a → af is injective. So, let a ∈ kGb be such that

af = 0. Let P be the projective cover of the simple kLf -module V . Then af = 0 implies

that aP = afP = 0. But it is easy to see that ResLG(P ) is a projective cover of U .

Thus, a annihilates the unique projective kGb-module, which means akGb = 0, that is

a = 0. Thus, the map a → af is injective, finishing the proof of (iv) Statement (v) is a

consequence of (iv). �

Lemma 4.3. Let G be a finite group with Op(G) = 1. Let N be a normal subgroup of

G. If G/N is a p-group, then CG(N) = Z(N) is a p′-group. Consequently, the canonical

homomorphism of G/N into Out(N) is injective.

Proof. Let P be a Sylow p-subgroup of G. Then G = NP from which it follows that

CP (N) is a normal subgroup of G (as CP (N) is normalised both by N and by P ) .

By hypothesis, CP (N) = 1. Thus, CG(N) is a p′-group from which it also follows that

CG(N) ≤ Z(N). �

Lemma 4.4. Let N , G, G′ be finite groups such that both G and G′ contain N as a normal

subgroup. Let γG : G→ Aut(N) and γG′ : G′ → Aut(N) be the canonical homomorphisms

and let π : Aut(N) → Out(N) be the canonical surjection. Suppose that G/N and G′/N

are both p-groups, that Op(G) = 1 = Op(G
′), and that kN has a G-stable block of defect

0. If π ◦ γG(G) and π ◦ γG′(G′) are conjugate subgroups of Out(N), then G and G′ are

isomorphic through an isomorphism which stabilises N . Furthermore, if π ◦ γG(G) =

π ◦ γG′(G′), then the above isomorphism may be chosen to be the identity on N .

Proof. Since G is a p extension of N and b is G-stable, b is a block of kG. Let P be a

defect group of kGb. Then G = NP , a semi-direct product. Set P0 := γG(P ) and let

φ : G→ N o P0

be defined by

φ(nx) = nγG(x), n ∈ N, x ∈ P.
By Lemma 4.3, it follows that γG induces an isomorphism between P and P0, that φ is an

isomorphism and that γG(G) = Inn(N)P0, a semidirect product.

Now G and G′ both contain N . Hence, by hypothesis, there exists α ∈ Aut(N) such

that

γG′(G
′) = αγG(G) = Inn(N) αP0.

If π ◦ γG(G) = π ◦ γG′(G′), then choose α to be the identity.

Let U be the full inverse image of αP0 in G′ through γG′ and let S be a Sylow p-

subgroup of U . By Lemma 4.3, applied to G′, γG′ induces an isomorphism between S and
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αP0. Now,

γG′(NS) = Inn(N) αP0 = γG′(G
′)

and by Lemma 4.3 Ker(γG′) = Z(N) ≤ N , hence G′ = NS. On the other hand,

|N ||S| = |N || αP0| = |Z(N)||Inn(N)|| αP0| = |Ker(γG′)||γG′(G′)| = |G′|.

Thus G = NS, a semidirect product and the map

ϕ : G′ → N o αP0

defined by

ϕ(nx) = nγG′(x), n ∈ N, x ∈ S,
is an isomorphism.

Let

ψ : N o P0 → N o αP0

be defined by

ψ(nx) = α(n) αx, n ∈ N, x ∈ P0.

Then, ϕ−1 ◦ ψ ◦ φ : G→ G′ is an isomorphism with the required properties. �

Remarks. (i) The condition that kN has a G-stable block of defect 0 in the above

may be replaced by the weaker condition that N has a complement in G.

(ii) The above proposition may be also understood more structurally as a consequence of

the fact that, as Z(N) is an abelian p′-group, and as G/N (respectively G′/N) is a p-group,

restriction fromG/N (respectivelyG′/N) induces an injective map fromH2(G/Z(N), Z(N))

(respectively G′/N) to H2(N/Z(N), Z(N)) and of the fact that G/Z(N) and G′/Z(N)

are isomorphic groups.

