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BVPSMS: A Batch Verification Protocol for
End-to-End Secure SMS for Mobile Users

Neetesh Saxena Member, IEEE, Hong Shen Member, IEEE, Nikos Komninos Member, IEEE, Kim-Kwang
Raymond Choo Senior Member, IEEE, and Narendra S. Chaudhari Senior Member, IEEE

Abstract—Short Message Service (SMS) is a widely used communication medium, including by mobile applications, such as banking,
social networking, and e-commerce. Applications of SMS services also include real-time broadcasting messages, such as notification
of natural disasters (e.g. bushfires and hurricane) and terrorist attacks, and sharing the current whereabouts to a group of friends, such
as notifying urgent business meeting information, transmitting quick information in the battlefield to multiple users, notifying current
location to our friends, and sharing market information. However, traditional SMS is not designed with security in mind (e.g. messages
are not securely sent). It is also possible to extract International Mobile Subscriber Identity (IMSI) of the mobile user. In literature, there
is no known protocol that could enable secure transmission of SMS from one user to multiple users simultaneously. In this paper, we
introduce a batch verification Authentication and Key Agreement (AKA) protocol, BVPSMS, which provides end-to-end message
security over an insecure communication channel between different Mobile Subscribers (MSs). Specifically, the proposed protocol
securely transmits SMS from one MS to multiple MS simultaneously. The reliability of the protocol is discussed along with an algorithm
to detect malicious user request in a batch. We then evaluate the performance of the BVPSMS protocol in terms of communication and
computation overheads, protocol execution time, and batch and re-batch verification times. The impacts of the user mobility, and the
time, space, and cost complexity analysis are also discussed. We also present a formal proof of the security of the proposed protocol.
To the best of our knowledge, this is the first provably-secure batch verification AKA protocol, which provides end-to-end security to the
SMS using symmetric keys.

Index Terms—Authentication, Batch Verification, Mobile Subscriber, SMS, Symmetric Key Cryptosystem.
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1 INTRODUCTION

C ELLULAR and mobile telecommunication industries are
one of the fastest growing industries globally, partly

due to the capability to provide a wide range of services to
the Mobile Subscribers (MSs), such as health surveillance
[1], health financing and health worker performance [2],
and Short Message Service (SMS)-based web search [3].
However, the challenge for the server to handle multiple
authentication requests at one time or in a very short time
period (e.g. during the first few minutes of a major incident,
such as a natural disaster or terrorist attack) is an area that
has attracted the attention of researchers in recent years.
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1.1 Research Problem

When an SMS is sent from one MS to another, the infor-
mation contained in the SMS is transmitted as plaintext.
SMS may also contain confidential information such as PIN
number and a link to a login page. Transmission of such con-
fidential information as plaintext over an insecure network
can be targeted by an adversary (e.g. intercepting, reading
and modifying the SMS before it reaches the SMS-Center
(SMSC). Traditional SMS service does not have a mechanism
to transmit the message securely from one MS to another
MS or to a group of MSs. The EasySMS is the only protocol
available in the literature that enables secure transmission of
SMS from one MS to another [4]. However, there is no such
protocol exists in the literature that can securely delivers
an SMS to multiple recipients simultaneously. This is sur-
prising, as in our increasingly interconnected society, there
are various situations where secure transmission of batch
SMS can play a crucial role, such as sending urgent business
meeting information to the employees or to the members of
the political parties, military services like simultaneous and
quick transmission of secure information in the battlefield,
notifying current location to our friends or family members
when a person is in trouble (especially helpful for girls),
sharing market information, crowd-sourcing information,
human flesh search engine of notifying other users about a
corrupted public servant by secure SMS, and in some cases
life-saving (e.g. notifying residents in remote areas of a fast
spreading bushfire, an earthquake or a volcano eruption, or
notifying all residents and users in the vicinity of an area to
stay indoor due to an ongoing terrorist attack). In many of
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these applications, we should not compromise on security
for the capability for batch dissemination of SMS. For exam-
ple, without an end-to-end (batch) SMS security mechanism
in place, a malicious attacker (e.g. hacktivist or ideologically-
motivated individual) could hijack and replace a batch SMS
from the local authorities with one that will create social
unrest (e.g. messages inciting racial hatred). In addition,
the protocol should be sufficiently lightweight, suitable for
deployment on resource-constrained devices (e.g. limited
battery) [5].

1.2 Existing Solutions

Several batch verification-based solutions have been de-
signed for different applications. For example, a number of
protocols have been proposed for the value added services
in Vehicular Ad-hoc Networks (VANET) [6], [7], [8], public-
private key-based vehicular communication system [9], [10],
[11], and digital signatures in batch to achieve high effi-
ciency [12], [13]. Several SMS-based wireless protocols [14],
[15], [16], [17], lightweight AKA [18] and SMS-based attacks
and their countermeasures are discussed in [19]. Also, the
protocols in [20], [21], [22], [23] are designed to provide SMS
security based on asymmetric key cryptography with the ex-
ception in [22]. Other protocols in the literature include [24],
[25] designed for the Global System for Mobile Communi-
cations (GSM), [26], [27], [28], [29], [30] for the Universal
Mobile Telecommunications System (UMTS), and [31], [32]
for the Long-Term Evolution (LTE) networks. However, all
these protocols do not consider simultaneous multiple au-
thentication requests using SMS. Group Authentication and
Key Agreement (AKA) protocols are also available in the LTE
network [33], [34]. However, these protocols do not consider
SMS as a communication medium and require additional
cost and storage for a group setup. Recently, a solution for
user privacy in mobile telephony was proposed using the
predefined multiple International Mobile Subscriber Identi-
ties (IMSI) for each Universal Subscriber Identity Module
(USIM) [35]. However, this solution requires a large storage
space, generates a huge overhead for pseudo-identities, and
utilizes significant bandwidth for sending IMSIs to each MS.

A literature review suggests that there is no known batch
verification-based protocol that provides end-to-end SMS
security to many MS, although we observe that commer-
cially available applications, such as SMSzipper, TextSecure,
moGile Secure SMS, and CryptoSMS provide the facility to
send secure SMS. However, there are a number of limi-
tations in these software solutions, such as (i) the need to
install them on the phone’s memory/memory card, (ii) the
need to provide a secret key to the SMS recipient, and (iii)
the inability to support sending of an SMS to many users si-
multaneously. Moreover, the security of the communications
may also be affected by malware installed or vulnerabilities
on the client devices. Therefore, a preferred solution is to
develop a protocol that provides end-to-end security.

1.3 Our Contribution

In this paper, we propose a secure and efficient batch
verification-based AKA protocol, hereafter referred to as

BVPSMS, which enables the transmission of an SMS to
multiple recipients at any one time. BVPSMS uses symmet-
ric keys, since symmetric key encryptions are significantly
faster than asymmetric key encryptions. The proposed pro-
tocol has the following contributions:

1) The BVPSMS protocol:

• provides mutual authentications between the
sender MS and the Authentication Server
(AS), and between each recipient MSi and the
AS.

• maintains message confidentiality and in-
tegrity using AES-CTR and Message Authen-
tication Code (MAC), respectively, during the
messages transmission over an insecure net-
work.

• allows the sending of only one of n-pieces
of the secret code of the key by sender MS
to each recipient MS. It has the following
advantages: (i) sending a partial code to each
recipient MS improves the overall security of
the system, and (ii) reduces the total commu-
nication overhead generated by the protocol.

2) Our protocol is secure against replay attack, Man-
in-the-Middle (MITM) attack, impersonation attack,
SMS disclosure, and SMS spoofing.

3) Each user’s original identity is kept secret during
the authentication over the network. It protects the
user against IMSI tracing and ID-theft attacks.

We compare our protocol with four other related pro-
tocols (ABAKA, RAISE, SPECS, and b-SPECS+). In a batch
authentication when number of requests are 5, 10, 20, 50,
100, and the findings are as follows:

1) During first time (fresh) authentication, i.e.,
BVPSMS∗, reduces 6.1%, 23%, 12.5%, and 46.52%
of the communication overhead as compared to
ABAKA, RAISE, SPECS, and b-SPECS+, respectively,
and is equal of the BLS protocol. However, BLS does
not provide mutual authentication, user privacy, in-
tegrity protection, and offers only partial resilience
to impersonation attack.

