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Abstract
Despite the advancement in imaging technologies, a fifth of the injuries in the cervical spine

remain unnoticed in the X-ray radiological exam. About a two-third of the subjects with unnoticed

injuries suffer tragic consequences. Based on the success of computer-aided systems in several

medical image modalities to enhance clinical interpretation, we have proposed a fully automatic image

analysis framework for cervical vertebrae in X-ray images. The framework takes an X-ray image as

input and highlights different vertebral features at the output. To the best of our knowledge, this is the

first fully automatic system in the literature for the analysis of the cervical vertebrae.

The complete framework has been built by cascading specialized modules, each of which addresses

a specific computer vision problem. This dissertation explores data-driven supervised machine learning

solutions to these problems. Given an input X-ray image, the first module localizes the spinal region.

The second module predicts vertebral centers from the spinal region which are then used to generate

vertebral image patches. These patches are then passed through machine learning modules that detect

vertebral corners, highlight vertebral boundaries, segment vertebral body and predict vertebral shapes.

In the process of building the complete framework, we have proposed and compared different

solutions to the problems addressed by each of the modules. A novel region-aware dense classification

deep neural network has been proposed for the first module to address the spine localization problem.

The proposed network outperformed the standard dense classification network and random forest-

based methods.

Location of the vertebral centers and corners vary based on human interpretation and thus

are better represented by probability maps than single points. To learn the mapping between the

vertebral image patches and the probability maps, a novel neural network capable of predicting a

spatially distributed probabilistic distribution has been proposed. The network achieved expert-level

performance in localizing vertebral centers and outperform the Harris corner detector and Hough

forest-based methods for corner localization. The proposed network has also shown its capability

for detecting vertebral boundaries and produced visually better results than the dense classification

network-based boundary detectors.

Segmentation of the vertebral body is a crucial part of the proposed framework. A new shape-

aware loss function has been proposed for training a segmentation network to encourage prediction

of vertebra-like structures. The segmentation performance improved significantly, however, the

pixel-wise nature of proposed loss function was not able to constrain the predictions adequately. To

solve the problem a novel neural network was proposed which predicts vertebral shapes and trains

on a loss function defined in the shape space. The proposed shape predictor network was capable of

learning better topological information about the vertebra than the shape-aware segmentation network.

The methods proposed in this dissertation have been trained and tested on a challenging dataset

of X-ray images collected from medical emergency rooms. The proposed, first-of-its-kind, fully

automatic framework produces state-of-the-art results both quantitatively and qualitatively.
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false positive (purple) and false negative (red). . . . . . . . . . . . . . . . . 115

6.4 Histogram-based spatial normalization layer. (a)-(c) illustrate the resid-

ual probability problem of the previous chapter. (d)-(g) summarizes the

histogram-based solution to this problem. (a) input feature map (b) fea-

ture map after min subtraction (c) resulted probability distribution from the

original spatial normalization layer (d) histogram of the input feature map

(e) background value subtracted feature map (f) negative value replaced by

zeros (g) resulting probability distribution from the histogram-based spatial

normalization layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Test patch extraction process (a) manually annotated centers (×), orientation

vectors (↑) and patch boundaries in blue (b) extracted test patches. . . . . . 118

6.6 Performance of the ASM-based initial framework (left) and performance

of the ASM-G method trained in this chapter (right). Converged vertebral

shapes (magenta) with ground truth shapes (green). . . . . . . . . . . . . . 119



xxiv List of figures

6.7 Dice similarity coefficient (DSC) with different matching distances for bound-

ary detection (a) binary ground truth (b) binary prediction (c) overlap be-

tween the ground truth and the prediction. Green indicates true positive, blue

false positives and red false negatives. With matching distance, d = 0, the

DSC = 0.53 and with d = 1, the DSC = 0.94. . . . . . . . . . . . . . . . . 121

6.8 Cumulative metric curves (a) Dice similarity coefficients (b) Bhattacharyya

coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.9 Boxplots of quantitative metrics (a) Dice similarity coefficients (b) Bhat-

tacharyya coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.10 Patch-level edge detection results 1. . . . . . . . . . . . . . . . . . . . . . 125

6.11 Patch-level edge detection results 2. . . . . . . . . . . . . . . . . . . . . . 126

6.12 Post-processing for reducing thickness of the predicted distribution (a) in-

put test vertebrae (b) probabilistic ground truth (c) thick prediction of the

probabilistic networks (d) eroded predictions (PSRN-He). . . . . . . . . . 127

6.13 Image-level edge detection results 1. PSRN-He indicates the eroded (thinned)

patch-level predictions are used. . . . . . . . . . . . . . . . . . . . . . . . 128

6.14 Image-level edge detection results 2. . . . . . . . . . . . . . . . . . . . . . 129

6.15 Cumulative distribution of point to curve (Ep2c) errors. . . . . . . . . . . . 131

6.16 Boxplots of quantitative metrics (a) pixel-level accuracy (b) Dice similarity

coefficients (c) point to ground truth curve error, Ep2c. . . . . . . . . . . . . 132

6.17 Qualitative segmentation results: true positive (green), false positive (blue)

and false negative (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.18 Comparison of segmentation performance for vertebrae with severe clinical

condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.19 Qualitative boundary detection and segmentation results for vertebrae col-

lected from the NHANES-II: input image patch – predicted vertebral bound-

ary – segmented vertebral body. The predictions are displayed on the input

image patch as the blue overlay. Ground truth information is not available. . 135



List of figures xxv

7.1 Examples of training vertebrae: original image (left), pixels at the zero-level

set of the SDF (center) and the SDF (right). Darker tone represents negative

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 UNet for shape prediction (a) network layers (except the final layer) (b) legend.145

7.3 Final layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Cumulative error curves (a) average point to curve error (Ep2c) and (b)

Hausdorff distance (dH). . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5 Boxplots of quantitative metrics (a) average point to curve error (Ep2c) and

(b) Hausdorff distance (dH) on the right. . . . . . . . . . . . . . . . . . . . 150

7.6 Qualitative results for comparatively less challenging examples. The pre-

dicted shape is plotted in blue and the ground truth in green. . . . . . . . . 151

7.7 Qualitative results for challenging examples. The predicted shape is plotted

in blue and the ground truth in green. . . . . . . . . . . . . . . . . . . . . . 152

