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Abstract. If p is an odd prime, G a finite group and P a Sylow-p-subgroup of G,

a theorem of Glauberman and Thompson states that G is p-nilpotent if and only if
NG(Z(J(P ))) is p-nilpotent, where J(P ) is the Thompson subgroup of P generated

by all abelian subgroups of P of maximal order. Following a suggestion of G. R.
Robinson, we prove a block-theoretic analogue of this theorem.

Theorem. Let p be an odd prime and let k be an algebraically closed field of char-

acteristic p. Let G be a finite group, b a block of kG, and P a defect group of b. Set

N = NG(Z(J(P ))) and let c be the unique block of kN such that BrP (c) = BrP (b);
that is, c is the Brauer correspondent of b. Then kGb is nilpotent if and only if kNc
is nilpotent.

We refer to [5] and [7] for accounts on the terminology from group theory and
block theory, respectively, involved in the theorem above and its proof. Nilpotent
blocks, introduced by Broué and Puig in [3], are the block theoretic analogue of the
notion of p-nilpotent groups; the principal block of kG is nilpotent if and only if
G is p-nilpotent. Thus, in this case, our theorem is equivalent to the theorem of
Glauberman and Thompson. The proof proceeds in two steps. We reduce to the case
where G is the normaliser of a b-centric Brauer pair (following the lines of the proof
of [8, Ch. 8, Theorem 3.1]), and then we apply results of Külshammer and Puig in
[6] to transport the problem back to the analogous group theoretic statement.

Proof. We fix a block eP of kCG(P ) such that BrP (b)eP = eP ; that is, (P, eP ) is
a maximal b-Brauer pair. By [1], for any subgroup Q of P there is a unique block
eQ of kCG(Q) such that (Q, eQ) ⊆ (P, eP ). Denote by FG,b the category whose
objects are the subgroups of P and whose set of morphisms from a subgroup Q of
P to another subgroup R of P is the set of group homomorphisms ϕ : Q → R for
which there exists an element x ∈ G satisfying ϕ(u) = xux−1 for all u ∈ Q and
x(Q, eQ) ⊆ (R, eR). Thus the automorphism group of a subgroup Q of P as object
of the category FG,b is canonically isomorphic to NG(Q, eQ)/CG(Q). By Alperin’s
fusion theorem, the category FG,b is completely determined by the structure of P and
the groups NG(Q, eQ)/CG(Q) where either Q = P or (Q, eQ) is an essential b-Brauer
pair (cf. [7, §48]). Note that Op(G) ⊆ Q whenever the pair (Q, eQ) is essential.
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By Brauer’s third main theorem (cf. [7, (40.17)]), if b is the principal block of kG,
then eQ is the principal block of kCG(Q), for any subgroup Q of P . Thus the above
condition x(Q, eQ) ⊆ (R, eR) is equivalent to xQ ⊆ R. Therefore, if b is the principal
block of kG, we write FG instead of FG,b.

In general, the definition of FG,b depends on the choice of a maximal b-Brauer
pair, but since all maximal b-Brauer pairs are G-conjugate, it is easy to see that FG,b

is unique up to isomorphism of categories. Note that we allways have FP ⊆ FG,b.
Following [3], the block b is called nilpotent if FP = FG,b.

If H is any subgroup of G containing PCG(P ), the block eP determines a unique
block d of kH by BrP (d)eP = eP . Then (P, eP ) is also a maximal d-Brauer pair,
and this gives rise to the Brauer category FH,d of kHd, defined as above for H and
d instead of G and b.

We are going to use frequently the following fact:

1. If Q is a normal subgroup of P and H a subgroup of G such that PCG(Q) ⊆ H ⊆
NG(Q), then

FH,d ⊆ FG,b ,

where d is the unique block of kH such that BrP (d)eP = eP . In particular, if kGb is

nilpotent, then kHd is nilpotent.