2) During each subsequent authentication, i.e.,
BVPSMS∗∗, lowers the communication bandwidth
by 79.27%, 89.83%, 80.69%, and 88.2% in comparison
to ABAKA, RAISE, SPECS, and b-SPECS+,
respectively.

In addition, findings from the simulations (i.e. execu-
tion time, verification time, and re-batch verification time)
demonstrate the utility of our protocol in a real-world
cellular network deployment.

The remainder of the paper is organized as follows.
Section 2 describes the system and threat models for SMS
security. Section 3 presents our proposed protocol. Section
4 presents the reliability analysis of the proposed protocol,
a malicious request detection algorithm, and the impact on
user mobility. The security analysis and the performance
evaluation of the BVPSMS protocol are presented in Sections
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Sender Mobile 
User (MS)

Recipients Mobile 
User (MSi)

Authentication Server 
(AS)

(1) The MS sends SMS to 
multiple users MSi

simultaneously.
(2) All MSi send their 
requests to the AS for 
the verification.

(3) The AS
authenticates the 
sender MS and all 
recipients MSi.

(4) The sender MS
authenticates the AS.

(5) All recipients MSi

authenticate the AS.

Fig. 1: Batch authentication requests from the MS to the AS.

5 and 6, respectively. Formal proofs of BVPSMS using BAN-
Logic and Proverif are outlined in Section 7. Finally, section
8 concludes this work.

2 SYSTEM AND THREAT MODELS

In this section, we present the system and threat models.

2.1 System Model

We introduce a scenario where the MS sends an SMS to
multiple MSs simultaneously. Upon receiving the SMS, each
MS sends its authentication request to the AS for identity
verification of the sender MS. The system model allows
many such concurrent executions (e.g. several MS sending
SMS to multiple recipients MS. A scenario is shown in
Figure 1 where multiple MSs send their authentication
requests to the AS for the identity verification of sender
MS at the same time. The AS handles the received au-
thentication requests and authenticates all the MSs. The
authentication request may be single or multiple. However,
it would be uncommon to have only a single request at
any point of time. When an SMS is sent from the sender
MS to the recipient MS over the 2G/3G (GSM/UMTS) net-
works, it follows the path shown in Figure 2(a) [36], [37]:
Sender MS→Base Transceiver Station (BTS)→Base Station
Controller (BSC)→Mobile Switching Center (MSC)→SMS-
Gateway MSC (SMS-GMSC)→SMS-Center (SMSC)→SMS-
GMSC→MSC→BSC→BTS→Recipient MS. Similarly, Figure
2(b) and Figure 2(c) show a path of SMS transmission over
the SGs and IP/IMS in 4G (LTE) networks. It is challenging
for the AS to verify and authenticate a large number of MSs,
based on its capacity to handle requests in an efficient way.

If the server can only handle one request at a time, then it
requires a queue to manage all incoming requests. However,
managing such a queue will result in increased overheads,
time, and cost of authentication. In fact, the approach used
for the authentication must be very efficient to handle
all the requests in a very short time. To more efficiently

Other 
MSC

Other BSC Other BTS Recipient MS

SMS Center 
(SMSC)

Database

SMS Gateway MSC
(SMS-GMSC)

Mobile Switching 
Center (MSC)

Base Station 
Controller (BSC)

Base Transceiver
Station (BTS)

Sender MSEquipment Identity 
Register (EIR)

Home Location 
Register (HLR)

Visiting Location 
Register (VLR)

Authentication 
Center (AuC)

(a) SMS transmission in 2G/3G (GSM/UMTS) system.

Other 
MSC

Other MME Other eNodeB Recipient UE

SMS Center 
(SMSC)

Database

SMS Gateway MSC
(SMS-GMSC)

Mobile Switching 
Center (MSC)

Mobility Management 
Entity (MME)

eNodeB

Sender UEEquipment Identity 
Register (EIR)

Home Subscriber 
Server (HSS)

Visiting Location 
Register (VLR)

Authentication 
Center (AuC)

SGs Interface

(b) SMS transmission over SGs in 4G (LTE) system.

Other IP-
SM-GW

Other MME Other eNodeB Recipient UE

SMS Center 
(SMSC)

Database

IP Multimedia Subsystem 
(IMS) Multimedia Telephony 

Service (MMTel)
IP Short Message 

Gateway (IP-SM-GW)

Mobility Management 
Entity (MME) eNodeB

Sender UEEquipment Identity 
Register (EIR)

Home Subscriber 
Server (HSS)

Visiting Location 
Register (VLR)

Authentication 
Center (AuC)

SMS over IP
(SIP)

(c) SMS transmission over IP/IMS in 4G (LTE) system.

Fig. 2: SMS transmission from the sender MS/UE to receiver
MS/UE in cellular systems.

handle multiple authentication requests, one solution is to
perform a batch authentication for all incoming requests.
However, there may be one or more malicious requests
generated by the adversary. In such a case, we need to first
identify the malicious requests and remove the identified
malicious requests from the batch, then perform re-batch
authentication. This comes at an additional cost to the re-
batch authentication. However, the cost of authenticating
each user is reduced. The notations used in the paper are
presented in Table 1.

2.2 Threat Model

We consider a threat model with three categories of the
mobile users, namely honest majority, semi-honest majority,
and dishonest majority. In the honest majority scenario, the
legitimate and honest MS and the AS behaves as per proto-
col specifications, while a few (no more than half the total)
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TABLE 1: Notations

Symbol Description Size (bits)

MS Mobile station referring user –
UE User Equipment referring user –
AS Authentication server referring AuC –
IMSI International mobile subscriber identity 128
TID Temporary identity 128
ReqNo Request number 8
SK Shared secret key between MS and AS 128
DK Delegation key generated from SK 128
H/MAC Hash/message authentication code 64
T/Ti/T1 Timestamp 64
K Random number 128
Y/P/Q/R Variable 128
Z Signature generated by the MS 128
SIMcode SIM card activation code of SK key 64
S-Actcode Sender generated code of the SK key 64
Actcode Recipient generated code of the SK key 64
ExpT Expiry time 64
f1() HMACSHA256 is used to generate DK –
f2() AES-CTR is used to generate TID –
f3() HMACSHA1 is used to generate MAC –
E{}DK Encryption function with DK key –
D{}DK Decryption function with DK key –
⊕ Bitwise XOR operation –

MS send incorrect outputs to the AS in a semi-honest MS
scenario. However, in the dishonest MS (malicious MS to the
network) scenario, majority of the MS (more than half) send
fabricated information to the AS. Furthermore, malicious
MS computes the required functions in a probabilistic poly-
nomial time with auxiliary information. We do not consider
these scenarios for the AS, as malicious AS does not have
the correct keys in its database. Therefore, we consider only
the trusted AS scenario where the AS always sends correct
information to all the MSs. We also remark that an adversary
can delay some or all the messages between the MS and the
AS under a public channel.

In this paper, we consider two variations of the ad-
versary models: non-adaptive and adaptive variations. In
a non-adaptive or static variation of the model, a set of
corrupted users are fixed, while in the adaptive variant, the
adversary can choose any corrupted users in any numbers
during run time. Furthermore, the adversary can choose any
input for corrupted users. We also consider passive as well as
active adversaries in the network.

i) Security and Privacy Attacks, and Integrity Violations: The
threat model describes different scenarios to capture various
attacks in which a malicious MS can access the authentic
information or misguide legitimate MS. Since the SMS is
sent in plaintext, network operators can eavesdrop on the
SMS content at the SMSC. This leads to SMS disclosure and
spoofing attacks. Currently, Over-the-Air (OTA) interface
between the MS and the BTS is protected by a weak en-
cryption algorithm. Hence, the adversary can compromise
the messages in order to capture the information contained
in the SMS. The unencrypted messages are sent over the
Signaling System (SS7) networks, which does not secure the
transmission medium.

ii) Security Goals: Our security goals are as follows:

1) Mutual Authentication: The proposed protocol must
provide mutual authentication between each MS

and the AS.
2) Data Confidentiality and Message Integrity: These are

two key properties to prevent the leakage or abuse
of user data.