7.8 Qualitative results for challenging examples. . . . . . . . . . . . . . . . . . 153

7.9 Qualitative results from NHANES-II dataset using LS-UNet-18. . . . . . . 153

7.10 Computing curvature of a point. . . . . . . . . . . . . . . . . . . . . . . . 154

7.11 Localization of corners from predicted shapes (a) predicted shape points (b)

shape points divided into four quadrants (c) curvature magnitude plotted as a

line in the normal direction (d) corners (×) localized based on the maximum

curvature magnitude in each quadrant. . . . . . . . . . . . . . . . . . . . . 155

8.1 Histogram plot of vertebral size in the training dataset. . . . . . . . . . . . 160



xxvi List of figures

8.2 Complete framework (1) spine localization: (1a) input image (1b) resized

and padded image of size 100× 100 (1c) region-aware spine localization

network, FCN-R (1d) network output of size 100× 100 (1e, 1f) image-

level spine localization result (2) center localization (2a) patch extraction

from localized spinal region (2b) extracted patches (2c) probabilistic spatial

regressor network (PSRN) (2d) patch-level center probabilities (2e) image-

level center probabilities (2f) localized centers (3a) vertebral image patch

extraction (3b) extracted vertebral image patches (4) corner localization (4a)

Bhattacharyya coefficient-based loss function equipped PSRN (4b) patch-

level corner probabilities (4c, 4d) post-processing and image-level localized

corners (×) (5) boundary detection (5a) histogram-based normalization layer

equipped PSRN (5b) patch-level edge probabilities (5c, 5d) post-processing

and image-level vertebral boundaries (blue overlay) (6) segmentation (6a)

shape-aware SegNet-S (6b) patch-level segmentation results (6c, 6d) post-

processing and image-level segmented vertebrae (blue overlay) (7) shape

prediction (7a) LS-UNet-18 (7b) patch-level predicted shapes (7c, 7d) post-

processing and image-level predicted shape (blue) and localized corners

(×). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.3 Qualitative results 1. Manually annotated vertebral boundaries are plotted in

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.4 Qualitative results 2. Manually annotated vertebral boundaries are plotted in

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.5 Qualitative results 3. Manually annotated vertebral boundaries are plotted in

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.6 Qualitative results from NHANES-II dataset. . . . . . . . . . . . . . . . . 170

8.7 Qualitative results from NHANES-II dataset 2. . . . . . . . . . . . . . . . 171

A.1 Example of images in Dataset A. . . . . . . . . . . . . . . . . . . . . . . . 205

A.2 Appearance of intensity and gradient patches of different sizes. . . . . . . . 207

A.3 Random Mirrored Feature (RMF). . . . . . . . . . . . . . . . . . . . . . . 208



List of figures xxvii

A.4 Bandwidth (BW ), number of variables (nVar) and number of thresholds

(nT hresh) selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.1 Decision tree: a tree starts with a set of training data at the root node. Based

on a cost function the data is divided into left and right child nodes. The

process is repeated at the split nodes. Each branch of the tree ends with a leaf

node. Leaf nodes are associated with a decision based on the set of training

data it contains. At test time, a new data point, X, starts at the root node and

follows a tree branch based on the splits learned during training. A decision

can be taken based on which leaf node it reaches. In this toy example, we

show a decision tree for a set of 32 characters containing two letters: ‘#’ and

‘%’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

B.2 Schematic of a biological neuron. . . . . . . . . . . . . . . . . . . . . . . 216

B.3 Schematic of Rosenblatt perceptron. . . . . . . . . . . . . . . . . . . . . . 217

B.4 Sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.5 Multiclass classification using perceptrons. . . . . . . . . . . . . . . . . . 219

B.6 Multi-layer perceptron or fully connected network. . . . . . . . . . . . . . 220

B.7 Convolutional Neural Network for digit classification (a) network architec-

ture (b) legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.8 CNN (AlexNet) for large-scale image categorization (a) network architecture

(b) legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.9 VGG-16 Net (a) network architecture (b) legend. . . . . . . . . . . . . . . 222

B.10 Fully convolutional network for image segmentation (VGG-16 FCN) (a)

network architecture (b) legend. . . . . . . . . . . . . . . . . . . . . . . . 222

B.11 Deconvolutional network for image segmentation (a) network architecture

(b) legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B.12 UNet for medical image segmentation (a) network architecture (b) legend. . 223

B.13 Convolutional layer (a) input feature map (b) filters (c) output feature map

(d) legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

B.14 Subsampling and maxpooling (a) input feature map (b) output feature map. 226



xxviii List of figures

B.15 Gaussian connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B.16 Rectified linear unit (ReLU). . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.17 Unpooling and switch variable. . . . . . . . . . . . . . . . . . . . . . . . . 229



List of tables

2.1 Literature review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Optimized hyper-parameters for random forest. . . . . . . . . . . . . . . . 39

3.2 Parameters and values for the random forest-based localization framework. 43

3.3 Average metrics for spine localization. . . . . . . . . . . . . . . . . . . . . 51

4.1 Performance of the center localization framework. The ‘semi-automatic’

patch creation process uses localization ground truth and the results reported

below are independent of the accuracy of the global localization framework.

Results from the fully automatic procedure which uses the localized spine

from the global localization framework are reported in the right under the

‘fully automatic’ patch creation process. . . . . . . . . . . . . . . . . . . . 74

5.1 Euclidean distance between predicted and manually annotated corners. . . . 101

6.1 Dice similarity coefficients for binary boundary detection networks. . . . . 123

6.2 Bhattacharyya coefficients for probabilistic boundary detection networks. . 123

6.3 Average quantitative metrics for segmentation. . . . . . . . . . . . . . . . . 130

6.4 Average quantitative metric for shape prediction. . . . . . . . . . . . . . . 131

6.5 Comparison between SegNet and SegNet-S for cases with severe clinical

condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1 Dimensionality of different matrices and vectors. . . . . . . . . . . . . . . 144

7.2 Comparison of deep shape predictor networks with the Chan-Vese model. . 148



xxx List of tables

7.3 Effect of number of eigenvectors on errors for LS-UNet. . . . . . . . . . . 148

7.4 Quantitative comparison of different methods. . . . . . . . . . . . . . . . . 149

7.5 Statistical significance test (t-test). . . . . . . . . . . . . . . . . . . . . . . 149

7.6 Corner localization from LS-UNet-18. . . . . . . . . . . . . . . . . . . . . 156

A.1 Effect of different ROIs on HarrisNB. . . . . . . . . . . . . . . . . . . . . 206

A.2 Optimized parameters for corner localization. . . . . . . . . . . . . . . . . 210

A.3 Effect of different ROIs on HoughF for different feature vectors. . . . . . . 212



Chapter 1

Introduction

This dissertation explores a set of computer vision problems related to X-ray image analysis

of cervical vertebrae and proposes a fully automatic framework to be used as a supporting

tool for image interpretation by clinical experts. In this first chapter, we begin by addressing

the motivation behind the need for an automatic framework for the analysis of cervical

radiographs. The research objectives and questions are then stated, followed by a list of key

original contributions proposed in this dissertation. We end this chapter with a list of articles

published during the course of the research along with an outline of the remaining chapters.