5. On characters and blocks of finite general linear and unitary groups

and their commutator subgroups

The aim of this section is to prove Theorem 1.4. For this, we recall some facts from the

Lusztig parametrization of characters of finite groups of Lie type in our special situation.

We will follow [1] and [3].

Notation. We keep the notation of the previous sections and that introduced for the

statement of Theorem 1.4. In particular, G will denote either a finite general linear group

or a finite unitary group. For s a semi-simple element of G, we let [s] denote the G-

conjugacy class of s.

5.A. On the ordinary characters of G. For s a semi-simple element of G, we let

E(G, [s]) denote the rational Lusztig series corresponding to [s]. The subsets E(G, [s]) as

[s] runs over the semi-simple classes of G partition the set of ordinary irreducible characters

of G; if an irreducible character χ belongs to the subset E(G, [s]), we will say that χ has

semisimple label [s]. Now, let φ be the automorphism of G which appears in the statement

of Theorem 1.4 (so φ is only defined when q is a p-th power).

The above labelling of characters is compatible with the action of φ in the following

sense.

Lemma 5.1. Let χ be an irreducible character of G. Let [s] be the semi-simple label of χ

and [t] be the semi-simple label of φχ. Then [s] = [φ(t)].
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Proof. This is immediate from Corollary 2.4 of [9]. �

5.B. On the blocks of kG. For the rest of this section, we will assume that p|q−ε. Then

by the Fong-Srinivasan classification of the blocks of the finite general linear and unitary

groups [4], two ordinary irreducible characters χ and χ′ of G lie in the same p-block of G

if and only if the the p′-parts of s and of s′ are conjugate in G where [s] and [s′] are the

semi-simple labels of χ and χ′ respectively. Thus the p-blocks of G are partitioned by G

conjugacy classes of p′-semi-simple elements of G. If b is a block of G, the p′-part of the

semi-simple label of whose irreducible characters is the conjugacy class [t], we say that b

has semi-simple label [t]. If b has label [t], then any Sylow p-subgroup of CG(t) is a defect

group of b.

5.C. On characters of N . Let ψ be an ordinary irreducible character of N , let χ be an

irreducible character of G covering ψ and let [s] be the semi-simple label of χ. Let I(ψ)

be the stabiliser of ψ in G. If χ′ is another character of G covering ψ, the semisimple

label of χ′ is [sz] for some z ∈ Z(G) and conversely, for any z ∈ Z(G), there exists some

irreducible character χ′ of G with label [sz] covering ψ(see for instance [1, Proposition

11.7]). If we set d[s] to be the number of distinct conjugacy classes of G of the form [sz],

where z ∈ Z(G), we get that [I(ψ) : N ] is divisible by d[s] (see [1, Corollary 11.13]).

Now let s be as above. Multiplication yields a transitive action of Z(G) on the set of

conjugacy classes of G of the form [sz], z ∈ Z(G). Denote by Z(s) the stabiliser of [s]

under this action, so that d[s] = q−ε
|Z(s)| and the number of G-conjugates of ψ divides |Z(s)|.

Suppose z ∈ Z(s). If G = GLn(q), then s being semi-simple there is a diagonal matrix

diag(α1, · · · , αn), αi ∈ F̄×q , such that s is conjugate to diag(α1, · · · , αn) in GLn(F̄q).
Thus sz is conjugate to diag(ζα1, ζα2, · · · , ζαn), where z = diag(ζ, · · · , ζ), ζ ∈ F×q .

Hence diag(α1, α2, · · · , αn) is conjugate to diag(ζα1, · · · , ζαn). Taking determinants,

one sees that ζn = 1. Furthermore, letting o(s) denote the order of s, we have that

1 = (diag(α1, α2, · · · , αn))o(s) is conjugate to zo(s), hence zo(s) = 1. Of course zq−ε = 1.

Thus Z(s) is a cyclic group of order dividing gcd(n, q − 1, o(s)). Arguing similarly when

G = GUn(q) and noting that Z(GUn(q)) consists of scalar matrices of order dividing q+1,

we obtain that Z(s) is a cyclic group of order dividing gcd(n, q + 1, o(s)).

