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ON THE COXETER COMPLEX AND ALVIS-CURTIS

DUALITY FOR PRINCIPAL ℓ-BLOCKS OF GLn(q)

Markus Linckelmann and Sibylle Schroll

November 2002

Abstract. M. Cabanes and J. Rickard showed in [3] that the Alvis-Curtis character
duality of a finite group of Lie type is induced in non defining characteristic ℓ by a derived

equivalence given by tensoring with a bounded complex X, and they further conjecture
that this derived equivalence should actually be a homotopy equivalence. Following a

suggestion of R. Kessar, we show here for the special case of principal blocks of general

linear groups with abelian Sylow-ℓ-subgroups that this is true, by an explicit verification
relating the complex X to the Coxeter complex of the corresponding Weyl group.

Throughout this note, n is a positive integer, q a prime power and ℓ a prime divisor
of q − 1 such that ℓ > n. We denote by O a complete discrete valuation ring having an
algebraically closed residue field k of characteristic ℓ.

Set G = GLn(q) and let b be the principal block of OG; that is, b is the unique
primitive idempotent in Z(OG) which acts as the identity on the trivial OG-module.
We will say as usual that an irreducible character χ of G belongs to the principal block
b if χ(b) = χ(1). See [11] for more block theoretic background material. The ℓ-blocks of
finite linear groups were first described by Fong and Srinivasan in [5]; see also [2]. For any
ℓ′-subgroup H of G let eH be the idempotent in OG defined by eH = 1

|H|

∑
x∈H

x. Denote

by T the maximal torus of diagonal matrices in G, by U the group of upper triangular
matrices whose diagonal entries are 1 and set B = UT . Let W be the subgroup of
permutation matricies of G; that is W ∼= Sn. Denote by S the generating set of W
corresponding to the set of permutations (i − 1, i), where 2 ≤ i ≤ n. For any subset
I of S denote by WI the subgroup of W generated by I, by PI the standard parabolic
subgroup of G generated by B and WI , by UI the unipotent radical of PI and by LI

a Levi complement of UI in PI , with the convention W∅ = 1, U∅ = U , P∅ = B and
L∅ = T .

Since ℓ > n, the torus T contains a Sylow-ℓ-subgroup Q of G, and then T decomposes
uniquely as direct product T = Q× T ′, where T ′ = Oℓ′(T ). The set of subsets of S is
viewed as simplicial complex with respect to the order which is reverse to the inclusion of
subsets. The complex X defined in [3] inducing the Alvis-Curtis duality is the complex
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of OG-OG-bimodules associated with the coefficient system sending I ⊆ S to the OG-
OG-bimodule OGeUI

⊗
OPI

eUI
OG; the Coxeter complex (see e.g. [6, Section 1.15]) is

the complex C of OW -modules associated with the coefficient system sending I to the
OW -module OW/WI . See [1, Chapter 7] or [3] for more details on coefficient systems.
We view X and C as cochain complexes with non zero components in the degrees 0 to
|S|. The principal block b of OG has the Sylow-ℓ-subgroup Q as defect group. By a
result of Puig [8, 3.4], the idempotent i = eT ′eU is a source idempotent of b (that is, i is
primitive in (OGb)Q and 2Q(i) 6= 0) and there is an isomorphism of interior Q-algebras

Φ : iOGi ∼= O(Q⋊W ) ;

that is, Φ is an O-algebra isomorphism mapping iui to u for every element u ∈ Q.
Denote by ∆(Q ⋊ W ) the diagonal subgroup of (Q ⋊ W ) × (Q ⋊ W ) and consider C
as cochain complex of ∆(Q⋊W )-modules in the obvious way (that is, with ∆Q acting
trivially on the components of C).

Theorem 1. With the notation above, there is an isomorphism of complexes of iOGi-
iOGi-bimodules

iXi ∼= ResΦ(Ind
(Q⋊W )×(Q⋊W )
∆(Q⋊W ) (C)) .

In particular, iXi is homotopy equivalent to the bimodule σ(iOGi) viewed as complex
concentrated in degree zero, where σ is the algebra automorphism of iOGi induced via
Φ by the sign representation of W .