1.1 Motivation

The cervical spine is a vital part of the human body, and due to its flexibility and position, is

particularly vulnerable to trauma. Post-traumatic delayed or incorrect diagnosis can result

in neurological deficit, paralysis or even death. Cervical spine injuries (CSIs) occur in a

significant percentage of all trauma patients due to high energy impacts like automobile

accidents, falls and dives into shallow water. Apart from these major accidents, minor injuries

may also lead to CSI in elderly people and people with pre-existing bone abnormalities.

About 43.9 to 61.5% of all spinal injuries occur in the cervical region, making it the most

common injury-prone region of the whole spine [3]. Among different imaging techniques,

X-ray is usually the first method of choice for the diagnosis of the cervical spine injuries in
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the hospital emergency departments because of its quick results, low cost and availability.

There are typically three views taken of the cervical spine: lateral view, anterior-posterior

(AP) and odontoid process view. This dissertation focuses on the lateral view as it is most the

informative and diagnostic for injury [4]. Despite standardisation and advances in imaging

technologies, evaluation of a cervical spine X-ray image is a major radiological challenge for

an emergency physician, particularly those with less experience. Failure to establish a correct

diagnosis may result in death or serious disabilities. Clinical literature has reported up to 20%

of CSI patients suffer tragic extension of their injuries due to delayed or missed diagnosis [5].

Early and accurate detection of CSI is critical to plan appropriate care and to prevent any

tragic consequences. However, missed or delayed diagnosis of cervical spine injuries is still

a common problem in hospital emergency departments. In one study [5], the most common

cause (accounting for 44%) of missed cervical spine injuries was misinterpretation of the

images. Another study [6] resulted in a similar number (47%) of missed or delayed diagnosis

due to misinterpretation. Junior staff responsible for initial radiological examination failed

to diagnose the injuries until experienced staff later performed a second evaluation of the

radiographs. In [5], complications attributed to delayed or missed diagnosis ranged from

motor and/or sensory neurologic deficits to complete quadriplegia. In other studies, 67% of

patients with missed cervical fractures suffered neurological deterioration and nearly 30%

of delayed CSI diagnosis developed permanent neurological deficit [7]. These numbers are

alarming and the intention is to reduce these figures with the help of the state-of-the-art

advances in computer vision algorithms.

Computer-aided diagnosis (CAD) systems have been used in clinical environment as

a supporting tool for the experts for years. Most notably, CAD has been used for cancer

detection in breast mammography [8, 9], radiography and computer tomography (CT) of

lungs [10–12] and CT colonography [13, 14] with variable success rates. Other use of CAD

systems includes detection of coronary artery diseases [15, 16], pathological brains [17, 18]

and Alzheimer’s diseases [19, 20]. Several studies reported that the inclusion of the CAD
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system in the clinical environment has improved the diagnostic performance [14, 21, 22].

An overview of a conceptual computer-aided injury detection system for the lateral

cervical X-ray image is shown in Fig. 1.1. From an input lateral cervical X-ray image, the

system detects and highlights injuries to aid in clinical interpretation of the image by a

physician.

 

 

    (a)                                                    (b)                                                       (c)

Fig. 1.1 (a) An example cervical spine radiograph. This patient has retrolisthesis (displace-
ment) of vertebra C3 onto C4 and C4 onto C5 (b) the conceptual injury detection system
performs analysis of the image and predicts vertebral shapes (c) vertebral alignments are
checked based on the predicted shapes, and possible location of abnormalities are highlighted
to draw the radiologist’s attention to the detected injury.

Keeping this overarching goal in the horizon, in this dissertation, we limit our attention

towards solving the computer vision aspects of the fully automatic injury detection

system. The evaluation of the proposed system’s ability to improve human reading of images

is beyond the scope of this dissertation. The performance of the algorithms proposed in this

dissertation will be achieved in stand alone studies.
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1.2 Research Question and Objectives

Many of the cervical spine injuries like vertebral displacement (retrolisthesis, and spondy-

lolisthesis), spinal fusion, degenerative changes, osteoporosis, osteophytes and fractures

(wedge, bi-concave and crush) can be detected by analyzing the size, shape, boundary and

corners of the vertebrae. From a medical image computing perspective, the major challenge

is to localize and detect different vertebral features in the image automatically. The main

research question is ‘Is it possible to develop a fully automatic image analysis framework

for cervical vertebrae in X-ray images?’. The quest for a complete and fully automatic

framework can be divided into several objectives:

1. Spine localization: Given an X-ray image, this algorithm will localize the spinal area

in the image. We explore this objective in Chapter 3.

2. Center localization: Given the localized spinal column, this algorithm will be able to

localize the vertebral centers. We explore the solution to this objective in Chapter 4.

3. Corner localization: Given the localized spinal column and centers, this algorithm

will localize vertebral corners. We propose and compare different solutions to this

algorithm in Chapter 5.

4. Vertebral boundary detection: Given localized vertebrae, this algorithm will detect

vertebral boundaries. We discuss this problem in Chapter 6.

5. Vertebra segmentation: Given localized vertebrae, this algorithm will segment vertebral

bodies. This algorithm has also been described in Chapter 6.

6. Vertebral shape prediction: Given localized vertebrae, this algorithm will predict

vertebral shapes. The shape prediction is described in Chapter 7.

Once we can localize the spine, vertebral centers and corners, track vertebral boundaries,

segment vertebral bodies and predict vertebral shapes, all these algorithms can be threaded

together to build a complete and fully automatic image analysis framework which is reported

in Chapter 8.
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This dissertation explores data-driven machine learning-based solutions to the above-

mentioned objectives. The models learn from a training dataset of images which have been

annotated manually by clinical experts. Several random forest and deep learning-based

models have been used, compared, investigated and innovated to build solutions for different

vertebrae related computer vision problems in the objectives.