3) Other Security Properties: The protocol should be
secured against the following attacks:

a) Eavesdropping and Impersonation Attacks: The
adversary can eavesdrop the communication
between the user and the server. The ad-
versary may also pretend itself as legitimate
user or the server and perform imperson-
ation attacks.

b) MITM Attacks: An adversary can perform
MITM attack when the MS is connected to
the BTS and eavesdrops the session initiated
by a legitimate MS. If IMSI is sent in clear-
text, the adversary can compromise the sys-
tem/user by tracing the user. Commercially
available software, such as IMSI catcher can
be used to capture the user’s IMSI over a
weak or unencrypted network.

c) Replay Attacks: The attacker may fraudu-
lently delay the conversation between both
MS, and captures or reuses the authenticated
information contained in the previous mes-
sages to facilitate or conduct a replay attack.

4) Session Key Security, Forward Secrecy, and Non-
linkability: It is common practice not to send the
session key over the network in a plaintext. The
system must also defeat known key attacks and
maintain forward secrecy. The protocol should be
able to handle key generation, transmission, and
its usage. The adversary must not be able to link
current session information (messages and keys)
with previous sessions, i.e., non-linkability.

5) Privacy Preservation and Untraceability: The original
identity of each MS must be protected during its
transmission over the network. Such privacy preser-
vation helps to secure the system against MITM
attacks and user untreaceability.

3 PROPOSED PROTOCOL: BVPSMS

In this section, we present the proposed efficient and se-
cure batch verification-based protocol BVPSMS for end-to-
end SMS security over an insecure network. The BVPSMS
protocol is illustrated in Figure 3. The following subsections
describe our protocol in detail.

3.1 System Assumptions

We make the following assumptions, similar to the tradi-
tional cellular network, for our system implementation:
Assumption 1. An AS is deployed at the Authentication
Center (AuC) similar to the traditional cellular network.
Assumption 2. A Secret Key (SK) is stored in the AS’s
database at the AuC as well as on the Subscriber Identity
Module (SIM) card of the MS during manufacturing.
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MS MSi AS
Generate TID1, T1,

ReqNo, DK1, MAC11 (1) : T1, ReqNo, TID1, S-Actcodei, MAC11
−−−−−−−−−−−−−−−−−−−−−−−−−−−B Verifies MAC11

?
= MAC1

′
1, If yes, proceed

(2) : Message (1), Ti, TIDi, Yi, Zi, Actcodei, MAC2i
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B Verifies MAC2i

?
= MAC2

′
i

Retrieves SIMcode1, DK1,
SIMcodei, DKi,
IMSI1, IMSIi

Computes P , Q, R,
Q

?
= R

(3) : E{Tm+1, ExpT}DK1
C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Generates Tm+1

(4) : E{Tm+1}DK1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B Verifies Tm+1

Verifies MAC3i
?
= MAC3

′
i

(5) : E{Tm+2, ExpT, new-ReqNo, new-SIMcodei, DK1}DKi ,
C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Generates Tm+2, MAC3i

Pi, MAC3i
C−−−−−−−−−−

Check, If T1 is same (6) : E{new-ReqNo, new-SIMcode1, T1}DK1
C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

as initial, then stop.

(a) Phase-1: protocol execution for mutual authentications.

MS MSi
(7) : new-ReqNo, E{TID1, Tj}DK1

−−−−−−−−−−−−−−−−−−−−−−−−−B Checks TID1, new-ReqNo,
(8) : E{new-ReqNoi, Tj+1}DK1

C−−−−−−−−−−−−−−−−−−−−−−−−− If Tj ≤ ExpT, retrieves DK1

(b) Phase-2: subsequent authentications.

Fig. 3: BVPSMS protocol (a) phase-1 (b) phase-2.

Assumption 3. The AS never discloses the stored secret keys
to any other entity in the network. Also, it does not illegally
reuse the secret key of any one mobile user to other users.
Assumption 4. The process of generating Actcode and re-
trieval of SIMcode (discussed later in user registration sub-
section) is strictly kept secret and not publicly available. This
is a realistic assumption as cellular network algorithms and
functions are generally considered intellectual property.

3.2 Definition of the Functions Used

Our protocol uses different functions with standard nota-
tions, such as f1(), f2(), f3(), and E/D{}, similar to used
by existing cellular network authentication protocols. In the
protocol, f1() and f3() functions are two different HMAC
functions to avoid any collision generated with the same
input. We also consider AES with Counter mode (AES-CTR)
to implement f2() and E/D{}. However, inputs for f2()
and E/D{} are different. Modern mobile devices are fairly
capable of computing these functions [4]. The structure of
these functions as follows:

f1() Function: A one-way function, such as one-way
hash function HMACSHA256, which takes input message
of 512 bits with SK key and generates 256 bits of hash code,
out of which first 128 bits are used as the DK key.

f2() Function: Any reversible symmetric encryption
function, such as AES-CTR where the plaintext and shared
key generate the ciphertext, and then ciphertext and the
same key are able to produce the original plaintext. The key
used in the function is DK, derived from the SK key at MS
as well as at AS.

f3() Function: It is used to generate MAC codes, which
can be implemented by a one-way MAC function, such

as HMACSHA1 that takes as input a multiple of 512 bits
message with DK key and generates 160 bits of hash code,
where the first 64 bits are used as MAC.

E/D{}DK Function: It is used to encrypt and decrypt
the transmitted messages over the network. AES-CTR with
DK key is used for this purpose. The Modified AES (MAES)
[4] with 256 bits of DK key can also be used as an alternative.
However, a key expand function is required to generate 256
bits of DK key from 128 bits.

3.3 Detailed Description

Although the protocol is capable of supporting concurrent
threads of different MSs sending their authentication re-
quests with SMSs to several different MSs. For simplicity,
in this section, we present a scenario where a MS sends
multiple SMSs to different MSs. This scenario can be easily
extended with multiple sender MSs. The physical secu-
rity (any personal access by the end user/mobile opera-
tor/adversary) of the AS is assumed secure, similar to the
existing traditional cellular networks. Hence, it is almost
impossible to extract the secret key SK of a mobile user.
Readers should not confuse the AuC with the SMSC. At the
SMSC, mobile operator can easily access the content of each
message. The AuC is secured against any personal access,
and the keys stored at the AuC can only be accessed by the
protocol during its execution. Therefore, the AS is secure
against any personal access.

We describe our protocol in four different parts: user reg-
istration, pseudo-identity generation, protocol initialization,
and protocol execution. The protocol maintains message
integrity between each MS and the AS using MACs.

1) User Registration: When a user requests for a new
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SIM, the operator activates SIM card by establishing a con-
nection between the SIM card and the AS. The AS generates
a random SIMcode ∈ Z∗p (where p is a large prime), stores
SIMcode in its database as a label to the secret key SK,
and also sends SIMcode to the SIM card during first use
(e.g. when the card is activated). On receiving SIMcode, the
SIM card stores it in the memory. The Actcode is a one-time
activation code sent to the AS instead of the actual SIMcode,
when requesting for the authentication. The purpose of this
code is to help the AS to verify SIMcode and retrieve SK key
from its database that belongs to a user requesting for the
authentication. The AS sends a random new-SIMcode to all
involved MSs for subsequent authentication request.

In the proposed protocol, when a mobile user activates
this module to send an SMS to multiple users, an automatic
signal is sent to the respective AS, which sends a random
k to the user’s device encrypted by its DK key. The user
decrypts k and chooses n by its own. The selection of
n is based on the average number of SMSs dropped by
the network per unit time. Although there is no guarantee
that an SMS will actually be delivered to the recipient, but
delay or complete loss of a message is uncommon, typically
affecting less than 5 percent of messages [38]. Hence, our
scheme uses n is at least 1.05 × k. The need to generate
and transmit activation code S-Actcode by the sender MS
and retrieval of actual SIMcode by the AS is motivated by
Shamir secret [39] as follows:

The goal is to divide the hash of secret SIMcode of the
sender MS into n-pieces as {S-Actcode1, S-Actcode2, ..., S-
Actcodei} such that: (i) knowledge of at least k pieces of
S-Actcodei helps AS in the computation required to generate
the final SIMcode, say SIMcode1’s hash, and (ii) knowledge of
any k-1 pieces of S-Actcodei cannot help in the reconstruc-
tion of the final SIMcode1’s hash (considering all possible
values are equally likely). Therefore, the sender MS sends S-
Actcodei to n-recipients MSi. All n-MSi (in the ideal case) or
at least k out of n-recipients MSi (in case of error or network
failure) forward their Actcodei to the AS along with the
received S-Actcodei (part of sender MS). The AS obtains the
actual hashed SIMcode1 after receiving at least k-S-Actcodei.
The AS will then match the computed hashed SIMcode1 with
the stored pre-computed hash of SIMcode1 of the sender MS.
Once the hashed SIMcode1 is known to the AS, it retrieves
SK1 key and derives a delegation key DK1 of the sender MS.
This entire process takes k points to define a polynomial of
degree k-1 in a finite field F of size p where 0 < k ≤ n < p,
SIMcode1 < p, and p is a large prime.

