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ABSTRACT:  

A new polythiophene derivative with phenothiazine-vinylene (PTZV) conjugated 

side chains, PTZV-PT, was synthesized through the Stille coupling reaction, and 

characterized by 1H NMR, elemental analysis, GPC, TGA, DSC, UV-vis absorption 

spectroscopy, photoluminescence spectroscopy and cyclic voltammetry. The polymer is 

soluble in common organic solvents and possesses good thermal stability with 5% 

weight loss at the temperature of 397°C and Tg of 140°C. The weight-average 

molecular weight of PTZV-PT was 5.45 × 104 with the polydispersity index of 1.48. 

The absorption spectrum of PTZV-PT film displays a broad plateau between 300 and 

600 nm. The hole mobility of PTZV-PT determined from space-charge-limited current 

model was 4.7 × 10-3 cm2 V-1s-1. The field effect hole mobility of the copolymer was as 

high as 6.8 × 10-3 cm2·V-1s-1 with an on/off ratio of 2.5 × 104, which is among the best 

performance of the copolymers reported for the solution-processed organic field effect 

transistors (OFETs). The preliminary results indicate that PTZV-PT is a promising 

polymer material for applications in solution-processable OFETs. 

 

Keywords: Conjugated polymers, polythiophenes, phenothiazine-vinylene side chains, 

hole mobility, organic field effect transistors. 
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1. INTRODUCTION 

Conjugated polymers have drawn great attentions since the discovery of 

conducting polyacetylene in 1977. Among the conjugated polymers, polythiophene 

derivatives (PTs) attracted the most intensive studies for their promising applications in 

polymer solar cells,1-3 light-emitting diodes,4-6 and field-effect transistors (FETs).7-8 In 

order to improve the optoelectronic properties to meet the request for different 

applications, chemical modifications of PTs have been well performed. 

Organic field effect transistors (OFETs) attracted broad interest recently because of 

their promising applications in organic sensors, 9 integrated circuit, low-cost large area 

memories, smart cards, and driving circuits for large-area displays.10, 11 One of the most 

important aspects for OFETs is that they can be fabricated by easy patterning 

techniques at low cost and have good compatibility with flexible plastic substrates. 

Thus the solution processable polymers are preferable to small molecules. Design and 

synthesis of new conjugated polymer semiconductors with high charge carrier mobility 

is highly desirable for the realization of high-performance solution processable 

OFETs.12 

For the application of the conjugated polymers in polymer solar cells (PSCs) as 

electron donor, broad absorption in the visible region and higher hole mobility of the 

conjugated polymers are crucial for efficient photovoltaic materials. It is well known 

that the increase of effective conjugation length will broaden the absorption of 

π-conjugated polymers, thus, our group recently synthesized a series of polythiophene 

and poly(thienylene vinylene) derivatives with conjugated phenylene-vinylene,13 
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thienylene-vinylene14 or terthiophene-vinylene15 side chains. The polymers with the 

conjugated side chains showed broad absorption in the visible region and higher hole 

mobility.13-15  

A notable feature of conjugated polymers lies in the versatility of their molecular 

structure which affords wide space to construct new polymers with improved properties. 

Phenothiazine is a well-known heterocyclic compound with electron-rich sulfur and 

nitrogen heteroatoms.16,17 Polymers and organic molecules containing phenothiazine or 

its derivatives possess unique optoelectronic properties for diverse applications such as 

OFET, 16 light emitting diodes,18 photovoltaic devices,19 and chemiluminescence.20 

Hwang et al16 reported a conjugated copolymer of phenothiazine and fluorene, and the 

OFET based on the polymer showed a hole field effect mobility of 0.8×10-4 cm2V-1s-1 

and an on/off ratio of 103. 

In order to investigate the effect of side-chain structure on the property of the 

polythiophene derivatives with conjugated side chains and to develop new conjugated 

polymers with high hole mobility, we synthesized a new polythiophene derivative 

with a hole transporting phenothiazine unit 17b as conjugated side chains, PTZV-PT 

(see Scheme 1), via the Stille coupling reaction. The hole mobility of PTZV-PT, 

measured by the space-charge-limited current (SCLC) method, reached 4.7 × 10-3 

cm2V-1s-1 which is about three orders higher than that of the common polythiophenes 

(10-6 cm2V-1s-1). An OFET was fabricated using PTZV-PT as a new p-type channel 

material and characterized. The hole field effect mobility of the polymer was 6.8 × 