1.3 Original Contributions

The following are the key contributions of the work presented in this dissertation:

1. Region-aware deep convolutional neural network: A novel loss term has been included

in the training of a deep convolutional neural network to encourage prediction of a

single connected region. This region-aware network is used for the localization of the

spinal region in X-ray images.

2. Shape-aware deep convolutional neural network: A shape-based loss term has been

included in the training of a deep convolutional neural network to assist segmentation

of vertebra-like shapes.

3. Deep spatial probabilistic regressor network: An innovative deep convolutional neural

network is proposed for generating spatially distributed probabilistic maps. The

proposed network has been used for vertebral center and corner localization, and also

for vertebral boundary detection.

4. Deep spatial shape regressor network: A new convolutional neural network has been

designed for prediction of vertebral shapes. The proposed network has been trained

with a loss function defined in the shape space overcoming some of the limitations of

the standard pixel-wise error-based loss function.

5. A fully automatic image analysis framework for cervical vertebrae: A first-of-its-kind

fully automatic image analysis framework has been developed which is capable of

taking an X-ray image as input and highlighting several vertebral features without any

user intervention.
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The work of this dissertation began with a vertebra segmentation framework that required

vertebral centers to be clicked by the user at test time. The framework then used an active

shape model to predict vertebral shapes. An example of this earlier framework is shown in

Fig. 1.2.

 

 

(a)                                        (b)                                      (c)                                (d) 

Fig. 1.2 Vertebra segmentation with manually clicked vertebral centers and active shape
model (a) input image and manually clicked vertebral center points (+) (b) initialized active
shape models on the vertebrae (−) (c) converged vertebral shapes (−) (d) converged vertebral
shapes (−) with ground truth shapes (−).

The predicted shapes of this framework were sensitive to the variability of the manually

clicked vertebral centers. Also, because of the complexity and sheer diversity in our dataset

collected from real-life medical emergency rooms, the overall performance of this preliminary

framework was poor. To lessen the effect of the manually clicked center points, we began our

research by proposing two novel methods to localize the vertebral corners: a Harris corner

detector-based naive Bayes approach and a Hough forest-based approach. However, the

localized corners by these algorithms were not able to improve the overall performance of the

framework. We then moved forward with our research to build a fully automatic framework

by proposing a spine localization algorithm based on random classification forests. The

algorithm was applied in a two-stage dense to coarse manner and able to localize the spine in

a parallelogram box.

Deep learning has been at the center of the computer vision research since its outstanding

performance in large-scale image classification challenge in 2012 [23]. However, the scarcity
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of the training data was a roadblock for the deep learning methods to be applied to our

problems. With time, our dataset of 90 images increased to a dataset of 296 images and using

data augmentation techniques, we were able to use deep learning models on our problems.

Based on the success of the fully convolutional neural networks in the literature, we proposed

a novel spine localization algorithm using a region-aware deep fully convolutional neural

network which is a key contribution in the present work. This algorithm outperformed our

two-stage random classification forest-based spine localization algorithm.

After localizing spinal region robustly, we focused our attention to localize vertebral

centers. We modified the fully convolutional network to generate a spatially distributed

probability map indicating the location of the vertebral centers. The deep spatial probabilistic

regressor network is a key contribution in this dissertation. We further improved the proposed

deep spatial probabilistic regressor by introducing a novel loss function and a normaliza-

tion layer. The improved spatial probabilistic regressor network was capable of localizing

multiple image landmarks simultaneously. We applied this improved network to the corner

localization problem which outperformed our previous Harris corner detector-based naive

Bayes and Hough forest-based corner localization algorithms by a large margin. A final

improvement to the spatial probabilistic regressor network was proposed by improving the

normalization layer using a histogram-based approach. This network was applied on the

vertebral boundary detection problem.

Another key contribution of this dissertation is a novel shape-aware deep vertebrae

segmentation network. We proposed a novel shape-based loss term into the training of the

segmentation network. The shape-aware network performed significantly better than the

original segmentation network. However, the loss function was still a pixel-wise loss function

where the segmentation results were not constrained into possible vertebra-like structures.

This issue leads us to another key contribution presented in this work, a deep spatial shape

regressor network. The proposed network is trained with a novel loss function defined in the
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shape domain and predicts shapes directly instead of predicting segmentation masks.

After solving the spine localization, vertebral center and corner localization, vertebral

boundary detection, segmentation and shape prediction problems, we combine these al-

gorithms altogether in a seamless manner to build a complete and fully automatic image

analysis framework for cervical vertebrae. This framework takes as input an X-ray image

and highlights different vertebral features without any human input. An example of the fully

automatic framework is shown in Fig. 1.3. For comparison, the same input image has been

used in Fig. 1.2 where the earlier framework was illustrated.

(a)                                           (b)                                          (c)                                          (d) 

(e)                                         (f)                                          (g)    

Fig. 1.3 Fully automatic vertebral image analysis framework (a) input image (b) localized
spinal region (blue overlay) (c) localized vertebral centers (+) (d) localized vertebral corners
(×) (d) predicted vertebral boundaries (blue overlay) with ground truth shape (−) (e) predicted
segmentation masks (blue overlay) with ground truth shape (−) (f) predicted vertebral shapes
(−) with ground truth shape (−).
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1.4 List of Publications

The work in this dissertation is supported by articles published, or under review, in interna-

tional workshops, conferences, and journals. Specifically, publications in Sec. 1.4.1-1.4.3 are

directly related to this dissertation.

1.4.1 Journals

1. S M Masudur Rahman Al-Arif, Muhammad Asad, Karen Knapp, Micheal Gundry,

and Greg Slabaugh. "Patch-based corner detection for cervical vertebrae in X-ray

images." Elsevier Signal Processing: Image Communication, Volume 59, Page 27-36,

November 2017.

2. S M Masudur Rahman Al-Arif, Karen Knapp, and Greg Slabaugh. "Fully automatic

cervical vertebrae segmentation framework for X-ray images." Elsevier Computer

Methods and Programs in Biomedicine. (https://doi.org/10.1016/j.cmpb.2018.01.006)

1.4.2 Conferences

1. S M Masudur Rahman Al-Arif, Muhammad Asad, Karen Knapp, Micheal Gundry,

and Greg Slabaugh. Hough forest-based corner detection for cervical spine radiographs.

