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ABSTRACT. If p is an odd prime, G a finite group and P a Sylow-p-subgroup of G,
a theorem of Glauberman and Thompson states that G is p-nilpotent if and only if
Ng(Z(J(P))) is p-nilpotent, where J(P) is the Thompson subgroup of P generated
by all abelian subgroups of P of maximal order. Following a suggestion of G. R.
Robinson, we prove a block-theoretic analogue of this theorem.

Theorem. Let p be an odd prime and let k be an algebraically closed field of char-
acteristic p. Let G be a finite group, b a block of kG, and P a defect group of b. Set
N = Ng(Z(J(P))) and let ¢ be the unique block of kN such that Brp(c) = Brp(b);
that s, ¢ is the Brauer correspondent of b. Then kGb is nilpotent if and only if kNc
1$ nilpotent.

We refer to [5] and [7] for accounts on the terminology from group theory and
block theory, respectively, involved in the theorem above and its proof. Nilpotent
blocks, introduced by Broué and Puig in [3], are the block theoretic analogue of the
notion of p-nilpotent groups; the principal block of kG is nilpotent if and only if
G is p-nilpotent. Thus, in this case, our theorem is equivalent to the theorem of
Glauberman and Thompson. The proof proceeds in two steps. We reduce to the case
where G is the normaliser of a b-centric Brauer pair (following the lines of the proof
of [8, Ch. 8, Theorem 3.1]), and then we apply results of Kiilshammer and Puig in
[6] to transport the problem back to the analogous group theoretic statement.

Proof. We fix a block ep of kCg(P) such that Brp(b)ep = ep; that is, (P,ep) is
a maximal b-Brauer pair. By [1], for any subgroup @ of P there is a unique block
eq of kCq(Q) such that (Q,eq) € (P,ep). Denote by Fgp the category whose
objects are the subgroups of P and whose set of morphisms from a subgroup @ of
P to another subgroup R of P is the set of group homomorphisms ¢ : ) — R for
which there exists an element z € G satisfying ¢(u) = zuz~! for all u € Q and
*(Q,eq) € (R,er). Thus the automorphism group of a subgroup @ of P as object
of the category F¢ p is canonically isomorphic to Ng(Q,eq)/Ca(Q). By Alperin’s
fusion theorem, the category F¢ 4 is completely determined by the structure of P and
the groups Ng(Q, eq)/Ca(Q) where either @ = P or (Q, eq) is an essential b-Brauer
pair (cf. [7, §48]). Note that O,(G) C @ whenever the pair (@, eq) is essential.
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By Brauer’s third main theorem (cf. [7, (40.17)]), if b is the principal block of kG,
then e is the principal block of kCx(Q), for any subgroup @ of P. Thus the above
condition *(Q,eq) C (R, er) is equivalent to *Q) C R. Therefore, if b is the principal
block of kG, we write F¢ instead of Fg .

In general, the definition of g ; depends on the choice of a maximal b-Brauer
pair, but since all maximal b-Brauer pairs are G-conjugate, it is easy to see that Fg
is unique up to isomorphism of categories. Note that we allways have Fp C Fq .
Following [3], the block b is called nilpotent if Fp = Fa p.

If H is any subgroup of G containing PCq(P), the block ep determines a unique
block d of kH by Brp(d)ep = ep. Then (P, ep) is also a maximal d-Brauer pair,
and this gives rise to the Brauer category Fp 4 of kHd, defined as above for H and
d instead of G and b.

We are going to use frequently the following fact:

1. If Q is a normal subgroup of P and H a subgroup of G such that PCc(Q) C H C
NG(Q); then
Fua < Fep

where d is the unique block of kH such that Brp(d)ep = ep. In particular, if kGb is
nilpotent, then kHd is nilpotent.

