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2 MARKUS LINCKELMANN

1 Introduction

The content of this paper is motivated by the question, whether the cohomological
variety VG(U), as defined by J.F. Carlson in [9], of a bounded complex U of finitely
generated kG−modules belonging to a block b of kG is an invariant of this block b,
where G is a finite group and k an algebraically closed field of characteristic p.

We show that this is true if b is the principal block of kG, while this is not true
in general - mainly because the definition of VG(U) involves the cohomology ring
H∗(G, k) of G, which is an invariant of the principal block of kG. However, it is “not
far” from being true in general: we define in section 4 a variety VG,b(U) which comes
along with a a finite surjective morphism

1.1.

VG,b(U) −→ VG(U)

and which is not only an invariant of U as complex of kGb−modules, but which
is even invariant under splendid stable and derived equivalences (cf. [27], [18], [19]).
The map in 1.1 is shown to be an isomorphism, if b is the principal block of kG.

The major ingredients for this are the following. In [20] we define for any block b
of kG with defect pointed group Pγ a cohomology ring H(G, b, Pγ) of b and show that
there is an embedding into the Hochschild cohomology ring of the block algebra kGb,

1.2.

H∗(G, b, Pγ) −→ HH∗(kGb),

which should be thought of as a generalization of the well-known embedding
H∗(G, k) −→ HH∗(kG) induced by the “diagonal induction functor” IndG×G

∆G . Next,
the functor − ⊗

kGb
U induces an algebra homomorphism HH∗(kGb) −→ Ext∗kGb(U,U);

thus, by composing this with the homomorphism in 1.2 we obtain an algebra homo-
morphism

1.3.

H∗(G, b, Pγ) −→ Ext∗kGb(U,U).

We denote by I∗G,b(U) the kernel of the homomorphism 1.3 and define VG,b(U) to

be the maximal ideal spectrum of H∗(G, b, Pγ)/I∗G,b(U). The maximal ideal spectrum

VG(b) of H∗(G, b, Pγ) is called the variety of the block b. These definitions are, up
to unique isomorphism, independent of the choice of Pγ , since all defect pointed
groups of the block b are G−conjugate and NG(Pγ) acts trivially on H∗(G, b, Pγ).
We observe then that the restriction from G to the defect group P of b induces an
algebra homomorphism

1.4.

H∗(G, k) −→ H∗(G, b, Pγ)

which is an isomorphism if b is the principal block of kG and which induces a finite
surjective morphism as claimed in 1.1.

In section 5 we show that if H is another finite group and c a block of kH having
also P as defect group, and if X is a splendid tilting complex of kGb−kHc−bimodules
(or a splendid stable equivalence of Morita type), then the functor X ⊗

kHc
− induces

an isomorphism of varieties
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1.5.

VG,b(X ⊗
kHc

V ) ∼= VH,c(V )

for any bounded complex V of finitely generated kHc−modules. The sections 2
and 3 contain the required material on transfer maps in the Hochschild cohomology
of symmetric algebras and the theory of blocks of finite groups, respectively. Finally,
section 6 is an attempt to generalize the notion of the nucleus of G introduced in [5]
to arbitrary blocks of finite groups.

Notation. All algebras and rings are associative with unit element, all modules
are finitely generated unitary, and, if not stated otherwise, left modules. If A, B are
algebras over a commutative ring R, by an A−B−bimodule M we mean a bimodule
whose left and right R−module structures coincide; that is, we may consider M as
A⊗

R
B0−module, where B0 is the algebra obtained by endowing B with the opposite

product. The R−dual M∗ = HomR(M,R) becomes then a B−A−bimodule through
(b.m∗.a)(m) = m∗(amb) for any a ∈ A, b ∈ B, m ∈ M and m∗ ∈ M∗. If M is an
A−A−bimodule, we denote by MA the subspace of A−invariant elements in M ; that
is, MA = {m ∈M |am = ma for any a ∈ A}. For a finite group G we consider any
RG− RG−bimodule N as R(G×G)−module with (x, y) ∈ G ×G acting on n ∈ N
as xny−1 (and vice versa).

Remember that an R−algebra A is symmetric if A is finitely generated projective
as R−module and A ∼= A∗ as A−A−bimodules. The image of 1A in A∗ under such an
isomorphism is called a symmetrizing form on A. The group algebra RG is symmetric
through the isomorphism RG ∼= (RG)∗ mapping x ∈ G to the unique linear form on
RG sending x−1 to 1R and any other element of G to zero. The symmetrizing form
corresponding to this isomorphism maps 1G to 1R and any nontrivial element of G
to zero; we call this the canonical symmetrizing form on RG. See [20,section 6] for
a short account on some formal properties of symmetric algebras that we need here.

Our notation and sign conventions when dealing with complexes are as in [20,1.2].

2 Transfer maps for symmetric algebras

We describe here the material on transfer maps in Hochschild cohomology of sym-
metric algebras, developed in [20], that we need in this paper. See [6], [17] for analo-
gous concepts for Hochschild- and cyclic homology, respectively, and [14] for a transfer
in cohomology of Hopf algebras.

In this section, R is a commutative ring with unit element, A, B, C are symmetric
R−algebras (cf. [20, 6.3]), X , X ′ are bounded complexes of A−B−bimodules whose
components are projective as left and right modules, f : X −→ X ′ a chain homo-
morphism and Y is a bounded complex of B − C−bimodules whose components are
projective as left and right modules. We denote by PX −→

µX

X a projective cover of

X ; that is, PX is a right bounded complex of projective A−B−bimodules and µX is
a quasi-isomorphism (that is, µX is a chain homomorphism inducing an isomorphism
on homology).

2.1 The functors X ⊗
B
− and X∗ ⊗

A
− between the categories C(A) and C(B) of

complexes of A−modules and B−modules, respectively, are adjoint to each other (cf.