In Proceedings of the 19th Conference on Medical Image Understanding and Analysis

(MIUA), 2015, Lincoln, UK.

2. S M Masudur Rahman Al-Arif, Muhammad Asad, Karen Knapp, Micheal Gundry,

and Greg Slabaugh. Cervical vertebral corner detection using Haar-like features and

modified Hough forest. In Proceedings of the 5th International Conference on Image

Processing Theory, Tools and Applications (IPTA), 2015, Orléans, France.

3. S M Masudur Rahman Al-Arif, Michael Gundry, Karen Knapp, and Greg Slabaugh.

Global localization and orientation of the cervical spine in X-ray images. In Pro-

ceedings of the 4th International Workshop and Challenge In Computational Methods

https://doi.org/10.1016/j.cmpb.2018.01.006
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and Clinical Applications for Spine Imaging (CSI), 2016, Held in Conjunction with

MICCAI 2016, Athens, Greece. (Best Paper Award)

4. S M Masudur Rahman Al-Arif, Michael Gundry, Karen Knapp, and Greg Slabaugh.

Improving an active shape model with random classification forest for segmentation of

cervical vertebrae. In Proceedings of the 4th International Workshop and Challenge

In Computational Methods and Clinical Applications for Spine Imaging (CSI), 2016,

Held in Conjunction with MICCAI 2016, Athens, Greece.

5. S M Masudur Rahman Al-Arif, Karen Knapp, and Greg Slabaugh. Probabilistic

Spatial Regression using a Deep Fully Convolutional Neural Network. In Proceedings

of the British Machine Vision Conference (BMVC), 2017, London, UK.

6. S M Masudur Rahman Al-Arif, Karen Knapp, and Greg Slabaugh. Region-aware

Deep Localization Framework for Cervical Vertebrae in X-Ray Images. In Proceedings

of the workshop on Deep Learning in Medical Image Analysis (DLMIA), 2017, Held

in Conjunction with MICCAI 2017, Quebec City, Canada.

7. S M Masudur Rahman Al-Arif, Karen Knapp, and Greg Slabaugh. Shape-aware

Deep Convolutional Neural Network for Vertebrae Segmentation. In Proceedings of

the workshop on Computational Methods & Clinical Applications in Musculoskeletal

Imaging (MSKI), 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada.

1.4.3 Clinical Abstracts

1. Developing CSPINE CAD through machine learning algorithms: Inter-operator pre-

cision errors of user inputs, Watts V, Winzar C, Overington A, Rigby J, Gundry M,

Al-Arif SMMR, Phillips M, Slabaugh G, Appelboam A, Reuben A, Knapp K. UKRC

conference proceedings. P63, Liverpool, 29 June - 1 July, 2015.

2. Student radiographer perceptions of using CSPINE CAD software to assist cervical

spine image interpretation and diagnosis, Watts V, Winzar C, Overington A, Rigby

J, Gundry M, Al-Arif SMMR, Phillips M, Slabaugh G, Appelboam A, Reuben A,



1.5 Dissertation Outline 11

Knapp K. UKRC conference proceedings. P108:P008, Liverpool, 29 June - 1 July,

2015.

3. Can CSPINE-CAD software increase diagnostic accuracy and confidence in c-spine

imaging? Gundry M, Knapp K, Slabaugh G, Appelboam A, Reubens A, Al-Arif

SMMR, Phillips M, UKRC conference proceedings. P186, Liverpool, 6 - 8 June,

2016.

1.4.4 Publications in Collaboration

1. Tim Albrecht, Gregory Slabaugh, Eduardo Alonso and S M Masudur Rahman Al-

Arif. Deep Learning for Single-Molecule Science. Nanotechnology, Volume 28 (42),

Page 423001, September 2017.

2. Atif Riaz, Muhammad Asad, S M Masudur Rahman Al-Arif, Eduardo Alonso,

Danai Dima, Philip Corr and Greg Slabaugh. FCNet: A Convolutional Neural Network

for Calculating Functional Connectivity from functional MRI. In Proceedings of the

International Workshop on Connectomics in NeuroImaging (CNI), 2017, Held in

Conjunction with MICCAI 2017, Quebec City, Canada.

3. Atif Riaz, Muhammad Asad, S M Masudur Rahman Al-Arif, Eduardo Alonso,

Danai Dima, Philip Corr and Greg Slabaugh. Deep fMRI: An end-to-end deep network

for classification of fMRI data. In Proceedings of the IEEE International Symposium

on Biomedical Imaging (ISBI), 2018, Washington, D.C., USA.

1.5 Dissertation Outline

This dissertation is structured as followed: Chapter 2 provides a comprehensive literature

review, an overview of the dataset used throughout the work and a brief discussion on some

of the key concepts and algorithms. Chapter 3 deals with the spine localization problem and

compares two proposed algorithms. The center localization method has been discussed in

Chapter 4. Chapter 5 describes and compares three corner localization frameworks. Vertebral
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boundary detection and segmentation problems have been addressed in Chapter 6. This

is followed by the shape prediction framework in Chapter 7. Finally, in Chapter 8, all the

algorithms are threaded together to build a complete and fully automatic image analysis

framework for the cervical vertebrae. This leads to the conclusion of the dissertation in

Chapter 9 where we discuss the limitations of the current framework, possible ways for

improvements and direction towards future research on the topic.



Chapter 2

Background

This chapter is divided into four sections. We start by describing some of the key concepts

related to the spine and the vertebrae. In the second section, we present a literature review by

discussing the state of the research in related fields. The section ends with a table summarizing

the most related articles. The dataset used for training and testing the proposed methods

throughout this dissertation are reported in the next section highlighting the complexity and

diversity of the images. We end this chapter by describing the initial framework from which

the work of this dissertation evolved and with a brief introduction to the random forest and

deep learning methods, both of which are extensively used in this dissertation.

2.1 Spine and Vertebrae

The vertebral column, or the spine, is a collection of bones that support the head and act as

an attachment point for the ribs and muscles of the back and neck. An adult human vertebral

column consists of 26 bones: the 24 vertebrae, the sacrum, and the coccyx bones [1]. The

vertebrae are further divided into the seven cervical vertebrae, 12 thoracic vertebrae, and five

lumbar vertebrae based on their position in the column (see Fig. 2.1 reproduced from [1]).