10-3 cm2V-1s-1 with an on/off ratio of 2.5 × 104, which is among the best performance 
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of the solution-processed OFETs. Moreover, the absorption spectrum of PTZV-PT 

film displays a broad plateau from 300 nm to 600 nm, indicating that the polymer 

could also be a promising photovoltaic material. 
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Scheme 1. Chemical structure of the polythiophene derivative PTZV-PT 

 

Scheme 2. Synthetic route of the monomers and polymer PTZV-PT 
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(i) C8H17Br, DMSO, NaOH, rt, 24h, 93%; (ii)POCl3, DMF, 90℃,36 h, 84%;(iii) NBS, 
CHCl3/HOAc, 2h, 85%; (iv) NBS, BPO, CCl4, reflux, 3h, 83%; (v) P(OC2H5)3, 160℃, 
2h, 70%; (vi) 2, NaOCH3, DMF, rt, 2 h, 82%; (vii) Pd(Ph3)4, toluene, reflux,12 h, 72%.  

 

2. RESULTS AND DISCUSSION  

2.1 Synthesis and Characterization of the Polymer. 

The synthesis of the monomers and the corresponding polymer are outlined in 

Scheme 2. Phenothiazine was used as a starting material for the preparation of 1 

which was in turn converted to 2 by the Vilsmeier reaction, the monomer 4 was 

obtained using 2 and 3 in 82% yield by the Wittig-Hornor reaction.21 
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Figure 1. 1H NMR spectra of the polymer PTZV-PT 

 

The polymer PTZV-PT was easily prepared by the Stille coupling method13 and 

identified by 1H NMR spectroscopy （as shown in Figure 1） and elemental analysis. 

In Figure 1, the characteristic peaks at δ 7.36-6.93, 6.85-6.52 ppm can be assigned to 

the resonance of protons on phenothiazine ring, thiophene ring and vinylene group. 

And –CH2– linked to the nitrogen is at 3.71 ppm, the peaks at δ1.74-0.84 ppm are 

corresponding to the protons of the long alkyl chain. These results, combined with 
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elemental analysis, indicate that the Stille reaction is successful and complete. The 

synthesized polymer PTZV-PT was soluble in common organic solvents, such as 

chloroform, toluene, and xylene at room temperature. The weight-average molecular 

weight (Mw) of PTZV-PT was 5.4 × 104 with a polydispersity index of 1.48.  
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Figure 2. (a) TGA plot and (b) DSC thermogram of PTZV-PT 

 

Thermal properties of PTZV-PT were investigated by means of DSC and thermogravimetric 

analysis (TGA) under nitrogen atmosphere, as shown in Figure 2. TGA plot (Figure 2a) reveals 
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that the polymer possesses good thermal stability with the onset decomposition temperature 

around 300°C in nitrogen, 5% weight loss at the temperature of 397ºC. Glass transition 

temperature (Tg) of PTZV-PT is 140ºC, obtained from the DSC analysis (see Figure 2b). 

Obviously, the thermal stability of the polymer is adequate for the fabrication processes of 

optoelectronic devices. 

2.2 UV-vis absorption and PL spectra 

The UV-vis absorption spectra could provide a good deal of information on the 

electronic structure of the conjugated polymers. Figure 3 shows the absorption of 

PTZV-PT in dilute chloroform solution and film. There is an absorption peak located 

at ca. 401 nm with a shoulder peak of 529 nm. The shoulder peak of 529 nm 

contributed from conjugated main chains and an absorption peak at 401 nm 

contributed from vinyl phenothiazine moiety(the monomer 4 as model ) since the 

model compound, monomer 4 exhibits two absorption peaks at 380 nm and 306 nm 

(also shown in Figure 3). The absorption peak of the short wavelength results from 

the conjugated side-chains. For PTZV-PT containing big side chains, probably, the 

steric hindrance of side chains makes the polymer main chains distorted in solution, 

so that the main chain absorption is weak and appears as a shoulder peak. The UV-vis 

absorption spectrum of PTZV-PT solution (see Figure 3) indicate the electron 

dononating substituents (phenothiazine) on the conjugated side chain have obvious 

influence on the short wavelength absorption of the polymer solution. The red shifts 

of the short wavelength absorption peak compared to 

poly(3-(phenylenevinyl)thiophene)s)  show that the donor unit (phenothiazine) has 
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better effective conjugation length in the side chain than that of 