4 MARKUS LINCKELMANN

[20, section 6]). More precisely, any choice of symetrizing forms s on A and t on B
(cf. [20, 6.3]) gives rise to natural isomorphisms of bifunctors

HomC(A)(X ⊗
B
−,−) ∼= HomC(B)(−, X

∗ ⊗
A
−) and

HomC(B)(X
∗ ⊗

A
−,−) ∼= HomC(A)(−, X ⊗

B
−),

thus determine chain homomorphisms of complexes of bimodules

ǫX : B −→ X∗ ⊗
A
X, ηX : X ⊗

B
X∗ −→ A,

ǫX∗ : A −→ X ⊗
B
X∗, ηX∗ : X∗ ⊗

A
X −→ B

representing the units and counits of this adjunction. Since for any projective
resolution PA of A as A − A−bimodule the total complex X∗ ⊗

A
PA ⊗

A
X is a pro-

jective resolution of X∗ ⊗
A
X , the above maps lift uniquely up to homotopy to chain

homomorphisms, still denoted by the same letters,

ǫX : PB −→ X∗ ⊗
A
PA ⊗

A
X, ηX : X ⊗

B
PB ⊗

B
X∗ −→ PA,

ǫX∗ : PA −→ X ⊗
B
PB ⊗

B
X∗, ηX∗ : X∗ ⊗

A
PA ⊗

A
X −→ PB .

2.2 The transfer map associated with X (with respect to the choice of the sym-
metrizing forms s, t) is the graded R−linear map

tX : HH∗(B) −→ HH∗(A)

mapping, for any nonnegative integer n, the homotopy class of a chain map ζ :
PB −→ PB [n] to the homotopy class of the composition of chain maps

PA
ǫX∗

−−−−→ X ⊗
B
PB ⊗

B
X∗ IdX⊗ζ⊗IdX∗

−−−−−−−−−→ X ⊗
B
PB [n] ⊗

B
X∗ ηX [n]

−−−−→ PA[n]

The map tX does depend on the choice of the symmetrizing forms s and t since the
adjunction maps in 2.1 do depend on this choice, but one can exactly tell in which
way tX depends on this choice (see [20, 2.10]).

2.3 We recall from [20, 2.11 and 2.12] the following basic properties of transfer
maps:

(i) tX⊕X′ = tX + tX′ .

(ii) tX⊗
B

Y = tX ◦ tY .

(iii) tX =
∑

n∈Z

(−1)ntXn
.

(iv) tX[n] = (−1)ntX .

(v) tC(f) = tX′ − tX .

(vi) If X is acyclic then tX = 0.

(vii) If f is a quasi-isomorphism then tX = tX′ .
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2.4 In order to study the behaviour of tX with respect to the multiplicative struc-
ture in the Hochschild cohomology, we introduce the notion of stable elements. An
elements [ζ] ∈ HH∗(A) is called X−stable ([20, 3.1]) if there is [τ ] ∈ HH∗(B) such
that for any nonegative integer n, the following diagram is homotopy commutative:

PA ⊗
A
X

≃
−−−−→ X ⊗

B
PB

ζn⊗IdX





y





y

IdX⊗τn

PA[n] ⊗
A
X −−−−→

≃
X ⊗

B
PB [n]

where ζn and τn represent the degree n component of [ζ] and [τ ], respectively,
and where the horizontal maps are the homotopy equivalences lifting the natural
isomorphism of complexes A⊗

A
X ∼= X ∼= X ⊗

B
B.

2.5 We denote by πX ∈ Z(A) the image of 1A under the composition of A −
A−bimodule homomorphisms

A
ǫX∗

−−−−→ X ⊗
B
X∗ ηX

−−−−→ A

and call πX the relatively X−projective element in Z(A); note that πX depends again
on the choice of the symmetrizing forms s and t (cf. [20, 3.2]).

If πX is invertible in Z(A), we denote by

TX : HH∗(B) −→ HH∗(A)

the graded R−linear map defined by TX = (πX)−1tX and call TX the normalized
transfer map associated with X .

2.6 The set HH∗
X(A) ofX−stable elements is a graded subalgebra in HH∗(A), and

if πX is invertible, the normalized transfer TX induces a surjective graded R−algebra
homomorphism

HH∗
X∗(B) −→ HH∗

X(A).

Moreover, if both πX and πX∗ are invertible, then TX and TX∗ induce mutually
inverse algebra isomorphisms between HH∗

X(A) and HH∗
X∗(B) (cf. [20, 3.6]).

2.7 Stable elements in Hochschild cohomology satisfy a “cancellation prop-
erty” ([20, 3.8]): if πY is invertible in Z(B) then HH∗

X⊗
B

Y (A) ⊂ HH∗
X(A) and

TY (HH∗
Y ∗⊗

B
X∗(C)) ⊂ HH∗

X∗(B). Also, for any direct summand X ′ of the complex X

we have HH∗
X(A) ⊂ HH∗

X′(A).

2.8 We have the following connection between transfer maps in Hochschild co-
homology and ordinary cohomology of finite groups: if G is a finite group and
∆G = {(x, x)}x∈G ⊂ G × G, the “diagonal induction functor” IndG×G

∆G maps the

trivial R∆G−module R to the R(G×G)−module IndG×G
∆G (R), which is, when viewed

as RG−RG−bimodule, isomorphic to the regular bimodule RG. Thus IndG×G
∆G maps

a projective resolution of R as R∆G−module to a projective resolution of RG as
RG − RG−bimodule and whence induces an injective graded R−algebra homomor-
phism (cf. [20,4.5])

δG : H∗(G,R) −→ HH∗(RG).
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Moreover, by [20, 4.8], if H is any subgroup of G, we have

Im(δG) ⊂ HH∗
(RG)H

(RG),

where (RG)H is the regular RG−RG−bimodule RG restricted to RH on the right.
We consider RG as symmetric R−algebra with respect to the canonical symmetrizing
form RG −→ R mapping 1G to 1R and any nontrivial element of G to zero. Then
the following diagrams are commutative (cf. [20, 4.6, 4.7]):

H∗(G,R)
resG

H−−−−→ H∗(H,R) H∗(H,R)
tG
H−−−−→ H∗(G,R)

δG





y





y

δH δH





y





y

δG

HH∗(RG) −−−−→
t
H (RG)

HH∗(RH) HH∗(RH) −−−−→
t(RG)H

HH∗(RG)

where tGH denotes the usual transfer map on group cohomolgy.

