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ON BLOCKS OF STRONGLY P -SOLVABLE GROUPS

Radha Kessar, Markus Linckelmann

Abstract. We prove that a block of a finite strongly p-solvable group G with defect

group P is Morita equivalent to its corresponding block of NG(Z(J(P ))) via a bimodule
with endo-permutation source.

Let p be a prime. Following [8, Ch. 6, §5] a finite group G is called strongly p-solvable
if G is p-solvable and either p ≥ 5 or p = 3 and Sl2(3) is not involved in G. If G is a
strongly p-solvable finite group and P a Sylow-p-subgroup of G, then G is p-constrained
and p-stable (cf. [8, Ch. 8, §1]), and hence G = NG(Z(J(P )))Op′(G) by a theorem of
Glauberman (cf. [8, Ch. 8, Theorem 2.11]). The purpose of this paper is to show that
this theorem, which is used in the proof of the p-nilpotency theorem of Glauberman
and Thompson, has a generalisation to blocks of strongly p-solvable groups. We denote
by O a complete discrete valuation ring having an algebraically closed residue field
k = O/J(O) of characteristic p. We state our Theorem and explain the notation below.

Theorem. Let G be a strongly p-solvable finite group, let b be a block of OG and let P
a defect group of b. Set N = NG(Z(J(P ))) and denote by c the Brauer correspondent
of b in ON . Then the Brauer categories FG,b and FN,c are equal and there is an
indecomposable OGb-ONc-bimodule M with the following properties.

(i) As O(G×N)-module, M has vertex ∆P = {(u, u)}u∈P and an endo-permutation
O∆P -module W as source.

(ii) The bimodule M and its O-dual M∗ induce a Morita equivalence between the
block algebras OGb and ONc.

The structure of the source algebras of blocks of p-solvable finite groups has been
completely determined by Puig. Once the stated equality of Brauer categories is estab-
lished (using Glauberman’s aforementioned theorem), the rest the proof of the Theorem
consists of showing that the reduction techniques used in Puig’s work “commute” with
taking normalisers of Z(J(P )).
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With the notation of the Theorem, the block c of ON is the unique block satisfying
BrP (c) = BrP (b); this makes sense as CG(P ) ⊆ N . Fix a block eP of kCG(P ) such that
BrP (b)eP = eP ; that is, (P, eP ) is a maximal b-Brauer pair and a maximal c-Brauer
pair.

By [1], for any subgroup Q of P there is a unique block eQ of kCG(Q) such that
(Q, eQ) ⊆ (P, eP ). Denote by FG,b the category whose objects are the subgroups of P
and whose set of morphisms from a subgroup Q of P to another subgroup R of P is
the set of group homomorphisms ϕ : Q → R for which there exists an element x ∈ G
satisfying ϕ(u) = xux−1 for all u ∈ Q and x(Q, eQ) ⊆ (R, eR). Thus the automorphism
group of a subgroup Q of P as object of the category FG,b is canonically isomorphic
to NG(Q, eQ)/CG(Q). By Alperin’s fusion theorem, the category FG,b is completely
determined by the structure of P and the groups NG(Q, eQ)/CG(Q) where either Q = P
or (Q, eQ) is an essential b-Brauer pair (cf. [18, §48]). Note that Op(G) ⊆ Q whenever the
pair (Q, eQ) is essential. The category FN,c is defined similarly. Since Op(N) contains
Z(J(P )) and CN (Q) = CG(Q) for any subgroup Q of P containing Z(J(P )) we have an
inclusion of categories FN,c ⊆ FG,b.

If b is the principal block of OG, then eQ is the principal block of kCG(Q), for any
subgroup Q of P . Thus the above condition x(Q, eQ) ⊆ (R, eR) is equivalent to xQ ⊆ R.
Therefore, if b is the principal block of OG, we write FG instead of FG,b.

In general, the definition of FG,b depends on the choice of a maximal b-Brauer pair,
but since all maximal b-Brauer pairs are G-conjugate, it is easy to see that FG,b is unique
up to isomorphism of categories. Note that we always have FP ⊆ FG,b.