poly(3-(phenylenevinyl)thiophene)s).13a 

For PTZV-PT film absorption spectrum, the phenothiazine groups on the side 

chains extended the short wavelength conjugation system of the polymer compared to 

poly(3-(phenylenevinyl)thiophene)s),13a moreover, the absorption of PTZV-PT film 

red shifted by 70 nm in comparison with that of poly(3-arylthiophene) 22which aryl 

ring was connected to the 3-position of thiophene through a saturated linkage, the 

results show that the phenothiazine groups on the side chains  enhance the 

absorption window of the polymer through the linkage of the vinyl bond. In the solid 

film, the strong interchain interactions make the main chains extended and the 

conjugation degree increased which enhances the visible absorption, but because the 

relative big hindrance of the phenothiazine makes the absorption onset wavelength 

only little red-shifted compared to that of the PTZV-PT solution. PTZV-PT film 

exhibits two absorption peaks at ca. 411 and 535 nm. The results show that the vinyl 

linkage of phenothiazine side chain have some influence on the absorption of the 

PTZV-PT. The PTZV-PT film shows a very broad absorption plateau from 250 nm to 

610 nm, so the full width at half-maximum (fwhm) of the absorption peak of 

PTZV-PT film is difficult to be determined. The broad absorption spectra indicate 

that the polymer could be a promising photovoltaic material. 
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Figure 3.  The absorption spectra of the polymer PTZV-PT and monomer 4 in 

dilute CHCl3 solution and PTZV-PT film.  

 

Figure 4 shows PL spectra of the PTZV-PT solution and film. For the polymer 

solution, the PL peaks of PTZV-PT are the same at 599 nm when excited at the two 

wavelengths of 402 nm and 529 nm (corresponding to the absorption peak in the short 

wavelength and the absorption shoulder peak in the long wavelength) respectively. In 

comparison, monomer 4 exhibits a PL maximum at about 500 nm under the excitation 

of 400 nm. In the emission spectra, the emission peak at about 500 nm from 

PTZV(monomer 4) under the excitation wavelength of 400 nm disappeared 

completely, so the PL emission of PTZV-PT at 599 nm is ascribed to the emission of 

the polymer main chains. The above results indicate the occurrence of energy transfer 

from the conjugated side chains to the polymer main chains, so that the emission peak 

of the conjugated side chains was not observed when the conjugated side chains were 

excited at the wavelength of ca. 400 nm. In the film state, PTZV-PT exhibits a PL 

peak at 660 nm under the excitation of 402 nm and 535 nm, respectively, which 

indicates there is an intramolecular exciton energy transfer process from the 
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conjugated side chains to the main chains when the polymer was excited at ca. 400 

nm in the film state. This phenomenon was also observed for other polythiophene 

derivatives with conjugated side chains13-15 and PPV derivatives with OXD side 

chains.23The exciton energy transfer ensures that all photons absorbed by the 

polymers are useful for the photovoltaic conversion when the polymer is used as the 

photovoltaic material.  
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Figure 4.  PL spectra of (a) PTZV-PT and monomer 4 in dilute CHCl3 solution and (b) 

PTZV-PT film. 

2.3 Electrochemical Properties. 

Cyclic voltammetry was widely employed to estimate the HOMO and LUMO energy 
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levels of the conjugated polymers, because the onset oxidation and reduction 

potentials obtained from the cyclic voltammograms are corresponding to the HOMO 

and LUMO energy levels respectively.24 Figure 5 shows the cyclic voltammogram of 

the PTZV-PT film on Pt electrode in 0.1 mol/L Bu4NPF6, CH3CN solution. It can be 

seen that there are reversible p-doping/dedoping (oxidation/re-reduction) processes at 

positive potential range and n-doping/dedoping (reduction/re-oxidation) processes at 

negative potential range for PTZV-PT. The oxidation current for the PTZV-PT is 

quite high as compared to that of the reduction current, suggesting that polythiophene 

derivative with phenothiazine-vinylene conjugated side chain is very capable of 

donating electrons and, as expected, is an efficient electron-donating material due to 

good electron donating ability of the phenothiazine group introduced into the side 

chain. We can get the HOMO and LUMO  levels of PTZV-PT from the onset 

oxidation potential (
ox
onE ) and onset reduction potential (

red
onE ) according to the 

following equations:25 HOMO = －e(
ox
onE +4.71) (eV); LUMO = －e(

red
onE +4.71) 

(eV). LUMO and HOMO levels of the polymer calculated from the electrochemical 

measurement were －4.99 eV and －2.99 eV respectively. The energy gap of 

PTZV-PT film is 2.0 eV from the difference between the onset oxidation and 

reduction potentials, which is a little higher than that of the optical energy gap 

opt
gE (1.81 eV).  
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Figure 5.  Cyclic voltammogram of PTZV-PT film on platinum electrode in 0.1 mol/L 

Bu4NPF6, CH3CN solution. 