Summarising the above discussion we get :

Proposition 5.2. Let χ be an ordinary irreducible character G and let [s] be the semi-

simple label of χ. Let ψ be an irreducible character of N covered by χ.

(i) The number of G-conjugates of ψ is a divisor of |Z(s)|, and I(ψ)/N has order

divisible by q−ε
|Z(s)| .

(ii) |Z(s)| is a divisor of gcd(n, q − ε, o(s)).

We also get an analogous result for blocks:

Proposition 5.3. Let b be a block of G and let [t] be the semi-simple label of b. Let c be

a block of N covered by b. If b′ is a block of G covering c, then the semi-simple label of

b′ is of the form [tz] for some z ∈ Z(G); the number of elements in the G-orbit of c is a

divisor of |Z(t)| and in particular, this number is prime to p.

Proof. Since b and b′ cover the same blocks of N , there is a sequence b =: b1, b2, · · · , br := b′

of blocks of G and ordinary characters χi in bi, 1 ≤ i ≤ r such that for each i, 1 ≤ i ≤ r−1,
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χi and χi+1 cover a common character of N . Let [si] be the semi-simple label of χi,

1 ≤ i ≤ r. Then from the above discussion, it follows that for each i, 1 ≤ i ≤ r − 1 there

is a zi ∈ Z(G) such that [si+1] = [s1zi]. Setting ti to be the p′-part of si and vi to be the

p′-part of zi, it follows that [ti+1] = [tivi] for all i, 1 ≤ i ≤ r − 1. This proves the first

assertion.

The block b contains an irreducible character, say χ with semi-simple label [t] and c

contains a character, say ψ covered by χ. Since I(b) contains I(ψ), the second statement

follows from Proposition 5.2(i). Since t is a p′-element, the last assertion is immediate

from Proposition 5.2(ii). �

In what follows we will identify GLn(q) with the group of invertible linear transforma-

tions of an n-dimensional vector space over a field of q-elements, and identify GUn(q) with

a subgroup of GLn(q2) in the natural way. As before, we assume that p divides q − ε . In

addition, we assume from now on that q = q′p, and φ is the automorphism of G appearing

in the statement of Theorem 1.4.

Lemma 5.4. Let t be a semi-simple element of GLn(q) and suppose that the minimal

polynomial of t over Fq has an irreducible factor whose degree is distinct from the degrees

of all other irreducible factors of the minimal polynomial of t. Suppose that [φ(t)] = [tz]

for some z = diag(η, η, · · · , η) ∈ Z(GLn(q)). Then, |Z(t)||q′ − 1.

Proof. Let p(x) be an irreducible factor of the minimal polynomial of t with degree distinct

from that of every other irreducible factor. Let λ be a root of p(x) in F̄q. and let r be the

order of λ. We claim that there exists a positive integer v such that v is relatively prime

to p and such that the order r is a factor of (q′v − 1)(q − 1). Indeed, by hypothesis, λq
′

is

an eigen value of tz, i.e. λq
′

= λ′η for some eigen value λ′ of t. The minimal polynomials

of λ and λq
′

over Fq have the same degree and the minimal polynomials of λ′η and λ′ over

Fq also have the same degree. Hence, it follows that λ′ is a root of p(x), that is λq
′

= λq
u
η

for some u. This gives λq
′(q′pu−1−1) = η ∈ Fq, whence λ(q

′pu−1−1) ∈ Fq. The claim follows

by setting v = pu− 1.

Now, let y = diag(ζ, ζ, · · · , ζ) ∈ Z(t), and let λ be a root of p(x). We claim that

ζ = λq
m−1, for some integer m. Indeed, the eigen values of yt are of the form ζα, where

α is an eigen value of t. Hence [t] = [yt] implies λζ is also an eigen value of t. Again,

since ζ ∈ Fq, the minimal polynomial of λζ over Fq has the same degree as the minimal

polynomial of λ over Fq which means that λζ is a root of p(x), so λζ = λq
m

for some m,

proving the claim.

