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ON SATURATED FUSION SYSTEMS AND BRAUER
INDECOMPOSABILITY OF SCOTT MODULES

RADHA KESSAR, NAOKO KUNUGI, NAOFUMI MITSUHASHI

Abstract. Let p be a prime number, G a finite group, P a p-subgroup of G and k
an algebraically closed field of characteristic p. We study the relationship between the
category FP (G) and the behavior of p-permutation kG-modules with vertex P under
the Brauer construction. We give a sufficient condition for FP (G) to be a saturated
fusion system. We prove that for Scott modules with abelian vertex, our condition is
also necessary. In order to obtain our results, we give a criterion for the categories arising
from the data of (b,G)-Brauer pairs in the sense of Alperin-Broué and Broué-Puig to be
saturated fusion systems on the underlying p-group.

1. Introduction

Let p be a prime number and k an algebraically closed field of characteristic p. For a
finite group G, a p-subgroup Q of G, and a finite dimensional kG-module M , the Brauer
quotient M(Q) of M with respect to Q, is naturally a kNG(Q)/Q-module and hence by
restriction is a kQCG(Q)/Q module (see [4], [5], [17, Section 11]). We will say that M is
Brauer indecomposable if for any p-subgroup Q of G, M(Q) is indecomposable (or zero)
as a kQCG(Q)/Q-module.

For subgroups Q,R of G, let HomG(Q,R) denote the set of all group homomorphisms
from Q to R which are induced by conjugation by some element of G. For a p-subgroup
P of G, let FP (G) denote the category whose objects are the subgroups of P ; whose mor-
phism set from an object Q to an object R is the set HomG(Q,R), and where composition
of morphisms is the usual composition of functions. We prove the following result (for
background on fusion systems and saturated fusion systems, we refer the reader to the
articles [3] and [13]; we note that we will follow the notational conventions in [3] rather
than those of [13] in that all fusion systems will not be assumed to be saturated).

Theorem 1.1. Let G be a finite group, P a p-subgroup of G and M an indecomposable
p-permutation kG-module with vertex P . If M is Brauer indecomposable, then FP (G) is
a saturated fusion system.

The question of Brauer indecomposability of p-permutation modules (or rather bimod-
ules) plays a role in the “glueing processes” used for proving categorical equivalences
between p-blocks of finite groups as predicted by Broué’s abelian defect group conjecture
(see [10], [11]). Since splendid equivalences between blocks preserve local structure, it is
not unexpected that there is a connection between saturation and the Brauer indecom-
posability condition. Theorem 1.1 provides a neat formulation of the connection.

The converse of Theorem 1.1 does not hold in general (see remarks after the proof of
Theorem 1.1). However, in the special case that M is a Scott module, there seems to be
some control in the reverse direction. For the definition and properties of Scott modules
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2 R. KESSAR

we refer the reader to [4]. For a finite group G and a p-subgroup P of G, we denote by
SP (G, k) the kG-Scott module with vertex P .

Theorem 1.2. Let P be an abelian p-subgroup of a finite group G. If FP (G) is a saturated
fusion system then SP (G, k) is Brauer indecomposable.

As a corollary, we obtain the following.

Corollary 1.3. Suppose that the finite group G has cyclic Sylow p-subgroups and let P
be a p-subgroup of G. Then SP (G, k) is Brauer indecomposable.

Another consequence is the following result, of use for proving categorical equivalences
between principal blocks of finite groups.

Corollary 1.4. Let G1 and G2 be finite groups with common abelian Sylow p-subgroup P
and let ∆(P ) be the diagonal subgroup {(x, x) : x ∈ P} of G1×G2. If FP (G1) = FP (G2),
then S∆(P )(G1 ×G2, k) is Brauer indecomposable.

We do not know whether Theorem 1.2 holds without the assumption that P is abelian.
Using D. Craven’s construction in [6] of the Scott modules for the symmetric groups Sn,
n ≤ 6, we prove the following.

Proposition 1.5. Let G = Sn, n ≤ 6 and P a p-subgroup of Sn. If FP (G) is a saturated
fusion system, then SP (G, k) is Brauer indecomposable.

Let A be a p-permutation G-algebra, finite dimensional over k, and b a primitive idem-
potent in the subalgebra of G-fixed points of A. To each triple (A, b,G), there is associated
a G-poset of Brauer pairs. These were introduced in [2] for the case A = kG, considered
as a G-algebra via the conjugation action of G on itself; the general case was treated in
[5]. Roughly speaking, an (A, b,G)-Brauer pair is a pair of the form (P, e), where P is
a p-subgroup of G and e is a block of the Brauer quotient A(P ) of A in a prescribed
relationship with b. For a maximal object (P, e) of the poset of (A, b,G)-Brauer pairs, we
let F(P,e)(A, b,G) denote the category whose objects are the subgroups of P and whose
morphisms are group homomorphisms induced by the action of G on the underlying poset
(for exact definitions we refer the reader to section 2). In case A = kG, the results of [2]
imply that F(P,e)(A, b,G) is a saturated fusion system (see [12]). In the general case, it
is a consequence of [5] that F(P,e)(A, b,G) is a fusion system in the sense of [3, Definition
1.1] (see Proposition 2.4). However, it is not the case that F(P,e)(A, b,G) is in general
saturated (see remarks after the proof of Theorem 1.1 in section 4). Theorem 1.1 is a spe-
cial case of the following result, due to the first author, which gives a sufficiency criterion
for saturation. For an (A, b,G)-Brauer pair, (P, e), let CG(P, e) denote the subgroup of
CG(P ) which stabilizes the block e of A(P ) under the natural action of CG(P ) on A(P ).

Theorem 1.6. Let G be a finite group, A a p-permutation G-algebra, and b a primitive
idempotent of AG. Suppose that

(i) b is a central idempotent of A; and
(ii) For each (A, b,G)-Brauer pair (Q, f) the idempotent f is primitive in A(Q)CG(Q,f).

Then for any maximal (A, b,G)-Brauer pair (P, e), F(P,e)(A, b,G) is a saturated fusion
system on P .
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We will say that a triple (A, b,G) satisfying conditions (i) and (ii) of Theorem 1.6 is
a saturated triple or that (A, b,G) is of saturated type. In this case, if G and b are clear
from the context, we may also simply say that A is of saturated type. If A = kG, then
the primitive idempotents of AG are precisely the blocks of kG, and it is easy to see
that (A, b,G) is a saturated triple, hence Theorem 1.6 may be viewed as a generalization
of the fact that block fusion systems are saturated. But the class of p-permutation G-
algebras is very large. One motivation, besides the relevance to Brauer indecomposability,
for introducing the notion of saturated type triples is that they provide a new source
of saturated fusion systems and hence may contribute to our understanding of these
categories.