 

2.4 Hole mobility  

Hole mobility of PTZV-PT was measured by the space-charge-limited current (SCLC) 

method26 with a device structure of ITO/PEDOT:PSS/polymer/Au. The results were 

plotted as ln(JL3/V2) vs. (V/L)0.5 and shown in Figure 6. The hole mobility of PTZV-PT 

calculated from the data in Figure 6 was  4.7 × 10-3 cm2V -1s-1, which is much higher 

than that of PPVs (10-7 cm2V -1s-1)26a and PTs(10-6 cm2V -1s-1).26d This result indicates that 

the hole transporting phenothiazine unit strongly enhanced the hole mobility of the 

polymers. 
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Figure 6. Current-voltage data from the device ITO/PEDOT: PSS/PTZV-PT/Au, plotted 

in the format ln(JL3/V2) vs. (V/L)0.5, where J is the current density, L is the thickness of 

the polymer layer. The lines are the fit to the respective experimental points. 

 
2.5 Organic Field Effect Transistors 

The structure order and crystallization of PTZV-PT were investigated by atomic 

force microscopy (AFM) and film X-ray diffraction (XRD). Figure 7a and 7b show 

the AFM photographs of PTZV-PT films on SiO2 substrate without and with 

octadecyltrichlorosilane(OTS) treatment, respectively. Pin holes are commonly 

observed in Figure 7a, which may attribute to the sudden evaporation of solvents 

through a thick polymer layer. PTZV-PT film on OTS-modified SiO2/Si substrates 

exhibited smoother and more homogenous morphology. 
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Figure 7. AFM tapping mode topographical images of PTZV-PT films on (a) SiO2 

surface and (b) OTS-modified SiO2/Si substrates. 

 

To evaluate the crystallinity of polymer, XRD measurements were taken of thick spin 

coated films on SiO2 substrate without and with OTS modifications. As shown in 

Figure 8a and 8b, both of the two films showed broad and weak diffraction peaks, 

revealing its poor crystallinity. 
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Figure 8. XRD patterns of spin-coated PTZV-PT thin films (50 nm thickness) on (a) 

SiO2 surface and (b) OTS-modified SiO2/Si substrates.   

 

The OFETs based on PTZV-PT were found to exhibit typical p-type FET 
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characteristics. When bare SiO2 was used as substrate the field mobility was very low 

(around 4× 10-4 cm2V-1s-1) due to the poor film morphology (Figure 7a). OTS 

modified substrate produced much better morphology (Figure 7b) as well as improved 

device performances. The typical current-voltage characteristics of OFETs on OTS 

modified SiO2 substrates are shown in Figure 9. The devices showed ideal transistor 

performance with apparent saturation behavior, as shown in Figure 9a and 9b. IDS can 

be described using 

IDS ＝ μ(W/2L)Ci(VG－VT)2 

where IDS is the drain current, Ci is the capacitance per unit area of the gate dielectric 

layer, VDS is the drain voltage, VG is the gate voltage, VT is the threshold voltage, μ is 

the field-effect mobility, and W and L are the channel width and length dimensions, 

respectively. The mobility was calculated by plotting IDS
1/2 versus VG (see Figure 7b) 

and equating the slope of this plot to μ(W/2L) Ci. The threshold of the device was 

determined from the relationship between the square root of ID at the saturated regime, 

and VG was determined by extrapolating the measured data to IDS = 0. The film on 

OTS-modified SiO2/Si substrates was much better with visible small domains 

compared to that of the film onto SiO2/Si substrates. These small domains might have 

positive effect on the charge transportations as has been observed in other polymers 

with high mobility. OFETs based on PTZV-PT afforded very high hole mobility up to 

6.8 × 10-3 cm2V-1s-1 with an on/off ratio of 2.5 × 104 and threshold voltage of -1V. 