2.9 For any bounded complex U of A−modules and any projective resolution
PA −→

µA

A of A as A − A−bimodule, the total complex PA ⊗
A
U , together with the

chain map µA ⊗ IdU , becomes a projective resolution of U . Thus the functor −⊗
A
U

induces an algebra homomorphism

αU : HH∗(A) −→ Ext∗A(U,U)

mapping the homotopy class of a chain map ζ : PA −→ PA[n] to that of ζ ⊗ IdU ,
where n is a nonnegative integer.

If G is a finite group and U a bounded complex of RG−modules, for any complex
V of RG−modules there is a natural isomorphism of complexes of RG−modules

IndG×G
∆G (V ) ⊗

RG
U ∼= V ⊗

R
U

mapping ((x, y) ⊗ v) ⊗ u to xv ⊗ xy−1u, where x, y ∈ G, u ∈ U , v ∈ V , and

where the complex of R(G × G)−modules IndG×G
∆G (V ) is considered as complex of

RG − RG−bimodules according to our conventions introduced in section 1; that is,
x ∈ G acts on the left and right of m ∈ IndG×G

∆G (V ) by x.m = (x, 1)m and m.x =
(1, x−1)m, respectively. This isomorphism, applied to a projective resolution PR of
the trivial RG−module R instead of V , implies that the composition of R−algebra
homomorphisms

H∗(G,R)
δG−−−−→ HH∗(RG)

αU−−−−→ Ext∗RG(U,U)

is equal to the algebra homomorphism

γU : H∗(G,R) −→ Ext∗RG(U,U)

given by the functor −⊗
R
U .
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3 Quoted results on blocks and their cohomology

We sketch here briefly some basic concepts and results from block theory. Most
of the material we present here holds in more general situations, but we restrict this
section to what we need in this paper. In particular, since we are mostly interested
in providing techniques for dealing with varieties, our ground ring will be a field (of
prime characteristic), and we leave it to the reader to check, that all statements,
including the results in the sections 4 and 5 below, could be done more generally over
a complete discrete valuation ring.

The Brauer homomorphism described in 3.1 below goes back to work of R. Brauer
and has since then been generalized to G−algebras [8] and modules [13]. The system-
atical treatment of the p−local structure of blocks of finite groups in terms of Brauer
pairs and pointed groups starts with work of Alperin-Broué [1], Broué-Puig [8] and
Puig [21]. See Thévenaz’ book [28] for a detailed exposition on block theory.

Let k be a field of prime characteristic p and G a finite group.

3.1 For any p−subgroup P of G the natural projection kG −→ kCG(P ) map-
ping x ∈ CG(P ) to x and x ∈ G − CG(P ) to zero restricts to a surjective algebra
homomorphism

BrG
P : (kG)P −→ kCG(P ),

called the Brauer homomorphism of P in G. Here (kG)P denotes the subalgebra
of P−stable elements in kG with respect to the action of P by conjugation. If no
confusion is possible we will write BrP instead of BrG

P . See [28, section 11] for more
details and generalizations of this construction.

Recall from Puig [21] that a point of P on kG is a ((kG)P )×−conjugacy class
γ of primitive idempotents in (kG)P ; we say that γ is a local point of P on kG if
BrP (γ) 6= 0. By standard theorems on lifting of idempotents, BrP (γ) is then a
conjugacy class of primitive idempotents in kCG(P ).

3.2 A block of kG is a primitive idempotent b in the center Z(kG) of the group
algebra kG. The algebra kGb is then called the block algebra of the block b. A
defect group of the block b is a minimal subgroup P of G such that the map kGb ⊗

kP

kGb −→ kGb induced by multiplication in kGb splits as homomorphism of kGb −
kGb−bimodules. Equivalently, P is a maximal p−subgroup of G such that BrP (b) 6=
0. The defect groups of b form a G−conjugacy class of p−subgroups of G.

3.3 If P is a defect group of a block b of kG we have BrP (b) 6= 0, and there-
fore there is a primitive idempotent i ∈ (kGb)P such that BrP (i) 6= 0. The
((kG)P )×−conjugacy class γ of i in (kG)P is then a local point of P on kG con-
tained in kGb. The pair Pγ is called a defect pointed group of the block b. Again,
G acts transitively by conjugation on the set of defect pointed groups of b (cf. [21,
1.2]), thus in particular, NG(P ) acts transitively on the set of local points of P on kG
contained in kGb. The algebra ikGi, considered as interior P−algebra (cf. [21, 3.1])
via the group homomorphism P −→ (ikGi)× mapping u ∈ P to ui is called a source
algebra of the block b (cf. [21, 3.2]).

By the preceding remarks, up to automorphisms of P induced by NG(P ) all source
algebras of b are isomorphic as interior P−algebras. The block algebra kGb and its
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source algebra ikGi are Morita equivalent through the kGb − ikGi−bimodule kGi
and the ikGi−kGb−bimodule ikG (cf. [21, 3.5]). Moreover, the p−local structure of
the block b (in terms of Brauer pairs or local pointed groups) is in fact an invariant
of the source algebra ikGi (cf. [22]).

3.4 Let b be a block of G and Pγ a defect pointed group of b. Let i ∈ γ; that
is, i is a primitive idempotent in (kGb)P such that BrP (i) 6= 0. Then BrP (i) is a
primitive idempotent in kCG(P ) and thus there is a unique block eP of kCG(P ) such
that BrP (i)eP = BrP (i). If Q is a subgroup of P , then in general BrQ(i) need no
longer be primitive in kCG(Q), but we still have the following remarkable uniqueness
property, due to Broué and Puig [8, 1.8]: for any subgroup Q of P there is a unique
block eQ of kCG(Q) such that BrQ(i)eQ = BrQ(i). Then Z(Q) is contained in any
defect group of eQ, and we say that the Brauer pair (Q, eQ) is self-centralizing, if
Z(Q) is a defect group of eQ (cf. [28, section 41]).