The sender MS chooses at random k-1 positive integers
{b1, b2, ..., bk−1} with bi < p, and computes a polynomial
f(x) = b0+b1x+b2x

2+...+bk−1x
k−1, where b0 = SIMcode1.

The sender MS generates n S-Actcodei points (xi, yi) as
(i, f(i) mod q) using the Lagrange basis polynomial, where
q > n, q > bi. On receiving the message (from at least
k-recipients MSi), the AS reconstructs a polynomial by
computing f(x) as:

f(x) =
k∑

i=1

yili(x), where li(x) =
∏

1≤j≤k
j 6=i

(x− xj)/(xi − xj).

Finally, the AS retrieves the actual SIMcode1 (= b0) from the
computed f(x). In our protocol, each recipient MSi also
generates its own Actcodei as follows:
At the MSi: Each MSi generates Actcodei = H(SIMcodei) and
is sent to the AS. We use first 64 bits of H() function as
Actcodei, which is SHA256.
At the AS: The AS pre-computes H(SIMcodei) from the
stored SIMcodei for each MSi, and then verifies Actcodei

?
=

H(SIMcodei). Thereafter, the AS extracts SKi key, and de-
rives DKi key by referring SIMcodei of each MSi.

We keep the selection of k points dynamic by the AS
in each attempt to increase the difficulty of an adversary in
correctly guessing the different pieces of the secret SIMcode1.
Also, in each such request, n is randomly generated, which
is is at least 1.05 × k. For example, we can divide the hash
of secret SIMcode1 into twenty parts (n = 20) of S-Actcodei,
and any fifteen parts (k = 15) can sufficiently reconstruct the
original SIMcode1. Note that the construction of SIMcode1
by an adversary is useless, as it cannot derive or extract
meaningful information from SIMcode1 and the information
sent over the network. Later, in our protocol after verifying
sender MS and all recipients MSi, the AS sends a new
new-SIMcode1 and new-SIMcodei to the MS and all MSi,
respectively, for subsequent authentication request.

2) Pseudo-Identity Generation: The generation of TID
and retrieval of IMSI are not publicly available. We consider
IMSI 128-bit as defined in the 3GPP specifications [40],
according to which the length of the compressed IMSI
and encrypted IMSI shall be 64 bits (8 octets) and 128
bits (16 octets), respectively. We use an encryption func-
tion to generate a temporary identity of each participating
user. Each MSi (including sender MS) computes TIDi as
TIDi = f2(IMSIi, Ti)DKi to prevent the transmission of
the original IMSIi over the network that protects ID-theft,
eavesdropping, and MITM attacks. Here, Ti is the current
timestamp, DKi is a delegation key, and f2() is a reversible
symmetric encryption function (e.g. AES-CTR). The struc-
ture of this function may be known; however, DKi key
remains secret.

3. Protocol Initialization: Let m be the total number of
authentication requests generated by various mobile users
MSi (where i = 2, 3, ..., m+1) to the AS at the same time
when they receive a request from the sender MS. Initially,
each MSi (and sender MS) chooses a random number
Ki ∈ Z∗p (where p is a large prime integer of 128 bits),
generates current timestamp Ti, and derives a delegation
key DKi, where DKi = f1(Ti)SKi

and f1() is a hash-
based MAC function, such as HMACSHA256. Thereafter,
each MSi computes Yi = Ki ⊕ IMSIi and a symmetric-
signature Zi = (Ki + DKi ⊕ ReqNo) mod m, where ⊕ is a
bitwise XOR operation. Each mobile user generates a valid
symmetric-signature and fulfills the security properties with
Assumption 3, such as authenticity (the signer itself signs
the associated message with its key), unforgeability (only
the signer can generate a valid symmetric-signature for the
associated message, assuming an honest AS), non-reusability
(generated symmetric-signature cannot be reused), non-
repudiation (signer cannot deny the signing of a message,
i.e., symmetric-signature, with a honest AS), and integrity
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(ensures that content has not been modified). Note that in
symmetric key cryptography, both parties know the shared
secret key. If they send messages to a third party, then it
is difficult to determine the sender of the message received
by a third party. In such a scenario, only two parties are
involved. In other words, only the MSi (and sender MS)
and the AS know the corresponding SKi key as well as the
generated DKi key.

4. Protocol Execution: The execution of BVPSMS is di-
vided into two phases: fresh authentication and subsequent
authentication.

Phase-1: Batch Authentication: The proposed protocol
performs the following six steps:
Step 1. [MS → MSi: T1, ReqNo, TID1, S-Actcodei,
MAC11]: The sender MS multicasts its authentica-
tion request as T1, ReqNo, TID1, S-Actcodei, and
MAC11 = f3(T1,ReqNo,TID1, S-Actcodei) to all targeted
MSi (message-1), where f3() is a hash-based MAC function,
such as HMACSHA1.
Step 2. [MSi → AS: T1, ReqNo, TID1, S-Actcodei, MAC11,
Actcodei, TIDi, Ti, Yi, Zi, MAC2i]: On receiving the
request, all recipients MSi compute MAC1

′

1 and verify
MAC11

?
= MAC1

′

1. If it verifies, then the respective
MSi proceeds; otherwise, the connection is terminated by
the MSi. The MSi who successfully verify MAC11, com-
pute and send their activation codes Actcodei, temporary
identity TIDi, timestamps Ti, variables Yi and Zi, and
MAC2i to the AS along with message-1 received from the
MS except MAC11 (message-2), where MAC2i = f3(T1,
ReqNo,TID1, S-Actcodei, Ti,TIDi, Yi, Zi, Actcodei).
Step 3. [AS → MS: E{Tm+1,ExpT}DK1

]: On receiving the
message, the AS computes MAC2

′

i for all the received mes-
sages from different MSi and compares MAC2i

?
= MAC2

′

i.
If the verification returns false, then the AS terminates
the connection for the MSi. Otherwise, the AS extracts
the hashed SIMcodei and computes DKi key from the re-
spective Actcodei and SKi, and IMSIi = f2(TIDi, Ti)DKi

from the received TIDi for all valid MSi. The AS also
computes the hashed SIMcode1, extracts SK1 key, derives
DK1 key, and retrieves IMSI1. Thereafter, the AS computes
P =

∑m
i=1(DKi ⊕ IMSIi) and R =

∑m
i=1(Zi ⊕ IMSIi) −

(ReqNo⊕ P ). If
∑m

i=1(Yi
?
= R) is true at the AS, all MSi are

successfully verified by the AS. Otherwise, one/more MSi

are malicious, which requires a re-batch authentication.

Re-batch Authentication Process: In a re-batch
authentication, the AS finds all invalid MSi using a
detection algorithm and removes all invalid MSi from
the batch. The AS detects malicious MSi using an
algorithm “Malicious Requests Detection”, discussed
in Section 4. After removing malicious MSi from a batch,
the AS re-computes P =

∑m−t
i=1 (DKi ⊕ IMSIi) and

R =
∑m−t

i=1 (Zi ⊕ IMSIi) − (ReqNo ⊕ P ), where t is the
total number of malicious MSi. Thereafter, the AS compares∑m−t

i=1 (Yi
?
= R), and ensures that all legitimate MSi are

authenticated. Finally, the AS sends E{Tm+1,ExpT}DK1

to the sender MS (message-3), where new-ReqNo is a new
request number assigned by the AS for subsequent request.
Step 4. [MS → AS: E{Tm+1}DK1

]: The MS replies

E{Tm+1}DK1
as an acknowledgment to the AS (message-4).

