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ABSTRACT

The mathematical formulation of various control synthesis problems , (such as
Decentralized Stabilization Problem , (DSP) , Total Finite Settling Time Stabilization
for discrete time linear systems , (TFSTS) , Exact Model Matching Problem , (EMMP),
Decoupling and Noninteracting Control Problems) , via the algebraic framework of
Matrix Fractional Representation . (MFR)-i.e. the representation of the transfer
matrices of the system as matrix fractions over the ring of interest — results to the study

of matrix equations over rings , such as :

AX+BY=C,X-A+Y.B=C) (1)
A-X=B,(Y-A=B) (2)
A-X-B=C (3)
AX+YB=C,X-A+B.Y=C,

A-X-B+C.Y-D=E @)

The main objective of this dissertation is to further investigate conditions for existence
and characterization of certain types of solutions of equation (1) ; develop a unifying
algebraic approach for solvability and characterization of solutions of equations (1) - (4),
based on structural properties of the given matrices , over the ring of interest .

The standard matrix Diophantine equation (1) is associated with the TFSTS for
discrete time linear systems and issues concerning the characterization of solutions
according ‘to the Extended McMillan Degree , (EMD) , (minimum EMD , or fixed
EMD) , of the stabilizing controllers they define , are studied . A link between the
issues in question and topological properties of certain families of solutions of (1) is
established . Equation (1) is also studied in association with the DSP and Diagonal DSP
(DDSP) , for continuous time linear systems . Conditions for characterizing block
diagonal solutions of (1) , (which define decentralized stabilizing controllers) , are
derived and a closed form description of the families of diagonal and two blocks diagonal
decentralized stabilizing controllers is introduced .

The set of matrix equations (1) - (4) is assumed over the field of fractions of the
ring of interest , ® , (mainly a Euclidean Domain , (ED) , and thus a Principal Ideal
Domain , (PID)) , and solvability as well as parametrization of solutions over % is
investigated under the unifying algebraic framework of extended non square matrix
divisors , projectors and annihilators of the known matrices over ® . In practice the ring
of interest is either the ring of polynomials Ris) , or the rings of proper R,.(s) and
especially proper and stable rational functions R?(s) . The importance of RQ(S) is
highlighted early in the thesis and further computational issues arising from its
structure as an ED are considered .
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NOTATION AND ABBREVIATIONS

The following notation and abbreviations are used throughout this thesis unless

otherwise is stated in the text :

v

: the set of natural numbers

: the field of rational numbers
: the field of real numbers

: the field of complex numbers

: the right half plane of the complex

numbers

: the area of instability of linear ,

continuous time , control systems

: the ring of polynomials

: the field of rational functions

: the ring of proper rational functions

: the ring of proper and P stable rational

functions

: the set of prm matrices with entries over

Res)

: the set of prm matrices with entries over

R,.(s)

: the set of prm matrices with entries over

R?(S)

: a norm function over the ring of

polynomials

. a matrix metric defined over a set of

matrices

: the Euclidean degree of the Euclidean

domain Rg(s)

: the extended McMillan degree
: the vector v
: row span of {A} over a field = row space

of A over a field

: column span of {A} over a field =

column space of A over a field

: right null space of A
: left null space of A
: row span {A} over a ring = row module



of A over a ring

: column span {A} over a ring = column

module of A over a ring

: the maximum row module of A in EIS:1

: the maximum column module of A in

e
diag{C,, ..., C,} : aglock diagonal matrix , with blocks C, ,
1=1,...,n
1%y ...y Xpl : the ring of polynomials in x, , ..., x,
with coefficients in the field %
Yty ,...,£) : the affine variety by f, , ..., {, , f, €
®orxy, ..., x,)
> lex : the lexicographical order over N"
AE B : the matrices A , B are right equivalent
AEB : the matrices A , B are left equivalent
AEB : the matrices A , B are equivalent
BIBO : bounded input , bounded output
CSP : centralized stabilization problem
DSP : decentralized stabilization problem
DDSP : diagonal decentralized stabilization
problem
DBRP : dead - beat response problem
DDP . disturbance decoupling problem
DDISP : disturbance decoupling with internal
stability problem
EMMP : exact model matching problem
EMD : extended McMillan degree
ED : Euclidean domain
eld : extended left divisor
erd : extended right divisor
GCD : greatest common divisor
gcerd : greatest common extended right divisor
geeld : greatest common extended left divisor
— glrd : greatest left —right divisor
- geld : greatest extended left divisor
- gerd : greatest extended right divisor
- Ird : left — right divisor
- MDE : matrix Diophantine equation
- MDP : minimal design problem
- MIMO : many inputs , many outputs



MFR
MFD
NICP
NCISP

vt

: matrix fractional representation
: matrix fractional description
: noninteracting control problem

: noninteracting control with internal

stability problem

: polynomial matrix Diophantine equation
: principal ideal domain

: regulator problem

: regulator problem with internal stability
: R column projector

: B row projector

: B prime right annihilator

: R i)rime left annihilator

: B right inverse

: B left inverse

: R multiple of the rows

: B least multiple of the rows

: B common multiple of the rows

: B least common multiple of the rows

: %R multiple of the columns

: B least multiple of the columns

: % common multiple of the columns

: B least common multiple of the columns
: stable exact model matching problem

: single input , single output

: total finite settling time stabilization

: vector Diophantine equation
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Introduction

This dissertation is concerned with linear algebraic synthesis methods for linear,
multivariable , time invariant , control systems and additional algebraic tools are
developed on matrix divisors , projectors , annihilators , in order to achieve a unifying
approach for solvability of certain types of matrix equations . It is well known that

algebraically many control synthesis problems are reduced to the solution of , (sets of) ,

matrix equations such as :

AX+B.Y=C,(X-A+Y-B=0) (1.1)
A-X=B,(Y-A=B) (1.2)
A-X-B=C (1.3)
S A;-X;'B;=C (1.4)

1=1

where , A, B, A;,B;,C, X, Y, X, are matrices over the ring of interest , i.e. a
given Euclidean domain , (ED) , or principal ideal domain , (PID) . The main aim of
this thesis is to further investigate conditions for existence and characterization of
special types of solutions of equations (1.1) ; develop a unifying algebraic approach for
solvability and parametrization of solutions of equations (1.1)-(1.4) , based on the
structural properties of a matrix over a PID . Recent work in this area is based on what
is termed the Matrix Fractional Representation approach , (MFR) , to linear systems
theory , [Des. 1] , [Sae. 2] , [Ant. 1] , [Vid. 1], [Vid. 3] , [Vid. 4] , [Fra. 1] , [Ozg. 1] ,
[Bra. 1] , [Kal. 1] , [Kuc. 2} , [Var. 6] . The motivation to study matrices having
elements in special rings , comes from the need to describe algebraically the familiar
problems of stability , realizability and performance of linear systems .

From a: control theory viewpoint the rings of importance are , R(s)- polynomials ,
R,.(s) - proper rational functions , Re(s) — proper rational functions with no poles inside
a prescribed region P of the complex plain . The structure of the set Rg(s) has been
investigated in [Var. 3} , [Var. 5] , [Vid. 4] , and structural as well as invariant aspects
of it have been defined . Among the algebraic properties of Rg(s) , the one that makes it
more interesting is that of the Euclidean ring or in other words , the existence of a
Euclidean division . In [Vid. 4] , [Var. 5] , has been noticed that the pair of quotient and
remainder of a Euclidean division in Rg(s) is not characterized by a uniquely defined
"Euclidean degree” , and the family of least possible "Euclidean degree” remainders is
introduced . A quite tedious construction of this family based on the interpolation
theorem of [You. 1] , is known , [Vid. 4] . An existence approach by using interpolation
in a disc algebra has been introduced in [Vid. 4] . Further computational issues
concerning the construction of more practical algorithms for the determination of the
family in question are studied here . The role of Ry(s) and R,,(s) as the rings of interest
in the case of linear , multivariable , continuous time , time invariant systems is taken
over by Ris) in the case of linear , multivariable , discrete time , time invariant systems.
The basic control schemes consisting of a precompensator , (or feedback compensator)
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Introduction

and unity output feedback which are used to stabilize unstable plants , always lead to
the study of a matrix Diophantine equation , (MDE) , of the type (1.1) over the ring of
interest , (Rep(s) for continuous time , R(s] for discrete time linear systems) . In our

study we associate the MDE (1.1) with the following two control synthesis problems :

1) The Total Finite Settling Time Stabilization , (TFSTS) , for discrete time linear
systems .
i) The Decentralized Stabilization Problem , (DSP) , for continuous time linear

systems.

The TFSTS requires all the internal and external variables , (signals) , of the system to
settle to a new steady —state after finite time from the application of a étep change to
its input and for every initial condition , [Kar. 1] , [Mil. 1] . The TFSTS comprises the
Dead — Beat Response Problem , (DBRP) , i.e. the forcing of the state or output vector
from any initial state to the origin in minimum time , [Ber. 1] , [Ise. 1] , [Kal. 1} , {Kuo.
1] , [Kuc. 1] - [Kuc. 8] , [Vid. 4] . The TFSTS and DBRP can be viewed as a type of
Minimal Design Problems , (MDP) , i.e. as problems requiring the investigation of
existence and parametrization of solutions of the corresponding MDE (1.1) , over Rys],
which define stabilizing controllers with minimum number of finite and infinite poles ,
(minimum extended McMillan degree , (EMD)) , among the family of all stabilizing
controllers . In our approach , in order to determine the required family of solutions of
equation (1.1) , over R(s] , we first focus on those solutions , (X, Y) , that correspond to
column , (row) , reduced matrices [XT: Y™]T, ([X : Y]) . We are motivated to do so by
the fact that the EMD of a controller defined by a column , (row) , reduced solution of
(1.1) , is equal to the sum of column , (row) , polynomial degrees of the corresponding
matrices [XT: YT, ([X:Y]), [Var. 5], [Mil. 1} .

We prove that the solutions in question form a nonempty , dense but neither open
nor closed subset of the family of solutions of (1.1) , (with C an arbitrary
R(s} — unimodular matrix) , and thus the sum of minimum column , (row) , polynomial
degrees of the corresponding matrices [XT : YT]", ([X : Y]) , are more likely to serve as
an upper bound rather than be equal to the minimum EMD of the corresponding
controllers XY , (Y-X!) . By transforming (1.1) to Vector Diophantine equations ,
(VDE) , over Rys) , using the exterior product expressions of the rows , (columns) ,
columns , (rows) , of [A : B] , ([AT:BT]7), [XT: YT, ([X : Y]) , respectively and then
expressing (1.1) and the corresponding VDEs via their Toeplitz matrix representations
we can construct reliable bounds for the minimum EMD , i.e. the minimum EMD is
bound between the sum of minimum column , (row) , polynomial degrees of [X™: Y]T,
(X:Y]), and the minimum column , (row) , polynomial degree of the vector solutions
of the VDE corresponding to (1.1) . A parametrization of the families of controllers

2



Introduction

corresponding to the upper and lower bounds is given .

A different stabilization problem is the DSP for continuous time linear systems . This
problem is due to restrictions on the feedback compensator structure , which are often
encountered in large scale systems . These systems have several local control stations ;
each local compensator observes only the corresponding local outputs . Such
decentralized control of systems results in a block diagonal compensator matrix scheme
(San. 1] , [Gun. 1] , [Wan. 1] . Thus the DSP requires the stabilization of an unstable
system by using a decentralized compensator and unity output feedback scheme . Wang
and Davison , [Wan. 1] and Corfmat and Morse , [Cor. 1] , [Cor. 2] , have introduced
synthesis methods for the design of stabilizing decentralized compensators . It has been
derived that a necessary and sufficient condition for the existence of local control lows
with dynamic compensation to stabilize a given system is that the system has no "fixed
modes” , [Wan. 1] , over the region of instability . Further study of the problem has
been domne in [And. 1] , [And. 2], [Vid. 3], [Guc. 1] , [Ozg. 1] , [Kar. 2] , [Kar. 3] . In
[Gun. 1} , the DSP is treated within the algebraic framework of Matrix Fractional
Representation of the plant and controller transfer matrices over Rg(s) - A solution of
the DSP is constructed but a closed form parametrization of all decentralized stabilizing
controllers is not given .

Our interest is to examine equation (1.1) in the algebraic framework already
established and try to derive new results concerning the remaining open parametrization
issues of the DSP . More precisely , if (A , B) denotes a coprime left Matrix Fractional
Representation of the plant transfer matrix over Rq(s) , T; , are matrices formed by the
p; , m; columns of the partitioning of A , B according to the number of local
inputs — oitputs respectively, then the parametrization of solutions of the DSP can be
derived from the family of Rgys) - left unimodular solutions , X; , of the set of equations
T;-X;=C;,1=1,..., s for which [C, , ..., C,] is Rg(s) — unimodular. In our study we
show that the above parametrization requires the existence of a constructive method
that enables us to generate the family of all Rg(s)—unimodular matrices of given
dimensions , as well as , the families of [R.,J,(s)—left , right unimodular matrices which
complete given IRa_P(s)—left , right unimodular matrices to square Rap(s) — unimodular .
Such methods are examined and a parametrization of solutions of the DSP is
introduced.

The parameters are expressed in terms of upper , lower triangular unimodular
matrices which must satisfy certain constraints . These constraints introduce a
necessary and sufficient criterion that enables us to identify the admissible parameters .
Although in the general case the family of qualifying parameters is not described in
closed form , there are particular cases when this is possible . These cases are based on
the property , [Vid. 4] , of the Smith forms of T; over Rg(s) to be generic . A closed
form description of the family of parameters is given in the case of two blocks
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decentralized stabilizing controllers .

A special case of decentralized stabilization of continuous time linear systems , for
which a complete parametrization of stabilizing controllers can be achieved using a
different approach , is the Diagonal Decentralized Stabilization problem , (DDSP) .
[Kar. 2], [Guc. 1] . In this special case , given a plant transfer matrix over szp(s) , the
problem is to determine a stabilizing compensator C = diag{c, , ..., c,} over IRpr(s) ,
such that the feedback system is stabilized by C . As in the case of the DSP the
stability requirement may be expressed in terms of Matrix Fractional Representations
of transfer matrices [Vid. 4] , and highlights the important role of fixed modes” over
the region of instability , [Wan. 1] , [And. 1] , [And. 2] . The existence and
characterization of solutions of the DDSP is intimately related to systems that exhibit
the property of cyclicity . After formulating the DDSP in a similar manner to the DSP ,
the construction of the family of all diagonal stabilizing controllers is reduced to
determining what are termed mode T mutually stabilizing pairs . The existence of such
pairs forms the base of a complete characterization of the family of diagonal stabilizing
controllers . This characterization is essential , since it provides the means to define
certain diagonal stabilizing controllers , such as proper , reliable , stable .

Notice that equation (1.1) is a special case of the more general equation (1.2) .
Furthermore equation (1.2) is central to the formulation of the Exact Model Matching ,
(EMM) and Stable Exact Model Matching , (SEMM) , problems . The EMM requires
the existence and characterization of proper solutions of (1.2) , when A , B are given
matrices over R,(s) , [Wol 1] , [Wol. 3] , [Var 5] , [Var. 6] , [For 1] . If the requirement
that the solutions of (1.2) should be stable is added then we define the SEMM problem |,
[Wol. 3] [Sco 1], [And. 3], [Kuc. 9] , [Emr. 1] , [Kar. 5] , [Per. 1] . Equations (1.3) and
(1.4) , (the last in the reduced foom A-X + Y.B=C,X-A + B.Y =), appear in
the formulation of a group of control synthesis problems known as Noninteracting , or
Decoupling Control Problems . There are many different versions of such problems |,
depending on the control feedback configurations postulated . These are problems which
require the existence and characterization of controllers that achieve certain outputs to
be independent of certain inputs , or the transfer matrices of certain input —output
channels to meet prespecified constraints , such as stability . Internal stability of the
feedback scheme is quite often an additional requirement . We distinguish between the
Disturbance Decoupling , (DDP) , and Disturbance Decoupling with Internal Stability ,
(DDISP) , Problems , [Aka. 1] , [Mor. 3] , [Ohm. 1], [Ozg. 1] , [Ozg. 2] , {Sch. 1} , [Sto.
1], [Wol. 4] , [Won. 1] , [Wil. 2] , [Tak. 1} ; the Noninteractive Control , (NICP) , and
Noninteractive Control with Internal Stability , (NCISP) , Problems , [Aka. 1] , [Aka.
2] , [Bay. 1], [Dsc. 1} , [Fal. 1] , [Ham. 1] , [Mrg. 1] , [Mor. 3] , [Wil. 1} , [Wol. 1] ,
[Won. 1]. Some additional problems to the above concerning especially equation (1.4)
are the Regulator Problem , (RP) , and Regulator Problem with Internal Stability ,

4



Introduction

(RPIS) , [Ben. 1] , [Chg. 1] , [Hau. 1] , [Kha. 1], [Sae. 1] , [Sch. 2] , [Sch. 3] , [Wol. 5] ,
[Won. 1] , [Won. 2] , [Won. 3] . The first , second , fifth and sixth problems , i.c. DDP ,
DDISP |, RP , RPIS are considered over a two vector channel , continuous time , lincar
systemn with feedback applying round the first channel . The first channel input — output
1s referred to as the control input — measured output , whereas the second one as the
disturbance input — controlled output . For the third and forth problems , i.e. NICP |,
NCISP , a three vector channel , continuous time linear system with feedback applying
around the first channel is postulated .

From establishing the existence of an intimate relation between certain control
synthesis problems and matrix equations so far , the need for developing a unifying
algebraic framework for treating these equations is motivated . In our attempt to do so
the given matrices A , B, A;, B;, C,in (1.1)-(1.4) , are considered over the field of
fractions of an arbitrary PID , whereas the unknown X , Y | X, , are required to be over
this PID . The approach of solving matrix equations within the same algebraic
framework is based on the structural properties of matrices over PIDs . More precisely ,
if a matrix over a given PID , B , is considered , then certain algebraic tools over %R
such as , greatest left —right divisors , nonsquare left —right divisors , projectors ,
annihilators , left —right inverses can be defined ; whereas if a matrix over the field of
fractions of ® is given , an extension of the notions of common and least common
multiplies of its rows , columns is introduced . Then the structural properties of a
matrix over % can be investigated via these algebraic tools . The solvability conditions
and parametrization of solutions of (1.1) —(1.4) can be expressed in terms of greatest
left — right .divisors , projectors and left —right inverses, over the PID of interest % , of
the given matrices along with parametric matrices over % .

The structure of this thesis and the organization of the material are developed as
follows :

Chapter 2 is a survey of control synthesis problems and matrix equations that emerge
in their mathematical formulation . In section 2.2 we briefly present the concept of
stability of linear systems and the relation between the notions of internal and external
stability . Stability is a very important requirement in all the control problems we deal
with and in general it is an essential qualitative property of linear control systems |,
since there is great danger for an unstable system to "burst” as time goes to infinity . In
sections 2.3 and 2.4 we review the classical control synthesis problems of Centralized
and Decentralized Stabilization , the solution of which can be reduced to the study of
solvability and characterization of solutions , (or special types of them) , of the standard
matrix Diophantine equation (1.1) , over Rg(s) . In section 2.5 we review the Exact
Model Matching and Stable Exact Model Matching Problems , central role in the
formulation of which is played by the matrix equation (1.2) over R,.(s) , Rg(s)

respectively . In section 2.6 we switch to a group of control synthesis problems known as
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Noumteracting , or Decoupling Control Problems . We present various case of them
(Disturbance  Decoupling  and  Disturbance Decoupling  with  Internal  Stability
Noninteracting Control . and Noninteracting Control with Internal Stability) , and we
associate them with the solvability of the matrix equation (1.3) . Finally | in section 2.7
we consider the Regulator Problem and Regulator Problem with Internal Stability that
gives rise to a special case of the matrix equation (1.4) , i.c. the equations A-X+Y.B =
=C,X-A+BY=C,AX-B+C.YE=F).

Chapter 3 is concerned with computational issues of the set of proper and P stable
rational functions , Rays) . Our aim is to give an algorithmic construction of the family
of least "Euclidean degree” remainders , bysteping the existing tedious one that can be
found in {You. 1} . Our effort is based on the approach introduced in [Vid. 4] for the
determination of the existence of a family of least "Euclidean degree” remainders . The
construction of such a family is not presented there . More precisely , in section 3.2 the
ring of proper and stable functions is introduced ; in section 3.3 a unique , modulo a real
number of P° |, factorization for the elements of R@(S) is introduced and in section 3.4
the Euclidean division as well as its non uniqueness of remainder is examined . The
motivation for the use of unit interpolation in the following sections is given at the end .

In section 3.5 the interpolation by unit over R (S 1s examined , by using the concept
of the logarithm of an element of a Banach Algebra and introducing a special type of
Banach algebra the Disc Algebra of symmetric analytic functions , which map a disc
onto C . Two approaches for the derivation of an interpolating unit over R o(S) ate given
and lead to two algorithmic constructions of the least ”"Euclidean degree” family of
remainders in section 3.6 . A comparison between the two methods gives the more
efficient one . Finally , in section 3.7 a generalization of the Euclidean division between
square matrices with entries proper and stable functions , [Vid. 4] , is presented . As an
application of the knowledge of the family of least "Euclidean degree” remainders of a
Euclidean division between two elements of R@(s) , the construction of the least number
of unstable poles family of stabilizing controllers is described .

In Chapter 4 an alternative method for the computation of the greatest common
divisor , (GCD) , of a set of polynomials is studied . The notions of common and GCDs
of sets of polynomials are basic mathematical tools underlying the definitions and
properties of concepts , such as multivariable zeroes , [Mac. 1] , decoupling zeroes ,
[Ros. 1] , of linear systems theory . These concepts are central in the computation of
tools such as Smith forms , Hermit forms matrix divisors etc. of the algebraic systems
theory , [Kai. 1} , [Kuc. 1] , etc . The computation of the GCD , f(s) , of a set of m
polynomials of Rs) , p(s) , of a maximal degree § , has attracted a lot of attention ,
[Bar. 1] , [Bar. 2} , [Kai. 1] , [Kar. 7] , [Kar. 8] , [Mit. 1], [Mit. 2] , [Mit. 4] . The role of
GCDs in the solution of problems of linear control theory is well established , [Kai. 1] .
Various approaches for the computation of the GCD of p (s) have been established ; an
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analytical survey of the existing numerical methods can be found in [Mit. 2] , [Kar. 7] .
Characterizations of the GCD in terms of standard results from linear systems theory
and their relation to classical Matrix Pencil theory can be found in [Kar. 2] .

Our aim 1s to provide an alternative characterization for the GCD | {(s) , of a set of
polynomials represented by the vector p(s) , by expressing the relationship
p(s)=q(s)-f(s) in terms of rcal matrices , (basis matrices (b.m.) P, Q of p(s) , q(s)
respectively) , and the Toeplitz representation of f(s) . This relates the GCD with the
existence of a special Toeplitz base {W} of a subspace ¥ ¢ N, {P} ; this base has the
additional property that the nonzero entries of W, (the matrix formed by {W}) , have a
certain expression involving the coefficients of f(s) and ¥ has the greatest possible
dimension , (¥ may be N, {P}) , that the latter may happen . The above leads to the
introduction of an algorithm which constructs the coefficients of the GCD as a tuple
which belongs to a certain affine variety . The employment of Groebner bases , [Cox. 1],
[Bec. 1] , [Sha. 1] [Har. 1] , is essential for the application of the algorithm .

In Chapter 5 we investigate structural properties of matrices over a PID , ® . The
matrices are assumed to have entries over R . These properties are used to generate
algebraic tools that , (later on in Chapter 6) , will enable us to formulate a unifying
framework to deal with solvability of matrix equations over ® . The existence and
characterization of families of greatest left —right divisors , greatest extended (non
square) left —right divisors , projectors , annihilators , left —right inverses over R is
introduced . An extension of the notion of common , least common multiples of the
rows , columns of a matrix over the field of fractions of %R is also considered . The
relation between these algebraic tools and the column , row % —modules , maximum
% — modules of the matrices under investigation is established.

In Chapter 6 we tackle the very important issue of formulating a unitying approach
for solving the matrix equations (1.1)~-(1.4) over the PID of interest , ® . In our
attempt to do so we use the results derived in Chapter 5 . The given matrices A , B , A;
B;, C,in (1.1)-(1.2) are considered over the field of fractions , F , of  , whereas the
unknown matrices X , Y , X; are required to be over R . Conditions for the existence as
well as parametrization of solutions of the equations in question are provided in terms of
greatest left —right divisors of the given matrices as well as parametric matrices over %
Equations (1.2) , (1.3) are the most important in our study , since the remaining
equations are special cases of them . The solutions of equation (1.4) for example are
special type "block diagonal” solutions of (1.3) . The parametization over %R of the
families of solutions of the equations in question provided here are in closed form .

In Chapter 7 we consider equation (1.1) as it arises from the Total Finite Settling
Time Stabilization and Dead - Beat Response Problems , for discrete time linear
systems . Our main interest is to investigate equation (1.1) for solutions that define
controllers with minimum extended McMillan degree , (EMD) . After an initial



Introduction

introduction and formulation of the problem in section 7.2 , parametrization issues for
such stabilizing controllers are examined in section 7.3 . The importance of
characterizing solutions of (1.1) that correspond to column , (row) , reduced matrices is
established . We prove that those solutions of (1.1) , (with C an arbitrary polynomial

unimodular matrix) , form a nonempty , dense , but neither open , nor closed subset of

the set of solutions . The latter result implies that the sum of minimum column , (row),
degrees that occur in the set of solutions of (1.1) is more likely to serve as an upper
bound rather than be equal to the minimum EMD .

The approach employed for the parametrization of least column , (row) , degrees
solutions of (1.1) is based on its Toeplitz matrix representation . This approach leads to
a very simple algorithm involving only the computation of right , (left) , null spaces of
real matrices . The construction of a lower bound for the minimum EMD takes place in
section 7.7 . A method similar to the one used for the characterization of minimum
column degrees i1s employed . Some additional issues , such as , the PI controller
problem and fixed controllability index stabilizing controllers are studied as well .

Chapter 8 is concerned with the Decentralized Stabilization Problem , (DSP) , for
multivariable | linear , continuous time , systems . Qur aim in this chapter is to study
alternative means of parametrization for the solutions of the DSP and try to provide
closed form descriptions of the families of parameters in some cases . In section 8.2 we
give a statement of the problem and present the mathematical framework for
approaching it . If (D , N) denotes an Rgys)—coprime left MFD of the plant , T, are
the matrices formed from the p; , m; columns of the partitioning of D , N according to
the number of local inputs — outputs respectively , then the parametrization of solutions
of the DSP is derived from the set of left unimodular solutions , X; , of the set of
equations T;-X; ==U;,¢=1,..., k, for which [ U, , ..., U, ] is unimodular .

In our study we show that the above parametrization requires the existence of a
constructive method that enables us to generate the family of all unimodular matrices
of given dimensions , as well as the families of left , (right) unimodular matrices which
complete given left , (right) , unimodular matrices to square unimodular ones . Such
methods are examined in section 8.3 . The issue of interest in this chapter is introduced
in section 8.4 . There , a parametrization of solutions of the DSP is introduced . The
parameters are expressed in terms of upper , lower triangular matrices which must
satisfy certain constraints . These constraints introduce a necessary and sufficient
criterion that enables us to identify the admissible parameters . Although , in the
general case , the family of qualifying parameters is not described in closed form there
are particular cases when this is possible . These cases are based on the property , [Vid.
4] , of the Smith forms of T; to be generic ; Then a closed form description of the family
of parameters defined is given in section 8.5 .

Finally in chapter 9 we study a special case of Decentralized Stabilization , the

8
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Diagonal Decentralized Stabilization . (DDSP) , Problem . The formulation of the
problem is similar to the one in chapter 8 . but the approach cmploved for its solution is
completely different | and results to a closed form parametrization of the desired
stabilizing controllers . A statement of the problemn and its consequent formulation are
introduced 1n section 9.2 ; the notion of cyclicity is defined . Section 9.3 refers to an
equivalent formulation of the problem which finally transforms it to the search for
necessary and sufficient solvability conditions of a scalar Diophantine equation , over
R@(s) , the solutions of which must meet certain factorization constraints .

The actual necessary and sufficient solvability conditions for the problem are
introduced in section 9.4 . The connection between the cyclicity property of the plant
and the existence of diagonal stabilizing controllers is established . The parametrization
of all stabilizing controllers is studied in section 9.5 . It is reduced to determining what
arc termed mode T mutually stabilizing pairs and the existence of such pairs forms the
basis of a complete parametrization . The rest of the chapter deals with the
determination of proper , reliable , stable stabilizing diagonal controllers by making use

of the parametrization introduced in section 9.5 .
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2.1. INTRODUCTION

A great deal of research issues addressed in this thesis are motivated by the need of
deriving conditions for the existence and characterization of solutions , (or special types
of them) , of certain matrix equations . over the ring of interest , (in practice Ris] , or
[qu(s)) . This chapter is a brief survey of control synthesis problems , (such as the
centralized and decentralized stabilization problems , the model matching and exact
model matching problems , the total finite settling time stabilization for discrete time
systems , the decoupling and noninteracting control problems , the regulator problem) ,
the solution of which can be reduced to the solution of such matrix equations . A
central requirement to all the problems we review here is the internal stability of the
feedback system . Stability in general is a very important qualitative pfopcrty of control
systems , since an unstable system will "burst” as time approaches infinity . In
literature (Won. 1] , [Vid. 4] , [Che. 1] , [Kai. 1] , [Ozg. 1] , [Kal. 1] , [Kuc. 2] , [Des. 1],
[Ros. 1] and references therein , one can find various concepts of stability such as ,
bounded input — bounded output (BIBO , or external) stability , stability in the sense of
Lyapunov , asymptotic (or internal) stability , total stability . Following the approach
of [Vid. 4] , [Che. 1] and [Kai. 1] , we concentrate in section 2.2 on the issue of internal
and external stability , their interconnection and the properties a system should meet in
order these two concepts to be equivalent .

The more general problem of centralized stabilization , (CSP) , [You. 1] , [Des. 1],
[Vid. 4] , [Kuc. 2] , i.e. the stabilization of an unstable plant using a precompensator ,
(or feedback compensator) , and unity output feedback scheme is presented in section
2.3 . The ring of proper and 9 —stable rational functions , R@(s) , serves as the ring of
interest . In this problem no restrictions on the input —output connections between
controllers are required . The solution of the CSP is associated with the study of the

standard matrix Diophantine equation , (MDE) :
AX+B.Y=C,(X-A+Y.-B=C) (2.1.1)

where (A , B) is a left , (right) , coprime matrix fractional description , (MFD) , of the
plant transfer matrix and C an arbitrary unimodular matrix over the ring of interest .
Later on , in chapter 7 , equation (2.1.1) will be associated with the ring of polynomials
and certain issues concerning its solutions will be studied . Such polynomial MDEs arise
from stabilization problems of discrete time linear systems , like the total finite settling
time stabilization , (TFSTS) , and the dead - beat response , (DBR) , [Ber. 1] , [Ise. 1] ,
(Kal. 1], [Kuo. 1} , [Kuc. 1] - [Kuc. 8], [Vid. 4], [Kar. 1] . Characterization of solutions
of (2.1.1) according to the extended Mc Millan degree , (EMD) , of the controllers they

define 1s an essential research issue . A problem of similar nature is the decentralized

11
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stabilization problem , (DSP) | [And. 1] , [And. 2] , [Cor. 1], [Cor. 2] , [Won. 1] , [Wan.
1], [Kar. 2] | [Ozg. 1] , only here the stabilizing controllers’ transfer matrices must be of
a block diagonal type . ic. a well defined input output relationship between coutrollers
must be maintained . The need for such type of stabilizing controllers especially appears
in the stabilization of large scale systems with several control stations . The formulation
of the DSP via the algebraic method of expressing the plant and controller transfer
matrices as MFDs results to the need for existence and parametrization of a special type
of solutions of (2.1.1) . The DSP and its formulation are presented in section 2.4 .

In section 2.5 the exact model matching , (EMMP) , and stable exact model

matching , (SEMMP) problems are associated with the matrix equation :
A-X=B,(Y-A=B) (2.1.2)

over , R,(s) , or Ro(s) . The EMMP , [Wol. 1] , [Wol. 3] , [For. 1] , [Var. 6] , requires
the existence and characterization of solutions of (2.1.2) over R,.(s) , where A , B are
known matrices over R@(S) . If the requirement that X , (Y) , should be stable is added
then we define the SEMMP | [Wol. 3] , [Sco. 1] , [And. 3], [Kuc. 9] , [Per. 1} , [Emr. 1],
[Kar. 5] .

In section 2.6 we switch to a type of problems that require one or more output
vectors to be independent from one or more input vectors and are known as
noninteracting or decoupling control problems . There are many different versions of
such problems depending on the control feedback configurations postulated . In this
section we distinguish between the disturbance decoupling , (DDP) , [Aka. 1] , [Mor. 3],
[Ohm. 1] , [Sch. 1] , [Sto. 1] , [Wol. 4] , [Ozg. 1] , [Ozg. 2] , [Won. 1], [Wil. 2] , [Tak. 1]
and noninteracting control , (NICP) , [Aka. 1] , [Aka. 2] , [Bay. 1] , [Dsc. 1] , [Fal. 1] ,
[Ham. 1] , [Mrg. 1] , [Mor. 3], [Wil. 1], [Won. 1] , [Wol. 1] , [Ozg. 1] , with or without
the internal stability requirement for the feedback system .

The DDP and DDP with internal stability , (DDISP) , are considered over a two
vector channel system , with feedback applying around the first channel . The first
channel input —output is referred to as the control input — measured output , where as
the second channel one is referred to as the disturbance input — controlled output . The
NICP and NICP with internal stability , (NCISP) , are considered over a threc vector
channel system , with feedback applying around the first channel . The solvability of all
these problems is associated with the solvability and characterization of solutions of the
matrix equation :

AX-B=C (2.1.3)

over Rcy(s) . Finally a different type of problem associated with the same feedback
configuration as the DDP and DDISP is the regulator problem and regulator problem

12
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with mternal stability , (RP) , (RPIS) , respectively , [Ben. 1] , [Chg. 1] , [Hau. 1] ,
[Kha. 1] , [Sac. 1], [Sch. 2] , [Sch. 3] , [Won. 1] , [Won. 2] , [Won. 3] , [Wol. 5] . The RP
requires the parametrization of controllers that result to disturbance input - controlled
output transfer matrices to be stable | where as in the case of RPIS the requirement
that the controllers must internally stabilize the system is added . The solvability of
this problems is reduced to the solvability and characterization of solutions of the

matrix equations:
AX+YB=C,X-A+B.Y=C,AX-B+C-Y-D=E (2.1.4)

over [qu(s) . The matrix equations (2.1.1) —(2.1.4) derived in this chapter arc treated

later on in this thesis via a unifying algebraic framework established in chapter 6 .

2.2. THE CONCEPT OF STABILITY FOR LINEAR CONTROL SYSTEMS

Stability is a very important qualitative property of linear control systems , since
every working system is designed to be closed loop stable . If a system is not closed loop
stable , it is usually of no use as far as applications are concerned . In literature [Won.
1], [Vid. 4] , [Che. 1] | [Kai. 1] , [Ozg. 1] , [Kal. 1] , [Kuc. 2] , [Des. 1] , [Ros. 1] and
references therein , one can find various concepts of stability such as , bounded
input — bounded output (BIBO , or external) stability , stability in the sense of
Lyapunov , asymptotic (or internal) stability , total stability . But the two main
concepts of stability that concern us here is external and internal stability . These are
characterized by the external , (input — output) , internal , (state space) , descriptions of
the systemn and under certain constraints , (stabilizability , detectability) , they are
equivalent , [Kai. 1], [Vid. 4] | [Res. 1] , [Won. 1] .

More precisely , consider the standard feedback configuration associated with a

precompensator and unity output feedback shown below :

u

Uy + 84 C Yi € = Y,

- +

A 4

where , PR "(s) represents the plant and CER'::P(S) the compensator transfer
matrices respectively ; u, , u; denote the externally applied inputs to the compensator
and plant respectively ; e, , e, denote the inputs to the compensator and plant

respectively . The system under study is then described by :

13
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Sl
€y u, -C 0O e, Yo O P ¢,y

These system equations can be rewritten as :

—

ce=u-F.Ge,y=Ge (2.2.2)

Z‘}F:{O I},G:{C O] (2.2.3)
Y2 -1 0 O Y

It is easy to verify that | [+ F.G|=|I+P.-C|=|1+ C.P|.

where |

e
I
|
I [0
~ —
|
=
I
—
= =
~ —
| |
J<
I
| D |

Definition (2.2.1) [Vid. 4] : The system described by the set of equations (2.2.1) is well
posed if [ I + F-G | is nonzero as an element of R(s) , s.e. if [ I + F-G [ is not
identically zero for all se CU {oo} . 0

This condition is necessary and sufficient to cnsure that (2.2.1) has a unique solution
over Rﬁ,’f m)I('[’“Lm)(S) for e, , e, corresponding to every u, , u, of appropriate dimension
If the system described by (2.2.1) is well posed then (2.2.1) can be solved for ¢, , ¢, ;
this gives :

e=(1+F.G)'.u & H(P,C)-u (2.2.4)

where H(P,C) is the transfer matrix from u to e . It is possible to obtain several

equivalent expressions for H(P,C) . One of them may be proved to be :

(I+P.C)* -P.(1+C.P)! I P
H(P,C) = = (2.2.5)
C(I+P.C)y' (I+C.P)! —-C 1

If we do not wish both (I + P-C)™ | (I + C-P)! to occur in (2.2.5) we can transform it
by using the following matrix identities [Vid. 4] :

(1+P-C)'=1-P.(I+C-P)'.C,C-(I+P-C)'=(1+C-P)'.C (2.2.6)

(2.2.6) holds true with P, C interchanged throughout as well . Thus H(P,C) takes the

following two equivalent expressions :

14
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[-P(I+C-P)Y'.C -P(I+C.P)!
H(P,C) = (2.2.7)
(I1+C.P)'.C (I+C.P)!
- i}
(I1+P-C)! -(I+P.C)'.p
_ (2.2.8)
C-I+P.C)" 1-C.(I1+P.C)'.P

of these the first involves only (I + C-P)™! and the second only (I + P-C)!.

Definition (2.2.2) [Vid. 4] : The pair (P, C) is stable , if the system described by
(2.2.1) is well posed and H(P,C) € Rg+m)1(p+m)(s) . Q

The condition for stability in definition (2.2.2) is symmetric in P and C ; thus (P, C) is
stable if and only if (C , P) is stable . Consider now the transfer matrix from u toy ,
W(P,C) . Then :

W(P,C)=G-(I+F-G)' and y= W(P,C)-u (2.2.9)

Lemma (2.2.1) [Vid. 4] : W(P,C) is over Rg+m)z(p+m)(3) if and only if H(P,C) 1is over
R(P+'")¢(P+"')(S) a
p .

The above lemma justifies why stability for a pair (P , C) was defined is terms of
H(P,C) and not W(P,C) ; both notions of stability are equivalent . We procced now

with the concepts of external , internal stability and their relationship .

Definition (2.2.8) [Kai. 1] , [Che. 1] : The system described by the set of equations
(2.2.1) is said to be externally , (BIBO) , stable if every bounded input [[ u (t) [| < M|,
—00 < - T<t< oo, produces a bounded output lyt) ][] <My,-oc0 < - T<t<ooD

Remark (2.2.1) : Definition (2.2.3) makes it clear that ezternal stability refers to the
ezternal description of the system . It can be shown , [Kai. 1], [Che. 1], [Vid. {] , that
a system with ezternal description given by (2.2.9) is ezternally stable if and only if the
poles of W(P,C) have negative real parts . 0

Assume now that the state space equations of a realization of the system , described by
(2.2.1) , is given by :
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ll

Ax +Bu.x =x(t).u=u(t)

X
{ (2.2.10)
C-x +D-u .,y =v(t)

i

I

et

Definition (2.2.4) [Kai. 1] , [Che. 1] : The system described by the set of cquations
(2.2.1) and a realization of it is given by (2.2.10) , s said to be internally |
(asymptotically) , stable ¢f the solutions of :

T=Az ,z(t)=25,t> 4 (2.2.11)
tend towards zero as time approaches infinity , for arbitrary z, . a

Remark (2.2.2) : Definition (2.2.4) makes it clear that internal stability refers to a
realization of the system . It can be shown , [Kai. 1], [Che. 1], [Vid. §] that if a system
has a realization given by (2.2.10) then it is internally stable if and only if the

cigenvalues of A have negative real parts . a

The interconnection between external and internal stability is established next .
Remarks (2.2.1) , (2.2.2) clearly yield that internal stability always imply external one ,
since the poles of the system transfer matrix form a subset of the set of eingevalues of
the state spacc matrix A . The inverse though is not always true , since cancellations in
the systemn transfer matrix may lead to the existence of unstable unobservable modes |,

(eigenvalues) , of A . The latter is illustrated in the following example :

Example (2.2.1) : Assume that a linear system has state space description given by :

HEEN MY R E

(2.2.12)
X
y=[11]: ]
X2
Then ,
x; = e' Xyt e'xu (2.2.13)
X = (7' ~e') X190 + € xy0 + (et —e')su (2.2.14)
v =€ (X0 + Xp) + €'su (2.2.15)

where , f+u denotes the convolution of the functions f , u . While (2.2.15) implies that
the system is externally stable , (2.2.13) and (2.2.14) imply that it is not internally
stable . Furthermore we notice that the unstable eigenvalue of A , 1, does not appear

in (2.2.15) , i.e. is an unobservable mode , [Kai. 1] , whereas the stable one , —1 , does .
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On the other hand | if we apply constant state feedback in (2.2.12) , described by :
v=u-[k k)J-x =u-k"x (2.2.16)

the system 1s transformed to :

| kD Ky X, 1 x;(0)] | X0
5 71 <2 <1 [T 7o [V k0] sy

i} (2.2.17)
y=[111-{ }

X2

If we select k;=-3 , ko= 0, then the system with state space description given by
(2.2.17) is both externally and internally stable . Thus the original system in (2.2.12)
has an unstable mode which can be shifted arbitrarily |, i.e. the mode is controllable |

(Kai. 1} . 0

Example (2.2.1) has illustrated the effect the concepts of observable , unobservable ,
controllable , uncontrollable modes have to external and internal stability of a linear
system . Simultaneously example (2.2.1) introduces the notions of detectability ,
stabilizability . In literature [Won. 1] , [Kai. 1] , [Ros. 1] , [Vid. 4] , [Kuc. 2] , one can
find various definitions of detectability , stabilizability of a linear control system . The

definition we state in the following is motivated by the observations of example (2.2.1) .

Definition (2.2.5) [Kai. 1], [Won. 1] : 1) A system with state space description given in
(2.2.10) is said to be stabilizable if all the uncontrollable egenvalues , (i.e. all the
eigenvalues that can not be arbitrarily shifted by state feedback) , of the state matriz A
are stable .

i) A system with state space description given in (2.2.10) is said to be detectable if all
the unobservable eigenvalues , (i.e. all the eigenvalues that do not appear as poles of the

system transfer matriz) , of the state matriz A are stable . 0

Remark (2.2.3) : It is clear that when a system is stabilizable , then it can be internally
stabilized and thus become externally stable as well . On the other hand a detectable

system which 1s externally stable is internally stable as well . 8]

Theorem (2.2.1) [Kai. 1] , [Vid. 4] : Let a system be described by the set of equations
(2.2.1) . Then external stability is equivalent to internal stability , if and only if the state

space realizations of both P, C are stabilizable and detectable . 0

17
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2.3. CENTRALIZED STABILIZATION AND THE STANDARD MATRIX
DIOPHANTINE EQUATION

Consider a well posed detectable and stabilizable control linear system described by
the set of equations (2.2.1) , or equivalently (2.2.4) , (2.2.9) . The system is stable if and
only if every eclement of W(P,C) , or equivalently H(P,C) belongs to R@(s) , P =
=C, U{oo} . If W(P,C) =W and H(P,C) = H then :

W=G(I+F.G'=GHeG=W.H'=W.(adjH/| H|) (2.3.1)

The last expression implies that every element of the matrix G = diag{C , P} and
hence every element of C | P can be expressed as a ratio of two functions from R@(S) :
The latter has led to the development of an algebraic framework for solving stabilization
problems , known as the matrix fraction description approach , (MFD) , [Vid. 1] , [Des.
1], [Sae. 2], [Ant. 1], [Kal. 1], [Kuc. 2] , [Fra. 1] , [Var. 3] and references therein . The
most classical stabilization problem is the so called centralized stabilization problem ,
(CSP) , [You. 2] , [Des. 1] , [Vid. 4] , [Kuc. 2] , which requires the derivation of
conditions for existence and characterization of stabilizing controllers for an unstable
linear system . Within the algebraic framework of MFD approach the expression of P ,

C as coprime MFDs over R@(s) is important . Thus if :

P = D;''N, = N,.D}! (2.3.2)
C = A} B, = B,-A}

with (D, , Ny), (A, , By) left coprime MFDs , (D, , N,), (A, , B,) right coprime MFDs
of P, C over Rcy(s) respectively . By inserting (2.3.2) , (2.3.3) to (2.2.5) , H(P,C) is

transformed to:

D, N D, O A, O A; N,
H(P,C) = : = : (2.3.4)
_B, A, 0 A O D, _B, D,

Proposition (2.3.1) [Kai. 1] : If (D, , N\) , (A, , B,) left coprime MFDs , (D, , N,) ,
(A;, B,) right coprime MFDs of P, C over IRG}(s) respectively , then (2.3.4) defines a
left , right coprime MFD of H(P,C) over IR@(s) . 0

Let a system described by the set of equations (2.2.10) , be free of "hidden modes” , i.e.
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unobservable . uncontrollable cigenvalues of the state matrix A | and let the plant and

compensator be expressed as in (2.3.2) | (2.3.3) . Then we state the following result :

Proposition (2.8.2) [Kuc. 1] : The characteristic pole function of H(P,C) 1s given by the

determainants of the denominator matrices :

D, N, A, N,
, (2.8.5)
- B, A -B, D,

multiplied by a unit of R@(s) , or equivalently by :

| DAy + N,-B, [, [A,-Dy + B;-N, | (2.3.6)
modulo units of R@(s) . 0

Thus solvability of CSP is associated with the study of existence and characterization of
solutions of the standard matrix Diophantine equations , [Vid. 4] , [Kuc. 2] , [You. 2],
[Des. 1] :

D;X+N,:-Y=U,XDy+Y-N, =V (2.3.7)

where , (X, Y) must be right , left coprime pairs such that U, V are qu(s) unimodular
Equations (2.3.7) have always a solution , since (D, , N;) , (D, , N,) are left , right
coprime over qu(s) i 1if (Xg , Yy) is a solution of (2.3.7) the family of solutions is given
by : '

X X, N,
{Y }Z{YJ{—DJ'L X, Y] = [Xo, Yol + T-[-Ny, D] (2.3.8)

with L , T parametric matrices over IRG‘P(S) . It has been proven , [Vid. 4] , that the
determinants of the matrices X defined in (2.3.8) are generically nonzero and thus the
pairs (X , Y) generically correspond to coprime MFDs over R@(s) . In our study we
concentrate to the investigation of conditions for the existence and characterization of

special types of solutions of (2.3.7) in order to meet the constraints of the decentralized
and diagonal decentralized stabilization problems , (DSP) , (DDSP) , as well as

characterization of solutions of (2.3.7) , ((2.3.7) is assumed over the ring Rid), d = z’!) ,
which define minimum extended McMillan degree , (EMD) , controllers so that the
requirements of the total finite settling time stabilization , (TFSTS) , and dead - beat
response , (DBRP) , problems , (for discrete time systems) , are satisfied .

The TFSTS requires all the internal and external variables , (signals) , of the system
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to settle to a new steady —state after finite time from the application of a step change
to its input and for every initial condition , [Kar. 1] . The TFSTS comprises the
dead —beat response problem | i.e. the forcing of the state or output vector from any
mitial state to the origin in minimum time . [Ber. 1] . [Ise. 1] . [Kal. 1] | [Kno. 1] , [Kuc.
1] - [Kuc. 8] , [Vid. 4] . The TFSTS and DBRP can be viewed as a type of minimal
design problems , (MDP) |, because of the constraints imposed oun the stabilizing
controllers to have minimum number of finite and infinite poles , EMD , among the
family of all stabilizing controllers . Additionally the DSP and DDSP are central in our
study and much of our research effort has been devoted to them . The formulation of
the DSP and DDSP as well as their interconnection to equation (2.3.7) is presented in

the next section .

2.4. DECENTRALIZED STABILIZATION AND THE STANDARD MATRIX
DIOPHANTINE EQUATION

Significantly different from the CSP is the DSP for continuous time linear systems .
This problem is due to restrictions on the feedback compensator structure , which are
often encountered in large scale systems . This systems have several local control
stations ; each local compensator observes only the corresponding local outputs . Such
decentralized control of systems results in a block diagonal compensator matrix scheme
(San. 1] , [Gun. 1] , [Wan. 1] . Thus the DSP requires the stabilization of an unstable
system by using a decentralized compensator and unity output feedback scheme . Wang
and Davison , {Wan. 1] and Corfmat and Morse . [Cor. 1] , [Cor. 2] , have introduced
svnthesis methods for design of stabilizing decentralized compensators . It has been
derived that a necessary and sufficient condition for the existence of local control laws
with dynamic compensation to stabilize a given system is that the system has no ”fixed
modes” , [Wan. 1] , in the region of instability . Further study of the problem has been
done in [And. 1], [And. 2], [Guc. 1], [Ozg. 1 ], [Kar. 3] . In [Gun. 1] , the DSP is
treated within the algebraic framework of matrix fraction description of the plant and
controller transfer matrices over Rey(s) .

A special case of decentralized stabilization of continuous time linear systems is the
diagonal decentralized stabilization problem , (DDSP) , [Kar. 2] , [Guc. 1] . In this
special case , given a plant transfer matrix over Rifp(s) , the problem is to determine a
stabilizing compensator C = diag{c, , ... , ¢,} over IR;’,:" (s) , such that the feedback
system is stabilized by C . As in the case of the DSP the stability requirement may be
expressed in terms of matrix fraction descriptions of transfer matrices [Vid. 4] , and
highlights the important role of "fixed modes” over the region of instability , [Wan. 1] .
As it will be made clear in chapters 8 and 9 , the DDSP is considered separately from
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the DSP so that we are able to apply a different method of investigating issues ,
concerning the nature of stabilizing controllers |, that can not be fully addressed via
general DSP . The existence and characterization of solutions of the DDSP is intimately
related to systems that exhibit the property of cyclicity . After formulating the DDSP
in a similar manner to the DSP | the construction of the family of all diagonal
stabilizing controllers 1s reduced to determining what are termed mode T mutually
stabilizing pairs The existence of such pairs provides a base for addressing issues
concerning the characterization and nature of the stabilizing controllers , (proper |,
reliable | stable controllers) .

The algebraic formulation of the DSP is following next . The same formulation
applies in the case of the DDSPif p=m =« ,p,=m;=1,:=1, ... ,s . I
P eR;jfm(s) is the transfer function of the plant |, Ce¢ R:,Ip(s) 1s the transfer function of
the controller . Assume that P is P —stabilizable , ¢ — detectable , with P the area of

stability . If P = C, (J{oo} and R?(s) denotes the ring of proper and %P - stable functions
consider an qu(s) —coprime MFD of the plant P = D' N | where De R;zp(s) ,
N e Rg:m(s) and (D, , N,) is an R@(s)—coprime pair ; and let C =diag{C, , ..., C,} =

=N_.D.' be an R@(S)—coprime MFD of the diagonal controller , where , C;, =

:N,--D}1 ER;‘IP‘(S) y,@=1,2,..., &, ZK: m;, =m, ‘Z:p,- = p), isan R@(S)-—coprime
i=1 i=1
MFD of C; . Then N, = diag{N, , ..., N,} and D, = diag{D, , ..., D,} . It is known

that the controller internally stabilizes the feedback system if and only if there exists

some R@(s) —unimodular matrix U such that :
DD.,+NN.=U (2.4.1)

Partitioning D , N in terms of columns , (2.4.1) is expressed as :

D, 0 | [ N, 0 |
(D", D%, D] R 3T BRI
0 D, 0 | N,
=[Uy;, Uz, U (2.4.2)
Or equivalently ,
[D”: N4 ). 11)\;.=U,~,i=1,2,...,n (2.4.3)

where , T, = [ D" : N™ ]eR;z(p i*™)5) are matrices defined by the plant and X; =
=[D],N/ " eRg‘+m‘)’p i(s) characterize the p; input , m; output local controllers .
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The U, are arbitrary matrices of [R;”,'(s) , with the additional property that U & [ U, .

Uy s ooy Uy ] 1s R_(s)—unimodular . The latter condition implies that U, are left
. . prp, o . .

unnnodular n IRC_P '(s) . Parametrization issues and related topics of the DSP and DDSP

are studied in chapters 8 and 9 .

2.5. MODEL MATCHING AND THE MATRIX EQUATION A-X =B, (Y-A = B)

Consider a well posed detectable and stabilizable control linear system described by
the set of equations (2.2.1) , or equivalently (2.2.4) , (2.2.9) . If C, denotes a stabilizing
controller for the system , then matrices D, N, , A, ,B,,D,, N, , A, . B, over Rq’(s)
exist such that :

P =D;'"'N, = N,.D}! (2.5.1)
Co, = A" B, = B, - A} (2.3.2)

with (D, , N,), (A, , By) left coprime MFDs , (D, , N,) , (A, , B,) right coprime MFDs
of P, C,over qu(s) respectively and the following Bezout identity holds true :

A, B D, -A, I, O
: = (2.5.3)
Multiplying (2.5.3) on the left and right by the R@(s) unimodular matrices :
. W I, -W
) (2.5.4)
o 1, o I,
we obtain :
AI—W‘NI Bl +W'N] D2 “(BQ+D2'W) Im ()
: = (2.5.3)
-N, D, N, A,-N,- W o I,

Furthermore all the stabilizing controllers are given by :
C = [Al —W * NI]-l N [Bl + W . Nl] = [B2 + D2 'W] M [A2 - N2 ‘W]-l (2.5-6)

Consider now the closed loop transfer matrix of the system from yu, to y, :
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Hyyy(9)=T =[I, + P.C]"".P.C =PI, + C-P|"-CeR s (2.5.7)

> (%)

m

Then we have the following result concerning T -

Proposition (2.5.1) [Var. 5] : T satisfies the following relations

T = N,-[B, + W-D,] (2.5.8)
I,-T =[A,~ Ny W] D, (2.5.9)
8]

I

From proposition (2.5.1) it follows that the matrices X = [B, + W-D|] | Y

={A, — N, - W] represent a pair of solutions to the matrix equations :

T=N,X (2.5.10)
I,-T=Y-D, (2.5.11)

If the matrices T , N, , D, are all known then the problem of determining conditions
under which the matrix equations (2.5.10) , (2..5.11) have solutions over R,.(s), or R@(s)
is known as the exact model matching , (EMMP) | or stable exact model matching ,
(SEMMP) , problem respectively and has been the subject of numerous investigations ,
[Wol. 1] , [Wol. 3], [For. 1] , [Var. 6] , [Sco. 1] , [And.3 ] , [Kuc. 9], [Per. 1] , [Kar. ] .
An additional constraint to the EMMP and SEMMP could be the characterization of
proper, or proper and P stable solutions of (2.5.10) , (2.5.11) with minimum Mc Millan
degree . These are known as the minimal design and stable minimal design problems
associated with the model matching problem , [For. 1} , [Var. 6 ], [Sco. 1], [Wol. 3] .
In the next section we consider an other class of control synthesis problems known as

noninteracting , or decoupling problems . These are problems associated with the matrix
equation A-X-B =C.

2.6. DISTURBANCE DECOUPLING AND THE MATRIX EQUATION A-X.B=C

Some control problems in which a number of variables are made independent of one ,
or more other variables via feedback and/or feedforward compensation are known as
noninteracting , or decoupling control problems . There are many different versions of
noninteracting control problems in literature depending on the control configurations
postulated . In the following sections we review noninteracting control problems the
solvability of which is associated with the study of the matrix equation A.X.B = C .
Such problems are the disturbance decoupling , (DDP) , [Aka. 1] , [Mor. 3] , [Ohm. 1],
[Sch. 1} , [Sto. 1], [Wol. 1] , [Ozg. 1] , [Won. 1] , [Tak. 1] , and noninteracting control ,
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(NICP) , [Aka. 1] , [Aka. 2] , [Bay. 1], [Dsc. 1], [Fal. 1], [Ham. 1] , [Mrg. 1] , [Mor. 3]
(Wil. 1] , [Won. 1] , [Wol. 1] | [Ozg. 1] , with or without the internal stability
requirecment for the feedback system . Consider a linear , multivariable | continuous

time , time invariant |, control system associated with the following feedback scheme :

-C e

Hc N Aym
Hd| } P 'xc

mzp

where PER(I)”’.“')I('"’L")(s) represents the plant and CeR,, "(5) the compensator
transfer matrices respectively and :
Py P

P= (2.6.1)
Py Py

with , P, € R};fm(s) , Pua ERZ:H(S) , Py € R(:;m(s) , Py € IRZ;"(S) and P,, is strictly proper
in order to avoid complications concerning the well defined nature of the feedback loop ,
when a feedback is applied . This model is widely used for various control problems ,
where it is either convenient , or necessary to distinguish between two types of inputs
and outputs . The outputs that can be used as inputs to the controller and those with
unwanted ‘influences on the plant . Naturally , some outputs may be included in both
channels if they are measurable , i.e. can be used to derive the controller . while at the
same time its behavior needs to be changed . Similarly , a particular input may have
unwanted influences on the plant and it may be suitable for control purposes , in which
case it may be included in both channels . Motivated by application , the output vector
Ym is called the measured output and y, the controlled output , the input vector u, is
called the control input and uy the disturbance input . Thus the first channel of the
plant is the control channel around which the feedback is applied . The need to use a
two — channel system model can also arise due to geographical separation of various
subplants of the original plant as in the case of large scale plants . The plant transfer

matrix can be represented in matrix fractions over Iqu(s) as :

2| W W,
P=| QIR R+ (2.6.2)

2 21 W22
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NN prr . prr . rer rem rrn prm .
where , Z, Gqu (s) ZZER@ ), Q, cR sy . R, GR@ sy, RQGRQ (8) . WERGJ> (s)

P
. prn qxm . . . v .
W, € Rcy ), W,, € R:J’ sy, W, € R; "%, and Q,, nonsingular . We assume that this
representation 1s bicoprime . If now the transfer matrix C of the controller 1s written in

matrix fractions as :

C=2.-Q'R, (2.6.3)

then it can be shown , [Ozg. 1] | that a resulting fractional representation for the

transfer matrix between the disturbance input and the controlled output , P, | is given
by :
Y .

Q]l R‘l .ZC R2 ,
Py =12y, ~Wy- 2] ‘ + W, (2.6.4)
~Re-Z, Q+R.-W-Z.| |R.-W,,

Given the bicoprime fraction representation of P, by :
P,=ZQ"R+W (2.6.5)

matrices K, L , M, N, Q,,R,,P,,Q,, M, N, ,K,, L, over R@(S) exist such that
(Q;, Ry) are left coprime , (P, , Q,) are right coprime over R@(S) respectively and :

Z.Q'=Q"'"R,Q"R=P,.Q (2.6.6)
x| Q N, ]
: =1 (2.6.7)
R, Q L_Z M,
— Q R 1T m —P,-
. =1 (2.6.8)
_LT Kr N Qr

It can be proved , [Ozg. 1] , that the set of disturbance input , controlled output

transfer matrices , P, , admissible for internal stability of the system is given by :

Py = { Pu(X) = [Zy, =Wy - (N-Ni+ Q,-X)]-

Q,, R, (N-N+ Q,-X) R, mzp
: + Wy, VXER, (3
-7, M+Z-M-N,-Z-P,-X| |W,, ?
(2.6.9)
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or cquivalently |
GJD:;' . { Pd(-(x) = C]l '(T'(“)12+(“)21 S - 0,, 'Q'(')l'ﬂ'é] '\sz'ﬁ =0, X-(yy)- D !

.V Xe R;;”’(s)} (2.6.10)

with |
0,=K-S-L-W,,-D ( )
(')21:T'N—61'W21'N ( )
Q12:RI'S+Ql'Vvlz'13 ( )
0, =T-P,+C,-W,;,-Q, (2.6.14)
7,-Ci'=Ci' T ,D'R,=S.D" (2.6.15)
Cy = gerd(Zy, Quy) , Qu = Q;-Cy . D = geld(Q, , Ry) ( )

Some control problems in which the main objective is to decouple one or more outputs

from one or more inputs , can be posed as follows :

Disturbance Decoupling Problem , (DDP) , [Ozg. 1] : Consider the two channel system
described by the set of equations (2.6.1) , (2.6.2) , (2.6.3) . Given the transfer matriz of
the system P determine a controller C such that the disturbance input , controlled output

transfer matriz |, Py, given by :

is wdentically zero . o

Disturbance Decoupling with Internal Stability Problem , (DDISP) , [Ozg. 1] : Consider
the two channel system described by the set of equations (2.6.1) , (2.6.2) , (2.6.5) .
Given the transfer matriz of the system P determine a controller C such that in the
closed loop system the pair (P, , C) is internally stable and the disturbance input ,

controlled output transfer matriz , P, , given by :

18 identically zero . a

The decoupling objective Py, = 0 accounts to making the controlled output y,
independent of the disturbance input u,; . It is important to note that the dynamics
with which the disturbance input u, itself is generated has no relevance here . Our

analysis so far implies that the DDP and DDISP can be transformed to the following
equivalent problems :
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t) The DDP can be scen as a general model matching problem | i.e. given to transfer

pIn

. . NN . qrm : . a rotere e ) azn 5
matrix models P,.ZeRm (s) . P“eR’”_ s) , and a reference model Pz').GR,,,- (s) .

. . mrp . . .
determine an in — between model YEIRP,_ sy , so that their cascade connection of

transfer matrix Py, - Y - P, 1s identical with P,, . Furthermore | if

II,; = yi,7=1,2 (2.6.18)
then :

Theorem (2.6.1) [Ozg. 1] : The DDP is solvable , if and only if there emists a solution
Xe Rgf m=(r+P) g satisfying equation :

HTZ :H'ZI'X'H12 (2.6.19)
0

2t) The solvability of the DDISP can be reduced to the existence of a matrix X € IR:;”(S)
for which P4 (X) = O , i.e. determining X such that the elements of the set ‘.P;’C are
identically zero . A necessary and sufficient condition for the latter to happen is stated

in the following proposition :

Proposition (2.6.1) [Ozg. 1] : The DDISP is solvable , if and only if there ezxists an
Xe R;Ip(s)- satisfying :

Q- X-Qyy = T-0,40,,-5-0,,-Q-0,,+C,- Wy, - D (2.6.20)
a
An alternative condition for solvability of the DDISP is stated next . Consider the

system matrices :

_ Q S _ Q R _ Q S
I, = _ |y = _ y gy = _ _| (2.6.21)
-%2 Wy,-D -T C-Wy -T C;-W,;,-D

Theorem (2.6.2) [Ozg. 1] : The DDISP is solvable if and only if there ezists an

Xe R(G_; +me(r+9) o) satisfying equation :

ﬁn = ﬁ21 'X'ﬁIQ (2.6.22)
o
It is clear from the above analysis that the matrix equation A.-X.B = C is central to
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the solvability of the DDP and DDISP .

2.7. NONINTERACTING CONTROL AND THE MATRIX EQUATION A-X.-B=C

Consider a linear , multivariable , continuous time , time invariaut , control system

associated with the following feedback scheme :

-C

-~

u Y
u

] P N T
u

_Yy N

(ptats)z(m+n+l)
PeR,,

where (s) represents the plant and C GR':',IP(S) the compensator

transfer matrices respectively and :

— —

Pll PI'Z Pl3
P31 P32 P33

L.

with | Pn‘eR:’:m(S) , Py € R::"(s) , PsaeR;’rl(s) and P,, is strictly proper in order to
avoid complications concerning the well defined naturc of the feedback loop , when a

feedback is applied . In terms of the matrix :
Y = C . (I + Pll . C)-l (272)

the resulting two channel plant has the input , output representation :

Y2 Pzz—sz'Y'Plz P23_P21'Y'P13 ﬁzz ﬁzs Ug

Ys P3; =Py Y Py, P33 —P3y Y Py 1332 ﬁ33 Uj

1=
~

!E

Noninteracting Control Problem , (NICP) , [Ozg. 1] : Given the three channel plant in
(2.7.1) , determine a controller C such that in the closed loop plant resulting from the
application of the feedback control low u; = - C.y, , it holds that :
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1523 = PZI}‘P'ZI' YPI'; — (), f)32 - P3~2“P31' YPrz = () (274)
a

Noninteracting Control Problem with Internal Stability , (NCISP) , [Ozg. 1] : Given the
three channel plant in (2.7.1) , determine a controller C such that the pair (P, , C) s
internally stable and in the closed loop plant resulting from the application of the

feedback control low wy = - C-y, , it holds that :

IA)23 :P23—P21‘Y'P13 = O; ﬁsz :P32—P31'Y'P12 =0 (2-7-5)
]

Thus the resulting closed loop plant is required to be block diagonal with the same size
of blocks as in the open loop plant from (u, , u3) to (y, , ys) , while assuring the
stability of the feedback loop in the case of the NCISP , (for refcrences on the two
problems see sections 2.1 and 2.6) . Let the plant transfer matrix in (2.7.1) be written in

bicoprime fraction representation over RGP(S) as :

Zy W W, Wy,
P=7 Q1: [ Ry, Rz ’ Rs] + sz w22 Wzs (2-7-6)
Zy Wi Wiy Wy

where , Q,, € R:;r(s) is nonsingular . Let a bicoprime fraction representation of P,, given
by : '
P,=2-Q'R+W (2.7.7)

and define the matrices K , L , M, N, Q,,R,,P,,Q,,M;,N,, K, .L, over R‘_P(S)

exist such that :

K -L|| Q N, Q R || M-P,
: =1, . =1 (2.7.8)
R‘l Ql —Z Ml _Lr Kr N Qr

If P (X), Q.(X) denote the matrices :
Q. (X) =M+ (Z-M-W-N).N,-(Z-P, + W-Q,)-X (2.7.10)

as X runs in R;zp(s) , it can be proved , [Ozg. 1] , that the set of closed loop transfer

matrices from (u, , u3) to (y, , y3) admissible for internal stability is given by :
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{ Py Py « Z, W, P, (X)
T Py, Do 7y ~\W, P (X)
- T]
(211 Rl ' P(‘Y(X) R-z R3 + \AIZZ “{23
-7 Q. (X)+W.P (X)) | W, Wiyl | Wy, Wy,

VXe R;;”’(s)} (2.7.11)
Let now :
C, = gerd(Zy , Q) , Q= Q-C,.D= gcld(Q, , Rl) (2.7.12)

7, Ci'=Cy'T,,Z;-Ci' =C3* T, , D" "R, =S,-Dy' ,D'.Ry = C3' Dy (2.7.13)

for some left coprime pairs (C, , T,) , (C3, T3) , right coprime pairs (S, , D,) . (S3,
D,) over R@(s) . Define :

0, =T;M-C;;W;-N,Q,=T,-P.+C,-W;;-Q,,2=2,3 (26.12)
61]': KS]_L'le'D] ,QlJ = R‘lS] + Ql'WlJ"DJ' ,j= 2 3 3 (2.6.13)

over IRGP(S)’ . The latter can be used to give simpler definitions of the admissible

off — diagonal closed loop transfer matrices , [Ozg. 1] :

Pya(X) = C3' (T2 013404, -S3-0,,- Q- O34 C, - Wiy Dy -y, - X-£y3) - D3 (2.7.14)

~

Py(X) = C3'+ (T3 013103 -5, =05, Q- 0,,+C5 - Wy - Dy -y, - X - Qyp) - D3 (2.7.15)
We can now state some solvability conditions for the NICP and NCISP .