For any two subgroups Q, R of P we denote by H̃om(Q,R) the set of equivalence
classes of group homomorphisms from Q to R modulo inner automorphisms of R and

for any group homomrphism ϕ : Q −→ R we denote by ϕ̃ its image in H̃om(Q,R). We

denote by EG((Q, eQ), (R, eR)) the image in H̃om(Q,R) of all group homomorphisms
ϕ : Q −→ R for which there is an element x ∈ G satisfying ϕ(u) = xux−1 and
xeQx

−1 = exQx−1 . In particular, EG((Q, eQ), (Q, eQ)) is the image of NG(Q, eQ) in
the outer automorphism group of Q, whence isomorphic to NG(Q, eQ)/QCG(Q).

3.5 Let b be a block of kG and Pγ be a defect pointed group of b. Let i ∈ γ.
The cohomology ring of the block b (with respect to the defect pointed group Pγ)

is the subring

H∗(G, b, Pγ)

of H∗(P, k) of “stable elements with respect to the p−local structure of b ”; that
is, H∗(G, b, Pγ) consists of all [ζ] ∈ H∗(P, k) satisfying resϕ([ζ]) = resP

Q([ζ]) for
any subgroup Q in P and any group homomorphism ϕ : Q −→ P such that ϕ̃ ∈
EG((Q, eQ), (P, eP )).

Any ϕ̃ ∈ EG((Q, eQ), (P, eP )) is, by Alperin’s fusion lemma (see e.g. [28, (48.3)]),

a composition of ψ̃ ∈ EG((R, eR), (R, eR)) with R running over the set of subgroups
of P such that (R, eR) is self-centralizing.

Thus H∗(G, b, Pγ) is equal to the subring consisting of all [ζ] ∈ H∗(P, k) satisfying
xresP

R([ζ]) = resP
R([ζ]) for all x ∈ NG(R, eR), where R runs over the set of subgroups

of P such that (R, eR) is self-centralizing.
This latter description, together with Puig’s results in [22] on ikGi−fusion shows

that H∗(G, b, Pγ) is an invariant of the source algebra ikGi of the block b. Also,
the isomorphism class of the graded k−algebra H∗(G, b, Pγ) does not depend on the
choice of Pγ since all defect pointed groups of b are G−conjugate.

If b is the principal block ofG then P is a Sylow-p−subgroup ofG, for any subgroup
Q of P the block eQ is the principal block of kCG(Q) and NG(Q, eQ) = NG(Q); thus
restriction from G to P induces an isomorphism H∗(G, k) ∼= H∗(G, b, Pγ) by the
characterization of H∗(G, k) in terms of stable elements in H∗(P, k).

3.6 Blocks with “trivial p−local structure” are the so-called nilpotent blocks, in-
troduced by Broué and Puig in [7]. With the notation of 3.5, the block b is nilpotent
if P “controls fusion”; that is, if for any ϕ̃ ∈ EG((Q, eQ), (P, eP )) there is an element
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y ∈ P such that ϕ(u) = yuy−1 for all u ∈ Q. If k is large enough, this is equivalent to
requiring that NG(Q, eQ)/QCG(Q) is a p−group for any subgroup Q of P . For k large
enough, the structure of nilpotent blocks has been determined by Puig in [23]: if b is
nilpotent, there is an indecomposable kP−endopermutation module N (cf. [11], [12])
with vertex P such that ikGi ∼= S ⊗

k
kP as interior P−algebra, where S = Endk(N).

In particular, kGb is Morita equivalent to kP and H∗(G, b, Pγ) ∼= H∗(P, k).

Even if b is arbitrary, nilpotent blocks come in systematically: for any subgroup Q
of P such that (Q, eQ) is self-centralizing, the block eQ of kCG(Q) is nilpotent (this
follows trivially from the fact that the defect group Z(Q) of eQ lies in the center of
kCG(Q) and therefore there is no nontrivial fusion). In particular, eP is always a
nilpotent block of kCG(P ).

Furthermore, it is shown in [7] that G is p−nilpotent if and only if the principal
block of kG is nilpotent.

3.7 The “diagonal embedding” δG : H∗(G, k) −→ HH∗(kG) has an analogue for
any block b of kG, if we assume additionally that k is large enough for the block
algebra kCG(P )eP to be split, which amounts to requiring that kCG(P )eP is Morita
equivalent to kZ(P ) as eP is a nilpotent block.

Still with the notation of 3.5, we consider kGi as kGb − kP−bimodule and ikG
as kP − kGb−bimodule. By [20, 5.6] the relative projective elements πkGi and
πikG are invertible in Z(kGb) and Z(kP ), respectively (this is where we use that
k is large enough). Moreover, by [20, 5.6(iii)], the composition of the inclusion
H∗(G, b, Pγ) ⊂ H∗(P, k), the diagonal embedding δP : H∗(P, k) −→ HH∗(kP ) and
the normalized transfer map TkGi : HH∗(kP ) −→ HH∗(kGb) induce an injective
algebra homomorphism

H∗(G, b, Pγ)
TkGi◦δP−−−−−→ HH∗(kGb)

whose image is contained in the subalgebra HH∗
kGi(kGb) of kGi−stable elements

in HH∗(kGb). If b is the principal block of kG, this map is in fact equal to δG followed
by the canonical projection from HH∗(kG) onto HH∗(kGb), as we will see in 4.2(ii)
below.

4 Varieties for modules over a block algebra

We fix in this section an algebraically closed field k of prime characteristic p.

We remind the reader of the definition, due to J. F. Carlson [9], [10], of the co-
homological variety VG(U) of a bounded complex U of kG−modules, where G is a
finite group: the functor −⊗

k
U induces an algebra homomorphism γU : H∗(G, k) −→

Ext∗kG(U,U). Denote by I∗G(U) the kernel of γU . The variety VG(U) is then de-
fined to be the maximal ideal spectrum of the quotient H∗(G, k)/I∗G(U). Note that
γU = αU ◦ δP by 2.9.

The case where U = k is the trivial kG−module had previously been considered
by D. Quillen (see [24], [25]). See [3, Vol. II, section 5.1] for a more detailed historical
overview on varieties in group representation theory and for an extensive bibliography
on this subject.
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Definition 4.1 Let G be a finite group, b a block of kG, Pγ a defect pointed group
of b and let i ∈ γ. For any bounded complex U of kGb−modules denote by I∗G,b(U)

the kernel in H∗(G, b, Pγ) of the composition of k−algebra homomorphisms

H∗(G, b, Pγ)
TkGi◦δP−−−−−→ HH∗(kGb)

αU−−−−→ Ext∗kG(U,U)

and let VG,b(U) be the maximal ideal spectrum of H∗(G, b, Pγ)/I∗G,b(U).