The paper is divided into four sections. In section 2, we recall the results and definitions
of [2] and [5]. Section 3 contains the proof of Theorem 1.6. Section 4 deals with p-
permutation modules, and contains the proofs of Theorem 1.1, Theorem 1.2, Corollary
1.3, Corollary 1.4 and Proposition 1.5.

2. Background and Quoted results

In this section, we set up notation and recall definitions and background results on
Brauer pairs from the papers [2] and [5]. For notation and terminology regarding fusion
systems and saturated fusion systems, we refer the reader to [13],[3].

Let G be a finite group, and let A be a p-permutation G-algebra, finite dimensional
over k. Recall that A is p-permutation if for any p-subgroup Q of G there is a k-basis of
A stabilized by Q.

2.1. Let P be a subgroup of G. We denote by AP the subalgebra consisting of the fixed
points of A under P ; if Q is a subgroup of P , the map TrPQ : AQ → AP is the k-linear

map defined by the formula TrPQ(a) =
∑

x∈P/Q
xa. The image of TrPQ, denoted by AP

Q is

a two-sided ideal of AP and we denote by AP
<P the sum

∑
QA

P
Q, where Q ranges over

the proper subgroups of P . We denote by A(P ) the quotient AP/AP
<P , and we denote by

BrAP the canonical morphism from AP onto A(P ). Recall from [5, Proposition 1.5] that
A(P ) is a p-permutation NG(P ) algebra. For g ∈ G, the map which sends an element
BrAP (a), where a ∈ AP to the element g(BrAP (a)) := BrAgP ( ga) is an algebra isomorphism
from A(P ) to A( gP ).

If Q ≤ P are p-groups, then there exists an algebra morphism, BrAP,Q : BrAQ(AP )→ A(P )

such that BrAP,Q(BrAQ(a)) = BrAP (a) for a ∈ AP . Clearly, gBrAP,Q(x) = BrAgP, gQ( gx) for any

g ∈ G, x ∈ BrAQ(AP ).

If, in addition, Q is normal in P , then BrAQ(AP ) = A(Q)P and Ker(BrAP,Q) = Ker(Br
A(Q)
P ).

Thus, BrAP,Q induces an isomorphism bAP,Q : A(Q)(P ) → A(P ). Note that bAP,Q satisfies
and is completely determined by the condition

bAP,Q(Br
A(Q)
P (BrAQ(x))) = BrAP,Q(BrAQ(x)))) = BrAP (x) for all x ∈ AP .

Further, gbAP,Q(w) = bAgP,Q( gw) for all g ∈ NG(Q) and w ∈ A(Q)(P ).

2.2. Let b be a primitive idempotent of AG. Recall from [5, Definition 1.6] that a (b,G)-
Brauer pair is a pair (P, e) where P is a p-subgroup of G such that BrP (b) 6= 0 and e is a
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block of A(P ) such that BrP (b)e 6= 0. Here we recall that a block of a finite-dimensional
algebra is a primitive idempotent of the center of the algebra. As we will consider Brauer
pairs for different algebras simultaneously, we will adopt the more cumbersome notation
(A, b,G)-Brauer pair for (b,G)-Brauer pair.

Recall from [5, Definition 1.6] the notion of inclusion of (A, b,G)-Brauer pairs: If (Q, f)
and (P, e) are (A, b,G)-Brauer pairs, then (Q, f) ≤ (P, e) if Q ≤ P and whenever i is a
primitive idempotent of AP such that BrAP (i)e 6= 0, then BrAQ(i)f 6= 0.

Let (P, e) be an (A, b,G)-Brauer pair and let x ∈ G. The conjugate of (P, e) by x is the
(A, b,G)-Brauer pair x(P, e) := ( xP, xe). Clearly, conjugation by x preserves inclusion.

Recall the following fundamental property of inclusion of Brauer pairs [2, Theorem 3.4],
[5, Theorem 1.8].

Theorem 2.1. Let (P, e) be an (A, b,G)-Brauer pair, and let Q ≤ P .
(i) There exists a unique block f of A(Q) such that (Q, f) is an (A, b,G)-Brauer pair

and (Q, f) ≤ (P, e).
(ii) If (Q, f) is an (A, b,G)-Brauer pair and P normalizes Q, then (Q, f) ≤ (P, e) if

and only if P fixes f and BrAP,Q(f)e = e.
(iii) The set of (A, b,G)-Brauer pairs is a G-poset under the action of G defined above.

Recall also [2, Theorem 3.10] and [5, Theorem 1.14]).

Theorem 2.2. Let A be a p-permutation G-algebra and let b be a primitive idempotent
of AG.

(i) The group G acts transitively on the set of maximal (A, b,G)-Brauer pairs.
(ii) Let (P, e) be an (A, b,G)-Brauer pair. The following are equivalent.
(a) (P, e) is a maximal (A, b,G)-Brauer pair.
(b) BrAP (b) 6= 0 and P is maximal amongst p-subgroups Q of G with the property that

BrAQ(b) 6= 0.

(c) b ∈ TrGP (AP ) and P is minimal amongst subgroups H of G such that b ∈ TrGH(AH).

The equivalence of ii(b) above with ii(a) is not explictly stated in [5, Theorem 1.14], but
is an immediate consequence of (i). For clearly, if P satisfies ii(b), then (P, e)-is a maximal
(A, b,G)-Brauer pair. Conversely, if (P, e) is a maximal (A, b,G)-Brauer pair and P ≤ R
is such that BrAR(b) 6= 0, then there exists some block t of A(Q) such that (R, t) is an
(A, b,G)-Brauer pair. Let (S, u) be a maximal (A, b,G)-Brauer pair with (R, t) ≤ (S, u).
Then by (i), (P, e) and (S, u) are G-conjugate. In particular, |P | = |S| ≥ |R| ≥ |P |, hence
P = R.

If Q,R are subgroups of G and g ∈ G is such that gQ ≤ R, then cg : Q → R denotes
the map which sends an element x of Q to the element gx := gxg−1 of R.