Theorem (2.7.1) [Ozg. 1] : The NICP is solvable , if and only if there exzists

Xe Rf;f m)z(r + p )(s) satisfying equations :

P23=P21'X'P13,P32=P3]'X‘Pl2 (2.7-16)
0
Using the expressions (2.7.14) , (2.7.15) for admissible off —diagonal , closed loop

transfer matrices , it is straightforward to state a similar result to theorem (2.7.1) for

the NCISP :
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Theorem (2.7.2) [Ozg. 1] : The NCISP is solvable , if and only if there ezists
Xe Rg+ mja(r+ p)(s) satisfying equations :

SZ)] - X Q]:} = T'z ' (_)l:$+(—)21 . S:; - (")21 . Q-(‘),;;#—Cz- W“- D_-; (2717)
Q- Xy = Ty-0,,40,, -5, - Oy, - Q-0,,+Cy- Wy D, (2.7.18)
a

An alternative solvability condition for the NCISP is given next . Define the matrices :

_ Q R _ Q S3 _ Q S,
Il = g = y Hyy = (2.7.19)
~-T, C;- Wy, L -Z W,3.D,4 -T, C,-Wy-D,
r 7 - - - -
_ Q R _ Q 35 _ Q S,
I3, = y g = y Mgy = (2.7.20)
=Ty C3- Wy, i -Z W12'D2 -T; C3-Wy,- Dy

Theorem (2.7.3) [Ozg. 1] : The DDISP is solvable , if and only if there ezists an
Xe Rg+m)x(r+ P)(s) satisfying cquations :

ﬁ23:ﬁ21'x'ﬁ13;ﬁ32 :ﬁgl‘X'Hl'z (2721)
0

2.8. THE REGULATOR PROBLEM AND THE MATRIX EQUATION
A-X-B+C-Y-D=E

Consider a linear , multivariable , continuous time , time invariant , control system

associated with the following feedback scheme :

-C

E 3

Y . Ym
14 P L4
_He, | N

where PGRL’:+")’('"+")(S) represents the plant and CeR:‘:p(s) the compensator

transfer matrices respectively and :
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I)]1 Pl')
P = (2.8.1)
P'Z] p‘Z‘Z

prn qrm

with , P, eR " (s), P, eR or

in order to avoid complications concerning the well defined nature of the feedback loop

PI”(S) ’ le cR

pr

(s) , P,y e R*"(sy and P, is strictly proper

pr pr

bl

when a feedback is applied . For references on the regulator problem sce section 2.1 .

Regulator Problem with Internal Stability , (RPIS) , [Ozg. 1] : Given the two channel
plant introduced in (2.8.1) , determine a compensator C such that , in the closed loop
system the pair (P, , C) is internally stable and the disturbance input to controlled

output transfer matriz , Py, , given by :

Py =Py~P, - C-(I1+ P, C)". Py, (2.8.2)
qIn

‘< ove . D
1S OVer R@ (9)

The regulator objective Py € R'g"(s) , ensures that the closed loop system is bounded
input , bounded output stable . Thus , if the regulator objective is achieved , then (in
time domain) for all inputs u; generated by stable dynamics , the output y. will
asymptotically approach zero . The flexibility in choosing the area of stability P¢ allows
us to consider continuous time , as well as , discrete time systems and also to adjust the
speed of convergence to zero of state and output variables in the closed loop system .
Recall from section 2.6 that if a bicoprime fraction representation of the plant , P,

controller , C , transfer matrices is given by :

Z, » W W,
P = . Q. [Ri Ry +| (2.8.3)

2 _ Wy Wy,
C=12.Q R, (2.8.4)
respectively as well as a bicoprime fraction representation of P, is :
P,=2-Q'R+W (2.8.5)

then the set of disturbance input to controlled output transfer matrices , P, ,
admissible for internal stability of the closed loop system is given by :

G'P:;C = { PdC(x) = [Z2 ) 'W2l'(N'Nl+ er)] ’
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Ql] R’l ) (N N+ Q.- X) R'Z mzp }

+ Wy, VX €RL )
-7, M+Z M- N,-2.P,-X| |W,

(2.8.6)

or equivalently |
Pae = { Pye(X) = Ci' (T 01340, -5 =0y, - Q-0,,+C, - Wy, - D -5, X-1p) - D',

LV Xe R;”’m} (2.8.7)
with K ,L,M,N,Q,,R,P,,Q,,M,N,,K,, L, ,0,,0,,9,,9,,C,,T,S

D defined in section 2.6 . The RPIS can now be reduced to determining a matrix
Xe R;IP(S) such that :

Py (X) € R, "t5) (2.8.8)
Proposition (2.8.1) [Ozg. 1] : Consider the matriz equation :
Q- X-Q, +C,- YD =T-0,+0,-5-0,,-Q-0,, (2.8.9)
i) RPIS is solvable , if and only if there ezist matrices Xe R;”’(S) , Ye R‘g"(s)
satisfying (2.8.9) .

it) The set of all solutions of the RPIS is given by :

?Z”'" ={C.,(X): XERgIP(S) and (X , Y) satisfies (2.8.9) for some Y € Rz;"(s) }

. (2.8.10)
where , C..(X) = P, (X) Qar(X) and
Q.. (X) M+(Z-M-~W.N).-N, -(Z-P,+W-Q,) [
= . (2.8.11)
Pcr(X) N. Nl Qr X

i11) The set of admissible transfer matrices Py, for the RPIS is given by :

PP = ( Y+W,, : YeE RS (s) and (X , Y) satisfies (2.8.9) ] (2.8.12)

0

The next result improves proposition (2.8.1) by eliminating the matrices K , L , M, N,
(that occur in ©,, , 0,, , 5, , y,) , from the solvability conditions . Let :
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_ Q 5 _ Q R ] Q S
I—I]z - i _ . H.“ = _ ’I_I 9 —_ _ _
~-7Z W,,.D -T C,-W,, -T C,-W,,-D
" (2.8.13)
3 [ O 3 I 0
Fl = — ) A = —
0 C, 0] D

Theorem (2.8.1) [Ozg. 1] : The RPIS is solvable , if and only if :
i) The system (2, , Q) , Ry, W) is free of unstable input , output decoupling zeroes .
i) There czist matrices X € R; it g Ve Rg *aelr ) o) satisfying :

ﬁgl-X-Hl2+F1-?-A :H22 (28.14)
0
The following results refer to the solvability of the RPIS in terms of bilateral matrix

equations . Let :

c, | D-Q R, p, | Q-C R,

H12 = SHQI = (2.815)
-7 \\'12 —Z2 w21
c, O D, O

r, = A= (2.8.16)
O I 0 I

with C, = gerd(Z , Qq) , Dy= ¢cld(Q,, , R) and (Rq , Qo) such that if Q;; = D;-Q,,
C = gerd(Z, , Q) , then Ry = D, Ry, Q;=Qo-C.

Theorem (2.8.2) [Ozg. 1] : The RPIS is solvable , if and only if :
i) The system (2, , Qv , R, , W) is free of unstable input , output decoupling zeroes .
it) There ezist matrices X° € R(G; tRllran) g Yo Rgf m=(r+P) o) satisfying :

C
XO'HIQI +F1'YO=I (2817)

t1i) There ezist matrices Xy € Rg+ m=(r + q)(s) , Yp€ Rg+4)1(r+ m)(s) satisfying :
D,
HQ) 'Xo + YO'AI = I (2.8.18}
a

It is clear that the solvability of the RPIS is associated with the matrix equation
A-X-B+C-Y-D=E.
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2.9. CONCLUSIONS

A survey of control synthesis problems | the solvability of which is associated with
the solvability and characterization of solutions . (or special types of them) . of certain
matrix equations over the ring of interest has been presented in this chapter . Central to
all these problems has been the concept of stability of a linear system . A brief account
of stability and especially the constraints imposed on a system so that external stability
1s equivalent to internal stability has been introduced in section 2.2 . The first problem
reviewed has directly risen from the concept of stability itself , and it is the centralized
stabilization problem , (CSP) . This problem has been associated with the standard
matrix Diophantine equation over the ring of interest | R@(s) , or R[s] , and the study of
special types of solutions of it have been related to the total finite settling time
stabilization , (TFSTS) , and dead -beat response , (DBRP) , problems . The case of
imposing restrictions on the stabilizing controllers structure has been presented next .
These structural constraints lead to the formulation of the decentralized stabilization
problem , (DSP) , and to the investigation for special block diagonal structured
solutions of the standard matrix Diophantine equation associated with the CSP .

In section 2.5 the model matching problem has been presented and formulated via
the matrix equations A-X = B, Y-A = B . The latter matrix equation is fundamental
to the study of many other matrix equations and central to the model matching
problem . Problems that require the independence of certain outputs from certain
inputs have been also reviewed . The disturbance decoupling and noninteracting control
problems have been formulated and their solvability has been shown to be related to the
matrix equation A-X-B = C . Finally the bilateral matrix equations A-X + Y.B = C,
X-A + B-Y = C and their generalization A-X-B + C-Y.D = E have been presented
and associated with the solvability of the regulator problem with internal stability

requirement for the closed loop feedback system .
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3.1. INTRODUCTION

Problems of linear systems theory | such as . stability and performance of linear
multivariable control systems , have motivated the study of matrices having elements in
special rings that describe in an algebraic sense these properties . Stability and to a
certain extent the performance of a control systemn , for example , can be characterized
by absence of poles from its transfer function matrix from a prescribed symmetric — with
respect to a real axis —region 2 of the finite complex plane .

The algebraic structure of the set Rsp(s) of proper rational functions which have no
poles inside a region P = QU {co} , (2 C C) has been examined initially by Morse ,
[Mor. 1] . Subsequently Hung and Anderson . [Hun. 1] , showed that with an
appropriately defined "degree” function the set RG}(S) has the structure of a Euclidean
ring , [Var. 2] , [Var. 5] , [Var. 6] . This important result has been the basis for the
subsequent work of Vidyasagar , [Vid. 1] , Francis and Vidyasagar , [Fra. 1] , Desoer ,
Liu , Murrey and Saeks , [Des. 1] , Saeks and Murrey , [Sae. 1] , Vidyasagar , Schneider
and Francis , [Vid. 2] , Vidyasagar and Viswanadham , [Vid. 3] , Francis and
Vidyasagar , [Fra. 2] , Saeks and Murrey , [Sae. 2] , on "fractional representation” of
proper rational matrices and their use to analysis and synthesis problems. The detailed
structure of the set Rcy(s) has been thoroughly investigated in [Var. 3] , [Var. 5] .

Among the algebraic properties of R@(s) , the one that plays crucial role in our study
is that of the Euclidean ring , or in other words , the existence of a Euclidean division .
This division helps to specify the family of stabilizing controllers with the least number
of unstable: poles among the family of all stabilizing controllers of an unstable , linear ,
time invariant , multivariable control system , as well as it can be generalized , [Vid. 4],
in the case of square matrices with entries in Rcy(s) .

In [Vid. 4] and [Var. 3] has been noticed that the pair of quotient and remainder of a
Euclidean division in R (8 i1s not characterized by a uniquely defined ”Euclidean
degree” and the family of least possible "Euclidean degree” remainders is introduced . A
quite tedious construction of this family by using the interpolation theorem of [You. 1],
as well as an existence approach by using interpolation in a Disc Algebra can be found
in [Vid. 4] . Our aim in this chapter is to give an algorithmic construction of the family
of least "Euclidean degree” remainders and present its powerful involvement in the
construction of the family of least number unstable poles stabilizing controllers of an
unstable , linear , time invariant , MIMO , system . More precisely , in section 3.2 the
ring of proper and stable functions is introduced ; in section 3.3 a unique modulo a real
number of P° factorization for the elements of R?(s) is introduced and in section 3.4 the
Euclidean division as well as its non uniqueness of remainder is examined . The
motivation for the use of unit interpolation in the following sections is given at the end .

In section 3.5 the interpolation by unit in |R9(s) is examined , by using the concept of
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the logarithin of an element of a Banach algebra and introducing a special type of
Banach algebra the Disc Algebra of symmetric analytic functions , which map a Disc
onto € . Two approaches for the construction of an interpolating unit in qu(s) are given
and lead to two algorithinic constructions of the least "Euclidean degree” family of
remainders i section 3.6 . A comparison between the two methods gives the more
cfficient one .

Finally | in section 3.7 a generalization of the Euclidean division between square
matrices with entries proper and stable functions is introduced . As an application of
the knowledge of the family of least "Euclidean degree” remainders of a Euclidean
division between two elements of Rcy(s) , the construction of the least number unstable

poles family of stabilizing controllers is described .

3.2. THE RING OF PROPER AND STABLE FUNCTIONS

Let Rs) be the ring of polynomials with real coefficients and R(s) the field of
rational functions t(s) = n(s)/d(s) , with n(s) , d(s) e R(s}, d(s) #0 ,s € CU {oo} . Given

a rational function t(s) = n(s)/d(s) with n(s) , d(s) coprime ; it can be written :

t(s) = (%)qm 3:—8 , with deg(n,(s)) = deg(d,(s)) (3.2.1)
with : = deg(d(s)) - deg(n(s)) (3.2.2)

Definition (8.2.1) : Given a rational function t(s) in the form (8.2.1) :
i) t(s) is called proper if q_ 2 0.
it) t(s) is called strictly proper if q > 0.

iis) If t(s) as well as its multiplicative inverse are proper then t(s) is called biproper. O

Let C be the field of complex numbers . Assume P a symmetric subset of C which

excludes at least one point o € R . Regarding a t(s) € R(s) it can be factorized as follows :

(3.2.3)

with np(s) , dP(S) coprime polynomials in R[s} with their zeros not outside P , nPc(s) .

ch(s) coprime polynomials in R{s} with their zeros outside P and let P = P U {00} .

Definition (3.2.2) : A rational function t(s) in R(s) is called P-stable , if all the zeros of

its denominator are outside P and q, 2 0. 0
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Let qu(s): { t(s) € Res) : t(s) 1s P-stable} (3.2.4)

If addition and multiplication of two functions in R‘.P are defined pointwise then it 1s

known [Hun. 1}, [Kar. 1] that R@(s) 1s an integral domain .

Definition (8.2.8) : An integral domain R is said to be a Euclidean Domain (or Ring) if
there cxists a function vy (the Euclidean Valuation or Degree) such that the following
conditions are satisfied :

i) v:R-{0} -1
i) For alla, bin R—{0} v(a-b) > v(a) (3.2.6)

(L, the set of nonnegative integers) (8.2.5)

>0’

#1) For all o, b in R with b # 0 there ezist clements q , v in R (the quotient and
remainder respectively) such that :
a=bqg+r (3.2.7)
where either v = 0 or else y(r) < v(b) . O

Let t(s) € R@(s) . Then by (3.2.3) and definition (3.2.2) t(s) can be factorized as follows:

n_(s)
Nﬂ:n“ﬂd@@ (3.2.8)

Define now the function vg : R@(s) -7 >0 U {oo} such that:

deg(d C(s))— deg(n c(s)),ift(s);éo
Yo = { P ? (3.2.9)

o ,if t(s) =0

Qur next step is to define a Euclidean Division in R(:p(s) and show that IR@(S) 1s a
Euclidean Domain with 7q serving as a Euclidean Valuation (Degree) . In order to
proceed so we have to present a procedure for factorization in R?(S) , [Kar. 1} , [Var. 1],

[Var. 2] .

3.3. FACTORIZATION IN THE RING OF PROPER AND STABLE FUNCTIONS

Consider a t(s) in R@(S) . It can always be factorized as in (3.2.8) . By (3.2.2) , (3.2.8)
(3.2.9) is implied that :

q = deg (d

o0
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= Yg(t(s)) - deg (nﬁ)(s)) (3.3.1)
By (3.3.1) we take :

q = v9(t(s)) = q_ + deg (nP(s)) (3.3.2)

Now by (3.2.8) and for o >0, t(s) can be written as :

c\s

a) nP(s) “‘EPC(S) \
)= toray '{d @)'“*")} (3.33)

with both u(s) = {(n _(s)/d _(s))-(s+e)?} and its multiplicative inverse P —stable .
P P

Definition (8.8.1) : Let t(s) in Rcy(s) and t™'(s) its multiplicative inverse . If both t(s)
and t™'(s) are P-stable then t(s) is called a unit in R@(S) . a
Denote d' = deg (nP(s)) . By (3.3.2) , (3.3.3) is implied that :

ap(s) 1
(s+a)? (s+a)ie

u(s) (3.3.4)

By (3.3.4) and by factorizing n[P(S) into irreducible factors over R[s} as :

!

np(s) =« (s+ 1) (s +1)™ (s"+ bs+ cl)nl (s b, s +¢,)" (3.3.5)

we have that: t(s) =

' L

_ [(_*L)} ~[(s+lu)]nu.(32+ b )l f@rbysre)[r 9
= K- (s—{—(x) (s+a) (s+a)2 (s+a)2 l:(s+(x)q°°}

] , , q (3.3.6)
" O O 0 ) e

!

u(s) = [p,9)]

The uniqueness of factorization of nP(s) implies that the one in (3.3.6) is also a unique
factorization of t(s) over R@(S) , modulo a and units . The elements p(s (s), p’_(s) , p*(s)

with te{l , ..., v}, je{l, ..., p} are the primes of t(s) . By (329) we observe
that :

volp (B = 1,i€(,...,0)
o) =2 et (337)

19(p,(5))= 1
We also observe that :

T(t,(8)-,(8)) = 15(t,(s)) + 15(t ,(s)) (3.3.8)
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(something we shall prove later in proposition (3.4.1)) . By (3.3.6) , (3.3.7) . (3.3.8) we

have that :

2n' +q (3.3.9)
\ J ~

Yo(t(s)) = Yom, +
=1 J

»

which reveals that ye expresses the total numnber of zeros of t(s) in P .

2 .
Example (3.3.1) : Let ? = C 4 U{oo} . t(s) = (1) 5+ 25 + 2) , then according to

(s+1)"

factorization (3.2.6) t(s) is written as :

(s) = (s=1) (s°+2s +2)
(s+1)  (s+1)? (s41)°

We are presenting now the procedure for carrying out Euclidean division between two

clements of Rcy(s) , [Hun. 1] , [Kar. 1} .

Proposition (8.8.1) : Let t(s) in R@(s) , —a €D, real and let us denote by w =
=(1/(s+a)) . Then t(s) may be ezpressed as :

t(s) = ta (W) Ua(s) (8.8.10)

where uq(s) 15 a unit 1n R@(s) and to(w) is a polynomial in Rjw] such that deg(ta(w)) =
= o (t(s)) -

Proof
For any « , such that —a € P°, real by (3.3.4) we may write :

n(s)
t(s) = P 1
© (s+a)? (s+a)'e

uq(s) =
= tq (5) ua(s) (3.3.11)
Given that w = (1/(s+«)) , then s = ((1-a w)/w) ; substituting s in t, (s) we have :
ta () = ta (1=5%) = w?' n(lsgw) w'e (3.3.12)

— d' .
If nP(s) —( a,s"+..+ ao) then :

l-a w\ _ 1[ d d]_ 1
n =—==la,(l-aw) +...+aw'|=— w 3.3.13
P( W ) 4 | %d ( ) 0 d np( ) ( )
where n, (w) polynomial in Riw] with deg(n’P (w)) = deg(np(s)) =d' (3.3.14)
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By (3.3.11) . (3.3.12) , (3.3.13) , (3.3.14) is implied that :

' q a4 ’
t(s) = w ld, HEP (W) w Z u,(s) = nﬁp (w) w ™ ua(s) = ta (W) 1a(s)

W

with @ deg(ta(w)) = deg(n&)(w) -wq°°) = (lcg(u[p (w)) + dog(wqm) =d + qw(:"i"z)’y@(t(s))

a

Remark (3.3.1) : The transformation w = (1/(s+ca)) maps P onto P, which is a subset
of the w—plane . If P = C4 U{oo} the transformation w = (1/(s+a)) maps P onto
P, U {0} which is a closed circle in the w— plane with centre ((1/2&) , 0) and radius
(1/2(1) . If PCCy U{o} the above mentioned transformation maps P onto a closed
subset of P U {0} . 0

Remark (8.8.2) : The primes of R@(s) are transformed under the transformation s =
=((1-a w)/w) into irreducible factors of the polynomials in Riw) with zeros inside P, .

Hence :

o) = o = v

s+l
p(s) = %—% = (l-a) w1
p,(s) :(i?%:z)zi——c—)—z (>~ ab+c)u + (b-2a) w + I

Definition (3.8.2) : Let t (s) , t.(s) be two functions in R@(s) . We say that t (s) divides
t,(s) if there exists a t.(s) in Rp(s) such that t,(s) =t (s) - t(s) - 0

Proposition (3.3.2) : If t (s) , t,(s) e R?(s) then t, (s) divides tz(s) , tf and only if the set
of zeros of t (s) in P is a subset of the set of zeros of t(s) inP.

Proof

(=) If t (s) divides t,(s) and we factorize t (s) and t_(s) as in (3.3.6) then all the primes
of t (s) are also primes of t,(s) and so the zeros of t (s) in P, which are the zeros of its
primes , are also zeros of t2(s) and the necessary condition has been proved .

(<) Denote by %, B, the two sets of zeros in P of t (s) and t,(s) respectively . Let
%, C B, then by (3.3.6) , (3.3.9) the set of primes of t (s) contains the set of primes of
t,(s) and so there exists t.(s) € R‘y(s) such that t (s) = t,(s)-t,(s) , where t_(s) contains
the primes of t,(s) which differ from the ones of t (s) as well as the product u,(s) -u'll(s),
where u (s) , u,(s) are the units of t (s) , t,(s) respectively as they come out from
(3.3.6) and u'll(s) the multiplicative inverse of u (s) . 0
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Proposition (3.8.83) : Let t(w) in R , —a e, real and P, be the region of the
w—plane defined as the mapping of P wunder the transformation w = (1/(s+a)) . The
rational function defined as t(s) = t(1/(s+a)) belongs to RC}(S‘) and vg(t(s)) <
< deg(t'(w)) . Further more Yop(t(s)) is equal to the total number of zeros of t'(w) in

Let t'(w) = a, wi 4.+ a, . Then :

§) =t |41 )=—1 a asadz————n(s)
t(s) t((SJra)) o [t e e 20

and thus t(s )eR . The maximum number of zeros of n(s)is d . Given that
n(s) has zeros in G.Plt follows that : yq(t(s)) < d . By (3.3.3) we have t(s) =

:(nP(s)/(s+a)dl>~u(s) , where u(s) is a unit , d" = yg(t(s)) and nP( s) has no zeros
outside P then by proposition (3.3.1) and remark (3.3.1) (nP(s)/(s+a)dl) yields under

the transformation s = ((1-a w)/w) a polynomial p(w] in Rjw] with all its zeros in P
and of degree yg(t(s)) - O

3.4. EUCLIDEAN DIVISION IN THE RING OF PROPER AND STABLE
FUNCTIONS

In the following we introduce a Euclidean division algorithm over the ring of proper

and P stable functions.

Theorem (3.4.1) : Let t (s) , t (s)ech_p(s) , t,(8)#£ 0 and let w = (1/(s+a)) , —ae?,
real . If t;(w) = tu(w) un(w) t =1, 2 are (mod a) factorizations of t (s) , t(s),
where t., (w) € Rlw)] , 4, (w) units in R@(s) and Yo (t;(s)) = deg (t;,(w)) , then :

i) There ezist polynomials ¢, (w) , 1, (w) € Riw) such that t,,(w) = t,(w)- ¢, (w)+7, (w)

and either 7 (w) = 0 or else deg (v, (w)) < deg(t,, (w)) .
i1) The rational functions q_ (s) , r,(s)€ IRGy(s) defined by :

0o (5) = tra(3)-[taa(s)] - ((s+a))

T.(8) = wa(s) 7, ((s+a))
satisfy the Euclidean division conditions for t(s), t,(s):
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t (s) = t(s) q.(s) + 1,(s)
and either v (s) = 0 or else vg(r, (s)) < Yo(t,(s)) .

Proof
The modulus o factorization of t (s) , t,(s) has been established by proposition (3.3.1)
and for the polynomials ti,(w) , ty,(w) of the part i) of the theorem we know from the

theory of polynomials that there exist unique q!, (w) , r, (w) such that :
bia(W) = toa(W) q (W) + 1 (W) (3.4.1)

and cither 1/ (w) = 0 or clse deg (r,,(w)) < deg(ty(w)) . By multiplying both sides of
(3.4.1) by u,,(s) and by setting w = (1/(s+a)) we have the following identity :

t,(5) = tia(W) - ia(s) = {um<s) s ((—i——))} : {ub(s> - ch(ri—))} +

or, tl(s) = tz(s)'qa(s) + 1,(s)

By proposition (3.3.2) q,(s) , r,(s) € R@(s) and Yg(r,(s)) < deg(r,(w)) . Given that :
deg(ro(w)) < deg(tan(w)) = vg(t,(s))
it follows that yap(r,(s)) < vg(t,(s)) . 0

Now we can return to the last statement of section 1 that yq serves as a Euclidean

Valuation for R@(s) .

Proposition (3.4.1) : The function vg as it was defined by (9.2.9) is a Euclidean
Valuation for R@(s) .

Proof

By definition of vg in (3.2.9) condition (3.2.5) is satisfied . Consider now t,(s) »
t,(s) € Rcy(s) , then by (3.2.8) we take :

noyc(s) n@c(s)

T 5= ) 3

ty(s) = (s)

Ya(t,(5) - t,(s)) = deg(dge(s)) + deg(dge (s)) - deg(nie(s)) - deg(n e (s))
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= 301, (8)) + 7(1,(5)
and condition (3.2.6) is satisfied . By theorem (3.4.1) condition (3.2.7) 1s satisfied . o
Corollary (3.4.1) : By proposition (3.4.1) we conclude that Rcy(s) is a Euclidean Ring . O

Proposition (8.4.2) : Let R be a Euclidean Ring . The quotient and the remainder of
(3.2.7) . (in definition (3.2.3)) are uniquely defined | if and only if :

Y(e+g) < mazxfy(e) . v(g)} (3.4.2)
Ve,geR, [Bur 1].

Proof

(=) Let the quotient and remainder of the Euclidean division of any two elements of R
be uniquely defined . And let (3.4.2) does not hold true , namely y(e+g) > maz{y(e) ,
v(g)} . Then for e, (e+g) € R we take :

c = (e+g) 0 + e and y(c) < y(c+g)
¢ = (etg) 1-g and y(-g) = 1(g) < v(eteg)

Hence we take two quotients and two remainders for the Euclidean division of e by
(e+g) which is a contradiction ; and (3.4.2) holds true .
(<=) Let (3.4.2) holds true Ve , g€ R . And let e, g € R for which :

e=gq+r,(r=0or~(r) <g))
e=gq +r, (1 =0ory(r) < v(g))

Then r'-r = g (q-q') and by (3.1.6) v(g) <7(r'-1) < maz{~(r) , ¥(-1)} < (g) -
This is a contradiction , so r’ must be equal to r and hence q' must be equal to q . 0

Remark (8.4.1) : When P = C_U{oco} , we consider two functions t(s) =
=(-(2s+1)/(s+1)) , t,(s) = ((s+2)/(s+1)) . Both t (s) , t,(s) are units in Rcy(s) 50
Y(t,(s) = 1(t,(s)) = 0, whereas y(t (s) + t,(s)) = 1 . By proposition (3.4.2) we
conclude that the quotient and remainder of the Euclidean division in Roy(s) are not
uniquely defined , [Kar. 1], [Vid. 8] , [Vid. 4] . Similar arguments can be stated when
PCC, U{o) a

Because stability for SISO , lumped , linear systems is studied over the extended right

half plane of the complex numbers (or subsets of it) in the following we assume %P C
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C C+ U{x} . Especially we study the case of P = C+ U {x} ; since everything we
state for P holds for the subsets of P as well (by using remark (3.3.1) ) . Proposition
(3.4.2) and remark (3.4.1) imply that the quotient and the remainder of the Euclidean
division 1n R@(s) arc not uniquely defined . What follows 1s the presentation of an
algorithm for the construction of the class of the minimum possible Euclidean degree
remainders in R@(s) . Consider two functions t,(s) and ty(s) coprime and take the
Euclidean division of t,(s) by t,(s):

() = tals) als) + (5) (3.4.3)

We can equivalently write t,(s) —1(s) = ty(s) q(s) and if s; denotes a zero of t,(s) over

P, with m, its multiplicity then :

((fs’)j (t(s)=1(s)) =0 , j=0,... 6 m-1 (3.4.4)

and if we factorize r(s) as in section 3.3 , namely r(s) = r,(s) u(s) (where u(s) is a unit
in R(s) then it is implied by (3.4.3) that (t(s;) u (s ) = (ra(s: )P, i=0,

m;—~1 . Further more we can take:

ra(s,)” —{2 (3) 66 W' )‘“’}

1

(w(s,)) = , 3=0,...,m-1 (34.5)

where u“(s,«)(o) = ul(s;) = r,(s;)/ts(s;) , i=1, ..., n, which clearly implies that the
scarch for a least Euclidean degree remainder of the division (3.4.3) is connected with

the existence of a unit in R?(s) , u(s) , such that :

ra(s) u(s) -

) =
4.5) holds true and r,(s) has the least possible Euclidean degree , (since 79(r(s)) =
Ta(s))) -

1

1) r(s
) (3.
=1,

The Euclidean degree of r,(s) is equal to the number of its zeros in ¢ . Condition (3.4.5)
motivates the investigation of the existence of a unit in R?(S) , u(s) which satisfies given

interpolation constraints , [Vid. 4] , {You. 1] . We do so in the next section .

3.5. INTERPOLATION BY UNIT IN THE RING OF PROPER AND STABLE
FUNCTIONS

Suppose that S = {s; , ..., s,} is a set of pointsin P , M ={m_,..., m}isa

corresponding set of positive integers and R = {r‘.j yi=0,...,m~1,i=1,..,n}
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18 a respective set of complex numbers . We are interested in finding whether or not

there exists a unit in qu(s) that satisfies the interpolation constraints :

J
d u(s;)=r;,7=0,...,m-1,:=1,...,n (3.5.1)

(ds)’

We observe that if s, is real r;; is real since :

T, =ul0(s) = W 5) = ubls) =1,
Theorem (8.5.1) [Vid. 4] : Let o, , ..., 0, be distinct nonnegative eztended real numbers
(that means that at most one of the o; can be infinity) and let s;,, , ... , s, be distinct
complez numbers with positive real part . Let S = {o, , ..., 0/, Si41 , -, Saf} , M =
:{m] , ..., m,} a corresponding set of positive integers and let R = {r;, , j =0, ...,
m~1,1=1,.., n} be a set of complezx numbers with r,;; real whenever j =0, ...,
m~1,1=1,..,1 and 1,y # 0 for all v (since v,y = u(s;) # 0 because u(s) is a unit in
R@(s)) . Under these conditions there ezists a unit u(s) in R@(s) satisfying the conditions

(3.4.1) iof and only if the numbers ry , ..., 1 are all of the same sign . 8]

In order to prove this theorem we have to introduce the concept of the logarithm of an
clement of a Banach algebra as well as to state a few essential definitions and results,
[Vid. 4] .

Definition (3.5.1) : A pair (B, [/-]|) is a Banach algebra if :
i) (B, //-]]) is a Banach space .

i1) B 13 an algebra over the real or complez field .

w)Va,binB=[la-bff <|[lafl-][b]l. o

B is commutative if a-b = b.a for all a , b in B and has an identity if there is an
clement 1 in B such that 1.-b=b.1 =b for all bin B . An element a in B is a unit of
B if there exists a b in B such that a b = b a = 1 . The set of units of a commutative

Banach algebra U is nonempty since 1 € U .

Definition (8.5.2) : For each f in B , the element ezp(f) = io: {-‘-,is well defined . An
i=o U

element f in B is said to have a logarithm , if there ezists @ g in B such that f = ezp(g) O

Remark (3.5.1) : If fe B has a logarithm g then f.ezp(-g) = 1 . So that f must
necessarily be a unit of B . Thus only units can have logarithm . 0

What follows holds V « real and outside ? ; so for convenience during the operations
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weselect a =1, ~-1eRand -1¢ 9P . By remark (3.3.1) we take that P, = 9D where D is
the closed circle of the w—plane with centre ((1/2) . 0) and radius  (1/2) . In the
following we state some well known facts from Real and Complex Analysis | which will

be used 1 the proves of lemmas (3.5.1) , (3.5.2) , [AhL 1], [Con. 1} , [Rud. 1] | [Neg. 1.

Definition (3.5.8) : Let G be a set , (Y , d) a metric space and f, : G- Y a sequence of
functions . (f,) is said to be uniformly Cauchy of Ve > 0,3 NeN:Vn,m > N=
d(fulz) ) fulz)) <€,V ze§. o

Proposition (8.5.1) : Let G be a set , (Y , d) a complete metric space and f, : G - Y a
uniformly Cauchy sequence of functions . Then there ezists a function f: G - Y , such

that f, - f uniformly . O

Proposition (3.5.2) : Let (%, p) , (U, d) be metric spaces , f, : B » U continuous
functions forn =1, 2, ..., f: % + Y function such that f, -+ f uniformly (over B) .

Then f is a continuous function . O

Proposition (3.5.8) : Let ¢ : [a , b] - C be a curve with length , f, : ¢([a, b]) = C
continuous functions forn = 1,2, ..., and f: c([a, b]) » C such that f, » f uniformly
(over c([a , b])) . Then fis continuous on c(fa , b]) and [f, » [fasn -+ . 0

Theorem (3.5.2) (Cauchy — Goursat) : Let Q) be an open set in C , A a closed triangle
such that A c Q and f : Q » C analytic function . Then [ f(z) dz =0 . 0
¢ 12N

Theorem (3.5.8) (Morera) : Let Q1 be an open set in C , and f : Q - C continuous

function such that [ f(z) dz = 0 for all the closed triangles A c Q . Then f is analytic in
an

0. 8]

Definition (3.5.4) : Let T c C and (f,) , f functions defined on T with images in C . The
sequence (f,) 1s said to converge to f uniformly on compact subsets of T , tf for every
compact subset % of T and for all the ¢ >0 there ezists a natural number N, (dependent
on % and ¢) , such that : [ f,(z)-f(z) | <€V n>Nandv ze % 0

Remark (8.5.2) : If ) is an open subset of C , (f,) is a sequence of continuous complez
functions defined on Q , and f, - f uniformly over the compact subsets of C , then f is
continuous in (1 . o

Theorem (3.5.4) (Convergence of Weierstrass) : Let ) be an open subset of C , (f,) is a
sequence of analytic complez functions defined on Q , f: Q -+ C and f, » f uniformly
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over the compact subsets of ) . Then f is analytic in Q.

Proof
From remark (3.5.2) f 1s continuous in € . Let A be a closed triangle in Q . Then A s

compact and (from proposition (3.5.3) , theorem (3.5.2)) [f(z) dz = lim  [f(2) dz =
A " oA

>

=0 . From theorem (3.5.3) is implied that f is analytic in ¢ 0

Theorem (3.5.5) (Mazimum modulus theorem) : Let §) be an open and connected subset

of C and f : Q) =+ C analytic no constant function . Then | f [ has no mazimum value in

Q. a

Lemma (3.5.1) : Let the set A consists of all the continuous function mapping D into the
complez numbers which have the additional property that they are analytic in the
interior of D . If addition and multiplication of two functions are defined pointwise |
then A becomes a commutative Banach algebra with identity over the complez field ,
with the norm [[-[[ as [ f || = sup {[f(w)] for all w in 9D } (from the mazimum modulus
theorem (3.5.5)) .

Proof
(A, || |l) is a Banach algebra over the complex field if definition (3.5.1) is satisfied .

i) (4, || ||) must be a Banach space or equivalently a complete metric space . Using
the norm || || as defined in lemma (3.5.1) a metric d : AzA4 - R* U {0} can be created ,
such that ::

d(f ,g) = || f-g|| = maz { | f(w)-g(w) |, for all win 89 }
Clearly d(f , g) 1s a metric for A . So (4 , || ||) is a metric space . Consider now a

sequence of functions f,, of A which is Cauchy , namely :

Ve>0,INeN:Vn ,m > N=||{,-f,]| <e
or,

p=maz { | f,(w)-f, (w)]|,foral win 9D} < e
Then , (since for all win D, | f (w)-f (W) | <p),
VweDandVe>0,INeN:Vn,m > N=|f,(w)-f, (w)]|<e

or equivalently || f, -f || < €. So, (f,) satisfies definition (3.5.3). Because (C , | |) is a
complete metric space , by using proposition (3.5.1) , f, converges uniformly to an f
over 9, (and over any compact subset of it) ; f belongs to A because f is continuous ,
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(proposition (3.5.2) . remark (3.5.2)) and analytic , (theorem (3.5.4)) . As a result (A,
[| 1) is a complete metric space .

1) A must be an algebra over the complex field . Let the three —tuple (A, +, )
with f4+g and fog the pointwise addition and multiplication of the functions of A .
Then (A, + . ®) i1s a commutative ring with identity the constant function of A | I :
D - C and I(w) = 1. Let the three —tuple (4, + , ) with f+g the pointwise addition
of the functions of A and z-f: CrA + A, such that (z-f)(w) = z-f(w) , Vwe D . Then
(A, + ,-) is a vector space over the complex field ; additionally if f | g belong to A and
2 in C then z - (fog) = (z-f)og= fo(2-g) because for all the w in D, z-(fog)(w) =
2 A(w) glw)

w) || fogll < |[f]l-]lg]l,forallf,gin A . Indeed :

|| fogl|| = maz{ | {(w)-g(w) |, for all win 09 } =
= maz{ | f(w) | | g(w) |, forall win 09 } < {maz{ | f(w) ], for all win 99 }.

maz{ |g(w)|,forallwindd}}=|lf] |l gll 0

Lemma (8.5.2) : Let A, denote the subset of A consisting of all the symmetric functions

1.€.

A= {fed f(B) =fw),V weD) (3.5.2)
Then A, is:a commutative Banach algebra with identity over the real field .

Proof

A, is a subset of A . Following the same steps as in the proof of lemma(3.5.1) it is
shown that :

t) (4, , || Il) is a Banach space . Every Cauchy sequence (f,) of A, is a Cauchy
sequence for A , so as in lemma(3.5.1) , 1) , f,, - f uniformly and f is analytic . For the

sequence (f,) , (3.5.2) implies that f,(%) = f.(w) for all w in @ . Consider now f(w) ;
f(w) = lrilgoof,,(w) = li_qlwfn(w) = I'ilg.noof,,(w) =T (W), hence f belongs to A,.

i1) , 111) Are straight forward , because A, is a subset of A . 0

Proposition (3.5.4) : Given f(s) in R(s) define g(w) = f((1-w)/w) . Since the bilinear
transformation w = (1/(s+1)) maps P onto the disc D , we have that g(w) is a rational
function belonging to A, , if and only if f(s) € R?(s) .

Proof
i) Let f(s) in R‘.P(S) ; f is defined on P so the domain of g(w) = f((1-w)/w)is 9.
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1) {(s) i R@(S) is a rational function so g(w) = f({1-w)/w) 1s a rational function .

1) {(s) in [qu(s) and g(w) = f((1-w)/w) rational over D . g(w) is analytical in the
mterior of P since  {(s) 1s analytical in the interior of P . Since g(w) is rational it 1s
cither a polynomial or a fraction of polynomials , (with real coefficients) | so from the
properties of the conjugate symbol we take g(w) = g(w) .

') If g(w) is a rational , analytic in the interior of D and symmetric function of A, then
f(s) = g(1/(s+1)) is defined over P (as the image of D within the transformation w =
—(1/(s+1))

i) {(s) is rational since g(w) is rational and f(s) = g(1/(s+1)) .

') {(s) is proper , namely the limit of {(s) as s tends to infinity is finite | since if it was
not then the limit of g(w) , as w = (1/(s+1)) tends to zero would be infinity . But g(w)
is continuous and defined over the compact set 9D , so | g(w) | is bounded over @ . The
maximum of | g(w) | is taken on the border of D . Since 0€ 99 , and | g(0) | is infinity
that is a contradiction and thus {(s) is proper .

') f(s) is a P-stable function since if {(s) had a pole , sy , inside P, then f(s,) would be
infinity . Thus g(w) would be infinity at the w, which is the image of s, , within the
transformation wy = (1/(so+1)) . But g(w) is continuous and defined over the compact

set D, so | g(w) | is bounded over 9 . Hence {(s) is a P-stable function . 0

Proposition (3.5.5) : Whenever f(s) is a unit in Rcy(s) then g(w) = f((1-w)/w) is a

rational unit in A, and vice versa .

Proof

(=) Let f(s) be a unit in Rcy(s) , then g(w) = f((1-w)/w) is a rational function of A,
(proposition(3.5.4)) and since for all s in P |, f(s) is no zero that implies that for all w in
9P, g(w)#0 and g'(w) = (1/g(w)) is defined over 9 . Indeed gog'= I-(I as in
(lemma(3.5.1) , 7 ) —since (gog™')(w) = g(w)-g'(w) =1 = [(w) for all win D .

(<) Let g(w) be a rational unit of A, . Then f(s) = g(1/(s+1)) is an element of R?(s)~
(proposition(3.5.4)) — and {(s) is no zero for all s in P , (since g(w) is no zero for all w in
D) . Since g(w) is a unit then (1/g(w)) is no zero for all w in 9 and hence (1/f(s)) is no
zero for all s in ¥ . The above two results mean that neither the numerator nor the

denominator of f(s) can be zero for s in P . Hence {(s) is a unit in R?(S) . 0

In theorem (3.5.1) it is investigated the existence of a condition under which a unit of
R () satisfies certain interpolation constraints . After having introduced the disc
algebra of A, and proposition(3.5.5) it is sensible to establish theorem(3.5.1) in its
equivalent form ; that is , to establish an equivalent to the condition of theorem(3.5.1)
under which a rational unit of A, satisfies certain interpolation constraints , [Vid. 4] .

Suppose {s, , ..., s,} is a set of points in P and {m, , ..., m,} is a corresponding set
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of positive integers and {rzj yJ=0,..,m=1,2=1,...,n } is a corresponding set of

complex numbers . The objective is to determine a unit u(s) in R?(s) such that :

d’ : :
-u(s,)=r.,7=0,...,m-1,1=1,....n 3.5.2
Consider the transformation w =(1/(s+1)) . If u(s) is unit of Rcy(s) satisfying the
constraints (3.5.2) , then by proposition(3.5.5) the function f : D — C with f(w) =
=u((l-w)/w) be a rational unit in A, which satisfies the equivalent to the (3.5.2)

constraints :

P w)=a;,7=0,..,m-1,i=1,.. n (3.5.3)

where | w,=

Dy = g1z} GD7at gy (D (=D
a, = (W‘)‘“m( W-) = ) T =y e

j=1,....m=1,1=1, |

The w, are real whenever s; are real : = 1 , ... ; | . Now we have transformed the
problem to an equivalent one of constructing a rational unit f(w) € A, which satisfies the
constraints (3.5.3) .

Theorem (3.5.6) [Vid. 4] : Given elements w, , ..., w, of D, positive integers m, , ...,
m,, and complez numbers ¢;; , j =0,..., m=1,i=1,..., nsuppose w, , ..., w are
real and wyy, , ..., W, are nonreal . Suppose also that q;; is real for all j whenever w; is
real . Under these conditions , there ezists a rational unit f(s) of A, satisfying (3.5.3) ,

if and only if q , ..., Qo are all of the same sign . 0

Before we prove this theorem -and furthermore its equivalent(3.5.1) —we have to

introduce some useful lemmata .

Lemma (8.5.8) : If f(w) e A, , then it is a unit , if and only if f(w) # 0 for all w in D .

Proof

(=) If f(w) € A, and is a unit then there exists g(w) € A, such that f.g = g-f = 1 or
f(w)-g(w) = 1for all win A, . So g(w) = (1/f(w)) which implies f(w) # 0 for all w in 9.
(&) If f(w)e A, and f(w)#0 for all w in D then (1/f(w)) is defined and (1/f( w)) =
=(1/f(w)) , hence (1/f(w)) € A, and f(w)-(1/f(w)) =1, so f(w) is a unit . o
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Lemma (3.5.4) : Let h(w)e A, . Iflhll < 1 then I+h is a unit in A, .

Proof

Ihil < 1= 1 =ihil > 0= 1 —sup { |h(w)] for all w in ID} > 0

Consider now the | h(w) + 1| Vw € 9, then :

(IB(w) + 1] 2 [ 1= [h(w) | e [h(w)+ 1] >1-|h(w)[}Vwed

Thus [h(w)+ 1] > 1 —sup { | h(w) | forallwin 0D} VweD
and inf{ |h(w) +1| VweD} > 1 -fhll >0 (3.5.4)
By (3.5.4) we take that h(w) + 1 # 0 and so by lemma(3.5.3) 1+h(w) is a unit . 0

Lemma (8.5.5) : Let h(w) € A, , h(w) be a unit and f(w) € A, . If|h-f] < "h—l;—l—ﬂ then

f(w) is also a unat .

Proof

Ih-fll < L= = l1-nl < 1
Fn -t
By lemma(3.5.4) the proof implies that the function (h™'f-1)+1 is a unit , or h™'f is a

) -1 e g )
unit and because h™ is a unit f is also a unit . 0

Lemma (8.5.6) : Let f(w) be a polynomial of degree n in A, , w, , ..., w, be its distinct
roots with multiplicities my , ... , m, respectively and _‘2 |m; | =n. Then VueD =
{7 (wy)] < | @ | n?, where a is the coefficient of the n ';;wer of flw) .

Proof

From the hypothesis of the lemma we can express f(w) as follows :

We know that | (w - wi)m‘ | <1 and then :

p m.
' a l'l-I | (wo-w.') ' I < I a | (3'5'6)
. 1=1
Consider now :

f(w)=a- -'é:l { m.-.(w-w,-)m"_l (w—wj)mj} (3.5.7)

p

gl
J=1

s#i
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Then :

fwW) | =lal X {mf(w—w,)m'iy [p (\\u\v))"ljﬂ <
1=1 =1
oy
P ml-l P '"_) " Q
< E LTl bl o™ L] vy (3.5.)
= J=
JF#
Because | « |- | (wo—w,-)'n‘-ll- ﬁ | (wo-—wj)m’ | < | | and by (3.5.8) we take :
0
J'];é i
| f(wo) | < | @ |‘2 m,=|aln (3.5.9)

1==1

We proceed now for the | f'(wg) | . Since we know that f(w) is a polynomial of degree

n—1, then following the same steps for f'(w) as we did for f(w) we have that :
| f'(wo) | < [a|-n-(n-1) (3.5.10)
After j finite steps we take that :
£ (wo) | < | a|-n-(n=1)-(n=2)- - - (n—j+1) (3.5.11)

If j>n, then | f(j)(wo) | = 0 and (3.5.11) holds . Hence (3.5.11) holds for all ; eN . By
(3.5.11) it is obvious that | fm(wo) < |a|n. a

Remark (3.5.3) : If f(w) is a polynomial in A, a method for the estimation of [/ f [,
using the mazimum modulus theorem 1is given as follows . [[ f [/ = sup { [ f(w)] for all w

in D } , in our case :

/[ f]] =sup { [f(0.5 (1+ €¢'®%))| for all arguments 6 }

Proceeding we have || f || = sup {[ f(0.5 (1+ [cos(8) + i sin(6)])) | for all arguments 6.
Observe now that | f(0.5 (1+ [cos(8) + i sin(8)])) | is a real function of § and we can
find its mazimum by studying the change of sign of its second order derivative at 0
where its first order derivative vanishes . Because | f(0.5 (1+ [cos(8) + i sin(8)])) [ is
continuous over the closed disc D its mazimum value serves as its supremum . 0

Remark (8.5.4) : Using remark(8.5.3) we can estimate that [[ ezp(g) || < ezp [[ (9) |/
where g(w) is a polynomial in A, . By definition(3.5.2) ezp(g) = io: (¢/i!) , hence ezp
i8 a continuous , analytic and bounded function over D and from the mazimum modulus

theorem it takes its mazimum , which serves as its supremum , at ¢ we 09 .
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Consider :

< § [o(w) . Ywe 09

i=0 !

1==0

Henee :

¥ .(1(:17)‘ ”Vwe(n} < { > -@'ltp/g(w)/‘} Yoe 9

=0 =0 1!

sup {

pento) i < { £ L0}

1=0

Which implies that :
Il ezp(g) || < ezp( /] g/l ) (3.5.12)

By (3.5.12) we obtain :

1 > 1
/[ ezp(9) Il = ezp [I(9) ]|

Remark (3.5.5) : In the following (proof of theorem(3.5.6)) we shall need to approach
the function ezp(g(w)) , where g(w) is a polynomial in A, , sufficiently close by a
polynomial p(w)= ay + a; w + ... + a, w' . This approach can by achieved by two ways:
i)Ezpress ezp(g(w)) as .'20 g(w)‘/i! and approach by terms of g(w)'/i!, namely p(w)=

L i
= 3 owl /!
it)Ezpress ezp(g(w)) as a power series about (0.5, 0) , [Apo. 1] :

cap(o()) = emp(0.5) § B0

and rearrange in terms of increasing w' . Then the approach is achieved by polynomials
of the form :
plw)=ayg +a w+... + a, u

where p(w) consist of the first t terms of ezp(g(w)) . In the proof that follows we shall
present the first approach . In the subsequent remark(8.5.6) we shall present the same
procedure for the second approach and in ezample(8.6.1) we shall compare the two

methods . o

Proof of theorem(3.5.6)

(=) If f is a rational unit of A, satisfying the constraints (3.5.3) , then by lemma(3.5.3)
f(w)#0 , YVwe D and so f(w) does not change sign for all w in [0, 1] . If f(w) had at
least one sign change or two elements of [0 , 1] , w; , w,;,; with f(w,)-f(w,,,) <0 then
the continuity of f(w) would imply that w'in [0, 1] exists such that : w; < w' < w;,, and
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f(w’) = 0 . which is not true since f(w) i1s a unit and has no roots i @ . So for the real
w; . ... . w; of the hypothesis of theorem(3.5.2) we have that f(w,) , ..., f(w;) have the
same sign and so qq = H(w) . ..., q = f(w;) have the same sign .

(¢=) This step of the proof i1s constructive for the rational unit f(w) of A which satisfies
the constraints (3.5.3) . Suppose qy , ... , qp have the same sign . We can assume
without loss of generality that all these numbers are positive | or otherwise we have the
equivalent problem of finding a rational unit of A, , f | which satisfies the equivalent to

the (3.5.3) interpolation constraints :

f(J)( ) ql]’] 0 -'7mi—1 7i: 1 ez n (3513)

It is first shown that an h(w)e€ A, not necessarily rational satisfying (3.5.3) can be

constructed . If we construct a function g(w) € A, satisfying :

—Lexp(g( N =q;,J=0,...,m-1,2=1,...,n (3.5.14)

(dw)’ wEw;
then h(w) = exp(g(w)) is a unit of A satisfying (3.5.3) . Since w, , ..., w; are real q,
, q arc real and positive so that the Log q,, always exists and it is real for: = 1 ...,

| , then (3.5.14) can be expressed as :
g(w;) =Logqp,2=1,...,n

g(w) = g%, a0 #0 (3.5.15)

and soon for j =1,...,m;=1,2=1,..., n. Thus the original interpolation problem
has been reduced to one of constructing a function g(w)e€ A, -not required to be a
unit — satisfying the interpolation constraints (3.5.15) . Such a function g(w) can be

constructed to be the interpolation polynomial which satisfies (3.5.15) ; in other words :

i Z g®(wy) L)y (W_Wj)ﬁr; (3.5.16)

i=1 n=0 ﬂ! =1 (W.-—W )
i#gd

and g(w) belongs to A, since the polynomials belong to A, . So we have constructed a
unit h(w) = exp(g(w)) satisfying the conditions (3.5.3) . Now we construct a rational
unit in A, , f(w) which satisfies (3.5.3) . First we would like to make the following
remark . It is well known from analysis that for all €>0 there exists a polynomial p(w) ,
such that || h—p ||<e . Consider now the polynomials (w) , ¢(w) such that p(w)
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124

interpolates the same q;; as h(w) and ¢(w)=y- [jl(w—w') " Then we can write :
h(w) = (w) = o(w) - m(w)

since (h(w,) —1/)(w,))(])= O0,Vi=1,...,n,;=1,..,m-1.Furthermore :
p(wW) = ¢(w)-mi(w)+v(w)

Then as p(w) tends to h(w) , it is implied that 7(w) tends to m(w) and v(w) tends to
(w) . So Ve>0 we can find a p(w) such that || ¥y~ v || < e . From the above mentioned
we can create an v(w) such that | o | <w , where « is the highest degree coefficient of
ip(w) —v(w) and w is a given positive real number . Algorithmically this can be achieved

as follows .

Step 1 : Start with some p(w) approaching h(w) and after dividing p(w) by ¢(w) take
the difference ¥(w)—-v(w) and check | o | . If | o | < w then stop , else approach h(w) by
a new p,(w) such that || h—p)|| < |l h-p||.

Step 2 : Divide p;(w) by ¢(w) this time . Since p,(w) is a better approach for h(w) ,
from the one of step 1 , v;(w) —the new remainder —is a better approach for y}(w) . So ,
|| ¥ -v, || is closer to zero now than || 9—v || . That means , that the coefficients of
(w) —v;(w) are closer to zero than the ones of ¢(w)~v(w) and hence | o, | < | a |,
where @, is the highest degree coefficient of (w) —v,(w) . If | a; | < w then stop , else

approach h(w) by a new p,(w) such that || h-p, || < || h-p, || .
Step 3 : Repeat step 2 for py(w) and ¢(w) .

This algorithm will eventually create a v,(w) with | @, | <w . It will take finite number
of steps because when | o | > w the difference | @ | - w is finite . Proceeding now with
the proof let :
n .
d=Y |m| , )\=mm{|w,-—w]-|,Vi,j:l,...,n} ,

m = maz {m, ,..., m,} (3.5.17)
Assume that :
/\(n-l) m . n Ml .
€= —7m ,with b=} d .
(A +b)exp( || -gll) =1 k=0

Now we construct a polynomial p(w) over 9 such that :

Ih-pll < (3.5.18)
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. . _ o0 w !

By definition(3.5.2) hw) = ;0 g(,jl)
t w)' ) - ‘

p(w) = 3 8 ' ) . It 15 enough to find the appropriate ¢ such that (3.5.18) holds true .

1=0 '

By (3.5.18) we take :
lh-p| = sup{

. By remark (3.5.6) we can find ¢ = || g || and let

:sup{ ._i:; g—,‘ ,Vw Ea%}

s {‘ i:izl%; }:{Iigog_é:of_;

In order to estimate a t such that (3.5.18) holds true , it is enough to find a ¢ such that :

} (3.5.19)

} < e (3.5.20)

then by (3.5.19) we can verify that this ¢ leads to a p(w) that satisfies (3.5.18) . By
(3.5.20) , we have :

} <€ (3.5.21)

and since € is a finite not varying number , after finite number of steps a ¢t which

satisfies (3.5.21) can be found . Now denote :

where y is an arbitrary real number . Dividing the polynomial p(w) by ¢(w) :

p(w) = ¢(w) m(w) + v(w) (3.5.22)
and pd(w,) =v(w,),j=0,...,m-1,i=1,..,n (3.5.23)
We also assume the polynomial ¥(w) which interpolates Q;,J=0,..,m-1,i=1,
..., n namely : A
Y w) =0 (w) =qy,5=0,..,m=1,i=1,...,n (3.5.24)
with degree of both ¢(w) , v(w) less or equal than d-1 .
Set, : f(w) = p(w) —v(w) +¥(w) (3.5.25)

f(w) is a rational function in A, and by (3.5.23) , (3.5.24) , (3.5.25) it is implied that :
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a; = (w) =P (w) =0 Pw,) ,j=0, ... m-1,i=1..,n (3.520)

1

COIISi(lCI‘ now :

IFh = Al = [l h=p + o= [} < [ h=p || + [Jo—3p || (3.5.27)

Observe that (3.5.23) , (3.5.24) for j = 0 imply :

| o(w,)—b(w,) | < e (3.5.28)
whereas deg(v(w)-¥(w)) = p <d-1. By lemma(3.5.6) it is implied that :

| (w(w)-pw )| < Ja|- W< |al-d,j=0,... m-1 (3.5.29)

1

If | o | is greater than € , then we can increase ¢ to a t' in (3.5.20) such that if we follow
the algorithm described in steps 1 -3 , an o' corresponding to v'(w)-3(w) , with | o |

less than € can be constructed and thus :

| W)W | < o |-@ <ed,j=0,..,m-1 (3.5.30)

1

Consider now the polynomial Q(w) which has the properties :
QV(w,) = (W(w)-p(w ), i=0, ..., m-1,i=1,...,n (3.5.31)

and deg(Q(w)) = d-1 . Since Q(w) is an interpolation polynomial and the amplitude of
the values of interpolation is greater than the degrees of Q(w) and (v'(w) -¢(w)) as well
as by (3.5.31) it is implied that :

Q(w) = (v'(w) ~%(w)) (3.5.32)

By (3.5.6) the form of Q(w) is given as :

35 3 [wmg-vtm) on] L ((v"::))ﬁr (35.3)
= jJ; ; : 7
Consider now the :
[l o= || = sup { | v/(w) =$(w) | , V w € 09}
=sup { | Q(w) |,V we 8D} (3.5.34)
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n M x w— w "o v& -w,
Q) | = ‘ () =) )] L | —
i=1 ~=0 =1 \V -\ )
foy
n, " | w—w noo | w—w ]mJ
< ()t P | L L L
1=1 k=0 K. 1=1 I “"'-\\'J | J
e
and by (3.5.16) , (3.5.30) , | w~ w | < 1itis implied that :
n Ml K 1 1 n ML, 1
| Q(W) 'S z Kgo ed )\(n—l)m = € /\(n'l)m '-Z__:l Kgo d = € W b (3535)
Relation (3.5.35) holds for all we D and thus :
sup { | Q(w) |,V wedD} < _1_y (3.5.36)
A(n 1)m
By (3.5.35) and (3.5.36) it is implied that :
lo-#1l < ¢y (3.5.37)
(3.5.17) , (3.5.27) , (3.5.37) imply that :
| h—f|| < ||h=p ||+ |[v'—¥ || < e+ ¢ /\(nlm b (3.5.38)
and (3.5.17) , (3.5.38) yield :
| h-f]] « —H—r 3.5.39
I I oxpll 1] ( )
By remarks(3.5.3) , (3.5.4) it is then implied that :
Il (exp(g))"Il = || exp(-g) || < exp( |l-g|l)
or ,
1 1
> 3.5.40
Tep( @ T > axp(TET) (3:540
By lemma(3.5.5) and relations (3.5.39) , (3.5.40) =
lh-fl]< —t—r=—1 (3.5.41)

|l exp(-g) [l || " ||

Thus f(w) is a rational unit in A, which-by (4.26)-satisfies the interpolation
constraints (3.5.3) . 0

Remark (3.5.6) : We shall present here the method of constructing a rational unit of A,,

60



Chapter 3: Computational issues of the Rep(s)

which satisfies the interpolation constraints (3.5.8) by using part 1) of remark(8.5.5) .
First , we follow the same steps as in the proof of thecorem (3.5.6) to construct a unit
cxp(g(w)) in A, , which satisfies the interpolation constraints (3.5.3) . Then we ezpand
cxp(g(w)) as a power series about (0.5, 0) :

o dV00.5
cap(o(w) = es(30.5) £ T (g(w) - 9(0.5))

and rearrange in terms of increasing w' . Then we approach ezp(g(w)) by a polynomial

of the form :

plw)=ay + 0y w+ ... + a, w'
where p(w) consists of the firstt , t =1, 2, ..., terms of exp(g(w)) . Then we divide
p(w) as in (8.5.22) and construct the polynomial f(w) as in (3.5.25) . Using

remark(3.5.3) we calculate :

/| exp(g(w)) - p(w)+v(w) - (w) |/

which it is required to be less than or equal to 1/exp(/[—g(w) [|) . If it is not then we

take more terms of exp(g(w)) in p(w) and repeat the above process until :

/| exp(9(w)) — p(w)+v(w) = (w) || < 1/exp([[- g(w) /)

The algorithm takes finite number of steps to complete since , as we have pointed out in
the proof of theorem(8.5.6) , as p(w) 3 ezp(9(w)) , v(w) 3 ¥(w) and thus :

| ezp(g(w)) - p(w)+v(w) - (w) [[ 2 0

f(w) is a unit in A, , since 1/exp(|[-g(w) [} is less than 1/[] ezp(-g(w)) || ,
(remark(8.5.4) and lemma(3.5.5)) . As it will be demonstrated in ezample(3.6.1) , this

algorithm is faster than the one described in the proof of theorem(8.5.6) . O

The proof of theorem(3.5.1) is a consequence of the proof of theorem(3.5.6) bearing in
mind the transformation of constraints (3.5.2) to (3.5.3) . The inverse transormation
from (3.5.3) to (3.5.2) is also possible .

Proof of theorem (3.5.1)

(&) frp,i=1,...,1 does not change sign then the same happens with q;4—(3.5.2) ,
(3.5.3)) - and by theorem(3.5.6) a polynomial unit f(w) of A, exists that satisfies (3.5.3).
Furthermore f(1/(s+1)) = u(s) is a rational unit in R@(s) — propositions(3.5.4)
(3.5.5) — and satisfies the interpolation constraints of (3.5.2) .
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(=) If {(s) is a unit in Rc_p(s) then the r,, , i = 1, ..., [ must not change sign clse we

could find s; in P such that {(s;) = 0 which is not true . 0

3.6. CONSTRUCTION OF THE CLASS OF MINIMUM DEGREE REMAINDERS

Let v(s) , g(s) be two rational , proper and P-stable functions . Consider the
Euclidean Division of v(s) by g(s) as it was defined by theorem(3.4.1) . It is well known
by proposition(3.3.3) and remarks(3.4.2) , (3.4.3) that there does not always exist a
unique pair of quotient and remainder for a Euclidean division . Thus it is interesting to
investigate classes of remainders with least Euclidean degree , [Vid. 4] , [Var. 5] . In
what follows we shall show that the least possible Euclidean degree which the remainder
of a Euclidean division may have is equal to the number of the sign changes of the
dividend at the extended , real , positive , in ascending order positioned zeros of the
divisor . Namely the sign changes in the set {v(s;) , i = 1, ..., [}, with s; the real

positive finite and infinite zeros of g(s).

Theorem (8.6.1) : Let v(s) , g(s) be two coprime functions of R?(s) and v (g(s)) =n,
R s} the zeros of g(s) in P with multiplicity {m, , ..., m,] respectively and {s,,
.., &} are extended , real , nonnegative , in ascending order . Then the least possible
degree of the remainder of the Euclidean Division of v(s) by g(s) is v the number of sign
changes in {v(s,) , ..., v(s)} and a representative of the class of remainders of such a
degree is given by the form :

[ S—b‘
r(s) = ,1;‘[ ?s+11j u'(s) (3.6.1)

where b; are in RY U {0} and s;< b; < s;,, whenever v(s;)-v(s;;,)< 0,i=1,...,1,
v<l ,u'(s) is a unit in R@(s) .

Proof
Let v(s) = g(s)-q(s) + 7(s) is the Euclidean Division of v(s) by g(s) with q(s) , 7(s) th
quotient and the remainder respectively . Then 7(s) = v(s)-g(s)-q(s) and 79(7(3)) =

o

=~ (v(s)-g(s)-q(s)) . Now we consider the set :
P
{v(s,-)—g(s,-) q(st)} = {V(Si)} ’ =1 DREENE) l
It contains v sign changes so :

7(s) = v(s) - &(s)-q(s)
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has at least v roots in P and thus by (3.3.9) , v (7(s)) >v . Now we construct an r(s)
P

such that :

T, (T(8)) = v

Let: ‘
v (S-—l)._)
T(s) = ;[:_Il (541)
b, are real positive and s; < b; <s;,,, whenever v(s;)-v(s;,) <0 ,¢=1,...,1, (7(s)=

=1if v =0) . If we find a unit u(s) in qu(s) such that :

(vis) us) P =76s)? j=0, . mo-1,i=1,...,n (3.6.2)
Then the function V(s) = v(s)-u(s)-7(s) vanishes at the zeros of g(s) in P as well as at
their multiplicities , so the zeros of g(s) in P are also zeros of V(s) , in ¢ , and from

proposition(3.3.2) there exists t(s) in RGP(S) such that :
V(s) = g(s) t(s) & v(s) u(s)-7(s) = g(s) t(s) & v(s) u(s) = g(s) t(s) + 7(s)
v(s) = 8(5) 15) w7(6) + 7(5) w(s) # _(1(5)-w(6) = v

And we have constructed the class of remainders 7(s)-u™'(s) with the possible minimum
degree v . Now we must construct a unit u(s) in R@(s) such that (3.6.2) holds . First we
consider the values (7(s;)/v(s;)) , ¢ = 1, ..., n, which are real and do not change sing
Vi=1,..1.By(3.6.2) and the type of Leibnintz for the 72 order derivative of the
product of two functions we have:

J

5% () e) w6 = (s

x=0
. -1 . .
) T(Si)(J)_{ JZO (i) vi(s,) “(S.‘)(N)}
3 _ K=
or u(s;)” = o) (3.6.3)
j=0,...,m-1,1=1,...,n, where u(s,)( ) = u(s;) = :IE:'; . Set
=) =0, ,m-1,i=1,...,n (3.6.4)

By (3.6.3) and the theorem(3.5.1) it is possible to construct a unit u(s) in pr(s) such
that the interpolation constraints (3.6.4) hold , since r;3 do not change singVi=1, ...,
! . This construction is possible by using the algorithmic interpretation of the proof of
theorem(3.5.6) . In remark(3.6.1) we give the algorithmic interpretation corresponding

to the method of remark(3.6.6) :
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Algorithm for the construction of a unit of IR@(S) for which (3.6.4) holds

Step 1: Set v the number of sign changes in {v(s,) , ..., v(s,)}
Step 2 : Sct
T(S) — ﬁ (S_bi)
1=1 (S+1) ’
b, real and s; < b; <s;,, , whenever v(s;) - v(s;;;)<0,1=1,...,lor7(s) =1ifv =0
Step 3:Setr,; = u(s,-)(j), J=0,...,m-1,2=1,..., n, where:

N (7) _ k=0
u(st) - v Si)
Step 4 : Set
—_1 —
w‘—s,-+1’l—1’ ,
Step 5: Set .
’ ()5 |
q,-j=r1-]-——;—_ﬁ-—,]=0,...,mi—1,z=1,...,n
Wy
Step 6 : If:q,o <0 then set qi; = — q;; and follow the construction for these qj; .

Step 7 : Factorize g(s) as in (3.3.6) and set s = ((1-w)/w) in its non unit part , (use
the types of remark(3.3.2)) . This results to a polynomial ¢(w) .

Step 8 : Solve the equation :

' exp(d(w) | =4q

(dw)’ wsw,

with respect to d(j)(w,-) —d(w) polynomial ~ and set a,; = d(j)(w,-) ,
j=0,...,m=1,2=1,...,n.Thus a d(w) that interpolates the

values a,; can be constructed .