The isomorphism class of the variety VG,b(U) in 4.1 does not depend on the choice
of Pγ . If b is the principal block, VG,b(U) is just the cohomological variety VG(U) (see
4.4 below).

The next theorem establishes a connection in general between VG,b(U) and VG(U).

Theorem 4.2. Let G be a finite group, b a block of kG, Pγ a defect pointed group of
b and let i ∈ γ.

(i) The restriction resG
P induces an algebra homomorphism

ρb : H∗(G, k) −→ H∗(G, b, Pγ)

such that H∗(G, b, Pγ) becomes Noetherian as a module over H∗(G, k).

(ii) The diagram of graded k−algebra homomorphisms

H∗(G, k)
δG−−−−→ HH∗(kG)

ρb





y





y

H∗(G, b, Pγ)
TkGi◦δP−−−−−→ HH∗(kGb)

is commutative, where the right vertical map is the canonical projection induced by
multiplication with b.

(iii) For any bounded complex U of kGb−modules the diagram of graded k−algebra
homomorphisms

H∗(G, k)
γU

−−−−→ Ext∗kG(U,U)

ρb





y





y

∼=

H∗(G, b, Pγ) −−−−−−−−→
αU◦TkGi◦δP

Ext∗kGb(U,U)

is commutative.

Before we prove 4.2, let us note some consequences. By a result of Gerstenhaber
[15], the Hochschild cohomology of an associative ring is graded commutative. Using
the fact that H∗(P, k) is Noetherian over H∗(G, k) via restriction from G to P (cf. [3,
Vol. II, 4.2.5]) and that by a result of T. Holm in [16] the Hochschild cohomology ring
HH∗(kG) is Noetherian as module over H∗(G, k) via the algebra homomorphism δG,
the diagram in 4.2(ii) implies the following:
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Corollary 4.3. (i) The algebra HH∗(kGb) is Noetherian as module over
H∗(G, b, Pγ) through the homomorphism given by TkGi ◦ δP .

(ii) The Krull dimensions of H∗(G, b, Pγ), HH∗(kGb) and H∗(P, k) coincide and
are whence all equal to the rank of P .

The fact that HH∗(kGb) and H∗(P, k) have same Krull dimension has previously
been observed by S. Siegel, who communicated a short direct proof of this statement
to the author.

Using standard results from commutative algebra, in terms of maximal ideal spec-
tra, statement 4.2(iii) translates to:

Corollary 4.4. For any bounded complex U of kGb−modules we have I∗G(U) =

ρ−1
b (I∗G,b(U)); in particular, ρb induces a finite surjective map

VG,b(U) −→ VG(U).

Moreover, if b is the principal block of kG, the above map is an isomorphism.

Proof of 4.2. Clearly the restriction resG
P mapsH∗(G, k) toH∗(G, b, Pγ), thus induces

an algebra homomorphism ρb : H∗(G, k) −→ H∗(G, b, Pγ). By [3, 4.2.5], H∗(P, k) is
Noetherian as module over H∗(G, k) through restriction, thus H∗(G, b, Pγ) is Noe-
therian as module over H∗(G, k) through ρb. This proves (i).

Let S be a Sylow-p−subgroup of G containing P . Identify H∗(G, k) to the subalge-
bra resG

S (H∗(G, k)) of H∗(S, k) of G−stable elements. Since restriction resG
S followed

by the transfer map tGS is multiplication by the index [G : S] on H∗(G, k), it follows
from 2.8 (or [20,4.6]) that

[G : S]δG = t(kG)S
◦ δS |H∗(G,k).

From [20,5.3] follows that

t(ikG)S
◦ δS |H∗(G,k) =

dimk(ikG)

|S|
δP ◦ ρb,

where (ikG)S is ikG viewed as kP − kS−bimodule. Moreover, by 2.3(ii) we have

t(ikG)S
= tikG ◦ t(kG)S

.

By 2.7 and 2.8 we have

δG(H∗(G, k)) ⊂ HH∗
(kG)P

(kG) ⊂ HH∗
kGi(kG)

and the projection HH∗(kG) −→ HH∗(kGb) maps clearly HH∗
kGi(kG) to

HH∗
kGi(kGb) (with the notational abuse of considering kGi as kG−kP−bimodule in

the first place and then as kGb− kP−bimodule in the second).
Thus, by 2.6, the composition TkGi ◦ TikG restricts to the identity on the image of

δG(H∗(G, k)) in HH∗(kGb). It follows that

δP ◦ ρb = (
dimk(ikG)

|S|
)−1tikG ◦ t(kG)S

◦ δS |H∗(G,k) =



12 MARKUS LINCKELMANN

(
dimk(ikG)

|S|
)−1[G : S]tikG ◦ δG = TikG ◦ δG,

since πikG = dimk(ikG)
|G| by [20,5.6(i)]. Applying TkGi to this equality yields the com-

mutativity of the diagram in statement (ii).
The last statement follows then easily from the observation that the map

HH∗(kG) −→ Ext∗kG(U,U) ∼= Ext∗kGb(U,U) induced by the functor − ⊗
kG

U fac-

tors through the natural projection HH∗(kG) −→ HH∗(kGb). This concludes the
proof of 4.2.

5 Invariance properties of varieties of modules

We show in this section roughly speaking, that the varieties VG,b(U) introduced in
4.1 are invariant under splendid stable and derived equivalences. This is based on the
following general result:

Theorem 5.1. Let A, B be symmetric algebras over a commutative ring R with sym-
metrizing forms s ∈ A∗, t ∈ B∗, and let X be a bounded complex of A−B−bimodules
whose components are projective as left and right modules.