Step 5. [AS → MSi: Pi, E{Tm+2, new-ReqNo,ExpT,
new-SIMcodei,DK1}DKi

, MAC3i]: The AS decrypts
the message as D{E{Tm+1}DK1

}DK1
and verifies Tm+1.

Furthermore, the AS sends all Pi to the respective MSi along
with E{Tm+2, new-ReqNo, new-SIMcodei,ExpT,DK1}DKi

and MAC3i (message-5), where MAC3i = f3(Pi,
E{Tm+2, new-ReqNo, new-SIMcodei,ExpT,DK1}DKi

). On
receiving the message, all MSi compute MAC3

′

i and
compare MAC3i

?
= MAC3

′

i. If it holds, all MSi compute
P

′

i and compare Pi
?
= P

′

i , where P
′

i = (DKi ⊕ IMSIi). If
it verification returns true, the AS is verified by all MSi.
Otherwise, the particular MSi terminates the connection.
Step 6. [AS→MS: E{T1, new-ReqNo, new-SIMcode1}DK1 ]:
Finally, the AS sends E{T1, new-ReqNo, new-SIMcode1}DK1

to the MS (message-6), where T1 (first timestamp) shows
the completion of authentication process. Thereafter, both
ends can communicate with secure messages encrypted by
AES-CTR with 128 bits key.

Phase-2: Subsequent Authentications: Any subsequent
request made by sender MS within a pre-determined expiry
time of DK1 executes as follows:
Step 7. [MS → MSi: new-ReqNo, E{TID1, Tj}DK1

]: The
MS sends new-ReqNo, E{TID1, Tj}DK1

to all respective MSi

(message-7).
Step 8. [MSi → MS: E{new-ReqNoi, Tj+1}DK1

]: All MSi

check new-ReqNo, retrieve the corresponding DK1 from their
memory, and decrypt the received message. Furthermore,
if Tj ≤ ExpT, all respective MSi compute another request
number new-ReqNoi = f3(new-ReqNo,TID1, Tj) and sends
it to the MS along with Tj+1 (message-8). The same new-
ReqNoi is computed by each MSi. However, Tj+1 is different
for each MSi. Thereafter, the MS retrieves the message and
stores new-ReqNoi in its memory for the subsequent request.

4 DISCUSSION

In this section, we discuss the reliability of the BVPSMS
protocol, an algorithm to detect malicious requests, and the
impact of user mobility [8], [41].

Proposition 1. Hypergeometric distribution probability helps
to predict malicious requests in a batch and determines the
reliability of the proposed protocol.

If we can determine the approximate number of ma-
licious user requests involved in the process, Hypergeo-
metric distribution probability can help us determining the
probability in detecting malicious requests in our system.
Deploying an Intrusion Detection System (IDS), such as
presented in [42] in the cellular network, can identify the
suspicious malicious users. Let NMS be the maximum num-
ber of authentication requests generated by mobile users
at any point of time. Realistically, some of these requests
may be malicious, denoted as NIN. Also, we assume that
NAS is the maximum capacity of the AS to authenticate
requests at any point of time. For the statistical analysis,
we assume that NMS = 100, NAS = 50, and NIN = 10% of the
NMS, i.e., 10. Let Prob{t} is the probability when t malicious
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Fig. 4: Reliability analysis of our protocol when t = [1-10].

authentication requests are sent to the AS. The probability
of Hypergeometric distribution [43] is as follows:

Prob{t} =
(NMS−NIN

NAS−t
)(NIN

t

)(NMS
NAS

) , where t = 1, 2, ..., 10.

This indicates that (NAS − t) valid requests are sent
out of (NMS − NIN). Figure 4 shows the probability of
Hypergeometric distribution when NMS = 100, NAS = 50,
NIN = 10, and malicious requests are t = 1, 2, 3, ..., 10.
This probability is maximum (0.25) for t = 5 (half of t), and
minimum (0.00059) for t = 10 (last of t values).

Proposition 2. There exists an algorithm that detects mali-
cious requests in a batch.

In practice, few of the mobile participants may be dis-
honest or malicious. A dishonest mobile participant will
always lie about the true secret value. Our scheme assumes
that all shares lie on a single polynomial of degree at most
k − 1. This might not hold if the sender mobile user is
dishonest or malicious and sends bad shares to some of the
mobile recipients. However, our system model has a honest
sender mobile user. But a mobile user participant who lies
about his share can cause reconstructing incorrect value of
the secret (hash of SIMcode) at the server. Our scheme is
a fault-tolerant scheme that allows the hash of SIMcode to

Algorithm 1 Malicious Requests Detection

Input: The AS receives a set (AR) of m-authentication
requests (Ri) as AR = {R1, R2, R3, ..., Rm} at any time.
Output: Returns a set of malicious requests (MR), other-
wise returns True.

if (batch verification (AR, m) == 1) then returns True.
else

while (batch verification (AR, m) != 1) do
AR1 = {R1, R2, R3, ..., Rdm/2e};
AR2 = {Rdm/2e+1, Rdm/2e+2, Rdm/2e+3, ..., Rm};
batch verification (AR1, dm/2e);
batch verification (AR2, m− dm/2e);
if (m == 1 && batch verification (AR, m) != 1) then

returns MR = {IMSIi}

be correctly reconstructed, even in the presence of a certain
number of corrupted shares.

We propose an algorithm to detect malicious requests
of the MSi in a batch in at most log m verification rounds
(O(log m)). The proposed algorithm, based on binary search
approach, is explained as Algorithm 1. Only the hash-based
search complexity is better than binary search. The hash-
based searching is useful when you know the data, and
even more efficient when the data is in sorted order (O(1)).
However, in our protocol, the AS neither knows the actual
data nor stores any data until it is verified. In such case, the
proposed algorithm for malicious detection is suitable. Note
that “batch verification (AR, m)” is the batch verification
process at the AS involving P , R, and Yi as explained in our
protocol. Each invalid MSi is placed on a black-list and can
only be removed once the predefined time is over. During
this period, the request from particular MSi is discarded.

More generally, if there can be t malicious users with
faked shares (S-Actcode

′

i, i = 1, 2, ..., t), we can show that the
secret can be recovered and the malicious users identified
if k + 2t shares are available for reconstruction. In other
words, we need at least k + t honest shares available (in
addition to the t possible malicious users) in order to recover
the secret (hash of SIMcode) and identify the malicious
users. We assume that there are t cheaters or malicious
users participating at any time, where t ≤ k/2. In any
secret sharing cheater or malicious identification scheme,
the optimal cheating threshold is k = 2t + 1. In [44], it is
shown that in any such scheme, the following lower bound
must be satisfied: |V | ≥ (|S−Actcode|−1)/ε+1, where |V |
exactly matches the above bound is said to be optimal. Let
k = 2t+1, p = 1/ε and |S−Actcode| = pi, where i > 1 and
S−Actcode = (S−Actcode1, S−Actcode2, ..., S−Actcodei)
is a shared secret. We can identify up to t malicious users
such that |V | = |S − Actcode|/ε3n [45]. Now, we assume
that j (n ≥ j ≥ t) number of participants are involved in a
secret reconstruction out of n. Then, we have j−t legitimate
shares in a secret reconstruction. When j − t > t (j ≥ t+1),
there are

(j−t
t

)
cases that will construct the legitimate secret

[46]. This attack of not being able to reconstruct the secret
succeeds only when j − t < t.

Proposition 3. There is a sustainable impact of mobility when
a user moves out of range of the home AS.

It is also assumed that the ASs are deployed at different
geographic locations similar to traditional cellular networks,
and are interconnected to each other with a pre-shared secret
key between each pair of the ASs. When a roaming mobile
user requests for an SMS service, the corresponding AS of
that area handles the request, sends the request message
encrypted with pre-shared key to the home AS of the user.
The protocol execution takes place at the home AS and
the result is returned securely to the roaming AS securely.
Finally, the roaming AS grants/revokes SMS service to the
respective mobile user. Also, if few MSs are out of network,
the AS will verify whether it has received at least k messages
from different MSs. If it holds, the AS proceeds, otherwise
the AS waits for a timeout period. If the AS still does not
receive k messages, it discards the connections, and notifies
to the sender MS to restart his/her request.
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5 SECURITY ANALYSIS

This section achieves the security goals outlined in Section
2.2.