About 20 OFET devices were fabricated, the mobility was around 4.6 × 10-3 cm2V-1s-1 

to 7.3× 10-3 cm2V-1s-1 with good reproducibility. Though the carrier mobility of 
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PTZV-PT is not as good as those of the best devices previously reported27such as 

regioregular poly(3-hexylthiophene) (0.01-0.1 cm2Vs)) 7a or some polymers with 

fused rings,7c, 27 they are among the best performance of the regiorandom alternating 

copolymers for OFETs reported. Further improvement of mobility can be achieved by 

using more favorable device fabrication conditions (e.g. different solvents, surface 

treatment, thermal treatment under other conditions, etc). It has been reported that 

phenothiazine has electron-rich sulfur and nitrogen heteroatoms and highly nonplanar 

structure for p-stacking aggregation and intermolecular excimer formation of 

low-ionizationpotential conjugated polymer semiconductors16, 28. This is why superior 

hole mobility has been achieved even though the films of PTZV-PT were in 

amorphous form. These results demonstrate that the conjugated polymers with 

phenothiazine-vinylene conjugated side chains are promising materials for high 

performance solution processable OFETs.  
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Figure 9. (a) Output and (b) transfer characteristics of PTZV-PT OFETs on OTS 

modified SiO2. IDS was obtained at VDS = –100 V for transfer characteristics. The 

drain-source channel length (L) and width (W) are 50 μm and 3000 μm respectively.  
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3. Conclusions 

In summary, we have synthesized a new polythiophene derivative with conjugated 

phenothiazine-vinylene side chains, PTZV-PT, by the Stille coupling method. The 

polymer possesses good solubility in common organic solvents and high thermal stability. 

The absorption spectra of the PTZV-PT film show a broad absorption band covering the 

wavelength range from 250 to 650 nm, which is composed of the absorption of the 

conjugated side chains peaked at ca. 411 nm and that of the conjugated main chains 

peaked at ca. 535 nm. The PL spectra of PTZV-PT revealed that exciton energy transfer 

occurred from the conjugated side chains to the main chains of the polymer. The hole 

mobility of the polymer measured by SCLC method reached 4.7 × 10-3 cm2V-1s-1, which is 

a relatively higher value for conjugated polymers, indicating that the conjugated 

phenothiazine-vinylene side chains may promote the hole transportation of the polymer. 

OFETs based on PTZV-PT provide superior FET performance, affording a hole mobility 

of 6.8 × 10-3 cm2V-1s-1 with an on/off ratio of 2.5 × 104. These results suggest that the 

copolymers with phenothiazine-vinylene conjugated side chain represent a useful class of 

solution processable semiconductors for fabrication of OFET circuits for printed 

electronics. The broad absorption and higher hole mobility indicate PTZV-PT could also 

be a promising polymer photovoltaic material.  

 

4. EXPERIMENTAL SECTION 

Materials  
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3-Methyl thiophene was purchased from Aldrich Chemical Co, Pd(Ph3)4, 

(C4H9)3SnCl, BuLi were obtained from Alfa Asia Chemical Co, and they were used as 

received. Tetrahydrofuran (THF) was dried over Na/benzophenone ketyl and freshly 

distilled prior to use. Toluene was dried over molecular sieves and freshly distilled 

prior to use. The other chemical reagents were common commercial level and used as 

received without further purification. 

Synthesis of monomers and polymer 

The synthetic routes of the monomers and polymer are shown in Scheme 2. The 

detailed synthetic procedures are as follows: 

10-n-Octylphenothiazine (1) Phenothiazine (10 g, 50 mmol), sodium hydroxide 

(20.0 g, 500 mmol), and dimethyl sulfoxide (DMSO) (100 mL) were placed in a 250 

mL two-necked flask, the mixture was stirred for half an hour, octyl bromide (7.7 mL, 

55 mmol) was added dropwisely to the reaction mixture in twenty minutes, and then 

this mixture was stirred for 24 h at room temperature. The reaction mixture was 

poured into water, extracted with methylene chloride and then dried with MgSO4. The 

resulting liquid was purified by column chromatography using petroleum ether as 

eluent. The product yield was 93% (13.2 g) as colorless liquid. MS: m/z= 311(M+). 1H 

NMR (δ/ppm, CDCl3):  7.11-7.09 (m, 4H), 6.89-6.80 (dd, 4H), 3.80-3.77(t, 2H), 1.77 

(d, 2H), 1.37-1.24 (m, 10H), 0.87(t, 3H). 