Definition 2.3. Let (P, eP ) be a maximal (A, b,G)-Brauer pair. For each subgroup Q
of P , let (Q, eQ) be the unique (A, b,G)-Brauer pair such that (Q, eQ) ≤ (P, eP ). The
category F(P,eP )(A, b,G) is the category whose objects are the subgroups of P , whose mor-
phisms are given by

HomF(P,eP )(A,b,G)(Q,R) := {cg : Q→ R|g ∈ G, g(Q, eQ) ≤ (R, eR)}
for Q,R ≤ P , and where composition of morphisms is the usual composition of functions.
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For any Q ≤ R, the inclusion map from Q to R is a morphism in F(P,eP )(A, b,G). In
particular, the identity map Q → Q is a morphism in F(P,eP )(A, b,G) and if R, S ≤ P
and g, h ∈ G are such that g(Q, eQ) ≤ (R, eR) and h(R, eR) ≤ (S, eS), then

hg(Q, eQ) ≤ h(R, eR) ≤ (S, eS),

so F(P,eP )(A, b,G) is a category. By the uniqueness of inclusion of Brauer pairs for Q,R ≤
P and g ∈ G, g(Q, eQ) ≤ (R, eR) if and only if gQ ≤ R and geQ = e gQ and this in turn
holds if and only if gQ ≤ R and g(Q, eQ) ≤ (P, eP ). Thus if x ∈ P , then since eP is fixed
by P , xeP = eP . Hence, for Q ≤ P ,

x(Q, eQ) ≤ x(P, eP ) = (P, eP ).

So, whenever xQ ≤ R, then cx : Q→ R is a morphism in F(P,eP )(A, b,G).
Also, note that if Q,R ≤ P and g ∈ G are such that g(Q, eQ) ≤ (R, eR), then cg : Q→

R factors as cg : Q→ gQ followed by the inclusion of gQ into R. Summarizing the above
discussion gives the following proposition, the last statement of which is immediate from
the fact that any two maximal (A, b,G)-Brauer pairs are G-conjugate.

Proposition 2.4. Let A be a p-permutation G-algebra, b a primitive idempotent of AG

and (P, eP ) a maximal (A, b,G)-Brauer pair. Then F := F(P,eP )(A, b,G) satisfies the
following.

(i) HomP (Q,R) ⊆ HomF(Q,R) ⊆ Inj(Q,R) for all Q,R ≤ P .
(ii) For any φ ∈ HomF(Q,R), the induced isomorphism Q ∼= φ(Q) and its inverse are

morphisms in F and its inverse are morphisms in F . In particular, every morphism in
F factors as an isomorphism in F followed by an inclusion in F .

Thus, F is a fusion system in the sense of [3, Definiton 1.1]. If (P ′, eP ′) is another
maximal (A, b,G)-Brauer pair, then F(P ′,eP ′ )

(A, b,G) is isomorphic to F(P,eP )(A, b,G).

3. Proof of Theorem 1.6

Throughout this section, G will denote a finite group, A a p-permutation G-algebra, and
b a primitive idempotent of AG. Recall from the introduction that (A, b,G) is a saturated
triple if conditions (i) and (ii) of Theorem 1.6 hold. Thus, we will prove that if (A, b,G)
is a saturated triple, then F(P,eP )(A, b,G) is saturated for any maximal (A, b,G)-Brauer
pair (P, eP ). We need some preliminary results.

Lemma 3.1. Let H be a finite group and let B be an H-algebra. Let R be a subgroup of
H and let C be a normal subgroup of H. Suppose that 1B ∈ TrHR (BR) and 1B is primitive
in BC. Then, RC/C contains a Sylow p-subgroup of H/C.

Proof. Let b ∈ BR be such that

1B = TrHR (b) = TrHRC(TrRC
R (b)),

and set u := TrRC
R (b). Then, u ∈ BRC ⊆ BC . By hypothesis, the identity 1B = 1BC of

BC is the only idempotent of BC . In other words, BC is a local algebra which means that
J(BC) has co-dimension 1 in BC . Thus, we may write u = λ1B + v for some λ ∈ k and
v ∈ J(BC). Thus,

1B = TrHRC(λ1B + v) = [H : RC]λ1B + TrHRC(v).
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Now, since C is normal in H, H acts on BC and hence on J(BC). In particular, TrHRC(v) ∈
J(BC). But 1B /∈ J(BC). Hence, it follows from the above displayed equation that
[H : RC] is not divisible by p, proving the lemma. �

For (A, b,G)-Brauer pairs (Q, f) ≤ (P, e), set

NG(P, e) := N(A,b,G)((P, e)) := {x ∈ G : x(P, e) = (P, e)},
and

CG(P, e) := NG(P, e) ∩ CG(P ).

Lemma 3.2. Let H be a finite group, B a p-permutation H-algebra and e a primitive
idempotent of BH . If e ∈ Z(B), then for a p-subgroup Q of H and a block f of B(Q),
(Q, f) is an (B, e,H)-Brauer pair if and only if BrBQ(e)f = f .

Proof. Suppose that e ∈ Z(B) and let Q be a p-subgroup of H. Since

Z(B) ∩BH ⊆ Z(B) ∩BQ ⊆ Z(BQ),

e is a central idempotent of BQ. Hence, either BrBQ(e) = 0 or BrBQ(e) is a central idem-

potent of B(Q) and for any block f of B(R), either BrBQ(e)f = f , or BrBQ(e)f = 0. The
result follows. �

For the next result, we note the following. For an (A, b,G)-Brauer pair (Q, e), A(Q)
is a NG(Q)-algebra and e is an idempotent of A(Q)NG(Q,e). Thus, if e is primitive in
A(Q)CG(Q,e), then e is a primitive idempotent of A(Q)H for any H such that CG(Q, eQ) ≤
H ≤ NG(Q, eQ) and it makes sense to speak of (A(Q), e,H)-Brauer pairs.

Lemma 3.3. Suppose that (Q, e) is an (A, b,G)-Brauer pair such that e is primitive in
A(Q)CG(Q,e) and let H be a subgroup of G with CG(Q, e) ≤ H ≤ NG(Q, e).

(i) The H-poset of (A(Q), e,H)-Brauer pairs is the H-subposet of (A(Q), e, NG(Q, e))-
Brauer pairs consisting of those pairs whose first component is contained in H.

(ii) The map
(R,α)→ (QR,α)

is an H-poset homomorphism from the set of (A(Q), e,H)-Brauer pairs to the set of
(A(Q), e, QH)-Brauer pairs and induces a bijection between the set of (A(Q), e,H)-Brauer
pairs whose first component contains Q ∩ H and the set of (A(Q), e, QH)-Brauer pairs
whose first component contains Q.