Step 9 : Set h(w) = exp(d(w)) , (a non rational unit of A,) .

SteplO:Setd':f:m,~,z\=min{|w,~—wj|,Vi,j=1,...,n},

i=1
m = mazx {m,; , ..., m,} .
Step 11 : Set
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Step 12

Step 13

Step 14

Step 15

Step 16

Step 17

A(n-l) m
€= ) m ~
(A + b) exp( || -d [])
m.-1
withh = S 2 (d), || =d || =]ld|| = ¢, the norm of d(w) .
i=1 k=0
O ( L)
stimate a t such that ¢ [ e~ igo o < € and set p(w) = '_;0 g

Divide p(w) by ¢(w) as p(w) = é(w) m(w) + v(w)

Construct the polynomial (w) which interpolates q;; , j =0, ..., m;-1,

1
r=1,...,n.

Set « the highest degree coefficient of (¢(w) —v(w)) . If | « | > € then repeat
steps 12,13 for t' > ¢ ,until | a | <€ .

Set f(w) = p(w)-v(w) +¥(w) .

If step 6 has been used then substitute f(w) by —f(w) in the following.

Theorems(3.5.1) , (3.5.6) , propositions(3.5.4) , (3.5.5) imply that u(s) = f(1/(s+1)) is a
unit in qu(s) satisfying (3.6.4) and by (3.6.3) , (3.6.4) = (3.6.2) holds true . o

Remark (3.6.1) : The method introduced in remark(3.5.6) can be algorithmically

interpreted: as follows : Steps 1 through 9 remain the same as above .

Step 10 :

Step 11 :

Step 12 :

Step 13 :

Step 14 :

Step 15 :

Algorithm for the implementation of remark(3.5.6)
Set € = 1/exp(c) ,withc=||d || =||-d || , the norm of d(w) .
Expand exp(d(w)) as a power series about the point (0.5, 0) .
Is same as step 14 in the proof of theorem(3.6.1) .

Fort =0, set p(w) =ag + a;, w+ ... + a, w' | the first ¢ terms of the
expansion of exp(d(w)) .

Is same as step 13 in the proof of theorem (3.6.1)

Calculate the norm || exp(d(w)) - p(w)+v(w) —(w) || , (use remark(3.5.3)) .
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Step 16 : If || exp(d(w)) - p(w)+v(w) —tp(w) || < € then go to step 17, else go to step 13

and set ¢ = t+1 , then repeat steps 14, 15 . 16 until the inequality is true .
Step 17 : Is same as step 16 in the proof of theorem(3.6.1) .
Step 18 : Is same as step 17 in the proof of theorem(3.6.1) . O

Remark (8.6.2) : Let f(w) be a rational unit of A, such that u(s) = f(1/(s+1)) satisfies
(3.6.4) . Such an f(w) can be found by using either the first or the second algorithm
described above . A natural number t corresponding to f(w) ezists and is constructed
either in steps 12, 15 of the first algorithm or steps 18, 16 of the second . For all t' >t
set p,(w) to be : | ¢ d(w) .

eztherigo —7 1 9T % e w+ ...+ ap W
according to steps 12, 15 of the first algorithm or steps 13, 16 of the second . For the
g(w) of step 7 in both algorithms and each p,(w) , set v,(w) to be the remainder of the
Fuclidean division of pl,(w) by g(w) . For the ¢¥(w) of step 14 in both algorithms set
fi(w) = pt,(w)—vt,{w)-/—zb(w) . The family F of all rational units of A, , f(w) , such that
u(s) = f(1/(s+1)) satisfies (3.6.4) is parametrized by the above mentioned procedure .
As a result the family U of units , u(s) , that satisfy (3.6.4) is parametrized by F via the
transformation w » 1/(s+1) . Finally , if s, , ..., s are extended , real , nonnegative
zeros of the divisor g(s) and v the number of sign changes in {v(s;) , ..., v(s)} the
family of least Fuclidean degree remainders , R , of the Euclidean division of v(s) by
g(s) is parametrized by :

v (S—bi) _ .
%R, :{ r(s) = .I=I1 1) u(s),V b;eR* U{0} and 5;< b; < s;4, 3f (i) v(5i41) < O,
i=1,..,1, U(S)=f(1/(8+1)),\7’f(w)€‘f} o
Example (3.6.1) : Let v(s) = ((s-2)/(s+1)) and g(s) = (((s-1)° s)/(s+1)°) and so the
zeros of g(s) in P are s, = 1 and s, = 0 with multiplicities m, = 2 and m, = 1
respectively . First we use the algorithm of the theorem(3.6.1) :
Step 1 : The number of sign changes in {v(s,) , v(s;)} = {05, =2 }is 0 thusv = 0.

Step2:7(s)=1.

Step3:rg=-2,1=-05,1;= -3.
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Step4:w, =05,w,=1.
Step5:qu=-4.4y=-05,q,;,=12.
Step6:q)y,=4,9p=05,q), = -12.
Step 7:g(w) = (-4) w'+ 8w’ - 5w+ 1.

Step 8 : The polynomial d(w) = 2.30685 — 0.682234 w —2.31777 w? , interpolates the
values a = Log(4) , a,= Log(0.5) , a = (q'”/q'w) = -3.

Step 9 : h(w) = exp(d(w)).

Steps 10,11 :d' =3, A =05, m=2,c = 256283 ,b =5, e = 0.00367077 .

dlw):
Steps 12 : ¢t = 10, p(w) = % (ZV'V) :
1=0 .

Step 13 : Dividing p(w) by #(w) the remainder v(w) = 9.99995 w? - 21.999 w + 12.5 .

Step 14 : The polynomial ¢(w) = 12.5-22 w + 10 w” interpolates the values q' =4,
10
Q.= 0.5, q.= - 12 .

Step 15 : |:a | = 0.00005 < €.

Step 16 : f(w)= p(w) —v(w) +p(w) =

— 10.0425 — 6.85058 w —20.9377 w? + 15.3397 w® + 21.6445 w*-17.1466 w® -
~14.7701 w8 + 12.7249 w’ + 7.47859 w® - 7.00523 w® -3.00314 w'° + 3.00128 w!l4
+ 1.00387 w2 - 1.00002 wb - 0.288763 w!t + 0.253267 w'® + 0.0703417 w'® —
~0.048267 w7 —0.0127835 w'® + 0.00362908 w®+4 0.00123292 w?®

Now we study the same example in view of the algorithm in remark(3.6.1) .

Steps 1 through 9 are the same as above .
Step 10 : ¢ = 0.0770863 , c= 2.56283 .

Step 11 : The expansion can be done using a mathematical package (ie. Mathematica ,
etc) .
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Step 12 : Is the same as step 14 above .

Step 13 : For t=14 | take as p(w) the first 14 terms of step 11 .
Step 14 : v(w) =9.99853 w? - 21.9981 w + 12.4994 .

Step 15 : || exp(d(w)) - p(w)+v(w) —¢(w) || = 0.0209831 .
Step 16 : || exp(d(w)) - p(w)+v(w) —(w) [| < €.

Step 17 : {(w)= p(w) —v(w)+h(w) =

— 10.0376 — 6.83549 w — 20.9018 w? + 15.2007 w® + 21.5539 w* - 16.6366 w® —
~14.6357 w® + 11.6296 w'+ 7.32686 w®—5.50139 w® - 2.8155 wi%+
+ 1.65489 wi'+ 0.782572 w2 —0.242195 w® - 0.117545 w'

We can clearly see that the second algorithm gives a less degree unit than the unit of
the first one . This is due to the approaching of exp(d(w)) by terms of d(w)'/:! which
employ in p(w) all the terms of the polynomial d(w)' , something not always necessary .
In other words we may need only the few first terms of d(w)' and not all of them so
that p(w) will approach exp(d(w)) as close as required . And finally u(s) = -£(1/(s+1))
is the unit which interpolates the values ry = -2 , 1y = =05, 1,;, = -3 . By
theorem(3.6.1) a least degree remainder of the Euclidean Division of v(s) by g(s) is
u!(s) , while corollary(3.6.1) implies that the class of all least degree remainders of the
Euclidean Division of v(s) by g(s) is ® = { u(s) =-f!(1/(s+1)) ,VHw)eF } . u]

3.7. CLOSED — LOOP STABILITY AND MATRIX EUCLIDEAN DIVISION .

Consider the standard feedback configuration associated with a lumped , linear , time

invariant (continuous - time) system :

Y,
Uy +~ C Yi,1 <8 P Y,

+

4

Suppose that P, Ce JL(RG}(S)) (where (R (s)) is the ring of matrices with entries in

R (s)) Let (N, , Dp) , (ﬁp N p) be any R 38— —right coprime, (R (s) - left coprime) ,
factonzatlon of P and let (N, D), (Dc N ) be any R (s)—rlght coprime , (R (s) — left
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coprime) , factorization of C . Under these conditions the problem of feedback

stabilization leads to the following equivalent statements , [Vid. 4] :

2) The pair (P, C) is stable .

12) The matrix N. N, + D. D, is unimodular L (NN, + D.D, = 1) (3.7.1)
111) The matrix N}) N, + 5,, D, is unimodular , ('\vp N. + 13,, D.=1) (3.7.2)

The parametrization of all stabilizing controllers or equivalently the construction of the
‘family of solutions of equation NeNp +D.D, =1 , (Np N. + Dp D, = I) , is given by
the set :

#(P) = {(Y-R Np) ' (X + R Dp) : ReM(Ry), | Y-R Np| #0}

={(X+Dp8)- (Y- N,8)* :Se MR, ), Y - NpS| £0} (3.7.3)

Many times it is essential to be able to select the elements of #(P) with the least
possible number of unstable poles . The number n of unstable poles of a stabilizing

controller from $(P) is given by :
=7, (IY-R No|) = 7, Y- N,S)) (3.7.4)

where , v as in (3.2.9) and proposition(3.4.1) . Hence , the least possible number m of

unstable zeros of the elements of $(P) is given by :
©m = min { ’y@(| Y-RN,|): RleL(qu(s)) JY-RN,| #£0}
:min{y@(l?—NPS|) Se MRy0) |Y - N, S| #0} (3.7.5)

The expressions | Y -R Ny |, or | (Y N, S) |, in (3.7.5) motivate the study of the
following problem, [Vid. 4] .

Problem : Given A | BGJﬂ:(TRGP(s)) , (where Jﬂ;(R@(s)) is the ring of matrices with
entries in R?(S)) , with A square and A , B right coprime , (the matriz [ AT : BT J' is
full column rank for all the finite s in P and the im [ AT : BT [F is a full column rank
matriz as well) , over what elements of R@(S) does | A + R B | vary . 0|

Theorem (8.7.1) : Suppose A , Be Jﬂ:{R@(s)) are right coprime and A is square . Let
a= = [ A | and b denote the greatest common divisor of all the entries of B . Then the

sets { a + 1 b :reR (9 }and { | A+R B | : RG.A'I:(R (8)) } are equal . As a

consequence !
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min {7@(/ A+R B : Re./ﬂs(Rcy(s)) J=min{y (a+1d): reRG}(s) = I{a , b)
P
where , v was defined in (3.2.9) . O
p

Remark (3.7.1) : The first part of the theorem means that , if any element f in qu(s)
can be expressed as a + r b for some T‘ER?(S), then there exists an R in Jﬂo([RGy(s)) such
that f = [ A+R B [ and conversely. O

In order to derive the number m of (3.7.5) , we set @ = | Y | and b is the g.c.d. of the
elements of Np . Then by using the algorithm described in section3.6 the family of
remainders ® with least Euclidean degree d , of the division between a and b can be
constructed . By theorem(3.7.1) the number m of (3.7.5) is equal to d and the
parametric matrices R can be found by the knowledge of the family of quotients @
corresponding to % , [Vid. 4] . Using theorem(3.7.1) we can expand Euclidean division
for the square matrices A , B in A(R@(s)) .

Corollary(8.7.1) : Suppose A | BE.AL(IR@(S)) are both square , with | B [#0 . Then
there exists and R € Jﬂ:ﬂR@(s)) such that :

1, ([ A+R B ) <~ (1 B]) (3.7.1)

Proof

If| A| =0, (3.71) is satisfied with R = 0, so suppose | A |#0 . Let F be a greatest
common right divisor of A, B andlet A= A;.F,B =B,-F.Leta, =| A, |and b,
denote the greatest common divisor of all the elements of B, . Then theorem(3.7.1)

implies that , for some R € ./ﬂ:(R?P(s)) :

7@” A+RB) = 7@“ Fl)+ ’YGP(I A+R By|) = ’79(| F|)+1I(a, by) <

<1 (IFD+a,0) <9 (IFD+9 (1B )=7,(BD

This completes the proof . 0

3.8. CONCLUSIONS

The very important — for stabilization of unstable control systems — Euclidean Domain
of proper and C, stable rational functions , R.(s) , (P = €, U{oo}) has been

considered in this chapter . A detailed analysis of a method for introducing
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unique —modulo o € R™ —factorization and hence a  definition for exact division
between two clements of R@(s) has been described . The important property of non
uniqueness of Euclidean remainder in the Euclidean division in Rcy(s) leads to the need
of characterization of the various families of remainders according to invariant
characteristics as for example 1s the number of zeros in P . The need for constructing
the family of least Euclidean degree remainders of the Euclidean division in R@(s) , has
implied the transformation of this problem to the construction of a rational unit over
the Disc Algebra of symmetric analytic functions which map the Discm into
the complex numbers , under certain interpolation constraints . A description of this
Disc Algebra has been made and an interconnection between its units and the units of
Rcy(s) has been given . An algorithmic construction of the required unit has been
introduced and the family of least possible Euclidean degree remainders has been
constructed . The knowledge of the least degree family of remainders in R?(s) has been
used in the last section of chapter 3 for the estimation of least unstable poles stabilizing
controllers . An extension of the Euclidean division in matrices over R@(s) has been

provided .

71



CHAPTER 4

THE GREATEST COMMON DIVISOR OF A SET OF
POLYNOMIALS : A GROBNER BASES APPROACH

4.1 INTRODUCTION

4.2 STATEMENT OF THE PROBLEM - PRELIMINARY RESULTS
4.3 SCALAR ANNIHILATING TOEPLITZ BASES

4.4 MATHEMATICAL PRELIMINARIES

4.5 CONSTRUCTION OF THE GCDs OF A SET OF POLYNOMIALS
4.6 PROPERTIES OF THE ELEMENTS OF 9

4.7 CONCLUSIONS

73

73

78

85

90

93

97



4.1. INTRODUCTION

The notion of the common divisor of a set of polynomials of R(s] is the basic
mathematical tool underlying the definitions and properties of concepts , such as
multivariable zeros , [Mac. 1] , decoupling zeros , [Ros. 1] , of Linear Systems theory .
This concept is central in the computation of tools such as Smith forms , Hermit forms
matrix divisors etc. of the Algebraic Systems theory , [Kai. 1] , [Kuc. 1] , etc . The
computation of the Greatest Common Divisor (GCD) , {(s) , of a set of m polynomials
of Ris) , p(s) , of a maximal degree é , has attracted a lot of attention , [Bar. 1] , [Bar.
2] , [Kai. 1] , [Kar. 7] , {Kar. 8] , [Mit. 1] , [Mit. 2] , [Mit. 4] . The role of GCD in the
solution of problems of Linear Control theory is well established , [Kai. 1] . Various
approaches for the computation of the GCD of p(s) have been established ; an
analytical survey of the existing numerical methods can be found in [Mit. 2] , [Kar. 7] .
Characterizations of the GCD in terms of standard results from Linear Systems theory
and their relation to classical Matrix Pencil theory can be found in [Kar. 2] . Our aim
is to provide an alternative characterization for the GCD , {(s) , of a set of polynomials
represented by the vector p(s) , by expressing the relationship p(s) = q(s)-f(s) in
terms of real matrices , (basis matrices (b.m.) P, Q of p(s) , q(s) respectively) , and
the Toeplitz representation of f(s) . This relates the GCD with the existence of a special
Toeplitz base W = {W} of a subspace ¥ C N, {P} ; this base has the additional property
that the nonzero entries of W, (the matrix formed by {W}) , have a certain expression
involving the coefficients of f(s) and ¥ has the greatest possible dimension , (¥ may be
N,{P}) , that the latter may happens . The above leads to the introduction of an
algorithm 'which constructs the coefficients of the GCD as a tuple which belongs to a
certain affine variety . The employment of Groebner bases , [Cox. 1] , [Bec. 1], [Har. 1]

[Sha. 1] , is essential for the application of this algorithm .

4.2. STATEMENT OF THE PROBLEM - PRELIMINARY RESULTS
Let p(s) €R™s), O{ p(s) } = 6 and express p (s) as :
p(s) =[p,»P 11D, | -€s) = P-ggs) (42.1)
5)=1[1,s,..,8]"
where , P € R™*(*+1) j5 the basis matrix (b.m.) of p (s) .

Problem : Let p (s) , q (s) € R™(s) and let us assume that :
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p(s) =4(s)fls) (4-2.2)

where | f(s) = fy + fi-s + - + fo-s"€Rs) . The problem that arises is to express
relationship (4.2.2) as an cquivalent relationship with real matrices and thus provide

alternative means for characterizing the GCD of polynomaials . a

IfP:[EO,;_)l,...,p 1,Q=[q ,q ,...,g_d]aretheb.msofE(s),(_1(3),then:

s 20’ 4

p(s) =(q +4q s+---+gdsd)-(f0+fls+m+f,cs")

or , P,= 9, f
p=q 1+ q £ (4.2.3)
Eaz gd fK
or , _
L q, 0 0 - -
Bt | 9% ] b
El : gl .0 f,
. = gd gﬂ : (4-2-4)
0 q, gl :
L I_)&_ : . .o L f'c B}
| 0 -0 g

Relationship (4.2.4) is the Toeplitz representation of (4.2.2) , or (4.2.3) and it is referred

to as Composite Toeplitz representation . An equivalent form to (4.2.4) is given below :

[, £ o £, 0 - 0 |
0 fo f, - £
Do 0
[P‘O,El’ )Bd, 12612[%1317 ’gdagy ,Q] fo fl fK
(4.2.5) C
0 S
or, - -
P=[Q:0]Ts) (4.2.6)
where ,
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fo £, - £, 0 . 0
0 f £, - f, :
e .
: fg £, - i,
: L)
0 S0

where | T4(f) e R D=(é+1) is referred to as the 8 — Toeplitz representation of f(s) € Rys]
with « = 9{ f(s) } <6 . We shall denote by R,[sj the set of all polynomials of maximal
degree x and by RYs) the subset of R,[s] such that for all f(s) € Rg[s]b , 1(0) #0 ; this
subset will be referred to as a regular subset of R,(s) . If f(s) = f, + f;-s + - +
+f_-s" € RY%s] and denote by Ts(f) the 6§ — Toeplitz representation of f(s) , é > k , where :

We shall denote by T4 the set of all matrices of the T(f) type :

Clearly | T5(f) | #0 and :

fo
0

fo fl M fK 0 0 ]
0 f0 fl : fn
Do .0
: f, f, - f |eRE+D=E+D (4.2.7)
: RN )
f fo fogr o f5 |
f0 fl frc
’ . . fn+l
f, 1 £, |eRE+D+D) (4.2.8)
L
0 f,

Lemma (4.2.1) : The set T; , under the multiplication of matrices , i3 an abelian group

with I5 | as identity .

Proof

It is trivial to verify the properties of the abelian group ; we shall prove the existence of
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an inverse for all the elements of I . Let Ty(f) be an element of T4 (as in (4.2.8)) , then

-1

by using induction we shall prove that there exists an element of Tg , T(f)™! such that ,

Ty(f) - Ty(f) '= I, . For é = 0, T4(f) has the form Ty(f) = | f, ] and clearly the matrix
To(f)'= [ (1/ f,) ] belongs to Ty, and Ty(f) T,(f)'= I,= 1 . For § = 1 . Ti(f) has the

form :
, f, f
Tl(f) = !
0 f,

— —

(1/f) (~1£,/10)

and clearly the matrix :

T)(f)'=
0 (1/f)

belongs to T, and Ti(f) - T)(f)'= I, . Let now suppose that for § = n the hypothesis
holds true , we shall prove it for § = n+1 . Let :

Bo & ' Bk Bk+1 ' Bn
0 8 & - &«
Lo Bk+
T(H)1E] gy g - B |€RBFDE+D)
g1
0 o o e 0 g

be the inverse element of T, (f) . Set as T}, , {(f)! the matrix :

8 & ° BxBcti1 " Bun b

0 g & - & . ! g

: K ' . gn+l£

=] R R gg"+‘en<~+2>=<"+2>

. 1.3

g

0 0 g g

L 0 0 g
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. n+1
with : - Z fi'gn-i-d—l
— t=1
b= r

Clearly T, , (f)"! belongs to I,y and T, . () - Ty, () '= 1, , . 0

The group (T4, -) will be simply denoted by T ; using the properties of this group we
have that (4.2.6) may be expressed as :

[Q:0]="P Ty (4.2.9)
where , T5(f) = T5(f) .

Remark (4.2.1) : Condition (4.2.9) may be scen as the reverse of the condition defined
by (4.2.2) and thus it s equivalent to an esztraction of a divisor from p(s) polynomial
vector . The extracted divisor is defined as the polynomial corresponding to the matriz
Ts(f) = Ts'(f) . It is clear that the extracted divisor becomes a ged , if and only if the
number of zero columns in [ Q¢ O ] is the mazimal possible that can be extracted by

7‘6( f) type of transformations , the inverse of which corresponds to a polynomial . a

In the following remark we state some useful results for the later development of the

topic .

Remark (4.2.2) : If f(s) = fo + fy-s + -+ + f.-s* €RYs) , then without loss of generality
we can assume that fy = 1. Then a § — Toeplitz representation , Ts(f) , of f(s) , 6 >« ,
is given as in (4.2.7) , where fy= 1 . If we take T; (f) this is an upper triangular
Toeplitz matriz in T and even more its elements are of the type (; Ca f"),-'j ,
a=(a; , a3, ..., a, ) EACN A finite , f* -—-ff'l . fo5 and ¢, real constants . If we
fiz a 6§ >k , then all the elements of T., the inverse of which corresponds to f(s) for
k=0, 1,..,6 must have elements of the type (g’: Cy fa).‘,,‘ . If we fiz k as well and find
the inverse Tj'(f) , of the Tys(f) , 6 — Toeplitz representation , then we can find the
inverse of the of the § — Toeplitz representation of 1 + fy-s + -« + f.;- 87 by simply

where

setting f. = 0 in T3 (f) . On the same token we can characterize the elements of T4 , the

inverse of which corresponds to a polynomial f(s) € RY(s) . o

Remark (4.2.83) : Let f(s) = 1 + fi-s + -+ + f,-s*€R%s] be the gcd of a set of
polynomaials then the family of geds is given by D = { u-f(s) , u€ R- {0} } and hence

the parametrization of f; ,1=1,2 , ..., kis given by g; = u-f; . a

Remark ({.2.4) : If Pe R™C+1) 45 the b.m. of a set of polynomials with rank P = p ,
the greatest number of columns of P that can be annithilated is 7 = §+1—p . Hence , 7
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is the upper bound for the degree of the ged of the set of polynomials and s achieved
when an clement Ts(f) of Ty exists such that [Q:0,] = P-Ty(f) and the inverse of
7’,, (f) is the r — Toeplitz representation of a polynomial f(s) with deg 7. a

Remark (4.2.1) implicitly connects the existence of elements of 95 , such that (4.2.6)
holds true , to the investigation of the right null space of P for bases of Toeplitz type ,
the elements of which satisfy certain conditions . In the next section the notion of scalar
annihilating Toeplitz bases is introduced and their contribution to the construction of

the family of geds of a set of polynomials is investigated.

Note : If W denotes a full column rank matrix , W , or {W} , will denote the basc

formed by the columns of W and vice versa .

4.3. SCALAR ANNIHILATING TOEPLITZ BASES

In the following we state a condition for the existence of matrices Ts(f) such that
(4.2.9) holds true , (with O €R™" , r<rt = §+1-rank{ P }) . This condition is
connected to the bases W of YN { P } . More precisely if W, denotes a base of
v, cN{P},withrank{W,} =dand ¥, Cc¥,,,,i=1,2,...,7, then:

Proposition (4.3.1) : Let P = [Eo % B 26]6 R™+1)  with rank P = p . Then a
matriz ?}(f) , such that (4.2.9) holds true (with O€ R™", 1<r<7, ), ezists if and
only if there ezists a base W; of ¥, C N { P } |, for i=r , such that it has the following

form : —

Ws-y  Wgepyq - Ws
Woopoy Woop . Wsoy
Wg-r-1 .
W= w, : . |eREtVr (4.8.1)
Wy Ws-r-1
0 0 W,

where , w, is non zero .

Proof
(=>) Let a matrix Ts(f) , such that (4.2.9) holds true (with O € R™" | 1<r< 1), exists
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then Té»(f) is a matrix as in (4.2.8) . Since the maximal number of columns that ”f(g(f)
annihilates is » | if we select the last r columns of Té(f) . an ROT D7 matrix is formed
and 1s denoted as W, . This matrix is of the form (4.3.1) | has its low ra1 part invertible
and O = P-W, . Hence W, is a base for ¥, ¢ N.{ P } of the form (4.3.1) .

(<) Let a base W, of ¥, C N { P} of the form (4.3.1) exist , then we form the matrix :

WO W1 \VK ‘vn-}-l"' W&
0 wy w, - w,
L Weg
T&(f)z : oW Wy e W ER(6+1)1(6+1)
Wi
0 -« v v 0wy
T‘J(f) is of the form (4‘2'8)a’nd[QEO]:P'T6(f),WithOGR"‘”,lgrST, 0

Definition (4.3.1) : A base W, of the type ({.3.1) will be called an r - scalar annihilating
Toeplitz base (r.s.a.t.b.) , or r — annihilating base (r.a.b.) for simplicity . 0

Remark (4.8.1) : The condition of proposition(4.3.1) is necessary and sufficient as far
as the annihilation of columns of the b.m. P in (4.2.9) is concerned , but as the ezample
below illustrates , it is only necessary when it comes to the estimation of the gcd of the

set of polynomials with b.m. P . o

Example (4.3.1) : Let p(s) = | s*~1,5*-s*+2 s —s—1 |7, then the basis matrix of

p(s)is:
-1 00 01
P=
[ -1-1 2-1 1}

6§=4,rank P =2 ,7=6+1-rank P =3 . Clearly the set of polynomials has as its gcd
the (s—1) . If we try to find the family of gcds of p (s) using proposition(4.2.1) , first we
must find an 1 - annihilating Toeplitz base W € R**! , for some ¥ c N,{P} , with its (5,
1) element nonzero . Then W can generate a Toeplitz matrix 'T‘,,(f) , which annihilates
the last column of P . If the condition of proposition(4.3.1) is sufficient then T!(f)
must be a Toeplitz matrix corresponding to a first degree polynomial of the form
u-(s-1),u€eR-{0}. A base B for N { P } is given by :

79



Chapter {: The GCD of a set of polynomials — a new approach

1 0 0 0
B = 0 -1 0 1 0
0 2 0 0

and for W =[10001]" we sce that the (5, 1) element is nonzero and hence the

Toeplitz matrix generated by W is :

the inverse of T,(f) is :

which clearly does not correspond to a first degree polvnomial . But if we try a second
base of N,{ P }, let say §, given by :

T
-1 -1 -1 -1 -1
G= 0 -1 0 1 0
0 -1 -1 -1 0

Then the Toeplitz matrix ’T}(f) generated by 1 - annihilating base C = [-1, -1, -1,
-1, -1]"is:

[ -1 -1 -1 -1 1]

0 -1 -1 -1 -1

T,H=| o0 0 -1 -1 -1
0 0 0 -1 -1
00 0 0 -1 |
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which annihilates the last column of P and its inverse is T;l(f)

1 1 0 0 0
0 - 10 0
T\ (f) = - 1 0
11
0 -1

which clearly corresponds to the polynomial (s -1) . Hence the condition of proposition
(4.3.1) is necessary (else no annihilating Toeplitz matrix would exist at all ) , but not

sufficient . O

Example (4.3.1) leads us to impose further restrictions on the form of the r.a.b. of

proposition (4.3.1) . Let p(s) € R™s] , with b.m. P= | P, s B, s P, e Rm=(6+1)

rank P = p, 7 =8+1—p . Let f(s) = 14 f;-s + --- + {.-s* € Rs) and T(f) be its
§ — Toeplitz representation as in (4.2.7) . Consider T!(f) , then by remark(4.2.2) its

clements are(an f"),-,j ,t=1,...,6+1,5=1,141....,6+1.

Proposition (4.3.2) : f(s) is a gcd of p (s) if and only if there ezists a base W, of a
¥.cN,{ P} such that : W_ is a k- annihilating base and its elements are given by
(;ca fa),.,], i=1,2,...,841,5=6-k+1,6-k+2,..,86+1 with « the
greatest possible (k <T) . 0

Comment : The proposition in other words states that if K , k<7 , is the greatest
possible for which an element ?s(f) of T4 satisfies [ Q: O, | = P.'T&(f} and T4(f) =
=T5'(f) is a 6 — Toeplitz representation for a polynomial f(s) of degree « then f(s) is a

ged and vice versa . 0

Proof of proposition(4.3.2)
(=) If {(s) is a gcd of p (s) then by simply following the steps (4.2.1) - (4.2.9) of section
4.2 we reach the equation :

[Q:0.] =P Tyf) (4.3.2)

where , T5(f) = T5'(f) and Ts(f) is the § — Toeplitz representation of f(s) . By remark
(4.2.2) the elements of ’T}(f) = T5'(f) are (;ca fa),-’j ,i=1,...,6+1,73=1,1+1,.,
6 +1 . Inspection of equation (4.3.2) leads to the conclusion that the matrix W, formed
by the last x columns of 'T5(f) forms a base W, of a ¥, c N { P}, such that, W, is a
x —annihilating base and its elements are given by (;co j"‘)‘-’j ,i=1,2,...,6+41, j=
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=b-k+1,6-k+2, ..., 6+1 and because {(s) is a ged x is the greatest possible
(h<T).

(¢=) Let W be a base of a ¥, C N {P} . such that : W_ is a x —annihilating base and
its clements are given by (;(t“ f“),»y_) a=1,2,...,6+1, ) =0-K+1.,6-K+2,...,
b+ 1 , with & the greatest possible | # <7 . Then the last column of W, generates a
Toeplitz matrix Ts(f) the inverse of which corresponds to the 8 — Toeplitz representation
of a k degree polynomial f(s) , (remark(4.2.2)) . For the T(f) equation (4.3.2) holds
true. If we follow the reverse steps (4.2.9) —(4.2.2) we conclude that {(s) is a common
divisor of the set of polynomials p(s) and hence it divides the ged of p(s) , let say t(s),
(deg t(s) = d) . But we already know that a necessary condition for t(s) to be a ged is
the existence of a Toeplitz matrix T4(t) which satisfies equation ([Q:0,] =P T4(t)
and its inverse is the § — Toeplitz representation of t(s) . Since & is the greatest possible,
k<t , for which such a T6(t) exists it 1s implied that d=« . Hence , from the
polynomial division in R(s) we conclude that t(s) = u-f(s) , u€ R-{0} . Thus , by
remark(4.2.3) f(s) is a ged for the set of polynomials p(s) . 0

Now we can reexamine example(4.3.1) and explain why the base W failed to give us
the ged , whereas base C did not . Since the ged of the set of polynomials p(s) = [s*-1,
st_s%+2 |, s*—s-1 |" is the polynomial f(s) = 1-s , we need an 6-Toeplitz
representation T,(f) of (1-5) the inverse of which T;'(f) annihilates the last column of
P’ . Generally the elements of 9, , the inverse of which is an é ~ Toeplitz representation
Gy i=0,1, .., 4,
j=i,i+1 ..., 4. Hence, in order a first degree polynomial to be a ged of p (s) a base
C of a subset of N,{ P } must exist such that € = [}, -], , —f; , 1]7. Since f, =
=_1 is implied that C = -C = [-1, -1, -1, =1, =1 ]7, whereas for all
feR-{0}, W=[10001]"is not of the form [ f} , £}, f} , —f,; , 1 |T. According to

proposition(4.3.2) we should examine the cases k = 3 and k = 2, k<3, first and then

of a polynomial (1+f; s) must have elements of the type (( -1y f{)

the case k = 1 . This examination employs methods based on Algebraic Geometry and
will be discussed later on after the presentation of the main mathematical results
required , has been completed .

In the following we give a method for the characterization of r —annihilating bases of
a space N,{A} , A€R™™" | as they where introduced in proposition(4.3.1) and
definition(4.3.1) without the additional constrain of proposition(4.3.2) about the type of
their elements . This characterization 1s useful when the gcd of a set of polynomials
with b.m. A has degree , d , equal to dimN {A} , (remark(4.2.4) , proposition(4.3.1)) ,
and is much more easier than the one described in section 4.5 when d < dimN,{A} . Let
AeR™" , dim N, {A} = r . Then A can be considered as the b.m. of a set of m
polynomials p(s) , with deg(p(s)) = n . Let W, be a base of N,{A} . If W, is an
r — annihilating base for N.{A} then A.-W_= O, , W, is of the form (4.3.1) and its
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lowest rzr part is full rank . Then we can write :

WnWi oWy

WorWyp 0 W

WW e W

W._ = e jr
r 1 0 .- 0
1 :

o .0

LO 0 ... 1

where , 7 = n-r

multiplying W, by the full rank matrix :

e Rﬂl‘l‘

U Upg Uy

0 U, U3 U,
U= U3

0 0 U,

0 0 0 ug

and G, = W,-U . Alternatively , we may express G, as :

—

2
Wi14g 'le“uz_‘. .........
1=
2
\V'z‘uO lez‘llz_' .........
=
2
leuo E w].‘.u2_'. ......... -
1=1 i
Gr = uO ul .........
0 Uy e e
0 0 ...
0 0 e

r-1
DR YL B
1=1

r-1
3 W,
1=1

r-1
w..u

Jivr-1-1

U,

U,.3

=z
]

r-i

<
by
=

r-a

) ["]ﬂ .I-l[\’]ﬂ

-
—

(4.3.3)

. Then all the r —annihilating bases §, of N {A} are constructed by

(4.3.4)
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Among the rclations between the elements of G, we regard those which express the u, |

Kk=1,2,...,r=1,(uycan be an arbitrary nonzero element of R) , which are :
llK:W(j'K+l)l U.(),f\- = 1 ,2,....]

2
U = _len Uy
1t =

3
U2 = _leli Uz (4.3.5)
1=

r
Upp = <leli Up-jei
1=

or equivalently ,

W(J-_H_muo,n:l,?,...,j
ux:{ (4.3.6)

k-74+1
Z Wii Ug-j-i 41 y K =)7+1 a]+23---ar_1

—

It is clear that when j>r—-1,u i =w W,k =1,2,...,r-1. By (4.3.5) , or

(4.3.6) it is obvious that we can write :
U, =¢CelUg,k=1,2,...,7-1 (4.3.7)

where , ¢, is a sum of products of elements from the first column and row of W, and is
casy to calculate from (4.3.6) . Hence , an r —annihilating base G, of N,{A} is expressed

as a multiple of base W _by :

1 ¢ v g €y
0 1 - ¢3¢y
U= uq- : : : Cr3l =1,y-C (4.3.8)
0 0 1
0 0 0 1

Then the characterization of all the r — annihilating bases of N, {A} , 9, are given by the
relation D, = W, -C-uy , with u, an arbitrary nonzero real number .

Remark ({.8.2) : Proposition(4.3.2) clearly states that the ezistence of r — annihilating

Toeplitz bases of N, {A} with a special type of elements (; Ca f°'),-' j 18 related to the
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enistence of a ged f(s) =1 + fi-s + - + f-s" €RYs) of p(s) with [ = AV A asdn
remark(4.2.2) . The knowledge of the last column of such a base is enough for the
generation of the whole base . Hence | the question arising is for which f, , ... | f, real

f, # 0 a column vector :

v=[(Cca f s (D S ] (4.9.9)
belongs to N.{A} and generates an r.a.b. Or | in other wards for which f, , ..., f, real

f, # 0 the system of equations :
A-v=0 (4.8.10)

holds true . If the system (4.3.10) has no desirable solution then a gcd of degree r does
not ezist and the next step is to examine the ezistence of a gecd of degree r—1 . This
investigation is similar to the one for the case of degree r apart from the fact that now
we set f. = 0 in (4.3.9) and (4.8.10) and the result (if any) will be the characterization
of (r—1)- annihilating Toeplitz bases of a Y1y C N {A} . On the same token we can
ezamine the cases of degree 1= (r—j3) , ..., 1, whenever the cases degree i=r , ...,

(r-7j+1) fail to gwe a ged , j=0, ..., (r-1). 0

The solution of (4.3.10) under the constraints v asin (439) and f, , ..., f real f, 20,
i=r,..,1, will be examined in section 5 . First some necessary mathematical results

from the theory of Varieties and Ideals is presented .

4.4. MATHEMATICAL PRELIMINARIES

The set of equations (4.3.10) as described in remark(4.3.2) forms a system of
nonlinear equations over R and thus the study of solution of (4.3.10) requires results
from algebraic geometry . An introduction to the main concepts of Algebraic Geometry
required is given in th following . Further details can be found in [Cox. 1} , [Bec. 1],
[Har. 1], [Sha. 1] .

Definition (4.4.1) : A monomial in z, , ..., 7, is a product of the form z:’ z:" ,

where all of the ezponents a; , ..., a, are non negative integers . The total degree of

this monomial is the sum Y o; . 0
i=1

Let a = (e, ..., @,) be an n - tuple of non zero integers . Then we set x* = x(;’ x:"

When o = (0, ..., 0) , note that x* = 1 . Let % be an arbitrary field .

Definition (4.4.2) : A polynomial fin z, , ..., z, with coefficients in % is a finite linear
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combination (with coefficients in 36) of monomials . We will write a polynomial f in the

form :

fly , ..., x,) =f= ‘%“ c, 1", ¢, e
where the sum s over a finite number of n - tuples o = (a, , ..., a,) . a

The ring of polynomials in x, , ..., x,, and coefficients in 3 is denoted by %[x, , ..., x,]

n

Definition (4.4.3) : Given a fieldl % and a positive integer n we define the
n — dimensional affine space over % to be the set %" ={ (e, ,...,a,), ¢, ....,0,€% JO

Definition (4.4.4) : Let % be a field and let f, , ..., f, be polynomials in Kz, , ... . =
Then we set :

Yih,  f)={(a, ..., 0,)eX" :fifay,..., a,)=0,YV1<i<s}

nl -

We call V(f, , ..., [,) the affine variety by f, , ..., f, . 0
Definition ({.4.5) : A subset IC %z, , ..., ,) 15 an ideal , if it satisfies :
1) 0ed.
i) Iff, g3, then fges.
ii) If fe3 and he H(zy , ..., 2], then h-fe 3. q

Definition (4.4.6) : Let fy . ..., f, be polynomials in %z, , ..., z,] . Then we set :

(v by ={ Shifiih, . he%z, ..., )}

1=1 g
Lemma (4.4-1) - If fy , ... fye%lzy , ..., 2,0, then ( f, , ..., f, ) s an ideal of W[z, ,...,
z,] . 0

Definition (4.4.7) : We say that an ideal IC K[z, , ..., z,) is finitely generated if there
exist f, , ..., f, €%lz, , ..., z,) such that I=(f, , ..., f, ) and we say that {f, , ..., f,}
i3 a base of 3 . g

Proposition (4.4.1) : If {f,, ..., f,} , {91, ..., 9.} are bases of the same ideal in %z, ,
L,z s0that (fy, ..., fL)Y=(g,..., 9 )thea¥(fy, .., f)=%Y(g,,..., 9,)- 8}

An extension of the polynomial Euclidean Division in %[x] can be introduced for %ix,,

..., X,,] . First an ordering relation for monomials is required .
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Definition (4.4.8) : A monomaal ordering over %[z, , ..., z,] . ts a relation > on N | or
equivalently any relation on the set of monomaials |, a e N satisfying -
t) > is a total ordering .
i) Ifa>pf and yeN" | thena +y> 3+ 7.
1) > is well- ordering on N™ | or any non empty subset of N" has a smallest element

under > . a

Definition (4.4.9) (Lezicographic Order) : Let a = (o) , ..., a,) and 8 = (B, , ...,
B,) eN" . We say that o > B if , in the vector difference a -3 e N" | the left most non

zero entry is positive . We will write :
« .
>, ifa>, B 9]

Since (1 ,0,...,0)>,,,(0,1,...,0)>,,,- >,,.(0,0,...1)is implied that

Xy > ger > lex Xn -

Proposition (4.4.2) : The lezicographic ordering (lez. ord.) on N" is a monomial

ordering. 8]

Actually there are many other orderings (as the graded lex. ordering . reverse graded
lex. ordering) which are monomial orderings . In the later we shall need to confine

ourselves to the lex. ordering .

Definition' (4.4.10) : Let f = 3 ¢, 2% be a non zero polynomial in Xz, , ..., z,] and
let > be @ monomial order . )

i) The multidegree of f is : multideg(f) = max faeNY : ¢, # 0} , (the maz is taken
with respect to >) .

ii) The leading coefficient of fis : LC(f) = ¢nyirideq(s) €% -

iti) The leading monomial of f1is : LM(f) = gmuttidea(f) (with coefficient 1) .
iv) The leading term of f is : LT(f)= LC(f)- LM(}) . 0

Theorem (4.4.1) (Division in %z, , ..., z,]) : Let > be the lez. ord. on N" and F = (f, ,
..., f.) an ordered s—tuple of polynomials in %[z, , ..., z,] . Then every fe %z, , ...,

z,) can be written as :

f=t1f1+"'+tsfa+r

where , t; , e %[z, , ... , T,) and either r = 0, or r is a % — lkinear combination of
monomials non of which is devisable by any of the , LT(f,) , ..., LT(f,) . We will call 7 a
remainder of f on division by F . Further more , if t; f; # 0 then we have :
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multideqg(f) > multideg(t, f,) O

Remark (4.4.1) : The remainder and quotients (v . t,) defined in theorem (4.5.1) are
unique (modulo >) . a

Definition (4.4.11) : An ideal IC [z, , ..., z,] is a monomial ideal if there is a subset
A c N" — possibly infinite — such that 3 consists of all the polynomials which are finite
sums of the form Y h,-z% , where a €A , h,e Nz, , ..., z,] . In this case we write

5:(15“;(16!\). ]

Theorem (4.4.2) (Dickson’s Lemma) : A monomial ideal 3=( z° ; a €A )C %z, ,

1) can be written in the form 3= ( 202y where o(1) , ..., a(s)eA . In

ey

particular 3 has a finite base . 0

Definition (4.4.12) : Let 3c ¥(z, , ..., z,] be an ideal other than {0} :
i) We denote by LT(9) the set of leading terms of the elements of 3. Thus ,

LT9) = { c 2" : there ezists fe 3 with LT(fy= ¢ 2 }

ii) We denote by ( LT(3) ) the ideal generated by the elements of LT(3) . o
Theorem (4.4.3) (Hilbert Base Theorem) : Every ideal 3C %z, , ... , z,] has a finite

generating set . That is3=(g,,..., g,) for some g, , ..., g, in 3. 0

Definition (4.4.13) : Let > be the lex. ord. A finite subset G = {g, , ..., g,} of an ideal 3

is said to be a Groebner base , (or standard base) , if :
(LT(9), ..., LT(g) ) = ( LT(9) ) o

Corollary (4.4-1) : Let > be the lex. ord. Then every ideal $c %z, , ..., z,] other that

{0} has a Groebner base . Furthermore , any Groebner base for an ideal 3 is a base of D
Definition (4.4.14) : Let IC %olz, , ... , z,] be an ideal . We will denote by ¥ (3) the set :
YO={(a1,..., 8, )eX" : flay,..., a,) =0,¥ fe}}

Proposition (4.4.8) : ¥(3) is an affine variety . In particular if S=(f, , ..., f. ), then
YO=Yth,.... £) - o
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Proposition (§.4.4) : Let G = {g, , ..., g} be a Groebner base for an ideal ¢ ¥z, , ...,
£,) and let fe3 .Then there is a unique re %z, , ... , z,] with the follounng two
properties :

t) No term of r is devisable by one of LT(g,) . ... . LT(g,) .

i) There is g€ 3 such that f = g+ 7. 0

Corollary (4.4.2) : Let G = {g, , ... , 9.} be a Groebner base for an ideal 3C %z, , ...
z,) and let fe 3. Then fe 3, if and only if the remainder on division of f by G is zero O

)

Definition (4.4.15) : A reduced Groebner base of a polynomial ideal 3 is a Groebner base
for 3 such that :

i) LC(p)=1 for allpe§ .

it) For allpe G, no monomaial of p lies in ( LT(G- {p})) . o

Proposition (4.4.5) : Let 3# {0} be a polynomial ideal . Then for the lez. monomial ord.

9 has a unique reduced Groebner base . 0

The previous results enable us to solve systems of polynomial equations by using the

elimination and extension theorems .

Definition (4.4.16) : Given 3=(f, , ..., f,)CHlz, , ..., T, , the k% elimination ideal
S, is the ideal of Wiz, , ..., z,) defined by 3, = INB(z 4y, ..., Ty - a

Theorem (4.4.4) (Elimination Theorem) : Let 3C %[z, , ..., 7,] be an ideal and let § be
a Groebner base with respect to the lez. ord. , where z, >, . -+ > ., 2, . Then for every

U<k <n the set :
Grc = Gn%[zx-}-l y sy zn]

is a Groebner base of the k& elimination ideal 3, . o

Theorem (4.4.5) (The Extension Theorem) : Let 3=(f, ,..., f,)cCiz , ..., z,] and let

3, be the first ehmination ideal of 3. For each 1<i<s, write f; in the form :
N, . .
fi=9i(z2, ..., 2,) -1y ' + terms in which z, has degree < N,
where N;> 0 and g;€Clz; , ... , z,] is non zero . (We set g; = 0 when f; = 0) . Suppose

that we have a partial solution (ay , ..., a,)eV(3) . If (a0y ,..., 0, )¢Y (9, ..., 9.) ,
there ezists a; € C such that (a; , ..., a,) € ¥(3) . g
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Corollary (4.4.8) - Let 3=(f, , ..., f;ycCiz,, ..., z,] and let 3, be the first elimination
wdeal of 3. And assume that for some 1, 1<i< s, f, is of the form :

fi = c 2} + terms in which z, has degree < N

where N > 0 and ¢ € C s non zero . If 3, s the first elimination ideal of 3 and (a, |

a,) € V(9,) then there is a, € C such that (a; , ..., a,) € ¥(9) . 0

4.5. CONSTRUCTION OF THE GCDs OF A SET OF POLYNOMIALS

Now we can return to remark(4.3.2) and try to elaborate the method described over
there for the construction of a gcd of a set of polynomials . Proposition(4.3.2) and
remark(4.3.2) imply the following theorem . Let p (s) € R™[s} , with b.m. P = | P, o P>

.5 P, ]ER'"I(6+1) .withrank P =p,7=6+1-p . Letf(s) =1+ f,-s+ .- +

+f,s'€R%s), i =7,7-1,..,1and Ty ,(f) be its 6 - Toeplitz representation as in

(4.2.7) . Consider Tj'(f) , its elements are given by ():C,, f"‘)
:[{,K—{-l,...&‘*‘l.

k=1,...,6+1, =

Ky

Theorem (4.5.1) : f(s) is a ged of p (s) if and only if there exist fy , ..., f, real fi# 0,
such that the system of equations :

' P-v=0 (4.5.1)
where | y-': [ (%‘, ca f) 541y 0 o (a ca f*)s+1),64+1) [° and v generates an
i — Toeplitz annihilating base for some ¥;c N, { P}. a

In the following we give an algorithm for the construction of the family of gcds of a set

of polynomials.
Algorithm for the Construction of the GCD of a Set p (s) € R™s) , deg(p (s)) = 6

Let p(s) € R™s) , deg(p(s)) = 6 , with bm. P=[p , p , .., p, J€R™C*D  with
rank P=p, 7 =¢é+1-p. Then the degree d of the ged is0<d < 7.

Step 1:Setf(s) =1+ f;-s+ - +f;-s?€RYs), f,,...,fyreal {;#0,and set d = 7 .

Step 2 : Set T 4(f) the é — Toeplitz representation of f(s) ,
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Step 3 :

Step 4 :

Step 5 :

Step 6 -

Step 7 :

Step 8 :

Step 9 :

4: The GCD of a set of polynomials — a new approach

0 1 f f, :
P 0
Tb,d(f)é 1 f £, |eRE+D=C+D
. P f]
0 ... ... ... ... 0 1

Set Tj'y4(f) the inverse of Ty 4(f) .

Set v the last column of T3 4(f) ; v= [ (T c, PN a1y s o
(;Cu F) s +1). (5 +1) T

Consider the system of polynomial equations P.v= 0, or
tl(fl y veey fd) - tg(fl y veey fd) = e = tm(fl y eeey fd) =0
) fd] .

Setﬂ'—‘(tl ,tz,...,tm)CR[fI y o

Consider the lexicographic monomial order ( >,,, ) in N9, with £y > e -

2lex fd :
Set G = {g ,..., &} areduced Groebner base for the ideal 3=(t,,t,,...
cRif,, ..., 140

The solutions of (4.5.2) under the constraints f, , ..
variety and by propositions (4.4.1) , (4.4.3) ¥(t, , t;, ..., tm ) =
= ‘V(gl 182000 gt) .

., fyreal f, #0 form a

> lex

b))

Step 10 : According to the Elimination Theorem - theorem(4.4.4) -G, = GNRf. ., , ...,

f;1,£=0,...,d-1,is a Groebner base for the th elimination ideal 3, .

Step 11.

: Set k = d -1 in step 10 . §4., is a polynomial in R(f,) .

a) If f; real non zero belong to ¥(Gy.,) then we apply the extension theorem

—theorem(4.4.5) — to find the ¥(Q,) , x =d-2,..., 0, as long as the

constrain f, , ..., f. ., real holds true . If the procedure is completed

successfully for all « , then we form the matrix W, € RE+1)zd 50 00

proposition(4.3.2) and test whether W, is a d.a.b. for a ¥, c N,{P}, or

equivalently whether P-W, = Oy, . If it is then f(s) of step 1 is a gcd of p (s) .
b) If either ¥(G4-,) is not subset of R* , or for some xk = d-2,...,0, ¥(G,) fails
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to comply with the constrain f; | ... . f_ real , or Wyis not a d.ab. fora ¥, c
c N, {P} then there exists no ged for p (s) of degree 7. In this case we search
for a ged of degree d = 7-1, ..., 0 by simply setting each time d =71 ...,

Oinstep 1, (or cquivalently f, =0 ,f_, =0, ..., f, =01 step ). ]

Comment : When we apply step 11 b) we need not repeat the steps £ through 7. We can
simply set f,=0, f,., =0, ..., fi = 0 each time to the reduced Groebner base we have

already found in step 8 and repeat the steps 9 trough 11 . 0

Remark (4.5.1) : The construction of a degree d ged f(s) of a set of polynomials , or in
other wards the construction of the fi , ... , f; real fy# 0 clearly leads to the
construction of the vector v in step 5 . This vector generates a d — annihilating Toeplitz
base W, for a ¥4 C N {P}—proposition({.3.2) , remark(4.3.2) . Then all the
d - annthilating Toeplitz base ¥4 of ¥4 are characterized by the relation Fy= W, -u
u €R" , because all the d — annihilating Toeplitz bases F, of ¥, correspond to the gcd

g(s) = f(s) v, ueR" a

Example (4.5.1) : Let p(s) = [s*-2s + 1,8+ s°-s-1,25°+3s?-5 5|7, then the

basis matrix of p (s) is :

-1-111
P={1-210
0 -53 2

=3, rankP=2,7=6+1-rank P =2.
Step 1 : Set f(s) =1+4+f-s+---+1f;scRYs),f,,...,f;real f;#0,and set d = 2.

Step 2: r 7

1 f f, 0
0 f, f
T3’2(f) é 0 ; f2 € R4:4
1
0 0 1
- -

Step 3: Ts,(f) 2 (a;;) ,i=1,2,3,4,j=4,..,4anda,; =1,a,= -f,

ala=ﬁ;fz,al4 = —f; + 2{; {, and a;; is the same in the i - j entries .
Step4:y_ =[ —{‘l’+2f1f2,f§—f2, —fl,I]T.

Step 5: P.v= 0, gives the system of equations :
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t(f,, ) =fF-fi-2f, f,—f, +f, +1 =0
to(f, ) = -2 426, f,~f, + 2f, =0 (4.5.3)
ty(fy , f) = =5 -3 f,+5f,+2=0

Step 6 : Set 3= (t,,t,,ts) CRIf, , £y,

Step 7 : Consider the lexicographic monomial order ( >, ) in N*, with f, >, f, .

Step 8 : Set G = {g, , g} = { f,, 1 + f, } a reduced Grocbner base for the ideal 3.

Step 9 : The solutions of (4.5.3) under the constraints f, , f, real f, # 0 , form a varicty
and by propositions(4.4.1) , (4.4.3) ¥(3) = ¥(t, , t,, t3) = V(g , g2) -

Step 10 : According to the Elimination Theorem(4.4.4) G, = GNRif, , f51, G, =

= GNRif,] are Groebner bases for the 0% and 1 £ elimination ideals §, = 3 =

=({g,8):h=(81).

Step 11 : ¥(3,) = {0} and f, = 0 . Hence , part a) fails and d = 2 does not qualify as a
degree of a gcd of p (s) . Applying part b) we search for a ged of p (s) of degree
d = 1, or in other words set f, = 0 in step 1 and consequently in step 8 . The
new Groebner base for the ideal 3 t, , t, , t5 ) is § = {g;} which imply f;=-1.
The latter generates an 1 — Toeplitz annihilating base W, for some ¥, c N {P}
sincefor W, =[1,1,1,1]7,P.W, =0 .Thus the polynomial of
1 +f,.s = 1-s, qualifies as a gcd of p(s) . o

4.6. PROPERTIES OF THE ELEMENTS OF 7,

Let 95 be the multiplicative group of upper triangular Toeplitz matrices as it was

introduced in lemma(4.2.1) and let T s be an element of T as :

f0 f1 fn fn+1 f6
0 f() f] fx
: . . fK+l
T, s8] oofy £ e £, |eREFNHEFY (4.6.1)
: f,
L 0 0 1 i
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Let b = [ by, ..., bgland b' T, s = a® = [ a, L0, 0], k=06,

N

sy A

Definition (4.6.1) : The clements T,y of T for which a " = [ by , ... . b, ] cxists such

that : b" Ty =a' =[ay, ..., a0 . 0,..., 0], =0,..,6-1wlbe caled
b — annihilating Toeplitz matrices or (b.a.m) . a
Proposition (4.6.1) : Let b* = [by, ..., bs]and a" =[ay,...,a,,0,....0,],~ =

=0,...,6 . Let T, s and T}, 5 be as :

4y @ a0 - 0 by by e by e e by |
0 ay o -+ a, - 0 b, b, --- b, - :
Co 0 SR :
Tavéé : ey @ -+ a, |and Tb,aé by b, b, (4.6.2)
: L : o by
0 oo cii i i 0 gy 0 - o e s 0 b,

Then the matriz Ty s = T, 5- Tpls = T,;,l(;- T, s is a 6 — Toeplitz annihilating matriz for

V" and vice versa .

Proof

()b =[byg,....bs |- Tpls-Tas=[1,0,...,0] - Tos=[ag,...,2,,0,...,05]=
a’ . Hence , Ty 5= Ta,é-Ti,fé = TL}5~TG,6 is a d.a.m.

(<) Let T; s be a b.a.m. and let [ by, ..., bs]-Tys=[ag,...,a,,0,...,05] . This

equation generates the following set of equations :

[bOa--',b6]'T}',6:'[a'Ov-'-)a‘vaa---aO&]

[O’bO""’bé'l]'Tf,6=[O’aﬂ""’a‘nio""’OS'l]
: : (4.6.3)
[0"'-3b07"'ab6-n]'Tj,6=[07"')06-,¢1a0?"'7a'n ]

[0,...,b0]'T1,6=[0,...,05,80]

The set of equations (4.6.3) can be equivalently written as T, 5-T; ;= T, s and hence
Ty5=Tas Tois = Ths Tays - 0

Remark (4.6.1) : Let f(s) = a(3)/b(s) , a(s) = ag + a,-8 + -+« + a,-8*, b(s) = by +
+by-8 + - + bs-5* coprime . Then ,
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i) If k<6 , then for the vectors &' = [by , ..., by ] and o' = [ L0, 0]
there ezists the matriz Ty 5 = Ty - T?—M , such that ' T, , = a' | where T . Ty, are
6 — Toeplitz representations of a(s) , b(s) respectively . The czpression of T, , as the
fraction (T, , / Ty 4) is related to the ezpression of f(s) as a(s)/b(s) . Hence | we can
assurne that Ty 5 is a & — Toeplitz representation for the proper rational function f(s) .
This representation is unique since the 6 — Toeplitz representations of a(s) , b(s) are
unique .

1) If k> 6 , then we find the § — Tocplitz representation of f'(s) , T

17l = Tb 5 7: 8
_ 7l
and set Ty ¢ = T}-x’é .

it1) If a(s) = 0, then we define as the 6 — Toeplitz representation of f(s) = 0 the matriz

Let p (s) € R™s], with b.m. P = [ Py P, v Py e Rm=6+1) deg(p (s)) = é . Let b(s)
be a common divisor of the set of polynomials p(s) and a(s) an arbitrary polynomial

with deg(a(s)) < deg(b(s)) . For all such b(s) , a(s) we take :

P (s)-(a(s)/b(s)) = q(s) and deg(q (s)) <6 (4.6.4)

When a(s) is constant equation (4.6.4) generates the common divisors of the set of

polynomials p (s) . Or equivalently :

p(s)-(c/b(s)) = q(s) and deg(q(s)) < 6 (4.6.5)

If Qis the b.m. of q(s) and following the same steps as in section 4.2 equation (4.6.5)
can be brought to the same form as equation (4.2.9) , namely , [ Q : 0 | = P~Tb,5 ,
where :fb,i? is the inverse of the § — Toeplitz representation of b(s) . In section 4.3 we
noticed that even though elements of 95 which annihilate columns of P may exist , they
do not necessarily correspond to 4 — Toeplitz representations of common divisors of p (s)-
Furthermore , those elements of 95 which correspond to é§ - Toeplitz representations of
common divisors of p(s) form a set T, which has no particular structure under the
multiplication of 5 . Hence , it would be interesting to try to give to that set a
structure under a new operation . Let f denotes the subset of 9, which contains all
the &-Toeplitz representations of the proper rational functions (a(s)/b(s)) which
satisfy equation (4.6.4) . T, is a superset of T, . In the following we shall define an
operation among the elements of T, and show that T,u{0;,,} , (Os,, is the
6 — Toeplitz representation of the zero function) , is a commutative group . Thus ,
T q4U{O5,,}is2 commutative group under the new operation .

Definition (4.6.2) : Let Ty , Ty 5 be two elements of T, and T;; , T, s be the

g2,
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& — Toeplitz representations of f(s) = (a(s)/b(s)) , g(s) = (c¢(s)/d(s)) respectively . Then

we define the operation & over I, as follows :
T, q/ — q/ such that o /'T/y(, , Tq,o‘/ a4 T/,é Tv,é = T’w"

where | T, o s the & — Toeplitz representation of the proper rational function h(s) =

=f(s)+ g(s) . In the following we shall call & addition . a

Remark (4.6.2) : Addition in T, is well defined . Indeed , h(s) is the proper rational

function :

a(s) d(s) + c(s) b(s) e(s) + k(s)

h(s) = = :

b(s) d(s) b'(s) d(s)
where e(s)+k(s) and b'(s)-d (s) are coprime . Then b'(s)-d (s) is a common divisor of
p(s) , deg(e(s)+k(s)) < deg(b'(s) d(s)) and h(s) satisfies equation (4.6.4) . Hence , the
6 — Toeplitz representation of h(s) belongs to T, and is unique since addition in the ring

of proper functions is well defined . 8]
Lemma (4.6.1) : (T,U {Os,,}, ®) is a commutative group .

Proof
Let T, 5, Ty s be two clements of Ty and T 5, Ty 5 be the é — Toeplitz representations

of f(s) = (a(s)/b(s)) , g(s) = (c(s)/d(s)) respectively . Then T; ;0 T, s = Ty 50T, ,
since the functions f(s)+g(s) and g(s)+f(s) have the same 6 — Toeplitz representation.
Let T, 5 be the 6 - Toeplitz representations of f(s) = (a(s)/b(s)) , and Ty 5 = O 4, be
the 6§ - Toeplitz representations of 0(s) = 0-the zero function . Then T, ;& Ty, =
=Tos®Tys = Ty s, since f(s) + 0(s) = {(s) .

Let T;; , T.;5 be the é-Toeplitz representations of f(s) = (a(s)/b(s)) , —-f(s)
respectively . Then Ty s@T.; 5= T.; ;0T 5 = Ty 5 , since f(s) - f(s) = 0(s) .

Addition over T,U {Os,,} is associative since addition in the ring of proper rational

functions is . 0
Corollary (4.6.1) : By lemma(4.6.1) (T,U {Os,,} , &) is a commutative group . 8]

Lemma (4.6.2) : Let ~ be a relation in (T,U {O5,,}) z (T;U {Os,,} ) such that for
two elements of I ,U {051} T, s, Tg’6 » &~ Toeplitz representations of f(s) =
=(a(s)/b(s)) , 9(s) = (c(s)/d(s)) respectively , we have Ty 5~Ty5 , if and only if
a(s)-d(s) = c(s)-b(s) . Then ~ is an equivalence relation in T, U {0y, ,} . 8]
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T,U{04 4} can be partitioned into cquivalence classes as follows . Let T, 4 be an
clement of T,U{O4,,} . then we denote by (‘3,,.!“5 the set of all T, which are
cquivalent to T, , . The set of all C,‘/ , 18 denoted by €

Definition (4.6.3) : Let C’I‘j 5 CT“ , be two clements of € . Then an addition between
the clements of C is defined as CT],O + C',‘g‘b = C'I'h.o cwhere Ty, 5 = Ty g0 Ty s . 0

Remark ({.6.8) : Addition over C is well defined . Let C',‘] s Cr, 40 Cr, o Cpy  belong

g6

to C and C'I‘j,b = Cl"h,6 , C'l' = CTk,& ) with C'I‘/‘b' + C’I‘g, = CT,;,& ) C'rl|,6 + C'Ivk 5 =

g,8 ]

:c'l'q,o . Then C'I'p,o‘ corresponds to T, y = Ty, T, 5 and C'l'q,o corresponds to T, ; =

= Ths® Ty s . But Ty s, Ty s are cquivalent to Ty, 5, T s respectively , which implics

that T, 5 and T, ; are equivalent . Hence C'I‘p,a = CTq,é . 0
Lemma (4.6.3) : (C ,+) is a commutative group .

Proof
Let C"'/,s , 67-9,5 be two elements of C . Then CT/,a + ch,a = CTg,6 + CT!,& = cT;.,& .

since Ty 5= Ty 60T =Ty 50T, ;.

For the CT/.& , (‘37-0,6 we take that CT“ + 67'/,6 = CT/.& + CTO,& = CTf,s , since T, ;=
=To,s®Tys = Ty,s0Tos -

For the ch,s ) CT-!J we take that CT]‘é, + CT—/,& = CT-],& + CTj,b = CTo,a , since Ty 4

=Tss0T 45 =Tys0T;s.

Addition over C is associative since addition over T,U {O4,,} is . 0

4.7. CONCLUSIONS

An alternative characterization for the Greatest Common Divisor (GCD) , {(s) , of a set
of m polynomials , p(s) , of maximal degree § has been introduced by making use of the
equivalent expression of relationship p (s) = q(s)-f(s) in terms of real matrices , (basis
matrices (b.m.) P, Q of p(s) , q(s) respectively) , and the Toeplitz representation of
f(s) . The relation between the GCD and scalar Toeplitz bases , W , of a subspace ¥ of
N,{P} has been established . The additional property , that the nonzero entries of W
should have a certain expression involving the coefficients of the gcd f(s) and ¥ has the

greatest possible dimension that the latter happens has appeared in section 4.3 . This
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led to an algorithm for the construction of the coefficients of {(s) as a tuple taken from a
certain affine variety . It has been shown that Groebner bases play an essential role in
charactenizing the GCD in terms of its Toeplitz representation . The present approach
uses the notion of Groebuer bases in an explicit manner . Although simpler methods for
the computation of the GCD have already been given in the litterature | (see [Mit. 2]
and the closed form solution given in [Kar. 3]) , the present method has the advantage
that may be extended to matrix divisors , whercas the others have considerable

difficulties . Such an extension is under investigation .
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5.1. INTRODUCTION

The main aim of this chapter i1s to investigate further the structural properties of

matrices which provide solutions to matrix equations of the type :

AX=B,AeR”™"  Ber”™™ Xear™" (5.1.1)
Y A=B,AeR”" ,BeR™™ ,YeR" (5.1.2)
AX-B=C,AeR”™ Be™ , CeR'™ Xep™" (5.1.3)

prm. m K

h K.r T : .
A X, B;=C,A €™ B,er™ . Cer™ Xer™™ (5.1.4)
1=1

where the entries of the matrices are assumed over a given principal ideal domain |
(PID) , R, which in control theory problems can be either the ring of polynomials Risj ,
or proper rational functions R_.(s) , or proper and P stable rational functions Rgy(s) .
Notice that cquation (5.1.4) is a generalization of many well know matrix equations ,

such as :

A-X 4+ A X,=B,A€eR LBeRM X, e ™ (5.1.5)
Y, A+ +XpAp=B AR Ber ™ Y, e (5.1.6)
A-X+Y B=C,AeR™ BeR™, CeR"™ XeR™ Y™ (51.7)
X.A +B.Y=C,AeR” ™, BeR™, CeR*™, XeR™YeR™™ (51.8)

The structural properties of a matrix over a PID |, R | are used to generate algebraic
tools that will enable us , (later on in Chapter 6) , to formulate a unifying framework
to deal with solvability of matrix equations over R, . The existence and characterization
of families of greatest left —right common divisors , extended greatest left —right
common divisors , projectors , annihilators , multiples and least multiples of a given
matrix , or set of matrices , over % is introduced . If the known matrices in equations
(5.1.1) - (5.1.8) are assumed over ¥ , the field of fractions of ® , then the machinery of
multiples and least multiples over % of the rows , columns of a matrix , with entries
over F , is used in order to transform equations (5.1.1) —(5.1.8) to ones where all the
matrices are over % ; thus we can apply the same algebraic approach to solve matrix
equations over PIDs in the most general case , i.e. when the known matrices are
assumed over ¥ . The relation between the algebraic tools presented in the following

and the column , row % —modules , maximum % - modules of the corresponding matrix
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15 established . In the following R denotes a PID |, F is the field of fractions of R ; if

Aepm™, rankg{A} = p<min{p , m} then we associate the following vector spaces
with A
%"1 = row span of {A} over F = row space of A (5.1.9)
%:1 = column span of {A} over F = column space of A (5.1.10)
N, {A} = right null space of A (5.1.11)
N {A} = left null space of A (5.1.12)

We also associate the following %R modules with A :

./ﬂ:; = row span {A} over ® = R row module of A (5.1.13)
./ﬂ;; = column span {A} over ® = R column module of A (5.1.14)
jl;rA = the maximum % row module of A in ‘33:1 (5.1.15)
jl;; = the maximum % column module of A in ‘.B; (5.1.16)

5.2. LEFT - RIGHT SQUARE DIVISORS OF A MATRIX OVER THE PID %

We start this section with the introduction of the concept of a left , right divisor and
left , right greatest common divisor of a matrix A over the PID % . This is central to
our study of structural properties of A over % , as well as , to the characterization of
related algebraic tools concerning non square divisors , projectors and annihilators over
the given PID .