Proof. If (R, fR) is an essential d-Brauer pair contained in (P, eP ), then R contains
Q as Q is normal in H. But then CG(R) = CH(R), and hence fR = eR. Thus
NH(R, fR)/CH(R) is a subgroup of NG(R, eR)/CG(R). �

Statement 1 applies to N , c and Z(J(P )) instead of H, d, Q, respectively. Thus if
kGb is nilpotent, so is kNc. In order to show the converse, we consider now a minimal
counter example; that is, we assume that kGb is not nilpotent while kNc is nilpotent
and that |G| is minimal with this property. Under this assumption, 1 implies the
following statement:

2. If Q is a normal subgroup of P and H a subgroup of G such that PCG(Q) ⊆ H ⊆
NG(Q), then either H = G or kHd is nilpotent, where d is the unique block of kH
such that BrP (d)eP = eP .

Proof. Let e be the unique block of N ∩ H such that BrP (e)eP = eP . We have
PCN (Q) ⊆ N ∩H ⊆ NN (Q), and thus statement 1 implies that FN∩H,e ⊆ FN,c. But
then k(N ∩H)e is nilpotent, as kNc is so. Therefore, if H is a proper subgroup of G,
then the induction hypothesis implies that the block kHd is nilpotent. �

3. We have Op(G) 6= {1}.

Proof. Since the block b of kG is not nilpotent, there exists a b-Brauer pair (Q, eQ)
with Q 6= 1 such that kNG(Q, eQ)eQ is not nilpotent. This is because for some
non-trivial Brauer pair (Q, eQ), NG(Q, eQ)/QCG(Q) is not a p-group. Amongst all
such b-Brauer pairs, choose (Q, eQ) such that a defect group R of kNG(Q, eQ)eQ has
maximal order. After replacing, if necessary, (Q, eQ) by a suitable G-conjugate, we
may assume that R = NP (Q). We are going to show that R = P , or equivalently
that P ⊆ NG(Q, eQ). We assume that R is a proper subgroup of P , and derive
a contradiction. Set H = NG(Q, eQ). Clearly R ⊆ H. Since Q ⊂ R, we have
CG(R) ⊂ CG(Q) ⊂ H. Now (Q, eQ) ⊆ (R, eR) , and Q is normal in R, hence eQ is
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the unique block of kCG(Q) which is R-stable and for which BrR(eQ)eR = eR (cf.
[1]).

Set M = NG(Z(J(R))). Since CG(R) centralises Q and centralises Z(J(R)), we
have CG(R) ⊂ M ∩ H. Let d be the unique block of k(M ∩ H) (having R as defect
group) such that BrR(d)eR = eR. Let f be the unique block of kM (having R as
defect group) such that BrR(f)eR = eR. Since Z(J(R)) is a normal p-subgroup
of M , f is a central idempotent of kCG(Z(J(R)) (cf. [1]). Thus there exists a
block f0 of CG(Z(J(R))) such that ff0 = f0 and (Z(J(R)), f0) ⊆ (R, eR) in M,
and hence in G. Since (R, eR) ⊆ (P, eP ), by the uniqueness of inclusion of Brauer
pairs, we must have f0 = eZ(J(R)). Let M ′ be the stabiliser of eZ(J(R)) in M . Then
NP (Z(J(R))), and hence NP (R) is contained in a defect group of kM ′eZ(J(R)). In
particular, the defect groups of kM ′eZ(J(R)) have order strictly greater than |R|.
By the maximality of |R|, we have that kM ′eZ(J(R)) is nilpotent. Since kMf is

the induced algebra IndM
M ′(kM ′eZ(J(R))), it follows that kMf is nilpotent. Now

RCG(Q) ⊆ M ∩ H ⊆ NM (Q), and by statement 1 again, it follows that k(M ∩ H)d
is nilpotent. By the minimality of |G|, and the fact that kHeQ is not nilpotent, it
follows that H = G and hence R = P , contradicting the assumption R 6= P . If
R = P , then H satisfies the hypothesis of 2 with d = eQ, and kHeQ is not nilpotent,
thus G = H. In particular, Q ⊆ Op(G) 6= 1. �

From now on set Q = Op(G).