Property 1. The proposed protocol provides mutual authenti-
cation between all MS/MSi and the AS.

The BVPSMS protocol provides mutual authentications
between the AS and the MS, and between the AS and the
MSi. The AS authenticates all MSi by verifying

∑m
i=1(Yi

?
=

R) while each MSi authenticates the AS by comparing Pi
?
=

P
′

i . The sender MS authenticates the AS by decrypting the
received message-3 using DK1 while the MS is authenticated
by the AS by verifying Tm+1.

Property 2. The BVPSMS protocol initiates a secure session
key establishment between all MS/MSi and the AS. In fact,
Adversary A will not be successful in obtaining SK1/SKi or
DK1/DKi key, even if it captures S-Actcodei/Actcodei of a MS.

A unique DKi key is used within the expiry of a session
for each authentication between the AS and each MSi. A
is unable to generate DK1/DKi key as it does not know
the SKi key and the key generation function f1(). Since
each S-Actcodei/Actcodei is sent over the network only once,
the protocol is secure even if A is able to capture S-
Actcodei/Actcodei. Moreover, A cannot derive any relation
among captured S-Actcodei/Actcodei, as SIMcode1/SIMcodei
are randomly generated at the AS. Moreover, after each
authentication, new-SIMcode1/new-SIMcodei are sent to each
involved MS/MSi. Furthermore, if A modifies Actcodei in
message-2, the computed MAC2

′

i will not match with the
received MAC2i at the AS. Hence, the MSi will terminate
the connection.

Property 3. Adversary A cannot trace the original identity
of the MS/MSi. In fact, A is not able to identify the actual user,
even if it captures the TID1/TIDi of a mobile user.

Our protocol preserves identity anonymity and untrace-
ability properties.

Untraceability: Our protocol satisfies untraceability as A
cannot distinguish whether two TIDs correspond to the
same MS/MSi or two different MS/MSi.

Verify(publicChannel)[(IMSI1, IMSI2)|TIDi|MS/MSi|AS]
≈ Verify(publicChannel)[IMSI1|IMSI2|TIDi|MS/MSi|AS].

In our protocol, privacy of each MSi (including MS) is
ensured. Each TIDi is computed from the original IMSIi as
TIDi = f2(IMSIi, Ti)DKi

before a message is sent by each MSi

over the network. We implement f2() using AES-CTR with
DKi key since no practical full attack has revealed against
on AES. As TIDi is used by each MSi over the network, A
is unable to trace the original identity of the user.

IND-ANO: Indistinguishability under Anonymous Identity:
Our protocol is IND-ANO as no adversary A at time t can
distinguish between two chosen identities TID1 and TID2

with a negligible ε advantage.

Pr[A(TID1) = 1] − Pr[A(TID2) = 1] ≤ ε. A cannot
distinguish and relate TIDi and other messages with IDi, as
each TIDi is used only once over the network. For all sub-
sequent requests, a different new-ReqNoi is used each time

when the sender MS connects to the MSi. The MSi sends an
encrypted new-ReqNoi to the MS that will be used for the
next authentication within a session. Hence, untraceability
and identity anonymity are ensured, asA cannot trace TIDi,
SIMcodei, and new-ReqNo to link with users, and also IMSIi
would not be revealed to A and intermediate operators.

Property 4. Adversary A cannot link current session infor-
mation with previous sessions. Moreover, our protocol maintains
perfect forward secrecy and Indistinguishability under Chosen
Plaintext Attack (IND-CPA).

The MSi (including MS) and the AS generate fresh DKi

keys with unique timestamps, TIDi, Actcodei, andKi. There-
fore, A cannot retrieve the information based on linkability
among users.

Forward Secrecy: Our protocol maintains forward secrecy
as no A could obtain past keys and generate future keys.

The SKi and DKi keys are never sent over the network,
and a new DKi key is used in each fresh session to encrypt
IMSIi using AES-CTR. Even compromising current DKi will
not allowA to obtain or generate past and future keys. Also,
the past keys cannot be used for future sessions, as both
ends generate a fresh DKi key.

IND-CPA: Our protocol is IND-CPA secure as no adver-
sary A in time t can distinguish between two chosen mes-
sages msg1 and msg2, and has no or negligible advantage.

Pr
DKi←SKi

[A(msg1) = 1]− Pr
DKi←SKi

[A(msg2) = 1] ≤ ε.

Assuming that A has unlimited access to the encrypted
data using a random oracle, the messages encrypted by
the same key in our protocol generate different ciphertexts.
Even encrypting the same plaintext with the same key
generates different ciphertext, as at least one of the input
parameters of the message is always different. The MSi

generates TIDi as f2(IMSIi, Ti)DKi
, where Ti changes for

each fresh message. We use AES-CTR as f2() that encrypts
successive values of a counter with AES, and regurgitates
concatenation of the encrypted blocks. AES-CTR stream
never includes twice the same block and is IND-CPA.

Property 5. The proposed protocol defeats SMS disclosure,
SMS spoofing, replay, MITM, and impersonation attacks between
the MS/MSi and the AS. Also, the protocol provides security
protection over the air and SS7 channel. Furthermore, adversary
A cannot compromise message confidentiality and integrity.

BVPSMS provides mutual authentication between the
AS and the MS/MSi by verifying (

∑m
i=1Xi)

?
= R, and Pi

?
=

P
′

i . This process prevents the system against impersonation
attack. Furthermore, transmitted messages are securely en-
crypted using AES-CTR, which protects the system against
SMS disclosure and MITM attack.A is unable capture actual
IMSI using IMSI catcher, as each MS/MSi sends its TID over
the network. It also prevents SMS spoofing. Furthermore, a
timestamp value sent with each message protects the system
against replay attack. Our protocol provides end-to-end
SMS security from the sender MS to all recipients MSi over
OTA interface and SS7 channel, as each confidential message
is encrypted using strong encryption. Moreover, message
integrity (message content and its threshold delivery in
time) is maintained, as Treceive ≤ Tgenerate + Tthreshold and
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TABLE 2: Requirements vs. Protocols

Prevention Goals ABAKA
[8]

RAISE
[6]

SPECS
[11]

b-SPECS+
[9]

BVPSMS

Mutual Authenti-
cation

Yes No Yes Yes Yes

User Privacy Yes Yes No No Yes
Integrity
Protection

No Yes No No Yes

Replay Attack Yes Yes No No Yes
MITM Attack Yes Yes Yes Yes Yes
Impersonation
Attack

Yes Partial No Yes Yes

MACs are used for verification. The messages received after
the threshold time will be lapsed.

Table 2 lists the security and privacy requirements
achieved by existing protocols. These protocols are secure
against MITM attack, but do not provide integrity protection
to the messages with the exception of RAISE [6]. However,
RAISE [6] does not provide mutual authentication and is
partially secure against impersonation attacks. We remark
that user privacy is preserved in ABAKA [8] and RAISE [6].
The SPECS [11] and b-SPECS+ [9] suffer from replay attack.
Thus, our proposed protocol fulfills all the mentioned re-
quirements.

Property 6. Our protocol is secure against both passive and
active corruption attacks in the presence of non-adaptive and/or
adaptive adversaries A.

In passive and active corruption attacks, A obtains com-
plete information held by the corrupted MSi (while a MSi

still runs protocol correctly) and A takes over control of
corrupted MSi, respectively. In both cases, our protocol
maintains IND-CPA indistinguishability as well as perfect
forward secrecy. Moreover, keys are never sent over the
network, and delegation keys are generated only for a
session. Furthermore, both passive and active adversaries
can be non-adaptive (a set of corrupted MSi is chosen before
the protocol starts) or adaptive (a corrupted MSi is selected
at any time during protocol run). In any case, A acting as
corrupted MSi does not affect the security of the protocol.

Property 7. The proposed protocol achieves fairness and guar-
antees that “no MSi (malicious or legitimate) has an advantage”.

A protocol is said to be fair if it ensures that no user can
gain a significant advantage over other users, even if the
protocol halts for any reason. In our protocol, the MS/MSi

and the AS learn each others’ information. However, the MS
and the MSi cannot learn any information about each other,
as one user is unable to obtain DKi keys belonging to other
users. Users are also unable to derive IMSIi/TIDi of each
others, as each DKi is secret. Also,A cannot generate a valid
symmetric-signature Si, as it does not know the correct SKi

and/or DKi keys, and Ki is randomly generated by each
MSi. Our protocol also maintains IND-CPA; therefore, no
MSi has an advantage over others.