Definition (5.2.1) : Let A€ R"", rankg{A} = p<min{p , m} . A matriz T€ R,
will be called an R - left |, right divisor , (Ird) , of A over R, if there ezist matrices
Pe R, Qe R*™, rankg{P} = rankg{Q} = p , such that :

A=P.T-Q (5.2.1)

T will be called an R - greatest left , right divisor , (gird) , of A over R if it is a Ird of
A and P, Q are left | right unimodular over % . a
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The existence of a glrd of a matrix A over B is established in the following result :

Proposition (5.2.1) : Let A€ R"™", rankg{A} = p<min{p , m} . Then there always
crist matrices P e R"" Qe R, Te R rankg {P} = rankg{Q} = rankg{T} =
p, such that (5.2.1) holds true .

Proof
It is well known fact , [Vid. 4] , [Ros. 1] , that when a matrix A € R""™", rankg{A} =

=p <mun{p , m} is given , then R unimodular matrices U , V always exist such that A

DIrm

can be reduced in its Smith form over R, :

S, O
0O O
If U, V are partitioned as :
P p-p V;n
Uu=[U,,U, ],v=vm (5.2.4)
m-p

then it is clear that the matrix T = S, serves as a glrd of A over R with P = UZ and
Q:V:. a

Remark (5.2.1) : If A€ R"°" rankg{A} = p<minf{p, m} , then :
i) If p>m the notion of a glrd coincides with the standard notion of a greatest right

divisor of A .
i) If p<m the notion of a glrd coincides with the standard notion of a greatest left

divisor of A . 0

If AeR™", rankg{A} = p<min{p , m} , then A} will denote its column Hermite

form .

Remark (5.2.2) : Let A€ R rankg{A} = p<min{p , m} . If T is a gird of A over
R then (5.2.1) holds true and :

t) The rows of T- Q define a base for Jﬂ: , the rows of Q define a base for Jﬂ:

ti) The columns of P- T define a base for Jﬂ: , the columns of P define a base for .Al: 0

The above remark is helpful in characterizing the family of all glrd of a matrix
AeR"™ over B .

Proposition (5.2.8) : Let A€ R""", rankg{A} = p<min{p ,m} . If T, T € R"™ are
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two glrd of A over R then T, T are equivalent over R and we denote T £ T
Proof

We can write A =P T-Q, A=P"-T-Q .P,Per™ Q,Qc%

unnnodular matrices . Remark (5.2.2) provides that R unimodular matrices U,V exist

prm

are left | right

sucl that :
P=P.U,Q=V.Q (5.2.5)
or , using (5.2.1) for both T, T :

A=P.U.T"V.Q=P.T-Qe P (U.T.V-T). Q=0 (5.2.6)
Since P, Q have trivial right | left null spaces respectively |, (5.2.6) implies that :

UT V-T=0eU.T"V=T (5.2.7)
a
Remark (5.2.2) : If T is a glrd of A over R, any other gird , T , of A over R is

obtained by :
T=UTV (5.2.8)

for any R unimodular matrices U, V with compatible dimensions . It is clear that the
nonzero block of the Smith form of the matriz A over R is a glrd of A . ]

5.3. NONSQUARE DIVISORS OF A MATRIX OVER THE PID %

The notion of glrd of a matrix A over %R is used next to characterize the nonsquare

matrix divisors of that matrix defined in (Per. 1} :

Definition (5.8.1) : Let A€ R"™", rankg{A} = p<min{p , m} . If A can be factorized
as .

A=L.B (5.9.1)

with , L€ R"™, rankq{L} = q and BE R"™, then L is defined as an extended left
divisor , (eld) , of A over R . L will be called a greatest extended left divisor , (geld) , of
A over R if L is an eld of A and every other eld of A is also an eld of L . The notion of
an eztended right divisor , (erd) , and greatest extended right divisor , (gerd) , of A over

%R ts introduced in a similar manner . 0

The characterization of such divisors is considered next .
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prm

Proposition (5.8.1) : Let Ae R
crwsts a geld | ogerd of A, L, K |, respectively over R, which has the following

, rankg{A} = p<min{p , m} . Then there always

propervtes:
1) L. K may be cxpressed as :

for some X € R Ye T eid
) If L, L, K, K are two gelds , gerds of A over R respectively then they are right ,

left R equivalent and we denote LE, L' , K E, K .

Proof

Let U, V be appropriate R unimodular matrices such that A can be expressed in its

Smith form over R :

S, O
A=U. -V (5.3.3)
O O
IfU,U",V, V!are partitioned as :
UP m
U=[U, U0t =| "l v=| Pl vi=(Ve VI (534)
P m
Up'p vm'p

then it is clear that the matrices L = UZ-S,, , K= S,,-V;" are an eld , erd of A over R .
Furthermore if X = V2 | Y = U: then it is straightforward from (5.3.3) that :

L=A-X,K=Y-A (5.3.5)

If J', D' arc any eld , erd of A over % respectively then by definition (5.3.1) is implied
that :
A=J.B, =B,D (5.3.6)

with B, € """, B,e R" 2, ¢, = rankg{J'} , g, = rankg{D’} . (5.3.6) and (5.3.5)
imply that L , K are a geld , gerd of A over % .

1) (5.3.5) clearly implies (5.3.2) .

i) Let L e R%, rankg{L} =¢ ,L'€ RP™ | rankg{L} = ¢ be two gelds of A over R
respectively . Then by definition(5.3.1) they serve as elds of one an other respectively
and thus matrices B € R¥=Y | B' € R7? exist such that :

L=L.B',L'=L.B (5.3.7)

or equivalently ,
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L=L.B-B.L'=L-B"-B (5.3.8)
Sinee the gelds have trivial right null spaces (5.3.3) implies that :

B-B'=1,,B-B=1, (5.3.9)
The latter can happened if and only if ¢ = ¢' and B , B" are B unimodular . Thus

(5.3.7) implies that L £, L' . The proof for the gerds follows along similar lines . 0]

From the proof of proposition (5.3.1) the link between the gelds , gerds and the gelrds of
A over R, as well as , the corresponding decomposition of A are established . Thus we

may state :

Corollary (5.8.1) : Let A€ R, rankg{A} = p<min{p , m} , Te€ R’ be a glrd of
Aover® ,and A = P.T-Q. Then a geld, gerd of A over R, L; , L, is defined by :

L=PTeR™ L =T-QeR™™ (5.8.10)
respectively . Furthermore A can be factorized as :

A=L-Q=P L, (5.8.11)

a

Remark (5.8.1) : Let A€ R™", rankg{A} = p<min{p , m}, T€ R’ be a gird ,
L € R’ L, € R°™™ be a geld , gerd of A respectively over R and let A = P-T-Q .
Remark (5.2.2) and corollary (5.9.1) imply that L, , L, are bases for _/ﬂ;CA ) _AL;‘
respectively . If L , K denote an arbitrary eld . erd of A over R respectively then by

definition (5.8.1) we have :

Li=L-B,L, =C.K (5.8.12)
and thus we can write :
./ﬂ:A =Jﬂ>L’§JﬂoL,Jﬂ)A :JﬂoL'gJﬂaK (5.8.13)

where | Jﬂ,;‘ , ./11;1 , Jﬂal , ./ﬂ:;\, are the R column , row modules of the matrices L, , L ,

L, , K respectively . 0

From this remark is clear that the extraction of elds , erds of A over % is equivalent to
the creation of an ascending chain of modules , containing ./ﬂ:; , .AL:‘ ; the minimal
clements in these chains are .Al:; , .Al::‘ themselves .

Remark (5.3.2) : Proposition (5.8.1) implies that all the gelds , gerds of A over % have
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cractly p = rankg{A} columns |, rows , whereas an eld | erd of A over R may have

morc . a

5.4. NONSQUARE DIVISORS OF SETS OF MATRICES OVER THE PID %

Having cstablished the above results , we now proceed to define the notions of

nonsquare divisors of two , or more matrices .

Definition (5.4.1) : 1) Let A, € RPN LeRP™, i =1,..,n. Then L, is a common
cxtended left divisor | (celd) , of the set of A; over R if it is an eld of each A; over R .
L, is a greatest common extended left divisor , (gceld) , of the set of A, over R 1f it is a
celd of each A, over R and any other celd of all A; over R is an eld of L, .

1) Let B, € G.R)pirm, L, e R 1 =1,...,n . Then L_1is a common extended right
divisor , (cerd) , of the set of A, over R if it is an erd of each B; over R . L, 1s a
greatest common cztended right divisor , (gcerd) , of the set of A; over R if it is a cerd

of each B, over R and any other cerd of all B; over R ts an erd of L, . a]

The following result establishes the relation between the gcelds , gcerds of the set of A;
over % and the notion of gelds , gerds of the composite matrix [A, , ..., A}, [B}, ...,
BT over % .
Proposition (5.4.1) : Let A;€R *, B;e R, i =1, .., n . The following
statements hold true :
i) [, € R is a gceld of the set of A; over R , if and only if it is a geld of the

composite matric :

[Av, ..., Ad (5.4.1)
over R .
ii) L, € " is a gcerd of the set of B; over R, if and only if it is a gerd of the
composite matriz :

[BY, ..., BIJF (5.4.2)

over R .

Proof
1) (=) f L€ RP* is a gceld of the set of A; over R then there exist matrices

C, e ‘.R:um", such that :
A,-=L,-C,-,i=1,...,n (5.4.3)
or equivalently ,
[Ay ;.o y Al =L [Cy ..., CJ (5.4.4)
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T .

The latter implies that L, is an eld of the composite matrix (5.4.1) . If L € ®R"* is any

qrm 1 .
, (m = 3 m,), exists such that :

eld of the matrix (5.4.1) then a matrix A € R

(Ay,...,A,] =LA (5.4.

[}
—
[eha}
~—

If we partition the matrix A according to the partitioning of the matrix [A, , ..., A,] ,
then it is clear that L is an eld of each A; over ® and thus a celd of the set of A, over
%R, . By definition (5.4.1) the latter implies that L is an eld of L; over R and thus L; is a
geld of the composite matrix (5.4.1) over R .

(«) Let L€ ®"™" be a geld of the composite matrix (5.4.1) over % . Then a matrix
DeR™", (m = ‘zn:lmi) , exists such that :

Ay,...,A,]=L;D (5.4.6)

If we partition matrix D as [D, ,..., D,], D; € R ¥, then it is clear that L, is a eld of
cach A, over R and thus it is a celd of the set of A, over R . If L € R"*? is any celd of
the set of A; over R , it also is a eld of (5.4.1) over B and thus L is an eld of L; . The
latter implies that L; is a gceld of the set of A; over R .

it) The proof follows along similar lines . 0

The results established for the geld , gerd of a matrix over ® may be extended for a

geeld , geerd of a set of matrices over R .

prm.

Proposition (5.4.2) : Let A,€ R, Bie%p"zm, i=1,..,n,A=[A,.., AJ,
B—_--/BlT , ..., BL', with rankc_;{A} =p, rankg{B} =p:
1) There ezists a geeld , L € R, of the set of A, over B , and it may be ezpressed as:

L=3% A-X (5.4.7)
i=1

for some matrices X; € R . Furthermore if L, is any gceld of the set of A; over B
then L, is R right equivalent with L; and we write L, E, L; .
it) There ezists a gceld , L. € ‘:'R:”I’"', of the set of B; over B, and it may be ezpressed

as:

L =Y Y.B (5.4.8)
i=1
for some matrices Y; € RP™ . Purthermore if L, is any gceld of the set of A; over R
then L_ is R left equivalent with L, and we write L, E, L, .
Proof
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1) Since a geld | Ly e R of the composite matrix A over R exists . proposition
(5.4.1) implies that Ly € R"" is geeld of the set of A, over R . Furthermore proposition
n
(=% mn,) . such that :

r=1

mrp

(5.3.1) has established the existence of a matrix X € R
L, =A-X (5.4.9)

If we partition X according to the partitioning of the matrix (X} , ... , X}i]' ,
X, € R then (5.4.9) clearly implies (5.4.7) . If L; is any gceld of the set of A; over
%R, , it is a geld of the composite matrix A over R as well and thus proposition (5.3.1)
implies that L; E_ L; .

11) The proof follows along similar lines . o

The module interpretation of the geld , gerd of a matrix A over ® can be expanded in

the case of a geeld , geerd of a set of matrices over R .

Proposition (5.4.8) : Let A; eR B e R, i=1,..,n,A=[A . .. AJ,
B= [B .. B,JT with rankg{A} =p, 7ankg{B} =p and L' € %Prp L € ‘fR,p""" be a
gceld , gccrd of the set of A; , B, over R respectively . If Jﬂ, _AL Jﬂ, , M

L,

denote the R column , row modules of A; , L, , B, , L, reepectwely thcn ./ﬂ; ./ﬂ: are
Ly

the smallest submodules that contain each Jﬂ: Jﬂa respectively and :

=3 RE S;Jﬂ,;i (5.4.10)

1=1

Proof
We prove the proposition for the case of A, , since the proof for the case of B, follows

along similar lines . It is clear that :

= i;lA,Ai (5.4.11)
Proposition (5.4.2) has established that L, is a geld of A over ® and remark (5.3.1) that
Moy = A, (5.4.12)

Thus (5.4.11) , (5.4.12) combined imply .Al:c =3 .Al: . The latter provides that Jﬂ,

i=1 g'

contains every JfL; Let now Jﬂa be an a.rbxtra,ry %R column module that conta.ms
every Jﬂ, . Then if dzm{Jﬂ: } = ¢, matrices K € ®"™, rankg{K} = ¢, C; € b N
exist such that :

A, =K.C,; (5.4.13)

and thus K is a eld of each A; over ® , or a celd of the set A; over B . Then K is a eld
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of Ly and remark (5.3.1) provides that -
M M (5.4.14)
Ly K

which clearly implies that Jﬂ:; are the smallest submodules that contain ecach J11;('1 .0
A A
t
The module interpretation of the geelds | geerds of a set of matrices A, over R as a base
of the "minimum cover module” of all modules generated by the columns , rows of A,
will be used in the solution of matrix equations later on . With the notion of geeld |
geerd established , we proceed to define the concept of coprimeness of a set of matrices

over a given PID |, R, .

Definition (5.4.2) : z) Given a set of matrices A, eR ,i=l»---;",A =[A, ...,
A€ R (m E m;) , rankg{A} = p , then we say that the columns of A, , i = 1,
.., nare B left coprzme if the invariant factors of a geeld , (of the set of A; over R)

are units of R .

it) Given the set of matrices B, eERT i =1 ,...,n,B=[Bf,. ., BI' e R,
(p= 2 p.) , withrankg{B} = p', then we say that the rows of B; ,1 =1,...,nare®
mght coprzme if the invariant factors of a gcerd , (of the set of B; over ‘fR,) are units of
R . o

For the analysis of matrix equations over PIDs some further algebraic tools are needed .
The notions of column , row projectors ; left , right annihilators and left , right inverses
of a matrix A € R over R are introduced . These projectors , annihilators are shown
to be generalizations of left , right inverses , and are characterized by using properties of

unimodular matrices defined over the appropriate PID .

5.5. GENERALIZED COLUMN - ROW PROJECTORS OF A MATRIX OVER THE
PID %

Definition (5.5.1) : Let A€ R™™", rankg{A} = p<min{p , m} and P, € R’

rank‘j{PI} =p, Qr € ®" P, rank‘.f{Qr} =p.
i) P, is called an R column projector , (Rcp) , of A over R, if :

frd=L, (5.5.1)
with L, a gerd of A over % .
ii) Q, is called an R row projector , (Rrp) , of A over R, , if :

A-Q =1 (5.5.2)
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unth L, a gerd of A over R . 8

5N . ; Famrata p)
Remark (5.5.1) : By definition Py Q, produces a gerd . geld of A over R and thus
. -
projects the column | row vectors of A onto the marimal R column . row module M L

jl)’t of A EB;‘ , ‘;BrA respectively o

4

prm

Proposition (5.5.1) : Every matriz A € R
Py, Rrp, Q, respectively .

, rankg{A} = p<min{p , m} has an Rcp

Proof

Let U, V be appropriate ® unimodular matrices such that A can be expressed in its

Smith form over %R :

S, O
A=U.]| * -V 5.5.3
%0 559
IfU,U!, V, V!are partitioned as
- U Ve -
U=[UP,UZP],U": ) V=1 yVi=(v VvV "] (5.5.4)
Upo m-p
then (5.5.3) can be rewritten as :
A=1U..S,-V) (5.5.5)

Corollary (5.3.1) clearly implies that the matrices L; = Uf,-S,, , Ly = S,,~V:," are a geld ,
gerd of A over R respectively . Condition (5.5.4) also implies that :

u; S, O ||V
UtA=|  [A= : eU.A=S5,V]'=1L, (5.5.6)
Uy, 0O 0 ||vh,

P

AV = AV, VT = (U U

The matrices U: , V7, are % right , left unimodular and (5.5.6) , (5.5.7) clearly imply
thatP,:U:isa.n%cp,Q,=anina.n‘:'R,rpofA. o

Proposition (5.5.2) : Let A € R, rankg{A} = p<min{p , m} , and P,, Q, be an
Rcp , Rorp of A respectively . Then Py, Q, are B right | left unimodular matrices .
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Proof
We prove that Py s an R right unimodular matriz |, since the proof for the case of Q,
follows along similar lines . Let us assume that Py s not an R right unimodular matrir .

Then we may factorize it as :

P =2r (5.5.8)
with , 2€ R"*’, a non unimodular greatest left divisor of P, , P, € RPEP rankg{P,} = p
On the other hand ,

P-A=1L, (5.5.9)

with L_ a gerd of A over R . Furthermore a matriz B € R"**ezists , such that :

A=B-L, (5.5.10)
(5.5.8) , (5.5.9) and (5.5.10) combined lead to :
P-A=P.BL =2.-PBL =2-W-L, (5.5.11)

where , W = P-BE€ R **and the matriz Z- W is not R unimodular since Z is not . But
(5.5.11) implies that the matriz Z- W- L, = L, is a gcerd of A over R and furthermore :

(Z.W-1)-L, =0 (5.5.12)
But since L, € R"*", rankg{L,} = p , the left null space of L, is trivial and thus :

Z.W=1, (5.5.18)

which is a contradiction . o

An alternative characterization of column , row projectors of A is given in the following

result .

Proposition (5.5.8) : Let A€ R™"", rankg{A} = p<min{p ,m} , A=P.T-Q, T be
a gird of A over R, P, @ be bases for the mazimum R column , row modules , jb; )
]l:; of A in ‘13; ) %:4 . Then :

i) P, is an Rcp of A , if and only if P- P is an R unimodular matriz .

i) Q, is an Rrp of A , if and only if Q- Q, is an R unimodular matriz .

Proof
i) (=) If P, is an Rcp of A then P;-A =L, is a gerd of A over B . On the other hand :
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[}

L, =P, A=P,.P.T-Q=W.L, (5.5.14)
where , W = P, P e R"", L. = T-Q is on other gerd of A over R . (corollary (5.3.1)) .
But since the gerds of A over R are R left equivalent |, (proposition (5.3.1)) , (5.5.14)

implies that W is an % unimodular matrix .

(«) If W= P, P is an ® unimodular matrix , then :
PLA=P,.P.T.Q=W.L, (5.5.15)

where L, = T-Q is a gerd of A over %, (corollary (5.3.1)) . But since the gerds of A
over R are R left equivalent , (proposition (5.3.1)) , (5.5.15) implies that W.L, is a
gerd of A over B as well and thus P, is an Rep of A .

i) The proof follows along similar lines . 0

Corollary (5.5.1) : Let P, , Q, be a pair of Rcp , Rrp of A respectively , then P;- A Q),
is a gird of A over R, (proposition (5.2.2)) . 8]

5.6. PRIME LEFT - RIGHT ANNIHILATORS OF A MATRIX OVER THE PID %
Definition (5.6.1) : Let A € RP™ rankg{A} = p<min{p , m} .

i) Let p>p and N, € KPP then N, will be called an % prime left annihilator
(Rpla) , of A if Ny is an R right unimodular matriz and :

N-A =0 (5.6.1)

mz(m

i) Let m > pand N, €R ) then N, will be called an R prime right annihilator ,
(Rpra) , of A if N, is an R left unimodular matriz and :

A-N, =0 (5.6.2)
a
Proposition (5.6.1) : Let A€ R™", rankg{A} = p<min{p, m} . Then :
i) If p>p, A has always an Rpla N, . Furthermore if Ny is any other Rpla of A then
N, , N, are ® left equivalent , i.e. , N, E, N .
it) If m>p , A has always an Ropra N, . Furthermore if N, is any other Rpra of A then
N, , N. are % right equivalent , i.e. , N, E, N, .

Proof
i) Let U, V be appropriate ® unimodular matrices such that A can be expressed in its
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Smith form over R, :

S, O
A=0TU .V (:) 6 3)
O O
If U, U, V are partitioned as :
Up Vm
Ut = P” V=’ (5.6.4)
UP'P vm-p
Then (5.6.3) implies :
Uy, A=0 (5.6.5)

and N, = Uz_p € R PP is an R right unimodular matrix and thus an %pla of A .
Furthermore since rankg{A} = p < p , the left null space of A, N;{A} , has dimension
(p - p) and thus the ®pla N, and any other Rpla N of A serves as a base of N,{A} .
The latter implies that N, , N are % left equivalent , N; £, N} .

i1) The proof follows along similar lines . 0

The following results establish the relation between Rcp , Rrp and Rpla , Rpra of a
matrix A respectively . A characterization of Rcp , Rrp of a matrix A via its Rpla ,

Rpra is introduced in proposition (5.6.2) .

pzm

Corollary (5.6.1) : Let A€ R, rankg{A} = p<min{p , m} . Then :
i) If p > p there exists a pair (P, N;) of an Rocp , Ropla of A such that the matriz :

Y, = (5.6.6)

18 R unimodular .

it) If m > p there ezists a pair (Q, , N,) of an Rrp , Rpra of A such that the matriz :

Y.=[Q ,N,] (5.6.7)

s B unimodular .

Proof
i) Let U, V be appropriate B unimodular matrices such that A can be expressed in its

Smith form over % :

S, O
A=17. ¢ .
5 9y von
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|4

Then the proves of propositions (5.3.1) , (5.6.1) imply that the matrix :

U, P,
Yi=U'=s| " |=|_ (5.6.9)
Ups Ny
satisfics (5.6.6) .

1) Following similar arguments to those in case i) it can be shown that :

Y, =V'=[V/ V’]=[Q,,N,] (5.6.10)
satisfies (5.6.7) . O

Proposition (5.6.2) : Let A € R"°", rankg {A} = p<min{p , m}, (P, , N;) be a pair of
an Rocp , Rpla of A, (Q, , N,) be a pair of an Rrp , Rpra of A respectively . Then :
t) The general family of Rocp of A is given by :

@)

Pb=UP+YN,ifp>p (5.6.11)

where U€E R is an arbitrary R unimodular matriz , Y€ RPEPP) s g parametric
TY

matriz .
B) Pi=UP ,ifp=p (5.6.12)
where U € R is an arbitrary R unimodular matriz .

i) The general family of Rorp of A is given by :

)
Q.=Q,-V+N,-X,ifm>p (5.6.18)

where VE R is an arbitrary R unimodular matriz , X € R PIe s g parametric

matric .

B) Q=9 -V,ifm=p (5.6.14)
where V€ R’ is an arbitrary R unimodular matriz .

Proof |
i) a) Let p > p and P; , P, be any two Rcps of A . Then :

PA=L,,Pj.A=L (5.6.15)

where , L, , L, are two gerds of A over % . Proposition (5.3.1) has established that L, E,

L! and thus an % unimodular matrix U exists such that :
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P,-A=U.P,-A (5.6.16)
or cquivalently ,

(P,-U.P)-A=0 (5.6.17)

Since p > p the left null space of A | N;{A} , has dimension (p - p) and thus the Rpla
of A, N, , serves as base of N,{A} . Condition (5.6.17) implies that a matrix
Y € R°*(P?) exists such that :

(P;-U.P)=Y-N,&P;=U.P, + Y-N, (5.6.18)

B) If p = p then all the Rpla of A, N, , are equal to zero , i.e. Ny = O . Thus relation
(5.6.18) becomes : '
- ' P,=U.P, (5.6.19)

i) The proof follows along similar lines . 0

Corollary (5.6.2) : If (P, N;) is any pair of an Recp , Rpla of A, (Q, , N,) is any pair
of an Rrp , Ropra of A respectively . Then :
i) If p > p the matriz :

Y, = (5.6.20)

is R unimodular .
it) If m > p the matriz :
r=[Q, N ] (5.6.21)

18 B unimodular .

Proof
i) Corollary (5.6.1) has established that a pair (P; , N;) of an Fcp , Rpla of A exists
such that the matrix :
P,
Y, =
N (5.6.22)

is % unimodular . On the other hand matrices U , W e R ® unimodular ,

Y € 3PP parametric , exist such that , (proposition (5.6.2)) :

P,=U.P,+Y-N;,,N;=W-N, (5.6.23)
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Condition (5.6.22) via (5.6.23) implies :

, U : PI + Y . Nl U Y Pl
Y, = = : (5.6.24)
W.N, O W N,
which clearly implies (5.6.20) .
i7) The proof follows along similar lines . 0

In the following the notion of left , right inverses of a matrix A € R""™ over R are

studied . The Rcp , Rrp of A are generalizations of the left | right inverses over R .

5.7. LEFT - RIGHT INVERSES OF A MATRIX OVER THE PID %

Definition (5.7.1) : Let A € R, rankg{A} = p<min{p , m} and let A€ R™F
A € R"*P. Then :
i) A, is called an R left inverse , (Roli) , of A of :

)

A4 =1, (5.7.1)
i) A, is called an R Tight inverse (i) , of A if :

A-A =1, (5.7.2)
a
The conditions under which an Rli , Rri of a matrix A exists are examined next . We

first state the following well known result :

Lemma (5.7.1) [Per. 1] : Let A€ R then :
i) A left inverse A € F"P of A ezists if and only if rankg{A} =m .
ii) A right inverse A, €T of A ezists if and only if rankg{A} = p . 0

Remark (5.7.1) : Any Rli , Rori of a matriz A€ RP*™ is also an inverse over F . Thus
a necessary condition for the ezistence of Rlis , Roris of A is that rankg{A} =m , p

respectively . 0

Theorem (5.7.1) : Let A€ R, rankg{A} = p<min{p , m}, S, = diag{S, , O} be
the Smith form of A over R then :
3) An Rli A’ € %m:p OfA ezists "f and Only 1fp = rankg{A} =m and S;l € ‘:-R)pzp.
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i) An Rri A, € R " of A exists if and only if p = rankg{A} = p and S}! € R,

Proof
i) (=) Let A, € R be an Rli of A . Then remark (5.7.1) implies that p = rankeg{A}
= m . Furthermore if U , V are appropriate % unimodular matrices such that A can be

expressed in its Smith form over R :
A=U -V (5.7.3)
then ,

A-A=AU. V=8B V=1, (5.7.4)
0 0

mzp

where , B = A;-UeR

transformed to :

. If we partition B as [ B , B"™ | then (5.7.4) is
A-A=Bl.S,. V=1, (5.7.5)
It is clear that S;! = V.B". € R™™, or equivalently S;! € R"*".

(<) Let p = rankg{A} = m and S’ € R, or equivalently S;! € R™™ If U, V are

appropriate ® unimodular matrices such that A can be expressed in its Smith form

over B :
Sm
A=U. -V (5.7.6)
o
Set A, to be the matrix :
Ay=[V'S$,,0." ] Uter™ (5.7.7)
Then :
p-m Sm
AjrA=[VS} 0, ]-ULU. V=1, (5.7.8)
0
ii) The proof follows along similar lines . 0

Remark (5.7.2) : It is clear from theorem (5.7.1) that an Rli , Rori of @ matriz A exists,
if and only if rankg{A} = m , rankg {A} = p respectively and the invariant factors of A
over R are units of B . 0

The link between %Rlis , Rris and Rcps , Rrps respectively is established by the

following result .
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Lemma (5.7.2) : Let A€ ™", rankg{A} = p<man{p , m} and P, ., Q, denotc an
PRocp Porp of A respectively . Then :
i) If A has an Rli then the matriz :

A = (P-A)"-P (5.7.9)
is an Rli of A as well .
i) If A has an Bori then the matriz :

A‘r :Qr'(A'Qr)-l ('57'9)

is an Rori of A as well .

Proof
i) If A has an Rli then rankg{A} = m . If U, V are appropriate % unimodular

matrices such that A can be expressed in its Smith form over % , then :

Sm
A=U. v (5.7.10)
0

mzrm

with S;} € ®"" . The proof of proposition (5.3.1) has established that the matrix L, =
=S, -VeER™™is a gerd of A over R . Furthermore :

P,-A=L €™ (5.7.11)

is an other:gerd of A over ® . Proposition (5.3.1) also established that L, , L, are R left

equivalent and thus an R, unimodular matrix W exists such that :

L,=W.L =W.S,-V (5.7.12)
or,
(L)'=V*isy . Wle™™ (5.7.13)
or by (5.7.11) ,
(P-A)! = (L)' € ™™ (5.7.14)

which implies that the matrix A; = (P;-A)'-P; € R™*". Finally ,
Al = (PI'A)hl'Pl'A - Im (5.7.15)
#1) The proof follows along similar lines . 0

Lemma (5.7.2) suggests that the results stated for the Rcps , Rorps of a matrix A carry
over to the Rlis , Rris of that matrix , (if any) .
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Corollary (5.7.1) : Let A € R, rankg{A} = p<min{p , m} . Then :
t) If A has an Rli , then the family of all Rlis is given by :

where P, , N, are an Rcp , Rpla of A respectively , Y€ R s g parametric
matriz .

1) If A has an Rri, then the family of all Rris 1s given by :
A, =Q.-(A-Q)'+N.-X (5.7.17)

where Q. , N. are an Rrp , Rpra of A respectively , X € R{™ PP is a parametric

matriz .

Proof
i) Lemma (5.7.2) implies that the matrix A; = (P;-A)™"-P,is an Rli of A . If A; is any
other %Rli of A, then :
AlrA=1_,A-A=1, (5.7.18)
or equivalently ,
Al-A—AA=O (Al~A).A=0 (5.7.19)

Since (A;—A;) belongs to the left null space of A and N; is a base of it , a matrix
Y € R™(P™ exists such that :

(A;=A) =Y-N, & A, = (P,-A)" P, + Y N, (5.7.20)

it) The proof follows along similar lines . 8]

5.8. MULTIPLES AND LEAST MULTIPLES OF A MATRIX OVER THE PID %

In this section the ordinary concepts of multiples , (common multiples) , least
multiples , (least common multiples) , is extended over ® for matrices with entries over
.

Definition (5.8.1) : Let A€F" ", rankg{A} = p<min{p,m} . Then :
i) M, e R™"™ is called o multiple of the rows of A over R , (Rmr) , if a matriz
C. e RP™P ezists such that :

C,-A=M, (5.8.1)
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M, is called o least multiple of the rows of A over R, (Rlmr) , if it is an Rmnr of A
and for any other ®omr of A, G, , a matriz E€ R""" ezists such that E- M, = G, .

i) M. € RPT™ is called a multiple of the columns of A over R , (Rme) | if a matriz
C.e R™™ emists such that :

A-C =M, (5.8.2)

M, is called a least multiple of the columns of A over R, (Rlmc) , if it is an Romc of A
and for any other ®mc of A, G, , a matriz E€ R exists such that M, . E = G, . 0O

The following proposition establishes the existence of ®mr , ®mc , Rlmr , Rlmc of a

matrix A .

Proposition (5.8.1) : Let A€ F™°™, rankg{A} = p<min{p , m} and (D, N), (D', N)
be an R — coprime left , right MFD of A over R respectively . Then :

t) The matriz N is an Rlmr of A .

ii) The matriz N is an Rlmc of A .

Proof

§) Since A = D™'.N , it is clear that the matrix N = D-A is an Rmr of A . Let M, be
any other ®mr of A . Then , by definition(5.8.1) a matrix C, € RP*P exists such that
C,-A = M, and thus :

- [C.,M,]=[C,,C,-A]= C,-[I,,A]=C,-D'.[D,N] (5.8.3)

If W = C,-D', then since [ D , N ] is ® —right unimodular is implied that W ¢ R"*".
The latter implies that :
M,=C,-A=C,.D'"N=W-N (5.8.4)

and clearly N is an Rlmr of A .

ii) The proof follows along similar lines . a

The following proposition gives a characterization of the families of Rlmr , Rlmc of A .

Proposition (5.8.2) : Let A € F*", rankg{A} = p<min{p , m} and (D, N) , (D', N)
be an R — coprime left , right MFD of A over R respectively . Then :

i) If M, is any Rlmr of A then an R~ unimodular matriz U ezists such that M,=U.N .
i) If M, is any Rimc of A then an R —unimodular matriz V ezists such that M, =
=N.V.
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Proof
¢) Let M, be any ®lmr of A . Proposition(5.8.1) implies that N is also an Rlmr of A

and thus by definition(5.8.1) matrices W , E in ®""® exist such that :
M,=W.N,N=E-M, (5.8.5)
The latter implies that Ny{M,} = N{{ N } and thus rankg{M,} = rankg{ N } . Since

rankg{A} = p<min{p , m} it is implied that N can be constructed via the Smith
McMillan form of A over %R to be :

N = H 5.8.6
with , He ®”™", rankg{H} = p . From the above analysis ® - unimodular matrix K
exists such that ,
KM = M 7
with , M e R, rankg{M} = p . Now ,if Y = K-W ,J = E-K"! partition Y , J as :
Y, Y J, J
Y=|_ ' *,E=|"""? (5.8.8)

Conditions (5.8.5) —(5.8.8) imply Y3 = J; = O and :
M=Y,,H,H=J,-M (5.8.9)

which clearly implies that the matrices Y, , J; are ® — unimodular . Thus ,

(v, v,|[ 1 0
W =K. 01 ;HO Y] (5.8.10)
4

And 7
Y,Y, || 1 Ool|H Y, Y, || H
= -1- 1 2- . = -1- 1 2- = .
M, =K [o 1“0&, [0} K [o IHO} U.N (58.11)

with U % — unimodular .

it) The proof follows along similar lines . 0

In the following we study the concepts of common left , right multiples , least common
left , right multiples of a set of matrices .

prm;

Definition (5.8.2) :i) Let A,eR *, Me RPN i=1,...,n,m= rm; . Then M
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s a common left multiple of the set of A, , (Rclm) , over R, if it 1s an Rmr of the
composite matriz [A, , ..., A,] . M is a least common left multiple , (Rlclm) , of the set
of A, over R, if it is an Rlmr of the composite matriz [A, , ..., A,/ .

12) Let B; € R AR, i =1, ..., n, p = Xp; - Then A is a common right
multiple of the set of B; , (Rcrm) , over R, if 1t s ‘an Reme of the composite matriz
(Bl , ..., Bi]' . A is a least common right multiple , (Rlcrm) , of the set of B; over R,

if it is an Rlmc of the composite matriz [Bf , ..., BL]" . o

The above definition is different from what one would have expected ; this is due to the
fact that our analysis is oriented on the use of multiples , over R , of a matrix in the
transformation of matrix equations defined over &F to ones with known matrices defined

over R . This will become clear in chapter 6 where these issues are studied .

5.9. CONCLUSIONS

In Chapter 5 we have investigated structural properties of matrices A over a PID ,
%, . The matrices have been assumed to have entries over ® , apart from the case of
multiples , least multiples where the matrices A have entries over the field of fractions
of R , F . These properties have been used to generate algebraic tools that will enable
us to formulate a unifying framework to deal with solvability of matrix equations over
R, . The existence and characterization of families of greatest left —right divisors |,
extended greatest left —right divisors , projectors , annihilators , left —right inverses ,
multiples ‘and least multiples over % of the matrices A has been introduced . The
relation between these algebraic tools and the column , row %R —modules , maximum

%R, — modules of the matrices under investigation has been established .
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6.1. INTRODUCTION

The formulation and solvability of many control synthesis problems via the algebraic
framework of what is termed as the matrix fraction description , (MFD) | approach |,
can be associated with the study of certain matrix equations over the ring of interest R;
depending on the nature of the problem in question this ring can be either R[s] , or
R,.(s) , or Rg(s) , and certainly a principal ideal domain , (PID) . Our aim in this
chapter is to try to develop a unifying algebraic approach for solving matrix equations
related to control synthesis problems , (such as stabilization problems , model matching,
disturbance decoupling , noninteracting control and the regulator problem) , by making
use of the structural properties of the given matrices over the PID of interest . The

matrix equations we deal with are of the type :

72.X=E,ZeF”" EeF™ Xe™" (6.1.1)
Y.Z=E,Z2eF”" Eeg“™ YR (6.1.2)
Z.X-E=H,2e¢9”" ,EcF HeF"™ XeRr™" (6.1.3)
72X B =H,Ze¥ ™ Eed"™ He ™ X, e ™™ (6.1.4)

i=1

where the entries of the given matrices are supposed to be over the field of fractions , F
of a given PID , % , . Notice that equation (6.1.4) is a generalization of many well know

matrix equations , such as :
2, X, + -+ ZpXy=E,2,€F™ Ee T X, e R™" (6.1.5)
Y, Zy+ -+ XpZy=E,Z; e E€cF™ Y, e R (6.1.6)
Z.X+Y-E=H,ZeF" " EcF*, HeF*™ X e R™ Y eR"™ (6.1.7)
X-Z+EY=H,ZeF" EcF* HeF"™ XeR*PY € R“™ (6.1.8)

Matrix equations of this type have been discussed in the literature , [Rot. 1] , [Kuc. 2] ,
[Emr. 2] , [Zac. 1] , [Per. 1] , [Var. 5] , [Ozg. 1] and references therein . Each of the
matrix equations in (6.1.1) —(6.1.4) are studied separately and solvability conditions as
well as parametrization of solutions are given in terms of greatest left —right divisors ,
column , row projectors and annihilators over % of the known matrices . The machinery
that has been developed in chapter 5 can be used on equations (6.1.1) - (6.1.8) if they
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arc transformed to equivalent ones over %R , via the concepts of multiples of the rows ,
columns and common left , right multiples over % , of the known matrices . In the
following if A is a matrix we shall denote with ./ﬂ):‘ , _/ﬂ); , the R column |, row span
modules of A respectively , p, = rank{A} = rankg{A} as well as the dimension of the

, » we shall denote by Ni{A} , N {A} the left

r

finitely generated free modules ./ﬂ); , M
right null space of the matrix A .

6.2. STUDY OF THE MATRIX EQUATION Z-X =E ,(Y-Z = E) , OVER
THE PID %

The matrix equations (6.1.1) , (6.1.2) are central in the formulation of many control
synthesis problems like : the exact model and stable exact model matching problems ,
stabilization problems like the centralized and decentralized stabilization of linear
unstable systems , where the equations in question are met in the matrix Diophantine
type , (D-X + N.Y =1, X.D + Y.N =1I) . Notice that (6.1.1) and (6.1.2) are dual
and thus all the arguments and results stated and proved for (6.1.1) have their duals
holding true for (6.1.2) , so we shall only prove results for (6.1.1) . In the following we

consider the matrix equation :

7.X=E,Zeg”™ Eeg"™ Xep™"
Y Z=E,ZeF"”™™ EeF“" , YeR" "

where % is a given PID , ¥ is the field of fractions of % . If (D, N) , (D', N') denote an
R — coprime left , right MFD of the matrics M = [ Z ,E ], M = | Z"  ET ]T
respectively , (D-M = [A,B]=N,M".D' = [AT, B"]'= N'), then N, N’ are an Rlmr,
Rlmc of M , M’ respectively and the above equations can be equivalently transformed

to :
A-X=B,AeR”™ ,BeR”™ 6 Xer™" (6.2.1)
Y A=B,AeR”™"  BeR™™,YeR™" (6.2.2)
Thus in the following we can implement the algebraic tools developed in chapter 5 to
achieve solvability and characterization of solutions of (6.1.1) , (6.1.2) via (6.2.1) ,
(6.2.2) .

Theorem (6.2.1) : i) The equation (6.2.1) has a solution over % if and only if :

Mo C M5 & pp<p, (6.2.9)

125



Chapter 6: Matriz equations over a PID

1) The equation (6.2.2) has a solution over R if and only if :

Mo CM @ py<p, (6.2.4)
Proof
?) (=) Let equation (6.2.1) has a solution X over ® . Then each column of B, b; ,: =
=1,...,k,can be expressed as :
bizz X;oa;,t=1,...,K (6.2.5)
i=1
where x; belongs to ® . Thus b; € AL: ,1=1,..., x and finally (6.2.3) holds true .
(&) Let (6.2.3) hold true . Then b; € Jﬂ;i ,t=1,...,x and there exist x;, € R, j = 1,
..., m such that :
b—izz Xj,"_@j,i:l,...,K. (626)
J=1
If X €R™" is set to be the matrix [x;;] , j=1,...,m,i=1,...,«, (6.2.6) implies
that :
A-X=8B (6.2.7)
#1) The proof follows along similar lines . 0

The module inclusion properties (6.2.3) , (6.2.4) will be the base of our analysis . In the
following conditions for the characterization of these properties will be derived . In the
previous chapter , (chapter 5) , we defined the notion of non square matrix divisors over
a PID % . The following result due to Pernebo , [Per. 1] , defines solutions of (6.2.1) ,

(6.2.2) over R by using the concept of non square divisors .

Theorem (6.2.2) [Per. 1] : i) Equation (6.2.1) has ¢ solution over R , if and only if o
geld of A over R is an eld of B over % as well .

i1) Equation (6.2.2) has a solution over % , if and only if a gerd of A over R is an erd
of B over R as well .

Proof
i) (=) Let (6.2.1) have a solution X € ™" and L, be a geld of A over % . Then we
can write :
A=L-A, (6.2.8)
where , Ag € R"4™". Then :
A-X=L-AqX=L-W=B (6.2.9)

where , W € ®°4™" and it is clear that L, is a eld of B over % .
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(¢) Let L, be a geld of A over R and assume that it is an eld of B over R as well .
Then :

B=1L-B,y (6.2.10)

where , By € ®" A" Proposition (5.3.1) has established that a matrix K € R A exists
such that :
L = AK (6.2.11)
Thus (6.2.10) , (6.2.11) imply :
B=L;-By=A KB, (6.2.12)
If we set X € R to be the matrix K -B, , then X is a solution of (6.2.1) over R .

i1) The proof follows along similar lines . 0

Remark (6.2.1) : Notice that the latter result is almost identical to the former . In fact
from the analysis in chapter5 the gelds , gerds of A over R serve as bases for the Jﬂa(A )
./ﬂ,; and thus if L; , L, is a pair of a geld , gerd of A over R respectively , from
theorems (6.2.1) , (6.2.2) is implied that :

Mg M, = Moy, M M = My (6.2.19)
O

Now if a solution of (6.2.1) , (6.2.2) over B exists , it is important to determine if the
family of solutions over % can be generated . The following corollary provides a
characterization of the family of solutions of (6.2.1) , (6.2.2) over ® , whenever such a

solution exists .

Corollary (6.2.1) : 1) If X, is a particular solution of equation (6.2.1) over R then the
family of solutions of (6.2.1) over R is characterized by the following properties :
a) If N.{A} = {0}, then X, is uniquely defined .
B) If N.{A} # {0} , and N, is an Rpra of A , then the family of solutions of (6.2.1)
over % is given by :

X=X,+N,-K,Ke ‘.R:(m-p“)“parametric (6.2.14)

i) If Y, is a particular solution of equation (6.2.2) over R then the family of solutions
of (6.2.2) over B is characterized by the following properties :
a) If Ni{A} = {0}, then Y, is uniquely defined .
By If N;{A}# {0} , and N, is an Rpla of A , then the family of solutions of (6.2.2)
over B is given by :

Y=Y, +C-N,, Ce ‘ER:“I(p-’A)parametn'c (6.2.15)
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Proof

t) a) Let us suppose that an other solution , X , of (6.2.1) over ® exists . Then :
AXg=B,A X=BaA (X,-X)=0 (6.2.16)

But since A has trivial right null space (6.2.16) implies that (Xy - X) = O and thus X,
is uniquely defined .
p) If X is any solution of (6.2.1) then as in case a) (6.2.16) holds true . Since the right
null space of A is not trivial then N, serves as a base of N .{A} and a matrix
K € R4 exists such that :

(Xo-X)=N,-K (6.2.17)

which clearly implies (6.2.14) .

it) The proof follows along similar lines . 0

We now state a further result on the characterization of solutions of (6.2.1) , (6.2.2)

over R .

Corollary (6.2.2) : 1) Let Q, be an Rrp of A and assume that a geld , L, , of A over B
is an eld of B over R , i.e. B = L;- B, . Then equation (6.2.1) has a solution of the

type:
Xo=Q- W (6.2.18)

where , W = V.By , Ve ‘.R:pAIPA, s an R unimodular . The characterization of
solutions of (6.2.1) over R is given by corollary (6.2.1) .

ii) Let P, be an Rcp of A and assume that a gerd , Ly , of A over R is an eld of B over
%R, , i.e. B = By-L, . Then equation (6.2.1) has a solution of the type :

Yo=W- P (6.2.19)

where , W = B,-U , Ue RPAA s an R unimodular . The characterization of

solutions of (6.2.1) over R is given by corollary (6.2.1) .
Proof

i) Since the geld of A over % , L, , is an eld of B over % theorem (6.2.2) implies that
(6.2.1) has a solution , Xy , over R . Furthermore :

A-Q, =1L (6.2.20)
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with , L; being an other geld of A over ® . Since L; , L, are % right equivalent .

(proposition (5.3.1)) , an R unimodular matrix V € R 44 exists such that :
L, =LV (6.2.21)
(6.2.20) and (6.2.21) combined together provide :
B=L;-By=L;-V-Bp=A-Q,-V-B,=A.Q,- W (6.2.22)

which clearly implies (6.2.18) .

it) The proof follows along similar lines . 8

The results so far have established conditions under which the matrix equations (6.2.1) ,
(6.2.2) are solvable over ® . However these conditions are not readily verifiable , i.e. the
decomposition of B in (6.2.1) , (6.2.2) as a product of two matrices one of which is a
geld , gerd of A respectively can not be easily determined and thus simpler solvability

conditions are sought .

Theorem (6.2.3) [Vid. 4] : i) The equation (6.2.1) has a solution over R if the matrices
[A, B] and [A, O] are R right equivalent .

ii) The equation (6.2.2) has a solution over R if the matrices [AT , B'[" and [AT , Of
are R left equivalent .

Proof
i) (=) Let a solution X of (6.2.1) over % exists . Then :

I, X
[A,B=[A,A.-X]=[A, O] . (6.2.23)

which clearly implies that the matrices [A , B] and [A , O] are % right equivalent .

(«) Let the matrices [A , B] and [A , O] be % right equivalent . Then an % unimodular
matrix U € R(™ =™+ such that :
Un UR

[A,B]=[A,0]-U=[A, O] =[A-U,,A-U5]  (6.2.24)
u" U,

which clearly implies that the matrix X = Ug, € R " is a solution of equation (6.2.1)

over % .
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1) The proof follows along similar lines . 8]

Corollary (6.2.8) : i) Let Ay be the column Hermite form of A . Equation (6.2.1) has a
solution over % , if and only if the column Hermite form of [A , B] is [A}, . O] .

ii) Let Ay be the row Hermite form of A . Equation (6.2.2) has a solution over R , if
and only if the row Hermite form of [AT |, B']" is [(A})", O]" . 0

The latter result may be used for the derivation of a more practical way of checking the
solvability of equations (6.2.1) , (6.2.2) over R . Attention is now focused on a more
direct approach to solvability of equations (6.2.1) , (6.2.2) over B , involving the

machinery developed in chapter 5 .

Definition (6.2.1) : Let A€ R™, p, =rankg{A} . Then :
i)Ifp, =p <m, then A will be called left regular .
#)lfp, =m <p, then A will be called right regular .
i) Ifp, =m =p, then A will be called regular .
w)Ifp, < min{p , m} , then A will be called irregular . o

Remark (6.2.2) :?) If A€ RP™ is left regular , then it is a gerd of itself over R . As a
result A can be factorized , (corollary (5.8.1)) , as :

A=T-Q (6.2.25)

where , T € RP*P is a glrd of A over R, Qe R, is an R right unimodular matriz
with an Rri .
u) If A€ RP™ is right regular , then it is a geld of itself over R . As a result A can be
factorized , (corollary (5.3.1)) , as :

A=PT (6.2.26)

where , T € RPP 45 a glrd of A over % , P€ RPE™ is an R left unimodular matriz with
an Rli . 0

In the following we shall denote by (P, , N;) a pair of an Rcp , Rpla of the given matrix
Ain (6.2.1) ,or (6.2.2) ; L, = P;-A , to be a gerd of A over % associated with P, ; Y, to
be the R unimodular matrix [P;" , N;¥]T . We shall also denote (Q, , N,) a pair of an
Rrp , Fopra of the given matrix A in (6.2.1) , or (6.2.2) ; L; = A.Q, , to be a geld of A
over % associated with Q, ; Y, to be the R unimodular matrix [Q, , N, .

Proposition (6.2.1) : i) a} Assume that the given matriz A in (6.2.1) is right regular .
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Then (6.2.1) has a solution over R , if and only if :
N-B=0O,L'P-Be®®R™ (6.2.27)
Furthermore if a solution , X, , of (6.2.1) over R ezists , then it is unique and given by:
Xy, =L' P.BecR"" (6.2.28)

B) Assume that the given matriz A in (6.2.1) is left reqular . Then (6.2.1) has a solution
over R if and only if :

prx

L' Be®R (6.2.29)
Furthermore if (6.2.29) holds true then the matriz :
LB
X, =Y, € R™" | W arbitrary matriz (6.2.50)
w

qualifies as a solution of (6.2.1) over R and the family of solutions of (6.2.1) over R is
given by :
X=X, +N..K, Ke R ™ P parametric (6.2.81)

it) o) Assume that the given matriz A in (6.2.2) is left reqular . Then (6.2.2) has a
solution over B if and only if :
B-N,=0,B-Q, L' ¢ ®"F (6.2.82)
Furthermore if a solution , Y, , of (6.2.2) over R ezists , then it is unique and given by:
Yo =B-Q,-Li* € ®™*F (6.2.89)
B) Assume that the given matriz A in (6.2.2) is right regular . Then (6.2.2) has a
solution over % if and only if :
B.-L! e /™™ (6.2.94)
Furthermore if (6.2.94) holds true then the matriz :
Yo=[B-L}, W]. Y,e ™" (6.2.85)
qualifies as a solution of (6.2.2) over R and the family of solutions of (6.2.2) over s is
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guven by :
Y=Y,+C N, Ce R,**P"™) parametric (6.2.56)

Proof
1) a) Assume that the matrix A in equation (6.2.1) is right regular . Then :
(=) Let (6.2.1) have a solution X, € R™"" over B . Then the equivalent equation :

Y, A.X=Y,-B (6.2.37)

has X, as a solution over % as well . If we perform the multiplications , (6.2.37) can be

rewritten as :

L, P,-B
Xo = (6.2.38)
0] N,-B
which clearly implies :
N B=0,L-P-BeR™ (6.2.39)

should hold true . (6.2.38) also implies that Xy = L;!-P;-B € %™ and it is a unique
solution of (6.2.1) over R since the right null space of A is trivial , (A is right regular) .
(<) Assume that the following holds true :

N, B=0,L' P, .Bep™" (6.2.40)
then , ) N (A} =0
PhPA=L eL!PA.- =1, &  AL'PL.A=A (6.2.41)

The latter clearly implies that the rows of the matrix (A-L;'-P;-1I,) belong to the left
null space of A . Since N, is a base for N,{A} a matrix D € gP=(P"™) eyists such that :

(A-L; P-1,)=D.N,» A-L]".P, =1, + D-N, (6.2.42)

Set now X, € R"™" to be the matrix L;'-P;-B . Then by (6.2.40) , (6.2.42) the
following holds true :
A-Xo=A-L}''P;.B=(I,+D-N).B=B (6.2.43)

Thus (6.2.1) has a solution over ® , Xy = L;!-P;-B € ™" is such a solution and it is
unique since the right null space of A is trivial , (A is right regular) .

p) Assume that the given matrix A in equation (6.2.1) is left regular . Then :

(=) Let (6.2.1) have a solution Xy € """ over % . Then X, is a solution over R of the

equivalent equation :
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AY, . Y!'X=Be&l[,,0]-G=B (6.2.44)

where , G = Y;' X . Let Gy = Y;'- X, € R™™ | then G, satisfies (6.2.44) and partition

Gy as :

Go
G, = , Gog € R"™", G, € R™PIE" (6.2.45)
02

Finally (6.2.44) , (6.2.45) implies that the following relation should hold :
L;-Gy; = B & L' Be R (6.2.46)
(«<) Assume that the following holds true :

L' Be P (6.2.47)
Then set Xy € R™" to be the matrix :

L;!'B

Xo=Y, € R, W arbitrary matrix (6.2.48)

W
Then it is trivial to verify that X; is a solution of (6.2.1) over ® , i.e. :

L;'.B L' B
A-Xo=AY,. =({L,,0] =B (6.2.49)
W W

If (6.2.29) holds true and since the right null space of A is not trivial corollary (6.2.1)
implies that the family of solutions of (6.2.1) over % is given by :

X =X, + N,-K , K € ™ "**parametric (6.2.50)
ii) The proof follows along similar lines . o
Remark (6.2.3) : If the given matriz A in (6.2.1) , (6.2.2) is regular then it is clear that
these equations have a solution over R , if and only if the matrices A™.Be R**?

B- A € R respectively . If the latter holds true then equations (6.2.1) , (6.2.2) have
the unique solutions over % , X =A1.B,Y =B.A™. o
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So far we have studied a more practical approach for solvability and characterization of
solutions (6.2.1) , (6.2.2) when A is either left regular | right regular or regular . In the

following we do so in the more general case when A is irregular .

Proposition (6.2.2) : Let A€ R™™™, p, =rankg{A} < min{p,m} . Then :
t) Equation (6.2.1) has a solution over R , if and only if :

a)
N-B=0 (6.2.51)
and equation ,
L.-X=P-B (6.2.52)
is solvable over B . Or equivalently ,
B) Equation , LW=B8 (6.2.58)

has a solution over R, where W =[I, , O] Yl X.

¢) The family of solutions of (6.2.1) over R is given by the family of solutions of
equation (6.2.52) , or equivalently ,

d) The family of solutions of (6.2.1) over R is given by :

x=v. "7
=Y . (6.2.54)

where W is an arbitrary solution of (6.2.58) over % , R is an arbitrary parametric

matriz over R .
i1) Equation (6.2.2) has a solution over % if and only if :

@)
B-N, =0 (6.2.55)
and equation ,
Y.I, =B-Q, (6.2.56)
is solvable over R . Or equivalently ,
B) Equation , W-L, =B (6.2.57)

has a solution over R , where W =Y. Y -[I;A , O .

¢) The family of solutions of (6.2.2) over R is given by the family of solutions of
equation (6.2.56) , or equivalently ,

d) The family of solutions of (6.2.2) over R is given by :

Y=[W,R]Y, (6.2.58)

where W is an arbitrary solution of (6.2.57) over R , R is an arbitrary parametric

matriz over B .
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Proof

1) a) (=) If (6.2.1) has a solution , X, , over % then so does the equivalent equation :

Y, A-X=Y,B (6.2.59)
Thus |,
L, P, B
0 N,-B

which clearly implies that (6.2.51) holds true and equation (6.2.52) is solvable over R .
(«) Let (6.2.51) hold true and equation (6.2.52) be solvable over R . Then a matrix X,

over B exists such that :

L, P,.B| |P, B
0 0 N,-B

e
|
il

&Y -A-X,=Y,;-B (6.2.61)
which implies that (6.2.1) is solvable over % .
B) (=) If (6.2.1) has a solution , X, , over R then so does the equivalent equation :
AY, . Y'X=8B (6.2.62)
Thus if K is set to be the matrix Y;}.X , K, = Y;'- X, € R™°" | (6.2.62) implies that
[L;,0]' Ko=Be L, -W,=B (6.2.63)

which implies that equation (6.2.53) is solvable over %R .
(¢«) Let equation (6.2.53) have a solution , Wy , over % . Then set X, to be the matrix :

W
X, =Y, o |6 R (6.2.64)

R an arbitrary parametric matrix over ® . Then ,

W, Wo
A-X,=A-Y,. . =(L,0] o =B (6.2.65)
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which implies that (6.2.1) is solvable over %R .
¢) , d) The proves are straightforward from the analysis in a) , 3) .

12) The proof follows along similar lines . 0

Remark (6.2.3) : Proposition (6.2.2) implies that the solvability of (6.2.1) , (6.2.2) over
R can be reduced to the solvability of equations of the same type but with left | or right
reqular matrices instead of an irregular A . (6.2.52) , (6.2.53) , (6.2.56) , (6.2.57) are
solved in the way introduced by proposition (6.2.1) . o

We conclude this section by examining the solvability over ® of the more general
matrix Diophantine equations (6.1.5) , (6.1.6) . If (D , N) , (D' , N') denote an
R — coprime left , right MFD of the matrices M = [Z,,...,Z, ,E],M =[2],..., 2}
ET |7 respectively , (D-M = [A,,..., A, ,B] =N ,M.D'=[AT,..., A}, B"]'=N'),
then N , N’ are an Rlmr , Rlmc of M , M' respectively and (6.1.5) , (6.1.6) equations

can be equivalently transformed to :
A X+ +A,X,=B,Z,eR” T, Be ™ X, € R™™ (6.2.66)
Y A+ 4+ Xp-Ap =B, A, e R BeR™, Y, € R'P (6.2.67)
The results introduced in proposition (6.2.2) are used in the following analysis :
Proposition (6.2.3) : 1) Equation (6.2.66) is solvable over R , if and only if equation :
AX=Bes A, ..  AlXT,..,X;i]'=B (6.2.68)
is solvable over R . The family of solutions of (6.2.66) over R is the family of solutions
of (6.2.68) over R .
tt) Equation (6.2.67) is solvable over B> , if and only if equation :
YA=Be[Y,,..., Y J[AT,.. . 6 A; =B (6.2.69)
is solvable over B . The family of solutions of (6.2.67) over R is the family of solutions
of (6.2.69) over R . 0

6.3. STUDY OF THE MATRIX EQUATION Z-X-E = H OVER THE PID %

The matrix equation (6.1.3) is central in the formulation and solvability of control
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synthesis problems such as the disturbance decoupling and noninteracting control
problems with or without the internal stability requirement for the feedback system .
This equation is also important in the study of solvability of (6.1.4) over ® . In the

following we consider equation :
Z.X-E=H,Z2ed"”™ Eeg*™ Hed"”™ XeR™™"

If (D, N), (D', B) denote an R — coprime left , right MFD of the matrices M = [ Z ,
H] , E respectively , (D-M =[A ,T] =N, E.D' = B), then N, B are an Rlmr, Rlmc

of M , E respectively and equation (6.1.3) can be equivalently transformed to :

prm

A-XB=C,AeR™™ | BeR*,CeR™ , XeR™™" (6.3.1)
Thus we can implement the algebraic tools developed in chapter 5 to achieve solvability
and characterization of solutions of (6.1.3) via (6.2.1) . In the following we associate the
matrices A , B in (6.3.1) with the well known algebraic machinery established in
chapter 5 . Let (P} , N7) , (Q;, , N;) denote two pairs of an (Rcp , Rpla) , (Rrp ,
Rpra) of A respectively ; (Pt , N, (Q, N®) denote two pairs of an (Rcp , Ropla)
(Rrp , Popra) of B respectively . Also let :

{

be the unimodular matrices associated with the pairs of (Rcps , Rplas) , (Rrps ,

Yi=[(P)", (N)TI", Y, =[Qr,N;]

Yi=[(P)T, (N)T]T, Yo=[ Q7 , N7 ]

Fopras) of A , B respectively . If A, B are represented as :
A=P,.T,-Q,,B=P,-T,-Q,
where T, , T, are a gird of A , B over % respectively , then we denote by :
L'=T, Q. =P{-A,L{=P,.T, = A-Q°
a pair of a (gerd , geld) of A over % ;
L}=TyQ=P-B,Li=P,T,=B-Q

a pair of a (gerd , geld) of B over % .
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Proposition (6.3.1) : i) If the matriz A in cquation (6.5.1) s left regular then (6.3.1)

has a solution over R , if and only if the equation :
Y.B= (L))" C (6.9.2)

is solvable over R . If (6.8.1) is solvable over R then the family of solutions of (6.3.1)

over R is given by :

X=Y;. €R™" (6.8.3)

where , Y is an arbitrary solution of (6.3.2) over R and R is an arbitrary parametric
matriz over R .
i) If the matriz A in (6.3.1) is right regular then (6.3.1) has a solution over R , if and
only if :

N.-C=0 (6.8.4)
and the equation :

X-B= ()" F.C (6.8.5)

is solvable over R . If (6.8.1) is solvable over R , then the family of solutions of (6.9.1)
over B is given by the family of solutions of (6.3.5) over R .
iti) If the matriz B in (6.8.1) is left regular then (6.3.1) has a solution over R , if and
only if :

C.N,=0 (6.3.6)
and the equation :

AX=CQ. () (6.8.7)

is solvable over R . If (6.8.1) is solvable over R , then the family of solutions of (6.5.1)
over R is given by the family of solutions of (6.8.7) over R .

iv) If the matriz B in equation (6.8.1 ) is right regular then (6.3.1) has a solution over R
if and only if the equation :

A Y=C (L) (6..8)

is solvable over R . If (6.9.1) is solvable over R then the family of solutions of (6.9.1)
over R is given by :

X=[Y,R] Y elr™ (6.8.9)

where , Y is an arbitrary solution of (6.8.8) over R and R is an arbitrary parametric

matriz over B .
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Proof

1) (=) Let equation (6.3.1) have a solution , X, , over R , then :
AXyg-B=AY, (Y)'" X, B=[L].0]-Wy-B=C (6.3.10)

where , Wy = (Y1) - X, = [Y$ , R3|T € R™". Since A is left regular , then L; € R
and rankg{L;} = p . Thus (6.3.10) implies that :

L .Yy-B=C o Y,-B=(LY)'.C (6.3.11)

and is clear that equation (6.3.2) is solvable over R .
(¢) Assume that (6.3.2) has a solution , Y, , over % . Then set Xo € R™" to the

matrix :
Xo = Y:'Wo = Y:‘[Yg ) Rg]T (6.3.12)

where , Ry is a parametric matrix over R . Then ,
A.-X,-B=[L/,0]-Wy-B=L; .Y, B=C (6.3.13)

which implies that (6.3.1) is solvable over R . Furthermore , if (6.3.1) is solvable over
R, and X is any solution of it over R then (6.3.10) implies that there always exists a
corresponding matrix W = (Y;)1-X = [YT, RT]T € ™", with Y a solution of (6.3.2)
and R a matrix over % respectively and thus (6.3.3) holds true for all the solutions of
(6.3.1) over R .

it) (=) Let (6.3.1) have a solution , X, , over B . Then X, is a solution over % of the

equivalent equation :

Y;-A-X-B=Y;-C (6.3.14)
Thus ,
L, P;.C
[ O :| 0 [N?C] (6 3 15)
which clearly implies that :
N;-C=0 (6.3.16)

and since A is right regular , L} € %™ and rankg{L;} = m , and the equation :

Xo:B = (L})!.P}-C (6.3.17)
18 solvable over & .
(«) Assume that (6.3.4) holds true and equation (6.3.5) is solvable over %, . Then it is
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obvious that if X is a solution of (6.3.5) then ,

{XO-B:(L':)“-PT~C©L‘,‘-XO-B=PT~C (6.3.18)
N/,-C=0 (6.3.19)
or equivalently ,
L? Pe.C
X B=| oY -A-X, B=Y,.-C (6.3.20)
N;-C

which clearly implies that equation (6.3.1) is solvable over ® . Furthermore it is
obvious from the above analysis that the family of solutions of (6.3.1) over % is given
by the family of solutions of (6.3.5) over R .

it1) , 1) The proof follows along similar lines . O

Remark (6.8.1) : i) If the matriz A in (6.3.1) is regular and (D', N') is an R - coprime
right MFD of M = [B" , (A" C)']" , (M-D' = [AT ,©'['= N) , then N is an Rimc
of M' and it is obvious that (6.3.1) is solvable over R , if and only if the equation :

XA=0 (6.9.21)

is solvable over R . Furthermore , the family of solutions of (6.3.1) over R is given by
the family of solutions of (6.3.21) over R .

it) If the matriz B in (6.8.1) is regular and (D, N) is an R~ coprime left MFD of M =
=[A,C.B',(D-M=[A,0]=N), then N is an Rlmr of M and it is obvious that
(6.8.1) is solvable over R if and only if the equation :

A-X=0 (6.8.22)

is solvable over R . Furthermore , the family of solutions of (6.9.1) over R is given by
the family of solutions of (6.5.22) over R . o

Remark (6.3.2) : Proposition (6.3.1) and remark (6.3.1) suggest that if either of the
matrices A , B appearing in (6.3.1) are left , right regular , or regular the solvability of
(6.8.1) over R can be reduced to the solvability over R of matriz equations of the type
(6.2.1), (6.2.2) . o

The next result deals with the existence and characterization of solutions of (6.3.1) over
% when both A , B are irregular matrices .
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Proposition (6.3.3) : The following statements are equivalent . Equation (6.5.1) 1s
solvable over B , if and only f :

1) N-C=0 (6.3.23)
and the equation :

L} X-B=P.C (6.8.24)

is solvable over R . The family of solutions over R of (6.3.1) is given by the family of
solutions over R of (6.3.24) .
1) Lj-YB=C (6.8.25)

is solvable over R . If (6.5.1) is solvable over R then the family of solutions of (6.8.1)
over R 1s given by :

Y
X=Y: 0 € R (6.8.26)

where Y is any solution of (6.8.25) over R, R i3 a parametric matriz over R .
111)

C-N=0 (6.9.27)
and the equation :

A-X.L'=C-@. (6.9.28)

is solvable over R . If (6.8.1) is solvable over R , then the family of solutions of (6.8.1)
over R is given by the family of solutions of (6.9.28) over R .
tv)

A Y.IE=C (6.9.29)

is solvable over R . If (6.3.1) is solvable over R then the family of solutions of (6.5.1)
over R is given by :

X=[Y,R] YieR™™ (6.8.80)

where , Y is an arbitrary solution of (6.3.29) over R and R is an arbitrary parametric

matriz over B> .