In this dissertation, we focus on the cervical vertebrae. As mention earlier, for X-rays,

the cervical spine is scanned with three standard views: lateral, anterior-posterior (AP) and
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Fig. 2.1 Visualization of the vertebral column reproduced from [1].

odontoid process view [4]. Examples of these views are shown in Fig. 2.2. For general

evaluation of the cervical spine, the lateral view is the most diagnostic. The other views

are usually taken to focus on specific areas of the spine. For example, vertebra C1 and C2

overlap in the lateral view. Thus the odontoid peg view is appropriate to visualize these

vertebrae. Similarly, the AP view is needed if specific focus on the anterior (right-side of

Fig. 2.2a) and/or posterior (left-side of Fig. 2.2a) side is required. The work presented in this

(a) (b) (c)

Fig. 2.2 Standard views for cervical vertebrae (a) lateral (b) anterior-posterior (c) odontoid
process.
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dissertation deals with the most diagnostic lateral view of the cervical spine and vertebra

C3-C7 (C1 and C2 are not considered because of their overlap, similar to other studies related

to the cervical spine [24, 25]).

Fig. 2.3 Cervical spine at flexion and extension.

The cervical spine is a highly flexible anatomy, capable of flexion, extension, lateral

flexion, and rotation [26]. Fig. 2.3 shows examples of lateral X-ray taken with the cervical

spine in flexion and extension. Flexion is a movement by which subject’s chin attempts to

touch the chest whereas extension is a movement in the opposite direction. Lateral flexion is

a similar movement but sideways, where the subject’s ear tries to reach the shoulder. The

lateral view can also be taken with subject’s face rotated sideways.

Due to this wide range of motion, the cervical spine is particularly vulnerable to injury.

Automobile related injuries are the most common in the cervical spine. These injuries occur

as the head and neck hit the dashboard, due to either being hit by another car or as the

vehicle comes to a sudden stop. This causes either hyperflexion or hyperextension to the

cervical spine. These mostly result in partial dislocation (subluxation) of the vertebral body.

Diving head first into shallow water is another common cause of injuries in the cervical spine
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resulting in compression injuries [27]. Apart from these, the cervical spine can also sustain

injuries due to sudden distraction, rotational movement and age-related reasons. The next

subsection describe some of the most common injuries related to the cervical spine.

2.1.1 Cervical Spine Injuries

2.1.1.1 Subluxation

Luxation is defined as the abnormal separation in the joint where two or more bones meet. A

partial dislocation is referred to as a subluxation. In the cervical spine, subluxation of the

vertebral body can occur on the anterior side or on the posterior side. The anterior displace-

ment of one vertebral body on the adjacent vertebral body is termed as spondylolisthesis

whereas the displacement in the posterior side is termed as retrolisthesis. Example of these

subluxations are shown in Fig. 2.4.

(a) (b)

Fig. 2.4 Sublaxation injuries (a) spondylolisthesis (b) retrolisthesis.

2.1.1.2 Compression Fracture

The collapse of a vertebral body is identified as a compression fracture. A compression

fracture is categorized based on the location of collapse. An anterior collapse is referred to



2.1 Spine and Vertebrae 17

as a wedge fracture whereas a posterior collapse is called a crush fracture. A collapse of the

vertebral body in the center is termed as a biconcave fracture. The severity of these fractures

is often computed based on the anterior, medial and posterior heights of the vertebral body.

A quantitative method, called Genant method, is widely used in clinical literature for the

determination of the type and the severity of the compression fracture [28]. Different type of

fractures are shown in Fig. 2.5.

(a)

(b)

 Wedge                Biconcave                Crush
Type of compression fracture

  Severity

Grade 1

Grade 1

Grade 2

Grade 3

Fig. 2.5 Vertebral fracture (a) normal vertebra (b) different types and grades of compression
fractures.

2.1.1.3 Osteoporosis and Osteophytes

Vertebral osteoporosis is a condition characterized by gradual weakening vertebral bones,

making them fragile. It develops over several years and usually not painful until a fracture

occurs. Osteoporosis is often only diagnosed when a minor impact causes a fracture in

the weakening bones. Fig. 2.6a shows an example of a cervical spine with osteoporosis.

Osteophytes are another common anomaly in the cervical spine. Osteophytes are usually

identified as bony projections that form along the vertebral boundaries. Both osteophytes

and osteoporosis are sometimes categorized as degenerative changes of the spine and often

related to ageing. An example of the cervical spine with osteophytes is shown in Fig. 2.6b.
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(a) (b)

Fig. 2.6 Degenerative changes (a) osteoporosis (b) osteophytes.

In this subsection, we have presented a selection of clinical conditions most common to

the cervical spine. The list is not exhaustive and there exist more complex and uncommon

conditions. It should also be noted that the cervical spine injuries often come in a subtle form.

Due to the difficulty in assessing the subtle injuries in X-ray images, a correct diagnosis can

be delayed. Clinical literature suggests 61% of all cervical vertebra fractures and 36% of the

subluxations remain unnoticed in X-rays [29].

2.2 Literature Review

The vertebral column is an important part of the human body. It can be imaged with different

types of modalities. Two major types of image modalities used are radiographic imaging

and magnetic resonance (MR) imaging. Radiographic imaging includes X-ray, computer

tomography (CT) and dual energy X-ray absorptiometry (DXA). While MR and CT produce

3D volumetric scans, X-ray and DXA produce 2D images. Amongst the reviewed litera-

ture [24, 25, 30–42] work on X-ray images, [38, 43–49] use DXA scans, while CT and MR

scans were investigated in [50–57] and [58], respectively. The literature diversely covers
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different areas of the spine being studied i.e., cervical, thoracic and lumbar vertebra.

There are seven cervical vertebrae (C1-C7), 12 thoracic vertebrae (T1-T12) and five

lumbar vertebrae (L1-L5). The column ends with the sacrum and the coccyx bone. Some

of the literature works on the whole vertebrae column [37, 39, 50, 51], while most papers

focus only on particular regions: cervical [24, 25, 30, 31, 33–36, 40, 41, 58], thoracolum-

bar [38, 42–44, 46, 48, 49, 52, 54, 56], lumbar [31, 32, 45, 47, 53, 59]. Our work is focused

on five cervical vertebrae, C3-C7, in X-ray images. Like most of the reviewed articles

concerning cervical vertebrae, C1 (atlas) and C2 (axis) are not considered in the current study

because of their overlap in lateral X-ray images. These vertebrae are better visualized in 3D

techniques like CT.