Proof. If (R, fr) is an essential d-Brauer pair contained in (P, ep), then R contains
Q@ as @ is normal in H. But then Cg(R) = Cy(R), and hence fr = er. Thus
Ny (R, fr)/Cu(R) is a subgroup of Ng(R,er)/Cq(R). O

Statement 1 applies to N, ¢ and Z(J(P)) instead of H, d, @), respectively. Thus if
kGb is nilpotent, so is kNc¢. In order to show the converse, we consider now a minimal
counter example; that is, we assume that £Gb is not nilpotent while kN ¢ is nilpotent
and that |G| is minimal with this property. Under this assumption, 1 implies the
following statement:

2. If Q is a normal subgroup of P and H a subgroup of G such that PCs(Q) C H C
N¢(Q), then either H = G or kHd is nilpotent, where d is the unique block of kH
such that Brp(d)ep = ep.

Proof. Let e be the unique block of N N H such that Brp(e)ep = ep. We have
PCN(Q) C NNH C Ny(Q), and thus statement 1 implies that Fynpe € Fy,.. But
then k(N N H)e is nilpotent, as kNc¢ is so. Therefore, if H is a proper subgroup of G,
then the induction hypothesis implies that the block kHd is nilpotent. [

3. We have O,(G) # {1}.

Proof. Since the block b of kG is not nilpotent, there exists a b-Brauer pair (Q, eq)
with @@ # 1 such that kNg(Q,eq)eq is not nilpotent. This is because for some
non-trivial Brauer pair (Q,eq), Na(Q,eq)/QCqc(Q) is not a p-group. Amongst all
such b-Brauer pairs, choose (@, eq) such that a defect group R of kN¢(Q, eq)eq has
maximal order. After replacing, if necessary, (Q,eq) by a suitable G-conjugate, we
may assume that R = Np(Q). We are going to show that R = P, or equivalently
that P C Ng(Q,eq). We assume that R is a proper subgroup of P, and derive
a contradiction. Set H = Ng(Q,eq). Clearly R C H. Since Q C R, we have
Ca(R) C Cq(Q) C H. Now (Q,eq) C (R,er) , and @ is normal in R, hence eq is
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the unique block of kC¢(Q) which is R-stable and for which Brgr(eg)er = er (cf.
1))

Set M = Ng(Z(J(R))). Since Cg(R) centralises () and centralises Z(J(R)), we
have Cg(R) C M N H. Let d be the unique block of k(M N H) (having R as defect
group) such that Brr(d)eg = er. Let f be the unique block of kM (having R as
defect group) such that Brgr(f)er = er. Since Z(J(R)) is a normal p-subgroup
of M, f is a central idempotent of kCq(Z(J(R)) (cf. [1]). Thus there exists a
block fy of Cq(Z(J(R))) such that ffy = fo and (Z(J(R)), fo) C (R,er) in M,
and hence in G. Since (R,er) C (P,ep), by the uniqueness of inclusion of Brauer
pairs, we must have fo = ez(y(r)). Let M’ be the stabiliser of ez(j(r)) in M. Then
Np(Z(J(R))), and hence Np(R) is contained in a defect group of kM’ez(s(r)). In
particular, the defect groups of kM'ez(;ry) have order strictly greater than |R.
By the maximality of |R|, we have that kM'ez sgy) is nilpotent. Since kM f is
the induced algebra Ind}} (kM ez(J(r))), it follows that kM f is nilpotent. Now
RCq(Q) C M NH C Ny(Q), and by statement 1 again, it follows that k(M N H)d
is nilpotent. By the minimality of |G|, and the fact that kHeq is not nilpotent, it
follows that H = G and hence R = P, contradicting the assumption R # P. If
R = P, then H satisfies the hypothesis of 2 with d = eqg, and kHe( is not nilpotent,
thus G = H. In particular, @ C O,(G) # 1. O

From now on set Q = O,(G).
4. We have G = Ng(Q,eq) and b= eq.