Property 8. BVPSMS maintains fairness and correctness
under honest, semi-honest, and dishonest majority scenarios.

Our protocol fairly works under all three scenarios. We
consider these scenarios only for the MSi, not for the AS. The

reason is that the AS keeps SKi keys of all MSi secret. Hence,
it cannot be dishonest or semi-dishonest. The effectiveness
of our protocol under all three scenarios can be observed by
re-batch verification delay. Our protocol maintains security
properties under these scenarios, such as IND-CPA, forward
secrecy, and fairness.

6 PERFORMANCE EVALUATION

This section presents the performance evaluation of
BVPSMS in terms of overheads, verification and re-batch
verification times, and the time, space, and cost analysis.

6.1 Analysis

This subsection analyzes the performance of the BVPSMS
protocol. We compare the communication overhead gener-
ated by RAISE [6], ABAKA [8], SPECS [11], and b-SPECS+ [9]
along with the BVPSMS protocol. There is no batch protocol
for SMS security in the literature. However, we compare the
communication overhead generated by the protocols with
our protocol, as all protocols are based on authentication
considering the same wireless network communication sce-
nario, and also the flow of information is same in all the pro-
tocols. However, the computation overhead and verification
delay are different in both types of the protocols because
VANET protocols have additional devices and road side
equipment to communicate information over the network.

6.1.1 Communication Overhead

Let m be the number of recipients MSi, and r be the number
of subsequent multiple authentication requests within the
expiry time, i.e., ExpT. The communication overhead can be
defined as the total number of bits transmitted during the
authentication process over the network. The transmission
overhead generated by the BVPSMS protocol during m-
authentication requests can be evaluated as:
Phase-1: Total number of transmitted bits = (1)+(2)+
(3)+(4)+(5)+(6) = (128+64+8+64+64)×m + (128+64+8+64+
64+128+64+128+128+64+64)×m + (64+64+8) + (64) + (128+
64+64+8+64+64+128)×m + (8+64+64) = 336+1752×m bits.
Phase-2: Total number of transmitted bits = ((7)+(8))×r =
(128+8+64)×r + (64+8)×r = 200×r.
Total overhead = 42+(219×m)+(25×r) bytes.

BVPSMS is our original protocol that provides integrity
to each message in two phases. Since all the protocols

TABLE 3: Communication Overhead in Batch Authentica-
tion by Different Protocols

Protocols Device-
Server
(bytes)

Intermediate
Authority
Server (bytes)

Server-
Device
(bytes)

Total
(bytes)

ABAKA [8] 84×m – 80×m 164×m
RAISE [6] 200×m – – 200×m
SPECS [11] 48×m 96×m 32×m 176×m
b-SPECS+ [9] 48×m 176×m 64×m 288×m
BVPSMS∗ 97×m – 57×m 154×m
BVPSMS∗∗ 25×r 9×r – 34×r
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Fig. 5: Communication overhead analysis.

RAISE [6] compared in Table 3 provide no integrity, we
use two variants of BVPSMS for comparison: BVPSMS∗

for fresh authentication without integrity protection (as
phase-1), and BVPSMS∗∗ for each subsequent authentica-
tion within the expiry time of DK1 key (as phase-2). For m-
authentication requests, BVPSMS∗ generates 154×m bytes
overhead, which is lowest among all the protocols discussed
in the paper, while for all subsequent authentication re-
quests, the overhead is only 34×r bytes.

From Figure 5, it is clear that BVPSMS∗ and BVPSMS∗∗

generate less communication overhead among all proto-
cols. BVPSMS∗ reduces the communication overhead by
6.1%, 23%, 12.5%, and 46.52% in comparison to ABAKA,
RAISE, SPECS, and b-SPECS+, respectively, when m = 5,
10, 20, 50, 100. For any subsequent authentication request,
BVPSMS∗∗ produces significantly low overhead in compar-
ison to all the protocols. It reduces the communication over-
head by 79.27%, 89.83%, 80.69%, and 88.2% in comparison to
ABAKA, RAISE, SPECS, and b-SPECS+, respectively, when
r = 5, 10, 20, 50, 100.

6.1.2 Computation Overhead

The computation overhead generated by BVPSMS during
m-authentication requests is shown in Table 4. We consider
all functions as a single unit cost. Then, the computation at
the MS, MSi, and AS are as follows:

Phase-1: At the MS = 8, At the MSi = 11×m, and At the
AS = 6+14×m.

Phase-2: At the MS = 2×r and At the MSi = 2×r.
Total computation overhead = 8 + (11×m) + (6+14×m) +
(2×r) + (2×r) = 14+(25×m)+(4×r) bits.

We compute the communication and computation over-
heads (in bits) generated by our protocol when m = 10, 20,
50, 100; r = 1, 2, 5, 10. For m=100, the generated commu-
nication overheads are 2745.875 bytes and 2970.875 bytes,
respectively, when r=1 and r=10. Similarly, when m=100,
the computation overheads for r=1 and r=10 are 314.75
bytes and 319.25 bytes, respectively. This indicates that our

TABLE 4: Computation Overhead in Batch Authentication

Entity Name Total Computation (Time Computation)

Phase-1
At the MS Tf1(), Tf2(), 2TD{}DK1

, TE{}DK
, Tf3(), TH(), TS-Actcode

At the MSi mTf1(), mTf2(), 3mTXOR, mTAdd, mTD{}DK
,

2mTf3(), mTActcode, mTH()

At the AS (m+ 1)Tf1(), (m+ 1)Tf2(), (m+ 1)TH(), 3mTf3(),
(3m− 3)TAdd, TSub, (2m+ 1)TXOR, (m+ 2)TE{}DK

,
TD{}DK

, (m+ 1)TSIMcode
Phase-2
At the MS rTE{}DK

, rTD{}DK

At the MSi rTD{}DK
, rTE{}DK

protocol is efficient even when a large number of subsequent
authentication requests is executed.

6.2 Simulation

This section presents the simulation results of our protocol
in terms of the total execution and verification times. We
also perform time, space, and cost analysis of our protocol.

6.2.1 Protocol Execution Time

We implemented a client-server paradigm for our system,
where the MS/MSi are the clients and the AS is a server.
We performed various operations on an Intel Core i3-2330M
2.20GHz machine with Windows7 OS, 256 MB RAM, using
JDK1.7 with J2ME WTK mobile emulator. On average, the
execution time to perform addition, XOR, and subtraction
are Tadd = 0.0009 milliseconds (ms), Txor = 0.03 ms, and
Tsub = 0.0009 ms, respectively. We setup the system with 50
MSi (and one MS) transmitting their messages to the server
AS, when the MS sends an SMS to these MSi. The average
value of 30 iterations is considered for each result.

Note that protocol execution time is the complete time
for mutual authentication between all MS/MSi and the
AS. Table 5 shows simulation results obtained for various
functions’ computations. Here, Ext, TUM, Enc, and Dec
are the execution time (ms), total used memory (bytes),
encryption, and decryption process, respectively. The f2()
is implemented as AES-CTR, where encryption (generation
of TIDi) took 13.6 ms and decryption (generation of IMSIi)
is performed in 4.2 ms. The same results are obtained for
E{}DK1

/D{}DK1
using AES-CTR. The f1() and f3() are

implemented as HMACSHA256 and HMACSHA1, respec-
tively. The output of HMACSHA1 and HMACSHA256 are
truncated to 64 and 128 bits, respectively because the output
of f3() is 64 bits MAC, whereas the output of f1() is 128
bits, which is DKi key. The input to the HAMCSHA1 and
HMACSHA256 are 512 bits each (actual input size plus

TABLE 5: Computations of Various Used Functions

Function ExT (ms) TUM (bytes)

f1()=HMACSHA256 185 15204024
E{}DK1/f2()=AES-CTR 13.6 9139681
D{}DK1/f2()=AES-CTR 4.2 9124165
f3()=HMACSHA1 172 15211840
H()=SHA256 20 14321156
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trailing zeros to make it multiple of 512). Also, the execution
time of SIMcode using a random number generation and
hash generation time of H() using SHA256 are 0.89 ms and
20 ms, respectively.