4. We have G = NG(Q, eQ) and b = eQ.

Proof. Since G = NG(Q), the block b is contained in kCG(Q) (cf. [1]) and hence

b = TrG
NG(Q,eQ)(eQ). Thus kGb ∼= IndG

NG(Q,eQ)(kNG(Q, eQ)eQ), so that in particular,

kNG(Q, eQ)eQ is not nilpotent. Since P is contained in NG(Q, eQ), it follows from 2
that G = NG(Q, eQ) and hence b = eQ. �

Note that b is a block of any subgroup of G containing CG(Q). We want to show
that actually the pair (Q, b) is b-centric (or self-centralising in the terminology of
Puig, cf. [7, §41]); that is, the block kCG(Q)b is nilpotent with Z(Q) as defect group.
This notion goes back to Brauer [2]. We need the following technical statement.

5. Let H be a subgroup of G containing P and let d be a block of kH having P as

defect group. Put H̄ = H/Q and for any element a of kH let ā denote the image of

a under the canonical surjection of kH onto kH̄. Then BrP (d) = BrP̄ (d̄).

Proof. Since Q is normal in H, the block idempotent d is a k-linear combination over
the set CH(Q)p′ of p′-elements in CH(Q). Write d =

∑
g∈CH(Q)p′

αgg with coefficients

αg ∈ k. So d̄ =
∑

g∈CH(Q)p′
αg ḡ and BrP̄ (d̄) =

∑
g∈CH(Q)p′∩CH(P̄ ) αg ḡ, where CH(P̄ )

denotes the inverse image in H of CH̄(P̄ ).
We claim that CH(Q)p′ ∩ CH(P̄ ) = CH(P )p′ . To see this, consider the action

of an element g ∈ CH(Q)p′ ∩ CH(P̄ ) on an element u of P . Since g normalises P
and centralises P/Q, g(u) = uv for some v in Q. Let n be the order of g. Since g
centralises Q, it follows that u = gn

u = uvn. But p and n are relatively prime, hence
v = 1, thereby proving the claim.

The statement is immediate from the above expression for d̄ �
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6. The blocks kPCG(Q)b and kCG(Q)b are nilpotent.

Proof. By a result of Cabanes [4], normal p-extensions of nilpotent blocks are nilpo-
tent; thus kPCG(Q)b is nilpotent if and only if kCG(Q)b is nilpotent. If PCG(Q) is
a proper subgroup of G, then, by 2, b is nilpotent as block of PCG(Q), and hence of
CG(Q). Thus we may assume that G = PCG(Q). We have to show that kGb is a
nilpotent block. Set Ḡ = G/Q and let b̄ denote the image of b under the canonical
surjection of kG onto kḠ. Identify CG(Q)/Z(Q) with its canonical image in Ḡ; this
is a normal subgroup of Ḡ of index a p-power. Since b is a k-linear combination of
p′-elements in CG(Q) and Z(Q) = Q ∩ CG(Q) is a central subgroup of CG(Q), it is
clear that b̄ is a block of kCG(Q)/Z(Q) and hence of kḠ. Furthermore, P̄ is a defect
group of kḠb̄. Let Z be the inverse image in G of Z(J(P̄ )) and set H = NG(Z). Then
H is the inverse image in G of the group H̄ = kNḠ(Z(J(P̄ ))). Let f be the block
of kH̄ which corresponds to the block b̄ of kḠ; that is, BrP̄ (b̄) = BrP̄ (f). Clearly, P
and CG(Z) are both subgroups of H. Since Z properly contains Q and Q = Op(G),
H is a proper subgroup of G. Thus by 2, the block kHd is nilpotent where d is the
block of kH satisfying BrP (d)eP = eP . Since NG(P ) is contained in H, we have in
fact that BrP (d) = BrP (b).