10-n-Octylphenothiazine-3-carbaldehyde (2) A 100 mL three-necked flask 

containing 10 mL (220 mmol) of anhydrous DMF was cooled in an ice bath. To this 

solution, 3 mL (32 mmol) of phosphorus oxychloride was added dropwisely for 30 
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min. Compound 1 (5.486 g, 17.64 mmol) in 30 mL of 1, 2-dichloroethane was added 

to the above solution and heated to ca. 90°C for 36 h. This solution was cooled to 

room temperature, poured into ice water, and neutralized to pH 6-7 by dropwise 

addition of saturated aqueous sodium hydroxide solution. The mixture was extracted 

with chloroform. The organic layer was dried with anhydrous MgSO4 and then 

concentrated under reduced pressure. The crude product was purified by column 

chromatography. The product was obtained (5 g, 84%) using petroleum ether and 

ethyl acetate (10:1) as the eluent by column chromatography under reduced pressure. 

FTIR (KBr, cm-1): 2730 (s,-CHO). MS: m/z= 339(M+). 1H NMR (δ/ppm, CDCl3): 

9.71 (s, 1H), 7.56 (d, 1H), 7.50 (s, 1H), 7.10-7.02(m, 2H), 6.88(t, 1H), 6.81 (t, 2H), 

3.82 (t, 2H), 1.77(q, 2H), 1.28 (m, 10H), 0.85(m, 3H). Calculated for C21H25NSO: C, 

74.33; H, 7.37; N, 4.13; found: C, 74.21; H, 7.28; N, 4.11. 

(2, 5-Dibromo-thiophen-3-ylmethyl)-phosphonic acid diethyl ester (3) 

Compound 3 was synthesized with the route reported in Ref[29],  the crude product 

was purified by flash column chromatography eluting with petroleum ether/ethyl 

acetate (1:1). After purification, compound 3 was recovered as a pale yellow oil (22 g, 

70% yield). MS: m/z= 390(M+). 1H NMR (δ/ppm, CDCl3): 7.00 (s, 1H), 4.08 (m, 4H), 

3.10 (d, 2H), 1.29 (t, 6H). 

2, 5-dibromo-3-(10-n-octyl- phenothiazine-vinylene) thiophene  Monomer (4) 

Under an ice–water bath, compound 3 (2.1 g, 5.3 mmol) was dissolved in 10 mL 

DMF and CH3ONa (0.4 g, 7.3 mmol) was added. After 5 min, compound 2 (1.77 g, 

5.24 mmol) was added dropwisely to the solution. After 2 h, the solution was poured 
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into methanol, filtered, and the orange-brown liquid of 4 was obtained (2.48 g, 82%) 

using petroleum ether as eluent. FTIR (KBr, cm-1): 965(s, trans CH=CH). MS-TOF: 

m/z= 577(M+). 1H NMR (δ/ppm, CDCl3): 7.24-7.18(d, 2H), 7.13-7.09(d, 3H), 

6.89-6.68(m, 5H), 3.80(s, 2H), 1.77(t, 2H), 1.42-1.41(s, 2H), 1.25(s, 8H), 0.86(s, 3H). 

Calculated for C26H27NS2Br2: C, 54.07; H, 4.68; N, 2.43; found: C, 53.92; H, 4.65; N, 

2.45. 

2, 5-bis(tributylstannyl)thiophene (5). This compound was synthesized by the 

literature procedure.13a GC-Ms: m/z = 664. Yield: 72%. Purity (by GC-Ms) ≥96%. 1H 

NMR (δ/ppm, CDCl3): 7.34 (s, 2H), 1.60 (m, 12H), 1.39 (m, 12H), 1.09 (m, 12H), 

0.91 (t, 18H). Calculated for C28H56SSn2 : C , 50.78; H , 8.52; found: C , 50.12; H , 

8.75. 

Synthesis of polymer PTZV-PT 

Pd(PPh3)4 (50 mg， 0.043 mmol),  monomer 4 (0.594, 1.03 mmol)， monomer 5 (0.69 

g， 1.03 mmol) were put into a three-necked flask. The mixture was flushed with argon 

for 10 min, and then 18 mL toluene was added. At the protection of argon, the reactant 

was heated to reflux for 12 h. The mixture was cooled to room temperature and poured 

into 30 mL of methanol and then filtered into a Soxhlet thimble. Soxhlet extractions 

were performed with methanol, hexane, and CHCl3. The polymer was recovered from 

the CHCl3 fraction by rotary evaporation. The solid was dried under vacuum overnight. 