Proof
i) (=) Let (6.3.1) have a solution , X, , over % . Then X is a solution over % of the
equivalent equation :

Y;-A-X-B=Y;.-C (6.3.31)
Thus ,
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L; P;.C
XoB=| _ (6.3.32)
N,-C
which clearly implies that :
N;,-C=0 (6.3.33)
and the equation :
L. X,-B=P].C (6.3.34)

is solvable over R .
(<) Assume that (6.3.23) holds true and equation (6.3.24) is solvable over ® . Then it is
obvious that if X, is a solution of (6.3.24) then ,

{Lf-XO-B =P;.C (6.3.35)
N/-C=0 (6.3.36)
or equivalently ,
Ly P;.C .
-Xo-B = . oY, -A-X,-B=Y].C (6.3.37)
N;-C

which clearly implies that equation (6.3.1) is solvable over ® . Furthermore it is
obvious from the above analysis that the family of solutions of (6.3.1) over % is given
by the family of solutions of (6.3.24) over % .

i1) (=>) Let equation (6.3.1) have a solution , X, , over %, then :

A-XoB=A-Y(Y)"XoB = [L?, 0]-W,-B =C (6.3.38)
where , Wy = (Y7)'- X, = (Y5, R3)T € ™", Thus (6.3.38) implies that :
L¢ .Y, B=C (6.3.39)

and is clear that equation (6.3.25) is solvable over .
(«) Assume that (6.3.25) has a solution , Y, , over ® . Then , set X, € R™" to the

matrix :
Xo = Y:'WO - Y:‘ [Yg Y R{.I;]T (6-3.40)

where , R, is a parametric matrix over % . Then ,

A-X,-B=[Lf,0]-W,-B=L%.Y,.B=C (6.3.41)
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which implies that (6.3.1) is solvable over % . Furthermore , if (6.3.1) is solvable over
%R and X is any solution of it over R , then (6.3.38) implies that there always exists a
corresponding matrix W = (Y;)-X = [YT, R"]" € R™™", with Y a solution of (6.3.25)
and R a matrix over %R respectively and thus (6.3.26) holds true for all the solutions of
(6.3.1) over R .

211) , w) The proof follows along similar lines .

The equivalence between z) , i) , i) , vi) is obvious since all of them result to

solvability of (6.3.1) over ® and vice versa . 0
So far our approach to solvability of (6.3.1) over % has been entirely based on the
reduction of (6.3.1) to matrix equations of the type (6.2.1) , (6.2.2) . In the following we
present a more direct approach for the study of (6.3.1) over R ,. avoiding the
intermediate equations (6.2.1) , (6.2.2) . This method will be proved useful later on
when we shall study equation (6.1.4) over R .

Proposition (6.3.8) : i) Equation :
A-X-B=0 (6.9.43)

is solvable over B , (has a nontrivial solution over %) , if and only +f :
p, =rankg{A} <m , orp, =rankg{B} < &, or both hold true  (6..44)

Furthermore the family of all solutions of (6.3.43) over B is given by :

0 Y,
X=Y. P (6.3.45)
Y, Y,

where , Y3 € ‘fRapAz(K-pB), Y; € ?Ra(m-p")“B, Y, e q(meals(=ep) arbitrary parametric
matrices .
i) Equation (6.3.1) is solvable over R , if and only if :
T:I.P‘;.C.d;.nlem,p:izpa (6.3-47)
If a solution of (6.3.1) over B ezists then the matriz :
X = (Q)* T F-C-@- T} (P) (6.9.48)

143



Chapter 6: Matriz cquations over a PID

with (Q), (PL)" an Rri , Rbi of Q, , P, respectively , is a solution of (6.9.1) over R
and the family of solutions of (6.3.1) over R is given by :

0 v,

o Yy (6.9.49)
Y, Y,

X=X, +
where , Y, € %pAI(K-pB), Y;€ %(m-p")”B, Y, e A= eB) e arbitrary parametric
matrices .

Proof
i) (=) Let equation (6.3.43) have a non trivial solution , X, , over R . Then :

L? L X! O
Y{ A-Xy-B-Y? = X [LE,0] = =0 (6.3.50)
0 0 0]
which clearly implies that equation :
L2.X L =0,L2e R4, Lb e "B (6.3.51)

has a nontrivial solution , X; , over ® . Since Py = rankg{L:} and Py = mnkg{L;’} Jif
both p, =:rankg{A} = m and p, = rankg{B} = « , then L? , L} would be invertible
and (6.3.51) would have only trivial solutions , (X, = O) , something that contradicts
the truth . Thus (6.3.51) implies that (6.3.44) holds true .

(<) Assume that p, = rankg{A} < m , or p, = rankg{B} < &, or both relations hold
true true . Then set Xg € R

mrxk

to be the matrix :

oY,
X, = Y2 Y: e ™" (6.3.52)
Y3 Y4

for some nontrivial matrices Y, € %pr(rpB), Y;€ ?R,("""A)‘PB’ Y, € (™ P a)(xpp)

(such matrices exist because (6.3.44) holds true) . Then :

)

a Ll: a O Y2 L'r’
A-Xg:B=[L/,0] X, =(L,0]- - =0 (6.3.53)
0 Y, Y, || O
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and the latter clearly implies that equation (6.3.43) has a nontrivial solution , X, , over

%R . Furthermore , if X 1s any nontrivial solution of (6.3.43) over R then :

L,
AYL(Y)LX(Y)LYrB=[L;,0] Y. =0 (6.3.54)
0

where , Y = (YO 1. X (Y]) ! € R™". If the matrix Y is partitioned as :

y=| 0 5 6.3.55)
= Y, Y, (6.3.55
then (6.3.54) implies :
Y, Y, || L
AX.B=[L,0]: : =L7.Y,-Lt=0 (6.3.56)
Y3 Y4 O

Since the right null space of L , and the left null space of L are trivial (6.3.56) implies
that Y, = O and thus the family of solutions of (6.3.43) over R is given by :

0 Y,
X =YY% Y? (6.3.57)
Ys; Y,

it) (=>) Let (6.3.1) have a solution , X; , over % . Then :

AXyB=Ce Y -A-X,B-Y=Y].C.Y (6.3.58)
or ,
| , L;-Xo-Lf O P;.C-Q} P{-C-N}
Xo-[L/,0] = = . (6.3.50)
0 0 N{.C.Q® N;-C-Nt

the latter implies that the following relations should hold true :
P{-C-N.=0,N{-C.Q*=0,N;.C.N =0 (6.3.60)
L. X L} =P;-C-Q (6.3.61)

Since , L? = T,-Q, , L} = P,-T, , (6.3.61) implies that the matrix :
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TP CoQUTE = Qo X Py e R (6.3.62)

(6.3.60) and (6.3.62) imply that (6.3.46) and (6.3.47) should hold .
(«) Let (6.3.46) and (6.3.47) hold true , then set Xq € R™"" to be the matrix :

Xo = (Q)" T} P;-C-Q2-T;' - (P! (6.3.63)

where , Q,-(Q.)! = I, (PP, = Ly (QL)Y, (P})" are defined over ® . Then ,
since we have supposed A =P, -T,-Q,,B =P,-T,-Q, , the following must hold true :

A-Xo-B=(P, T, Q) {(Q) T -P{-C-QE-T;! - (Py) '} -(P,-Ty-Qp)  (6.3.64)

or,
A-X,-B=P,.P;.C-Q2.Q, (6.3.65)
We also observe that :
{L‘: =P A&P, Ll=P, P{.A=A & (P, P/-1}.A=0 (6.3.66)
L} =B-Q «L{-Q=BQ-Q=BeB-{Q:Q-L}=0 (6.3.67)

Since N{ , N? are bases of the left , right null spaces of A , B respectively , then

matrices E; , E; over R exist such that :

{

Furthermore , if we make use of (6.3.46) , (6.3.68) , (6.3.69)

P,-P{=1,+ E;-N; (6.3.68)

Q- Q,=1,+ N.E, (6.3.69)

P,.P;-C-Q-Q=(I,+EN)CQ.Q=CQ. Q=C+CN-.E, (63.7)
P,.P{-C-Q-Q,=P,P{-C:(L+ N}-E;) =P,-P{.C=C + E,-N{.C (6.3.71)
P,.P{-C-Q-Qy=(I, + E;-N;)-C-(I, + N;-E;) = C + E,-N{-C + C-N!.E,
(6.3.72)
(6.3.70) , (6.3.71) , (6.3.72) imply that :
E,-N{-C=C-N..E, =0 (6.3.73)
Hence , (6.3.65) via (6.3.72) , (6.3.73) gives :
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A-X,-B=P,.P;.C.Q®.Q,=C (6.3.74)

and thus (6.3.1) is solvable over R and Xy € R in (6.3.63) is a solution of (6.3.1)
over % . Now if X is any solution of (6.3.1) over R then X in (6.3.48) is also a solution
of (6.3.1) over R and thus :

AX-B=A.-X,BoA-(X-X,)-B=0 (6.3.75)

which clearly implies that the family of solutions of (6.3.1) is given by :

0 Y,
X=X,+ Y Y} (6.3.76)

where , Y, € G.RJpAI(N-pB), Y3 € %(m—p")us, Y, € (P 0B) e arbitrary parametric

matrices . a

6.4. STUDY OF THE MATRIX EQUATION zh: Z;-X;-E; = H OVER THE PID %

s=1

The matrix equation (6.1.4) is a generalization of the matrix equations :
Z.X+Y-E=H,Z2eF"" EecF*" HeF™, X e R™ Y R (6.4.1)
X.Z+EY=H,2eF"" EcF** HeF"™ Xe R ,YeR“™ (6.4.2)

that arise from control synthesis problems , such as the regulator problem with
measurement feedback and noninteracting control . In the following we consider the
matrix equation :

pzm, K.zt

.zh:zi'xi'Ei=HaZi€g LVE, eg

1=1

, H € qut, x‘ € ‘.R,m.»zx.-

with | f: m;, =m, f: k; =« .1 (D,N), (D', N) denote an R - coprime left , right
i=1

1=1

MFD of the matrices M =[Z,,...,Z, ,H],M =[E], ..., Ef |" respectively , (D-M
=[Ay,....Ay, ] =N,M.D'=[B],..,Bf|’=N), then N, N’ are an Rlmr ,
Rlme of M , M’ respectively and equation (6.1.4) can be equivalently transformed to :

S A;X;B; = C, A€ R™™ B,e R, Ce ™ X, € 2™  (6.4.3)
i=1
or,
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(A,,....A ]| ~ || :|=AXB=cC (6.4.4)

prm

with ,A=[A,,...,AJ€F ", B=[B],. .. ,Bi]" e X =diag{X,, ..., X,} .
Remark (6.4.1) : Equation (6.4.4) clearly implies that solvability of (6.4.3) over R can

be reduced to the search of special type solutions , (block diagonal) , of the matriz
equation A.- Y. B=C ,withA=[A,,...,A),B=[Bl,..., By ]'. a]

In the following we associate the matrices A , B in (6.4.4) with the well known algebraic
machinery established in chapter 5 . Let (P; , N}), (Q, , N;) denote two pairs of an
(Rocp , Ropla) , (Rrp , Ropra) of A respectively ; (P!, N%y, (Ql,’ , N®) denote two pairs of
an (Rcp , Rpla) , (Rrp , Rpra) of B respectively . Also let :

{

be the unimodular matrices associated with the pairs of (Rcps , Rplas) , (Rrps ,

Yi=[(P)", (N)TIT, Y =[Q, N7 ]

Y= [(PD)T, (N7 T7, Ye=[ QL Ny ]

Rpras) of A , B respectively . If A , B are represented as :
A= Pa'Ta'Qa ’ B = Pb‘Tb'Qb
where T, , T; are a glrd of A, B over % respectively , then we denote by :

=T, Q =PlA,Li=P,.T,=A-Q°

r

a pair of a (gerd , geld) of A over % ;
L8=T, Q=P B,L;=P,-T,=B-Q

a pair of a (gerd , geld) of B over % . Furthermore , if p, = rankg{A} , p, = rankg{B}
then :

Proposition (6.4.1) : i) If p, = rankg{A} =m , p, = rankg{B} = & , then equation
(6.4.4) is solvable over B , if and only if :

PCM=0,M.C@¢=0,NCN=0 (6.4.6)
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T P} C.Q T;' e R™" (6.4.7)
And the matriz :

Ko = (Q) T PLCQ T (P = diag{Xy, ., X JeR™T (6.4.8)
where , (Q.)}, (P)" are an Rri , Rli of Q, , P, respectively .

i) @) If either p, = rankg{A} < m , or p, = rankg{B} < &, or both relations hold ,
then equation (6.4.4) is solvable over R , if and only if :

T2 P.C. Qb Ty € ROA™B (6.4.9)
And the equation :
QY P=T""F.CQ T (6.4.10)

has a solution Xy = diag{X} , ..., X0} € R .
p) A sufficient condition for equation (6.4.4) to be solvable over R is that the matriz :

Xo=(Q)" T;'P.C-Q Tp' - (P)" = diag{X} , ..., Xo} € R"™™" (6.4.11)

where , Qo (@) =1L, (Po)" Py =1, , ()", (P)" are an Rri, Rli of Q, , P,
respectively) .

Proof
i) Assume that p, = rankg{A} = m, pg = rankg{B} = £ , then proposition (6.3.3)

implies that the homogeneous equation :
A.Y'-B=0O (6.4.12)

with , A = [A;, ..., A €R”™, B = [Bf, ..., BT |T € ®"*, has only trivial solutions
over R .
(=) Let equation (6.4.4) have a solution , Xy = diag{X? Y eees X?,} , over R , then X, is

a solution over % of equation :
A.Y.-B=C (6.4.13)

with , A =[A;,..,A]eF" " B =[BT, .., BT |"€ % and proposition (6.3.3)

implies that :
P{.C-Nt=0,N/-C.Qt=0,N;.C.N. =0 (6.4.14)
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T .P{.C-Q° Tl e ™" (6.4.15)
as well as the matrix :

Yo = (Qu) " T -P-C-Q. - T3 - (Py) ! € ™" (6.4.16)
with | Qq-(Qo)" = L s (P4 Py = L, ((Qa)", (Pe)" are an Rri , Ri of Q, , P,
respectively) , is a solution of (6.4.13) over ® . But since the homogeneous equation

(6.4.12) has only trivial solutions over ® proposition (6.3.3) implies that (6.4.13) has a

unique solution Y, over % and so does equation (6.4.4) . Thus ,
Xo=Ye=(Q) " T}-P;-C-QT;' - (P})'= diag{X} , ..., X2} e R™" (6.4.17)

(6.4.14) , (6.4.15) and (6.4.16) imply (6.4.6) , (6.4.7) and (6.4.8) .
(«) Assume that :

Xo = (QU)1- T -P{-C-Q2-T3 - (Ph) ! = diag{X?, ..., X2} € R™"  (6.4.16)

P{.C.N®*=0,N/.C.Q:=0,N;.C.N* =0 (6.4.18)

T, P;.C-Q Tl e ™" (6.4.19)

and the matrix :

Then proposition (6.3.3) implies that X, is the unique solution over % of equation :
A.Y-B=C (6.4.17)

with , A = [A;, ..., A €T B =[BT, ..., BT |T€ ¥*** . The latter implies that
(6.4.4) is solvable over R .

#i) a) Let p, = rankg{A} < m , or p, = rankg{B} < « , or both relations hold , then :
(=) Let equation (6.4.4) have a solution , X, = diag{X?,..., X%}, over B , then X, is
a solution over % of equation A.Y-B=C ,with, A=1[A,,..., A ] € RP" B = (BT,
...,BI]T€ %" . Thus:

AX,B=Ce Y -AX,-B-Y=Y].C.Y? (6.4.18)
or,
Ly 0 0] L Xe-L O P{-C-Q; P{.C.N!
X, [L8,0] = = 6.4.19
Xo-[ L 0 0 N°.C.Q¢ NI.C.N* (6.4.19)

the latter implies that the following relations should hold true :
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P{.C-N.=0,N/.C-Q:=0.N}.C-N. =0 (6.4.20)
LY X, LY =P}.C.Q (6.4.21)

Since , L = T,-Q, , L} = P,- T, , (6.4.21) implies that the matrix :
T;).P;{-C-Q%-T}' = Q, X, P, € 478 (6.4.22)

Relations (6.4.20) , (6.4.22) result to the truth of (6.4.8) , (6.4.9) , (6.4.10) .
(«) Assume that (6.4.8) , (6.4.9) , (6.4.10) hold true . Then :

L \ Ll X, LY 0O
Xo-[Ly,0] = (6.4.23)
0] 0

Since , L =T, Q,,L; =P,-T, , (6.4.8) , (6.4.9) , (6.4.10) , (6.4.23) imply that :

Li.X, L O P{.C-Q® P{.C-N®
=| (6.4.24)
0 o) N;-C-Q® N{.C.N?
or equivalently ,
Y -A-X,-B Y=Y CY &AX,B=C (6.4.25)

which clearly implies the solvability of (6.4.4) over R .
B) The proof follows along the same arguments employed in the proof of the sufficient in
part i) of proposition (6.3.3) . 0

6.5. EXAMPLES

In this appendix we present examples of solving matrix equations by making use of
the method introduced in the previous sections .

Example (6.5.1) : Investigate the solvability , over the ring of polynomials , Ris) , of the

matrix equation :
Z.X=E (6.5.1)

where ,
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i 0 1 ol
7 = 344 5?44 s E = s34+4 s%244 s
1 ’ 1
1 —_——— S 0 —_————
$34+4 5244 s 5 s3+4 244 s

(6.5.2)
An R(s] - coprime left MFD of the matrx [ Z , E | is given by the pair (D , N) with :

344 s?+4 s 0 s241 0 s%4+4s%44s 1 0
D= N =
0 3+4 s%+4 s SH+4s4+4s 1 s'4+4544s2 0 1

(6.5.3)

Thus N is an Risjlmr of [ Z , E | and equation (6.5.1) can be transformed to :

A-X=B (6.5.4)
with ,
s2+1 0 s’ +4 5244 s
A= B=1, (6.5.5)
s3+4 s2+4 s 1 s'+4 s°+4 §?

A is clearly an R(s]—right unimodular matrix and thus a left regular matrix , i.e. p A=
= rankR(’).{A} = 2 ; Proposition (6.2.1) , (part ¢) , 3)) , implies that (6.5.4) is solvable
over R(s] ,if and only if :

(L))" B € R*s) (6.5.6)

for an arbitrary geld , L; , of A over Rys] . Since A is an Rjs) - right unimodular matrix a
geld. of it is given by L; = I, and (6.5.6) holds true . Clearly a solution X, of (6.5.4) over
Ris) is given by an R(sjri of A and the family of solutions over R(s) of (6.5.4) and thus of
(6.5.1) is given by :

X=X;,+N,-K (6.5.7)

where , N, is an Rsjpra of A and K € R**?s} is an arbitrary parameter and X, is given
by :
3s2+16 s+25 (125473 °+148574+100s) _35-36 7
X = 25 25 25
0=
0 1 0

0
Example (6.5.2) : Investigate the solvability , over the ring of polynomials , Rys) , of the
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matrix equation :

Z.X-E=H (6.5.8)
where |
s+1 ] 1
1 2s+1 0 1 | s+l 1 _f 2s+1 0
7 = ,E= ,H=
1 _1 S 0 1 0 L1
2 s+1 s 2 s+1 (6.5.9)

An R(s) — coprime left MFD of the matrix [ Z , H ] is given by the pair (D , N) with :

2 s+1 0 s+1 0 2s+1 1 0
D= , N = (6.5.10)
0 2 s+1 2 s+1 1 2s*+s 0 1

Whereas , an R(s]—coprime right MFD of the matrix E is given by the pair (D', N')
with :
—(s34s?) 1-5° s 1

D' = N = (6.5.11)
s%+s s s+1 1

Thus N , N' are Ris)lmr , Risjlmc of [ Z , H ], E respectively and equation (6.5.8) can be

transformed to :

A.X.B=C (6.5.12)
where ,
s+1 0 2s+1 s 1 —(s+s?) 1-52
A= ,B = ,C = (6.5.13)
2 s+1 1 2s%+s s+1 1 s24s s

Proposition (6.3.3) implies that equation (6.5.12) is solvable over Rys] if and only if :
P{-C-N°=0,N;.C-Q*=0,N{.C.N*=0 (6.5.14)
T:1.P{.C- Q. T;! € R*%s (6.5.15)
Since A is an R(s)—right unimodular and thus left regular , B is an R{s}—unimodular
and thus regular , Nj = O, Nb = O respectively and thus (6.5.14) holds . On the other
hand , a pair of glrds of A , B over Ris] respectively , is given by T, = I, , T,= B and a

pair of Rysicp , Risirp of A , B respectively are given by P} = I, , Qf = I, . The latter
implies that (6.5.15) holds true . A solution of (6.5.12) X, over Rys) is given by (6.3.48) :
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Xo=(Qu) - T} -P;-C-Q- Ty - (Py)™

where ,
T
. 2 2s2-.3s-2 -1
(Qu)'= , (P =1, (6.5.16)

0 1 0

Then ,
T
2 s+2 2s3-s2-5s5-2 -s-—1

~-2s?-2s —2s'4+s3+55243 s s2+s

The family of solutions over R(s] of (6.5.12) and thus (6.5.8) is given by :

.o
X =X, + Y [ ] (6.5.18)
Y;

where , Y; € R'7%(s) is arbitrary parameter and ,

— =T

2 2s2-3s-2 -1
Y? = 0 1 0

~2s-1 —-2s3+s243s+1 s+l

6.6. CONCLUSIONS

In Chapter 6 we have tackled the very important issue of formulating a unifying
approach for solving the matrix equations (6.1.1) —(6.1.4) over the PID of interest , % .
In our attempt to do so we use the results have been derived in Chapter 5 . The given
matrices Z , E, Z; . E; , H, in (6.1.1) - (6.1.4) have been considered over the field of
fractions , ¥ , of ® . whereas the unknown matrices X , Y , X; are required to be over
%R, . The set of equations (6.1.1) —(6.1.4) has been transformed via the implementation
of the concept of multiples , least multiples over R of the rows , columns of a matrix ,
to an equivalent one with known matrices A , B, A;, B, , C over % . Conditions for
the existence as well as parametrization of solutions of the equations in question have
been provided in terms of greatest left —right divisors , greatest extended left —right
divisors , projectors , annihilators , and right , left inverses of the given matrices as
well as parametric matrices over % . Further investigation in the derivation and

characterization of solutions of equation (6.1.4) over % is needed .
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7.1. INTRODUCTION

The problem of stabilizing unstable linear control systems , has motivated the
representation of the plant and controller |, involved in the system configuration , as
fractions of matrices with entries in special rings of interest . This representation
describes the property of stability in an algebraic sense , [Vid. 1] - [Vid. 4] , [Fra. 1] ,
[Fra. 2] , [Des. 1] , [Sae. 1] , [Sae. 2] , [Var. 3] . The basic control schemes comprised by
a precompensator , (or feedback compensator) , and unity output feedback , which are
used to stabilize unstable plants , always lead to the study of a Matrix Diophantine
Equation (MDE) over the ring of interest . The problem of finding solutions of MDE
corresponding to controllers with minimum number of poles is referred to as the
Minimal Design Problem (MDP) . In the following we consider the MDP as it arises
from the study of Total Finite Settling Time Stabilization (TFSTS) , for MIMO
discrete time , linear , time invariant , systems , [Kar. 1] , [Mil. 1] . TFSTS requires all
the internal and external variables , (signals) , of the system to settle to a new
steady — state after finite time from the application of a step change to its input and for
every initial condition. The TFSTS comprises the dead —beat response problem , i.e.
the forcing of the state or output vector from any initial state to the origin in minimum
time , [Ber. 1] , [Ise. 1], [Kal. 1] , [Kuo 1] , [Kuc. 1] - [Kuc. 8], [Vid. 4] . The study of
controllers which are defined by solutions of Polynomial MDE (PMDE) with minimum
number of poles refers to the definition of the Extended McMillan Degree (EMD) of a
rational matrix via its Polynomial Matrix Fractional Description (PMFD) .

After an initial introduction and formulation of the problem in section 7.2 ,
parametrization issues for such stabilizing controllers are examined in section 7.3 . The
importance of characterizing solutions of the PMDE is established . If the plant and
controller are represented by a left (right) MFD , right (left) MFD , when the number
of inputs are greater than , (less than) , or equal the number of outputs , respectively ;
we prove that the solutions of a PMDE - with an arbitrary unimodular matrix on its
right half side-which correspond to column , (row) , reduced matrices form a
nonempty , dense but neither open , nor closed subset of the its family of solutions .
Bearing in mind that the EMD , 6* , of a controller defined by a column , (row) ,
reduced PMFD is equal to the sum of column , (row) , degrees of that PMFD , the
latter result implies that the sum of minimum column degrees that occur in the set of
solutions of a PMDE is more likely to serve as an upper bound rather than be equal to
8* . The approach employed for the parametrization of least column , (row) , degrees
solutions is based on the expression of the PMDE via its Toeplitz matrix representation.
This approach leads to a very simple algorithm involving only the computation of right
(left) null spaces of real matrices . Employing the exterior products of the rows ,

columns , (columns rows) , of its matrices , the PMDE can be reduced to a vector
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matrix equation the characterization of least column degree solutions of which yields of

a lower bound for 6* . Additional issues , such as | the PI controller design problem and

fixed controllability index stabilizing controllers are studied as well .

7.2. STATEMENT OF THE PROBLEM

Consider the standard feedback configuration associated with a discrete time system

in the d —representation , [Mil. 1] :

u,
Uy + € C ¥4 .’é).@.z \ =

L 4

where
e R™ (d) (7.2.1
c €R=™ (d] (7.2.2)

We assume that both plant and controller are represented by the coprime MFDs . The
solution of TFSTS problem , [Kar. 1] , [Mil. 1] is reduced to a solution of the :

.o ~ ~ [D.]
DD .+ NN,=1,,or[D, N]|:NC =1,,ifl>m (7.2.3)
or equivalently , D
D.D.+N.N,=1,,0r [D,, N,] NJ=I,,ifl<m (7.2.4)
In the following , we shall represent both plant and controller in terms of composite
matrices as :
Ti(d) (D, N) eR™ (™ +1q) (7.2.5.a)
T (d JAY D R(m+l)zl
o(d) = (€ (d (7.2.5.b)
Ti(d) &( D, , N, ]eR=m+Nq (7.2.6.2)
r A} DC (m + l)zm
Ti(d) 2 N eR dj (7.2.6.b)
[
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If v, p are the observability , controllability indices of the plant respectively [Kai. 1] ,

then we may express T'p(d) , Th(d) as :

Ti(d) = [Dy,No] +d [D,,NJ+...+4a*[D,,N,] =

=To+dT, +...+a T, eR™("+q (7.2.7.a)
T5(d) +d o4 dH| M=
=To+dT, +..+d*T, eR™*+H=q (7.2.7.b)

Similarly , if p , 7 are the controllability , observability indices of the controller

respectively , then we may express T+(d) , T5(d) as:

Tlc(d) = [ ﬁc0 ’ NCO] + d [ IScl ] N't:l] + et dr [ 5cr ) I':jc-r} =

=To+dT, +...+d T, eR=m+0q (7.2.8.2)
Dco Dcl Dc
T(d) = +d 4.4 dP| P =
. [Nco:l {Ncl} Ncp
=T +d T+ ... + d? T, e R+ m(q) (7.2.8.b)

In the following we shall consider the formulation of the problem based on equation

(7.2.3) —similar analysis may be used for equation (7.2.4) . From this equation the
following problems are put forward :

Problem (i) : (Fized controllability , (observability) , solutions) .
Given the plant P , determine the necessary and sufficient conditions such that the

Diophantine equation (7.2.8) , (or (7.2.4)) , has a solution for given controllability
(observability) indez controller . If a solution ezists then parametrize the whole family of

such solutions . o

Problem (i) : (McMillan degree characterization , parametrization) .
Among the family of given controllability (observability) indez solutions , determine those
with a given McMillan degree ; investigate the parametrization of the family of given
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McMillan degree solutions . o

Problem (111) : (Minimal design problem) .

Define the minimal controllability , (observability) , indices solutions of the Diophantine
equation and define the condition characterizing the minimal McMillan degree amongst
the whole famaily . 0

An integral part of the above study is the investigation of the following subproblem :

Problem (iv) : (Parameter space , characterization of McMillan degree) .
Derive the relationship or characterization of McMillan degree in terms of the properties
of the matriz coefficients of the polynomial matriz T'(d) , or T"(d) . 8]

The above problems have been studied in [Kar. 1] , [Mil. 1] for the SISO case . In the
following we do so for the more general case of MIMO plants . Our approach to the
parametrization of minimum McMillan , (or more general Extended McMillan) , degree
controllers , defined by solutions of polynomial Diophantine equations , concentrates
more on the investigation of topological properties of certain types of solutions of the
matrix Diophantine equations in question . The general issues of controller

parametrization and McMillan degree characterization are examined first .

7.3. PARAMETRIZATION OF CONTROLLERS AND RELATED ISSUES

Throughout this study we shall concentrate on the (7.2.3) form of the Diophantine
equation which will be referred to as right Diophantine equation , since the controller is
represented by a right MFD ; similarly equation (7.2.4) will be referred to as left
Diophantine equation . The study of fixed complexity solutions of the Diophantine
equations is intimately related to the different ways we can characterize the controller
complexity and thus parametrize the composite T{(d) matrix . In the following we
examine two alternative types of parametrization of the T7(d) . These are :

i) The Forney dynamic index parametrization .

i1) The set of Forney dynamic indices parametrization .

Those two fundamental parametrizations of the T7(d) matrix , are considered first and
then we link these parametrizations to the McMillan degree . The first parametrization
is the one defined by (7.2.8.b) , where p is the controllability index of the controller

and it is expressed as :

D D D
T7(d) = [N“] +d [N“J +..+4d° [N"’} =
c0 cl cp
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— —

Im
dl,,
:[TCO’TCI""’TCP] .

P I'ﬂ

= Ti(d) S, ,(d) (7.3.1)
The above parametrization is defined by the indices (I , m , p) completely and the
matrix T7(d) , which has dimensions (m+1{) 2 m (p+1) . Given that T.(d) describes an
MFD we must have that :

|Do+dDy +...+d? D, | #£0 (7.3.2.a)
or equivalently ,

| [Deo Dy +oo Dy ] S p(d) [#0 (7.3.2.b)

We may summarize as :

Remark (7.8.1) : The Forney dynamic indez parametrization defined by (7.8.1)
corresponds to an MFD , if and only if condition (7.8.2) is satisfied . The MFD is

causal if | Dy [# 0, and clearly the latter condition also guarantees the ezistence of an

MFD . 0

The above parametrization will be referred to as a right —(! , m , p) parametrization
and its characteristic is that we fix the maximal Forney index p of the space
colsle & {Ti(d)} ; this representation does not specify the Forney dynamical order of

s
the latter space , but it just gives an upper bound for it .

Remark (7.8.2) : If & is the Forney dynamical order of %cré-colspR(s){ Ti(d) } , then
for the family of X, €%, defined by the right— (1 , m , p) parametrizations we have

that :
db<m-p o

Clearly , the right — (I , m , p) parametrization is rather simple , but the Forney order
of the resulting matrix is not apparent from the parametrization . An alternative
parametrization that avoids the above problem is considered next . Let { r } = { r, , ry,
...,Tm } denote the degrees of the columns of the matrix T;(d) . We may write :

= (Te)" Spn,(ry(d) (7.3.3.a)
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where |

=T, . ¢, (d) (7.3.3.b)

(T'c)r =], (T;l)r e R™* and (T’cz)r € Rlxw (7336)
(T.,)"

then the above form corresponds to a right MFD if :

| TC, - Sen,r(d) | £0 (7.3.4)

If d,, denotes the first column of the i-th column block in (T'Cl)' , then the condition for

causality of the corresponding MFD representation is :

I (T;l)r ) Slm,(r}(o) | = I [ QIO ) d20 L AR QmO 1 I 7“' 0 (735)

The above parametrization will be called a right - { | , m , {r} } parametrization , where
{r}={r,r2,.s Tm } - Note that in the case where T{(d) is coprime and column
reduced then the set { r } = { r; , i€ m} are the Forney indices of %, .

Remark (7.3.8) : If 6 is the Forney dynamical order of %, , then the family of 6.,
defined by the right— {1 , m , {r}} parametrizations , defines a right MFD if condition
(7.8.4) is satisfied ; the representation is causal if (7.3.5) holds true . Further more ,
for all parametrizations 6 Sf: r; . 0

1=1

Remark (7.8.4) : The set of solutions of equation (7.2.8) consists of Rid)— left
unimodular matrices [ DY , NI JF . Indeed , since [ D, N ] is an R(d) - right unimodular
matriz , it never loses rank over C , hence if [ D] , N ' does lose rank on dye C then

Conl[ D (do) , Ni(do) J') =0 and:

Cull D (d) , N (dy)])- Con([ DX (do) , NE(dy) ) =0
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which not true , since Co([ D (dy) , N (dy)])- Con([ DX (do) , NE(dy) ) = 1. 0

Remark (7.8.5) [Vid. 4] : Almost all the solutions of (7.2.3) correspond to a coprime
MFD | i.c. the set of solutions of (7.2.8) with [D_(d)] # 0 is open and dense in the set of
all solutions of (7.2.3) . o

Equation (7.2.3) appears in stabilization problems in the more general form :

o N ~ ~.|D,
DD, + NN, =U, ,or[D, N]{N}: U,.,or Th(d) - T7(d) = U,, (7.3.6)

[

where , U, is a unimodular matrix ; in other words controllers with coprime MFD
representations (D, , N.) are required such that the result of the matrix Diophantine
equation DD, + NN, is a unimodular matrix U,, . It is well known , [Che. 1] , [Kuc. 2],
that if (D, , N.) is a coprime MFD representation of a controller and satisfies equation
(7.3.6) , then the column degrees of [ D7 , Ng | serve as the controllability indices , if
and only if [ DI, N7 ]"is column reduced . In the case of proper controllers the column
degrees of DY serve as the controllability indices , if and only if D is column reduced .
In the above cases the complexity of the stabilizing controllers is equal to the sum of
the column degrees of [ DI , N |7, (when the controller in non proper) , DI , (when
the controller is proper) . More generally , when the stabilizing controllers are not

proper we have the following definition :

Definition (7.3.1) [Ros. 1] : Let Ce R!*™d) be a stabilizing controller not necessarily
proper . Then the Estended McMillan degree (EMD) &, of C is defined as the total
number of finite and infinite poles of C . 0

Lemma (71.8.1) [Var. 5] : Let CeR"*™d) be a stabilizing controller not necessarily
proper and (A , B) , (Ay , By) be any pair of coprime right , left MFDs of C
respectively . Then the EMD of C, 6,‘\4(C) , 180

61, (D%) = deg[Co(T' (d))] = deg[C(T, (4))] (1.8.)
where,T;(d)—':[AI,BI]r:TlA(d)=[Az:sz- 0

The previous analysis motivates the study of the property of column reduceness among
the solutions of (7.3.6) . In the following we shall assume that U, is a unimodular

matrix .
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Remark (7.8.6) : Equation (7.3.6) has always a solution Ti(d) , since cquation (7.2.8)
has always a solution , due to the fact that the matriz T‘p(d) corresponds to a coprime
left MED of the plant . If T, (d)q is a solution of (7.8.6) then the family of solutions of
(7.8.6) is :

T = { T(d) : T(d) = T(d)o + V-R } (7.3.8)

where , V is the matriz formed by a base ¥ of N.{T',(d)} , and R is an arbitrary

polynomial matriz . 0

Let F., denotes the family of solutions of (7.3.6) which are column reduced and let R

denotes the family :
R = { ReR"*™d): Ti(d) e F,,, Ti{d) = T(d)y + V-R } (7.3.9)

Furthermore choose V to correspond to a minimal polynomial base ¥ of N {TL(d)} .
Then V is a column reduced matrix , i.e. its highest column order coefficient matrix
[V]; has full column rank . Finally , R*™d] becomes a metric space if it is endowed

with the following metric :

Definition (7.5.2) : Define g,, to be a matriz metric over the space R'*™d) such that :
o, : R=™d) z R*™d) -+ R, U {0} (7.8.10)

and for all“matrices A = [o;;], B=[b,], of R=™(dy,

(3", (A, B) = e {1l a;;—bij 1o} (7.8.11)

where [[- [, is any of the classical polynomial norms . (Such a norm for ezample can be:

-0 R =Ry U0} [ (o=l r(@) [, =3/ | (7.9.12)

1=0

where , 7(d) =1g +1-d + - +1,-d") . 0

Remark (7.8.7) : It is straightforward to prove that o, is a metric over Ri=™d) .

Further more p,, defines convergence of matriz sequences over R'*™d) in the following

natural manner : If P, = [p?j] , @= [q.-j] are a malriz sequence , @ matriz over R*™d)
respectively then :

'{LTLIOP,.=Q < '{%p:',,:q,,,,Vt,] (7.3.13)

a
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If R denotes the closure of ® and F is defined in (7.3.8) , we can procced with the
statement and proof of the following result concerning the property of column

reduceness of the solutions of (7.3.6) for an arbitrary unimodular matrix U

m -

Theorem (7.8.1) : The set of column reduced solutions of (7.3.6) is dense in F |, or :

R =R d) (7.3.14)
Proof
It is obvious that % c R'*™d) . Thus we must show that R'’*™djc ® . Let R ¢ R*™d)
and T,':(d)Rz TI(d)o + V-R . Then:

1) If T;(d)R €., , then R belongs to % and thus R*™d)c R .

i) If T;(d)R ¢ F_. , then in order to show that R belongs to ® we must find a sequence
R, of elements of R such that R, - R . The latter can be achieved as follows . Write
T'(d)R as :

c

Ted), = [1(d) , 1,(d) , ... tm(d) ] (7.3.15)

and let p; , 2, ..., fy De its column degrees . Write V as :
V=[y(d),v(d),..,yd))] (7.3.16)
and let v, , vy, ..., v; be its column degrees . Bearing in mind that V corresponds to a

minimal polynomial base ¥ of N AT,(d)} and I>m , then V is a column reduced
matrix rahk{[V]:} = 1. Let V,, be the matrix formed by the first m columns of V .
Then it is clear that rank{[Vm]:} = m and V,, is a column reduced matrix . Now
consider the sequence R, € R!*™d] such that :

R,=R+C, (7.3.17)
where , C,eR*™[d] , C, = [c? ;] and :

0,wheni>m,j)j=1,...,m
Cv.:{O,whenigm,i#j,j:l,...,m (7.3.18)

8,7
K . . . .
%-d’,whenzgm,z:;,]zl,...,m

pj—vi+1,whenp;>v;,j=1,...,m

K= { (7.3.19)

O,whenp;<v;,j=1,..,m

Clearly lim C, = O , which implies that lim R, = lim (R + C,) = R . It remains to
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prove that R, belongs to ® . Consider :

Tid) =Tidd)o+ VR, =Td)o+ V-(R+C,) =

(Ti(d)o + V-R) + V-C, = T(d)_+ V-C,

By (7.3.15) , (7.3.16) we take that :

Ti(d) = [t,(d),t,(d) .., tnld) ] + [¥,(d) , v(d) , ..., ¥(d) ]-C,

by (7.3.18) , (7.3.19) we take that :

Ti(d), = [4(d) +y,(d)-cfy, . ta(d) + v,(d) - coum | (7.3.20)

By (7.3.20) it is clear that [ T;(d)R ]: = (1/n)-[ V., ]Z and rank{ | T:(d)R ]Z =m,

n

which implies that T;(d)R are column reduced V neN . The latter implies that the
sequence R, belongs to % and finally R*™d)c R . o

Remark (7.3.8) : It is obvious that theorem (7.3.1) is invariant of the selection of the
unimodular matriz U, on the right hand side of (7.9.6) . Furthermore , from the proof
of theorem (7.8.1) it is implied that the set of column reduced solutions of (7.3.6) is non
empty . | o

Although the set of column reduced solutions of a matrix Diophantine equation , such
as (7.3.6) , is a dense subset of its set of solutions , it is not open . In other words the
solutions of (7.3.6) are not generically column reduced . This result is derived by the

following approach :
Definition (7.3.2) : Consider equation (7.3.6) for the two arbitrary R(d)- unimodular

matrices U; , Uy on its right hand side . Let F, , F, denote the corresponding sets of
solutions and let f be the function defined as :

f:F9,+F ,VXe%,,f(X)=XU'' U, =X.G (7.9.21)
and f is well defined . o

Remark (7.3.9) : In the following we consider the matriz metric o,, of definition(7.3.2)
ezpanded over the cartesian product Rm+hem gy o RIm+zme gy n]
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Proposition (7.8.1) : The function f defined in definition(7.8.2) is a homeomorphism .

Proof

a) f is a bijection . Indeed let X, , X, be two arbitrary elements of ¥, , such that
X, # X, . Then f(X,) = X,;-U;'-U, and f(X;) = X,-Uj'-U, . Thus f(X;) # f(X,).

B) f is a surjection . Indeed let Y be an arbitrary element of ¥, , then the matrix X
defined by X = Y-U;'-U, , is an element of F, , since T'p(d)-Y-U;l U, =U,-U;' .U, ,
and f(X) =

7) f is continuous . We shall prove that for every X , Y in ¥, a positive real number w

exists such that :

y FX), f(Y)) Sw-p,, (X,Y) (7.3.22)

Indeed , if X = [x;;] , Y = [y;;] are any elements in ¥, , G = [g;;] is the matrix of
(7.3.21) then :

oy (f(X), f(Y)) = 0y, (X-G, Y-G) = maz { || a;;-by; ||} (7.3.23)

where , A = [a;;] = X-G,B = [b;;] = Y-G . Since :

il
—
-

=i xin'ng) 17 = Z gnja ]=1,---1m,Vi ..,I (7324)
k=1 K=

Then ,Vj=1,.,m,Vi=1,..,1

= g (xl'x - Yin) ) gnj (7325)

” a’i‘fj—bij Hp = IIKEI xix'ng -ngl yin'gnj
. = = p

p

or,Vj=1,....,m,Vi=1,..,1

| a;;=Dbij |l < Z | (Xix = Yix) B ||,, < Z:III Xin = Yix Hp- Il &; ||p (7.3.26)

(since , for the classical polynomial norms , like for example the coefficient norm

demostrated in (7.3.12) , || p-qll<llpll-llq}l) - A= maz { || g; II,} , then (7.3.26)
impliesthat Vj=1,...,m,Vi=1,...,1:

| a;;—by; |, < A Z}” Xin—Yix |lp < )"m"vnﬁf{ | Xin = Yix I}
and finally ,Vj=1,...,m, V=1, 1l ,s=1,...,m
0y (FX) , £0Y)) = az {1l a5y 11, } € Aom-maz { | xee=ie I} =

= w-p, (X,Y) (7.3.27)
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with w = A.m a rcal positive number . Thus (7.3.23) holds true and f is a uniformly

continuous and hence continuous function .
8) f7! is continuous . The proof follows similar arguments as in the case of 7) .

Considering o) , ) , v) , 6) together it is implied that f is a homeomorphism . 8]

Remark (7.8.10) : Let ¥, denote the set of column reduced solutions of (7.8.6) for an
R(d} — unimodular matriz U . Then a unimodular matriz V ezists such that the set F .. V

contains no column reduced matrices . Such a matriz V , for ezample , is given by :

1 d 0 0
1 1+d 0
1 d 1 0
V=1 ) . . (7.3.28)
1 d 0 0
1 d 0 1
L - a

Proposition (7.3.2) : There ezists no unimodular matriz U , such that the set of column
of (7.8.6) is either open , or closed .

cr

reduced solutions , ¥,

Proof
Let U be a unimodular matrix such that EF:; is open . Set W = U.V , where V is the
unimodulat matrix defined in remark(7.3.10) . If ‘.Fw , ‘EF; denote the set of solutions ,
column reduced solutions of (7.3.6) respectively , for W , theorem(7.3.1) implies that
‘.F;', is a dense subset of ¥ _ . If ¥, is the set of solutions of (7.3.6) , for U ,
definition(7.3.2) and proposition(7.3.1) provide us with a homeomorphism f defined
between ¥, Fpas:

f(X)=X-U"-W=X-V,VX€‘IU (7.3.29)

Consider now the set f(¥;) = ¥ -V . Remark(7.3.10) clearly implies that f(F,)
contains no column reduced matrices . On the other hand we shall prove that f (‘5‘:}') is
an open dense subset of ¥ . Since ‘:'F:}' is open and f is a homeomorphism it is implied
that f(%,,) is open ; whereas if Y is an arbitrary element of ¥, then f(Y) = X
belongs to ¥, and a sequence of elements of ‘:'F:]' » Xpn , exists , (theorem(7.3.1)) , such
that X,, » X . The latter implies that Y, = f(X,,) is a sequence of elements of f(‘f:j')
and :

limY, = lim f(X,) = lim(X,- V) = X-V = f(X) = Y (7.3.30)

Thus f (‘:T;;) is an open dense subset of ¥ . Finally the complement of f(‘if';]' ) f(q:}r)c,
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1s a closed subset of G.}'W and :

F, C f(‘IZIr)' (7.3.31)
but ,
T, =%, CHF,) =fF,)CT, (7.3.32)
or equivalently ,
F = f(F,) (7.3.33)

The latter implies that f(‘.'f:;) 1s an empty set , something that contradicts the truth ,

since :

(3,

i
«Q

(7.3.34)

Thus our initial assumption that ?ff}r is open is wrong . If on the other hand ‘:TICJ' is closed
then : L
FEF) = F@) = £(3,) = £(9,) (7.3.35)

which implies that ¥ contains no column reduced solutions , since f(‘ZFCUr) does not
something that contradicts remark(7.3.8) 0
7.4. FIXED INDEX SOLUTIONS OF THE MATRIX DIOPHANTINE EQUATION

Let us consider the plant described by a left — coprime MFD as in (7.2.1) and assume

that T'(d):s column reduced and that v is the observability index i.e. we can write :
Tlp(d)z[50aN0]+d[ﬁlaﬁl]+"'+dl’[ﬁuaﬁu]=
=To+dT, +...+ & T, eR™m+Ngq (7.4.1)

We also assume that the controller is represented by the composite matrix associated
with a right -MFD i.e. :

DcO Dcl Dc
T7(d) = +d +..+dP| Pl=
[Ncojl [Ncl] Ncp
=To+dTy +...+d? T, eRm+mq (7.4.2)

where we fix the index p , (maximum of the indices (column degrees) of the columns of
T7(d)) . It is not difficult to see that the condition :

TL(d) - T(d) = L, (7.4.3)
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implies the following set of conditions :
T, -
T, -

Tz'

T

v

TcO = Im
TCO + ’T‘O
TcO + Tl
T, = O

which in matrix form may be written as :

00 ...... 0O
TITO. :
DT
o .. 0"
T, : - %,
ofT, . T
_o ...... OT.,J

T, =0
Tcl + ’T‘O
r—Im

o 0
T, 0
Tcl :
e |
0]

0]

——d

(7.4.4)

(7.4.5)

Condition'(7.4.5) is equivalent to the right Diophantine equation (7.4.3) and the fixed

controllability index solutions of (7.4.3) are investigated as solutions of (7.4.5) . We

shall denote by :

O
)
>

the r — Toeplitz matrix defined by T;,(d) . Equation (7.4.5) is equivalent to :

(7.4.6)
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N ’T‘O O ... ... O *Im— ~0—
T, Ty 0| o7 |0
1o : T,
T 0 0
. . . . Trl .
Cos 0 :

T, : . T, || |= (7.4.7)
0 Tu . . Tl :
. . . . TCP
oo : I
. O | "™ | O
0O .- ... OT, O 0O
and the following notation will be employed :

(T, 0 ... 0-1]

Tl ;f\o ) : O [ -
~ ) T
Ty .+ 0 <0

3 . . O : T.Cl
ofT, . T :
o T,,
.10 | Im
0 0T, 0

Proposition (7.4.1) : The least possible controllability indez of T((d) is equal to the first
indez p of S, , for which (7.4.7) has a solution of the type T, as in (7.4.8) ,
corresponding to a column reduced MFD . o

In the following we present necessary and sufficient conditions such that a fixed p be
the least Forney index among the Forney indices of the column space of Ti(d) , in

either cases of T7(d) corresponding to a causal or non causal controller .

Proposition (7.4.2) : A necessary condition for (7.4.7) to have a solution of the type T,
is that : :

rank S, < m-p (7.4.9)
Proof
Since the solutions of (7.4.7) of type T, are full column rank matrices the right null

space of S, , which we denote as N,{ S, } must have dimension greater than or equal to
m,l.e.,
dimN { Sp }>m

or,
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m(p+1)—rank S, >m
or,

rank S,<m p 0

This condition is invariant of the selection of matrices in (7.4.7) and hence in (7.2.3) .
Let W =[w,,..,w,]| bea base for the N.{ S, } , with j>m . If we partition W
according to the partition of T, in (7.4.8) then it follows that :

_wo_
\%Y

1

W= (7.4.10)

%%
Vera

If Q is a matrix in R™*7 then by C,,(Q) we denote the lr(;’n) matrix consisting of the
mzm minors of Q taken in lexicographical order . The conditions stated in the following
propositions are invariant of the selection of the base W . The solutions of (7.4.7) does

not necessarily correspond to a causal MFD .

Proposition (7.4.8) : A necessary and sufficient condition for solvability of (7.4.7) for a
given p 18 that :

Con(Wy 1) # 0" (7.4.11)
Proof
(=) Let W be a base for the N.{ S, } and partitioned as in (7.4.10) . Suppose that
C(W,4+1) = 07 and let B be an other base of N.{ S, } . Then , if we partition B as we
did with W we have :

Cm(Bp+l) = QT

Indeed , there exists an R7*/ unimodular matrix U such that : B= W.U ,or,B =

. ) yBpp1 T
=W,,:-U . So, C(Bpt1) = Co(Wy 1) - Cro(U) = 07. If (7.4.7) has a solution T, ,
then it can be written as :

T,=W.P
where , P is an R?*™ parametric matrix , or

_Tco_ ] )

Tcl WO

: W

ik : |'P (7.4.12)
T., :

L, | LWe+d
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Equation (7.4.12) then implies that :
L,=W,, P ,orC (W,,,)-C,(P) =1 (7.4.13)

which does not hold true , since C,,(W,,,) = 07 . Hence , there exists no solution for
(7.4.7) if for an arbitrary base of N { S, } , W, we have C,,(W,,,) =0".

(¢) Let W be an arbitrary base for the N.{ S, } and partitioned as in (7.4.10) . Suppose
that C,,(W,,,) # 0" . We can write :

1 +1
p+ w?

W, =[w o s W ]

That means that we can select at least one m - tuple of columns of W, , with the

following property :

| WP L wPt 20 (7.4.14)
1 m
We select now the columns i, , ..., ¢, from the base W and form the following matrix :
— i
w, W, W
Y 2 m
w,ow W
1 2 m
(7.4.15)
P+l _p+1 p+1
w‘ \_V-‘, see ves w'
— 1 2 m
where , w is a column vector in Rm+D21  whenk =0, ..., p and in R™*!, when k =

=p4+1. ‘If T denotes the matrix (7.4.15) then we have :

w, Wy W,
- T 1 2 m
T, . .
1 1 1
T, v—".‘l ‘E.'z w;
T=| © |= (7.4.16)
TP
T, 41 e
— - 1
Wt Wt W't
— 1 2 m
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Where , by (7.4.14) the matrix T, ,, = | \_'_v".’]+ Lo , v_vf-)+l | has the property :

| Tpn I =1wl™, Wl ™ 20 (7.4.17)

m

Now we can create the matrix T, = T-T}',, and T, is a solution of (7.4.7) . Indeed :

S, T, =S, T-T;,, =0

since S,-T = O, (each column of T is a column of the base W of N,{ S, }) , and :

To| [ To-T,
T,| | T,-T,,

m “Ip+1
] U 4 O

By remark(7.2.1) we require | Do | #0, so the MFD C= N,.D_! will be causal . If we

write equation (7.4.7) as :

(D, N, 0 0 ... ... 00 :-1,] [D,]
D, N, B, Ny - 0| | Ny
;DN : 0| | D,
P .0 0 : Nei
D, N, ~ : . ]?o 130 =0 (7.4.18)
o o B, N, D, N,
S : 0o
O 0 - - oob N : o I,
Then we define : : -
B, N, 0 0 v - 00 :-1] (D, |
fjl Nl Do No ) 0o No
: ﬁl N1 ' : 0] D,
R .00 + Na
§pé D, Nu~ : . l}o Ijo : ,;f',é (7.4.19)
O O DN, D, N, :
o 0]
00 -« - 0o0bN,: o I,
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Consider now a base of N .{ S, } , W , and partition it according to the partition of Tp
in (7.4.19) , that 1s :

— -

Wp

c0

Wy

c0

W= (7.4.20)

Wi

— -

If we compare the partition of W in (7.4.10) with the one in (7.4.20) we clearly have :

WDcO WDc]
W, = W, = W, = [w,m} (7.4.21)
WNCO WNC1
Where , Wp_, belongs to R™=7 | Wy __ belongs to R ,k=0,1,..,p and W,

belongs to R™7 .

Proposition (7.4.4) : A necessary and sufficient condition for the ezistence of a solution
T, of (7.4.18) with [ Deg [# 0 , is that both C,(Wp_, ) and Co(Wi,_ ) are non zero
vectors , for an arbitrary base , W, of .N,{g'p }.

Proof
In proposition(7.4.2) we have shown that the necessary and sufficient condition for the
existence of a solution T, of (7.4.7) and hence of a solution ’Tp , (without the constraint
Dl #£0) , of (7.4.18) is that for an arbitrary base W of N.{ S, } =N,{ §p }
partitioned as in (7.4.10) :

Cn(Wpy1) #£07

If the base W is partitioned as in (7.4.20) then by (7.4.21) we take :
Con(Wp 1) = Co(Wi )07 (7.4.22)

So , while (7.4.22) holds true , it is enough to examine condition C,,,(WD o );é or.
(=) If (7.4.18) has a solution :
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Deo
Neo
D
Ney

R
>

Im

with | Do | #0 , then §p-’TP = 0 and ’T‘p is a full column rank matrix ; that means ,
that ’Tp can be completed , if necessary , to give a base B of N { §p } . If Bis

partitioned as in (7.4.20) and because of its construction :

C(Bp,, )# 07 (7.4.23)

in other wards , if we take the C'"(BDco) then , at least the minor formed by the

columns of D is non zero . Any other base of N { §p } , let say , W is expressed as :
W=B.U

where U is an R?*? unimodular matrix . Then by (7.4.20) we have :
Wp,=Bp,-U (7.4.24)

By (7.4.23) we conclude that Bp  is a full row rank matrix , (Wp_ , Bp_, € Rm=i
j>m) , and because U is unimodular Wp o must be a full row rank matrix as well .

Hence :

CoWp,, ) #0° (7.4.25)

So , (7.4.22) and (7.4.25) hold simultaneously .
(<) Consider now an arbitrary base of N R §,, } , W, partitioned as in (7.4.20) and :

Cu(Wp,, ) and Co(Wr_ ) #07 (7.4.26)

Because Wp_ , W;_ are in R™*7 and j>m is implied that the elements of C,,,(WD » )
and Cm(Wlm) are the mzm minors formed by the (3 , ... , i) columns of Wp_jand
Wi respectively taken in lexicographical order . By (1, (3, , ... , i,,)) we denote the
element of C,(W,) , i = Dy , Ly , formed by the minor of the (3, , ..., i,,) columns of
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W, . If the Cm(Wpco ) and Cm(Wlm ) have at least one non zero element at the same
position (1, (2, , ..., 1,,)) then by selecting the (¢, , ..., ?,,) columns of W | preserving

its partition (7.4.20) , we form a matrix :

r D D D 7]
W,‘ c0 ‘l’,- c0 W, c0
1 2 m
N N N
V_V‘- c0 V_Vl- c0 w,' c0
1 2 m
(7.4.27)
I I I
w,"ow" w,™
- 1 2 -

Dcn : : mxl NCK : : Izl
e . w. ““is a column vector in R w. “® is a column vector in R k=0,...
winere , W, ) 't ) )
t

p and v_v:"‘ is a column vector in R™*!, If T denotes the matrix (7.4.26) then we have :
t

FT ] F\_y.DCO v_vpco V_VPCO—
DcO ‘1 .2 'm
TNco {Vco W{Vco Neo
TR “'m
T= = (7.4.28)
T, 'm ("‘ Im
im | L Wy v_V,2 W
and 5 5 5
| TDcO I = | ‘_N.'lco w. ... w. <0 | # 0 (7429)
2 m
I 1 1
| T, 1 =lw" wore w0 (7.4.30)

By (7.4.28) , (7.4.29) the matrix T;  exists and we can set :

-1
DcO TDcO . T’m
NcO TNcO ) T.ll
;f‘p = =
L.| | T .
L B L Ien Im _
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and hence by (7.4.27) it is implied that :

~

S, T,=5,T-T! =0 (7.4.31)

m

and | Do | = | To,- T,

Y= To, |- T'll |#£0 . So , 'Tp 1s a solution for (7.4.18) . If
the C"'(WDco ) and Cm(W I, ) have none of their non zero elements at the same position
then we can create an other base of N { §p } , B, such that , the C,,,(cho ) and
Cm(BIm ) have at least one non zero element at the same position . Let the (1, (4, , ...,
i,.)) element of Cm(WDco ) and the (1, (4, ..., t,)) element of Cm(Wlm ) be non zero

with (¢, , .- tn) #(ty 5 ... » 1) - Create now the base of NA §p },B,as:
B=W.U (7.4.32)

where U is an R’*/ unimodular matrix which multiplies the i, column of W by the recal

constant ¢, and adds the resultant column to the ¢, column of W when i, #¢, ,x =1,

2 ..., m . For this new base B, if partitioned as in (7.4.20) , we shall prove that the
(1, (t; ;s t)) element of Cm(BDco ) and Cm(Blm ) are non zero for some appropriate

tm tm .
selection of ¢, . By Cm(BDco )z and Cm(Blm )‘ is denoted the (1, (¢, , ..., t,))
1 1

element of Cm(BDCO ) and C,,.(Bzm ) respectively . Before we continue with the proof
some additional notation is introduced .

Consider the sets Py = { ¢, ,t; } , Po = {4, 8} ,...,P,={¢,,¢,}, with peN",
p <m . If T denotes the set :

T={+Y}={"M %17 }€PizPyz.. 2P, (7.4.33)
It is clear that the cardinal of I' is 2° . Suppose now that i, #t, for x, , x, , ..., &, ,
whereas i, = t, for ke{l,2,...,m}—{r,55,.., K, } ; then without lose of

generality it can be assumed that:
i,‘¢t,¢,'€=1,2,...,pa.ndi“=t“,n=p+1’p+2,.__,m (7434)

by interchanging the i,‘l , i,c2 ) ey i,‘p columns of W with the ¢, for k€ {1, 2, ...,
m)—{ Ky, Kz, .. K, } Tespectively . Now set :

d, =0, when v7,=t,

dn=7n_tn={ yK=1,2,...,p
d.#0,when v, =1,
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and ¢, = (1/(i.—t)) , ¢.#0, & =1,2, ..., p. According to the procedure for the

construction of B we take that :

L D D D D D D
m c0 c0 c0) c0 cO cO
= . CW. w w =
C"’(BDCO )tl 'i((‘l _,1 + _tl ) bl ] (Cp E, + tp ) ] 'p+l ) y w¢m ]
d\91 ; dp92 d,\% D D D D
1 2 P c0 c0 c0 c0
= § (c1 ) -(cz) Cens -(cp) Wy e W T, W, Yy W, (7.4.35)
= 1 P p+1 m
{~"}
d \9x . d \%%
where (CKK) = ¢, , when v, = 1, and (c,"‘) =1,whenvy, =t ,c=1,2,..,p

For {7} ={i1,02,s1 }, (7.4.35) becomes :

t D D D D
m c0 c0 c0 c0
= Ci{+Co+ +++ "Co*| W. ver W w veo ¢ W
%@%% 1-C ol W W W T w P
d1 71 (“2 72 dP . I DcO DcO DcO DrOl (7436)

) e ) C -(c ) w LW w ey W, € 4.
+ 2 ‘(Cl ) 9 p 7 P, 0 tp+l ) » Wy

{~"}

where , {7} =T-{1,,4,..., 3, } . By (7.4.34) , (7.4.36) becomes :

t D D D D
m c0 c0 c0 c0
=c,- e ol W ser W W. ooy W
Cm(BDco )tl 1-C2 P I =i ’ ) i, ) _'p+1 ) » X | +
d dl A d2 92 dp qp DcO DCO DCO DCO
+Z@)¢J'”@A’WH”%w&+W”mml (7.4.37)
P
="y
Similarly we have :
t I I 1 I Il I
m m m m m m m
=lle, - w." + W ) (c W, W ) w w =
Cm(B[m )tl [( 1 2 ‘l ’ Y\"p i tp ’ tp+l, » St
dadl 7 dn92 d \9p I I I I
1 2 4 m
Z(cl ) -(c2 ) ' (cn ) Wy, Wy, W, ™ w, | (7.4.38)
b P P+
5

d \7 . d \%x
where,(cn")‘zc,‘,when'y,‘:z,‘a.nd(c“") =1,wheny, =t ,x=1,2,...,p.

For{7"}={ti,ta,...»t, }, (7.4.38) becomes :

m m m m
=|w w,", W .
Cm(BIm )tl I St T 0 R e By | +
d\91 ; d\T2 d\%e 1 1 I I
1 2 P m m
+ ¥ (¢ () (&) Tmay s w ™ W (7.4.39)
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where , { 7"} =T—{t; , t, ..., t, } . Using the hypothesis , that is :
| w, o . v_vf)co , ‘E,PCO . ‘_v:)n() | £0
1 P p+1 m
| v_Vfl"' SRR V_Vf;" : w::’H, s wf;“ | #0
we take that for appropriate selection of ¢; , ¢, , ..., ¢, , (7.4.37) and (7.4.39) , namely ,
Cm(BDco):m and Cm(B1m):m are non zero . Thus the (1 , (¢, , ..., t,)) element of

1 1
Cm(BDC()) and Cm(BIm) is non zero . Now we construct a solution of (7.4.18) following

the steps (7.4.27) through (7.4.31) for the new base B . o

Remark (7.4.1) : For a parametrization of the solutions 7’,, of (74.18) we argue as
follows . The ezistence of a solution of (7.4.18) requires the existence of a base W of
N.A{ §p } , for which , under the partition (7.4.20) , both Cm(WDco) and Cm(Wlm) are
non zero vectors ; it is clear that the ezistence of such a base leads to the conclusion that
for all the bases B of N { 3",, } , under the partition (7.4.20) , both C'H(BDco) and
C (B, ) are mon zero vectors , (by simply generalizing the steps in (=) of
proposition(7.4.4)) . A solution T of (7.4.18) is a full column rank matriz , hence, it
is a base for a subspace of N, {S }, let say , T with dimension m . So , each solution
T can be completed to be a base for N {S } - Thus, all solutions of (7.4.18), if any,
can be obtained by eztracting from the bases B of N { S } their {3, , 4, , ..., i}
columns for which C'"(BDco) and C,,,( m) have a non zero element at the (1, {i, , 1, ,
.., i, }) position . All the bases B can be obtained by simply multiplying one of them
with an arbitrary R?*? unimodular matriz U . So , first an arbitrary base B of N, {gp } s
ezamined for the truth of the conditions introduced in proposition(7.4.3) , then a
solution of (7.4.18) can be constructed , (as in (<) of proposition(7.4.8)) . For the
parametrization of the solutions of (7.4.18) , we multiply this base B by an arbitrary
R/ ynimodular matriz U and each time the parameters of U take a value , a new
solution can be found by repeating the steps of the (<) part of the proof of
proposition(7.4.3) for the new base B-U . o

7.5. FIXED COMPLEXITY SOLUTIONS - PI CONTROLLERS

In the following we consider the PI controller problem , where the complexity of the
controller is fixed and equal to m . Let P eR™(d) denote the plant and C =
=Co+C, - (1/(1 - d)) e R'*™(d) denote a PI controller with C, € R*™ full column rank
matrix when ! >m , full row rank matrix when ! <m . Then the plant and controller
may be represented by R[d] — coprime MFDs as :
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P=N.D'=D"'"N erR™ [d] (7.5.1)
C=N,.D;!'=D N_eR=* [d] (7.5.2)
where ,
Co = A, Ay, whenl>m
D, =(1-d) Ay, with AgeR™™ and | Ay |#0
N.= A+ (1-4d) A,, with A;=C,-A,, A, eR"™
(7.5.2.a)
Cy = K{)I-Xz , when [ <m
D.= (1-d) A, , with AgeR'* and | A, | #0
N,= &A,+ (1-d) A, , with A= A,-C,, A, eRl=™
In the following we consider (7.5.2.a) under the transformation w = (1-d) . The

stabilization problem for the plant P with the PI controller C , (as in (7.5.2) , (7.5.2.a))

leads us to examine the following problem .

Problem : Given a plant as in (7.5.1) find all the possible controllers C , (as in (7.5.2) ,
(7.5.2.a)) such that the following Diophantine equations are satisfied :

~ ~ ~ ~ D
DD, +NN,=1,,o0r[D, N][Nc:|=1m,whenlgm (7.5.8)
or, ¢
~ ~ ~ | D
D.D,+N,N =1, or [D,, NJ[N] =1, vhenl<m (7.5.4)
a

In the following , we shall represent both plant and controller in terms of composite

matrices as :
Ti(w) &1 D , N eRmm+ i) (7.5.5.a)

D.| .
Tr(w) Q{N]en‘ *hrmiy (7.5.5.b)

[

Furthermore we consider only equation (7.5.3) , since all the results for (7.5.3) apply to
equation (7.5.4) as well in their dual form .

Remark (7.5.1) : Equation (7.5.3) suggests that the matriz [f) , N7 eR™ M+ s
right unimodular and [D; , Nc[" € R(™ + 1™ () is lefit unimodular . So , rank (DT , NIJF
must be equal to m for all the we C . For w = 0 we take rank [O , A[]" = m , which
implies that | > m . Similar arguments for equation (7.5.4) imply that I < m . 0

By (7.5.5.a) and (7.5.5.b) we take :
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Th(w) = Dy, No] + w [ D, , N)] + ...+ w [D,,N,) =
=To+wT  +... +w T, e R (™ + Oy (7.5.6.a)
D D
T7(d) = [ CO} + w': C‘} =Ty + w T, e R +D7my, (7.5.6.b)
NcO Ncl

where , v is the observability index of the plant P . By (7.5.2.a) , (7.5.6.b) becomes :

0) A
Tiw) =|, |+w| °|=To+wT, eR"+Dsmy] (7.5.6.b)
A A,
Then equation (7.5.3) gives :
Ty(w)-Te(w) = 1, (7.5.7)
which implies the following set of conditions :
TO : TcO = Im
T, To+Ty T,=0 (7.5.8)
Tu ’ Tcl = O
which in matrix form may be written as :
— To o — —Im—\
T, T, 0
Ty | |To| | O
: = 7.5.9
o [1‘1] s (7:59)
T, : ;
o T, 0
or equivalently , - ﬁo ﬁo 0 0 - B rIm_
ﬁ‘ Nl ﬁo ﬁo O O
DN A (O
SRR ¥ A, =1 : (7.5.10)
ﬁu 1'\‘ju . Ag
cob N | ~ |o
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or equivalently ,

D, N,oOo O : -1, o o)

D,N,D, N, : © N 0

. DN oY O

S . [ A= (7.5.11)
~ o~ A

Du Nu : I2 .

ooDN : o|L™ | 0
L . -

Let M e RV +2ma(Bm+2) x ¢ RG™ +20)2m jenote the matrices :

_ﬁﬁ 0] :_Iﬂ L

~0~0~9 . m xl O

DN 0] o | !
M= 0 X=1X5]=4A0 (7.5.12)

I I

g "’; ~ X5 Im

0o 0 D, N, 0 I I

with X,= 0 eR™™ , X, € R'=™ full column rank , X;€R™™ and | X; | #£0, X, eR/=™,
X,=1,€ €R™™and [X;]|#£0, whereas M’ € R+ 2m=2m +1) denotes the matrix :

N, 00 :-IL]
N, D, N ¢ O
M = I?‘ l\f‘ ? (7.5.13)
N, i1
0B, N : o]

Equation (7.5.3) has been transformed to the form (7.5.11) , or , by using the notation

(7.5.12) , to the form:
M-X=0 (7.5.14)

Hence , it suffices to solve equation (7.5.14) under the constraints X,= O, X, full
column rank , | X3 |#0, | X5 | #0 , (not necessarily L)) , and set A, = X;3-X3!, A=
=X, X', Ay = X,- X3! . In the following N.{ M } denotes the right null space of M ,
N9 M } denotes the subspace of N,{ M } , the vectors of which have their first m rows
zero , N,{ M' } denotes the right null space of M’ . If we consider the matrices :
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o -
X, X2
X0 = X;| and X = ?
Xy
X, X
X L5

then it is straightforward to show htat :
MX=0eM.X=0 (7.5.15)

Relation (7.5.15) implies the existence of an isomorphism ¢ between the vector spaces
N{M } and N, { M' }, namely :

6 NYUM}-N{M} ,¢()’Z°):=x (7.5.16)

Hence the vector spaces No{ M } and N, { M' } are isomorphic and have the same
dimension . Now we can proceed with the solution of (7.5.14) under the constraints
mentioned there . The matrices X° which satisfy (7.5.14) are formed by m linearly
independent vectors of N,{ M } and thus the first condition is derived from this fact .