Proof. Since G = Ng(Q), the block b is contained in kCg(Q) (cf. [1]) and hence
b= TrgG(Q,eQ)(eQ). Thus kGb = IndgG(Q’eQ)(kNg(Q, eg)eq), so that in particular,

kNc(Q,eq)eq is not nilpotent. Since P is contained in N (Q, eq), it follows from 2
that G = Ng(Q, eq) and hence b = eg. O

Note that b is a block of any subgroup of G containing C¢(Q). We want to show
that actually the pair (@Q,b) is b-centric (or self-centralising in the terminology of
Puig, cf. [7, §41]); that is, the block kCx(Q)b is nilpotent with Z(Q) as defect group.
This notion goes back to Brauer [2]. We need the following technical statement.

5. Let H be a subgroup of G containing P and let d be a block of kH having P as
defect group. Put H = H/Q and for any element a of kH let a denote the image of
a under the canonical surjection of kH onto kH. Then Brp(d) = Brp(d).

Proof. Since @ is normal in H, the block idempotent d is a k-linear combination over
the set C' (Q), of p’-elements in Cp(Q). Writed =3_ 0, ()., @g9 With coefficients
P

ag €k. Sod= ZQECH(Q)p/ agyg and Brp(d) = decH(Q)pmcH(P) ayg, where Cr (P)
denotes the inverse image in H of Cg(P).

We claim that Cy(Q), N Cy(P) = Cy(P)y. To see this, consider the action
of an element g € Cy(Q), N Cy(P) on an element u of P. Since g normalises P
and centralises P/Q, 9(u) = wv for some v in ). Let n be the order of g. Since g
centralises @, it follows that u = 9w = ww™. But p and n are relatively prime, hence
v = 1, thereby proving the claim.

The statement is immediate from the above expression for d O
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6. The blocks kPCq(Q)b and kCq(Q)b are nilpotent.

Proof. By a result of Cabanes [4], normal p-extensions of nilpotent blocks are nilpo-
tent; thus kPCqs(Q)b is nilpotent if and only if kCq(Q)b is nilpotent. If PCq(Q) is
a proper subgroup of G, then, by 2, b is nilpotent as block of PCs(Q), and hence of
Cc(Q). Thus we may assume that G = PCg(Q). We have to show that kGb is a
nilpotent block. Set G = G/Q and let b denote the image of b under the canonical
surjection of kG onto kG. Identify Cq(Q)/Z(Q) with its canonical image in G; this
is a normal subgroup of G of index a p-power. Since b is a k-linear combination of
p’-elements in Cg(Q) and Z(Q) = Q N Cg(Q) is a central subgroup of Cx(Q), it is
clear that b is a block of kC(Q)/Z(Q) and hence of kG. Furthermore, P is a defect
group of kGb. Let Z be the inverse image in G of Z(J(P)) and set H = Ng(Z). Then
H is the inverse image in G of the group H = kNg(Z(J(P))). Let f be the block
of kH which corresponds to the block b of kG; that is, Brp(b) = Brp(f). Clearly, P
and Cg(Z) are both subgroups of H. Since Z properly contains ) and @ = O,(G),
H is a proper subgroup of G. Thus by 2, the block kHd is nilpotent where d is the
block of kH satisfying Brp(d)ep = ep. Since Ng(P) is contained in H, we have in
fact that Brp(d) = Brp(b).