Since ζq−1 = 1, it follows from the claim that r is a divisor of (qm − 1)(q − 1) =

(q′pm − 1)(q − 1). Combining this with what we showed previously, it follows that r is a

factor of gcd((q′pm − 1)(q − 1), (q′v − 1)(q − 1)) = (q′gcd(m,v) − 1)(q − 1), the last equality

holding because v is relatively prime to p. Since qm − 1 is divisible by q′gcd(m,v) − 1,

and by q − 1 and since gcd(q′gcd(m,v) − 1, q − 1) = q′ − 1, this gives that r is a factor of

(qm − 1)(q′ − 1). Thus,

ζ(q
′−1) = λ(q

m−1)(q′−1) = 1.

Thus Z(t) has order dividing q′ − 1. �

We need an analogous result for the unitary groups.
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Lemma 5.5. Let t be a semi-simple element of GUn(q), and suppose that t has an eigen

value λ satisfying the following:

For any eigen value λ′ and any element diag(ζ, ζ, · · · , ζ) ∈ Z(GUn(q)) such that either

λ−q
′

or λ equals ζλ′, we have λ′ = λ(−q)
m

for some non-negative integer m.

If [φ(t)] = [tz] for some z = (η, η, · · · , η) ∈ Z(GUn(q)), then |Z(t)||q′ + 1.

Proof. Let r be the order of λ. We claim that there exists a positive integer v such that v

is relatively prime to p and such that the order r is a factor of ((−q′)v− 1)(q+ 1). Indeed,

by hypothesis, λ−q
′

= λ′η for some eigen value λ′ of t, and some η ∈ F̄ such that ηq+1 = 1.

Thus, λ−q
′

= λ(−q)
u
η for some u. This gives λq

′((−q)′pu−1−1) = η, and ηq+1 = 1. The claim

follows by setting v = pu− 1.

Now, let y = diag(ζ, ζ, · · · , ζ) ∈ Z(t). So [t] = [yt] implies λζ is also an eigen value of

t. Again, the nature of λ gives that λζ = λ(−q)
m

for some m. Since ζq+1 = 1, it follows

from the above that r is a divisor of ((−q)m−1)(q+1) = ((−q′)pm−1)(q+1). Combining

this with what we showed previously, it follows that r is a factor of gcd((−q′)pm − 1)(q +

1), ((−q′)v − 1)(q + 1)).

We claim that d := gcd(q + 1, (−q′)v − 1) = q′ + 1. Indeed suppose first that v is even,

say v = 2w. Then (−q′)v = q′v and d is a factor of gcd(q′2p − 1, q′2w − 1) = q′2 − 1, the

last equality holding because v is relatively prime to p. Thus d|q′2 − 1 and d|q′p + 1. Now

gcd(q′ − 1, q′p + 1) = 1 if q′ is even and is 2 otherwise. On the other hand, since p is odd,
q′p+1
q′+1 is odd if q is odd. The claim follows. Suppose next that v is odd. In this case,

(−q′)v = −q′v, and d = gcd(q + 1, q′v + 1). Again, the fact that v is relatively prime to p,

and that p is odd, will imply the claim.

Since q + 1 is a factor of (−q′)pm − 1, it follows from the claim that gcd(((−q′)pm −
1)(q + 1), ((−q′)v − 1)(q + 1)) is a factor of (−q′)pm − 1)(q′ + 1), from which we get that

ζ(q
′+1) = λ((−q

′)pm−1)(q′+1) = 1.

The above shows that Z(t) has order dividing q′ + 1. �

Notation - For any positive integer m, let m+ denote the p-part of m and let m− denote

the p′ part of m.

Lemma 5.6. Suppose that p|(q− 1) and p|n. Suppose also that SLn(q) has a block c with

central defect group. Let b be a block of GLn(q) covering SLn(q), let [t] be the semi-simple

label of b, and let f(x) be the characteristic polynomial of t. One of the following holds:

(i) f(x) is irreducible and n+ ≤ (q − 1)+.