(iii) If Q ≤ H, then (Q, e) is the unique (A(Q), e,H)-Brauer pair with first component
Q and (Q, e) is contained every maximal (A(Q), e,H)-Brauer pair.

Proof. (i) This is immediate from the definitions.
(ii) Since Q acts trivially on A(Q), for any p-subgroup R of H, A(Q)R = A(Q)QR

and Br
A(Q)
R = Br

A(Q)
QR . The first assertion is immediate from this observation. The second

assertion follows from the first and the fact that R→ QR is a bijection between subgroups
of H containing Q ∩H and subgroups of QH containing Q.

(iii) By hypothesis, A(Q)Q = A(Q). Hence, A(Q)Q<Q = 0 and Br
A(Q)
Q is the identity

map on A(Q). Thus, the set of (A(Q), e,H)-Brauer pairs with first component Q consists
precisely of the pairs (Q,α), where α is a block of A(Q) such that eα 6= 0. Since e itself
is a block of A(Q) and any two distinct blocks of A(Q) are orthogonal, it follows that
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(Q, e) is an (A(Q), e,H)-Brauer pair and that it is the unique one with first component
Q. Since h(Q, e) = (Q, e) for all h ∈ H and by Theorem 2.2(a) H acts transitively
on the set of maximal (A(Q), e,H)-Brauer pairs, (Q, e) is contained in every maximal
(A(Q), e,H)-Brauer pair. �

To prove that a fusion system of a finite group G on a Sylow p-subgroup S of the group
is saturated one applies Sylow’s theorem to the local subgroups NG(Q) and NS(Q)CG(Q)
of G, for Q a p-subgroup of G. The proof of Theorem 1.6 is based on the same idea
with triples of the form (A(Q), e, NG(Q, eQ)), (A(Q), e, NP (Q)CG(Q, eQ)) playing the role
of local subgroups and Theorem 2.2 and Lemma 3.1 playing the role of Sylow’s theo-
rem. The next result allows us to pass back and forth between (A, b,G)-Brauer pairs
and (A(Q), e,H)-Brauer pairs. Recall the isomorphisms bAR,Q : A(Q)(R) → A(R) for
p-subgroups QER of G introduced at the end of Section 2.1.

Lemma 3.4. Suppose that (Q, e) is an (A, b,G)-Brauer pair such that e is primitive in
(A(Q))CG(Q,e) and let H be a subgroup of G with QCG(Q, e) ≤ H ≤ NG(Q, e).

The map
(R,α)→ (R, bAR,Q(α))

is an H-poset isomorphism between the subset of (A(Q), e,H)-Brauer pairs consisting of
those pairs whose first component contains Q, and the subset of (A, b,G)-Brauer pairs
containing (Q, e) and whose first component is contained in H.

In particular, H acts transitively on the subset of (A, b,G)-Brauer pairs which are
maximal with respect to containing (Q, e) and having first component contained in H.

Proof. Let P1 be the subset of (A(Q), e,H)-Brauer pairs consisting of those pairs whose
first component contains Q, and let P2 be the subset of (A, b,G)-Brauer pairs containing
(Q, e) and whose first component is contained in H. Since H ≤ NG(Q, e) ≤ NG(Q), P1

and P2 are H-posets. Now let Q ≤ R ≤ H, and let α be a block of A(Q)(R). By Lemma
3.2, e = BrAQ(b)e, hence

BrAR,Q(e) = bAR,Q(Br
A(Q)
R (e)) = bAR,Q(Br

A(Q)
R (BrAQ(b)e)) = BrAR(b)BrAR,Q(e).

Suppose first that (R,α) is an (A(Q), e,H)-Brauer pair. By Lemma 3.2, α = Br
A(Q)
R (e)α.

Applying bAR,Q to both sides of this equation, and using the displayed equation above, we
get that

bAR,Q(α) = BrAR,Q(e)bAR,Q(α) = BrAR(b)BrAR,Q(e)bAR,Q(α).

In particular, BrAR(b)bAR,Q(α) 6= 0, whence (R, bAR,Q(α)) is an (A, b,G)-Brauer pair. By

Theorem 2.1 and the first equality above, (Q, e) ≤ (R, bAR,Q(α)) as (A, b,G)-Brauer pairs.

Conversely, if (Q, e) ≤ (R, bAR,Q(α)), then again by Theorem 2.1, bAR,Q(α) = BrAR,Q(e)bAR,Q(α).

Applying the inverse of bAR,Q yields that α = Br
A(Q)
R (e)α, hence that (R,α) is an (A(Q), e,H)-

Brauer pair. This shows that (R,α)→ (R, bAR,Q(α)) is a bijection between P1 and P2.
We show that the bijection is inclusion preserving. Let (R,α) and (S, β) be (A(Q), e,H)-

Brauer pairs with Q C R ≤ S. By Theorem 2.1, it suffices to consider the case that
R E S. Clearly, α is S-stable if and only if bAR,Q(α) is S-stable. Further, the restrictions

of the maps bAS,Q ◦Br
A(Q)
S,R ◦Br

A(Q)
R ◦BrRQ and BrAS,R ◦ bAR,Q ◦Br

A(Q)
R ◦BrAQ to AS both equal

BrAS . Since Br
A(Q)
R ◦ BrRQ(AS) = A(Q)(R)S, it follows that bAS,Q ◦ Br

A(Q)
S,R is equal to the
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restriction of BrAS,R ◦ bAR,Q to A(Q)(R)S. In particular, Br
A(Q)
S,R (α)β = β if and only if

BrAS,R(bAR,Q(α))bAS,Q(β) = bAS,Q(β). Thus, by Theorem 2.1 (R,α) ≤ (S, β) if and only if

(R, bAR,Q(α)) ≤ (S, bAS,Q(β)), and the bijection is inclusion preserving. Since Q is normal
in H,

bAhR,Q( hα) = bAhR, hQ( hα) = hbAR,Q(α)

for all h ∈ H, all p-subgroups R of G containing Q as a normal subgroup and all α ∈
A(Q)(R), and hence the above bijection is compatible with the H-action on P1 and P2.
This proves that the given map is an isomorphism of H-posets. In particular, the map
induces a bijection between the set of maximal elements of P1 and P2. But by Lemma 3.3
(c), the set of maximal elements in P1 is precisely the set of maximal (A(Q), e,H)-Brauer
pairs. The final assertion follows from this and from the fact that H acts transitively on
the set of maximal (A(Q), e,H)-pairs (see 2.2 (a)). �

We will prove Theorem 1.6 by using the the saturation axioms given by Roberts and
Schpectorov in [16] . For this we recall the following terminology: If F is a fusion system
on a finite p-group P , then a subgroup Q of P is fully automized if AutP (Q) is a Sylow
p-subgroup of AutF(Q) and Q is receptive if for any isomorphism ϕ : R→ Q in F , there
exists a morphism ϕ̂ : Nϕ → P in F such that Res|Rϕ̂ = ϕ, where Nϕ is the subgroup
of NP (R) consisting of those elements z ∈ NP (R) such that ϕ ◦ cz = cx ◦ ϕ for some
x ∈ NP (Q).