Let P be a finite p-group. An O-free OP -module U is called an endo-permutation
module if EndO(U) has a P -stable O-basis with respect to the action of P by conjugation.
This concept is due to Dade [5, 6]. It is shown in [5], that an endo-permutation OP -
module U has at most one isomorphism class of indecomposable direct summands of
vertex P . Since the restriction to any subgroup Q of P of an endo-permutation OP -
module U is an endo-permutation OQ-module, it follows that if U has an indecomposable
direct summand with vertex P , then ResP

Q(U) has exactly one isomorphism class of
indecomposable direct summands with vertex Q for any subgroup Q of P . We will
say that U is G-stable if the indecomposable summands with vertex Q of ResP

Q(U) are
isomorphic to those of Resϕ(U) for any subgroup Q of P and any group homomorphism
ϕ : Q → P for which there is an element x ∈ G satisfying ϕ(u) = xux−1 for all u ∈ Q.
Here Resϕ(U) is the endo-permutation OQ-module obtained from restricting U via ϕ;
that is, with u ∈ Q acting as ϕ(u) on U . In the terminology of [17] this is the same as
saying that the interior P -algebra EndO(U) contains G-fusion. We state without proof
two obvious Lemmas needed in the proof of the Theorem.

Lemma 1. Let G, H be finite groups and let P be a p-subgroup of both G and H. Let
U , V be endo-permutation OP -modules having direct summands of vertex P .

(i) If U is G-stable, then ResP
Q(U) is G-stable for any subgroup Q of P .
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(ii) If U is G-stable and V is H-stable, then the O(P ×P ) -module U ⊗
O

V is G×H-

stable.

Lemma 2. Let G be a finite group and let P be a p-subgroup of G. Let U be an endo-
permutation OP -module having an indecomposable direct summand V of vertex P . If U
is G-stable then V is G-stable.

We quote the following well-known result on the local structure of certain blocks of
p-constrained groups; recall that a finite group G is p-constrained if CG(Q) ⊆ Op′,p(G),
where Q is a Sylow-p-subgroup of Op′,p(G).

Proposition 3. ([9, 3.1, 3.4]) Let G be a finite p-constrained group and let b be a G-
stable block of OOp′(G). Then b is still a block of OG, any Sylow-p-subgroup P of G is a
defect group of b as block of OG, and for any p-subgroup Q of G, the central idempotent
BrQ(b) is a block of kCG(Q).

The last statement in Proposition 3 means that b is of principal type, which in turn
implies that FG,b = FG. We will need Puig’s algebra theoretic formulation of Fong’s
reduction [7], as outlined in [14].

Proposition 4. (cf. [9, 3.1(i)]) Let G be a finite p-solvable group and let b be a block of
OG. There is a subgroup H of G containing Op′(G) and an H-stable block e of OOp′(H)
such that

OGb ∼= IndG
H(OHe)

as interior G-algebras. Moreover, every Sylow-p-subgroup of H is then a defect group of
e and b as blocks of OH and OG, respectively.

Proposition 5. (cf. [10, 4.4]) Let G be a finite p-solvable group, let b be a G-stable

block of OOp′(G) and set S = OOp′(G)b. Denote by Ĝ the O×-group opposite to that

defined by the action of G on S, and set L̂ = Ĝ/N , where any element y of N is identified

to its canonical image (y, yb) in Ĝ. There is a unique algebra isomorphism

OGb ∼= S ⊗
O

O∗L̂

mapping xb to s⊗ (x, s), where x ∈ G and s ∈ S× such that (x, s) ∈ Ĝ and where (x, s)

is the canonical image of (x, s) in L̂.

We show next, that this reduction is compatible with taking normalisers of Z(J(P )).
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Proposition 6. Let G be a finite p-solvable group, let b be a block of OG, let H be a
subgroup of G containing Op′(G) and let e be an H-stable block of OOp′(H) such that

OGb ∼= IndG
H(OHe). Let P be a Sylow-p-subgroup of H and let Z be a subgroup of P

such that NG(P ) is contained in NG(Z). Denote by c and f the blocks of ONG(Z) and
ONH(Z) which are the Brauer correspondents of b and e, respectively. Then f is an
NH(Z)-stable block of OOp′(NH(Z)) and we have an isomorphism of interior NG(Z)-
algebras

ONG(Z)c ∼= Ind
NG(Z)
NH(Z)(ONH(Z)f) .

Proof. By [10, 4.2], we have Op′(NH(Z)) = Op′(CH(Z)) = Op′(H)∩CH(Z). By Propo-
sition 3, BrZ(e) is a block of kCH(Z). Since e is H-stable and every block of kNH(Z) is
contained in kCH(Z), it follows that BrZ(e) is a block of kNH(Z). As e ∈ OOp′(H), it
follows that BrZ(e) ∈ kOp′(NH(Z)). Thus BrZ(e) lifts to a unique NH(Z)-stable block
f of OOp′(NH(Z)), which is the Brauer correspondent of e. If x ∈ NG(Z) − NH(Z),

then xBrZ(e)BrZ(e) = BrZ(xe · e) = 0, because xe · e = 0 as OGb ∼= IndG
H(OHe). Thus