Total execution time of a single authentication:
Phase-1: Total time = transmission time for all messages in
phase-1 + time at the entities (MS, MSi, AS) = 2.98 sec.
Hence, on average the execution time per user = 1.49 sec.
Phase-2: Total time = transmission time for all messages in
phase-2 + time at the MS, MSi, AS = 10.7+35.6 = 46.3 ms.
Total execution time of a batch authentication:
Phase-1: Total time = transmission time for all messages in
phase-1 + time at the MS, MSi, AS = 672.20+m×1330.41 ms.
Phase-2: Total time = transmission time for all messages in
phase-2 + time at the MS, MSi, AS = r×46.3 ms.

6.2.2 Verification Time

The verification delay in our protocol is evaluated between
the MS/MSi and the AS. It is the time estimation between
the sent messages and the received response or the comple-
tion of the protocol.

BVPSMS Phase-1 (Time to verify): MSi by AS =
0.0282+391.55×m ms, MS by AS = 236.40+172.89×m ms, AS
by MSi = 172.03×m ms, and AS by MS 4.2 ms.
Total delay in phase-1 = 240.62+736.47×m ms.

BVPSMS Phase-2 (Time to verify): MS by MSi = 17.8×r ms,
and MSi by MS 4.2×r ms.
Total verification delay in phase-2 = 32×r ms.
Therefore, total verification delay in BVPSMS =
240.62+736.47×m+32×r ms.

6.2.3 Re-batch Verification Time

If a batch authentication is not successful, it is expected
to execute a re-batch authentication without including
the malicious MSi. After detecting the malicious MSi, it
is required to remove them from the batch and execute
a re-batch authentication process. The delay in re-batch
verification can be estimated as follows:
Total delay in a re-batch verification = 0.000933×3(m−1−t)
+ 0.030322 + 0.000933 = 0.028456+0.002799×(m− t) ms.

6.2.4 Simulation Results

The execution time of the BVPSMS protocol is observed
when m = 10, 20, 50, 100; r = 1, 2, 5, 10. For m=100, the
protocol execution times are 133.75 sec. and 134.17 sec.,
respectively, when r=1 and r=10, which are actually on
average, 1.32 sec. and 1.21 sec. per user, respectively. It is
clear that on average, the execution time per mobile user
decreases when r increases. The execution time per mobile
user also decreases when m increases and r is fixed. On
average, the execution times of our protocol are 1.44, 1.38,
1.35, and 1.34 sec., respectively, when r=10 (fix) and m=10,
20, 50, and 100. The verification times for phase-1 and phase-
2 of our protocol are also evaluated when m = 10, 20, 50,
100 and r = 1, 2, 5, 10, 50. For m=100, on average the
verification time per user for batch authentication is 0.71

sec. Furthermore, for r=10 and r=50, the total verification
times are 0.3 sec. and 1.6 sec., respectively, and on average,
the verification time for each subsequent authentication
per user is 0.03 sec. It is also clear that the increase in r
lowers verification time, on average per mobile user. Re-
batch verification time is also computed in our protocol
when m = 10, 20, 50, 100 and malicious requests t = 2, 4,
6, 8, 10. For m=10, the re-batch verification times are 0.044
ms, 0.03 ms, and 0.028 ms, respectively, when t=2, t=9, and
t=10. Similarly, for m=100, the times are 0.22 ms, 0.21 ms,
and 0.20 ms, respectively, when t=2, t=9, and t=10.

6.3 Time, Space, and Cost Analysis

In both single and batch authentications, two functions f3()
and f1() are implemented as HMAC functions. The output
of HMACSHA1 and HMACSHA256 are 160 bits and 256
bits, respectively. The DK key requires 128 from 256 bits
and a MAC needs 64 out of 160 bits. In total, 192 bits are
required to be stored. Further, The time complexity of add,
subtract, and XOR operations are constant, i.e., O(1). The
costs for a single authentication (8 operations) and a batch
authentication (9×m− 1 operations) are also O(1). The time
to compute Actcode/SIMcode is constant, and total cost is
O(1). The block cipher algorithm, such as AES, works with a
fixed input size and has O(1) constant complexity. However,
when the algorithm has variable length of input (say |m|),
the time is O(m). The block size is still fixed (128 bits) as
the f2() and E/D{}DK1

are implemented using AES-CTR.
Therefore, the time complexity is independent of input and
is constant O(1). Hence, the costs are O(1) for f2() and
E/D{}DK1

in a single authentication (2 operations) as well
as batch authentication (2×m operations). The IMSIi and
TIDi of 128 bits each also need to be stored in the memory.
Furthermore, the storage is also required for HMACSHA1,
HMACSHA256, and AES-CTR at the MS/MSi as well as at
the AS. For a re-batch verification, O(1) is only the extra cost
need to be paid (for 3×m-3×t+2 operations). Therefore, the
BVPSMS protocol is an efficient, secure, and cost effective
protocol that requires less storage.

7 FORMAL PROOF

This section presents the formal proof of the proposed
scheme using Proverif. Proverif is an online automated tool
to verify whether the logical expressions and the protocol
properties are correct and valid with different queries.
We perform five adversary queries: (i) Can an adversary
successfully recover confidential and useful information
from the messages sent over the network?, (ii) Can an
adversary successfully compute parameters generated
by the MS?, (iii) Can an adversary successfully compute
parameters generated by the AS?, (iv) Can an adversary
successfully generate DK key of the MS?, and (v) Can
an adversary successfully recover secret key of the MS?.
Following is the output observed from the Proverif tool:
Neetesh@Neetesh− PC /proverif1.88

$./proverif proofs/sms/BV PSMS.pv

– Query attacker(s[]) ==> event(enableEnc)
Completing...ok, secrecy assumption verified: fact unreachable
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attacker(kims[!1 = v 946])
Starting query attacker(s[]) ==> event(enableEnc)
RESULT attacker(s[]) ==> event(enableEnc) is true.
– Query event(endMS(x1,x2)) ==> event(begMS(x1,x2))
Completing...ok, secrecy assumption verified: fact unreachable
attacker(kims[!1 = v 2080])
Starting query event(endMS(x1,x2)) ==> event(begMS(x1,x2))
RESULT event(endMS(x1,x2)) ==> event(begMS(x1,x2)) is true.
– Query event(endAS(x1 2500,x2 2501)) ==>

event(begAS(x1 2500,x2 2501))
Completing...ok, secrecy assumption verified: fact unreachable
attacker(kims[!1 = v 3257])
Starting query event(endAS(x1 2500,x2 2501)) ==>

event(begAS(x1 2500,x2 2501))
RESULT event(endAS(x1 2500,x2 2501)) ==>

event(begAS(x1 2500,x2 2501)) is true.
– Query not attacker(DK[])
Completing...ok, secrecy assumption verified: fact unreachable
attacker(kims[!1 = v 4332])
Starting query not attacker(DK[])
RESULT not attacker(DK[]) is true.
– Query not attacker(s[])
Completing...ok, secrecy assumption verified: fact unreachable
attacker(kims[!1 = v 5378])
Starting query not attacker(s[])
RESULT not attacker(s[]) is true.

8 CONCLUSION

We proposed a batch verification protocol BVPSMS for
transmitting secure SMS from one MS to multiple MS
recipients. This protocol enjoys several advantages over
the related protocols studied in the paper. BVPSMS pro-
vides mutual authentication between each MS and the AS.
The AS efficiently verifies multiple authentication requests
sent by different MSs at any one time while keeping the
original IMSI secret during the authentication. We then
demonstrated that the protocol is secure against replay
attacks, MITM attacks, impersonation attacks, SMS disclo-
sure and SMS spoofing, and also maintains untraceability,
forward secrecy, and identity anonymity. The performance
results show that in different scenarios, i.e., BVPSMS∗ and
BVPSMS∗∗ when no provision of integrity protection, our
protocol incurs a lower communication overhead compared
to the protocols studied in this paper. Our evaluation of
the protocol using Java demonstrated that the estimated re-
batch verification time is almost negligible. The execution
and verification times also suggested that our protocol is
practical for deployment in real-world cellular networks.
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