(ii) n+ ≥ (q − 1)+, and f(x) is a product f(x) = p1(x)p2(x), where p1(x) and p2(x)

are irreducible polynomials such that deg(f1(x)) 6= deg(f2(x)) and neither deg(f1(x)) nor

deg(f2(x)) is divisible by p.

In particular, f(x) has an irreducible factor whose degree is distinct from any other

irreducible factor of f(x).

Proof. Let f(x) =
∏

1≤i≤u pi(x)mi be a prime factorisation of f(x) in Fq[x]. Let R be a

defect group of the block b of kGLn(q). Since p divides q − 1, R is conjugate to a Sylow

p-subgroup of CG(t). Then R∩SLn(q) is a defect group of kSLn(q)c. But by hypothesis,

the Sylow p-subgroup of Z(SLn(q)) is the (unique) defect group of kSLn(q)c. Since the

Sylow p-subgroup of Z(SLn(q)) is a cyclic group of order d+, where d = gcd(n, q − 1)



12 RADHA KESSAR

and since R/R ∩ SLn(q) is a cyclic group of order dividing (q − 1), it follows that R is

meta-cyclic and has p-rank at most 2. Now by the prime decomposition of f(x) above, if

ni is the degree of pi(x), 1 ≤ i ≤ u we have

CGLn(q)(t)
∼=

∏
GLmi(q

ni).

Since p divides q− 1, the fact that R is a Sylow p-subgroup of CGLn(q)(t) and that R is

metacyclic, forces u ≤ 2 and either mi = 1 for all i,1 ≤ i ≤ u or u = 1, and m1 = 2.

Suppose u = 1 and that f(x) is irreducible and |R| = (qn−1)+ = (q−1)+n+. Suppose,

if possible that n+ > (q− 1)+. Then |R| > (q− 1)d+, a contradiction. Hence in this case,

case (i) of the proposition holds.

Next, suppose u = 2, so that f(x) = p1(x)p2(x), and R ∼= R1 ×R2 where Ri is a Sylow

p subgroup of GLmi(q
ni − 1), for i = 1, 2. So, we get

(q − 1)+d+ ≥ |R| = (qn1 − 1)+(qn2 − 1)+ = (q − 1)2+n1+n2+,

d+ = (q − 1)+n1+n2+,

which implies that n+ ≥ (q − 1)+ and that n1 and n2 are not divisible by p. Now, if

n1 = n2, then n would be a p′ number, a contradiction. Finally, consider the case that

u = 1 and m1 = 2. Then f(x) = p21(x). The same argument as above will lead to a

contradiction.

The last assertion is immediate from the description of f(x). �

Notation - For p(x) ∈ Fq2 [x] an irreducible polynomial, different from x, we let p−(x)

be the irreducible polynomial over Fq2 [x] whose roots are of the form λ−q, where λ is a

root of p(x).We say that p(x) is of unitary type if p(x) = p−(x) and we say that f(x) is

of non-unitary type otherwise.

Note that if t is a semi-simple element of GUn(q), and if f(x) is the characteristic

polynomial of t over Fq2 , then for any irreducible p(x) ∈ Fq2 [x], the multiplicity of p(x) as

a divisor of f(x) is the same as that of p−(x).

Lemma 5.7. Suppose that p|(q+1) and p|n. Suppose also that c is a block of SUn(q) with

central defect group. Let b be a block of GUn(q) covering SUn(q), let [t] be the semi-simple

label of b, and let f(x) be the characteristic polynomial of t over Fq2. One of the following

holds:

(i) f(x) is irreducible, of unitary type and n+ ≤ (q + 1)+.

(ii) n+ ≥ (q + 1)+, and f(x) is a product f(x) = p1(x)p2(x), where p1(x) and p2(x)

are irreducible polynomials of unitary type such that deg(p1(x)) 6= deg(p2(x)) and neither

deg(f1(x)) nor deg(f2(x)) is divisible by p.

(iii) f(x) = p(x)p−(x) where p(x) is irreducible of non-unitary type.