If πX is invertible in Z(A), for any bounded complex U of B−modules there is a
commutative diagram of graded R−algebra homomorphisms

HH∗
X∗(B)

αU−−−−→ Ext∗B(U,U)

TX





y





y

βX,U

HH∗
X(A) −−−−→

αX⊗

B
U

Ext∗A(X ⊗
B
U,X ⊗

B
U)

where the horizontal maps are induced by the functors − ⊗
B
U and − ⊗

A
(X ⊗

B
U),

respectively, and where the right vertical map is induced by the functor X ⊗
B
−.

Proof. Let n be a nonnegative integer, ζ : PA −→ PA[n] and τ : PB −→ PB [n] chain
maps making the diagram

5.1.1
PA ⊗

A
X

≃
−−−−→ X ⊗

B
PB

ζ⊗IdX





y





y

IdX⊗τ

PA[n] ⊗
A
X −−−−→

≃
X ⊗

B
PB [n]

homotopy commutative, where the horizontal maps are homotopy equivalences
lifting the natural isomorphism A⊗

A
X ∼= X ∼= X ⊗

B
B (and its shift by degree n).

Then we have [ζ] = TX([τ ]) by [20,3.4(ii)]. Thus αX⊗
B

U ◦TX maps [τ ] to the element

of ExtnA(X ⊗
B
U,X ⊗

B
U) represented by the chain map

PA ⊗
A
X ⊗

B
U

ζ⊗IdX⊗IdU
−−−−−−−−→ PA[n] ⊗

A
X ⊗

B
U



VARIETIES IN BLOCK THEORY 13

and βX,U ◦αU maps [τ ] to the element of ExtnA(X ⊗
B
U,X ⊗

B
U) represented by the

chain map

X ⊗
B
PB ⊗

B
U

IdX⊗τ⊗IdU−−−−−−−−→ X ⊗
B
PB [n] ⊗

B
U.

Thus both coincide as can be seen by tensoring the diagram 5.1.1 by −⊗
B
U .

Before we state our invariance theorem, we need some properties of relatively pro-
jective elements. We show that the relative projective elements coming from derived
or stable equivalences of Morita type between block algebras are invertible not only
with respect to the canonical symmetrizing forms but in fact with respect to any
symmetrizing form; we state this in the following slightly more general form:

Proposition 5.2. Let A, B be indecomposable non simple symmetric algebras over
a field k and let X be a bounded complex of A−B−bimodules whose components are
projective as left and right modules. Suppose that
X⊗

B
X∗ ≃ A⊕UA, where UA is a bounded complex of projective A−A−bimodules,

and
X∗⊗

A
X ≃ B⊕UB, where UB is a bounded complex of projective B−B−bimodules.

Then for any choice of symmetrizing forms on A and B, the corresponding rela-
tively projective elements πX and πX∗ are invertible in Z(A) and Z(B), respectively.

Proof. If πX is not invertible, the composition of adjunction maps A −→ X⊗
B
X∗ −→

A is a nilpotent A − A−endomorphism of A, since A is indecomposable as A −
A−bimodule. However, modulo the thick subcategory ofKb(A) consisting of bounded
complexes of projective A−modules (and similarly for B instead of A) the functor
X⊗

B
− induces an equivalence by the hypotheses onX , and so the image in the suitable

quotient category of the composition of adjunction maps A −→ X⊗
B
X∗ −→ A has to

be an isomorphism and thus cannot be nilpotent. This shows that πX is invertible.
The same argument shows that πX∗ is invertible.

Note that the above proposition covers the situation of derived and stable equiv-
alences of Morita type: if UA and UB are zero, the complex X is a two-sided tilting
complex, frequently called Rickard complex in the literature, and also two-sided split
endomorphism tilting complex in [27]. If the complex X is concentrated in degree zero
(that is, X is a bimodule), we are in the situation of what is called a stable equivalence
of Morita type, a concept due to M. Broué.

We collect now some elementary properties of symmetric subalgebras of a symmet-
ric algebra that we are going to apply in 5.4 to the particular case of the subalgebra
kP i (which is clearly isomorphic to kP , whence symmetric) of the source algebra ikGi
of the block b, where the notation is as in 3.3 (or 5.4 below).
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Lemma 5.3. Let A be a symmetric algebra over a commutative ring R with sym-
metrizing form s ∈ A∗ and let B be a unitary symmetric subalgebra of A such that
the restriction s|B ∈ B∗ is a symmetrizing form of B. Then the following hold.

(i) As B − B−bimodule, B is a direct summand of A, and B has a unique com-
plement C in A contained in ker(s).

(ii) The projection π : A −→ B with kernel C maps any a ∈ A to the unique
element b ∈ B satisfying a.s|B = b.s|B. Moreover, π maps Z(A) to Z(B).

(iii) If CB ⊂ J(AB) then π maps Z(A)× to Z(B)×.

Proof. Any R−linear form on A is equal to a.s for a uniquely determined a ∈ A,
where a.s is defined by (a.s)(a′) = s(aa′) for all a′ ∈ A. Its restriction to B is thus
equal to b.s|B for a uniquely determined b ∈ B, as s|B is a symmetrizing form for
B. The map sending a ∈ A to b ∈ B defined this way is clearly a projection of A
onto B as B − B−bimodule, and its kernel C is the unique complement of B in A
contained in ker(s). This map sends AB to BB = Z(B), thus it sends in particular
Z(A) to Z(B). This shows (i) and (ii). Let now z ∈ Z(A)× and write z = π(z) + c
for some c ∈ C. Similarly, write z−1 = π(z−1) + c′ for some c′ ∈ C. Then in fact
c, c′ ∈ CB . Write cc′ = π(cc′) + d for some d ∈ C; again in fact d ∈ CB . We have
now 1A = zz−1 = π(z)π(z−1) + π(z)c′ + cπ(z−1) + cc′. As π(1) = 1 we obtain from
the previous equation that 1 = π(z)π(z−1) + π(cc′). Therefore, if CB ⊂ J(AB) then
π(cc′) = cc′ − d ∈ J(AB), so in particular π(z) is invertible.

Observe that the projection π : A −→ B in 5.3(ii) is a B − B−homomorphism,
thus the induced map Z(A) −→ Z(B) is R−linear, but not multiplicative in gen-
eral. In particular, the induced map Z(A)× −→ Z(B)× in 5.3(iii) is not a group
homomorphism in general.