Lemma 3.5. Suppose that (A, b,G) is a saturated triple and let (P, eP ) be a maximal
(A, b,G)-Brauer pair. For each Q ≤ P let eQ be the unique block of A(Q) such that
(Q, eQ) ≤ (P, eP ) and let F = F(P,eP )(A, b,G). If Q ≤ P is such that (NP (Q), eNP (Q)) is
maximal amongst (A, b,G)-Brauer pairs (R, f) with (Q, eQ) ≤ (R, f) and R ≤ NG(Q, eQ),
then Q is fully F-automized and F-receptive.

Proof. Suppose that (NP (Q), eNP (Q)) is maximal amongst (A, b,G)-Brauer pairs (R, f)
such that (Q, eQ) ≤ (R, f) and R ≤ NG(Q, eQ). Let

α = bANP (Q),Q(eNP (Q)).

By Lemma 3.4, (NP (Q), α) is a maximal (A(Q), eQ, NG(Q, eQ))-Brauer pair. Thus, by

Theorem 2.2 (b), eQ ∈ Tr
NG(Q,eQ)

NP (Q) (A(Q)NP (Q)). Since eQ is central in A(Q), idempotent

and an element of ANG(Q,eQ), multiplying on both sides by eQ gives that

eQ ∈ Tr
NG(Q,eQ)

NP (Q) ((eQA(Q)eQ)NP (Q)).

Now, CG(Q, eQ) is a normal subgroup of NG(Q, eQ) and since (A, b,G) is a saturated triple
eQ is a primitive idempotent of (A(Q))CG(Q,eQ) and hence also of (eQA(Q)eQ)CG(Q,eQ).
Thus, by Lemma 3.1 applied with B = eQA(Q)eQ, H = NG(Q, eQ), C = CG(Q, eQ)
and R = NP (Q), we have that NP (Q)CG(Q, eQ)/CG(Q, eQ) is a Sylow p-subgroup of
NG(Q, eQ)/CG(Q, eQ). Since NP (Q)CG(Q, eQ)/CG(Q, eQ) ∼= NP (Q)/CP (Q) ∼= AutP (Q)
and NG(Q, eQ)/CG(Q, eQ) ∼= AutF(Q), it follows that Q is fully F -automised.

It remains to show that Q is F -receptive. For this, we first observe that the hypothesis
on Q implies that (NP (Q), eNP (Q)) is also maximal amongst (A, b,G)-Brauer pairs (R, f)
such that (Q, eQ) ≤ (R, f) and R ≤ NP (Q)CG(Q, eQ). Hence, by Lemma 3.4, now applied
with H = NP (Q)(CG(Q, eQ), (NP (Q), eNP (Q)) contains an NP (Q)CG(Q, eQ) conjugate of
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any (A, b,G)-Brauer pair which contains (Q, eQ) and whose first component is contained
in NP (Q)CG(Q, eQ). Now let ϕ : R→ Q be an isomorphism in F , and let g ∈ G induce
ϕ, that is, g(R, eR) = (Q, eQ) and ϕ(x) = gxg−1 for all x ∈ R. Then, it is an easy check

that Nϕ = NP (R) ∩ g−1
NP (Q)CG(Q, eQ). Set N ′ = gNϕ = gNP (R) ∩ NP (Q)CG(Q, eQ),

e′N ′ = geNϕ and consider the (A, b,G)-Brauer pair (N ′, eN). Since (R, eR) ≤ (Nϕ, eNϕ),
(Q, eQ) ≤ g(Nϕ, eNϕ) = (N ′, e′N ′). Also, N ′ ≤ NP (Q)CG(Q, eQ). Thus, as pointed out
above h(N ′, e′N ′) ≤ (NP (Q), eNP (Q)) for some h ∈ NP (Q)CG(Q, eQ). Multiplying by some
element of NP (Q) if necessary, we may assume that h ∈ CG(Q, eQ). Since hg(Nϕ, eNϕ) ≤
(P, eP ) and hence ϕ̄ := chg : Nϕ → P is a morphism in F . and since h ∈ CG(Q, eQ), ϕ̄
extends ϕ. Thus Q is F -receptive. �

We now give the proof of Theorem 1.6.

Proof. Keep the notation of the theorem, set F = F(P,eP )(A, b,G) and for each Q ≤ P ,
let eQ be the unique block of A(Q) such that (Q, eQ) ≤ (P, eP ). We have shown in
Proposition 2.4 that F is a fusion system on P . Thus, by Lemma 3.5 and by the saturation
axioms of [16] it suffices to show that each subgroup of P is F -conjugate to a subgroup
Q of P such that (NP (Q), eNP (Q)) is maximal amongst (A, b,G)-Brauer pairs (R, f) with
(Q, eQ) ≤ (R, f) and R ≤ NG(Q, eQ). So, let Q′ ≤ P , and let (T, α) be a maximal

(A(Q′), eQ′ , NG(Q′, eQ′))- Brauer pair. By Lemma 3.3 (c), Q′ ≤ T . Let f = bAR,Q
−1

(α).
By Lemma 3.4, (T, f) is an (A, b,G)-Brauer pair with (Q′, eQ′) ≤ (T, f). Since (P, eP ) is
a maximal (A, b,G)-Brauer pair, we have

g(Q′, eQ′) ≤ g(T, f) ≤ (P, eP )

for some g ∈ G. Set Q = gQ′. By the above, cg : Q′ → Q is a morphism in F , so Q is F -
conjugate to Q′. We will show that (NP (Q), eNP (Q)) has the required maximality property.
Note that by Lemma 3.4, (T, f) is maximal amongst (A, b,G)-Brauer pairs which contain
(Q′, eQ′) and whose first component is contained in NG(Q′, eQ′). Thus, by transport of
structure g(T, f) is maximal amongst (A, b,G)-Brauer pairs which contain (Q, eQ) and
whose first component is contained in NG(Q, eQ). Since g(T, f) ≤ (P, eP ), gT ≤ NP (Q)
and gf = e gT . Consequently, g(T, f) ≤ (NP (Q), eNP (Q)). Since (NP (Q), eNP (Q)) contains
(Q, eQ) and NP (Q) is contained in NG(Q, eQ), the maximality of g(T, f) forces g(T, f) =
(NP (Q), eNP (Q)), and completes the proof of the theorem. �

4. p-permutation modules and saturation

Let G be a finite group, M an indecomposable p-permutation kG-module, and P a
vertex of M and set A = Endk(M). Then A is a G-algebra via the map

G× A→ A,

sending the pair (g, φ) to the element gφ of A defined by
gφ(m) = gφ(g−1m), m ∈M.