Since OGb and iOGi are Morita equivalent via the bimodules OGi and iOG (cf. [7,
3.5]) this implies immediately the following:

Corollary 2. With the notation above, the functor X ⊗
OG

− induces an equivalence on the

homotopy category K(OGb) of complexes of OGb-modules which extends, up to natural
isomorphism, the Morita equivalence on Mod(OGb) induced by the sign representation
of W .

The proof of Theorem 1 is based on the following three Propositions, the first of which
is a particular case of a result of Puig [8, 3.4]:

Proposition 3. (Puig) With the notation above, for any subset I of S, the idempotent
i is a source idempotent of the principal block of OPI and there is an isomorphism of
interior Q-algebras ΦI : iOPI i ∼= O(Q⋊WI).

Since W = WS we choose notation such that Φ = ΦS. The various isomorphisms ΦI

are compatible in the following sense:
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Proposition 4. With the notation above, for any subset I of S there is an element
aI ∈ 1 + J((O(Q⋊W ))Q) such that Φ(iOPI i) = (O(Q⋊WI))

aI .

Proof. For every w ∈ WI , the elements w and w′ = Φ(Φ−1
I (w)) act in the same way on

Q because Φ, ΦI are homomorphisms of interior Q-algebras. Thus w(w′)−1 ∈ ((O(Q⋊

W ))Q)×. Since the unit element of O(Q⋊W ) is primitive in the algebra (O(Q⋊W ))Q

it follows that the group ((O(Q⋊W ))Q)× is isomorphic to k×× (1+J((O(Q⋊W ))Q)).
In other words, identifying k× to its canonical preimage in O× (cf. [10, Ch. II, §4, Prop.
8]) there is a unique scalar ζ(w) ∈ k× such that ζ(w)−1w(w′)−1 ∈ 1+J((O(Q⋊W ))Q).
One checks easily that the map sending w to ζ(w) is in fact a group homomorphism.
Setting aI = 1

|WI |

∑
w∈WI

ζ(w)−1w(w′)−1 it is clear that aI ∈ 1+J((O(Q⋊W ))Q) and an

easy computation shows that waI = ζ(w)aIw
′ for any w ∈WI , implying the result. �

Proposition 5. Let I be a subset of S and denote by bI the principal block of OPI . We
have eUI

b = bI .

Proof. Let cI be the principal block of OLI . Since ℓ divides q − 1 it follows from [5]
that the principal blocks b and cI of OG and OLI are the unique unipotent blocks of
OG and OLI , respectively. Let χ be an irreducible character of G and let ψ be an
irreducible character of LI such that χ is a constituent of the Harish-Chandra induced
character RG

LI
(ψ). Since Harish-Chandra induction is given by tensoring with the OG-

OLI -bimodule OGeUI
, this is equivalent to eUI

e(χ)e(ψ) 6= 0 in KG, where K is the quo-
tient field of O and where e(χ), e(ψ) are the primitive idempotents in Z(KG), Z(KLI)
associated with χ, ψ, respectively. Since Harish-Chandra induction preserves Lusztig
series, χ belongs to the principal block b of OG if and only if ψ belongs to the principal
block cI of OLI . This implies eUI

bc = 0 for any non principal block c of OLI , and
hence the equality eUI

b = eUI
bcI . It implies also that eUI

b′cI = 0 for any non principal
block b′ of OG, and hence the equality eUI

bcI = eUI
cI . Clearly OPIeUI

∼= OLI , and
since UI ⊆ Oℓ′(PI) is in the kernel of the principal block bI of OPI , we get the equality
bI = eUI

cI . The result follows. �

Proof of Theorem 1. Set Y = Ind
(Q⋊W )×(Q⋊W )
∆(Q⋊W ) (C), viewed as cochain complex of O(Q⋊

W )-O(Q ⋊ W )-bimodules. For any integer r, the degree r term of Y is isomorphic to
the direct sum of the bimodules

O(Q⋊W ) ⊗
O(Q⋊WI )

O(Q⋊W )

with I running over the set of subsets of S such that |I| = r. The differential of Y is an
alternating sum of the canonical maps

aIJ : O(Q⋊W ) ⊗
O(Q⋊WI)

O(Q⋊W ) −→ O(Q⋊W ) ⊗
O(Q⋊WJ )

O(Q⋊W )

for any I ⊆ J ⊆ S such that |I| + 1 = |J |.
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Let I be a subset of S. By Proposition 5, the iOGi-iOGi-bimodule iOGeUI
⊗

OPI

eUI
OGi is isomorphic to iOGeUI

⊗
OPIbI

eUI
OGi. Since i is still a source idempotent of

bI it follows from [7, 3.5] that this bimodule is isomorphic to iOGi ⊗
iOPI i

iOGi.