Different types of problems have been addressed in the reviewed literature. These ob-

jectives can be classified broadly into four classes: localization of the vertebral centers, end

plates or spinal column [30, 38, 41, 42, 49, 51, 53, 54, 58], identification of the vertebral

bone [39, 50, 51], segmentation [24, 25, 31, 32, 38, 40, 43–48, 50, 52, 55, 56] and fracture

detection or morphometry [33, 36, 37, 43, 44, 48, 59]. The literature can also be categorized

based on the type of methodology used. A few articles use non-data driven methods [34]

while all other reviewed literature uses data-driven methods (statistical shape models (SSM),

random forest (RF), AdaBoost, mean template etc.) which consists of an offline training

phase and an online testing or prediction phase.

There is no gold standard dataset available publicly. Most of the research has been

done on privately collected datasets. For X-ray images, a public dataset of cervical and

lumbar vertebrae with manual segmentation, NHANES-II [60], has been used throughout the

literature [24, 25, 30, 31, 33–36, 40]. This dataset consists of scanned analogue X-ray scans

which often includes unnecessary artefacts and also missing information about the resolution

of the data. These images were collected during second national health and nutrition exami-

nation survey (NHANES-II) conducted by the national center for health statistics (NCHS)
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from 1976 to 1980 in the USA. As the dataset was not collected from hospital emergency

departments, the images were not diverse in terms of injuries and other clinical conditions.

Another publicly available CT dataset has been set up recently at SpineWeb [61, 62], which

has been used in recent literature [52, 54, 56]. Our data is described in Sec. 2.3. The reviewed

literature is summarized in Table 2.1.

Based on the reviewed literature, it can be understood that data-driven methods are more

common than non-data driven methods. Among different methodologies, statistical shape

model (SSM)-based methods (active shape model (ASM), active appearance model (AAM),

deformable model (DM) and constrained local model (CLM)) have performed consistently

well over different spinal regions and image modalities. As stated earlier, our goal in this

dissertation is to solve different computer vision problems like localization of spinal region,

localization of vertebral centers, corners and vertebral boundary detection, segmentation and

shape prediction for cervical vertebrae in X-ray images. Concentrating on these objectives

and selecting the work on 2D radiographic images, most of the related literature comes mainly

from two groups: Benjelloun et al. [24, 25, 34, 35, 41, 42] and Cootes et al. [38, 44–49]. The

first group works with the NHANES-II dataset of cervical X-ray images while the second

group works on their own dataset of DXA images of the whole spine.

Earlier work of Benjelloun et al. [34, 35] address vertebral boundary detection and

region selection using a polar signature and template matching, respectively. They imple-

mented a semi-automatic segmentation framework based on ASM in [25, 49]. Our initial

framework, described in the Sec 2.4, is a simplified version of this work. Their latest work

on X-ray images [42] uses generalized Hough transform (GHT) to identify cervical vertebrae.

From the latter group, automatic segmentation and morphometry computation of vertebra

on DXA images have been addressed by Robert et al. in [44–46] using an AAM. An improved

segmentation is obtained with a part-based graph with AAM in [47]. Their method also

showed vertebral fracture detection capability in [48]. AAM has been improved by Random
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Reference No Modality Vertebra
Region Objective Key Methodology Dataset

Smyth 1999 [43] DXA Thoraco-Lumbar
Segmentation
Morphometry ASM Own

Tezmol 2002 [30] X-Ray Cervical Localization
Hough Transform (HT)

Template Matching NHANES-II

Zamora 2003 [31] X-ray Cervical Lumbar Segmentation GHT, ASM, DM NHANES-II

Bruijne 2004 [32] X-ray Lumbar Segmentation
k-NN classification

PDM
Particle filtering

Own

Chamarathy 2004 [33] X-Ray Cervical Morphometry
K-means

SOMs NHANES-II

Roberts 2005 [44] DXA Thoraco-Lumbar
Segmentation
Morphometry AAM Own-Cootes

Roberts 2006 [45] DXA Lumbar Segmentation AAM Own-Cootes
Roberts 2006 [46] DXA Thoraco-Lumbar Segmentation AAM Own-Cootes

Benjelloun 2006 [34] X-ray Cervical Edge detection Polar signature (NDD) NHANES-II
Benjelloun 2006 [35] X-ray Cervical Region selection Template matching NHANES-II
Aouache 2007 [36] X-Ray Cervical Morphometry ASM NHANES-II
Casciaro 2007 [37] X-Ray Whole Morphometry Local Phase symmetry Own
Bruijne 2007 [59] X-Ray Lumbar Morphometry Conditional ASM Own
Roberts 2009 [47] DXA Lumbar Segmentation AAM, Part-based Graph Own-Cootes

Klinder 2009 [50] CT Whole
Identification
Segmentation Generalized HT (GHT) Own

Roberts 2010 [48] DXA Thoraco-Lumbar
Segmentation
Morphometry AAM Own-Cootes

Mahmoudi 2010 [25] X-Ray Cervical Segmentation ASM NHANES-II
Dong 2010 [39] X-Ray Whole Identification Probabilistic Graphical Model Own

Benjelloun 2011 [24] X-Ray Cervical Segmentation ASM NHANES-II
Xu 2012 [40] X-Ray Cervical Segmentation AAM NHANES-II

Glocker 2012 [51] CT Whole
Localization
Identification

Random regression forest
Hidden Markov Model Own

Larhmam 2012 [41] X-Ray Cervical Localization GHT Own
Roberts 2012 [49] DXA Thoraco-Lumber Localization Regression forest, AAM Own-Cootes

Larhmam 2014 [42] X-Ray Cervical Localization GHT, K-means Own
Larhmam 2014 [58] MR Thoraco-Lumber Localization Ellipse fitting, curve detection own

MICCAI 2014 [52] CT Thoraco-Lumber Segmentaion
M1: Atlas-based

M2,3,4,5:Statistical Shape Model SpineWeb

Bromiley 2015 [38] DXA Thoraco-Lumber
Localization
Segmentation CLM with RFRV Own-Cootes

Ibragimov 2015 [53] CT Lumber
Localization

Rough Segmentation
Interpolation-based detection

mean shape model Own

Korez 2015 [54] CT Thoraco-Lumber
Localization

Rough Segmentation
Interpolation-based detection

Mean shape model SpineWeb, Own

Korez 2015 [55] CT Lumber Segmentation Shape Constrained DM Own
Korez 2015 [56] CT Thoraco-Lumber Segmentation Shape Constrained DM SpineWeb

Embrahimi 2016 [63] X-ray Lumber Localization
Corner detection using

Haar-based features Own

Bromiley 2016 [57] CT Thoraco-Lumber
Localization
Segmentation CLM with RFRV Own-Cootes

Mehmood 2017 [64] X-ray Cervical Localization GHT, Fuzzy c-means NHANES-II
Yang 2017 [65] CT Whole Identification Convolutional Neural Network SpineWeb, Own

Table 2.1 Literature review.