Since M is a p-permutation module, M is a p-permutation G-algebra and since M is
indecomposable, 1A = idM is primitive in Endk(M)G.
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Proposition 4.1. With the notation above, the (A, 1A, G)-Brauer pairs are the pairs
(Q, 1A(Q)) such that M(Q) 6= 0 and (P, 1A(P )) is a maximal (Endk(M), 1Endk(M), G)-Brauer
pair. Further,

(i) F(P,1A(P ))(A, 1A, G) = FP (G).

(ii) The triple (A, 1A, G) is of saturated type if and only if M is Brauer indecomposable.

Proof. Let Q be a p-subgroup of G. There is a natural action of A(Q) on M(Q) which
induces an isomorphism of kNG(Q)/Q-algebras. between A(Q) and Endk(M(Q)) (see for
instance [17, Proposition 27.6]). Since the identity element is the only central idempotent
of a matrix algebra, it follows that the (A, 1A, G)-Brauer pairs are the pairs (Q, 1A(Q))
such that M(Q) 6= 0. The maximality of (P, 1A(P )) is immediate from the fact that P is
a vertex of P and that M(Q) 6= 0 if and only if Q is contained in a vertex of M (see [17,
Corollary 27.6]). Clearly, g1A(Q) = 1A( gQ), for any g ∈ G and (i) is immediate from this.
Under the natural identification of A(Q) and Endk(M(Q)) 1A(Q) = idM(Q). Hence 1A(Q) is

primitive in (A(Q))CG(Q) if and only if M(Q) is an indecomposable kQCG(Q)/Q-module.
The equivalence of (ii) is immediate from this and the fact that 1A is a central idempotent
of A and hence of AG.

Proof of Theorem 1.1. In light of Proposition 4.1, this is a special case of Theorem 1.6.

Remarks 1. Let P be a p-subgroup of G. Since there exist indecomposable p-
permutation kG-modules with vertex P , the analysis before the statement of Theorem
1.1 shows that given any p-subgroup P of a finite group G, there exists a p-permutation
G-algebra A, and a primitive idempotent b of AG such that there is a maximal (A, b,G)-
Brauer pair, say (P, eP ) with first component P and such that F(P,eP )(A, b,G) = FP (G).
On the other hand, there exist pairs P,G where G is a finite group and P is a p-subgroup
of G such that FP (G) is not a saturated system-for instance if P is a non-Sylow p-
subgroup of G such that NS(P ) strictly contains PCS(P ) for some Sylow p-subgroup S
of G containing P . Thus, the fusion system F(P,eP )(A, b,G) is not always saturated.

2. Suppose that b is a (non-principal) block of kG such that a defect group P of kGb
is a Sylow p-subgroups of G, but BrkGP (b) is a sum of more than one block of kCG(P ).
Let M be an indecomposable p-permutation module kG-module in the block b and with
vertex P . Then, since NG(P ) acts transitively on the set E of blocks e of kCG(P ) such
that BrkGP (b)e = e and M(P ) 6= 0, M(P )e 6= 0 for any e ∈ E , and in particular, M(P )
is not indecomposable as kCG(P )-module. However, since P is a Sylow p-subgroup of G,
FP (G) is a saturated fusion system on P (see [3]). Thus, the converse of Theorem 1.1
does not hold in general. Since Theorem 1.1 is a special case of Theorem 1.6, it follows
also that the converse of Theorem 1.6 does not hold. It might be that the methods of
proof of Theorem 1.6 can be refined to yield a condition on (A, b,G) which in certain
situations (as in the one just discussed) is weaker than the condition of (A, b,G) being a
saturated triple, and which in all cases is necessary and sufficient for the saturation of the
corresponding fusion systems.

We now prove Theorem 1.2. We need some lemmas. The following is well known.
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Lemma 4.2. Let H be a finite group and N a normal subgroup of H such that H/N is a
p′-group. Then, the restriction of the projective cover of the trivial kH-module to kN is
indecomposable.

Proof. Under the hypothesis, J(kH) = J(kN)kH. Let V be a projective kH-module.
Then,

ResHNRad(V ) = ResHNJ(kH)V = ResHNJ(kN)kHV = ResHNJ(kN)V = Rad(ResHNV ).

Consequently,
ResHN(V/Rad(V )) = ResHNV/Rad(ResHNV ).

The result is immediate.

Remark. The above indecomposability result holds for the projective cover of any
simple kH-module whose restriction to N remains simple.

Lemma 4.3. Let G be a finite group, P a p-subgroup of G and M := SP (G, k) the Scott
module of kG relative to P .

(i) M(P ) is indecomposable as kPCG(P )/P -module if and only if NG(P )/PCG(P ) is
a p′-group.

(ii) If FP (G) is a saturated fusion system, then M(P ) is indecomposable as kPCG(P )/P -
module.

Proof. (i) M(P ) is the projective cover of the trivial kNG(P )/P -module and in particular
is indecomposable as kNG(P )/P -module. The forward implication follows from Lemma
3.1, applied with B = Endk(M(P )), H = NG(P ), R = P and C = CG(P ). The backward
implication is clear from Lemma 4.2.

(ii) Suppose that FP (G) is a saturated fusion system. Then, AutP (P ) is a Sylow
p-subgroup of AutF(P ). On the other hand, the image of AutP (P ) under the natural
isomorphism from AutF(P ) to NG(P )/CG(P ) is PCG(P )/CG(P ). Thus, NG(P )/PCG(P )
is a p′-group. The result is immediate from (i).