Proposition 5.4. Let k be an algebraically closed field of prime characteristic p, let
G be a finite group, b a block of kG and Pγ a defect pointed group of b. Let i ∈ γ.
Denote by s ∈ (ikGi)∗ the canonical symmetrizing form on ikGi.

(i) We have s(i) ∈ k× and s(ui) = 0 for any u ∈ P − {1}. In particular, the
restriction of s to the subalgebra kP i of ikGi is a symmetrizing form of kP i.

(ii) The subalgebra kP i of ikGi has a unique complement C in ikGi as kP −
kP−bimodule such that C ⊂ ker(s), and then CP ⊂ J((ikGi)P ).

(iii) The projection π : ikGi −→ kP i with kernel C maps a ∈ ikGi to
s(i)−1

∑

u∈P

s(u−1a)ui. Moreover, π maps Z(ikGi)× to Z(kP )×.

(iv) For any choice of symmetrizing forms on ikGi and on kP , the relatively
ikG−projective element πikG is invertible in Z(kP ).

Proof. (i) The fact that s(ui) is non zero if and only if u = 1P is proved in [20,5.5].
This means that through the obvious isomorphism kP ∼= kP i, the restriction of s to
kP is a non zero scalar multiple of the canonical symmetrizing form on kP , thus itself
a symmetrizing form.

(ii) By (i) and 5.3(i), kP i has a unique complement in ikGi as claimed. Now apply-
ing the Brauer construction [28, section 11] yields, by a result of Puig [24, 14.5], that
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(ikGi)(P ) ∼= kZ(P ) (this isomorphism is also described in [28, (38.10)]), and clearly
(kP i)(P ) ∼= kZ(P ). Thus C(P ) = {0}, or, equivalently, CP ⊂ ker(BrP ), where
BrP denotes the Brauer homomorphism on (ikGi)P (cf. 3.1). Since i is primitive in
(ikGi)P , the latter is a local algebra. As BrP (i) 6= 0 the ideal ker(BrP ) of (ikGi)P

is therefore contained in J((ikGi)P ), which implies (ii).
(iii) Since C ⊂ ker(s), the given formula in (iii) maps C to zero, and whence

coincides with π on C. Let x ∈ P . Then, by (i), for any u ∈ P we have s(u−1xi) = 0
unless u = x. Thus the given formula is the identity on kP i, whence coincides again
with π. The second statement in (iii) follows from (ii) and 5.3(iii).

(iv) With respect to the canonical symmetrizing forms on kP and ikGi, by [20,5.5],
the adjunction map kP −→ ikG ⊗

kGb
kGi ∼= ikGi sends u ∈ P to ui, and the adjunc-

tion map ikGi ∼= ikG ⊗
kGb

kGi −→ kP sends a ∈ ikGi to
∑

u∈P

s(u−1a)u. Any other

symmetrizing form on ikGi is equal to z.s for a uniquely determined z ∈ Z(ikGi)×.
With respect to this new symmetrizing form on ikGi (and still the canonical form
on kP ), the first adjunction map kP −→ ikG ⊗

kGb
kGi ∼= ikGi maps u ∈ P to zui,

while the second adjunction map remains unchanged (this follows from the formulae
given in [20, 2.4]). Thus, the relatively ikG−projective element πikG with respect
to this choice of symmetrizing forms is equal to

∑

u∈P

s(u−1zi)u. It follows from (iii)

that πikGi = s(i)π(z). Since π maps Z(ikGi)× to Z(kP i)×, indeed πikG is invertible.
Modifying the symmetrizing form on kP has no influence on the property of πikG

being invertible (this follows from [20, 3.2.2]), which completes the proof.

We state now the invariance theorem for the varieties VG,b(U) with respect to splen-
did derived and stable equivalences, again in a slightly more general form analogously
to 5.2.

Theorem 5.5. Let k be an algebraically closed field of prime characteristic p, let G,
H be finite groups and b, c be blocks of kG, kH, respectively, having a common defect
group P . Let γ, δ be local points of P on kGb, kHc, respectively, and choose i ∈ γ,
j ∈ δ. For any subgroup Q of P denote by eQ and fQ the unique blocks of kCG(Q)
and kCH(Q), respectively, satisfying BrG

Q(i)eQ = BrG
Q(i) and BrH

Q (j)fQ = BrH
Q (j).

Assume that EG((Q, eQ), (P, eP )) = EH((Q, fQ), (P, fP )) for any subgroup Q of P .
Let X be a bounded complex of kGb− kHc−bimodules whose components are iso-

morphic to direct sums of direct summands of the bimodules kGi ⊗
kQ

jkH, where Q

runs over the set of subgroups of P .
Assume that X ⊗

kHc
X∗ ≃ kGb ⊕ Ub, where Ub is a bounded complex of projective

kGb−kGb−bimodules, and that X∗ ⊗
kGb

X ≃ kHc⊕Uc, where Uc is a bounded complex

of projective kHc− kHc−bimodules.

(i) For any choice of symmetrizing forms on kGb and kHc, the relatively projective
elements πX and πX∗ are invertible in Z(kGb) and Z(kHc), respectively. With respect
to the canonical symmetrizing form on kP we have πiXj = πjX∗i ∈ k×1kP , where
iXj and its dual jX∗i are considered as complexes of kP − kP−bimodules.

(ii) The map TkGi ◦ δP sends H∗(G, b, Pγ) to HH∗
X(kGb) and TkHj ◦ δP sends

H∗(H, c, Pδ) to HH∗
X∗(kHc), making the following diagram of graded k−algebras

commutative:
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H∗(H, c, Pδ)
TkHj◦δP

−−−−−→ HH∗
X∗(kHc)

Id





y





y

TX

H∗(G, b, Pγ) −−−−−→
TkGi◦δP

HH∗
X(kGb)

(iii) For any bounded complex V of kHc−modules, the following diagram of graded
k−algebras is commutative:

H∗(H, c, Pδ)
αV ◦TkHj◦δP

−−−−−−−−→ Ext∗kHc(V, V )

Id





y





y

βX,V

H∗(G, b, Pγ) −−−−−−−−−−−→
αX ⊗

kHc
V ◦TkGi◦δP

Ext∗kGb(X ⊗
kHc

V,X ⊗
kHc

V )

In particular, we have I∗G,b(X ⊗
kHc

V ) = I∗H,c(V ), and whence,

VG,b(X ⊗
kHc

V ) = VH,c(V ).