Now, it follows from 5 that BrP̄ (d̄) = BrP (d) = BrP (b) = BrP̄ (b̄) = BrP̄ (f). In
particular d̄f 6= 0. Since kHd is nilpotent, this means that f = d̄ and hence that
kH̄f is nilpotent. As G is a minimal counter example to the Theorem, it follows that
kḠb̄ is nilpotent, which implies that kGb is nilpotent. �

7. The group Q is a defect group of kQCG(Q)b.

Proof. Let R be a defect group of kQCG(Q)b. We may assume that R = QCP (Q).
The pair (R, eR) is a maximal Brauer pair for the block kQCG(Q)b, and hence, by the
Frattini argument, G = NG(R, eR)QCG(Q) = NG(R, eR)CG(Q). Suppose, if possible,
that Q is a proper subgroup of R. Then, NG(R, eR) is a proper subgroup of G because
Q = Op(G). On the other hand NG(R, eR) satisfies the hypothesis of 2 with R instead
of Q, since P normalises R, and consequently (R, eR). So kNG(R, eR)eR is nilpotent.
In particular, NG(R, eR)/CG(R) is a p-group, and hence so is G/CG(Q). In other
words, G = PCG(Q), and hence kGb is nilpotent by 6, a contradiction. �

We are now in the situation where kGb is an extension of the nilpotent block
kQCG(Q)b, and this is where the results of Külshammer and Puig in [6] come in.

8. There exists a short exact sequence of groups

1 −→ Q −→ L −→ G/QCG(Q) −→ 1

such that P is a Sylow p-subgroup of L and such that we have FG,b = FL.

Proof. Note first that P is also a defect group of {b} viewed as point of G on OQCG(Q)
because P is maximal with the property BrP (b) 6= 0. The existence of a canonical
short exact sequence of finite groups as stated such that P is a Sylow-p-subgroup of L
is a particular case of [6, 1.8]. The equality FG,b = FL is a translation of the statement
[6, 1.8.2], which requires a brief explanation. Since Q is normal in L and in G, it
suffices to show that the images in Aut(R) of NG(R, eR)/CG(R) and NL(R)/CL(R)
are equal, where R is a subgroup of P containing Q. As (Q, eQ) is b-centric and Q is
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p-centric in L, it follows from a result of Puig (cf. [7, (41.1), (41.4)]) that (R, eR) is
b-centric and R is p-centric in L (that is, Z(R) is a Sylow-p-subgroup of CL(R)). In
particular, kCG(R)eR has a unique conjugacy class of primitive idempotents. Setting
H = QCG(Q), we have CG(R) = CH(R), hence there is a unique point γR of R
on kH such that BrR(i)eR = i for some (and hence any) element i of γR. In this
way, we get an inclusion preseving bijection, RγR

→ (R, eR) between local pointed
groups RγR

on kHb for which QγQ
⊆ RγR

⊆ PγP
and kGb-Brauer pairs, (R, eR) with

(Q, eQ) ⊆ (R, eR) ⊆ (P, eP ). Further, it is clear that NG(R, eR) = NG(RγR
). Thus,

setting Ḡ = G/QCG(Q), with the notation in [6, 1.8] (which is defined in [6, 2.8]),
we have EG,Ḡ(R, eR) = EL,Ḡ(R) for any subgroup R such that Q ≤ R ≤ P . By [6,
(2.8.1)], the canonical maps EG,Ḡ(R, eR) → EG(R, eR) and EL,Ḡ(R) → EL(R) are
surjective. Thus EG(R, eR) = EL(R), which implies the equality FG,b = FL. �

9. We have FN,c = FNL(Z(J(P ))).

Proof. Since Z(J(P )) is normal in both N and NL(Z(J(P )), it suffices to show that
the images of NG(S, f) ∩ N and NL(S) ∩ NL(Z(J(P ))) in Aut(S) are equal, where
(S, f) is a c-Brauer pair contained in (P, eP ) such that Z(J(P )) ⊆ S. Note that
then CG(S) ⊆ N and hence f = eS . Also, by 8 we have FG,b = FL. Thus for any
x ∈ NG(S, eS) there is y ∈ NL(S) such that xu = yu for all u ∈ S. Since Z(J(P )) ⊆ S
we have x ∈ NG(S, eS) ∩N if and only if y ∈ NL(S) ∩NL(Z(J(P ))), from which the
equality 9 follows. �

We conclude the proof of the Theorem as follows. Since kGb is not nilpotent, L
is not a p-nilpotent group by 8. However, kNc is nilpotent and hence NL(Z(J(P )))
is p-nilpotent by 9. This contradicts the normal p-complement theorem [5, Ch. 8,
Theorem 3.1] of Glauberman and Thompson. �
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