Lemma 4.4. Let G be a finite group, P a p-subgroup of G, M = SP (G, k) the Scott
module of kG relative to P . Suppose that FP (G) is a saturated fusion system and let Q ≤
Z(P ). If M(Q) is indecomposable as kNG(Q)/Q-module, then M(Q) is indecomposable
as kCG(Q)/Q-module.

Proof. Suppose that M(Q) is indecomposable as NG(Q)/Q-module and set L = NG(Q)
and C = CG(Q). Since Q ≤ Z(P ) the extension axiom for saturated fusion systems
implies that L = C[NG(P ) ∩ L]. We consider M(Q) as kL-module via inflation. Since
M(Q) has vertex P and P ≤ C, there exists an indecomposable p-permutation kC-
module V with vertex P such that M(Q) is a direct summand of IndL

CV . Let W be an
indecomposable summand of ResLCIndL

CV . By the Mackey formula, W ∼= xV for some
x ∈ L. In particular, xP is a vertex of xV . By the decomposition of L given above,
x = uv for some u ∈ CG(Q), v ∈ NG(P ). Thus, xP = uP is C-conjugate to P , and it
follows that P is a vertex of W . In particular, W (P ) 6= 0. Let

ResLCM(Q) = W1 ⊕ · · · ⊕Ws
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be a decomposition of M(P ) as a direct sum of indecomposable kC-modules and suppose
if possible that s > 1. By the above argument, Wi(P ) 6= 0 for i, 1 ≤ i ≤ s, hence

Res
NG(P )
C∩NG(P )M(P ) ∼= (ResLCM(Q))(P ) = W1(P )⊕ · · · ⊕Ws(P )

is not indecomposable. Since CG(P ) ≤ C ∩NG(P ), it follows that Res
NG(P )
CG(P )M(P ) is not

indecomposable. This contradicts Lemma 4.3.

Proof of Theorem 1.2. Let M = SP (G, k). Suppose that F := FP (G) is saturated
and let Q ≤ P . We will show that M(Q) is indecomposable as kCG(Q)-module. We
proceed by induction on the index of Q in P . If Q = P , then by Lemma 4.3, M(Q) is
indecomposable as kPCG(P )/P -module. Suppose now that Q is proper in P and that
M(R) is indecomposable as kRCG(R)/R-module for any p-subgroup R of P properly
containing Q. Since P ≤ NG(Q), SP (NG(Q), k) is a direct summand of ResGNG(Q)M (see
[14, Chapter 4, Theorem 8.6]). Write

ResGNG(Q)M = SP (NG(Q), k)⊕X.
We claim that X(Q) = 0. Indeed, suppose if possible that there exists a direct summand,
say N of X such that N(Q) 6= 0 and let R be a vertex of N . Since Q is normal in NG(Q),
we have that Q ≤ R. The group Q is not a vertex of the indecomposable kG-module
M . Hence by the Burry-Carlson-Puig theorem (see [14, Chapter 4, Theorem 4.6 (ii)]),
ResGNG(Q)M does not have any indecomposable summand with vertex Q. Thus Q is a

proper subgroup of R. On the other hand, since M is a summand of IndG
Pk, and N is a

summand of ResGNG(Q)M , by the Mackey formula, N is relatively xP ∩NG(Q)-projective
for some x ∈ G. Thus,

Q < R < xP and Q < P.

In particular, conjugation by x is an F -isomorphism from x−1
Q to Q. Now P is abelian

and F is saturated. So, by the extension axiom there exists a g ∈ NG(P ) such that
gx−1 ∈ CG(Q). Setting h = gx−1, and conjugating all terms in the above by h, we get

Q = hQ < hR < hxP = gP = P.

Since h ∈ NG(Q), replacing R by hR, we may assume that R ≤ P . Since N is a summand
of X and N(R) 6= 0, we have X(R) 6= 0. Since SP (NG(Q), k) has vertex P and R ≤ P ,
we also have that SP (NG(Q), k)(R) 6= 0. The equation

ResGNG(Q)M = SP (NG(Q), k)⊕X,
implies that M(R) is not indecomposable as k[NG(Q)∩NG(R)]-module. Since RCG(R) ≤
NG(Q) ∩ NG(R), it follows that M(R) is not indecomposable as kRCG(R)-module or
equivalently as kRCG(R)/R-module, a contradiction. This proves the claim. Thus,

M(Q) = SP (NG(Q), k)(Q)⊕X(Q) = SP (NG(Q), k)

as kNG(Q) and hence as kNG(Q)/Q-module. In particular, M(Q) is indecomposable as
kNG(Q)/Q-module. By Lemma 4.4, M(Q) is indecomposable as kQCG(Q)/Q-module,
completing the proof.
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Proof of Corollary 1.3. If G has cyclic Sylow p-subgroups, then it is easy to see that
FP (G) is saturated for any p-subgroup P of G. The result is immediate from the Theorem
1.2.

Proof of Corollary 1.4. With the hypothesis of the statement, it is immediate that
F∆(P )(G1×G2) ∼= FP (G1). Thus, since P is Sylow in G1, FP (G1) and hence F∆(P )(G1×
G2) is a saturated fusion system on P (see [3]). The result follows from Theorem 1.2.

Finally, we prove Proposition 1.5. For this we set up some more notation and recall a
few facts about Scott modules. Let (K,O, k)-be a p-modular system (we assume here that
k is an algebraic closure of the field of p elements). Let G = Sn, and let P be a p-subgroup
of G. Let M = SP (G, k) be the kG-Scott module with vertex P and let M̃ = SP (G,O)
be the OG-Scott module with vertex P , so that M = k ⊗O M̃ . Let χ : M̃ → K be
the character of the OG-module M̃ . Since M̃ is a p-permutation OG-module, for any
p-element x of G, dimkM(〈x〉) = χ(x). In particular, if Q is a p-subgroup of G, then
dimkM(Q) ≤ χ(x) for any element x of Q, with equality if Q = 〈x〉.

Proof of Proposition 1.5. Suppose that n ≤ 6 and that FP (G) is saturated. We will
show that M(Q) is indecomposable as kCG(Q)/Q-module for every subgroup Q of P . By
Theorem 1.2, we may assume that P is not abelian. If P is a Sylow p-subgroup of G,
then M = k [4, Theorem 2.5] and the result is immediate. So, we may assume that P is a
non-abelian, non-Sylow p-subgroup of G. Consequently, p = 2, n = 6 and P is isomorphic
to the dihedral group of order 8.