Proposition (7.5.1) : A necessary condition for the ezistence of a solution of (7.5.14) is
that :

rank M< 2 (m+1) (7.5.17)
Proof
Since the dimension of N, { M } must be greater than or equal m we take :

dim N {M}=03m+2l)-rankM >m & rank M <2 (m +1) 0

More precisely , considering the constraints of equation (7.5.14) , we see that the vectors
of the solutions X° belong to the subspace of N.{ M } , N9 M } . Thus , a necessary
condition for the existence of a solution of (7.5.14) is :

Proposition (7.5.2) : A necessary condition Jor the ezistence of a solution of (7.5.14) is
that :

rank M < (m+21) (1.5.18)
Proof
For the existence of m linearly independent vectors of N{M} defining a solution of
(7.5.14) it is necessary that dim NM} >m , or by (7.5.16) , dim N (M} = dim
N, {M'}>m ,or:
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dm N{M}=2(m+1)-rankM' >m & rank M'< (m+21) 0
Remark (7.5.2) : By the construction of M we see that :
rank M < (m+21) = rank M<2 (m+ 1) O
Remark (7.5.8) : The condition (7.5.18) is sufficient for the ezistence of a solution X° of
(7.5.14) without the constraints X, full column rank , [ X3 [ #0, [ X5 | # 0. Indeed let
rank M <(m+21), thendim N.{M } =2 (m +1)-rank M >m & by (7.5.16) ,
dim NO{ M } =dim N.{ M } >m . 0
In order to find solutions of (7.5.14) satisfying the rest of the constraints , X, full

column rank , | X5 |#0, | X5 | #0, we proceed as follows . Because of the isomorphism
(7.5.16) it suffices to find a solution X of the equation M"-X = O with :

= b

and X satisfies the constraints X, full column rank , | X; |#0, | X5 |#0 . Then a
solution X of (7.5.14) is :

X0= ¢-1( X )

or equivaléntly ,

Consider now the vector space N.{ M’ } . The X for which M'-X = O, consist of m
linearly independent vectors of N,{ M’ } . Condition (7.5.18) is necessary and sufficient
for the existence of such an X , (without necessarily satisfying the constraints X, full
column rank , | X5 |#0, | X5 | #0) . Let W be a base of N,{ M’ } with j >m columns
and partitioned according to the partition of X , that is :

W,

W= (7.5.19)
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where , W, e R | W, eR™7 | W,eR?/ | W, eR™ . If C,(W,) denotes the 1m(g'n)
real matrix with elements the mzm minors of W, taken in lexicographical order the

following conditions are invariant of the selection of the base W .

Proposition (7.5.3) : A necessary and sufficient condition for the ezistence of a solution
X of M- X = O satisfying the constraints X, full column rank , | X5 [#£0, | X5 [# 0 is
that C,.(W,) is a non zero matriz , C_(W;) and C,,(W;) are non zero vectors for an

arbitrary base W of N.{ M' }.

Proof
The proof is similar to the one of proposition(7.4.3) if N.{ M’ } replaces N { §p }. O

Remark (1.5.4) : Summarizing the above analysis , in order to construct solution of
(7.5.14) , we construct a solution X of M- X =0, if such a solution ezists , and then
X°=¢71( X ) is a solution of (7.4.14) . O

7.6. MINIMAL COMPLEXITY SOLUTIONS

Consider again equation (7.2.3) . Our next task is to try to find a minimal complexity
solution for it . In order to do so we have to find the least possible column degrees of
solutions [ DY, N7 |* of (7.3.2) for all the unimodular matrices U on its right hand side.
Then the least complexity of solutions of (7.2.3) will be the sum of these degrees . In
the following we give a simple algorithm for the evaluation of the least column degrees
of solutions of (7.3.2) which serves as an upper bound for the least complexity . A low
bound will be introduced in section 7.7 . Using the notation (7.2.7.a) , (7.2.8.a) ,
(7.3.3.a) , (7.3.3.b) we may write (7.2.3) as :

Ti(d) - TH(d) = L, (7.6.1)

Ti(d) = Dy, No) +d [D,, M) + ...+ [D, N, =

=To+dT, +...+d" T, eRm(m+lgq (7.6.2)

r Dc
Tid) = | | = [a(d) &(d) s ta(d) ] (7.6.3.2)
4(d) =t +dty + - +d 7 (7.6.3.b)

and by (7.6.3.a) , equation (7.5.1) becomes :
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(7.6.4) implies the following set of equations :
0
Ty(d) - (d) =| 1 |v%row,i=1,2,..,m (7.6.5)
0
Remark (7.6.3) : A least possible column degrees solution of (7.6.1) , Tt(d) , consists of
least degree solutions t.(d) , (1 =1,2,..., m), of (7.6.5) . Hence , in order to find a

least column degrees solution of (7.6.1) it suffices to find least degree solutions t,(d) of

the set of equations (7.6.5) . In the following we show how such solutions can be obtained

a
Consider an arbitrary equation from the set (7.6.5) :
0
T(d) - t,(d) = 1 ~i % row (7.6.6)
0
Then by (7.6.2) , (7.6.3.b) and (7.6.6) the following set of conditions is derived :
To - tio=0
Ti o+ To -ty =0
Tor tio+ o+ Tiy, i, = 1 (7.6.7)
’Tu : L’r‘ = Q
which in matrix form yields :
[ To O ... ... 0O _Q— rg—
£ T, . o 0
i 2 row - T | =0 0
L . O Lc'l .
T, T of-| 1 |=]: (1.6.8)
0 Tu ) ‘. Tl .
oo : Yir, :
. . i :
.o 1 :
oL dgae
O - .. OfF, o 0
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and we denote by T, the coefficient matrix :

FTO O ... .. 0O 0]

T1 To - Do

: D=1
L0

T,=| T, - T 0 (7.6.9)

oOfT, - T :

N 0

O ... ... OT, 0

T, -T;=0 (7.6.10)
with ,
to
4
T, 8] (7.6.11)
t
L bt

and LGR("‘H)II when k=0,1, ..., r, and b1 is a non zero real number . Then a
solution of (7.6.8) is the vector T;-(1 /t,., +1) - Let N { T',‘_ } denotes the right null space
of T, and W, an arbitrary base of it , with j>1 columns . Partition W; according to
(7.6.11) , ie. ,

W, = (7.6.12)

with , W, eR™+1% when £ =0,1,..., 7, W, ,, eR¥ .

Remark (7.6.4) : The least degree solutions of (7.6.6) are those with r, least possible ;
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thus such solutions correspond to solutions of (7.6.8) with least number of row blocks
ri+1, or equivalently to solutions T, of (7.6.10) with the same number of row blocks and
t,.,+1 # 0 . In the following we give conditions for the construction of such solutions of
(7.6.10) . The conditions are invariant of the selection of the base W, of N { T'i }. O
Proposition (7.6.1) : A necessary and sufficient condition for r; to be the least degree of
solutions of (7.6.6) is that .’I’,‘, is the first element of the sequence T. , k = 0, ..., for
which W,'.Jrl #(0, ..., 0), for an arbitrary base W; of N _{ T. } , partitioned as in
(7.6.12) . '

Proof
(=) Let ,(d) = tio +dty + -+ + d" b, be a solution of (7.6.6) with r, the least degree

among the solutions of (7.6.6) . Then the matrix :

=1#0, the matrix :

B ]
to
%
T8
’t""i
L bt

is a solution of (7.6.10) and it can be completed with j -1 vectors of N { T,. } to be a
base W, . If W, is partitioned as in (7.6.12) we take that W,'_,,,l =(.., t,..,H‘, ) #0T
and T’ is the first element of the sequence T, , x =0, ..., for which this holds true .

() Let T',‘. be the first element of the sequence T, , k = 0, ..., for which W, 1 # 0T,
for an arbitrary base W; of N { T',., } partitioned as in (7.6.11) . Let w, ., be a non zero
element of W,‘,H, then we select the column of W, which correspox;ds to We +1 and

form the matrix :
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tg Wy
L] W,
A :
T, = _ =
L, W,
N tr'+_lj wr‘+l

which is a solution for equation (7.6.10) . Consequently the matrix T;-(1/t, ,,) is a
solution of equation (7.6.8) and hence t(d) = (to + dt; + - +d¥ ¢, )~(1/'t,,+1) -
=t +dty +--+d? 179 is a solution of (7.6.6) with degree r; least amZ)_ng the ('iegrees
of the family of solutions of (7.6.6) . 0

Remark (7.6.5) : If W,',H # 07, for a base W; of N { T'a‘ }, then B, _,# 0", for all
the bases B; of N.{ T'.' } partitioned as in (7.6.11) . Indeed for any ba:se of NAT. },
B, , there ezists an R7*7 unimodular matriz U such that B; = B;- U and hence B,,‘Hz
=W, 11 U, which implies that B,',+1- U'l= W, 11 # 0" . Hence , B'i+l #£07 ' 0

Proposition (7.6.2) : The family of solutions t,(d) of (7.6.6) ,i =1, ..., m with least

column degree r; is given by :
1 0:d 0: :di 0:0
Gf,,:{_t,-,(d) = .. 1 et s WA, A satisfy W,iH.A'.: 1}

0 1:0°d: o dii
(7.6.13)

where , W; is an arbitrarily chosen base of N, { T’,i } , partitioned as in (7.6.12) and r,
the first indez of the sequence TK y & =0, .. for which W,  ,#0".

Proof
(=) Let £,(d) = tio + d £, + - + d"¥ t,,. be a least column degree solution of (7.6.6) for
anie{ 1,2,...,m} .Thenthema.trixC,‘,:

tio

ta

Cf" = i (7'6.14)
bar,
L 1
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formed by the coefficients of t (d) satisfies equation (7.6.8) , or equivalently :

T',l,-C,i =07 (7.6.15)
with T, the matrix defined in (7.6.9) . C,', can be completed to a base W, of N {T }.
Partition W, as in (7.6.12) , then a vector A; = [0 --- 1 --- 0 ]T exists such that :

2 =C, (7.6.16)
and thus ,
=1 (7.6.17)

Since r; is a least degree (7.6.17) implies that r; is the least possible for which
W, 4, #07. It is obvious that :

r.

s e reeen e WAL (7.6.18)
O 1 :0 d: :0 d%:0

1 0:d O0: :d% O0:0
t(d)=| o e e D HEWL (7.6.19)
O 1 :0 d: 0 d9: 0
where , ), satisfies W, 4y -A4=1, W, 4, 1is the last row of an arbitrarily chosen base W,
of N, {T, } partitioned as in (7.6.12) and r; the least possible for which W,'_+ 1 #07 . Set

the matrix C, to be:

Cop=| | |=WoN (7.6.20)

and I
i Cr =0 (7.6.21)
with r; least possible . Then ,

1 0:d 0: :d% 0:0

b e cheed e Ele, (7.6.20)
O 1:0 d: :0 d%i0] °

t(d) =t + d b + -+ d b,

(7.6.7) and (7.6.8) imply that t,(d) is a least degree solution of (7.6.6) . a

190



Chapter 7: Characterization of controllers and related issues
In the following we present an algorithm for the construction of ¥, with r, minimum .
ALGORITHM FOR THE CONSTRUCTION OF ‘?F,'_ WITH r; MINIMUM

Step 1 : Write Ti,(d) = TO +d 'Tl + ...+ d¥ ’T‘U .

Step 2 : Create the sequence of real matrices :

- 0
To S, O
n-1
So=| ¢ |,S.= n=1,...,T.=]|S,:-1ki%row
F 0O S, 0

Step 3 : Find the first n , (n = 0,1, ... ), for which the matrix W formed by an

arbitrarily chosen base of N, {T,} , has its last row nonzero .

Step 4: Set r; = n , W; = W, partition W; as in (7.6.12) and set :

S 'Wi'Aivﬁ\i Sa.tiSfy W,,.‘_I'A":

1 0:d O0: :d% 0:0
A=1
O 1 :0 d: :0 d%:0 }

0

Corollary (7.6.1) : Applying steps 2— 4 of the above algorithm fori = 1, ... , m we take
that the family of least column degrees solutions of (7.6.1) is given by :

Frea = { T (d) : T.(d) = [4(d), 4,(d), ..., t,(d) | and t,(d) are taken from ¥, }
o
If the set of least column degrees { r;, , item } of the solutions of equation (7.6.1) is
constructed then the least complexity will be § SS‘: r, . A lower bound for 4 is

. . 1=1
constructed in the next section .

7.7. MINIMAL EXTENDED MCMILLAN DEGREE SOLUTIONS

In this section a lower bound for the minimal extended McMillan degree of the
solutions of equation (7.7.1) is introduced . The analysis is based on the minimal
solution of the scalar , (polynomial) , Diophantine equation that applies in the case of
SISO discrete time ssystems , [Kar. 1] , [Mil. 1] . Consider the equation :

T(d)-Tr(d) = I, (1.7.1)
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where ,

Ti(d) £[ D , N)eR™™+q), Ti(d) [ DI , NI|TeR 97"
Then the following equation can be derived using the Binet — Cauchy theorem [Gan. 1] :
C,,,(T’p(d)) : c,,,(T;;(d)) =1 (7.7.2)
or ColTh(d)) = Mo + d My + ... + d" M, eR'™d), t=(m ) (7.7.3.2)
Co(TH(d)) = Moo + d My + ... + d° M, e R[d], ¢ = (1) (7.7.3.b)
Equation (7.7.1) implies the following set of conditions :

Mo' MC0=1

M, Mo+ M- M, =0

M, Mo+ M, - M, +M, M,=0 (7.7.4)
M, M_,=0

which in matrix form may be written as :

M, 0 .. ... o | [ 1]
M, M, - 0
LM, M| |0
o .0 M. :
M, : My -] =] (1.7.5)
oM, - ~ M| |: :
e, e e M, o :
S
0O ... ... 0 M, 0

Equation (7.7.5) is equivalent to :
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MOO ...... O _1 0
1\71 IVI ) 0 —
'1~o. . M.
- M, . 0 0
S IR 710
oM, . - 1\'711 . : f
<o . ) M. _
T ) :
R L 0
O - .-t o M, 0
We shall denote by : : : L
1’\7100 ------ O _1
1’\7111'\710' 20 -
Y M
Ml. ) 0 c0
. : O : Mcl
S, 8| M, i My | TS|
0 M, " M, :
C. ' M.,
.. : A
.. 0 "
LO ...... 0 Mn 0

Let N,{ S, } denotes the right null space of S, and W be an arbitrary base of N.{ S, } ,

with j > 1 columns . Partition W asin T, , namely :

W= (7.7.8)

where ,WKEij when k=0,1 ,...,a,wa+l€Rlzj'

Remark (7.7.1) : Because of its construction equation (7.7.2) produces solutions the
least degree of which is a lower bound for the minimal extended McMillan degree of the
solutions of equation (7.7.1) . In the following we shall construct this lower bound ,

which is invariant of the selection of base W of N.{ S, } . o

Proposition (7.7.1) : A necessary and sufficient condition for a to be the least degree of
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the solutions of (7.7.2) is that S, is the first element of the sequence S, , k = 0, ..., for
which W, ., # (0, ..., 0) , for an arbitrary base W of N, { S, } partitioned as in
(1.7.8).

Proof

(=) Let Cm(TZ(d)) =M, +d M, + ...+ d* M_ eR*'[d), t:(mﬁ,l) be a solution of
(7.7.2) with o the least degree among the solutions of (7.7.2) . Then the matrix :

~3
1>

is a solution of equation (7.7.6) and be completed with j—1 vectors of N,.{ S, } to be a
base W . If W is partitioned as in (7.7.8) we take that W, ., = (..., 1,...)#0" and
S, is the first element of the sequence S, , « = 0, ..., for which this holds true .

(«) Let S, be the first element of the sequence Sc,x=0,..., for which W, , #07,
for an arbitrary base W of N .{ S, } partitioned as in (7.7.8) . Let w,,, be a non zero

element of W, ;, then we select the column of W which corresponds to w, , ; and form

the matrix::

B ]
Wo
Wy
T, =
Wa
| Vsl
which is a solution for equation S,-T, = 0 . Consequently the matrix T,=

=T .(1/w, 1) is a solution of equation (7.7.6) and hence :
ColTed)) = (Wo+ dwy + -+ + d° W, )+ (1/Wayy) =
=Mgo+dM, +...+d°M_,

is a solution of (7.7.2) with degree a least among the degrees of the family of solutions of
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(7.7.2) . 0

Remark (7.7.2) : When the upper and lower bounds of the minimal extended Me Millan

degree coincide then , the minimal crtended McMillan degree is equal to

a =6 =

u'[VJS

ri,{ri,iem} (7.7.9)

1=1

the set of least column degrees of the solutions of equation (7.7.1) . 0

7.8 EXAMPLES

In this section we present examples for sections 7.4 , 7.5, 7.6 , 7.7 respectively . We
start with an example about the construction of a least possible maximum column
degree solution , (the maximum of column degrees of T¢(d) is minimum among the

maximum of column degrees of solutions ) , of equation (7.4.3) .

Example (7.8.1) : Let P = D! Nbe an MFD representation for the plant P | with :

~ d&?+1 1 ~ 1 d 0
D:{ + :|€[R212[d] , N=|: :leRz.ﬂ[d)

0 d+1 1 0 2
and :
D ,Ni|=
L ] [ 0 d+1 1 0 2 ]

or equivalently :
~ o~ 11 1 00 00 0 1 0 10 0 0 0
= d d?
[D’N] {01 1 02}-{-[01 000} +[0000 0}
[D,N]=T,+ T d+T, &

Following the method described in proposition(7.4.4) , we take :

11100-1 0]

% i1, 01102 0-1
s=| %, i 0= 00010 0 O
% o 01000 0 O

2 2 10000 0 O
00000 O O
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A basc of N { S, } is the matrix :

And if W is partitioned as in (7.4.20) then CZ(W’)co) = 0 . whereas Cz(Wlm) =1, gives
a solution for the equation (7.4.3) , which does not correspond to an MFD

representation of the controller , since :

00
D,=
c0{00:|

Hence , we have to examine S, , which is

[ 111000000 0-<1 0]
0110200000 0-1
[T, 0, -1, 00010111000 0
S_’THT‘O O] | 01 000011020 0
T, T O,/ 10000000710 0 0
0,T, : O, 00000071000 O0 O
) ) 00000100000 O
00 000O0GOGCOTG OTOT O O
a base W of N.{ S } is the matrix :
] B}
1 00 0 O 0 0 0 -1 0 1 0
0 -2 2 0 0 0 0 0 0 1 0 0
W = o -1 1 -1 0 0 0 1 ©0 0 0 O
o 0 0 O 0650 0 0 0 0 0 1
o 01 ©0 -050 0 0 O 0 1 O

Because CZ(WDco );é (0,...,0) and Cz(wl,,, );6 (0,...,0)if we add the fourth column

of W to the second and select the first two resulting columns we form the matrix :
T

~ (1 0 0 0 0 O0O0 O -1 0 1 O
0 -2 2 0 05 0 0 0 01 0 1

then,, Dol [ 1 0 0o o o
Nol | 0 -2 2 0 05
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Dal | 0 0 0 -1 0
Nal | 0 0 0 o0 1
Hence |, a solution with least maximum column index among the maximum column

indices of solutions of (7.4.3) is :

T
D.{ | 1 0 0 -d o
Nl | 0o -2 2 04d+05

and it corresponds to a causal MFD representation of a controller . The latter implies
that the least controllability index of the stabilizing controllers for the plant P is either
l1,o0r0. 0

The second example concerns the PI controllers . We shall use the method introduced

in section 7.5 for the PI controller problem .

Example (7.8.2) : Let P = D! Nbe an MFD representation for the plant P, with :

0 d+1 1 0 2

0 d+1 1 0 2

. [ a2+1 1 ~[1 40
D={ * }e R2=%d) | N=[ }e R23d)

or equivalently :
~ 11100 00 010 10 0 00
Ni= d d?
[D’ ] [01102:|+|:01000} +[0000 0}
[B,N]=T,+T,d+ T,

Using the study of PI stabilizing controllers problem of section 7.5 we take :
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11 10000000 -1 0]
i _ 0110200000 0-1
T, 05 : -1, 0001 011100 0 0
M—TITO O _| 01000011020 0
T, T, 0, 100 00O0O0O0TIO0O 0 0
0, T, 0, 00 00O0O0T10UO0UO0UO0 O
) ) 00000100000 O
0000000000 0 0
and as in (7.5.12) :
1 00000GO0O--10]
1 0200000 0-1
01011100 00
o 00001102 00
00000010 0 O
0000100TG0 0 O
000100O0UO0 0 0
000 000O0OGO 0 O

Condition (7.5.18) holds true since rank M' = 7 < (m+21) = 8 . A base of W of N, {M'}

is the matrix:

‘W=l 0 2 0 0 0 -2 0 1 0 0
1 0 -05 0 0 0 0 0 1

If we partition W as in (7.5.19) is clear that the conditions of proposition(7.5.3) do not

hold true , since :
Co(W3) # Oq , C{W5 )= (0, ..., 0) and Co(W5 )#(0, ..., 0)

So , there is no solution of (7.5.7) and hence of (7.5.3) which corresponds to a PI

controller. 0

The next example concerns the minimal complexity of solutions of the equation (7.6.1)
as has been introduced in section 7.6 .

Example (7.8.3) : Let P = D' Nbe an MFD representation for the plant P , with :
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~ d+1 1 ~ d? 1
D= R2z2d ,N= ) R2x21
{ 5 g }e (d) [ 0 d’+1J€ (d)

and : [ﬁ,ﬁ}:[d—HI d* IJ

2 d 0 d*+1

or equivalently :

Setting ¢ = 1 in (7.6.5) and using proposition(7.6.1) , for x = 0 we take :

(110 1 -1 ]
2001 0
11000 0
To=1 5 1 00 0
00100
| 0001 0|

rank Ty i5,soN,{T6}={Q}.Forn:l,weta.ke :

11010000 -1
20010000 0
1000110010
p_[01 0020010
001010000
0001071000
00000O0T10 0
000000O0GO0T10

a base W of N { T; } is given by :

1 T
W=3--[163—2 -3 200 5]
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by proposition(7.6.1) we take that the least column degree for the first column of the

solutions of (7.6.1) is 1 and such a column , satisfying (7.6.5) for x = 1 1s given by :
1 T
Ll(s)zg-[l—Sd 6+2d 3 -2]

Setting ¢t = 2 in (7.6.5) , we follow the same steps as above and have , for x = 0 :

(1101 0 |

90 0 1 1
, 1 000 0
T, =

0100 0

00100

000 1 0
- -

rank Ty =5,s0 N.{Tg } ={0}.Fork =1, we take :

J

1101 000O0°O
2001000 0-1
1 00011010
T\= 0100 20010
0 01 010O0T1TO0
0 00 111000
0 00 00O0T1O0T0
0 000 0O0O0CT1O

a base W of N{ T} } is given by :
1 T
W=¢{1 -4 -232-30035]

by proposition(7.6.1) we take that the least column degree for the first column of the
solutions of (7.6.1) is 1 and such a column , satisfying (7.6.5) for k = 1 is given by :

ta(s) =} [1+2d -4-3d -2 3]
Hence , a least complexity solution for (7.6.1) is the matrix :

Te(s) = [ta(d) , ta(d) ]
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and an upper bound for the least complexity of solutions of (7.6.1) is 2 . We observe
that ford =0,

D.(0) =
(6/5) (-4/9)
| D.(0) | = -(2/5)#0 , so the solution corresponds to a causal MFD representation of
the controller and 2 serves as an upper bound for the minimal extended McMillan
degree of (7.6.1) . 0

The last example concerns the construction of a lower bound for the minimal extended
McMillan degree of stabilizing controllers the coprime MFD representations of which

are taken as solutions of (7.6.1) for the plant P as in example (7.9.3) .

Example (7.8.4) : Consider the plant of example (7.9.3) . It is already known that 2 is
an upper bound for the minimal McMillan degree of the solutions of equation (7.6.1) .
We construct Cz([ D, N ]) , which is :

Cf[D ,N])=[ -2+d+d®, -2d*, —1+d+d’+d®, -d°, 1-d+d?, d*+d* ]
or,
cz([ﬁ ,N]):[_z 0-1010]+[{1010-10}d+[1-21011]d*+

+[001-1200]d*+[000001]d*

Applying proposition(7.7.1) for o = 0 we take :

— — —

M, : -1 ~2 0 -1 0 1 0 -1]
M, 0 1 0 1 o0-1 0 0
S, =| M, 0Ol=f 1 -2 1 0 1 1 0
M, 0 0 0 1 -1 0 0 0
LM" o] L 000 0 0 1 0

Making use of proposition(7.7.1) a base of N,{ S, } is given by :
T

-1
W = 011001
0111100

Then a least degree solution for equation (7.7.2) is derived by :

T
To=[-10 110 0 1]
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or by (7.7.2) , (7.7.3.b) , (7.7.6) :
- 1.
CQ(T;(S))chfO: 10 1 1 0 0

Hence , the least degree is @ = 0 and the minimal extended McMillan degree 6™ is
bounded as : 0 <6< 2. 0

7.9. CONCLUSIONS

In Chapter 7 the standard Polynomial Matrix Diophantine equation A X4+BY = U
(7.9.1) , (with (A, B) , (X, Y) coprime polynomial MFDs , U a unimodular matrix) ,
arising from many stabilization problems , like the Total Finite Time Settling
Stabilization (TFSTS) of discrete —time linear systems , has been studied . Solutions of
(7.9.1) , (for U = 1), satisfying various constraints like minimal controllability index ,
least complexity , fixed complexity — PI controllers , minimal McMillan degree were
studied . The expression of [ A, B ], [ X", YT |T by composite matrices leads to the
transformation of the Diophantine equation to an equivalent one employing Toeplitz
matrix representation of the product [A,B]-[XT, YT |'=1.

Some topological properties of solutions of (7.9.1) such that , the set of column
reduced solutions is dense but not open or closed subset of the set of solutions , were
introduced in section 7.3. A characterization of the least column degrees solutions of
(7.9.1) , (for U = I), as well as the least column degree solutions of equation C,([A ,
B])- C.({ XT, YT|T) = 1 are examined in the light of the expression of the PMDE as a
set of products of the Toeplitz matrix representation of the left (right) MFD of the
plant by the matrix vector representation of each column (row) of the right (left) MFD
of the controller . This approach leads to a very simple algorithm involving only the
computation of right (left) null spaces of real matrices . The above has served as an
upper and lower bound for the minimum extended McMillan degree of the stabilizing
controllers . The construction of the set of least column degrees that occur among the
family of sets of least column degrees of solutions of (7.9.1) for all unimodular matrices
U is still under investigation . As an additional issue to the investigation of fixed
complexity solutions of (7.9.1) , (for U = I) , necessary and sufficient conditions for the
existence of a PI stabilizing controller for a discrete — time time invariant linear system

were given in section 7.5 .
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8.1. INTRODUCTION

Restrictions on the feedback compensator structure are often encountered in large
scale systems . These systems have several local control stations ; each local
compensator observes only the corresponding local outputs . Such decentralized control
of systems results in a block diagonal compensator matrix structure , [San. 1] , [Des. 2] ,
[Wan. 1] . Achieving stabilization of an unstable system by using a decentralized
compensator and unity feedback scheme defines the decentralized stabilization problem
(DSP) . Wang and Davison , {Wan. 1] and Corfmat and Morse , [Cor. 1], [Cor. 2] have
introduced synthesis methods for the design of stabilizing decentralized compensators .
It has been derived that a necessary and sufficient condition for the existence of local
control laws with dynamic compensation to stabilize a given system is that the system
has no "fixed modes” , [Wan. 1] . Further study of the problem has been done in [And.
1] , [And. 2] , [Kar. 2}, [Ozg. 1], [Giic. 1] , [Kar. 3], [Vid. 3] . An algebraic approach to
the problem based on the factorization of the plant and compensator into coprime
matrix fraction descriptions (MFDs) , over the ring of proper and %P -stable functions
Rep(s) 5 has been derived by Giindes and Desoer , [Giin. 1] and a procedure for the design
of a stabilizing decentralized compensator is given . A parametrization of all stabilizing
block diagonal compensators is introduced there , in terms of parameters which however
are not fully described . An other attempt has been made in [Ozg. 1] , where the
parametrization refers to two block decentralized controllers and the family of
parameters is described generically . Our aim in this chapter is to study alternative
means of parametrization for the solutions of DSP and try to provide closed form
descriptions of the families of parameters in some cases .

In section 8.2 we give a statement of the problem and present the framework of our
approach to it . If (D , N) denotes an Rqy(s)— coprime left MFD of the plant , T, are the
matrices formed from the p; , m; columns of the partitioning of D , N according to the
number of local inputs — outputs respectively , then the parametrization of solutions of
the DSP is derived from the set of left unimodular solutions , X; , of the set of equations
T;X; =U;,i=1,..., &, for which [ U, , ..., U ] is unimodular . In our study we
show that the above parametrization requires the existence of a constructive method
that enables us to generate the family of all unimodular matrices of a given dimension ,
as well as the families of left , (right) unimodular matrices which complete given left ,
(right) , unimodular matrices to square unimodular ones . Such methods are examined
in section 8.3 . The main result of this chapter is introduced in section 8.4 , where an
alternative parametrization of solutions of the DSP is established . The parameters are
expressed in terms of upper , lower triangular matrices which must satisfy certain
constraints . These constraints introduce a necessary and sufficient criterion that
enables us to identify the admissible parameters . Although , in the general case , the
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family of qualifying parameters is not described in closed form there are particular cases
when this is possible . These cases are based on the structure , [Vid. 4] , of the Smith
forms of the T; when the latter are generic . Then a closed form description of the
family of parameters of the parametrization problem is given in section 8.5 . Many
times in the following , especially when we refer to a block partitioning of a matrix , we
shall denote by A, , A" , A} a square matrix mzm , a matrix with n columns , a
matrix with m rows and n columns , respectively . We shall also use this notation for

convenience when we want to emphasize on the dimensions of a matrix .

8.2. STATEMENT OF THE PROBLEM - PRELIMINARY RESULTS

Consider the standard feedback configuration associated with a linear time invariant

well posed system :

Y,

u 'e_1‘C Y, X8 = Y

- +

where , P eRif"‘(s) is the transfer function of the plant , C e R™P(s) is the transfer
function of the controller . Assume that P is P —-stabilizable , P - detectable , with P°¢
the area of’stability .

Decentralized Stabilization Problem (DSP) : The decentralized stabilization problem is to
determine necessary and sufficient conditions under which a decentralized (block

diagonal) stabilizing controller may be defined such that the closed loop system is stable.0

If P =C, U{oo} and Rip(s) denotes the ring of proper and P - stable functions , then an
qu(s)—coprime MFD of the plant P is defined by P = D!.N , where DGR::"(S) ,
Ne[R;m(s) and (D , N) is an R‘y(s)—coprime pair . Let C =diag{C, , ..., C,} =
=N,-D;! be an qu(s)—coprime MFD of the decentralized controller , where , C;, =
=N‘..D;15R;‘IP‘(S) ,t=1,2,..,«%, f: m;,=m ’;il"" = p) , are Rcy(s)-coprime

N 1=1
MFDs of C; and N, = diag{N, , ..., N} and D, = diag{D, , ..., D,} . It is known ,
[Vid. 4] , that the controller internally stabilizes the feedback system , if and only if
there exists some R GJ)(s) —unimodular matrix U such that :

DD,+NN,=U (8.2.1)

Partitioning D , N in terms of columns , (8.2.1) is expressed as :

205



Chapter 8: Decentralized Stabilization — Parametrization Issues

D, 0 N, 0
2} D‘ m m m N'
[Dll,Dpz,...,DpK]' 2 +[N13N21~-wNK]' 2. =
LO D,c () NK
=(U,;,U;, ..., Usl (8.2.2)
Or equivalently , D
[DP;ENm;],[Nﬂ]zU“i_—_l,2,,,,,,; (8.2.3)

where , T; = | D" : N ]eR;I(p"+m")(s) are matrices defined by the plant and X; =

= | D] , N; ]TeRg‘+m‘)IP‘(s) characterize the p; input , m; output local controllers .
The U, are arbitrary matrices of R;xp‘(S) , with the additional property that U o) [U,,
Uy, , ..., Uc]is qu(s)—unimodular . The latter condition implies that U; are left
unimodular in R;jpi(s) .

Remark (8.2.1) : The solvability of DSP is equivalent to the determination of necessary
and sufficient solvability conditions for the set of equations (8.2.8) , with the additional
constraint that [ Uy, Uy , ..., U ] s R@(s)— unimodular . 0

Definition (8.2.1) : The plant P is said to have a "decentralized fized eigenvalue” ,
("fized mq;de”) , at so € P with respect to decentralized controllers C if and only if 54 s

a pole of the closed loop system transfer function determined for all C . 0

Theorem (8.2.1) [Wan. 1] , [Giin. 1] : A necessary and sufficient solvability condition
for the DSP is that the plant P has no ’decentralized fized eigenvalues” , (" fized
modes”) . 0

Corollary (8.2.1) [Giin. 1] : Theorem (8.2.1) implies that a necessary and sufficient
solvability condition for the DSP is that the matrices T; in (8.2.3) have at least p; unit

invariant factors . . 0

Although conditions for the existence of a solution of the DSP are known , [Wan. 1} ,
[Giin. 1] , the parametrization of all DSP solutions in closed form has remained an open
issue so far . OQur aim is to study this problem and give closed form parametrization in
special cases . The latter is possible for generic matrices T; in (8.2.3) , i.e. matrices the
Smith forms of which satisfy the conditions of the following lemma :
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Lemma (8.2.1) [Vid. 4] : Let m , neN . Then :

i) If m < n the set Sy = {AERgIn(S) : A is equivalent to [ I, O ]} is an open
dense subset of R:;m(s) .

i) If m > n the set S, = {AEIR;I"(S) : A is equivalent to [ I, 1 O™ ]'} is an open
dense subset of R;I"(S) .

i) fm=ntheset S, = {Ae R;zm(s) : A s equivalent to diag{l,., , | A |}} is an open
dense subset of R;Im(S) . 0

A problem that is intimately related to the parametrization of solutions of the DSP is
the characterization of the family of unimodular matrices of a given dimension , as well
as the completion of a left or right unimodular matrix to a square unimodular . The
need to derive the above characterizations arise from the necessary and sufficient
parametrization constraints that the family of parameters , of the DSP , should satisfy .

These issues are considered next .

8.3. CHARACTERIZATION OF UNIMODULAR MATRICES AND RELATED
ISSUES

Let K be a Euclidean domain , A} €K'’ and C,‘(Af) be the j2 order compound
matrix of A . Also let Q; , be the sequence of lexicographically ordered ! - tuples from
the set {1, ..., t}, ¥ ="C(h, .., 4s1)€Q4y, and Q7_1+1 be the subset of Q, , with
elements the lexicographically ordered I —tuples from v . If p [i,] = (4, ... 4y 5 g1 s
e i,+1)éQZ,+1 and 7 = (1451) then :

Definition (8.3.1) [Kar. 4] : If a is a vector over K with coordinates given by the set
{a,, we @} then :

i) The vector a is said to be decomposable over K= | if a matriz A€ K**! ezists such
that Cy(AL) = a .
ii) The Grasmann matriz of a 1is defined by , dlfa) = [b,;] forallve Qyy,y, 5 =1,
.., tand:
0,ifj¢
¢*/..i =
sign(ic ) Halied)-0, 1)) 5 = i€

Clearly ® (a ) has dimensions Tzt . 0

Lemma (8.9.1) [Kar. 4] : Let a,e K™™' . Then there always ezist matrices
At e K™m) such that Cm-l(A:-l) = @, ; that s a, is always decomposable to a
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matriz AT . The matrices An ' are determined by the right null space of the Grassman

matriz of a,, . 8]

Let U denotes the family of all unimodular matrices U,, of K™™ ,u; = [u} ] € K i =
=m, ..., 2 be arbitrary coprime vectors , u; be a unit of K ; then we state and prove

the following results .
Theorem (8.3.1) : A characterization of the elements of U is given by :
Up = [ Ui A gy P AT AR g oo D AR AT Ay ] (8.8.1)

where Af'le K*6Y) gre the decompositions of the vectors a; = [ ai ]AG KT (a; =
—_—C’._I(A::'l) , lemma (8.8.1)) , for which the following relation holds true :

i (-1)* gl =1 (8.9.2)

=

Proof

First we shall prove that a matrix of the form (8.3.1) is unimodular and then that an
arbitrary unimodular matrix can be written as in (8.3.1) .

(=) Let U,, be a matrix of the type (8.3.1) . Then (8.3.1) can be viewed as :

U, = [lefAr":z-l'Um-I] 1y Ui = [QiEA:-l'Ui-l ] 3 e aU2 = [szA;'“x ] ’
: 1,..,3 (8.3.3)

Consider the matrix U; = [y, A" -U;.1 ], then by the assumptions of the theorem , u;
is a coprime vector and AY' such that the vector a; = | a} ] = C‘(A:?‘) satisfies (8.3.2) .
The latter implies that :

Uil = 30 (1) vadypowe Uy | = | Ui | (8.3.4)
J=
Vi=m,m-1,..,2,(834)impliesthat: | U, |=|Upy|=--=|Uy| =1y,

which by assumption is a unit and thus U,, is unimodular .

(«) Let U, be a unimodular matrix over K™ ,i=m,...,2. Then U, can be expressed
as U, = [u; 1 B{"'], with u; a coprime vector and :
|Gl = El(-l)"+'-b':-,~+x-u§=u (8.3.5)
)=
where , b; = [ bi b} ... b} ]" = Ci(Bf"), u a unit of K . If U,., denotes a unimodular
matrix with | Ui, | = u, (such a matrix always exists ) , then by lemma (8.3.1) the
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matrix A7' = BI'. U7}, is a decomposition of a; = b;-u! and (8.3.5) implies that :

> (—1)j+1-(bf_]~+1-u'l)-u;: > (-1)*'alj,uy=1 (8.3.6)

1=1 =1

Thus U; = [w; 1 AT Uy ], Vi = m, ..., 2 and finally

U, =[un: Al tig, Ag‘l.Agj';’.gm_z SO A'm"“.A::f. o cAdeuy
where , u; = [u}]e€ K™ i =m ..., 2 are arbitrary coprime vectors , u, is a unit of K,
A:'l e K1) are the decompositions of the vectors a; = [ a; le K= (a; = C,»_,(Af’l) ,
for which relation (8.3.2) holds true . O

Theorem (8.3.1) states that all unimodular matrices of given dimension m are expressed
as in (8.3.1) and vice versa . Furthermore , this result provides a method for
constructing all unimodular matrices with given dimension m . Throughout the rest of
this section we deal with the problem of characterizing all left , (right) , unimodular
matrices which complete a given left , (right) , unimodular matrix to a square
unimodular . These two cases are dual and thus we deal only with left unimodular

mzIKk

matrices . Let U; e K™ 1, m>k, , be a left unimodular matrix , ¥ the family of all left

mz(m-x,)

unimodular matrices F € K , such that the matrix :

U=[U,:F] (8.3.7)

HV,isa 'ﬁnimodular matrix for which V,.U, = | I,‘l O], then V' = [ U, :Fy ],
F, € F and :

Proposition (8.3.1) : The elements of F are given by :
¢ ={Fe I(M(mm‘) cF=(U-R+F,-L),Re K“z(m-“‘) , arbitrary parametric
matriz , L e gmrem) , arbitrary unimodular matriz } (8.9.8)

Proof
(=) Let F be a left unimodular matrix such that U = [ U; : F ] is unimodular . On the
other hand V;' = [ U; : Fg ] is unimodular and the product :

L,
1

Vl . U = O E Vl . F (8-3.9)
0 .

209



Chapter 8: Decentralized Stabilization — Parametrization Issues

is a unimodular matrix . Thus V,-F = [ R" : L" |* | with REKx]x(m«nl) ,

Le K(m_K‘)I(m-Kl) unimodular . Consequently :

F=V{"[RU:L"]"=[U,:F}-[RT:L")]"= (U, R+ Fy-L)eF

(«) Let F€F . Then F = (U;-R + Fy-L) for some Re Koy , L e KM relmony)
unimodular and the matrix :
I, R

U=[U13F]=[U1£Fo]-{l(‘)l§]=V;‘-[Ol L} (8.3.10)

is clearly unimodular . Q

8.4. PARAMETRIZATION ISSUES FOR THE DSP

In this section a parametrization method for the solutions of the DSP is studied . All
solutions of DSP are defined in terms of the left unimodular matrices X; which satisfy
the set of equations (8.2.3) , with U a [U;,U,, ..., U, ] unimodular . Let p. = rank
{T;} , S; denote the Smith form of T; over ¥ ; Ui , U! denote the I;?p”(s) ,
RPi *m)7(Pi* ™)) ynimodular matrices respectively for which T; = U;-S?-Ui .

P
Corollary (8.2.1) implies that the DSP has a solution if and only if S; can be partitioned

as :
L, 1 0 : 0
Si={ 0 i§,.,: O (8.4.1)
0O:0:0
If f: P, =P, )ilm,- = m then denote by M; the matrix :
1i=1 1=
(0 i1, : O]
M=, {00 ,r,-=_'2‘p,- (8.4.2)
. : i=
0)
L 0 I"’u

Suppose that the DSP has a solution . Then :

Theorem (8.4.1) : All the solutions X; of the set of equations (8.2.3) are parametrized

as’

X; = (U';)"-Z."-[I(;‘] (8.4.5)
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where |

Z;l — GR;)’-+"1|)I(P'-+m'-)(S) (844)

;’; +m)-p; Z(P.' +m)-p;

-

are unimodular with the additional property that there ezist unimodular matrices
K e R;xp(s) , L € R;’-p‘)x(p-p‘)(s) such that the following conditions hold true :

K, K"
i) K, = (8.4.5.2)
O KP‘P.’
(8.4.1)
ll) Ki'Si’:Si'Z:l < Kp‘-'Spizspi'Zpi (84521)
I, O I, O I, O
wi) UK, | 71 =0 K, | P M,=...=U . K_.| P« M
i) U Kl[O L1:| f 2|:0 Lz] 2 v Rel g L K (8.4.5.1i1)

Proof

First we shall show that for an arbitrary set of solutions X; of (8.2.3) conditions (8.4.3) ,
(8.4.4) , (8.4.51 , 4t , i) hold true . Then that a set of matrices X; which satisfy
conditions (8.4.3) , (8.4.4) , (8.4.5¢ , 11 , i) qualifies as a set of solutions of (8.2.3) .

(=) Let X;be an arbitrary set of solutions of (8.2.3) . Then :

[TyXy i Ty Xy ioeoo i T X ] = U (8.4.6)
with U unimodular ,
(U T X i UL T, X e et ULT X ] = 1 (8.4.7)
or,
.0
UNT X =| I, i@ block,Vi=1,..,« (8.4.8)
0 i
Finally ,
M,--U"-T,~X,-=[I,,‘_SO]T,Vi=1,...,x. (8.4.9)

with M; as in (8.4.2) , X, are left unimodular matrices . Using the results of section 8.3 ,
left unimodular matrices A; exist such that :

Y, =[X;:A;]€e Rg" +md=(Pi*+ ™) s) — unimodular (8.4.10)
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Applying (8.4.10) to (8.4.9) we take :

L, o)
M,"U-I‘T,"Yiz """ ,szl, .y K (8411)
O QP"P,'

Multiplying (8.4.11) on the right by an appropriate unimodular matrix , we can
climinate Q:f on the right hand side . Indeed :

I - I ¢ O

Py - Py P
M- UL T, Y| oooeee b = 0 e yVi=1l,...,& (8.4.12)
0 i In 0 Q.

Set L, , R, the Rg_p‘)z(p_p‘)(s) , R;‘xm‘(s) unimodular matrices respectively for which :
L, R;=S,,Vi=1,...,x (8.4.13)

i SEp-p;

where , S; is the Smith form of Q:.'p'_ over P . (8.4.12) , (8.4.13) imply Vi=1,...,«:

_ . .
I,: O by 0 IR L0
vee """'M;-U'I-T.-'Y." BT TR YT TTRS ) PR PR (8.4.14)
On the other hand :
UH-T, (Uyt=S,,Vi=1,..,« (8.4.15)
NowVi=1,...,Kkset:
— . m T
I, : O L, & -0, R
Wi= e e : PR .M'..U-l ,Q'.=Y'-. [ : (84.16)
O L L 0 : R;
Combining (8.4.14) , (8.4.15) , (8.4.16) together it is implied that :
(1, : 0 : O]
v : Ip‘ 0
S;=| 0 5,51 O |=feeeive,Vi=1,.,« (8.4.17)
Do 0 : S:
o) 0) 0

212



Chapter 8: Decentralized Stabilization — Parametrization Issucs

and (UL WiLS,. Q' (Uiyt =S, ,Vi=1,..,«
or , (Upt-Wit.s, =S, UL.Q, ,Vi=1,.., « (8.4.18)
Set : K, = U)W, 2'=0.Q,,Vi=1,...,« (8.4.19)

K; , Z;! are unimodular and satisfy (8.4.18) . If the operations in (8.4.18) are carried out

the result implies :

K, S, O Sy Zp, S Lyt
= Vi=1,..,x
K,.S,. O 0 0

or, K, S, =S, B, Kyl 8, = 0,8, 20" =0, ,vi=1,..,x (8420

(8.4.18) , (8.4.19) , (8.4.20) imply that :

S
Y= [X A = U2 s
0] R;!
or ,
; o Hp. :
Xi = (U:')-I'Zil'[(’;':|’vz =1 ’ » K (8421)
with , Z;! as in (8.4.4) . Furthermore ,
IP.'E 0
UpKioleeoe b M =0 ,Vi=1, ...,k
O : L

which finally implies :

I, O I, O x I, O
U;K1|: 61 Ll}: U?K2|: 82 Lz].Mz = .= Ul K‘I: 68 L }M“ (8422)

(8.4.18) , (8.4.19) , (8.4.20) , (8.4.21) , (8.4.22) imply (8.4.3) , (8.4.4) , (8.4.54 , i , its) .
(«) Let a set of left unimodular matrices X; satisfy (8.4.3) , (8.4.4) , (8.4.5¢ , i , i) .
Then :

. o I
T, X;= U -S;-Ul-(U',)"-Z}ng},Vi= 1,...,x
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or , I
T, X;= U; .s,-z;‘-[(’;:}, Vi=1,...x

(8.4.1) , (8.4.5t2) imply that :

Now partition L, in (8.4.5:2) as follows :
L= [Ly2:L3: ot LYR) eRg-pl)r(p'pl)(s)

(8.4.5411) implies that :

I, O . I, O
U,‘-Kl.{"1 }—U;-K,{”f }-M,-,Vi:?,...,x

0 L,

(8.4.23)

(8.4.24)

(8.4.25)

(8.4.26)

(8.4.27)

or
! I. O : I, O
UMK, | ™™ M'=ULK..| P JVi=
4 1|:O Ll:l ' | ||:O L,} ! 2a y K
or, - _
O :I, O
-1
1 : IPI N 1 IP' O
URK S D § 0 O S URKe B VY2, (8428)
0 :0 il

O : I : O
U}-Kl- Do =U;-Ki-|: p;
L;’.' 0 Lf‘(Pl +p;)
or,
0] Ip‘.
Up-Kyo| o [=URKe| - |, Vi=2,... 5
Ly 0

Applying (8.4.30) to (8.4.24) is implied that :
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L,
T, X, =U] ‘K, - (8.4.31)
0
L, 0
T, X, = U} ‘K;:| - |= UKy o |, Vi=2,...,& (8.4.32)
o) Ly

The set of equations (8.2.3) is then satisfied by the left unimodular matrices X; defined
in (8.4.3) and by (8.4.25) , (8.4.31) , (8.4.32) the matrix :

U=[T, X, :TyXgivooenoo i T X, | =
I, 0O 0 - O
. i . I, O
SUPKp| e e | = UK D (8.4.33)
O L2 L3 ... L '
is unimodular . o

Despite the fact that the parametrization method of theorem (8.4.1) is not in closed
form —since the set of parameters which satisfy conditions (8.4.4) , (8.4.5t , % , 111) is
not fully characterized —there are cases in which closed form parametrization can be
achieved . ‘The first of such cases is described next . Let T; be the matrices defined by
(8.2.3) which satisfy the condition p <(p;+m,) . Then p; = p and generically T, is
equivalent to the matrix [ I, : 0P +™)P 1 (lemma (8.2.1)) . Then (8.4.4) , (8.4.5i if) ,
imply that K; =2, = K,. - Under the above assumptions the parametrization of X; in
(8.2.3) is formulated using (8.4.5.1 , 12 , i) :

Parametrization of solutions of DSP when p < (p; + m;)
Step 1 : For all the arbitrary unimodular matrices K, , L, , L, ,' Zip, +my)0y and

. . 3] s
arbitrary parametric Z(Pl +my)py define :

a) K, to be the unimodular matrix :
I, O I, O
K, = (U). UK | 2 7 [ (My)2| P2
2= (Ui) (RS [O Lx}( 2) [0 L;‘] (8.4.34)

B) Zi! to be unimodular matrix as in (8.4.4) fori=1, Z,=K,.

Step 2 : For all the matrices of a) in step 1 and all arbitrary unimodular matrices L, ,
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: . ) . R
Z(p2+m2)—p2 and arbitrary parametric Z(p2+m2)_p2 , define :

a) K, to be the unimodular matrix :

) I, O I,. O
Ky = (U7) ‘~U?-K2-[ oL }'M'z'(Ms)-l { o L-.} (8.4.34)
3

B) Z3' to be unimodular matrix as in (8.44) for1=2,7, = K, .

Following similar arguments and after finite number of steps the process terminates

with steps k-1, & :

Step k-1 : For all the matrices of step k —2 and all arbitrary unimodular matrices L, ,

Z(P"_1 T and arbitrary parametric Zf;:l fm oy define :
@) K, to be the unimodular matrix :
I ) I. O
Ky - K- pn- - I3
K= (U UF K| 50 [ M M) T (8.4.39)
O Lx-l O L;]

B) Z:1, to be unimodular matrix as in (8.44) fori =x-1,2Z, =K,,.

1
Step « : For all the matrices K, of @) in step x -1, all arbitrary unimodular matrices

. . P - . .
Z(Pn )6, and arbitrary parametric Z(Px*’"'n)"’x , define : Z;! to be unimodular matrix

as in (8.4.4) for i = &, Z,=K.. 0

By inspection of theorem (8.4.1) it follows that the set of parametric matrices Z;' which
parametrize the set of solutions X; of (8.2.3) is generated by the above algorithm and
vice versa . A more practical way to view the parametrization described above follows

next :

Proposition (8.4.1) : All the solutions X; of the set of equations (8.2.3) are parametrized
as:
X, o U 0 P, 0o
o J=viieive| U lB+GEi6 | P (8.4.40)
o X 0 U 0 P,

where , V; , G; belong to Rg‘+m‘)zp(s) , Rg‘+m‘)’(p‘+m"p)(s) respectively and
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| (U)" 0
[Vi:G, ]=(U)" (8.4.41)
0 1

p'- + m'--p

U is an arbitrary prp unimodular matriz , P; is an arbitrary (p; + m; — p)zp, parametric
matriz and if I, is partitioned as [ .- ] then E is defined as E = diag {
E E,,.. 6 E, }GR(K"’)” , where :

0
E; =| Pil-i blocke R™™ (8.4.42)
0

Proof

(=) Let X; be a set of matrices as in (8.4.40) . Then if the columns of U are partitioned
according to the partitioning of p , namely , U = | uh : 04k P uP- ] , and the
operations in (8.4.40) carried out , the X; are formulated as :

P (up? 0] P;
Xi={ViiG] {I}i } = (U -{U } (8.4.43)

1)

(8.4.43) implies that :

! . +m.- : , (U;)-l 0 u®
T, X; = Uj-[L: O™ P Ui (Ui 1o l=U"  (8.4.44)

By (8.4.44) it is clear that the matrix :
[Ty X i TeXp i i T X ] = [UP UM iU = U (8.4.45)

is unimodular and thus X; qualify for a solution of (8.2.3) .
(«) Let a set of matrices X; satisfy (8.3.2) . Then there exists a unimodular matrix U

such that :
[Tl'xl : Tz.xzz... cee e E TK'XK] = U -_ [Upl 5 UPZ E . SUPK] (8‘4.46)

or equivalently ,

T;-X; = Uj-[1,: 0% ™" L. UL X; = U™

or,
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p,+m-p U; O . p
[I,:07" 7 7). o I ULX, =Uu" (8.4.47)
p;tmr-p
Set :
U0 |
Y, = Up- X (8.4.48)
O IP."F"‘"‘P
Partition Y, as :
P
Yo
Yi=|_,. (8.4.49)
Y 1
p;tmip

(8.4.47) , (8.4.48) (8.4.49) combined imply that Y.’ = U . Thus , by (8.4.48)

. (U;)-l O uh uh
X; = (U)"- s =[V;:G; ]-[ p } (8.4.50)
0 Ip,- +mqp Pi+m;p '
It is clear that X can be arranged as indicated in (8.4.40) . 0

Next we consider the parametrization problem for the case of two block diagonal

controller (x = 2) ; the generic and some non generic cases are examined .

8.5. TWO BLOCKS DECENTRALIZED STABILIZING CONTROLLERS
PARAMETRIZATION ISSUES

Assume that the stabilizing controller has two blocks . Then the parametrization of
the solutions of the DSP reduces to the parametrization of the solutions of the following

two equations :

N.

]

[Dp‘sz‘]-{D‘}=U;,i=l,2 (8.5.1)

where , T; = | D;‘ : N:‘ | e R;I(P "+m‘)(s) are matrices defined by the plant and X; =

=[D;,N; [ GRg‘+m‘)1p‘(S) characterize the p; input , m; output local controllers .
The U, are arbitrary matrices of R';p"(s) , with the additional property that U a [U,,
U,]is R‘:_P(s) - unimodular .
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CASE 1 : Assume that none of the T, is square and their Smith form is given by :

S—I”‘O 8.5.2
““lo o (8.5.2)

where , 1 <p;<mun { p, (p;+m;) } . It is clear that when p, is either p , or (p,+m;)
then we have the generic case for the T; , whereas when p; < min { p, (p;+m,) } we
have a non generic case for the T, . Theorem (8.4.1) appropriately adjusted to suit the
above mentioned assumptions provides a parametrization for the solutions of (8.5.1) ,

namely :

Theorem (8.5.1) : All the solutions X; of the set of equations (8.5.1) are parametrized

as . I
X = (U:)“-Z:‘-{g} (8.5.8)
where ,
Z, 0]
Z' = _ ‘ ERg‘+m‘)’(p'+m*)(s) (8.5.4)
Z?t:,- +m,)-p; Z(p; +m,)-p;

are unimodular with the additional property that there ezist unimodular matrices
K; e Rg;p(s) , L€ Rg-P‘)I(P-p‘)(s) such that the following conditions hold true :

K, K
i) K; = (8.5.5.1)
O KP'P.’
(8.5.2)
i) K;-$;=5.-2' & K, -I,=1,-2, K, =2, (8.5.5.11)
I, O 01
1) U}.Kl.[ 8 Ll} = U?'Kz.[lq g:' (8.5.5.mé

Remark (8.5.1) : The parametrization described in theorem (8.5.1) is in closed form if
and only if the set of parameters which satisfy (8.5.4) , (8.5.5 , it , tii) can be fully
generated . Inspection of conditions (8.5.4) , (8.5.51 , ii , 1ii) implies that it suffices to
fully generate the family of matrices K; which satisfy (8.5.5 , wi) , since all the Z;!
which satisfy (8.5.4) , (8.5.5.1)) can be generated by setting Zp., = K"i , Z:;i_,_mi),p._ , an
arbitrary parametric matriz , Z, m)-p; ™ arbitrary unimodular matriz . 0
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In the following we study the closed form parametrization of the matrices K; which

satisfy (8.5.5¢ , 1) . Condition (8.5.5.112) can be equivalently transformed to :

o1 || o
(o) (U)K, = | L
L, O O (L,)!
or,
O (L)
(Kz)-l 'G'I{l = - L (8-5-6)
L2 O

Note that (K,)™' has upper triangular structure as in (8.5.5.7) .

Definition (8.5.1) : Define F the set of all pairs (K, , K,) such that (8.5.5.1) , (8.5.5.111)
, (or (8.5.6)) , hold true . Define the relation , ~ , between the elements of F as (K, ,
K,)~ (H, , Hy) & 3 L : (8.5.6) holds true for the pairs (K, , K,) , (H, , H;) and the

same L . O

The above defines an equivalence relation and partitions F to a family of equivalence
classes C Ky Ky - It is clear that the matrix L characterizes the equivalence classes . If L
is changed then a new equivalence class is determined . Thus the parametrization of the
matrices K; which satisfy (8.5.5.1) , (8.5.5.t2) is equivalent to the description of a
process which generates all the elements of ¥/~ . This task involves the following two
steps : Let the pair (K; , K,) be an element of ¥ . The first step is to determine
representatives for all the equivalence classes in ¥/~ , in terms of (K, , K;) . The
second step is to parametrize the elements of an arbitrary equivalence class in terms of
its representative determined in step 1 . It is clear that this process parametrizes all the
elements of F/ ~ and thus the set ¥ in closed form .

STEP 1: Genération of representatives for the elements of ¥/ ~

Let (K, , K;) be an element of ¥, C Ky Ky) be the equivalence class with representative
(K, , K;) , then a matrix L exists such that (8.5.6) holds true . Let B, , B, be the pzp

unimodular matrices :

M!L O LM, O
B, = y By = (8.5.7)
o I, o 1

P
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where , M, are arbitrary (p- p;)r(p - p,) unimodular matrices , L

(8.5.6) .

(K,, K;) is described by the following result .

are defined by L in

A process for generating representatives for the elements of ¥/ ~ in terms of

Proposition (8.5.1) : A representative of an arbitrary equivalence class in F/~ is

expressed in terms of (K, , K,) as :

Pl =K"B'2 ’ P2 :KQ‘B;I (8.5-8)
with , B, , B, as i (8.5.7) .
Proof
Let B, , B, be two unimodular matrices defined as in (8.5.7) . Set P, = K, -B, , P, =
=K,-B;' . Then:
i K KP'PI- Ei]le ] P r
3 W I, . £ P”l
P, 1Py (8.5.9)
0 K,,_p1 0O P,
— - L IP'P] i
| K Kp-pz- 111'M1 | pP P
Py TPy I,. P2 TP
P, P2 P2 (8.5.10)
0 Kp'p2 U I 0 Prs,
L. - B . P'P2 B L p
(8.5.9) , (8.5.10) imply that (P, , P,) satisfy (8.5.5.1) . Furthermore ,
o L 0o M{
(Py)'-G-P; =B, (K,;)"-G-K,;-B, = B, By = =M (8.5.11)
L, O M, O

For (P, , P,), (8.5.5.44%) , or equivalently (8.5.6) holds true for L = M . Thus (P, , P;)
can be viewed as a representative of an equivalence class G P, P,) with elements all the
pairs (F, , F,) for which (8.5.5.1) and F3'-G-F, = M hold true . Since the matrices M;
are arbitrarily selected , the matrix M which characterizes C Py, Py 18 arbitrary and thus
C(Pv”z) is arbitrary . o

When a representative of an equivalence class is known then , the parametrization of its

elements is required .
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STEP 2 : Paramectrization of the elements of C(p,,p,) in terms of P,,Py)
1F2

Consider the arbitrary equivalence class C(Pv”z) characterized by the unimodular
matrix M :
0o M
M= = P;!'.G.P, (8.5.12)
M, O

and M, , M, have dimensions p,zp, , p;Tp, respectively . Since we have assumed that
the DSP has a solution , corollary (8.2.1) implies that p,; > p; . Partition M , M™! as,

Py pp £ L
M = Hoa Mo M = Te (8.5.13)
- MP] OP'P] ’ - Np2 OP'PZ e
P™Py P=Py | P Py

Then , since M™! is unimodular it is clear that N:? s right unimodular . Let U,, be a

P
unimodular matrix such that :

N2, - Up =1

P Py

1017 (8.5.14)

PPy

Let BZ; 2P Le a base of N {N::'f’pl} . A parametrization of the elements of C(Pl' P,) in

terms of (P, , P,) is described by the following proposition .

Proposition (8.5.2) : All the elements (F, , F;) of Cp p, are parametrized in terms of

(Pl ’ PZ) dS 3
1=P1'W1,F2=P2‘Q-l (8-5-15)
where ,
WPl Wzl-pl
W= =M'.Q-M , unimodular (8.5.16)
O WP'PI
Q"z Qz;pg .
Q= , unimodular (8.5.17)
0 QP'Pz
with |
1 Ap-pl 0 “Pq 1+Pa"P APP
sz = U; ) ) UPg ’ Q:z = B:: 2 'Qp1+p3-p (8'5'18)

2 =Py
CIP’I + P9 P DP] + PP
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. . PP D)
are
arbitrary unimodular |, d”l’”’z'” , Qp]+p2_p are

and Qp_,,2 , A

arbitrary parametric .

p-py ! Dpl+p2-p

Proof
(=) Let (F, , F;) be an element of C(PI,P2) . We shall show that unimodular matrices
W , Q exist such that , (8.5.15) , (8.5.16) , (8.5.17) , (8.5.18) hold true . (F, , F,)
satisfies (8.5.5.7) and :
. 0 M;!
F'G.F,=M= (8.5.19)
M, O

(P, , P,) as a representative of C(PI’PZ) satisfies (8.5.5.7) and

; 0 M
P2 'G'Pl = M = (8.5.20)
M, O
(8.5.19) , (8.5.20) combined result to :
(F2'-Py)-M-(P{"-Fy)) =M (8.5.21)
Set
W1!l=P!F, ,Q=F;P, (8.5.22)
and (8.5.21) can be written as :
QMW!'=MaeW=M'Q-M (8.5.23)

The unimodular matrices W = M™.Q-M , Q have the upper triangular structure of
(8.5.16) , (8.5.17) , since :

] Fo -Fo F UV Fea || B, PO
W = Fl 'Pl = . (8-5-24)
0 Firp, 0 Py,
-1 - PP -
; Fp2 - FP; ) FP2 2. Fpl'og P pq P:;”
Q=F P, = : (8.5.25)
O F-Pl'Pg 0 PP"?
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Using the partition of M, M™! as in (8.5.13) ; (8.5.23) , (8.5.24) , (8.5.25) imply :

- P -p. ) ) »”-
W, W) N: N Q,, Q" Ml My
= ) pon | : (8.5.26)
. - r n-p
() WP’PI prp] OP'P? O Ql"PQ MP}/"Z ()P"I’;

Carrying out the operations in (8.5.26) with respect to the partitioning of the matrices

it is implied that :

P

]—[N,, oy ”"2] : b (8.5.27)
0 Qp-p2 Mp-p2 Op-p2

[0 Q, Q|| M, M

pﬁl:

If (8.5.27) is multiplied on the right by M it follows that :

P2 pp PPy
. Npl val 2 . p p2 Qp2 Q
[ Op Py Wp'P] ]- N oy = | Np o :0 po; ]- (8.5.28)
Np"’l O”"’l 0 Qp‘p2
o i _
[W,- N 1; p-pf =1 Np ” Qp2 : p pl p p2 ] (8.5.29)

and (8.5.29) finally implies that

{ N2, Qb2 =0, (8.5.30)
P P
WP'Pl ' Np?pl = Npgpl : sz (8.531)

If BZ;H”-" is a base of N{NZ?,,I} , then by (8.5.30) it is clear that a parametric matrix

P Py . A
Q,,l +oyp exists such that :

QP P2 p, teyp P2 (8.5.32)

Py Sl +097p

If U, is the matrix defined in (8.3.14) , then (8.5.31) can be viewed as :

py+pPyp WP-PI 0 P +py°P
[I,,,: O ]- o 1 Uy, =[1,-i 0 ]-U,,-Q,, (8.5.33)
P+ Py P :
or equivalently ,
1 :0frte? W, 0 U, .Ql.U! =[I_ :0%*%P
[ p-py: ] 0 I *Vpg  Wpy” Py = [ Prpy: o) ] (8.5.34)
Py + Py P
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(8.5.34) clearly implies that there exist matrices le +oyp unimodular |, R::;i‘pz_p
parametric such that :
Wp_,,] 0 N IP"’: 0
oy Qo Vs =, (8.5.35)
O Ipl +py7pP Rpl +pyp le +eyp
(8.3.35) finally implies that :
WI,,_‘,1 0
_ 11°1
Qp2 - [J,p2 : : Up'l (8536)
-1 PPy -1
- le +eyp’ Rp1 +poyP le +oyp
L —
— -1 — _ -1 p-r
Set QP"’z - FP"’z'PP"’z ’ AP"’x - WP‘P1 ’ Dﬂl tegp T Hm +oyp 0 RP1+lp2‘p =

P Py

= —H;,ll +"2'P.RP1+”2'P . (8.5.22) , (8.5.23) , (8.5.24) , (8.5.25) , (8.5.32) , (8.5.36) imply
that unimodular matrices W , Q exist such that (8.5.15) , (8.5.16) , (8.5.17) , (8.5.18)
hold true .