Now, it follows from 5 that Brp(d) = Brp(d) = Brp(b) = Brp(b) = Brp(f). In
particular df # 0. Since kHd is nilpotent, this means that f = d and hence that
kH f is nilpotent. As G is a minimal counter example to the Theorem, it follows that
kGb is nilpotent, which implies that kGb is nilpotent. [

7. The group Q is a defect group of kQCq(Q)b.

Proof. Let R be a defect group of kQCq(Q)b. We may assume that R = QCp(Q).
The pair (R, er) is a maximal Brauer pair for the block kQCq(Q)b, and hence, by the
Frattini argument, G = Ng(R, er)QCq(Q) = Ng(R,er)Ca(Q). Suppose, if possible,
that @ is a proper subgroup of R. Then, Ng (R, er) is a proper subgroup of G because
@ = O,(G). On the other hand N¢ (R, er) satisfies the hypothesis of 2 with R instead
of @, since P normalises R, and consequently (R,er). So kNg (R, er)er is nilpotent.
In particular, Ng(R,er)/Cqg(R) is a p-group, and hence so is G/Cg(Q). In other
words, G = PCg(Q), and hence kGb is nilpotent by 6, a contradiction. [

We are now in the situation where kGb is an extension of the nilpotent block
kQCc(Q)b, and this is where the results of Kiilshammer and Puig in [6] come in.

8. There exists a short exact sequence of groups
1 —Q—L—G/QC(Q) —1

such that P is a Sylow p-subgroup of L and such that we have Fg, = F,.

Proof. Note first that P is also a defect group of {b} viewed as point of G on OQCx(Q)
because P is maximal with the property Brp(b) # 0. The existence of a canonical
short exact sequence of finite groups as stated such that P is a Sylow-p-subgroup of L
is a particular case of [6, 1.8]. The equality F¢ , = Fr, is a translation of the statement
[6, 1.8.2], which requires a brief explanation. Since @ is normal in L and in G, it
suffices to show that the images in Aut(R) of Ng(R,er)/Ca(R) and Np(R)/CL(R)
are equal, where R is a subgroup of P containing Q. As (Q, eq) is b-centric and @ is
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p-centric in L, it follows from a result of Puig (cf. [7, (41.1), (41.4)]) that (R, eR) is
b-centric and R is p-centric in L (that is, Z(R) is a Sylow-p-subgroup of C1(R)). In
particular, kCg(R)er has a unique conjugacy class of primitive idempotents. Setting
H = QCg(Q), we have Cg(R) = Cg(R), hence there is a unique point yg of R
on kH such that Brgr(i)eg = i for some (and hence any) element i of yg. In this
way, we get an inclusion preseving bijection, R, — (R, er) between local pointed
groups R, on kHb for which Q,, € R, C P,, and kGb-Brauer pairs, (R, er) with
(Q,eq) € (R,er) C (P,ep). Further, it is clear that Ng(R,er) = Ng(R,;). Thus,
setting G = G/QCs(Q), with the notation in [6, 1.8] (which is defined in [6, 2.8]),
we have Eg o(R,er) = Ep g(R) for any subgroup R such that @ < R < P. By [6,
(2.8.1)], the canonical maps Eg g(R,er) — Eg(R,er) and Ep, 5(R) — Er(R) are
surjective. Thus Eq(R, er) = Er(R), which implies the equality Fg, = Fr. O

9. We have Fn,. = Fn,(z(J(P)))-

Proof. Since Z(J(P)) is normal in both N and N (Z(J(P)), it suffices to show that
the images of Ng(S, f) N N and N (S) N NL(Z(J(P))) in Aut(S) are equal, where
(S, f) is a c-Brauer pair contained in (P, ep) such that Z(J(P)) C S. Note that
then C(S) € N and hence f = eg. Also, by 8 we have Fi = Fr. Thus for any
x € Ng(S,eg) thereisy € Np(S) such that *u = Yu for all w € S. Since Z(J(P)) C S
we have x € Ng(S,es) NN if and only if y € N1(S) N NL(Z(J(P))), from which the
equality 9 follows. [J

We conclude the proof of the Theorem as follows. Since kGb is not nilpotent, L
is not a p-nilpotent group by 8. However, kN¢ is nilpotent and hence N (Z(J(P)))
is p-nilpotent by 9. This contradicts the normal p-complement theorem [5, Ch. 8§,
Theorem 3.1] of Glauberman and Thompson. [
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