By the Sylow axiom for saturated fusion systems, PCG(P ) is a Sylow 2-subgroup of
NG(P ). So, up to G-conjugacy P is one of 〈(1, 2, 3, 4), (1, 3)〉, 〈(1, 2, 3, 4)(5, 6), (1, 3)〉
〈(1, 2, 3, 4), (1, 3)(5, 6)〉 or 〈(1, 2, 3, 4)(5, 6), (1, 3)(5, 6)〉.

We will show that in each case above, M is Brauer indecomposable. It can be checked
directly that FP (G) is saturated in each case above- the second case corresponds to the
nilpotent fusion system, the remaining three correspond to the saturated fusion system
on D8 in which the automorphism of exactly one Klein-4 subgroup contains an element
of order 3. However, we do not prove saturation as by Theorem 1.1 this will follow after
the fact of Brauer indecomposability.

Before embarking on our case by case analysis, we recall the 2-decomposition matrix of
S6 [7, Page 414]:
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1 41 42 16
(1) (5, 1) (4, 2) (3, 2, 1)

1 (6) 1
5 (5, 1) 1 1
9 (4, 2) 1 1 1
16 (3, 2, 1) 1
10 (4, 12) 2 1 1
5 (32) 1 1
10 (3, 13) 2 1 1
5 (23) 1 1
9 (22, 12) 1 1 1
5 (2, 14) 1 1
1 (16) 1

Case: P = 〈(1, 2, 3, 4), (1, 3)〉. Then P is a Sylow p-subgroup of S5, naturally considered
as a subgroup of S6 as a one-point stabilizer, whence M̃ is a direct summand of IndS6

S5
(O)

(see for instance [4, Theorem 2.5]). On the other hand by [6, Page 32], M has dimension
6. So, M̃ = IndS6

S5
(O). Now, if u = (1, 3), then χ(u) = 4 and if u = (1, 2)(3, 4) or

u = (1, 2, 3, 4) then χ(u) = 2. Hence, it follows that unless Q ≤ P is G-conjugate to
〈(1, 3)〉, the dimension of M(Q) ≤ 2 and if Q = 〈(1, 3)〉, then M(Q) has dimension
4. On the other hand, since M(P ) as kNG(P )/P -module is the projective cover of the
trivial module, M(P ) has dimension at least 2. So, if Q ≤ P is not G-conjugate to
〈(1, 3)〉, then for any R ≤ P containing Q as a normal subgroup, M(Q) ∼= M(R) as
k(NG(Q) ∩ NG(R))-module, hence as kCG(R)-modules. Arguing inductively, it follows
that M(Q) ∼= M(P ) as kCG(P )-modules. By Lemma 4.3, M(P ) is indecomposable as
kPCG(P )/P -module, hence as kCG(P )-module. Since CG(P ) ≤ QCG(Q), it follows that
M(Q) is indecomposable as kQCG(Q)/Q-module.

Now suppose that Q = 〈(1, 3)〉. Then M(Q) is a 4-dimensional p-permutation kNG(Q)-
module. Let V be an indecomposable kNG(Q)-module summand of M(Q) and let Q ≤
R ≤ NG(Q) be a vertex of M(Q). Then

M(R) = M(Q)(R) 6= 0,

whence gQ ≤ gR ≤ P or gR ≤ NP ( gQ). Since no transposition in P is central in P , R
has order at most 4 (and for some summand V exactly 4). Let S be a Sylow p-subgroup

of NG(Q) containing R. Since V is a direct summand of Ind
NG(Q)
R (k), the Mackey formula

and the Green indecomposability theorem imply that any direct summand of Res
NG(Q)
S V is

isomorphic to IndS
xR∩Sk for some x ∈ NG(Q). In particular, the dimension of V is divisible

by the index of R in V . Since the Sylow p-subgroups of CG(Q) = NG(Q) have order 16
and R has order 8, it follows that V has dimension divisible by 4. Thus, V = M(Q). In
particular, M(Q) is indecomposable as kNG(Q), and NG(Q) = CG(Q).

Case: P = 〈(1, 2, 3, 4), (1, 3)(5, 6)〉. By [6] M has composition factors 1G, 41 ⊕ 42,
1G. An inspection of the decomposition matrix and the character table of S6 gives that
χ = χ(6) + χ(4,2). Further, the values of χ on non-trivial 2 elements of G are as follows:

χ((1, 3)) = 4, χ((1, 3)(2, 4)) = 2, χ((1, 2)(3, 4)(5, 6)) = 4,
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χ((1, 2, 3, 4)) = 0, χ((1, 2, 3, 4)(5, 6)) = 2.

Since CG(P )/Z(P ) contains an element of order 2, it follows as in the previous case
that M(Q) is indecomposable as kCG(Q)-module for any p-subgroup Q of G such that
M(Q) has dimension 2. From the above character calculations, we may assume that the
only non-trivial elements of Q are in the G-conjugacy class of (1, 3) and (1, 2)(3, 4)(5, 6)
and in particular are non-central involutions in P . If Q contains two such involutions,
then Q = P , so we may assume that either Q = 〈(1, 3)〉 or Q = 〈(1, 2)(3, 4)(5, 6)〉. But
now the result follows as above since both of these involutions are central in some Sylow
p-subgroup and in both cases M(Q) has dimension 4.

Case: P = 〈(1, 2, 3, 4), (1, 3)(5, 6)〉. The image of P under the exceptional non-inner
automorphism of S6 is S6-conjugate to 〈(1, 2, 3, 4), (1, 3)〉. The result follows from Case 1
by transport of structure.

Case: P = 〈(1, 2, 3, 4)(5, 6), (1, 3)(5, 6)〉. By [6]M is two dimensional with composition
factors 1G, 1G. Since M(P ) has dimension at least 2, M(Q) = M(P ) = M for all
Q ≤ P . By Lemma 4.3, M = M(P ) is indecomposable as kPCG(P )/P -module. Hence,
M(Q) = M is indecomposable as kQCG(Q)/Q-module for all Q ≤ P as required. This
completes the proof of Proposition 1.5.

Concluding Remarks. Given a saturated fusion system, F on a finite p-group P ,
Park has shown that there exists a finite group G with P ≤ G and such that F = FP (G)
(cf.[15]). We pose the following question:

Given a saturated fusion system F on a finite p-group P , does there exist a saturated
triple (A, b,G) such that F = F(P,eP )(A, b,G) for some maximal (A, b,G)-Brauer pair
(P, eP )?
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