(<) Let unimodular matrices W , Q exist such that (8.5.15) , (8.5.16) , (8.5.17) ,
(8.5.18) hold true . We shall show that the pair of matrices (F, , F,) defined in (8.5.15)
belongs to 'C( P, Py In order to do so , we must prove that the pair (F, , F;) satisfies
(8.5.5.1) ax'fd (8.5.6) for L = M, (in other words F;'-G.F, = M) . Since the pair (P, ,
P,) is a representative of C(Pvpz) it satisfies (8.5.5.t) . The latter and (8.5.15) , (8.5.16),
(8.5.17) imply that :

| - - - - -
-1 P"l P”l ' W"Il _W”ll'wzlpl'w”l‘ﬁ
F, =P -W" = : (8.5.37)
0 PP'Pl 0 w;l'pl
P, PI™ Q! ~Ql.Q7"2.Q}
4 Py Py Py Py Py P Py
F,=P,-Q" = : (8.5.38)
O Pp_p2 O ;’l'ﬂg

(8.5.37) , (8.5.38) clearly imply that the pair (F, , F,) satisfies (8.5.5.1) . Consider now

the matrix :

F'-G.-Fy (8.5.39)
By (8.5.15) , (8.5.39) may be expressed as :
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F;) G.F,=Q-P;}.G.P,.-W! (8.5.40)

Because the pair (P, , P,) is a representative of C(PI‘P2) it satisfies (8.5.6) for L = M ,
(in other words P3'-G-P; = M) . Thus , (8.5.40) results to :

F'G.F,=Q-M-W! (8.5.41)
equivalently if (8.5.16) is applied , then :
F'GF,=QMW!'=QMM".Q'M=M (8.5.41)

which clearly implies (8.5.6) for L = M . Thus the pair (F, , F,) defined in (8.5.15)
belongs to C(PI’P2) . O

Combining the results of propositions (8.5.1) , (8.5.2) we can fully generate the set of
matrices K; which satisfy (8.5.5.7) , (8.5.5.41%) . This result is summarized below :

Proposition (8.5.3) : If (X, , X,) is a solution of the DSP then :

i) A pair of matrices (R, , Ry) ezists such that , (8.5.5.1) , (8.5.5.4ii) , or (8.5.6) hold
true .

ii) An arbitrary pair of matrices (K, , K;) which satisfies (8.5.5.1) , (8.5.5.41) , or
(8.5.6) is generated in terms of (R, , R,) by :

K, = (R,-B,)- W', K, = (R,-B!)- Q" (8.5.42)
where , (B, , B,) , (W, Q) are defined in propositions (8.5.1) , (8.5.2) respectively .
Proof

Let a solution (X; , X;) exists . Then (X, , X;) can be found using one of the already
known methods e.g. in [Giin. 1] .

i) Following the steps (8.4.6) —(8.4.22) in the proof of theorem (8.4.1) we can construct
a pair of matrices (R, , R;) which satisfies (8.5.5.1) , (8.5.5.i%) , or (8.5.6) in an

algorithmic way :

Step 1 : Set U the unimodular matrix [ T,-X, : T;-X, ] and partition U™ as :

Ut = (8.5.43)
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Step 2 : Using the results of section 8.3 a particular pair of matrices (A, , A,) can be

constructed such that the pair of matrices :

(Yl’Y2):([X15A1]’[X2;A2]) (8‘5'44)

is unimodular .

Step 3 : Set
Qp; = U;,lz-Tl-A,
{ (8.5.45)
pr = U;,‘1 -Ty-A,

Step 4 : Construct the matrices L, , L, , V; , V, for which :

L, -Q:;‘ -V, , is the Smith form of Q':;

'
1

(8.5.46)

2 Lg-Q::l2 -V, , is the Smith form of Q::

Step 5 : Construct the matrices U;, UL, U,2 , Uf for which :
S, = (UN'-T,- (U}, is the Smith form of T,
{ (8.5.47)

S, = (UD)-T,- (U™, is the Smith form of T,

Step 6 : The pair of matrices (R, , R,) in question can now be constructed by setting :

I, O : o L}
= Ul 'l-U‘ 1 51 = 2-1. . 2 5
R, = (U] [O Lil],& () U[x,ﬁo] (8.548)

it) (=) Let (K, , K;) be an arbitrary pair of matrices which satisfy (8.5.5.¢) , (8.5.5.11) ,
or (8.5.6) for an appropriate matrix M . Definition (8.5.1) implies that (K, , K,) belongs
to an equivalence class characterized by M , or that a unimodular matrix :

o M
M= (8.5.49)
M, O
exists such that :
K} GK, =M (8.5.50)
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Proposition (8.5.1) implies that appropriate matrices B, , B, defined by L, , L, , M, ,
M, exist such that the pair of matrices (F, , F,) defined by :

F,=R,-B,,F, =R, B} (8.5.51)

is a representative for the equivalence class of (K, , K,) . Proposition (8.5.2) implies

that appropriate matrices W , Q defined by M exist such that :
Kl = Fl '\Nh1 y K2 = F2'Q-l (8552)

(8.5.51) , (8.5.52) imply (8.5.42) .
(«) Let (K, , K;) be a pair of matrices generated by (8.5.42) , namely :

K, = (Rl‘B2)'VV-l y Ko = (Rz‘Bil)'Q-l (8.5.53)
where , (B, , B;) , (W, Q) are defined in propositions (8.5.1) , (8.5.2) respectively . The

structure of (B , By) , (W , Q) clearly imply that (K, , K,) satisfies (8.5.5.1) . (8.5.59)
and the definition of (B, , B,) , (W, Q) imply that a unimodular matrix :

0 M;!
M= 8.5.54
‘:Mz 0 } ( )

K;'-G.K, = Q'Bl'Ral'C“Rl'BZ'w-l:

exists such that :

ML, O O L' {|L}M, O
=Q. . : W'!'=M  (8.5.55)
) Lo, L, O o I,
Thus (K, , K;) belongs to an equivalence class characterized by M . o

Corollary (8.5.1) : Remark (8.5.1) and proposition (8.5.3) imply that the
parametrization of solutions of the DSP in theorem (8.5.1) is in closed form . o

Summarizing the results of case 1 we can express the parametrization of solutions to the
DSP in closed form as shown next . Let the DSP has a solution ; (R, , R;) be the pair of
matrices constructed by the algorithm in part ¢) of proposition (8.5.3) . Also let :

oL}
‘1.G-R, = =
R;!-G-R, [L,O} L
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Set M the arbitrary unimodular matrix :

v | oM

where , M, , M, have dimensions p,rp, , p,zp, respectively . Let (K, , K,) be the pairs
of matrices generated in part i) of proposition (8.5.3) :
pP=Py PPy
1 Kpl Kl’l a -1 KP-I Kl’z
Kl = (R}'Bz)'w = ) K2 - (R2'Bl )'Q - (8.556)
0 Kp-pl 0 K,,_,,2

Theorem (8.5.2) : All the solutions X; of the set of equations (8.5.1) are parametrized in

closed form as :

X, =)'z [, : 0™ ] (8.5.57)
where |
Z,. 0]
z' = eRH It (8.5.58)
ZE’F".‘ +m)w; Doy mee,
are unimodular , such that , ZP.' = KP.‘ , Z?;,i +m)ep, is an arbitrary parametric matriz

and Zip 4 m)-p; is an arbitrary unimodular matriz . 0
) 1

CASE 2 : In the following , we study the parametrization of solution of the DSP when
one of thé matrices T; in (8.5.1) is square . We assume that T, is square , (similar
arguments apply in the case of T, square) . As in case 1 , the non square matrix T} is

assumed to have Smith form given by :

L O
5= 5.
2 [OO:| (8.5.59)

Clearly when p, = p or p,+m, we have the generic case for T, , (lemma (8.2.1)) .
Lemma (8.2.1) implies that T, is generically equivalent to the diag{ I,., ,| T, | } .

i) If| T, | =0 the closed form parametrization of solutions of the DSP is described by
theorem (8.5.2) for p, = p-1.

i) If | T, | = 1 the closed form parametrization of solutions of the DSP is described by
theorem (8.5.2) for p; = p .

w) If| T, | = aequ(s) , then p; = p = (p, +m,) and the Smith form of T, over ¥ is
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S, =

given by : .
{ 0O a

40
Pl } (8.5.60)

Theorem (8.4.1) , appropriately adjusted to meet the assumptions in t) , provides a

parametrization for the solutions of the DSP for this case .

Theorem (8.5.8) : All the solutions X; of the set of equations (8.5.1) are parametrized in

closed form as:

Xo= (U5 1, O™ (8.5.61)
where ,
Z 0
xr p2 My X m
Z! GR; Py, 4t = eRgz+ 2)(Py + ) g, (8.5.62)
2
(Pz + mg)'P2 Z(P2 + mz)-p2

are unimodular and such that , unimodular matrices K,-eIR;’p “Pis) L'.ER;""J’(P‘P.')(S)

exist and the following conditions hold true :

Kf'z K:”;%
i) K, = (8.5.63.1)
O KP'P2
i (8.5.60) ,I'J'=Z,l‘j,l,j=1,...,p—1,i=j=p (8561.11)
i) K -S$i1=5-4' & { n}p-cv:z}p,i:l,...,p—l (8.5.62.11)
K:’j=a'Z},j,j=1,...,p—1 (8.5-63.21)
where K, = [k}.], z! = [z;]
(8.5.59) »
K, $=52%' & K, I, =1,.2, &K, =2, (8.5.64.11)
I, O O1 . O L
e | e = I*.K,. Py K,)'.G. K, = =L .5.65.
it) U:KlliOLl} ] 2|iL2 O}#(a) 1 [La 0 (8565mé

Remark (8.5.2) : The parametrization described in theorem (8.5.8) is in closed form if
and only if the family of parameters which satisfy the parametrization conditions
(8.5.61) - (8.5.64.1ii) is fully generated . Inspection of the parametrization conditions
implies that :

i) The matrices Z;' can be generated by the unimodular matrices K, which satisfy
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(8.5.65.411) and the first p— 1 entries of their last row are multiples of a . If all such

matrices are parametrized then we use (8.5.61.i1) — (8.5.63.11) to construct the Z;' .
2

? Apy+my)mpy

0, 47 arbitrary unimodular matriz , for all the unimodular

matrices K, which satisfy (8.5.64.11) , (8.5.65.212) .
It is clear that if the matrices (K, , K,) mentioned above are fully generated then the

i) The matrices Z;' can be generated by setting sz = K,,2 an arbitrary

parametric matmiz , Z(p2+m2)-

family of parameters in theorem (8.5.8) can be fully described . 8]

Definition (8.5.2) : Let F be the set of matriz pairs (K, , K,) such that :
i) K, , K, satisfy (8.5.65.11) .

it) a/n}j ,j=1,...,p-1, (a does not divide &

pp » Since K, is unimodular and o 1s

not a unit) .
iti) K, satisfies (8.5.63.1) .
Denote ~ the relation between the elements of F defined by :

(K, , K;)~ (P, , P,) & (K, , K;), (P, , P,) satisfy (8.5.65.1ii) for the same L
0
Clearly this is an equivalence relation and partitions ¥ into equivalence classes . Each

equivalence class is characterized by the matrix L :

0 L
L= 5.
[Lzo] (8.5.66)

If L changes then a new equivalence class is determined . The task set in remark (8.5.2)
is to generate the elements of ¥ or equivalently of ¥/~ . As in case 1 this task involves
two steps : If (K, , K;) is an element of ¥ , the first step is to determine representatives
in terms of (K, , K;) , for all the equivalence classes in ¥/ ~ . The second step is to
parametrize the elements of an arbitrary equivalence class in terms of its representative
determined in step 1 . This process parametrizes all the elements of ¥/ ~ and thus of &

in closed form .
STEP 1 : Generation of representatives for the elements of ¥/ ~

The following arguments are similar to those in step 1 of case 1 . Let (K, , K;) be an
element of ¥ . Then the equivalence class C Ky, Ky) is defined and a unimodular matrix
L exists such that :

oL}
K,)!'-G-K, = 1=
(K,) 1 [Lz 0} L (8.5.67)
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Proposition (8.5.4) : A representative of an arbitrary equivalence class in F/~ is

cxpressed in terms of (K, , K;) as :

Pl = KIIBZ y P2 = Kz‘B;l (8568}
where
ML, O LM, 0O
B] = ’ Bz = (8569)
0 I, o 1,

and M; are arbitrary (p-p;)z(p-p;) unimodular matrices , L, are defined by L in
(8.5.67) .

Proof
Let B, , B, be two unimodular matrices defined as in (8.5.69) . Set P, = K,-B, , P, =
=K,-Bj' . Then :

- 1. *
nil n%p'l N{p L2]'M2
S ST N O SO (8.5.70)
a.,\;l a'ALp-l K:’P L : IP2
- ]
| i 4 Lll.Ml )
sz sz 2 I : sz Pzzl’?
= { O TR R b (&1
O Kp-p2 : O PP'PQ
L . IP'PQ_

(8.5.70) , (8.5.71) imply that (P, , P,) satisfy parts u) , iit) of definition (8.5.2) .
Furthermore ,
(K. G-K, B, = B o L o0 M
P 'l.G.P =B, (K,))"'-G. Dy = Dy~ ‘B, = =M (8.572)
(Py) 1 17 (R 1 L, 0 2 M, O

For (P, , P,) , part i) of definition (8.5.2) holds true for L = M . Thus (P, , P,) can be
viewed as a representative of an equivalence class C(pp P,) with elements all the pairs
(F, , F,) for which definition (8.5.2) holds true . Since the matrices M; are arbitrarily
selected , the matrix M which characterizes C(Pp P,) is arbitrary and thus C(”v P,) is
arbitrary . 0
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STEP 2 : Parametrization of the elements of Cp p_)in terms of (P,,P,)
P2

Surprisingly the parametrization of the elements of C(pl’pz) in terms of (P, , P,) ,
case 2 , turns out to be more tedious than its counterpart in case 1 . This is due to the
existence of a nonunit element , « , in the Smith form of one of the matrices T, .
Consider now the arbitrary equivalence class C(PI’PZ) characterized by the unimodular
matrix M :
0 M!
M= = P! G.P, (8.5.73)
M, O

and M, , M, have dimensions p,zp, , p,zp, respectively . Let p,, denotes the (p,p)
entry of P, . Since (P, , P;) belongs to C(PI,PQ) , P, satisfies part ) of definition
(8.5.2) and thus o | p,, , (/ means "does not divide”) . Factorize a such that :

a=a'-a, (8.5.74)
where , a, | ph, and ' [p},, . For each selection of arbitrary vie Rgp(s) yi=1,...,p-1
set :

V=) :i@)2]=v... Vo, i Ve +1 eV ]
{ (8.5.75)
XT = [ (!T)pl'(lvlil)pz.p2 : (Y.T)p2 ] = [Yl Yp2-p2 : Vo +#1 Y ]
with ,
v,=via,i=1,...,p-1
{ } and such that v, yT are coprime over %P (8.5.76)
V,#Vp o

For all such v' set :

M;! O RS O : O
&=f-o . 0 : 0 i1, (8.5.77)

oy || oo . :.hha

0 I, 0

If 47 = [ (d7)2: (@072 = [ 4 ... dp, 1dp 410 dy | , then clearly (d7)? is a coprime
vector . Using the results of section 8.2 the family 8 of right unimodular matrices E::-,
can be constructed such that the matrix :

E’?

-1
E,, = (g?) . (8.5.78)

is unimodular . For all such unimodular matrices E,,2 and 6::1’ arbitrary matrices ,
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A,,_,,2 arbitrary unimodular matrices the matrix :

O Ap_ﬂz
D'=| E2, e:;_” 2 (8.5.79)

(d")"2 (d7)""

— -

is unimodular . Carrying out the appropriate permutations on the rows of D' we create

the unimodular matrix D :

[ Py P'PZ—
P9™Py Py~ Py
O Ap'Pz
D=|E2, e:;’_’f (8.5.80)
dT

Let 9@ denote the family of all matrices D created by the process of steps
(8.5.77)—(8.5.80) . 9 is fully generated since the parameters involved in the
P=Pq

construction of the matrices D , (d7, E‘,2 €8, G-)p o
2

the process of steps (8.5.75) - (8.5.80) .

A, or ) are fully described during

Proposition (8.5.5) : All the elements (F, , F,) of C PP, 0T€ parametrized in terms of
(P, , P,) by :
Fl =P1'W,F2=P2'Q (8-5-81)

where , W, @ are unimodular matrices and further more :

I . 0] 0
M O SR P M, O
W = D O : 0 : I, [ (8.5.82)
0 It’z ...... Do, N 0 [p2
0 I,r,.,,2 0

P

234



Chapter 8: Decentralized Stabilization — Parametrization Issues

Proof
(=) Let (F, , F;) be an arbitrary element of C(PI,P2) . We shall prove that unimodular
matrices W | Q exist such that (8.5.81) —(8.5.83) hold true . Part ) of definition (8.5.2)
implies that :

F'-G.F, =M (8.5.84)

P;'.G.P, =M (8.5.85)
(8.5.84) , (8.5.85) combined together provide :
F;I'PQ'M'Pll'Fl = M (8.5-86)
Set W , Q the matrices :
W=P!.F,,Q'=F'P, (8.5.87)
Clearly W , Q are unimodular as the product of unimodular matrices . Furthermore Q

has the structure required by (8.5.83) since (8.5.86) , (8.5.87) and part 1) of definition
(8.5.2) for P, imply that Q = M.-W.-M"1 and :

-1 F”l'z - F"lz ) F:’;Pz ) F;’l"’z P”z p:’;l’z
Q= : (8.5.88)
-1
O FP'PQ O PP'P2

The structure of Q can be exploited to investigate the properties of W and we do so in
the following . Since we have assumed that the DSP has a solution corollary (8.2.1)
implies that p; > p; , (p—-p2<py) , and thus the matrices M , M™! can be partitioned as:

— -

0 M ]
Mol0f),. o |mao| O GV YT
= 2) . , =
Py~ Py Ml O O
(M2)p-p2 0
L i
Similarly partition W as :
A
W';; Wp,

The latter results and the expression of Q = M. W .M in (8.5.88) imply that :
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0 M7
- ST L o e oy Q, 07
2/py-p ’ ) =
0 WP Wy, M, O 0 0 Q.
(Mz)p_pz 0] 2 Py
or equivalently |
Wy, w0 )T
[ (Mz),-,,: 072]- : =0;%, (8589
WZ; WP2 M] O

Carrying out the operations in (8.5.89) the following relations hold true :

{

Since (M;')"2 72 is a base for the Nr{(MZ)P‘Pg} , (8.5.90) implies that a matrix E:::_,,?

exists such that

(My),-p,- W2 = Op2 (8.5.90)

P=Py

(My)pp, W, - (M3)P2772 = 07272 (8.5.91)

PPy

W2 = (M;!)"""2-E2 (8.5.92)

P2 Pg

On the other hand (8.5.91) implies that a matrix EPz'Pz exists such that :

Wpl .(Mal)ﬂz'Pz - (M-zl)l’z‘ﬂz . Ep,-pg (8.5.93)
or ,
I, E,.
M, W, Mgt P T (8.5.94)
Op-p, Op-p,
which clearly implies that matrices 9: yA, ppy ? exist :
p'ﬁz
Eoypy @opp
M, W, Mi=| (8.5.95)
or ,
PPy
“z Pz “P3°Py
W,, =M;'-B-M, = M M, (8.5.96)
O AP'PQ

(8.5.92) , (8.5.96) can be substituted into W and leads to :
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W W,:,1 WZf B M;'-B-M, (M2 EPz Py
Wi W, whi Wh,
or , [ pp P ]
E”z"’z "2"2’2 E"22'92
w M;' O 0 A, O M, O
- Pa™ Py P=Pq p
0 I,,2 Ep2-1 ®p2-l P:_] 0] Ip2
LT
where , | Ep2 2 @p o2 ] = W a-M3,
M O
' =w'. , WT is the last row of W
0 I,,2

(8.5.97)

(8.5.98)

If we carry out the appropriate permutations on the columns of (8.5.97) it implied that

[_» ppy |
E"z"’2 ”2"2’2
'i\/I'l O O AP'PQ .PQ‘PQ O O M O
; oy por | | T .
W = |E2, o”2|| o 0 I (8.5.99)
0 I 2 L2 1 DO S 21l 0 1
P2 o i, i O F2
dr
with , B2, = (B, .p i B, |, Bty = [EETT i Wre, ],
I’_’z‘Pz 0 0 ]
I'=17| 0 0 i1, (8.5.100)
o i I o
Finally W is written as : - 2 -
1, 0 0 |
M;! O R Bt I N S M, O
W= -D.{ O 0 I, (8.5.101)
01, T P . 3 o1,
L. O IP'PQ O . 2

237



Chapter 8: Decentralized Stabilization — Parametrization Issues

In order W to satisfy the structure required by (8.5.82) D must be an clement of D .

Since , W is unimodular it is implied that D is unimodular . Consider now the matrix

D' :

O AP'PZ
't () PPy
D'=| E2, o) (8.5.102)

constructed by the matrix blocks of D as follows :

] P Py
Py Py~ Py PPy PP T _ T\Pq . T\PP
Pl T E”2 S o 47 =[(d7)2:(d7)" "]
p2‘1 PQ"

In other words D’ is constructed by carrying out appropriate permutations on the rows

of D and vice versa . Thus D' is unimodular and subsequently the matrices :

E’

P2'l

|

are unimodular . The latter implies the fact that ((f)”2 is a coprime vector and Ez:_,
belongs to the family , & , of right unimodular matrices which complete (d")*? to a
unimodular one . So far we have proved that the matrix D can be constructed by the
matrix D’ of (8.5.102) in the way steps (8.5.78) — (8.5.80) suggest . For D to belong to 9
it remains to prove that the vector d* , (the last row of D') , satisfies (8.5.77) ; in other
words that a vector v* exists such that (8.5.76) , (8.5.77) hold true and y" = w” . Let F,
= [fi,], Py = (pi;] » W = [w;;] . Then :

p-1
f;,: Zl plpn'w"]-’-p})p'ij ,Vj: 1 ’.“,p (8.5.103)
Since F, , P, satisfy part i) of definition (8.5.2) and thus :
alfp;, alpp; , Vi=1,..,p-1
{ (8.5.104)

% | F a]p},p

Then (8.5.103) , (8.5.104) imply that :
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{a|p},p-ij ,Vi=1,...,p-1

(8.5.105)
@ Ip;w “Wpp
If « is factorized as in (8.5.74) and w' = [w,] then :
{a’lij ,Vj=1,...,p-1
ofw,, (8.5.106)
(8.5.98) , (8.5.100) combined together imply for the vector d” that :
. 0
, - M;! O frP Do Do
4T = (@) @Y )= o i 0 i1, (507
O I, || Do R
*il o I 0

The coprimeness of (d7)”? together with (8.5.106) and the fact that w" is the last row of
a unimodular matrix imply that wT satisfies (8.5.75) , (8.5.76) . Thus d” satisfies
(8.5.77) for vT = wTand finally we have proved that D is an element of 9 . Summarizing
(8.5.87) , (8.5.88) , (8.5.101) and the latter analysis imply that for an arbitrary element
(F, , F,) of the equivalence C(PI’PZ) relations (8.5.81) —(8.5.83) hold true .

(<) Let a pair of matrices (F, , F;) exists such that (8.5.81)-(8.5.83) hold true for
some D €9 . Then we shall prove that (F, , F,) belongs to C(Pv P,) - In order to do so
we must show that (F, , F,) satisfies definition (8.5.2) .

i) (8.5.81)

F;l.G.F, ¥ Qrp.g.p,w=qQt.Mw &y (8.5.108)

which clearly implies that (F, , F,) satisfies part ¢) of definition (8.5.2) .
ii) Let F, = [fsl'j] , Py= [p:l'j] y W= [W.'_,'] . Then :

p-1
fpi = "Zl Ppx Waj + PppWpi »Vi=1,...,p (8.5.109)

If w* = [w,;] denotes the last row of W, (8.5.82) implies that :

< BN [T
: S .
w=d"f 0 i 0o |1 | (8.5.110)
N T e N IR A
O i, : O ?

where , d7 is the last row of D and satisfies (8.5.77) ; in other words a vector y* that
satisfies (8.5.75) , (8.5.76) exists such that :
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M;' O ||.720 O O
dT = v". o I o L0 I, (8.5.111)
21l o L, | O
2

(8.5.110) , (8.5.111) combined together imply that w' = v’ and thus w" satisfics
(8.5.75) , (8.5.76) . (8.5.109) , the fact that P, satisfies part ¢2) of definition (8.5.2) and
the latter imply that :

alff,; ,Vji=1,..,p-1

{ (8.5.112)

a [t

and F, satisfies part ii) of definition (8.5.2) as well .
i#i) (8.5.83) and the fact that P, satisfies part i22) of definition (8.5.2) imply that :

P pP P2 Q, QF "~
2

Py Pq Py

F,=P,-Q= : (8.5.113)
O P""’z 0 QP'P2
and clearly F, satisfies part 1ii) of definition (8.5.2) as well .
i) , 1) , 1i2) imply that (F, , F,) belongs to C(PI,P2) : a

Combining’ the results of propositions (8.5.4) , (8.5.5) together we are able to fully
generate the set of matrices K; which satisfy definition (8.5.2) . This result is stated in

the following proposition :

Proposition (8.5.6) : If a solution (X , X,) of the DSP ezists then :

i) A pair of matrices (R, , R,) ezists such that definition (8.5.2) holds true .

ii) An arbitrary pair of matrices (K, , K,) which satisfies definition (8.5.2) is generated
in terms of (R, , Ry) by :

K = (Ry-By) W, Ky = (B BY)-Q (8.5.114)
where , (By , By) , (W, Q) are defined in propositions (8.5.4) , (8.5.5) respectively .

Proof

The proof of part i) is identical to the one in proposition (8.5.3) . Arguments similar to
the ones in proof of part 1) of proposition (8.5.3) if -instead of propositions (8.5.1) ,
(8.5.2) — propositions (8.5.4) , (8.5.5) are used , can provide the proof part i) of
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proposition (8.5.6) . 0
Summarizing the results of case 2 | part 1) , we can express the parametrization of

solutions to the DSP in closed form as shown next . Let the DSP has a solution ; (R, ,

R,) be the pair of matrices constructed by the algorithm in part z) of proposition (8.5.6)
Also let :

O L}
R;‘-G-R1=[L 6]=L
2

Set M the arbitrary unimodular matrix :

M=

0 M

M, O

where , M, , M, have dimensions p,zp, , p,zp, respectively . Let (K, , K;) be the pairs
of matrices generated in part ) of proposition (8.5.6) :

1 K,,2 Kf,’;"’2
K, = [&}] = (R;-B;)- W, K, = (R,-BY')-Q = (8.5.115)

O KP'PQ
Theorem (8.5.4) : All the solutions X; of the set of equations (8.5.1) are parametrized in

closed form as:

; I
X, = (U2 [5} (8.5.116)

where ,

z, 0
T 2 m m.
7' eRYTs) , 5! = eRE ™t ™l (5.5.117)

2 Z,
(P2 + "‘2)"’2 (Pz + mg)’ﬂg

are unimodular matrices such that :

. _ 2 . . . ,

i) sz =K by 7 prz Fmy)-py » OB arbitrary parametric matriz , Z(p2 +mg)-p, 0P arbitrary
unimodular matriz .

i) 7' = [2};] and :

Zy=#l,1,§=1,..,p-1,i=j=p (8.5.118.4i)

— 1 -
{4p—~fp~a»z=1,---,p—1 (8.5.119.i3)
zlpj = (K';j/a) ’ ] =1 PERRI} p"I (85120“)
a

We illustrate the parametrization methods studied so far by the following example :
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Example (8.5.1) : Consider the system with transfer function of the plant given by :

(s + 1)? 4 8 (s + 1)
$2 -3 542 s2 -3 s+2 s2 -3 542
2 4,3 2 3 .2
P = s“+ s 2s+s-—3's+4s 25 -s°4+3 s .
s2 -3 542 st-s3-3s%4+s+2 s3-2s?7_542 (8.5.121)
(s + 1)? 353-35242s+2 35335247 s+1
s?_3 542 §3-2s%—s+2 §3~2s% 542

then 1, 2 are poles of P and the system is not stable . In this example we illustrate the

zl

closed form parametrization of decentralized controllers C = diag{C, . C,} , C, € R;7'(s)

C, €R2%s) , which stabilize the plant P via a precompensator and unity output

feedback scheme . A coprime left MFD , (D , N) of the plant P, over Rg(s) , is found to
be represented by :

r“5 32+S 1 0 r S 28 25
(s+1)3 s+1 s+41 s+1
| =5s+41 _ 3 s+1 s+1
D = —(s+1)2 0 1 , N = 1 s+ 1 s 71 (8.5.122)
s?—3 s+2 s
——(s+1)2 0 0 1 s+ 1 1
L - — -

Because of the structure of the controllers the inputs , outputs , (p , m) , are
partitioned to local inputs , outputs , (p, , p; ) , (m; , my) , with (p, , m;) =(1,2),
(p; , my) = (1, 2) respectively . All stabilizing controllers should satisfy equation
(8.2.1) , or equivalently if (N; , D;) , ¢ = 1, 2 represent coprime right MFD’s of the
blocks C; of the controllers , equations (8.2.2) and (8.2.3) must hold true for x = 2 and
the matrices T; given by :

-5 s%+s s 1 0 23 2s
(s+1)* s+1 s+1 s+1
| =55+l _ 3s+1 3s+l
T, = __(—sIITI 1 , Ty = 0 1 s+ 1 s+ 1 (8.5.123)
$2 -3 s42 8
L . L _

T, , T, can be expressed via their Smith forms over Rgy(s) as :
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T, = U,‘-Sl-Ui =
’— s—1
s+ 1
— 2s
T, = s + 1
0
= U?.S,.U?

S 1
s+1 s+ 1
1 -1
0 0
i
1 0 0
01 0
0 0 1

S O =

o O O

o~ O

s -3 s+2 1
(s + 1)
-9 s+1 1
(s +1)°

o
!
2]
—)

(8.5.124)
N
1
1
1 =
1
(8.5.125)

If p; denotes the rank of T; , then p, = 2, p, = 3 . Corollary (8.2.1) implies that

decentralized stabilizing controllers of the type examined in this example exist . Such a

controller is given by , [Giin. 1],

C = diag{C, , C3} =

-
0 0
l-5s -2
s+3 s+§
s?—s 2s
s?44 s+3 s*+4 543

(8.5.126)

If C; = N;-D;! then C corresponds to a pair of solutions (X, , X;) of (8.2.3) given by :

—

s242s-1 s?+4 s+1
(s + 1)? (s + 1)?
2 8245 s+1 8345 542
(s +1)° (s + 1)
-1 -1
t:] S
s+1 s+1

For this pair of solutions equation (8.2.3) implies that :

(8.5.127)
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s-1
0 s+ 1 1
(T, X,,T,-X,]=U=| 0 siﬂ 1 (8.5.128)
1 0 0
L i

with U an Rg(s) unimodular matrix . In order to parametrize the family of all
decentralized stabilizing controllers of our example we have to apply proposition (8.5.3)
or , in other words to find unimodular matrices R; € Rz;a(S) , L€ R;‘"’i)’(a“"i)(s) i=1,2
such that conditions (8.5.5¢ , #:) of theorem (8.5.1) hold true .

apply the algorithm introduced in ) of proposition (8.5.3) :

In order to do so we

Step 1 : Set U the unimodular matrix of (8.5.128) and partition U™! as :

L . -1 1 0
U =U" ,with Ui'=[001], Uj'= 9s 1_s (8.5.129)
2 s+1 s+1
Step 2 : Using the results of section 8.3 a particular pair of matrices :
=2s 2s
s+1  (s+1)*
-(3s+1)  3s+1
A N R 8.5.130
! s2-3s+2 | 2 (8.5.130)
(s+1)? 0 -1
s
1 s+1

exists such that the pair of matrices (Y, , Y;) = ([ X; :

A, ],[X;:A;]) is unimodular .

Step 3 : Set Q0 = U'-Ty-Ay= [ 1/(s+1) , (*+1)/(s+1)* )7, Q] = U;* . T, A, = [10]

Step 4 : Set B
P s542s-1 s42
(s+1)* s+l
L = —(s?+1) ) ’L2=[1]:V1=[1]»V2=12
| (s+1)? s+l
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Clearly $) = [10]"=L,-0}-V,,S; =[10] = L,-Q}.V,, are the Smith forms of €} ,

O} respectively

Step 6 : The pair of matrices (R, , R;) in question can now be constructed by setting :

i 10 i 0 Ly

Applying #) of proposition (8.5.3) we find that a closed form parametrization of the
pairs (K, , K,) which satisfy (8.5.5.7, u22) is given by :

M, O LM, O
K, = B; W= M1.Q'.M,K,=B!.Q!'= Q
0 I, 0o 1

o M;! A, O
M= , = V. .V
[M,O} Q=Vs [C; D2:| 3

for all the arbitrary unimodular matrices M, , D, € R¥%*s) , M, , A; €RF(s) , all
arbitrary parametric matrices C; € R%(s) ; V3 € R%%(s) is unimodular and such that the
last row ofsM™! multiplied on the right by V3! gives [ 1 0 0 ] . Now we can proceed with
the parametrization of all solutions to equation (8.2.3) . Theorem (8.5.2) implies that all
X, are given by :

X; = (U2 [1:0]7, X, = (U2 [, Og T

where , Zi' = K, , (the first 2 z 2 block of K,)

-1 Z3 O 4x4
Z; =| , €Ry"®)
1 1

such that , Z3 = K, , (the first 3 z 3 block of K,) , Z3 is an arbitrary parametric matrix
Z, is an arbitrary unimodular matrix . o
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8.6. CONCLUSIONS

Parametrization issues of the general Decentralized Stabilization Problem (DSP) have
been studied . The DSP has been approached in an algebraic manner via the set of
equations T;-X; = U; , X; , left unimodular , [ U, -.- U, | unimodular , T, matrices
defined by appropriately partitioning an Rg(s) —left coprime MFD of the plant . A
parametrization of the family of solutions , X; , which corresponds to [ U, ... U, ]
unimodular has been given by theorem (8.4.1) . The above parametrization requires the
existence of a constructive method that enables us to generate the family of all
unimodular matrices of given dimension , as well as the families of left , (right)
unimodular matrices which complete given left , (right) , unimodular matrices to square
unimodular ones . Such methods has been examined in section 8.3 . The families of
parameters involved need to satisfy certain parametrization constraints . These
constraints constitute a necessary and sufficient criterion that enables us to identify the
admissible parameters . Particular cases where closed form parametrization is possible
have been studied in sections (8.4) , (8.5) . In the case of two blocks decentralized
controllers a full description of the set of parameters has been given , especially when T,
are considered generically and are either not square or , one of T, or T, are square . The
study of closed form parametrization when T, , T, are simultaneously square as well as

the generalization in the case of x blocks decentralized controllers are still under

investigation .
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9.1. INTRODUCTION

A special case of decentralized stabilization of linear multivariable time invariant
systems is the problem of diagonal stabilization , [Gic. 1] . [Kar. 2] . In this special case
the problem is to determine a stabilizing compensator C = diag { ¢; } , such that the
plant P is internally stabilized by C . The internal stability requirement may be
expressed in terms of transfer functions matrices , [Vid. 4] , and highlights the
important role of fixed modes in decentralized stabilization . Various researchers have
provided characterizations of "fixed modes” , [And. 1] , [Cor. 1] , [Wan. 1] , {And. 2],
[Giin. 1], [Kar. 9] . It has been shown , [Wan. 1] , that the diagonal stabilization of P is
possible if and only if it is free of unstable fixed modes . Recent algebraic synthesis
methods for linear multivariable control problems have highlighted the importance of
the set IRG.P(S) of proper rational functions with no poles inside the region P = QU {oo} ,
(QcC), [Des. 1], [Sae. 1], [Vid. 1] , [Fra. 1] , [Vid. 4] . These methods are based on
what is termed the "fractional representation” approach to linear systems theory . The
detailed structure of the set IRG-P(S) has been studied in [Var. 3] , [Var. 5] , [Vid. 4] ,
[Mor. 1] .

Our aim in this chapter is to provide a closed form parametrization of solutions of
the diagonal stabilization problem , by extending the results stated , for two
inputs —outputs systems , in [Kar. 2] , to the general case . Our approach in doing so
differs from the study of the general decentralized stabilization problem in chapter 8 , in
a way that makes the results established here easier to apply in the special case of
diagonal stabilization . On the other hand the results of chapter 8 do not imply closed
form parametrizations in the general case of diagonal stabilization yet , whereas those
introduced here tackle the specific problem in a better fashion . In the following
necessary and sufficient solvability conditions for the decentralized stabilization problem
using diagonal controllers , factorized over Rg,(s) , are given . The existence and
characterization of solutions is intimately related to systems that exhibit the property of
cyclicity , [Kar. 2] . The characterization is essential since it provides the means to
define special type solutions such as proper , reliable , stable . A statement of the
problem and its consequent formulation are introduced in section 9.2 . The notion of
cyclicity is defined . Section 9.3 refers to an equivalent formulation of the problem
which finally transforms it to the search of necessary and sufficient solvability
conditions for a scalar Diophantine equation , over R9(3) , the solutions of which must
meet certain factorization constraints . The actual necessary and sufficient solvability
conditions for the problem are introduced in section 9.4 . The connection between the
cyclicity property of the plant and the existence of diagonal stabilizing controllers is
established . The parametrization of all stabilizing controllers is studied in section 9.5 .
It is reduced to determining what are termed mode T mutually stabilizing pairs and the
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existence of such pairs forms the basis of 4 complete parametrization . The rest of the

chapter deals with the determination of proper , reliable , stable stabilizing diagonal

controllers by making use of the parametrization introduced in section 9.5 .

9.2. THE DIAGONAL DECENTRALIZED STABILIZATION PROBLEM

Consider the standard feedback configuration associated with a lumped , linear , time

invariant (continuous time) system :

u,

where PGR;","'(S) is the plant transfer function and CGR':,:m(S) is the transfer
function of the controller . It is assumed that both plant and controller are stabilizable
and detectable .

Problem : Given a plant transfer function PeR5, "(s) find a controller transfer function
C= diag{c, , ..., cn} € RY,"™(5) such that the feedback system is internally stable . This
is defined as the diagonal decentralized stabilization problem (DDSP) . 0

If P =C,U{o} and Rg,(s) denotes the ring of proper and P —stable functions ; consider
an [R?(s)—coprime MFD of the plant P = Aj!.B, , where A, ER;""(S) , By eﬂgzm(s)
and (A, , By) is an R_(s) - coprime pair ; and let C = diag{c; , ... , ¢} = N;-D3! be an
IR?P(S) - coprime MFD of the diagonal controller , where , ¢; = n; d}l yt=1,2,...,m,
is an IREP(S)—coprime MFD of ¢; . Then N, = diag{n, , ..., n,} and D, = diag{d, , ...,
d,,} . It is known that the controller internally stabilizes the feedback system , if and

only if there exists some IR@(S) — unimodular matrix U such that :
Al D2 + Bl Ng = U (9.2.1)

By partitioning A, , B, in terms of columns , then (9.2.1) is expressed as :

dl o) ny 0o

[él,ﬂ'za---’ém]' . +[h1,h2,...,hm].
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={u, 0, Uy ] (9.2.2)

Or equivalently ,

d; .
[gi,bi]-[ 'jlzg'-,z=l,2,...,m (9.2.3)

where , P, =[a;, b, € Rmﬂ(s) are matrices defined by the plant and the vectors q; =

=[d;,n]T€ Rzﬂ(s) characterize the single input , single output (SISO) controllerq :
The vectors u; are arbltrary vectors of R""l(s) , with the additional property that U = &

_[ Up , 5, Upy eoey Uy ) I8 R@(s) ummodular . The latter condition implies that u, are

irreducible in P (have no zeros in P) .

Remark (9.2.1) : The solvability of (9.2.1) is independent of the particular
qu(s)— coprime MFD of the plant which is used . Indeed , if (A, , B,) , (A, , B,) are
two R@(s)— coprime MFD’s of the plant then there ezists chy(s)— unimodular matriz U,
such that (A, , B,) = U;- (A, , By) . From (9.2.1) we take :

A, D, + B, N,=U, & U'A, D, + U'B, N, = U, (9.2.4)
or,

Az Dz + 32 N2 = M' Ul = U2 (9-2-5)

where U, , U, are R )= unimodular matrices . The solvability of (9.2.5) implies the
solvability of (9.2.4) and vice versa . a

The set {P; ,i =1, ..., m } is characteristic of the plant and for any other coprime
MFD of the plant the corresponding set is {U;-P; , i =1, .., m} , U is
R () —unimodular .

Definition (9.2.1) [Kar. 2] : A set 2 = {P; ,i =1,..., m } will be referred to as a
representative decentralized matriz set (RDM) of the plant . 0

Definition (9.2.2) [Kar. 2] : Let Te Rm"(s) ,m>kK, rank R(s) {T} =k and let ‘:T = {f::

fieR (3) i=1,...,m, f/h/.. /f,‘} be the invariant functions of T over R (3) T s
cyclic zf fi=f =... = fesq = 1; if more than one of the f; is nonirivial, T wzll be called
noncyclic. T will be called complete , iff f; = 1 foralli=1, ..., m . o

Definition (9.2.3) [Kar. 2] : An RDM set L = {P; ,i =1,..., m } of the plant P will
be called cyclic if for all 1 = 1, ..., m the matrices P; are cyclic ; if at least one P, is
noncyclic , then £ will be called noncyclic . The set L will be called complete if for all s =
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=1, ..., m the matrices P; are complete . 0

Denote by F(P;) = {f;:(s) , f1i(s) : £1;(8)/f2i(s)} the invariant functions of P, and by F,=
= {F(P,) , F(Py) , ..., F(P,)} the ordered set of invariant functions of £ . Further
morelet Q =[P, ,P,,..., P ]and B, = [Rcy(s)—row module of {Q}] . Then :

Proposition (9.2.1) : Let L and L be any two RDM sets associated with the plant P .
Then :
o

The set ¥, and the module Ry are thus invariants of the plant P aﬂd will be simply
denoted by F; , Ry . Clearly , the plant is cyclicif f;; = 1 forall: =1, ..., m and

complete if f;; =1 ,f;; =1lforalli=1,...,m.

Proposition (9.2.2) : If P is noncyclic , there ezists no diagonal C that stabilizes the
feedback system .

Proof

Let £ be an RDM set and assume P; is noncyclic matrix . Also , assume that there
exists a diagonal stabilizing controller . By (9.2.3) , P;.q; = u; , where u; must be a
coprime R (S) vector (as a column of an IR‘EP(S) unimodular matrix) . Let U;' , U;! be a
pair of R EP(S) unimodular matrices that reduce P, to its Smith form over R?(s) . Then by
partitioning U, according to the partitioning of the Smith form we have :

0 f,;
U Y 1U,q =y,
| O 0]
or equivalently , B £ 0 N
1j
, 0 f1,,
(Ul P ld=y (9.2.7)
OO0

where , q; = U,-q; = [&1 , 8 ]TGR:;I(S) . Thus ,

vy fijd; + ¥o £ 8 =y
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Clearly , since f,,(s)/f,;(s) for all the choices of (d; , 31) and thus (n, , d,) , f,, must
divide u; and u; is not coprime Ray(s) vector . ]

Corollary (9.2.1) : A necessary condition for diagonal closed loop stabilization is that
the plant P is cyclic . 0

Let F = {fi; , fiz, ..., fim} and p(s) = ﬁ f,:(s) , p(s) will be called the first invariant
1=1
function of P . The properties of p(s) are summarized below .

Proposition (9.2.3) : Let Pe R} "(s) be the transfer function of a plant and p(s) be its
first invariant function . Then :
i) p(s) is an invariant of the plant .

it) The zeros in P of p(s) are fized closed loop poles of any closed loop system obtained
by diagonal precompensation and unity feedback .

Proof

i) It follows from proposition (9.2.1) .

i) From the proof of proposition (9.2.2) it is clear that for a solution to exist , u ;= h;e
g'jfora.llz'zl,...,m.Then:

[EI»QZa'Ha-u-m]: . '[E'n‘_l'zv---’%.] (928)

0 i
and for all choices of C = diag{c, , ..., ¢} the | diag{f,, , ..., fim} | will be a factor of

the determinant of the denominator of the closed loop system . Thus the zeros of p(s)

define fixed unstable closed loop poles . 0

Remark (9.2.2) : If pf(s) denotes the fized pole function of the closed loop system
obtained under any diagonal precompensation and unity output feedback , then

p(3)/ps(3) - O

Remark (9.2.8) : The transfer function P is cyclic if and only if for every fizedi, i = 1,
.., m the elements of P; are R@(s)— coprime . o

Definition (9.2.4) : A cyclic plant P will be called diagonally stabilizable (D stabilizable)
if condition (9.2.1) holds true for some R?P(s) - unimodular matriz U and if in :

N, = diag{n, , ..., n,} and D, = diag{d, , ..., d,,}
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the pairs (n; , d;) are R?(s)— coprime . 8]
From equations (9.2.1) and (9.2.3) it is clear that the problem is reduced to the

following one. Given a set of cyclic matrices P, € R;’Z(s) ,t=1,...,m, determine the

solvability of the following over R@(S) :

d; :
P,.q;=u, , gi:[n }eRz;l(s) ,di#0 , 1=1,2,..., m (9.2.9)

where , (n; , d;) are R@(s)—coprime , u; are arbitrary vectors of R;’l(s) , with the

additional property that U A [u;,,u,..., 4, ]1s ch(s) —unimodular .

Definition (9.2.5) : The problem defined by (9.2.9) will be referred to as the
D - stabilization problem (DDSP) . 0

9.3. THE D - STABILIZATION PROBLEM

In the following we consider some alternative transformation for the general case of
DDSP . Notice that (9.2.9) may be expressed as :

(P, PulXn=U,Pu=[Py,...,Pn], X, = diag{g; ,i=1,2,..., m}9.3.1)

where , ¢ = [ & , 0 " =[xy , X3 |T and U, R‘P(s)—unimodular . By the

Binet — Cauchy theorem we have :
| Ul=u=Cpu(Fp) CulXn) , uis Ry(s) unit (9.3.2)

The above equation is multilinear in the parameters x;; ,i=1,2,...,m,j=1,2in
C,.(X,,) - The structure of X, leads to a number of fixed zero entries in C(X,,) . To
demonstrate the form the above equation takes , we consider first the simple case m =
=2, [Kar. 2] . Then:

— —

xnp @ 0 |1
Xy ¢+ 0 |2
Xg=| o ¢t oo | = [%1,%) (9.3.3)
0 : X |3
P Xgg | 4

de1={1a2}’P2={3’4}'
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X1 Xgy A3
X11 X22 Ara
Co(Xy) =XM%y = =
X12 X1 A3
X12 X322 A2
0 034 J
If I'\)’2 = | Pi1 P12 : P21 P22 ], then Cy(Py) = [y, o4z, @1y Qg3 , @y, @34 | , where
a,2=|1_)11 Blzl,013=IB11221|a014=|I_)11£22|,0‘23=|I_)12221|’024=|212222|,

034 = | P21 P22 | - Equation (9.3.2) may thus be expressed as :
ay3 A1z + g Ay + g3 Az + g Ay = (9.3.4)

The above equation is defined by the nonzero entries in C,(X,) . Note that the elements
of C,(X,;) are indexed by the sequences w€Q,, , where Q, , denotes the set of
lexicographically ordered strictly increasing sequences w = (¢, , ..., i,) of « integers
from1,2,..., n.If theintegers 1,2, 3, 4 are grouped as {p, = (1, 2), p, = (3, 4)}
then an element A, in Cy(X;) , w€Q; 4 , will be zero if and only if more than one
indices in w = (%, , %;) are taken from the same p; . The location of nonzero elements is
defined by the sequences we€@Q, 4 for which only one index is taken from p, , p,
respectively . The set of indices that characterizes the nonzero elements in C,(X,) is
Ty2 = {14,3),(1,4),(2,3),(2,4)} and will be referred to as the essential subset
of Qa4 - To generate the above observations we introduce some useful notation .

Definition (9.9.1) [Kar. 2] , [Kar. 9] : Let Q 3m denote the set of strictly increasing
and lezicographically ordered sequences of m integers taken from {1, 2,..., 2m} .
For the set of integers {1, 2, ..., 2 m] a pair partitioning is defined as the set of
ordered pairs @ ={p, = (1, 2), 0, =(8,4), ..., pm=(2m—-1,2m)} . A sequence
w= (4, im) €Qmam will be called ®—prime if there is no pair of indices (i; ,

i) € w which is taken from the same p, € ® . The set of all  — prime sequences of Qm,,m
will be denoted T, , and referred to as the (m , 2) - prime set of Qum, am - 0]

Proposition (9.3.1) : Let X,,,GR:;"'"(S) y Cn(Xm) =[..., Ay . ', w€EQm2m » Tmy2
be the (m , 2)—prime set of Qu 2m and I, ; be the complement of T2 i Qum am -
Then :

i) A coordinate ), is zero for generic values of the nonzero elements in X,, if and only
fweTs,, .

i) The nonzero coordinates A, that correspond to generic values of the elements in X,
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are those corresponding to T',, , . o
The following algorithm can be used to compute the set I',, , for any m>2 .
COMPUTATION OF T, ,
Step 1 : Set m = 2. Then the set I'; , is clearly :
F2,2={(1>3),(1,4),(2,3),(2,4)}

Step 2 : For every sequence w, = (3, , %) € T, , generate the two sequences of I3 , as

{(3 ,32,5), (i1 , %2, 6)} . This process generates all sequences in T3 , .

Step m : For every wy,.q = (i1 5 -+ s tm-1) € [im-1,2 , Benerate two sequences of I, ; as
{(Gy  ov s bme1» 2m—=1), (31, - 5 i1 » 2 m)} . This process generates all sequences in
Fm,2 . o

Note that the cardinality of I,  is 2™ . The form that equation (9.3.2) takes may be
simplified by setting :
y2iéx,-j , when j = 2 and y,,, éx,-j ,when j =1 (9.3.5)
With this notation , for every o = (i, , ..., i,) € T,y 5 we take A, ) Vi Yip o Vi and
the fixed Zeros in C,(X,,) appear in the I7, , locations . Equation (9.3.2) may then be
expressed as :
; 0, Ay, =u,uis qu(s) unit , 0 €Ty, 3 (9.3.6)

the above is a Diophantine equation over Rip(S) with parameters A, = {a,eRcy(s) ,
oel, .} and unknowns % = {z\,eR‘y(S) , 0€ly, 2} . For the set A, we have the
following property .

Proposition (9.3.2) : The parametric set A, is invariant of the plant P modulo Roy(s)

units.

Proof
If (A, , B,) , (A7, B)) are two R_(s)~left coprime MFD pairs of P , then there exists
an R?(s) —unimodular matrix U such that [ A}, By | = U.[ A, , B, ] and thus :

P =[(P,..,Pn]=U.{P,,...,P.]=U.P (9.3.7)
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Clearly C,(P,)=|U |-C,.(P,) =u-C,(P,), where u is IRC.P(S) unit . 0

The set A,, characterizes the plant | modulo R@(S) units | and will be referred to as a
generator set of DDSP . A greatest common divisor of A,, will be denoted by f, and

referred to as a prime invariant function of the plant P .

Proposition (9.8.8) : Let P be a plant and p(s) fo(s) be the first and prime invariant
functions respectively . Then :

i) p(s) divides f,(s) .

1) The zeros of f,(s) are fized modes of any closed loop system under diagonal

precompensation and unity output feedback .

Proof

i) It suffices to show that p(s) = ‘ﬁlfl ;(s) is a common divisor of all the elements of
J =

A,.. The nonzero elements of A, are those elements a, of Cm(ﬁm) which correspond to
o=, tm) € 'm 2, or equivalently the nonzero a, are the m z m minors | p; p;

B'm | of P_=[P,,...,P.], where each Pi, is taken from the corresponding P: l, ;:2
=1, m . {
common dwxsor of the elements of P . A common divisor of a, = | Pi, iy -+ Pi_ |,
pi € P, ,is p(s) _jl;[lflj( s) . Hence p(s) divides f.(s) .

,; is the greatest common divisor of the elements of P; and hence a

i) By inspection of equation (9.3.6) we conclude that for each selection of (n; , d;) (and
thus ¢; = n;-d;') the greatest common divisor of the elements of A,, is a factor of the
determinant of the denominator of the closed loop system under diagonal
precompensation and unity output feedback . Thus , the zeros of f; are fixed modes of
any closed loop system obtained under diagonal precompensation and unity output
feedback . a

Corollary (9.3.1) : If P is noncyclic , then the set A,, is not R9(3)- coprime . o
Definition (9.3.2) : A system for which f, in an Rg(s) unit will be called strongly cyclic O
Remark (9.3.1) : If f, is not an Ray(s) unit i.e. 6,(f,) > 0 (there ezist zeros at infinity),
then all closed loop systems obtained under diagonal precompensation and unity output
feedback have fized poles at infinity with the total number defined by 8.,(f,) . In this case

the closed loop system is unstable and ezhibits impulsive behavior for all compensator

schemes of the above type . o
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9.4. NECESSARY AND SUFFICIENT SOLVABILITY CONDITIONS OF DDSP

We consider the general case of DDSP and examine necessary and sufficient

solvability conditions .

Remark (9.4.1) : The necessary and sufficient solvability conditions for equation (9.5.6)
(including the decomposition of A, as in (9.8.5)) are necessary and sufficient solvability
conditions for equation (9.8.1) and hence , for (9.2.9) (DDSP) . o

Remark (9.4.1) implies that it suffices to find necessary and sufficient solvability
conditions for equation (9.3.6) (including the decomposition of A, as in (9.3.5)) . First

we state the following useful lemma :

Lemma (9.4.1) : Let A€ R“’z(s) , t> 2 and the greatest common divisor of all the entries
of A be an R@(s) unit . Let H denote the row Hermite form of A, namely :

b
H=|? * (9.4.1)

.........

Factorize b, was, b=g-b , w=g-w, with (b} , w)an R‘?(s)—copn'me pair . Then
the family of Rcy(s)— coprime pairs (n, d) such that the vector :
4

r=[rn,..,nf=A[dn] (9.4.2)

is R 9~ coprime 18 given by all pairs :

i) (n d) R (s)-—coprzme , such that (n , b) isR (%) — coprime (m,d)#h (b ,-w)
for all L—R (3) units , when A i3 nondegenerate noncompletc

it) (n, d) R?(s) — coprime , when A is nondegenerate complete .

i) (n, d) IR‘:_P(s)— coprime , solutions of the scalar Diophantine equation :

h=v-[d,n] (9.4.9)

for all L-R (5) units , when A is degenerate and v is a minimal McMillan degree and
R 9~ coprzmc base for the row [ R?(s) —module of A ] .

Proof
From the hypothesis is clear that A is a cyclic matrix . The cyclicity of A implies the
cyclicity of H and thus b , w , z are Rw(s)—coprime .
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t) Let A be a nondegenerate noncomlete matrix .

(=) Let (n, d) be an qu(s) — coprime pair such that (9.4.2) holds truc . Then :
tr=A.[dn]"=U; H - [dn]" (9.4.4)

with r an R@(s)—coprime vector and U; an R‘:_P(s)—unimodula.r matrix . (9.4.4) implies
that :

....... ? [ﬂ] =Ulr=y (9.4.5)

With ,v=[v,; v,0...0]T=U;'.r ,an R?(s)—coprime vector . The latter implies that

(vy, vq) is an R@(s) — coprime pair . Equation (9.4.5) can be expressed as :

b.d+w.n=v
i -

Then (n , b) is an R @(s)—coprime pair , else an sy€ P would exist such that n(sy) =
=b(s,) = 0 . But then (9.4.6) would imply that b(sy) -d(so) + w(so) -n(sp) = vy(s0) = 0
and z(so) - n(sg) = Va(sg) = 0 , which contradicts the fact that (v, , v;) is a coprime pair.
Additionally , (n,d) #h-(b",~w’) for all h—RGy(s) units , else :

vy=g{b-d+woa}=gh{b(-w) +w-b} =0,Vs€eC

In that case the pair (v, , v5) = (0, v,) would be coprime if and only if v, was an R"(s)
unit or equivalently , (9.4.6) , z , n were R@(s) units simultaneously . But if z was an
Roy(s) unit then (9.4.1) and the cyclicity of A would imply that A was a complete
matrix something that contradicts the truth . Thus the qu(s)—coptime pairs (n , d)
such that (9.4.2) holds true must satisfy the constraints of 1) .

(«<) Let (n, d) be an R GJ)(s)—coprime , such that (n , b) is an R(s) - coprime pair and
(n, d)#h-(b",—w) for all h—R_(s) units . Then we shall show that (n , d) satisfies
(9.4.2) . Consider the vector £ = A-[d n]". Then an R,,(s) - unimodular matrix U,

exists such that :

......... [2] =Ulr=vy (9.4.7)

or equivalently ,
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b-d+ w.-n= v,
{ (9.4.6)

Z-1 = V2

It suffices to show that (v, , v,) is an Rcy(s) coprime pair and thus U; -y =1 is an R@(S)
coprime vector . Let s, € P be an arbitrary zero of v, , then the following three

alternatives may happen :

z(sg) = 0, n(se) #0 (9.4.7)
{z(so) =0,n(sy) =0 (9.4.8)
2(s0) #0 , n(sg) =0 (9.4.9)

If (9.4.7) holds true then (9.4.6) implies that :

vy(so) = 8(s0) - {b(s0)  d(s0) + W'(so) -n(s0)} (9.4.10)

g(sg) #0 , since b, w, z are R@(s) coprime . We distinguish the following three cases :

1) b'(se) = 0, W'(s) #0 . Then (9.4.10) gives v,(s) = g(so)  W'(so)-n(sg) # 0 and thus
the pair (v, , v3) 18 R@(s) coprime .

2) b'(sp) #0 , W(sp) = 0 . Since d# -h-w', (h an R (s) unit) , is implied that
d(so) # —h(so) - W'(so) = 0 . Then (9.4.10) gives vy(so) = g(so) -b'(so)-d(so) #0 and thus
the pair (v; , V) 18 R@(s) coprime .

3) b'(sg) #0 , W'(so) #0 . Since (n , d) #h-(b",-w’) for all h—Rg(s) units is implied
that {b’(sq)-d(so) + W'(s0)-n(se)} #0 . Then (9.4.10) gives v,(so) # 0 and thus the pair
(v, , Vy) is Rg(s) coprime .

If (9.4.8) holds true then (9.4.6) implies that :
vi(so) = b(so) - d(so) (9.4.11)

Since (n , d) , (n, b) are R‘.P(S) coprime pairs is implied that d(sy) #0 , b(sg) # 0 . Thus
vy(so) # 0 and the pair (v, , Vv,) is Rg)(s) coprime .

If (9.4.9) holds true then (9.4.6) implies the same result as above . Thus we have proved
that an R (s) - coprime pair (n , d) that satisfies the constraints of i) satisfies (9.4.2) as
well .

ii) Let A be nondegenerate complete . Then A is an Rg’(s) left unimodular matrix and
i1) follows immediately .

iit) Let A be degenerate . Then it is well known that A can be written as :
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u,

A= [{v,vy]=u-¥" (9.4.12)
u,

where , u , v are minimal Mc Millan degree bases for the column [ R o8) ~ module of A]
row | R@(S)—module of A] , respectively . Hence ,u , v are R@(S)—coprixuc vectors
unique [ modulo R@(S) units | .

(=>) Let (n , d) be an R@(S)—coprime pair such that (9.4.2) holds true . Then r is an
R (3 coprime vector and :

A.[g}=g.f.[ﬁ]=g.h=£ (9.4.13)

where , h = v'-[d, n]". Since u, r are R@(s)—coprime vectors h must be an R _(s)
unit . Thus (n , d) is a solution of the scalar Diophantine equation h = v'.{d , n |"
with h an R?(s) unit and the constrain of 1) is satisfied .

(<) Let (n, d) be an R@(s) — coprime , solution of the scalar Diophantine equation :
h=v'[d,n]" (9.4.14)

with h an IR@(S) unit and v a minimal McMillan degree and Rg(s)—coprime base for the
row [ R (s)—module of A]. Then a u minimal McMillan degree and R () = coprime
base for the column [ R &)~ module of A] exists such that A = u -vT and thus

A'[g]z‘-‘ ‘!T‘[g]=u-h=;

and r is an R@(s) — coprime vector since uis and h an Rc_p(s) unit . 0

Theorem (9.4.1) : Let A, = {a, GR,?(S) , 0 €T, 2} be a generator set of DDSP defined
on the plant P . A necessary and sufficient condition for solvability of equation (9.9.6)
(including the decomposition of A, as in (9.3.5)) and hence for solvability of DDSP is
that the system is strongly cyclic .

Proof

(=) Let a solution of DDSP exists . Then by (9.2.9) , (9.3.1) , (9.3.2) , (9.3.5) equation
(9.3.6) has a solution and thus the greatest common divisor f, of the generator set A,,
must be an R(s) unit . Definition(9.3.2) implies that the system is strongly cyclic .

(<) Let the system be strongly cyclic . Then a greatest common divisor of the set A,,

an R () unit and thus {a, €R NORRS €T, ,} are coprime . Without loss of generahty
we ca.n assume that u in equatxon (9.3.6) is 1 . Consider equation (9.3.6) :
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; (Ya /\0 = ]. .0 € F"l,2 (9.4.15)
We shall prove that forall I =1 ,2, ... m (4. d;) Rc}(s)—coprime exist such that
A”: yl,l .yl'l... y'.m
dj,whent,=1,3,... . 2m-1,(or21-1)
n,wheny =2,4,...,2m,(or2l!)

If v,.-, denotes the set v, = (2; , ..., ) € Cineni2 s Ym=0 = (Ym-n > tmext1 -+ » bm)

k=0,1,...,m-1, then:

Step 1 : Since the set A,, = {a, € R‘P(S) y o€, o} is REP(S) - coprime is implied that the
matrix A,, = [o; ; | elRi;z(s) yVi=g,q€l12.7=2m-1,2m,t=2™"iscyclic

m-1" ] y Am = [ai] ) (YQm )

and , (lemma(9.4.1)) , thus pr(s)—coprime vectors [ ..., A,
Yam-1) » V1 = Yoy € [y, 2 exist such that :

Y2ma
m =qQ,, = [a.,m_l] (9.4.17)
Yom
and
Z M@y = 12 Tt €T (9.4.18)
or,

72 )“'m-l {a{'ym_l,Zm-l} Yam-1 + a{-ym_‘,2m} Yam} =1, Tm1 € Fm-l,z (9.4.19)

" Tm-1

Clearly each solution of equation (9.4.19) :

Ay = Ay Vi s imin {2m -1, 2 m} (9.4.20)

m Tm-1

is a solution of equation (9.4.15) .

Step 2 : Since the set A, , = {a.,m_leR?(s) + Ym-1€ ey 2} 18 R9(8)-coprime is
implied that the matrix A, = [o; ; ]eRgz(S) ' Vi=9n 26033, =2m=-3,
2m -2 ,t = 2™ 2, is cyclic and , (by lemma(9.4.1)) , thus Rv(s)—coprime vectors | ...,
A y oo ] 1 m-1 = [ai] ) (Y2m-3 ’ yﬁm-2) ’ Vi= Tm-2 € Pm-z,z ) exist such that :

Tm-2

Yam-3
Aper: = @m = [0, ] (9.4.21)

Yam-2

and
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722 /\’ym_2a'ym_2 = 1 bl 71"'2 € Fm'2,2 (9'4‘22)
or, ™

Z /\‘7m-2 {a{“’m-wzm':;) Yam-3 + a{‘Ym_z,?m'Q} Y2m-2} =1 y Ym-2 € Fm-?,? (9423)

Tm-2

Clearly each solution of equation (9.4.23) :

My = My Vi imerin {2m-3,2m -2} (9.4.24)

is a solution of (9.4.18) and thus :

Ay, = A Yi

“m Ym-2

Vi (tp-1 5 i) 10 {(2m =3, 2m —2)z(2m - 1, 2m)} (9.4.25)

m-1

is a solution of (9.4.15) .

Now it is clear that if for k = 2, ..., m -2 we repeat the above process successively for
the R@(s)—coprime sets Ap-, = {aym_KeIRG}(s) + Ym-x € [rn-x,2} We can construct
R@(s)—coprime vectors [ ..., Aoy b @mee = o] (Yameae s Yomezer) » V2 =

Yom-r-1 € Im-x-1,2 » Such that :

Yom-26-1
] (9.4.26)

m-x'

Yom-2«

where , A, = [ai,j]ele;z(s) v Vi=Ypn1€lmp12, 7 =2m-25-1,2m-2«,

t= 2™ "1 is a cyclic matrix . Furthermore :

v Z a‘ym-n-l A"m-n-l =1 y Tm-x-1 erm-n-l,2 (9427)
or, m-x-1
Z A"’m'lc-l {a{‘ym_n_1,2m-2x-1} Y2m-2¢-1 + a{"lm_x_l,2m-2n} Y2m-2x} =1 )

m-x-1

Tm-x-1 € I‘m-n-l,Z (9428)

5

Clearly each solution of equations (9.4.28) :

A = A -y,-m_n,im-,‘ in{2m-2k-1,2m-2x«} (9.4.29)

Tm-« Tm-x-1
are solutions of equtions :

E ’\7m-na7m-n =1, Tm-«€ I‘m_“,, (9.4.30)

‘YM'N
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and thus it is implied that :
As = /\7m= )\71 Vi Yi S Yigc Yy Y (9.4.31)

m

is a solution of (9.4.15) . 0

9.5. PARAMETRIZATION OF SOLUTIONS OF THE DDSP

In the following we introduce a parametrization of solutions to DDSP . First we state

some useful preliminary results , [Kar. 2] .

Definition (9.5.1) : Let Te Rf;z(s) , cyclic . Then a pair of (n, , dl)v , (ny , &),
(coprime) n; , d; e R U that satisfy equation :

[dl nlj'T' (iz =1 (9-5-1)
e
is called a mode T mutually stabilizing pair . O

Assume that the Smith form of T over R@(S) is Sy = diag{l , ¢(s)} and let A =
={)e€P : ¢();) = 0} be the distinct values of the zeros of #(s) in P . Ay may be

referred to as the root range of T over R?(s) .
Definition /(9.5.2) : Let Te R;ﬂ(s) be a nondegenerate cyclic matriz and let (n, d) be an

IR@(s)— coprime pair . Then (n , d) will be called mode T (mode T") R?P(s)—copm'me if
the pair (%, ) (7, 3 )) is R (o)~ coprime , where :

[d,%]=[d,n]. T, [z]=T.[ﬂ

The set of mode T (mode T7) R‘J)(S) —coprime vectors is characterized by the following

o

result :
Proposition (9.5.1) : Let Te Rz‘;z(s) be a nondegenerate cyclic matriz and A its root

range . An R‘:.P(S)— coprime pair (n , d) is :

i) mode T IR?(s) — coprime if and only if V \;e Ay :

[dN), n(X) ]-T(N) #0° (9.5.2)
ii) mode T" R (%) - coprime if and only if V ;€ Ap
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a(x;)
T\, ).L(M} £0 (9.5.8)
Proof

t) Since T is nondegenerate its Smith form is S7 = diag{1l , ¢(s)} . If #(s) is a unit then
V (n, d) [Rep(s) —~coprime < [d , n]-Tis Rcy(s)—coprime and hence , (n , d) is
[R@(s) — coprime . Let now ¢(s) not be a unit . Then : _

(=) Let (n, d) be mode T R?(s)—coprime .ThenVpe?®={d(),tk)] #0"«

o [d() , n() ]-T() # 0% . Hence , ¥ A Ap = [d(A) , n(A) |- T() £0F .