Set Y ′ = ResΦ−1(iXi). It follows from combining the Propositions 3 and 4 with
the previous paragraph that the degree r term of Y ′ is isomorphic to the direct sum of
bimodules

O(Q⋊W ) ⊗
O(Q⋊WI)aI

O(Q⋊W )

with I running again over the set of subsets of S such that |I| = r. Furthermore, if
I ⊆ J ⊆ S then Proposition 4 implies that O(Q ⋊ WI)

aI ⊆ O(Q⋊ WJ )aJ , and so the
differential of Y ′ is again just an alternating sum of the canonical maps

a′IJ : O(Q⋊W ) ⊗
O(Q⋊WI)aI

O(Q⋊W ) −→ O(Q⋊W ) ⊗
O(Q⋊WJ )aJ

O(Q⋊W )

for any I ⊆ J ⊆ S such that |I| + 1 = |J |.

In order to prove the first isomorphism in Theorem 1 we have to prove that Y ∼= Y ′

as complexes of O(Q⋊W )-O(Q⋊W )-bimodules. There is an isomorphism

O(Q⋊W ) ⊗
O(Q⋊WI )

O(Q⋊W ) ∼= O(Q⋊W ) ⊗
O(Q⋊WI)aI

O(Q⋊W )

mapping x⊗ y to xaI ⊗ a−1
I y for any I ⊆ S and any x, y ∈ O(Q⋊W ). Thus the terms

of Y and Y ′ are isomorphic. However, these isomorphisms need not commute to the
differentials. In order to show that Y and Y ′ are actually isomorphic as complexes it
suffices to show that they are both split and have cohomology concentrated in degree
zero.

Since ℓ does not divide the order of W the complex C is split and its cohomology is
concentrated in degree zero isomorphic to the sign representation of W (cf. [4, 66.28] or
[9, §8]). As induction is exact it follows that Y is split with cohomology concentrated
in degree zero isomorphic to τO(Q ⋊ W ), where τ is the automorphism of O(Q ⋊ W )
mapping uw to sgn(w)uw for any u ∈ Q and any w ∈W . It remains to show that Y ′ is
split with cohomology concentrated in degree zero. To see that Y ′ is split we explicitly
define a section sIJ for the above map a′IJ by setting

sIJ (x⊗ y) =
1

[WJ : WI ]

∑

v

xva−1
J aI ⊗ a−1

I aJv
−1y

for any I ⊆ J ⊆ S such that |I| + 1 = |J |, any x, y ∈ O(Q ⋊ W ), and where v runs
over a system of representatives in WJ of the set of cosets WJ/WI . A straightforward
verification shows that sIJ is well-defined and that a′IJ ◦ sIJ is the identity map.
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Knowing that Y ′ is split, in order to see that the cohomology is concentrated in degree
zero it suffices to show that the cohomology of the quotient complex Y ′/J(O(Q⋊W ))Y ′

is concentrated in degree zero. The point is here that the elements aI are in 1 +
J((O(Q⋊W ))Q) which in turn is contained in 1 + J(O(Q⋊ W )). Thus the quotients
Y/J(O(Q ⋊ W ))Y and Y ′/J(O(Q ⋊ W ))Y ′ are actually isomorphic as complexes; in
particular, their cohomology is both concentrated in degree zero. Theorem 1 follows. �

Remark 6. We expect that it should be possible to extend Theorem 1 to the blocks
considered by Puig in [8, 3.4], using similar techniques.
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134 (1986), 159–188.

3. M. Cabanes, J. Rickard, Alvis-Curtis duality as an equivalence of derived categories, in: Modular
representation theory of finite groups (Charlottsville, VA, 1998), de Gruyter, Berlin (2001), 157–174.

4. C. W. Curtis, I. Reiner, Methods of representation theory II, Wiley-Interscience, New York (1987).

5. P. Fong, B. Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69

(1982), 109–153.

6. J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge

(1990).
7. L. Puig, Pointed groups and construction of characters, Math. Z. 176 (1981), 265–292.
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