Proof. Statement (i) follows from 5.2 and [20,5.7(i)]. For the proof of (ii), we first show
that TkGi ◦ δP maps H∗(G, b, Pγ) to HH∗

X(kGb). This is based on the cancellation
properties for stable elements in 2.7. By [20,5.7(iii)] we have δP (H∗(G, b, Pγ)) ⊂
HH∗

iXj(kP ). As iXj ∼= iX ⊗
kHc

kHj and πkHj is invertible, the first of the cancellation

properties in 2.7 implies that HH∗
iXj(kP ) ⊂ HH∗

iX(kP ). As iX ∼= ikG ⊗
kGb

X and

πkGi is invertible, the second of the cancellation properties in 2.7 shows that TkGi

maps HH∗
iX(kP ) to HH∗

X(kGb). A similar argument shows that TkHj ◦ δP maps
H∗(H, c, Pδ) to HH∗

X∗(kHc).
Note that the diagram in (ii) does not depend on the choice of symmetrizing forms

on kGb, kHc, as follows from [20,3.6(ii)].
Observe next that H∗(G, b, Pγ) = H∗(H, c, Pδ) as subalgebras of H∗(P, k) by the

assumptions. We consider kP endowed with the canonical symmetrizing form. By
[20,3.2.3] we may choose a symmetrizing form on kHc such that πkHj = 1kHc, or
equivalently, such that TkHj = tkHj . Since πX is invertible for any choice of a sym-
metrizing form on kHc, we may again by [20,3.2.3] choose a symmetrizing form on kGb
such that πX = 1kGb, or equivalently, such that TX = tX . Since we have not changed
the symmetrizing form of kP , the relatively projective element πkGi is still invertible
in Z(kGb). Moreover, by 5.4(iv), the relatively projective element πikG is invertible in
Z(kP ). In order to show that the diagram in (ii) is commutative we have to show that
the maps TX ◦TkHj ◦δP and TkGi◦δP coincide on H∗(H, c, Pδ) = H∗(G, b, Pγ). This is
equivalent to showing that the map TikG◦TX◦TkHj is the identity on δP (H∗(H, c, Pδ)).
Now

TikG ◦ TX ◦ TkHj = (πikG)−1tikG ◦ tX ◦ tkHj = (πikG)−1tiXj

and by [20,5.7(iv)], the map tiXj acts as multiplication by πiXj on δP (H∗(H, c, Pδ)).
Thus it suffices to observe that πikG = πiXj . Now with the notation from [20, 3.2],
we have πiXj = t0iXj(1kP ) = t0ikG ◦ t0X ◦ t0kHj(1kP ), and by our choice of symmetrizing
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forms, we have t0kHj(1kP ) = 1kHc and t0X(1kHc) = 1kGb. Since t0ikG(1kGb) = πikG, the

proof of (ii) is complete.
The diagram in (iii) is just obtained by composing the diagram of (ii) together

with the appropriate version of 5.1.

6 Some further remarks

Let k be an algebraically closed field of prime characteristic p and G a finite group.
Benson, Carlson and Robinson introduce in [5] the nucleus of kG as the subvariety

YG of VG(k) which is the union of the images of the maps (resG
H)∗ induced by the

restriction maps resG
H : H∗(G, k) −→ H∗(H, k), with H running over the set of

subgroups of G for which CG(H) is not p−nilpotent, with the convention YG = {0}
if G is p−nilpotent.

We define now a nucleus YG,b of a block b of G and show that this coincides with
YG if b is the principal block of G. Remind from 4.1 that VG(b) is the variety of the
block b; that is, the maximal ideal spectrum of the cohomology ring of b.

Definition 6.1 Let b be a block of kG and Pγ a defect pointed group of b. Let
i ∈ γ. For any subgroup Q of P denote by eQ the unique block of kCG(Q) such that
BrQ(i)eQ = BrQ(i). The nucleus YG,b of the block b is the union of the images of
all maps VQ(k) −→ VG(b) induced by the restriction maps resP

Q from H∗(G, b, Pγ)

to H∗(Q, k), where Q runs over the set of subgroups of P such that the block eQ of
kCG(Q) is not nilpotent, with the convention YG,b = {0} if the block b is nilpotent.

Proposition 6.2. If b0 is the principal block of kG then restriction from G to a
Sylow-p−subgroup P of G induces isomorphisms

VG(b0) ∼= VG(k) and YG,b0
∼= YG .

Proof. If b0 is the principal block of kG then the cohomology ring of b0 is precisely
the image of the restriction to P of H∗(G, k), thus VG(b0) ∼= VG(k). Moreover, for
any subgroup Q of P , the block eQ as defined in 6.1 is the principal block of kCG(Q).
By [7], eQ is nilpotent if and only if the group kCG(Q) is p−nilpotent. Thus resG

P

induces an injective map YG,b0 −→ YG. This map is also surjective; indeed, if H is a
subgroup of G such that CG(H) is not p−nilpoptent, then for any Sylow-p−subgroup
Q of H, the group CG(Q) is not p−nilpotent. The statement follows.

Remark 6.3 Let b be a block of kG, Pγ a defect pointed group of b, let i ∈ γ
and denote for any subgroup Q of P by eQ the unique block of kCG(Q) such that
BrQ(i)eQ = BrQ(i).

(i) We have YG,b = {0} if and only if eQ is nilpotent for every non trivial subgroup
Q of P .

(ii) The nucleus YG,b of b is an invariant of the p−local structure of b since both
the cohomology ring of b and the property of eQ to be nilpotent are so.

(iii) One might want to try to generalize the results in [4], [5] to arbitrary blocks.
The principal obstacle at this stage is, that we do not yet have analogous concepts
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which would generalize the representation theoretical nucleus defined in [5, 10.1] or
the concept of trivial homology modules [5, 2.1] to arbitrary blocks.
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