The dark-purple polymer of PTZV-PT was obtained for 350 mg (yield: 68%). 1H NMR 

(δ/ppm, CDCl3): 7.36-7.08 (br, 7H), 6.82-6.52 (br, 5H), 3.74-3.71 (br, 2H), 1.74-1.72 

(br, 2H), 1.22 (br, 10H), 0.97-0.82 (br, 3H). 13C NMR (δ/ppm, CDCl3): 144.7, 131.6, 
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127.3, 124, 122.3, 115.2, 114.9, 47.5, 31.9, 29.6, 26.7, 22.9, 14.1. Elemental Anal. 

Calcd. For (C30H29S3N)n: C, 72.14; H, 5.81; N , 2.81. Found: C, 72.04; H, 5.74; N, 

2.76. Mw: 5.4х104 ; PDI:1.48. 

Instruments and Measurements 

1H NMR spectra were recorded using a Bruker AM-400 spectrometer, with 

tetramethylsilane (TMS) as the internal reference, chemical shifts were recorded in 

ppm. Elemental analysis was measured on a Flash EA 1112 elemental analyzer. 

Fourier transforms infrared (FT-IR) spectra were recorded on a BIO FTS-135 

spectrometer by dispersing samples in KBr disks. Molecular weight and 

polydispersity of polymers were determined by gel permeation chromatography (GPC) 

analysis with polystyrene as standard (Waters 515 HPLC pump, a Waters 2414 

differential refractometer, and three Waters Styragel columns (HT2, HT3, and HT4)) 

using THF as eluent at a flow rate of 1.0 mL/min at 35°C. Thermogravimetric 

analysis (TGA) was conducted on a Shimadzu DTG-60 thermogravimetric analyzer 

with a heating rate of 10 K/min under a nitrogen atmosphere. Differential scanning 

calorimetric measurements (DSC) of the polymer was performed under nitrogen at a 

heating rate of 20 K/min with a Perkin Elmer DSC-7 instrument. The UV–vis 

absorption spectra were recorded on a JASCO V-570 spectrophotometer. The 

photoluminescence (PL) spectra were obtained with a JASCO FP-6600 Fluorescence 

spectrophotometer.  

The cyclic voltammogram was recorded with a Zahner IM6e electrochemical 

workstation (Germany) using polymer film on platinum disk as the working electrode, 

platinum wire as the counter electrode and Ag/Ag+ (0.1 M) as the reference electrode 
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with a nitrogen-saturated acetonitrile (CH3CN) solution containing 0.1 mol/L 

tetrabutylammonium hexafluorophosphate (Bu4NPF6). 

The structures of the polymer films were investigated by a SPI 3800N atomic force 

microscope (AFM) in contacting mode with a 1 μm scanner. X-ray diffraction (XRD) 

measurements of the thin film were carried out with a 2-kW Rigaku X-ray diffraction 

system. XRD patterns were obtained using Bragg-Brentano Geometry (θ-2θ) with Cu 

Kαradiation as an X-ray source in the reflection mode at 45 kV and 300 mA.  

Fabrication of OFET Devices  

Thin-film OFETs were fabricated with top-contact configuration. An n-doped Si 

wafer with a 450 nm thick thermally grown silicon dioxide layer (capacitance of 10 

nF/cm2) was used as the substrate. The substrates were cleaned in water, alcohol, 

acetone, and rinsed in deionized water, and then modified by OTS. Thin polymer 

films were prepared by spin coating of a 0.3 wt% solution of PTZV-PT in chloroform 

onto the OTS-modified SiO2/Si substrates at a speed of 2500 rpm (revolutions per 

minute) for 40 s at room temperature. After dried at 80℃ and annealed at 155℃ under 

N2 for half an hour, gold film (50 nm) was deposited on the organic layer to form the 

drain and source electrodes, for a typical device, the drain-source channel length (L) 

and width (W) are 50 μm and 3000 μm respectively. OFET measurements were 

performed at room temperature using a HP 4140B semiconductor parameter analyzer 

under ambient conditions. 
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