(<) Let ¥ \;e Ag, [d(\), n(A) ]-T(\) #07. Then [d (), & (n)] #07,V pe?.
(If { d(p),T(p)]=0", for some peP—-Ag, then [ d(p) , n(u) |- T(k) = 07 for some

p€P—Ar . But since | T(p) | #0, is implied that [ d(x) , n(k) ] =0, for some pe P,
which contradicts the fact that (n , d) is R () — coprime) .

ii) Can be proved in a similar way . 0

Remark (9.5.1) : By the proof of proposition(9.5.1) is concluded that when T is
complete then all the R?(s)— coprime pairs (n, d) are mode T R@(s)— coprime . o

Lemma (9.5.1) : Let Ac Rg4(s) , t>2 and the greatest common divisor of the entries of
A is an R@(s) unit . Then there always exist pairs (b7 , p) , 0" =[b , ..., b ], p =
=iy , B2 s K3 5 Ha T, R@(s)— coprime vectors respectively , such that :
i

A =1 (9.5.4)
Proof
By the hypothesis rank{A} can either be 1 , 2 , 3, 4 . We prove the lemma for
rank{A}=4 . Then the rest of the cases are direct results of it . The Smith form of A

over R@(s) can be written as :

0 0 0
¢ 0 0

0 ¢ 0

0 0 43

[N =T —

-U,,U;, U, are R&_P(s)—unimodula.r

i 00O00O
Equation (9.5.4) can be written as : b”-U;-[ diag{l , ¢, , ¢, ,¢3} : O]"-U,.p =1, 0r,

QT'[ dla'g{l H ¢1 ’ ¢2 ’ ¢3} 0 ]T‘Z =1 (955)
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with , " =b"-U;,v= U,p, R@(s) coprime vectors whenever b" , u are [qu(s) coprime

vectors and vice versa . Equation (9.5.4) can now be written as :
(SIS +¢1 Gy V2+¢2 C3 V3+¢3 Cq Vg = 1 (956)

For each selection of {v;,1=1,2,3, 4}, R@(S)-—coprime , such that the set {v, , ¢,
Vy , g V3, O3 vy} 18 R?(s)—coprime ,sets of {¢; 1 =1,2,3, 4}, R@(S)—coprime
always exist such that (9.5.6) holds true . This implies that there always exist
R?(s)—coprime pairs (b" , ) = (¢"-U;' , U;'-¢) , such that equation (9.5.4) holds
true. The rest of the cases , namely , rank{A} =1, 2, 3 can be derived by the previous

analysis if we successively set ¢; = 0in (4.6) , for: =3, ..., rank{A} . 0
Now we can proceed with the parametrization of solutions to DDSP . For technical
reasons we consider first the case m = 2 p .

9.5.1. PARAMETRIZATION OF SOLUTIONS OF DDSP-CASEm =2p.

As it is implied by the proof of theorem(9.4.1) the solutions of DDSP can be

obtained by solving equation :
;aa )‘a=11’\a=Yil Y:'z"' Yimaaermﬂ (957)

where , A, = {a, € R@(S) y 0 €Ly, 5} is an R@(s) — coprime set (corresponds to a strongly

cyclic system) . Let Ym-x = (215 o+ s tynx) €Tk 20 Tm= 0 = (Yimk s men b1 2 oov s Bm)
and y; asin (9.4.16) .

Algorithm for the Parametrization of solution of DDSP —Case m = 2 p

Step 1 : Set i, =2m-3 ,2m-2, i, = 2m-1, 2m . Since 4, = {a,elR@(S) ,
. . . . 4 -
ocel, ,}isan IR@(s) — coprime set is implied that the matrix A,,., € R:; s),t=2m%:
Apaz =1 Ay g 2m-3,2m-1} > F{q, o 2m-3,2m} » Vv, _o,2m-2,2m-1} > ¥{v,,_,,2m-2,2m}) ]

has an R @(S) unit as a gcd of its entries and thus , by lemma(9.5.1) , we can find all

R?(s)-—coprime vectors ..., Ay g 1,1 u8, u8, us, g ]" such that :

[ ’ )“Vm-z ’ ---]'Am-2'[ Pf ’ l‘g ’ /‘5 ’ #f ]T =1 ’ 7m~2erm-2,2 (958)

or,
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‘YZ /\7m-2 a7m-2 =1 y Ym-2 € Fm-2,2 (959)
where , m-2
o,V =Ana-[uf, 18,18, 18] ) Ym-2 € Timea

Now set M., to be the matrices :
m-2

a{’ym_z,Zm-Bﬂm-l} a{-ym_z,2m-3,2m}
M = y Tm-2 € Fm-2,2 (9510)

a{ Yyp-g1 2M-2,2m- 1} {'ym_2,2m-2,2m}

and T, to be the cyclic matrices :

2
= ;Z Moy M, ., RS %) s Ym-2 € Tmeaya (9.5.11)

For each cyclic matrix T, constructed by the above process the family of controllers
that stabilize the m -1 , m channels of the systems is given by the set of solutions of

equation :

d
[dme1 > By |- T, n"‘ =1 (9.5.12)

Step 2 : ipy3= 2m—T ,2m~6 , 4,5, = 2m-5,2m-4 . Since A, = {a e|R ® >
Yon-2 € I‘m_2 .}, R )~ coprime set is implied that the matrix A, _, € IR (s) , t = 2"" :

Aps =1 Ay, g 2m-T,2m=5} » Py 2m-T,2m-4} » Uy, _,,2m-6,2m-5} F{v, _,,2m-6,2m-4) J

has an R O unit as a gcd of its entries a.nd thus , by lemma(9 5.1) , we can find all

R &)~ coprlrpe vectors |... Mg ? L1 e et W8t w2 )T such that

(s ’\7",-4 voor ) Ameg /‘1-1 ) I‘g ' M3 ' ) #:-l I'=1,9m4€ Fm-4,2 (9.5.13)

or ,
Ay =1 Tma €l (9.5.14)
where ,

1 -1
[a"/m_4] = Am-4'[ #,lr ’ /‘; ’ l‘:‘; ) /"4 ]T y Tm-4 € Pm-4 2

Now set M, __ to be:

X Ve 2m-7,2m-5} Xy 2m-7,2m-4})

M = » Tm-4 € Lm-q,2 (9.5.15)

Tm-4
Xy 412m-6,2m-5} Xy . 2m-6,2m-4)
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and T,.; to be the cyclic matrices :
Tp-l = 72 A‘Ym-t; . I\/I‘Ym"i € Ri‘:z(s) ) 7"1-4 € Fm-4,'2 (9.5.16)

For each cyclic matrix T, constructed by the above process the family of controllers

that stabilize the m -3 , m —2 channels of the systems is given by the set of solutions of

equation :
dm'2
[ s g ] Ty - =1 (9.5.1.17)
N2
Repeat the above process successively for all j =2 ,3,...,p-1, (n = 2 1)y tpege1=

=2m-26-3,2m-2k-2 , 4, . =2m-2k-1,2m -2« . Since , 4, = {«, -KGR@ s),

Yrn-n € Crm-x, 2} > qu(s)—coprime set is implied that the matrix A ..., € R;;4(S) , t =
=2m-n-2 .

Ap-z = [ o CRR YY) 3 Oy Pra+1} 1 Oy o P+ 1,0} 0 Oy - P+ 10+ 1} ]

where , Vg2 €mx2,2, P =2m-2-3 , ¢ =2m-2c-1, ha,sanIR(s)unita.sagcd

of its entrxes and by lemma (9.5.1) we can find all R (8~ coprime vectors [.. )‘Vm-n-z ,
N 7 ...,mJ]T such that :
[ Y P Ymex-2 T ] 'Am-x-'."[ Nf—J 3 ooy My il ]T =1 1 Tm-r-2 € rm-n-2,2 (9518)
or,
N z )\‘Ym-n-Z a‘ym-n-Q =1 y YTm-x-2 € Fm-n-2,2 (9519)
where , mow

[a‘Ym-K_2] = Am-n-2 [ y’f-J y ooy g g ]T y Ym-x-2 € F"V‘K‘2,2

Now set M,, to be :
m-x-2

O - g0 2283, 2m-2x-1} A - -0 2M-2573, 2m-2}

Tm-x-2

Oy, gy 2m-26-2, 2m-2x-1} O (v - og0 2M-2K-2, 2m-2}

i

and T,.; to be the cyclic matrices :

Z '\‘Ym-,‘_ Ym-x-2 € R:;q(s) ’ 7m-n-2 € Fm-n-2,2 (9520)

m- x-2
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For each cyclic matrix T, constructed by the above process the family of controllers
that stabilize the m-x—1 , m -« channels of the systems is given by the set of

solutions of equation :

[ dm-2j1 Dn-25-1 ]'Tp-j' =1 (9.5.21)

nm'2j

CASE 1 T, ; is degenerate : Then by 1) of lemma(9.4.1) , (t = 2) , (9.5.21) can be

written as :

[ dm-2j'l y p-24-1 ]'1—1 'XT' =1 o (9522)

where , u , v’ are R )~ coprime vectors uniquely defined modulo Rcy(s) units .

Theorem (9.5.1) : For strongly cyclic systems with T, ; degenerate the family of
solutions to (9.5.22) is given by the family of solutions to the following scalar

Diophantine equations :

Nm-2;

d ..
[ Gm-ajer s Mmgjr [ 2= 1, f-[ " ”} =1 (9.5.29)

Proof
Let (N34 » Am-2j-1) » (Dm-25 » dm-2;) be a solution of (9.5.22) . Then :

T dm-2j
[ dm-Zj'l ’ nm-i.’;j-l ]'g =p, ¥ =q (9524)

nm-2j

By (9.5.22) we have that [ dp-2j1 » Bmgjy ]-8 -q = 1 and thus q must be a divisor of 1
or equivalently q is an Rg)(s) unit . On the same token p is an pr(s) unit . This proves
the necessity . The proof of sufficiency is obvious ; (the solutions of (9.5.23) are
R@(s) — coprime and satisfy (9.5.22)) . a]

CASE 2 : T,; is nondegenerate : By making use of definitions (9.5.1) , (9.5.2) ,
proposition(9.5.1) and remark(9.5.1) we state the following theorem :

Theorem (9.5.2) : Let T,_; € R'gz(s) be a cyclic nondegenerate matriz .
a) The following statements are equivalent :
i) An Rcy(s) coprime pair (My_ps. 5 Gmezje1) ; (Pm-2; » dm-2;) 18 a solution of (9.5.21)
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) (Mn-2j1 5 Gm-2j-1) ) (Pmegj Qpnoz;) are mode T, ; mutually stabilizing pair

i) (0o gm-Qj_l) is mode T,_; R@(s)— coprime and (N, _,; , d,.,;) stabilizes
(Fim-2;-1> m-2;-1) - Equivalently , (n,, ,; , oz ;) 18 mode T, R?(s)— coprime and
(Mm-2j-1 » Gm-2j-1) stabilizes (im-2; » 2m-zj) :

b) The family ofqup(s)— coprime pairs (My,9;y , Amegj1) ; (Mn-25 » @m-2j) 18 defined as
follows :

t) For any (ny 51 , dp-gjy) mode T,_; R@(s)— coprime pair a subfamily of (n,,; ,
dpm-2;) that together with (n, o, , dy_o;.1) fized are solutions of (9.5.21) is given
by the solutions of :

Em-Zj-l Qn-2j + Ttmgjel Pmezj = 1, [Em-2j-1 s Bm-2j1] = [Gmozja 5 Pmeajor]s Toe
(5.1.25)
ii) For any (ny,—; , Gm-z;) mode T} _, R@(s) — coprime pair a subfamily of (n,5;., ,
m-2i-1) that together with (., ., d,,_y;) fized are solutions of (9.5.21) is given
by the solutions of :

dm-2j dm-2j-l + ﬁm-2j nm-2j-1 =1 3 [dm-2j 3 ﬁm-?j] = [dm-2j ’ nm-2j]' Tpr-j (9526)

Proof

a) i) = i) By definition(9.5.1) and (9.5.21) (0241 » dme-2j-1) » (Bm-2j » dm-2;) are a
mode T, ; mutual stabilizing pair .

i) = i) Consider (Wn2j1 gm 25-1) ; in order to be R (s)—copnme , by
prop031t10n(9 5.1) it suffices to show that | dm_2J 1(8) 5 Tpegja(s) ] # 07, for all s in the

root range of T,.; . Let an s in the root range of T, ; exists such that | am_”_l(s) ,
ﬁ'm_zj_l(s) ] =07 . Then:

d,,-o4(s

[ dura () » Bmaa(8) 1- Ty || s 0 21 (9.5.27)
nm-Zj(S)

which contradicts the fact that (nm-2j-1 » dmegj1) » (Rpmezj » dme2;) are a mode T, ;

mutual stabilizing pair . Hence , (T,-2;.1 , dp-gj-1) is R 9(s)—coprime pair and (n-2j-1 »

d,p-3;-1) s mode T, ; Rcy(s)-—coprime . By (9.5.21) (n,5-3; , d;neg;) stabilizes (T

~

dm-2j-1) :

iit) => i) Consider R?(s)—coprime Pairs (Np-gj-1 5 dm-2j-1) » (Bm-2; 5 dpm-2;) Such that
(nm_,“_l , dp-g;-1) is mode T,_; R@(s)—coprime and (.5 , dp-2;) stabilizes (&,,-55-1 »
,) - Then :

m-23-1

m-ZJ-
21 dm-2j + Bme2jet B2y = 1y [dmegjer > Bmezja] = [dme2jot 5 Brneja] - T
and is obvious that (9.5.21) holds true .
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b) ¢) By using lemma(9.4.1) , (t =2) , A =T, ;,[d,n]" = [dpqji1, Dypgjey |7 we

p-Jj
can find (np-9501 , dyp-2j-1) R@(s) - coprime such that :

[dm-2j-1 ) ﬁm-?j-l ] = [dm-Zj-l y Dp-25-1 ]'Tp'j

and (Wp-25-1 am_gj_l)Nis R@(s)—coprime . Thus , for each (n,.,;. , d;pgj-y) fixed the
family of solutions of d.5;.1 dpm-g; + U5 Dm-g; = 1 satisfy (9.5.21) . Now we must
show that all solutions of (9.5.21) are generated by this process . Let (05,1, dp-g;-1),
(D25 > dm-2;) be a pair satistying (9.5.21) . Then by a) ) (0251 » dmegj-q) is mode
T,; R@(s)—COprime and (D5 , d,-o;) stabilizes (¥,-5j 5m-2j-1) . Hence , (9.5.25)
holds true .

#) It can be proved in a similar fashion to ¢) . - 0

Corollary (9.5.1) : Consider equation (9.5.21) with T,.; cyclic , nondegenerate and
ATp'j be the root range of T,_; .

a) If T,.; is complete i.e. ATp-j =0, then :

i) For any Rg(s)- coprime pair (Mpegj1 » Gmezj-1) , (mode T,_; R (8 - coprime , by
remark(9.5.1)) , the family of (n,_,; , dp.p;) qu(s)—coprime which together with
(Tin-25-1 5 dyn-gj-1) are solutions of (9.5.21) are given by :

Apn-2; a = M1
=T, +t- T} , te[RGy(s) arbitrary (9.5.28)

Nm-2; by G2 i-

where , (by , a1) is a SISO plant that stabilizes (ny, 5.y , dpegj-1) -
it) For any Ray(s)—coprime pair (g, , dm-g;) , (mode T, IR?(s)—copm'me , by

remark(9.5.1)) , the family of (np_p;, , dpgiq) R@(s)—copn’mc which together with
(Mn-2; » dyn-25) are solutions of (9.5.1.24) are given by :

[dm-zj-l y Pm-2j-1 ] = T;l-j‘[az , by ] + ¢ T;l-j'[— Nn-2j » dm-2j] (9-5-29)
where | telR@(s) arbitrary , (b , ay) is a SISO plant that stabilizes (Mn-25 ) Gm-25) -

b) If T,.; is noncomplete i.e. AT,,-,- #0, then :

i) For any R@(s) ~ coprime pair (N, 5.1 , dpopj1) Such that :
[ @m-251(3) ) Pmezjer(8) |- Tpej(s) # 0,V s€ AT‘,_J. (9.5.80)

there ezists a family of (Mo , dpmegj) qu(s)—coprime defined by (9.5.25) , which
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together with (n, ;. , dy_y;-1) are solutions of (9.5.21) .
i2) For any R@(S) — coprime pair (M,,.,; , dy_y;) such that :

[ Qr2i(s) s Mmgif(s) ] Tooi(s) # 07, ¥ seATp_j (9.5.81)

there exists a family of (n, g5 , dnogj-i) R@(s)—copm’mc defined by (9.5.26) , which
together with (n,,.,; , dy.y;) are solutions of (9.5.21) . 0

It is clear that using the parametrization of solutions of (9.5.21) forall j=0,1, ...,

p-1,T we achieve a parametrization of the solutions to DDSP when m =2 p .

3

9.5.2. PARAMETRIZATION OF SOLUTIONS OF DDSP-CASEm =2p + 1

As it is implied by the proof of theorem(9.4.1) the solutions of DDSP can be

obtained by solving the equation :
S ap A =1, =y v, ¥i € s (9.5.32)

where , A4,, = {a, € IR@(S) ,oel, 5} isan IRq,(s) — coprime set (corresponds to a strongly
cyclic system) . Following the same steps as in section 9.5.1 ,for j=0,1,...,p-1
the following set of equations is generated :

dm—2j

[ dm-2j-1 » L2501 ]'Tp—j' =1 (9533)

Dpy-2,

where , T, ; are identical to the ones in (9.5.21) for j=0,1, ..., p—~2, whereas for j=
p—l 9 Tl iS :
Q35 Q136 Qia35 Q236

T, =d,- +n,- , cyclic (9.5.34)
Q145 Oy46 Qg45 Uogq

and { Q35 , @136 » Y145 » X146 » X235 » X236 5 X2gs 5 Aogg } is an R?(s)—coprime set . There

exists R@(s)—coprime set { u},i=1,2,3,4} such that :
dy{p} ayastid argets Qugst g Qrge} + ni{p] Qpastpg Cpa iy Cpstpl e} =1

or equivalently :
(dysm A - [pl, 2, p5, 4] =1 (9.5.35)
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Using lemma(9.5.1) (A = A, , t =2, b7 = [dy,n, ], = [, b, i, ud 7)) , we
can parametrize all the qu(s)—coprime pairs (n, , d;) such that equation (9.5.35) holds
true . Hence , the parametrization of solutions to DDSP in this case is given by the

parametrization of solutions of the following set of equations :

d
[ dm-2j-1 s Bm-25-1 ]'Tp-j'

nm-2j

'"‘“}:1,]':0,1,...,,)-1
(9.5.36)

[dlanl]'Al'[p’i7”%,/1:13’/“411]-1.:1

The parametrization of solutions to DDSP allows the searching for proper , strictly
proper, biproper , reliable solutions as well as stable diagonal decentralized controllers .

First we study the case of proper solutions to DDSP .

Example (9.5.1) : In the following example we illustrate the parametrization method
described above for an unstable strongly cyclic plant P eR3%s) . In this case a

generator set of DDSP is given by :

A= {0‘135 y X136 » X145 5y Xy46 » X235 3 X236 » X245 » C!246}

and is an Roy(s)——coprime set . Following the parametrization process introduced in the

casem=2p+1=3,p=1,3=0,set M;, M, to be the matrices :

) Q135 Y136 Q35 Q236 135 X136 X235 (236
M, = y My = y A=

Q145 146 Qo455 Qg6 Q45 U146 Xoq5 X246

Applying lemma(9.5.1) for ¢ =2, A = A, , we construct Rcy(s)—coprime vectors (), ,

Al s [ed s 2, p3 , pi]T and the family of cyclic matrices :
Tl = 72 ’\‘11'M’11 ) 716(1 ’ 2)
1

The family of diagonal decentralized stabilizing controllers (n, , d,) , (n; , d;) , (n3 , d;)
for the channels 1 , 2 , 3 respectively are given by the families of coprime solutions of

the set of equations :

ds

ny

[dz,n2]'T1' =1
[dl an1]'A1‘[#}a#§a#}s,#i]T=1
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9.6. PROPER SOLUTIONS OF THE DDSP

The searching for proper solutions to DDSP can be restricted to the searching of
R@(s)—coprime pairs (n; , d;) ,z =1, ..., m such that the corresponding stabilizing
controller for the channel 7 1s c; = n;-d;! , proper . In other words :

a) When m = 2 p , we can search for Rip(s)——coprime pairs (Nyog501 5 dm-25-1) 5 (Apne2;

dpm2;) »J =0,1,...,p=1, which are solutions of (9.5.21) and cp.3;.y = Npegjor-
;nl-zj-l y Cmegj = nm_2j-d',,}_2j the stabilizing controllers for channels m-25;-1, m-23
are proper .

b) When m = 2 p + 1 , we can search for R@(s)—coprime pairs (Mpopj-1 5 dpegjr)
(Npm-2j > dm2j) » 7 =0,1,..., p—1, which are solutions of (9.5.32) and ¢

=Npy-2j-1° dma-2j-1 1 Cm-2j = Dpm-2;* dpn-g; the stabilizing controllers for channels m - 25 -1,

m-23-1 —

m — 2j are proper.
Cases a) , b) reveal an intimate relation to results concerning the properness of solutions

to scalar Diophantine equations over R ) -

9.6.1. PROPERNESS OF SOLUTIONS OF SCALAR DIOPHANTINE EQUATIONS

Let (b , a) be an RQ(S)—COPrime pair . The pair (b , a) will be called proper
nonproper , strictly proper , if the transfer function p = b-.a! is respectively proper ,
nonproper , strictly proper . For the general given pair (coprime) we define the scalar
Diophantire equation :

bn+ad=1 (9.6.1)

where , the solution (n , d) over R?(s) always exists because of the R@(s)—coprimeness
of (b , a) . The solution pairs (n , d) are always qu(s)—-coprime and if (ng , dp) is a

particular solution then the general solution is expressed by :

"=l et P teR bit (9.6.2)
Nk 4, 1_pl €Ry(s) , arbitrary 6.

In the study of DDSP , Diophantine equations of the type (9.6.1) always emerge , where

(b , a) is not necessarily proper ; however , since (n , d) represents controllers the
question of properness is always an important aspect to be examined .

Definition (9.6.1) : A pair {(b, a), (n, d)} that satisfies (9.6.1) will be referred to as
mutually stabilizing pair ; in particular (n , d) , (or (b, a)) will be called dual of (b, a),
(or (n, d)) . 0
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The existence of proper dual pairs for a given (b , a) i1s examined next . The following

result establishes a useful general property of mutually stabilizing pairs .

Lemma (9.6.1) : Let (b, a), (n, d) be R@(s)— coprime and mutually stabilizing pairs .
Then :
min { 5,0(b) + 8u(n) , (@) + u(d) } = 0 (9.6.9)

Proof
Since b n + a d = 1 by taking valuations we have : § (b n + a d) = 0 . By the

properties of 6, (-) valuation it follows that :
0=46,bn+ad) >min {,(bn),é(ad)}=
= min {§,(b) + 6,(n) , 6o(a) + 65(d)} 20

Since (b , a) , (n , d) are from qu(s) and thus have nonnegative valuation . The last

condition clearly implies (9.6.3) . O

Remark (9.6.1) : Let (b, a) be an Rcy(s)— coprime pair . Then the following three cases
concerning (b, a) properness are the only possible :
i) (b, a) is nonproper .
i) (b, a) is strictly proper .
i1i) (b, a) is biproper . o

Using lemma (9.6.1) for the case of nonproper pairs (b , a) we have .

Proposition (9.6.1) : Let (b, a) be an R_(s) ~ coprime nonproper pair . Then :
i) For all (n, d) dual pairs , §,,(n) =0 .

i) If a proper dual ezists , it has to be biproper .

i1i) There always exists a family of biproper duals (n, d) .

Proof

i) Since (b , a) is coprime and nonproper , it follows that .,(b) = 0, §(a) = €>0.
Thus by condition (9.6.3) we have min { §(n) , € + 6,(d) } =0 . Clearly , since ¢ >0
= 6.(d) > 0 follows that 6.,(n) =0 .

it) Since , for all duals (n , d) , 6(n) = 0, if a proper dual exists , we must have :

0 < 8og(€) = Soofn-d™) = 8ig(n) —6o(d) = 0-6g(d) = —Eo(d)
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and thus 6(d) = 0. Thus if a proper dual exists it must be biproper .
221) Consider the family of duals as defined by (9.6.2) . At s = co we have :

N | | DG bt 2 | . R b
d, = g oo” b |’ o= t(o0) , t € () » arbitrary

where , 6,(b) = 0, é6(a)>0 . Then it follows that b,,= 8#0 , and a, = 0 .

Furthermore by part ) ny® = « # 0 and thus the above may be written as

{3:] = [d(‘,” -atoo ﬂ:l s too= t(c0) , t € R@(S) , arbitrary- | (9.6.4)

We may distinguish the following cases :
a) Particular solution (ng , do) is nonproper .

b) Particular solution (ng , do) is biproper .

a) If particular solution is nonproper , then §,,(d) >0 and thus d? = 0. By (9.6.4) we

have :

n, a
[d }-_—. [ } s o= t(c0) , t € R@(s) , arbitrary (9.6.5)

and thus for any biproper t € R@(s) ,l.e. 8(t) =0, d, # 0 and the corresponding d has
§.(d) = 0, i.e. there exist biproper duals for all biproper parameters t € R@(S) .
b) If particular solution is biproper , then §,,(dy) = 0, and d§° = v # 0 . By (9.6.1.4) we

have :

[Ej = { . —:; ; ] s tow= t(00) , t € Ry (s) , arbitrary (9.6.6)

Clearly for all t € Rg,(s) parameters such that :
Y-t B #0 (9.6.7)
d(o0) # 0 and §,(d) = 0, i.e. solution (n , d) is biproper . 0

An important remark that follows immediately from the above proof is stated next .
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Remark (9.6.2) : If (b, a) is an R@(s)— coprime nonproper pair , then there exist non
strictly proper duals . Q

Corollary (9.6.1) : Let (b, a) be an R?(s) — COpTiMmeE MONPTOper Pair .
a) There always exists a biproper dual (ng , dy) .
b) Let b= B # 0, ng =a#0,d’ =~v#0. The family of biproper duals is defined

by :
[ Z :| ={Z§} + t.{_ﬂ, teR@(S) , arbitrary (9.6.8)

where , t is constrained by the condition :

Y=t B # 0, t,=t(o), tequP(s) , arbitrary (9.6.9)
|

Remark (9.6.3) : The duals of R@(s)—coprime nonproper pairs (b , a) are generically
biproper . Indeed , t(c) = t,€R . Those , t,, = (v/B) form a hyperplane (the set
{7/B}) of the line R . Thus the set T = { t,€R : t, = (y/B) } is of measure zero ,
which implies that generically each te Ray(s) has t, # (v/B8) - o

The case of strictly proper pairs (b, a) is considered next .

Propositién (9.6.2) : Let (b, a) be an R qp(s)—coprime strictly proper pair . Then all
duals (n , d) are proper .

Proof

Since (b , a) is an R‘?(s)-—coprime strictly proper pair it follows that é,,(b) = ¢>0,
§.(a) = 0 . By condition (9.6.3) (necessary condition which all duals must satisfy) we
have min{ € + 6,(n) , 6(d) } = 0 . Clearly , since € >0 , §,(n) >0 follows that
6..(d)= 0, i.e. all duals have d biproper and thus they are proper . 0

The case of (b , a) biproper pairs is considered next .
Proposition (9.6.3) : Let (b, a) be an R“_P(s)— coprime biproper pair (b, # 0, a,, # 0)
a) There always ezists a family of biproper duals and a family of strictly proper duals .

b) Let (ngy , dy) be a biproper dual :
i) The family of biproper duals is defined by :
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"=l ™ el ] teR bit
4 1- do +-_b, e@(s),arzrary

where , t is constrained by the condition :

Bt b 0, 0 + b 0 # 0, to=tfo), teR@(s) , arbitrary
1) The family of strictly proper duals is defined by :

"=l ™ el Y teRr bit
il 4 sl €R(9) , arbitrary

where , t is constrained by the condition :
-t b #0, 18 +tg a,= 0, t= t(o), teR@(s) , arbitrary

Proof
a) The general family of duals is given by :

Y= " [t P, teR bi
d d, + b ,te 9(3),a,r1tra.ry

1]
4

(9.6.10)

(9.6.11)

(9.6.12)

(9.6.13)

where from the coprimeness of every dual it follows that (ny , dy) may have one of the

following properties :

1) 60(ng) = 0, 6o5(do) > 0 : nonproper dual .

2) 6oo(ng) > 0, 8,5(do) = 0 : strictly proper dual .
3) 640(no) = 0, 80(dg) =0 : biproper dual .

1) If (ng , do) is nonproper dual then n§® # 0 and d§° = 0 and thus :

noo n(o)o a.oo )
[dw} [d3°:| b [—boj » o= t(00) t651"\'6.},(8) , arbitrary

00 ng’+ ty a, 3+ too 3o
|in ]=l:0°° “:l:[no t°°b } teo= t(o0) ,t R (s),a.rbxtrary

(9.6.14)
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by selecting tequp(s) such that nd+ t a, #0 , t,, #0 then a biproper solution is
defined . If teRGP(s) is constrained by the condition n+ t., a,, = 0, then n = 0,
d_, # 0 and a strictly proper solution exists .

2) If (ngy , do) is strictly proper dual then at least a strictly proper solution exists .

Further more ng°= 0 and dg° # 0 and thus :

[n } = [no J = [ ] s b= t(0) , t € qu(s) , arbitrary (9.6.15)

d | |dP—ty by | |dP-t., by

by selecting teR@(s) such that d°-t_ b #0 , t,, #0 then a biproper solution is

defined .
3) If (ng , dy) is biproper dual then at least a biproper solution exists . Further more

ng # 0 and d§° # 0 and thus :

o N3+ too ago .
I:ICLO:| = l:dog°—t°° bw:i y too= t{o0) , t € pr(s) , arbitrary (9.6.16)

by selecting teR@(s) such that n{+ t., a,, = 0 , then a strictly proper solution is
defined (since , n,, = 0 and d, = ((d§° as, + 0§° byy)/ 2s) = (1/ ag) #0) .
b) The analysis of the above cases demonstrates that there always exists a biproper dual

say (ng , dg) . Using this , the whole family of duals is given by :

Tl 2 R bit
4= d, + t- b ,te 9(3),a.r1ra.ry

At s = oo , the above yields

o0

Ii:iloo} — |i3§°:| + tw.[ _:::| s too= t(o0) , teRﬁp(s) , arbitrary

where , n° , d¥° , a, , b, are nonzero . By restricting the parameters t(—:RG}(s) , such
that 0P+ ty, 23 #0 , dF° -ty by #0 , n, , d,, becomes nonzero and (n , d) is

biproper. This proves part ) . Part ii) follows along similar lines . 0

Corollary (9.6.2) : Let (b, # 0, a,, # 0) . Then starting from a biproper dual (ny , dy):
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a) The condition for ezistence of nonproper duals is :
4’ ~ty by = 0, to= t{co) teR@(s) , arbitrary (9.6.17)
b) The condition for ezistence of strictly proper duals is :
o Goo = 0, o= t(0) tER‘:‘P(S) , arbitrary (9.6.18)

Proof
a) By proposition(9.6.3) part b) , z) , 12) the conditions for existence of nonproper duals

is :
dF —too b = 0, 0+ t o age #0, to= t(o0) , t € R?(s) , a.rbitfary (9.6.19)

But whenever d§° -t by, = 0 is implied that ((n§° by, + d§° a,)/b) = (1/by) # 0 or
equivalently ng°+ t,, a5, # 0 and thus we may omit the second equation of (9.6.19) .
b) By proposition(9.6.3) part b) , 1z) the conditions for existence of strictly proper duals

is :
AP —teo b 0, NP+ too 2 = 0, too= t(o0) , t € R@(S) , arbitrary  (9.6.20)

But whenever n+ to, a,, = 0 is implied that ((d° a,, + n§° by)/a) = (1/ac) # 0 or
equivalently d§°-t,, bo, # 0 and thus we may omit the first equation of (9.6.20) . 0

Remark (9.6.4) : The duals of an (b, a) R@(s)—coprimc biproper pair are generically
biproper . The ezistence of nonproper and strictly proper duals is nongeneric . The

proof or this result follows along similar lines to the proof of remark(9.6.3) . 0
The above results are used next for the study of proper diagonal decentralized

stabilizing controllers .

9.6.2. PARAMETRIZATION OF PROPER SOLUTIONS OF DDSP

The study of proper diagonal decentralized stabilizing controllers is equivalent to
the study of proper R@(s)-—coprime pairs (N, 251 » dmezjo1) » (Bm-25 » dm-2;) such that
when m = 2 p , the set of equations (9.5.21) holds true , j=0,1, ..., p-1, whereas
when m = 2 p + 1 the set of equations (9.5.32) holds true , j=0,1,...,p.
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Parametrization of Proper Solutions of DDSP —Case m = 2 p

FixajandaT, ;.
i) If T,_; is degenerate then by theorem(9.5.1) the family of R@(S) — coprime solutions of:
dm-2j

[ dm-2j-1 s Bme2jrr |- T =1 (9.6.21)

nm-2j

is given by the family of solutions to the scalar Diophantine equations (9.5.23) :
[ dm-2j-1 y Dm-25-1 ]'1—1 =1 s [ dm-2j y D2 ] v =1 o (9622)

where , u= [uy; ,uy |7, ¥ = [ vy, vy, ] are R@(s)-coprime vectors uniquely defined
modulo R@(S) units . By making use of the results of section 9.6.1 we can distinguish the

following cases :

1) (u2l ’ ull) ’ (V12 ’ vll) are nonproper . Then the duals (nm-Zj-l ) dm-2j-1) ) (nm-Zj ’
d,,-y;) satisfying (9.6.22) are generically biproper . The family of biproper duals of
(9.6.22) is given by (9.6.8) .

2) (uy , uyy) is nonproper , (vy; , vyy) is strictly proper . Then the duals (ng.,;. ,
dpn-2;-1) satisfying (9.6.22) are generically biproper . Their family is given by (9.6.8) .
The duals (n,,3; , dm-2;) satisfying (9.6.22) are always proper . Their family is given by
(9.6.2) .

3) (uy; , uyy) is strictly proper , (v, , vy;) is nonproper proper . This is dual to case 2) .

4) (uy , uyy) is nonproper , (vy; , vy;) is biproper . Then the duals (np-2;.1 » dm-2-1)
satisfying (9.6.22) are generically biproper . Their family is given by (9.6.8) . Whereas
biproper (generically) and strictly proper (nongenerically) families of duals (n,.,; ,
d,-z;) satisfying (9.6.22) exist ; given by (9.6.10) and (9.6.12) respectively .

5) (uy; , uyy) is biproper , (vy2 » v11) is nonproper . This is dual to case 4) .
6) (uy, , uy,) is biproper , (vq, , V) is strictly proper . Then biproper (generically) and
strictly proper (nongenerically) families of duals (ngp.g-y , dp-2;-1) satisfying (9.6.22)

exist ; given by (9.6.10) and (9.6.12) respectively . Whereas the duals (n,,.5; , dpeq;)
satisfying (9.6.22) are always proper . Their family is given by (9.6.2) .
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7) (uyy , uyy) is biproper , (vq, , vy;) is strictly proper . This is dual to case 6) .

8) (uyy » U11) » (V12 » Vi1) are strictly proper . Then the duals (np-2j-1 » dim-2j-1) 5 (-2 >

d,n-o;) satisfying (9.6.22) are always proper . Their family is given by (9.6.2) .

9) (ug; , uy3) » (Va2 , V1) are biproper . Then biproper (generically) and strictly proper
(nongenerically) families of duals (n,,-3;.; , dme2j-1) » (Rpmegj 5 dpmoz;) satisfying (9.6.22)
exist ; given by (9.6.10) and (9.6.12) respectively .

#) If T, ; is nondegenerate then by theorem(9.5.2) the solutions of (9.6.21) are mode
Tp-j
fixed channel m-2j-1 defined by (n,-q;-1 , dp-2;q) there exists a subfamily of
stabilizing controllers for the channel m -2 defined by (np,-2; , dy-2;) such that (9.6.21)

mutually stabilizing pairs . In other words for each stabilizing controller for the

holds true . A realizable controller for the fixed channel m —2j -1 is ensured if ¢, 5;., =
= Dpeaj1Gme2jc1 > Goo(dme2j-1) S Ooo(Bpmezjr) OF , if 8oo(dpmep;1) = 0 and either
8oo(Nm-25-1)=00r > 0.

Consider channel m—2j -1 fixed ; select a realizable controller c,,_,;., defined by
(pm-24-1 d,n-25-1) - This can be achieved as follows . By theorem(9.5.2) the stabilizing
controllers for the channel m-2j5-1 are mode T, ; R‘:_P(S)—coprime pairs and can be
found by solving equation :

j dm-2je1 5 Bmezjer ] Tpmj = [0 5 0, ] (9.6.23)

where , 1_1T"= [uy, 0, ] is an Rcy(s) — coprime vector . Equation (9.6.23) can be viewed as
similar to ‘the one of lemma(9.4.1) , wheret =2, A =T,
results of ©) , 1) of lemma(9.4.1) we take that in order §,(d,-2;-1) = 0 we must add to

the parametrization constraints concerning the selection of (n.z; , ,) that

r=[uy,u;]". Using the

m-2]-
dp-2j-1 is arbitrarily selected to have é,(dpm-2j-1) = 0 .

The pair ( ’ﬁm-zj-l ) dm-2j-1) defined by [ dm-2j-1 ) ﬁm-2j-l] = [ dm-2j-l ’ nm-zj-l ]'Tp’j
will be called nonproper , proper , or strictly proper if its respective transfer function

C2j1 = Bpp-2j-1-dm-2j-1 18 so defined . There are three cases which may be
distinguished :

1) ( Tn-2j1 5 ~m-2j-1) is nonproper . If the Rcy(s)—coprime plant ( .95 , Em-2j-1) is
nonproper , i.e. (Dy-3j-1 » dm-2j-1) selected to be realizable generates ( &p.5j-1 » Em-zj_l)
nonproper then by proposition(9.6.1) there exists no strictly solution to :

dm-2j ~
[ dm-2j-1 y Dpe25-1 ]'Tp-j' = dm°2j-l dm-2j + Dpp-25-1 nm-ﬁj =1

nm-2j

281



Chapter 9: Diagonal Stabilization — Parametrization and related issues

If a solution exists then generically it will be biproper . The family of biproper solutions

is defined by :

0 ~o
Dp-oj _ Nop-25 . dm-2j-1 )
4. = o +t- o ’tequ(S) , arbitrary
m-23 m-23 n771'2]-1

and t € R () is constrained such that d&-zéw) —t(o0) Wppog;-1(00) # 0 . Hence :

(Rpn-25-1 + dym-z5-1) Tealizable = (W, 5. , dpegj-y) nonproper = (ng,.;; , d,,-5;) biproper

(generically) and realizable .

~
~
~

2) ( ﬁ'm-Zj-l , dm_2j-¥) is strictly proper . If the R@(S)—coprime plant (»nm_zj_l » dnegj-1)
is strictly proper , i.e. (n,, 5.y , dp-gj-1) selected to be realizable generates ( 1,,.,;.; ,

d,n-5-1) strictly proper then by proposition(9.6.2) all the solutions of :

[ m-25-1 » 0m-25-1 ]'Tp'j' = dm-2j-l dm-2j + Op-25-1 Doy = 1

nm-2j

are proper . Hence :
(Dp-2j-1 » dm-2j-1) Trealizable = ( W51 y dm-gj-1) strictly proper = (np-z; , dm-z;)

proper and realizable .

3) ( Tp-25-1 > dm-2j-1) is biproper . If the R@(s)—coprirne plant ( T,,-2;-1 Em-z,‘-x) is
biproper , ii.e. (0yn-2j-1 » dym-z5-1) selected to be realizable generates ( N,-55-1 » Zm-2j-1)

biproper then by proposition(9.6.3) the solutions of :

d

[ dm-2j-1 s Dp-25-1 ]'Tp'j'
n

M'zj ~ ~
= dm-2j-l dm-?j + Oin-25-1 Bp-2; = 1
m-2jy

are generically biproper and nongenerically strictly proper . The family of biproper

solutions is defined by :

0 ~
nm-2j _ nm-2j ¢ dm-2j-l .
4 = o +t. i , t €R9(S) , arbitrary
m-23 m-2j Npm-25-1

ind te R@(s) is constrained such that d?n_zj(oo) —t(00) Typ-g5-1(c0) #0, nd . i(00) + t(c0)
dpn-2-1(c0) # 0. Hence :
(Dpm-2j-1 » dypn-2j-1) realizable = ( Bme2j1 Em-2j-1) biproper = (D9 , dp-2;) biproper
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(generically) strictly proper (nongenerically) and realizable .
Parametrization of Proper Solutions of DDSP —Case m =2 p + 1

Fix a j and a T, ; . The searching for proper solutions to DDSP (n,, 3,1 , dpm-25-1)
(Dyn-2; » dyn-z;) when m = 2 p + 1 is identical to the previous case m= 2 p , for j = 0,

..., p—1, apart from the fact that now we have to investigate equation (9.5.35) :
[dlvnl]'AI'[/“}a/‘;’l‘(liaiu'«li]rzl (9624)

for proper stabilizing controllers defined by (n, , d;) for the channel 1 . By the process
of creating equation (9.5.35) (and thus (9.6.24)) A is cyclic , (n, , dy) , g = [ 4}, 43,

pl, py ]t areR P&~ coprime vectors . We can distinguish two cases :

1) A, is degenerate . Then A; = u -v", where , u , v are minimal Mc Millan degree

bases for the column | Rﬁp(s)—module of A)] , row | R@(s)—module of A, ]

k]

respectively. Hence , u , v are R9(S)—coprime vectors unique [ modulo [R@(s) units | .

Then equation (9.6.24) becomes :

[di oy Jou v {p,m, 0, ] =1 (9.6.25)

which clearly implies that stabilizing controllers defined by (n, , d,) for channel 1 can

be found by solving equation :
[dy,n Jru =4, Xe R?(s) , is an arbitrary unit (9.6.26)

Applying the results introduced in section 9.6.1 for the scalar Diophantine equation
(9.6.24) the searching for proper duals (n, , d;) and hence , for proper stabilizing
controllers defined by (n, , d,) for channel 1 , is now straightforward .

2) A, is nondegenerate but complete . Then for all the selections of p = U [q", \ET]T, q
R?(s)-coprime vector , with A; U = [I; O] , A,;-p = qis always an R9(S)-coprime
vector . Hence , equation (9.6.24) can be written as :

[dy,n]-g=1 (9.6.27)

Applying the results introduced in section 9.6.1 for the scalar Diophantine equation
(9.6.27) the searching for proper duals (n, , d;) and hence , for proper stabilizing
controllers defined by (n; , d,) for channel 1, is now straightforward .
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3) A, is nondegenerate noncomplete . Then the column Hermite form of A, is :

k 0o 0o o
AU, = { jl (9.6.28)
w z 0 0

where , U, 1s R@(s) —unimodular . Equation (9.6.24) can now be written as :

[dlanI]'Al'Ur'U;l'[/“}a.u%aﬂil}a/‘:]'r:l

or ,

w 2z 0 0

[dlvnl]'[k 00 0}1:1 | (9.6.29)

where , r= Ul [ pi, p3, i3, pg )7 is R‘?(s)-—coprime . (9.6.29) can finally be written

[d,, n ].{ k (z’ Hrl} 1 (9.6.30)
w I'2
[d,,n, ]-H-[il} =1 (9.6.2.31)

The searching for proper stabilizing controllers defined by (n, , d,) for channel 1 , has
now been' transferred to the searching for proper duals of the scalar Diophantine
equation:

dl fl + nl fz = 1 (9.6-32)
for each selection of (r; , r;) mode HT R@(s)—coprime and (1,5 ]|=[r,p]-H" .

Applying the results introduced in section 9.6.1 for the scalar Diophantine equation
(9.6.32) the searching for proper duals (n, , d;) is now straightforward .

9.7. RELIABLE SOLUTIONS OF DDSP
Reliable stabilization is the ability of the system to maintain closed loop stability
with the loss of one or more of its channels . Failure of channel i , i1 =1,2,..., mis

equivalent to the loss of a SISO controller ¢; = n;-d; = n; =0,d; #0.

Definition (9.7.1) : A strongly cyclic system is said to be reliable stabilized if :
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a) The system is closed loop stable with a set of controllers defined by (n; , d;), i =1,
2,...,m.

b) The system remains stable with failures in channels 1 ,2,..., 6,k =1,...,m. O

We have seen from the parametrization of the family of solutions to DDSP that
condition a) is satisfied by selecting controllers to be mode T,
R@(s)—-coprime—mutually stabilizing , when m = 2 p and additionally the controllers
defined by (n; , d;) when m=2 p + 1 are solutions of (9.5.35) . The question that
remains to be answered is , under what constraints such selected controllers satisfy

condition b) of Definition(9.7.1) .

i) CASE m =2 p: Fix a j and a T, , then the pa,rametriza.tibn' of stabilizing

controllers for the channels m-25-1, m —2j is given by :

[ dm-2j-1 5 Bme2je1 ] Tp-s- =1 (9.7.1)

nm-?j

Then we distinguish the cases :

1) Failure for channel m ~2j—1 = n,,.5;.; = 0 . Then equation (9.7.1) implies :

m-2;
[ dm-2j-l ’ 0 ]'Tp-j' =1
nm*?j
or ,
t t dm- ]
[dm—2j-1 aO] o Y =1
ba1 22 | [n, 5,
or ,
dm-2j
[ dm-2j-1 ti s dm-2j-l tia ] =1
nm-2j
or ,
dm-2j
dp-gjer- [ty ti2 ] =1 (9.7.2)
nm-?j

(9.7.2) clearly implies that d,,p;.; must be an R‘}(s) unit . Thus the system remains
closed loop stable with loss of channel m-2j5-1 if dpp-gj-y 18 qu(s) unit ( =0,1,...,

285



Chapter 9: Diagonal Stabilization — Parametrization and related issues
p-1).

2) Failure for channel m -2j5 = n,,_,; = 0 . Then equation (9.7.1) implies :

dm-2j
| dm-95-1 5 Bme2jer |- Tpej- =1
0
or,
t1y tig | [dme2s
[ dm-25-1 5 Bpme2je1 ]~ ) =1
T ! t too 0
or , i
t11 dm'2j
[ dm-2j-1 5 Bm-2j-1 ]- =1
t"21 dm-2j
or ,
ti
[ dm-2j°1 » D251 ] t 'dm-2j =1 (973)
21

(9.7.3) clearly implies that d,,_,; must be an qu(s) unit . Thus the system remains
closed loop stable with loss of channel m —2; if d,,y; is R?(s) unit (j=0,1,...,p-1).

3) Failure:for channels m-2j-1, m-2j = n,;, = 0, n,.,; = 0 . Then equation
(9.7.1) implies :

m-2j
[dm-2j-l aO]'Tp-j' =1
0
or ,
ti t dm- ]
[dm-zj-l , 0 ] 11 ‘Y12 . 23 —1
bt || 0
or,
dm-2j'l M tll . dm-2j =1 (9.7.4)

(9.7.4) clearly implies that d,.;.; , d,,-p; must be IR@(s) units . Thus the system
remains closed loop stable with loss of channels m-2j-1, m-2;j if d,.3;., , dpp-p; are
R@(s) units (7 =0,1,...,p-1).

Any other combination of failing channels1,...,x,x=1,..., m can be considered

as a combination of the above three cases .
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i) CASE m = 2 p + 1 : The study of the constraints the stabilizing controllers must
meet in order the system to be reliable stabilized is identical to the one when m =2 p |
for channels := 2, ..., m , whereas. for failure of channel 1 we proceed as follows :

The parametrization of stabilizing controllers for channel 1 is given by equation

(9.5.36):
[dl’nl]'Al'[ll‘%aﬂ'%aﬂ'}iaﬂi]Tzl (975)

Failure of channel 1 = n; = 0. Equation (9.7.5) can be written as :

a1 812 @13 A34
[dl’O]' '[ﬂ}a#%a/‘éa/’d]rzl
231 gy Ag3 A9y

or ,

dy-a"op =1 (9.7.6)

where , a” = [a;;,, 212, 813, a4 ] , p= [etsms, 3, 0q]" . (9.7.6) clearly implies that
d, must be an RGP(S) unit . Thus the system remains closed loop stable with loss of
channel 1 if d, is qu(s) unit .

9.8. THE FAMILY OF STABLE DIAGONAL DECENTRALIZED STABILIZING
CONTROLLERS OF A STRONGLY CYCLIC SYSTEM
Consider a strongly cyclic system . Then by theorem(9.4.1) there always exists a
family of diagonal decentralized stabilizing controllers € = {c; = n;-d;' ,i=1,2, ...,
m} . The controllers c; are stable if and only if d; is an R?(s) unit . Our task is to

characterize the family of stable diagonal decentralized stabilizing controllers .

Definition (9.8.1) : An qu(s) — coprime pair (n, d) will be called stable if and only if d is
an R G.P(S) unit . 8]

a) Case m = 2 p : When m = 2 p we recall from section 9.5.1 that the parametrization
of diagonal decentralized stabilizing controllers is given by the parametrization of
solutions to the set of equations :

dm-2j

[ dm-2j-1 » Bm-2j-1 |- T j- =1 (9:8.1)

Npp-2 3

For a fixed j and T, ; we shall search for stabilizing controllers ¢,,-3;.1 = Dypegjey - dp-2j1
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Cone2j = Nog; doogj , With dm-25-1 5 dyme2; R@(s) units respectively (j =0,...p-1) ,or
equivalently , we shall search for stable pairs (n,-95-1 » dmezje1) » (Myue2j » dim-2j)

satisfying (9.8.1) . We can distinguish tow cases :

1) T,., is degenerate . Then by theorem(9.5.1) the family of Rc_p(s) — coprime solutions of
(9.8.1) is given by the family of solutions to the scalar Diophantine equations (9.5.23):

[ dm-?j-l y Dm-25-1 ]Q =1 ’ [ dm-2j y Nyp-2; ]X =1 (982)

where , u= [u;; , uy |7, ¥ ={vy, vy ] are R?(s)—coprime vectors uniquely defined
modulo R(s) units . Thus , the parametrization of stable pairs (np-p;-1 » dmeaje1)
(Npn-2j » dim-g;) satisfying (9.8.1) is equivalent to the parametrization of stable pairs
(Rn-2j-1 > dm-2j-1) » (Rme2; » dim-g;) satisfying (9.8.2) . The family of stable pairs (n,,.5;.1 ,
dpp-2j-1) > (-2 » dme2;) satisfying (9.8.2) define stable stabilizing SISO controllers for
the SISO plants pp-zj-1 = U3} Uy , Pm-2; = Vi1- Vi, respectively . The parametrization
of stable stabilizing SISO controllers is well known and can be found in [Vid. 4] . Hence,
the family of stable stabilizing SISO controllers for the SISO plants p,,.3;.1 , Pm-2;
defines the family of stable stabilizing controllers for the channels m-2j5-1,m-2j.

2) T,., is nondegenerate . Then by theorem(9.5.2) the solutions of (9.8.1) are mode T, ;
mutually stabilizing pairs . In other words for each stabilizing controller for the fixed
channel m-27 -1 defined by (n,,-5;-1 , dpm-25-1) there exists a subfamily of stabilizing
controllers for the channel m - 2; defined by (n,,-5; , dm-2;) such that (9.8.1) holds true.
Thus , our first aim is to parametrize all the mode T,,.; R@(s)—-coprime and stable pairs
(Nn-25-1 » Qm-2;-1) and then for each (ng.2jy , dm-2;1) fixed to parametrize the
subfamily of (n,-2; , d,s-2,) stable pairs such that (9.8.1) holds true .

The family of mode T, ; R?(s)-—coprime pairs (n,_g;-1 » dm-2;-1) can be found by
solving equation :

[dm-2j-1 y D251 ]'Tp-j = [ U , U ] (9-8-3)

where , u" = [y, , u, ] is an IRc.P(s)—coprime vector . Equation (9.8.3) can be viewed as
similar to the one of lemma(9.4.1) , wheret =2, A =T} ;,r={u;,u;|". In order

(npm-25-1 > dm-2;-1) to be stable pairs d,.;;.; must be selected to be an arbitrary unit
which satisfies ©) , i) of lemma(9.4.1) .

Proposition (9.8.1) : A mode T,_; R9(s)~cop1'imc pasr (Mg, gi1 , Gm-zj-1) 18 stable if

and only if (N1 5 Gmezje1) 18 selected to satisfy i) , 1) of lemma(9.4.1) and d, .5
must be selected to be an Rg)(s) unit . o
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Theorem (9.8.1) : Let T, ;¢ R;ﬂ(S) be a cyclic , nondegenerate matriz . Then for each
selection of (Mnpjy , dmozj) mode T, R@(s)—coprime and stable pair , defining a

stabilizing controller ¢,y = Ny - dpny;q for the m — 25— 1 channel . a subfamily of

_21
(Mn-2; 5 Genez;) R?(s)—coprime pairs defining a stable stabilizing controller c,_,; =
=Typog; Gm-y; for the m—2 j | is given by the family of stable stabilizing controllers for

the plant p = ’J,',f_zj_l “Mn-2j-1 , Where :

/Em-2j-1 s Tim-2j-1 ]=1 Gm-2j-1 ) Pm-2j-1 J- T,-; (9.8.4)

a

b) CASEm =2 p + 1: When m = 2 p + 1 we recall from section 9.5.2 that the
parametrization of diagonal decentralized stabilizing controllers is given by the

parametrization of solutions to the set of equations :

m-23 .
[ dm-2j-1 5 Bme2j1 |- Tpej- =1,7=0,1,...,p-1
nm-2j

(9.8.6)
[dl’nll‘Al'[#%,#%,#:lzal‘“T:1

By (9.8.6) is clear that the parametrization of stable stabilizing controllers for the
channels ¢ = 2, 3, ..., m is identical to the one described in case a) . It remains to
study the parametrization of stable pairs (n, , d,) , which define stabilizing controllers

for channel 1 and thus satisfy (9.8.6) . Consider equation :

[dlvnl]'AI'[#})u;a#é’ﬂ:r=l (987)

By its derivation equation (9.8.7) has A] as an R:;z(s) cyclic matrix . We can

distinguish three cases :

1) A, is degenerate . Then A; = u -v" , where , u , v are minimal Mc Millan degree

bases for the column | R (s) - module of A, row | R9(s)-module of A, ],

respectively. Hence , u , v are R9(S)—coprime vectors unique [ modulo Rgp(s) units | .
Equation (9.8.7) becomes :

[dy oy )-u-v"[pl,puy,p5,pi]"=1 (9.8.8)

All the stable pairs (n; , d,) , defining stable stabilizing controllers for channel 1 , can

be found as stable solutions to equation :
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[di,n; ]'u=X,)e R@(s) , 1s an arbitrary unit (9.8.9)

If u = [uy,uy |*, then the parametrization of stable solutions to equation (9.8.9) is

equivalent to the parametrization of SISO stable stabilizing controllers for the plant p =

= uj] - uy; . The latter parametrization is well known and can be found in [Vid. 4] .

2) A, is nondegenerate and complete . Then for all selections ¢ = U [q7, w']", ¥
R?(S)—coprime vector , with A; U =[[, 0] ,r = Ay-p are R@(s)—coprime vectors .
Hence , equation (9.8.7) becomes :

[dy,my ]'L =1 (9-8-10)

All the stable pairs (n; , d,) , defining stable stabilizing controllers for channel 1 , can
be found as stable solutions to equation (9.8.10) . If r = [ r}; , ry |7, then the
parametrization of stable solutions to equation (9.8.10) is equivalent to the
parametrization of SISO stable stabilizing controllers for the plant p = rj}-ry; . The

latter parametrization is well known and can be found in [Vid. 4] .

3) A, is nondegenerate and noncomplete . Then the column Hermite form of A, is :

k 0 0 0
A,-U, =[ ] (9.8.11)
w z 0 0

where , U, is Rgy(s) unimodular . Equation (9.8.7) can now be written as :

[dl $n1]°A1'Ur'U;l'[u} ,ﬂé,ﬂ:lnll-} ]T= 1

or,

k 0
[dl,nl]-[ 0 0].£=1 (9.8.12)
w z 0 0

where ,r = Ut [ pl, pub, ud, pi ] is R@(s) — coprime . (9.8.12) can be written as:

[d,,n, ].{ K : :Hrl}=1 (9.8.13)
w Iy

[dy, ]‘H'{rl} =1 (9.8.14)

or,

I
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Chapter 9: Diagonal Stabilization — Parametrization and related issues

The searching for stable stabilizing controllers defined by (n, , d,) for channel 1 , has

now been transferred to the searching for stable solutions to the scalar Diophantine

equation :
df, + 0,5, =1 (9.8.15)
for each selection of (r, , r;) mode HT R@(s)—coprime and [f, ,5,]=[r,r,]-H".

The parametrization of stable solutions to equation (9.8.10) is equivalent to the
parametrization of SISO stable stabilizing controllers for the plant p = ;'-f, . The

latter parametrization is well known and can be found in [Vid. 4] .

9.9. CONCLUSIONS

The diagonal stabilization problem (DDSP) has been defined over the ring qu(s) and
necessary and sufficient conditions for its solvability have been described . The
important relation between the cyclicity property that the plant may exhibits and the
existence of stabilizing controllers has been established . The necessary and sufficient
conditions for solvability of DDSP have been derived by the necessary and sufficient
solvability conditions for a scalar Diophantine equation over IRG}(S) under certain
factorization constrain of its solutions . A complete parametrization of the diagonal
decentralized stabilizing controllers has been studied and its relation to what are termed
T mutually stabilizing pairs , introduced . A parametrization of solutions to a scalar
Diophantine equation over RG.P(S) which are defined as proper pairs , as it has been
described 'in section 9.6.1 , in combination with the parametrization of diagonal
stabilizing controllers has led us to a parametrization of proper diagonal stabilizing
controllers . In section 9.7 reliable solutions to the DDSP have been studied . The use of
the parametrization introduced in section 9.5 remains the basis from which these and
the results of next section 9.8 has evolved . An interesting question that remains under
consideration is the parametrization of minimal McMillan degree diagonal stabilizing

controllers .
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Conclusions

Algebraic methods for solvability and characterization of solutions , (or special types
of them) , of certain matrix equations over the ring of interest have been developed in
this thesis . These equations are central to the formulation of various control synthesis
problems concerning the stability and performance of linear , multivariable , time
invariant systems , such as , the total finite settling time stabilization , (for discrete
time systems) , the decentralized and diagonal stabilization , the disturbance decoupling
noninteracting control and regulator problems with or without the internal stability
requirement , (for continuous time systems) . More precisely , the matrix equations that

have been studied are :

AX+BY=C,(X-A+Y-B=C) (10.1)
A-X=B,(Y-A=B) | (10.2)
A-X.B=C | (10.3)
> A;X;-B;=C (10.4)

t1=1

where , A , B, A, ,B;,C, X, Y, X,, are matrices over the ring of interest , i.e. a
given Euclidean domain , (ED) , or principal ideal domain , (PID) . The procedure of
reducing the solvability of the control synthesis problems under consideration to the
solvability and characterization of solutions of the matrix equations (10.1) —(10.4) has
been reviewed in Chapter 2 . There , after a brief survey of the concept of stability and
especially the relation between internal and external stability of linear systems , each of
the control synthesis problems in question has been presented and solvability conditions
via the associated matrix equations have been established . The algebraic method of
approaching such problems has been based on what is termed as matrix fractional
representation over the ring of interest . From a control theory viewpoint the rings of
importance are , R(s]-polynomials , R, (s)—proper rational functions , Rep(s) - proper
rational functions with no poles inside a prescribed region ? of the complex plain .

The requirement of internal stability is central to all these control synthesis problems
something that has motivated researchers to study thoroughly the properties of Rqy(s) .
In Chapter 3 we have concentrated on the study of the most important property of
Ra(s) , i.e. the existence of a "Euclidean division” . A detailed analysis of 2 method for
introducing unique - modulo o € R™ -factorization and hence a definition for exact
division between two elements of qu(s) has been described . The important property of
non uniqueness of Euclidean remainder in the Euclidean division in Rg(s) leads to the
need of characterization of the various families of remainders according to invariant
characteristics as for example is the number of zeros in 9 . The need for constructing
the family of least "Euclidean degree” remainders of the "Euclidean division” in R9(s) ,
has implied the transformation of this problem to the construction of a rational unit
over the disc algebra of symmetric analytic functions which map the discm
into the complex numbers , under certain interpolation constrains . A description of this
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disc algebra has been made and the interconnection between its units and the units of
R () has been given . An algorithmic construction of the required unit has been
introduced and that has led to two algorithms for the construction of the family of least
possible "Euclidean degree” remainders . These algorithms complete the results
presented in [Vid. 4] where the existence of a least "Euclidean degree” remainder is
established but not fully constructed . The knowledge of the least degree family of
remainders in R@(s) has been used in the last section of Chapter 3 for the estimation of
least unstable zeros stabilizing controllers . An extension of the Euclidean division in
matrices over R @(s) has been mentioned .

An alternative characterization for the greatest common divisor (GCD) , f(s) , of a
set of m polynomials , p (s) , of maximal degree 6 has been introduced in Chapter 4 by
making use of the equivalent expression of relationship p (s) = q(s)-f(s) in terms of real
matrices , (basis matrices (b.m.) P, Q of p(s) , q(s) respectively) , and the Toeplitz
representation of f(s) . The relation between the GCD and scalar Toeplitz bases , W , of
a subspace ¥ of N, {P} has been established . The additional property , that the nonzero
entries of W should have a certain expression involving the coefficients of the gecd f(s)
and ¥ has the greatest possible dimension that the latter happens has appeared in
section 4.3 . This has led to an algorithm for the construction of the coefficients of {(s)
as a tuple taken from a certain affine variety . It has been shown that Groebner bases
play an essential role in characterizing the GCD in terms of its Toeplitz representation .
The present approach uses the notion of Groebner bases in an explicit manner .
Although simpler methods for the computation of the GCD have already been given in
the literature , (see [Mit. 2] and the closed form solution given in {Kar. 3]) , the present
method has the advantage that may be extended to matrix divisors , whereas the others
have considerable difficulties . Such an extension is under investigation .

In Chapter 5 we have investigated structural properties of matrices over a PID , % .
The matrices have been assumed to have entries over the field of fractions , F , of R .
These properties have been used to generate algebraic tools that have enabled us to
formulate a unifying framework to deal with solvability of matrix equations over R .
The existence and characterization of families of greatest left —right divisors , greatest
extended left —right divisors , projectors , annihilators ., left - right inverses , multiples
and least multiples of the rows columns of matrices over % has been introduced . The
relation between these algebraic tools and the column , row % —modules , maximum
R, —modules of the matrices under investigation has been established .

In Chapter 6 we have tackled the very important issue of formulating a unifying
approach for solving the matrix equations (10.1) —(10.4) over the PID of interest , B .
In our attempt to do so we use the results have been derived in Chapter 5 . The given
matrices A , B, A; B; , C, in (10.1) - (10.2) have been considered over the field of
fractions , F , of % , whereas the unknown matrices X , Y , X; are required to be over
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%> . Conditions for the existence as well as parametrization of solutions of the equations
in question have been provided in terms of greatest left —right divisors of the given
matrices as well as parametric matrices over R .

In Chapter 7 the standard polynomial matrix Diophantine equation , (PMDE) ,
(10.1) , (with (A, B) , (X, Y) coprime polynomial MFDs , C a unimodular matrix) ,
arising from many stabilization problems , like the total finite settling time
stabilization , (TFSTS) , [Kar. 1] , [Mil. 1] of discrete —time linear systems , has been
considered . Solutions of (10.1) , satisfying various constrains like minimal
controllability index , least complexity , fixed complexity — PI controllers , minimal
extended McMillan degree (EMD) , have been studied . The expression of [A , B] , [XT,
YT]" by composite matrices has led to the transformation of the PMDE to an equivalent
one employing Toeplitz matrix representation of the product [A ,B |- [XT,YT|'"=C.
It has been showed in section 7.3 that certain solutions , (column reduced solutions) , of
(10.1) have topological properties , (forms a nonempty dense but neither open nor
closed set) , that allow the EMD of the controllers they define to serve as a reliable
upper bound for the minimum one .

A characterization of the least column degrees solutions of (10.1) , as well as
equation Cm(['A , B ])Cm([ XT,Y? ]T) = constant has been examined in light of their
Toeplitz matrix representations . This approach has led to a very simple algorithm
involving only the computation of right , (left) , null spaces of real matrices . Thus
upper and lower bounds for the minimum EMD of the stabilizing controllers have been
introduced . It remains under investigation the construction of the set of least column
degrees that occur among the family of sets of least column degrees of solutions of (10.1)
for all R(s]—unimodular matrices C . Finally in section 7.5 the investigation of fixed
complexity solutions of (10.1) , has provided necessary and sufficient conditions for the
existence of a PI stabilizing controller for a discrete — time linear system .

In Chapter 8 parametrization issues of the general decentralized stabilization
problem , (DSP) , have been studied . The problem of a closed form parametrization of
the solutions of DSP studied previously in [Giin. 1] , [Ozg. 1] still remains an open issue.
We have approached the DSP in an algebraic manner via the set of equations T;-X; =
= U, , X, , left unimodular , {U, , ---, U,] unimodular , T; matrices defined by
appropriately partitioning an Raq(s) - left coprime MFD of the plant . A parametrization
of the family of solutions , X; , which corresponds to [U, , -+, U,] unimodular has been
given by theorem(8.4.1) . The above parametrization requires the existence of a
constructive method that enables us to generate the family of all unimodular matrices
of given dimension , as well as the families of left , (right) unimodular matrices which
complete given left , (right) , unimodular matrices to square unimodular ones . Such
methods has been examined in section 8.3 . The families of parameters involved need to
satisfy certain parametrization constrains . These constrains constitute a necessary and
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sufficient criterion that enables us to identify the admissible parameters . Particular
cases where closed form parametrization is possible have been studied in sections (8.4) ,
(8.5) . In the case of two blocks decentralized controllers a full description of the set of
parameters has been given , especially when T, are considered generically and are either
not square or , one of T} or T, are square . The study of closed form parametrization
when T; , T, are simultaneously square as well as the generalization in the case of &
blocks decentralized controllers are still under investigation .

A special case of decentralized stabilization , the diagonal stabilization problem ,
(DDSP) , has been defined over the ring qu(s) and necessary and sufficient conditions
for its solvability have been described as an extension of the results in {Kar. 2] . The
important relation between the cyclicity property that the plant may exhibits and the
existence of stabilizing controllers has been established . The necessary-and sufficient
conditions for solvability of DDSP have been derived by the necessary and sufficient
solvability conditions for a scalar Diophantine equation over IRGy(s) under certain
factorization constrain of its solutions .

A complete parametrization of the diagonal decentralized stabilizing controllers has
been studied and its relation to what are termed T mutually stabilizing pairs , has been
established . A parametrization of solutions to a scalar Diophantine equation over R€P(S)
which are defined as proper pairs , as it has been described in section 9.6.1 , in
combination with the parametrization of diagonal stabilizing controllers has led us to a
parametrization of proper diagonal stabilizing controllers . In section 9.7 reliable
solutions to the DSP have been studied . The use of the parametrization introduced in
section 9.5'remains the basis from which these and the results of next section 9.8 has
evolved . An interesting question that remains under consideration is the
parametrization of minimal McMillan degree diagonal stabilizing controllers .

Many of the problems addressed in this thesis have not been solved completely .
Open issues that still require further investigation have risen in chapters 6 , 7,8 and 9 .
More precisely , in chapter 6 further investigation of necessary conditions for solvability
over a PID of the matrix equation (6.1.4) is needed . This is equivalent to the study of
special type of solutions over a PID , (block diagonal) , of the matrix equation (6.1.3) .
In chapter 7 , issues like the parametrization of minimum EMD controllers , for discrete
time linear systems , defined by solutions of the matrix Diophantine equation (7.2.3) as
well as parametrization of solutions of (7.2.3) according to a fixed McMillan degree still
remain open . Further study of topological properties of the family of solutions of (7.3.2)
and especially of the non column reduced ones is needed . In chapter 8 we need to
elaborate on the complete description of the family of parameters that satisfy the DSP
parametrization constraints of theorem(8.4.1) . This will result to a closed form
description of the family of solutions of DSP in the most general case . The reverse
problem of selecting a decentralized scheme , when an unstable plant is given , such
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that decentralized stabilization is possible is worth studing . Finally in chapter 9 , a
characterization of diagonal stabilizing controllers according to McMillan degree is a

topic that needs to be addressed .
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