(iv) f(x) = p(x)p−(x)g(x)g−(x), where p(x) and g(x) are irreducible polynomials of

non-unitary type such that deg(p(x)) 6= deg(g(x)) and neither deg(p(x)) nor deg(g(x)) is

divisble by p.

(v) f(x) = p(x)g(x)g−(x), where p(x) is of unitary type and g(x) is of non-unitary type.

In particular, t has an eigen value λ satisfying the conditions of Proposition 5.5.

Proof. The proof is entirely similar to that for the linear case. Let

f(x) =
∏

1≤i≤u
pi(x)mi

∏
1≤i≤v

[(gi(x)(gi−(x)]ni
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be a prime factorisation of f(x) in Fq[x], where the pi(x) are of unitary type and the gi(x)

are of non-unitary type.

Then, if di is the degree of pi(x), 1 ≤ i ≤ u and ei is the degree of gi(x), 1 ≤ i ≤ v, we

have (see for instance, Proposition 1A of [4])

CGUn(q)(t)
∼=

∏
i

GUmi(q
di)

∏
i

GLni(q
2ei).

Furthermore, if R is a defect group of the block b of GUn(q) then since p divides q+1, R is

conjugate to a Sylow p-subgroup of CG(t). On the other hand, R is metacyclic of order at

most (q + 1)2. Now proceeding as for the general linear groups, we get that f(x) satisfies

one of (i)-(v). Now, if f(x) is of types (i) , (ii) , (iii) or (iv) take for λ a root of f(x). Let

λ′ be any eigen value of f(x) and let ζ ∈ Fq2 satisfy ζq+1 = 1. Since Fq2 [λ−q
′
] = Fq2 [λ]

and Fq2 [λ′] = Fq2 [ζλ′], if either λ or λ−q
′

equal ζλ′, then Fq2 [λ′] = Fq2 [λ], and the degree

constraints on (i)-(iv) will yield that λ′ = λ(−q)
m

for some m. If f(x) is of type (v), take

for λ a root of p(x). Let λ′ be any eigen value of f(x) and let ζ ∈ Fq2 be such that

ζq+1 = 1 and such that either λ or λ−q
′

equals ζλ′. Since λ is Fq2-conjugate to λ−q, λ−q
′

is Fq2-conjugate to (λ−q
′
)−q, hence the same is true of λ′ζ and of λ′. But p(x) is the only

unitary factor of f(x), hence λ′ = λ(−q)
m

for some m. �

We now prove Theorem 1.4.

Proof. Assume the conditions of Theorem 1.4 hold. Let b be a block of G covering c and

let [t] be the semi-simple label of b. Since c is φ-stable, φ−1(b) also covers c. By Lemma

5.1, φ−1(b) has semi-simple label [φ(t)]. Thus, by Proposition 5.3 we have that [φ(t)] = [tz]

for some z = diag(η, η, · · · , η) ∈ Z(G). It follows from Lemmas 5.4, 5.5, 5.6 and 5.7 that

|Z(t)| is a factor of q′ − ε. On the other hand, by Proposition 5.3 [G : I(c)] is a factor

of |Z(t)|. This means that if h ∈ G is such that det(h) = αq
′−ε for some α ∈ Fq, then

h ∈ I(c). Now let g ∈ G and set h = φ(g)g−1. Then det(h) = det(g)q
′−ε, hence h ∈ I.

But this means exactly that I(c) o 〈φ〉 is normal in Go 〈φ〉. �

6. Proof of Theorem 1.2

Notation- We keep the notation of Theorem 1.2. In addition, if the simple quotient of

N is PSLn(q), let K0 := GLn(q) and let N0 := SLn(q). If the simple quotient of N is

PSUn(q), let K0 := GUn(q) and let N0 := SUn(q). Set Z := Z(K0).

If q = q′p and K0 = GLn(q), we define φ : K0 → K0 to be the automorphism (aij) →
(aq
′

ij). If q = q′p and K0 = GUn(q), we define φ : K0 → K0 be the automorphism

(aij) → (aq
′

ij)
t−1

. Note that φ is an automorphism of K0 of order p, N0 is φ-stable, and

since K0/N0 is cyclic any subgroup of K0 containing N0 is also φ-stable.