xf · f = 0. Therefore, Ind
NG(Z)
NH(Z)(ONH(Z)f) ∼= ONG(Z)Tr

NG(Z)
NH(Z)(f); in particular, the

algebras ONH(Z)f and ONG(Z)Tr
NG(Z)
NH(Z)(f) have isomorphic centers. As f is primi-

tive in Z(ONH(Z)), it follows that Tr
NG(Z)
NH(Z)(f) is primitive in Z(ONG(Z)). But then

c = Tr
NG(Z)
NH(Z)(f), which implies the result. �

Proof of the Theorem. By Proposition 4, there is a subgroup H of G containing Op′(G)

and an H-stable block e of OOp′(H) such that OGb ∼= IndG
H(OHe). By general prop-

erties of algebra induction (cf. [15]), the blocks OGb and OHe have isomorphic source
algebras. In view of Proposition 6, we may therefore assume that G = H and b = e,
and then c is an N -stable block of OOp′(N). Set S = OOp′(G)b. Then S is a matrix
algebra of rank n2 prime to p, on which G acts. We consider the subgroup

Ĝ = {(x, s)|x ∈ G, s ∈ S× such that xt = sts−1 for all t ∈ S}

of G × S×, endowed with the group homomorphism O× → Ĝ mapping λ ∈ O× to
(1G, λ−11S); that is, Ĝ is the O× -group opposite to that defined by the action of G on
S (cf. [10] for more details on this terminology). By the Skolem-Noether theorem, every
algebra automorphism of S is inner, and thus, for any x ∈ G, there is sx ∈ S× such that
(x, sx) ∈ Ĝ. Equivalently, the canonical projection Ĝ → G onto the first component is
surjective. We may choose the sx in such a way that det(sx) = 1 for all x ∈ G, and
then sxsy = λx,ysxy for any x, y ∈ G and some nth roots of unity λx,y in O× (all this
is well-known; see e. g. [10]). Note that this means that the 2-cocycle λ representing

the central extension Ĝ of G by O× has actually values in the canonical image of k×

in O× (this will be relevant when we apply [16, (e)] below, which is formulated for k×-
groups). There is a unique group homomorphism σ : P → S× such that det(σ(y)) = 1

for all y ∈ P and such that (y, σ(y)) ∈ Ĝ; in other words, the action of P on S “lifts
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canonically”. Since S is a matrix algebra, we may write S = EndO(U) for some free
O-module U of rank n. Then U becomes an OP -module via the group homomorphism
σ. In fact, U becomes an endo-permutation OP -module, because S is a direct summand
of the group algebra OOp′(G), which has Op′(G) as P -stable O-basis, and thus S has a
P -stable O-basis.

We observe next that U is G-stable. If Q is a subgroup of P and x ∈ G such that
xQ ⊆ P , denote by ϕ : Q ∼= xQ the isomorphism sending y ∈ Q to xy. By the uniqueness
of σ we have σ(xy) = xσ(y) for all y ∈ Q; indeed, both sides have determinant 1 and act

by conjugation as xy on S. Choose s ∈ S× such that (x, s) ∈ Ĝ, or equivalently, such
that xt = sts−1 for all t ∈ S. Then the map sending u ∈ U to s(u) is an isomorphism

Resϕ(U) ∼= ResP
Q(U); in particular, U is G-stable.

We identify Op′(G) to its canonical image {(y, yb) | y ∈ Op′(G)} in Ĝ, and set

L̂ = Ĝ/Op′(G). Thus L̂ is a central O×-extension of the group L = G/Op′(G).

Analogously, set T = OOp′(N)c. This is a matrix algebra over O of rank m2 prime
to p on which N acts. Set

Ñ = {(y, t) ∈ N × T×|y(t′) = tt′t−1 for all t′ ∈ T}

endowed with the group homomorphism O× → Ñ sending λ ∈ O× to (1N , λ−11T )

For any y ∈ N , denote by ty an element in T× such that (y, ty) ∈ Ñ and such that
det(ty) = 1. Denote by τ : P → T× the unique group homomorphism such that

(u, τ(u)) ∈ Ñ and such that det(τ(u)) = 1 for all u ∈ P . Write T = EndO(V ) for some
free O-module V of rank m. As before, V becomes an endopermutation OP -module via
τ , and V is H-stable by the uniqueness of τ .

Similarly, identify Op′(N) to its canonical image in Ñ and set L̃ = Ñ/Op′(N).

Let W be an indecomposable direct summand of U∗ ⊗
O

V , viewed as O∆P -module, such

that W has vertex ∆P . It follows from Lemma 1 and Lemma 2 that W is G×H-stable.