If K0 = GLn(q) we set ε = 1 and if K0 = GUn(q), we set ε = −1.

For an abelian group H, we will let H+ denote the Sylow p-subgroup of H and let H−
denote the Hall p′-subgroup of H.

We first prove the following result detailing the structure of G.

Proposition 6.1. With the notation and assumptions of Theorem 1.2, suppose that W is

not self dual. Then there exists a subgroup Z0 of Z(N0) containing the Sylow p-subgroup of

Z(N0) such that N is isomorphic to N0Z+/Z+Z0. Further, q = q′p for some prime power
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q′, the index of N0Z+/Z+Z0 in K0/Z+Z0 is divisible by p and letting M be the unique

subgroup of K0/Z+Z0 containing N0Z+/Z+Z0 as a subgroup of index p, there exists an

isomorphism, G ∼= M o 〈φ〉 sending N to N0Z+/Z+Z0.

Proof. We make a series of reductions.

6.2. Op(G) = 1.

Proof. If not, then W is isomorphic to InfPP/Op(G)W
′ for some endo-permutation module

for the cyclic group P/Op(G), and clearly W is self-dual.

6.3. p is a divisor of gcd(q − ε, n) and q = q′p for some prime power q′.

Proof. By Lemma 4.3, G/N is isomorphic to a subgroup of Out(N). Since N is

quasi-simple, Out(N) is in turn isomorphic to a subgroup of Out(N/Z(N)). In particular,

Out(N/Z(N)) has an elementary abelian subgroup of order p2. Since p is odd, the result is

immediate from the nature of the outer automorphism groups of PSLn(q) and of PSUn(q)

[5, Theorem 2.5.1].

6.4. N is isomorphic to N0/Z0, where Z0 is a central subgroup of N0 containing the Sylow

p-subgroup of Z(N0).

Proof. By 6.3, and since p is odd, N/Z(N) is not one of the groups PSL2(4), PSL3(2),

PSL3(4), PSL4(2), or PSL2(9), PSU4(2), PSU6(2) or PSU4(3). Hence, the exceptional

part of the Schur multiplier of N/Z(N) is trivial (see [5, Table 6.1.3]). By [5, Table 6.1.2],

N0 is a universal covering group of N/Z(N) . By[5, Corollary 5.1.5]), N is a quotient of

N0 by a central subgroup, say Z0. Finally, since Z(N) is assumed to be a p′-group, it

follows that Z0 contains the Sylow p-subgroup of Z(N0).

It follows from 6.3 that |K0/Z+Z0 : N0Z+/Z+Z0| is divisible by p and that φ is defined.

Let M be the unique subgroup of K0/Z+Z0 containing N0Z+/Z+Z0 as a subgroup of index

p.

6.5. There exists an isomorphism, G ∼= M o 〈φ〉 sending N to N0Z+/Z+Z0.

Proof. Since Z0 contains Z+ ∩ N0, the inclusion of N0 in K0 induces an isomorphism

between N0/Z0 and N0Z+/Z+Z0. Henceforth, we will identify N with the subgroup

N0Z+/Z+Z0 of K0/Z+Z0.

Let G′ = M o 〈φ〉. Then, clearly Op(G
′) = 1 and G′/N is elementary abelian of order

p2. Now, since p is odd it follows from the structure of the outer automorphism group

of PSLn(q) and of PSUn(q) that Out(N) has metacyclic Sylow p-subgroups. On the

other hand, for odd p, metacyclic p-groups have at most one elementary abelian subgroup

of order p2 (see for instance [7, Lemma 2.1]). Thus, using the notation of Lemma 4.4,

π ◦ γG(G) and π ◦ γG′(G′) are conjugate subgroups of Out(N). The claim follows from

Lemma 4.4. �

Notation- If N/Z(N) ∼= PSLn(q), let τ : GLn(q) → GLn(q) be the transpose auto-

morphism. If N/Z(N) ∼= PSUn(q), let τ : GUn(q)→ GUn(q) be the automorphism which

raises every entry to the q-th power.