By Glauberman’s theorem [8, Ch. 8, Theorem 2.11], we have G = NOp′(G), Since,
by Proposition 4, both b and c are of principal type, we have the equality of the Brauer
categories FG,b = FN,c. By [10, 4.2], we have Op′(G)∩N = Op′(N). Thus the inclusion
N ⊆ G induces a group isomorphism N/Op′(N) ∼= G/Op′(G) = L. Identify N/Op′(N)
to L through this isomorphism. The crucial step is to show that there is an isomorphism
of O×-groups

L̂ ∼= L̃

which induces the identity on the canonical quotients L of L̂, L̃, and which preserves the
canonical images of P in L̂ and L̃ elementwise. Before we prove the existence of such a
group isomorphism, let us show how this concludes the proof of the Theorem.

Identifying O∗L̃ and O∗L̂ through the algebra isomorphism induced by this group iso-
morphism, together with Proposition 5, shows that we have isomorphisms of interior
P -algebras

OGb ∼= S ⊗
O

O∗L̂ and ONc ∼= T ⊗
O

O∗L̂ .
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If we consider U ⊗
k

V ∗ as S-T -bimodule, then through the above algebra isomorphisms,

the bimodule M = U ⊗
O

O∗L̂ ⊗
O

V ∗ has vertex ∆P and W as source. Clearly M and its

dual induce a Morita equivalence between OGb and ONc.

It remains to prove the existence of a group isomorphism L̂ ∼= L̃ as claimed. By the
above remarks the central extensions L̂, L̃ of L by O× can be represented by 2-cocycles
with values in the canonical image of k× in O×, and hence we may assume that O = k.
We will show, that there is an isomorphism of k×-groups Ñ ∼= N̂ preserving the canonical
images of P and of Op′(N) and inducing the identity on the canonical quotients N of

N̂ , Ñ . Since Op′(N) and Z = Z(J(P )) are normal subgroups of coprime order in N ,
they commute, and thus the Brauer construction with respect to Z applied to S yields
S(Z) = T ; in particular, BrZ(b) = c. By Puig’s version [16, (e)] of Dade’s splitting
theorem on fusion for endo-permutation modules (applied to Z instead of P ), there is
a group homomorphism f : NS×(σ(Z)) → T× which extends the group homomorphism
(SZ)× → T× induced by BrZ and which satisfies f(s)BrZ(s′)f(s−1) = BrZ(ss′s−1) for

all s ∈ NS×(σ(Z)) and all s′ ∈ SZ . The latter condition implies that if (x, s) ∈ N̂ then

(x, f(s)) ∈ Ñ , and the map sending (x, s) to (x, f(s)) is in fact a k×-group isomorphism
inducing the identity on N . Now τ and f◦σ are two group homomorphisms from P to T×

lifting the action of P on T , hence they are equal, and therefore the above isomorphism
N̂ ∼= Ñ preserves the canonical images of P elementwise. Finally, since f extends BrZ

we get for any x ∈ Op′(N) that f(xb) = BrZ(xb) = xc, and so the isomorphism N̂ ∼= Ñ
preserves the canonical images of Op′(N). Taking the quotients by these images yields

a k×-isomorphism L̂ ∼= L̃ with the required properties. �

Remarks. (1) If G is a strongly p-solvable finite group then SL2(p) is not isomorphic
to a subquotient of G, and hence every block of OG is SL2(p)-free in the sense of [12,
1.2]. By [12, Theorem 1.4] the equality FG,b = FN,c holds more generally for any block
b of a finite group whenever the block b is SL2(p)-free.

(2) If b is the principal block of a strongly p-solvable finite group G, then c is the
principal block of N and the inclusion N ⊆ G induces an algebra ismomorphism ONc ∼=
OGb. This in turn is equivalent to Glauberman’s Theorem [8, Ch. 8, Theorem 2.11]
because the kernel of the principal block b of OG is well-known to be Op′(G).

(3) Glauberman’s Theorem [8, Ch. 8, Theorem 2.11] is used in the proof of the p-
nilpotency Theorem of Glauberman and Thompson, stating that for an odd prime p a
finite group G is p-nilpotent if and only if N = NG(Z(J(P )) is p-nilpotent, where here
P is a Sylow-p-subgroup of G. The latter has a block theoretic version as well; cf. [11].

(4) A. Watanabe [19] pointed out that the statements and proofs remain valid with
Z(J(P )) replaced by any normal subgroup Z of P with the property that NG(Z) controls
fusion in b.



ON BLOCKS OF STRONGLY P -SOLVABLE GROUPS 7

References
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