We now prove Theorem 1.2.
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Proof. Suppose if possible that W is not self-dual. By Proposition 6.1, we may assume

that G = Mo〈φ〉, where Z0 and M are as in the statement of Proposition 6.1. We identify

N with N0Z+/Z+Z0 as before.

Let c be the block (necessarily of defect 0) of kN containing the simple kN -module U

and let c0 be the unique block of kN0Z+ whose image under the canonical surjection of

kN0Z+ onto kN is c. Let I be the inertial subgroup of c in K0/Z0Z+ and let I0 be the

the inertial subgroup of c0 in K0.

6.6. For any g ∈ K0, g φg−1 ∈ I0. Further, K0+ ≤ I0.

Proof. Since Z+ is a central p-group, c0 is also a block of kN0. Furthermore, since c is a

block of defect 0 of kN0Z+/Z+Z0, as block of kN0, c0 has central defect group. Thus, I0 is

the inertial subgroup in K0 of a central defect block of kN0. By hypothesis, U is G-stable,

from which it follows that c0 is φ-stable. The first assertion follows from Theorem 1.4

applied to K0, N0 and c0 and the second follows from Proposition 5.3.

Set J = N0I0−Z+/Z+Z0 and set L = M0I0−/Z+Z0o〈φ〉, where M0 is the inverse image

of M in K0. Then we have the following diagram of group inclusions:

(I0/Z+Z0) o 〈φ〉

L = M0I0−/Z+Z0 o 〈φ〉

jjjj
jjjj

jjjj
jjj

UUUU
UUUU

UUUU
UUUU

U

G = M o 〈φ〉

TTTT
TTTT

TTTT
TTT

J = N0I0−Z+/Z+Z0

iiii
iiii

iiii
iiii

i

N = N0Z+/Z+Z0

Note that J and N are normal in (I0/Z+Z0)o 〈φ〉, that (I0/Z+Z0)o 〈φ〉/J is a p-group

and that J/N is isomorphic to a quotient of I0−/I0− ∩N0Z+, hence is a cyclic p′-group,

thus by Lemma 4.1 (applied with H = (I0/Z+Z0)o 〈φ〉) there is a block f of kJ such that

f = bf and such that f is (I0/Z+Z0) o 〈φ〉-stable.

Further, we see that the conditions of Lemma 4.2 hold, hence for some W ′, (P,W ′) is

a vertex-source pair for the unique simple module, say V , of kLf and (P,W ′) is also a

vertex-source pair of the kG-module U . We may assume without loss that W ′ = W .

Note that K0 acts by conjugation on J .

6.7. The group K0− acts transitively on the K0-orbit of f .

Proof. By choice of f , I0/Z+Z0, and hence I0 stabilizes f . On the other hand, by 6.6

I0 contains K0+. The claim follows.

6.8. K0− normalizes L.

Proof. Let g ∈ K0−. By 6.6, g φg−1 ∈ I0, but since g ∈ K0−, in fact g φg−1 ∈ I0−,

proving the claim.

6.9. The simple kL-module V is automorphically dual.
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Proof. Let e be a block of K0/Z+Z0 such that ef∨ 6= 0. Then τe τf∨ 6= 0. But by

Lemma 3.1 and its proof, τe = e∨ and e∨f 6= 0, from which it follows that f and τf∨

are covered by the same block of K0, namely e∨. By 6.7 we get that τf∨ = gf for some

g ∈ K0−. Now, by definition, τ and φ commute as automorphisms of K0, hence the action

of τ on K0 extends to an automorphism of K0 o 〈φ〉, and the group L is clearly invariant

under this automorphism.

Let ω : L → L be the map x → g−1τ(x)g, x ∈ L. By 6.8, ω is well defined and is an

automorphism of L. The claim follows by setting ψ = ω−1.

Now, as observed above (P,W ) is a vertex source pair of the kL-module V . So, by 6.9

and by Proposition 1.3 (applied to the simple kL module V ), it follows that W is self-dual.

�
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