Forest Regression Voting (RFRV) in [49]. Along with geometric constraints, AAM-RFRV

performed better than the original AAM. Bromiley et al. [38, 57] is the latest work by their

group where constrained local model (CLM), another improved version of SSM, is used with
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RFRV. This method improved the segmentation accuracy for fractured vertebrae. [38] and

[49] can be considered as the state-of-the-art in the field of vertebra segmentation on 2D

radiographic images.

2.3 The Dataset

The data used in this dissertation comes from the ‘Computer-Aided Detection of Cervical

Spine Injuries: A Feasibility Project’ grant funded by the EPSRC [66]. The images were

received sequentially in stages. The images were provided by Royal Devon & Exeter Hos-

pital in association with the University of Exeter. The first instalment of 138 images was

received in late 2014. These images were scanned in the emergency rooms of the Royal

Devon & Exeter Hospital from March to April of 2014. The work included in our initial

publications [67–71] used a subset of 90 images from the initial 138 images. This dataset

will be referred to as ‘Dataset A’ in the following chapters. The selection of these 90 images

was done manually and has been described in Appendix A. The performance of the methods

proposed in our initial set of publications was evaluated in a ten-fold cross-validation manner.

As our methods developed from shallow models to deeper models requiring longer training

time, doing ten-fold cross validation became infeasible. To train our first deep model (not

reported in this dissertation), we used 124 randomly chosen images with data augmentation

and the remaining 14 images were used as a validation set to check the over-fitting during

training epochs.

In mid-2016, we received the second instalment of 158 images which were scanned in the

same hospital from May 2014 to August 2015. For the research reported in this dissertation,

we have used the randomly chosen 124 images from the first instalment as the training dataset

and 172 images consisting of a randomly chosen 14 images from the first instalment and all

the images from the second instalment as the test dataset.
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A final instalment of 40 images were received at the end of 2016. These images were

used as a validation set in some of our experiments.

The data was collected from the subjects who have visited the emergency department

of Royal Devon and Exeter hospital [66]. Each image in the dataset was de-identified of

the personal information except the subject’s age and gender. To make sure that the data

collection complied with the confidentiality and personalization issues, approvals were taken

from the ethics committee of the College of Engineering, Mathematics and Physical Sciences

from University of Exeter, and a research committee of the National Health Service (NHS).

The dataset offers a range of challenging and practical issues. It contains normal, good

contrast images to very low contrast, abnormal images. Fig. 2.7 shows a summary of the

intensity variations of the images in the dataset. The images are recorded in 16-bit unsigned

integer format thus the possible value of a pixel is limited from 0 to 65,535. Most of the
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Fig. 2.7 Intensity variation in the (a) training and (b) test dataset: Maximum intensity (+),
minimum intensity (+), mean intensity (×), length of the vertical blue line indicates the
standard deviation of the intensity distribution per image.
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Fig. 2.8 (a) Distribution of image resolution in the dataset (b) variation of patient age in the
dataset.

images used only a part of this available range: from 0 to 5,000. However, some of the

images had the upper range as high as 30,000. It can also be seen that the mean intensity and

the standard deviation in each image also vary greatly, making the dataset very challenging.

Apart from the intensity variation, the heights and widths of the images are also diverse

in our dataset. Fig. 2.8a shows the distribution of image sizes in the training and test dataset.

The pixel spacing of the images varies from 0.1 to 0.194 millimeter per pixel. The age of the
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Fig. 2.9 (a) Variation of patient sex in the dataset (b) Radiography systems used for X-ray
image acquisition.
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patients varied from 17 to 96. The distribution of patient age and sex in the training and test

dataset are reported in Fig. 2.8b and 2.9a, respectively. Radiographic systems used for the

acquisition of the images come from five different manufacturers: Philips, Agfa, KODAK,

General Electric (GE) and Carestream Healthcare (CH). Fig. 2.9b shows a bar plot of the

number of images taken by each system.

Diversity in our dataset also comes in the form of patient view (left, right), patient

position (standing, sitting, lying), spine orientation (flexion, extension) and clinical conditions

(osteophytes, osteoporosis, degenerative changes, bone loss, fracture, bone implant etc.). We

described some of these clinical conditions in Sec. 2.1. All the images were flipped and

rotated accordingly so that the posterior side was on the left side of the image. Since our data

is collected from the patients who had visited an emergency department, the majority of the

           

 

                    

 

(a)                         (b)                           (c)                              (d)                             (e)

(f)                           (g)                    (h)                             (i)                               (j)

Fig. 2.10 Examples of images in the dataset (a) bone loss (b) osteophytes (c) degenerative
changes (d) retrolisthesis (e) surgical implant (f) spondylolisthesis (g) image artefacts (h)
compression fracture (i) surgical implant (j) retrolisthesis.
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images contain clinical conditions. Fig. 2.10 illustrates some of the diversity in our training

and test dataset.

2.3.1 Manual Annotation

The methods discussed in the dissertation are data-driven machine learning methods. We

explore only supervised machine learning techniques which require input-output data pairs

during training. These data pairs are also needed for evaluation purposes at the test time.

As stated earlier, our work is focused on five cervical vertebrae, C3 to C7. Our medical

partners have provided us with the manual demarcation of the vertebral boundaries. Each

of the vertebrae in the dataset was manually annotated by expert radiographers using a

MATLAB graphical user interface. Each vertebra was annotated by 20 points along the

vertebral boundaries with one point for the center. Four of the boundary points indicate the

corners. The manual demarcation points for a few vertebrae are shown in Fig. 2.11. These

sparsely annotated vertebral boundaries can be converted into a continuous curve by using a

Catmull-Rom spline [72]. The blue lines in Fig. 2.11 represent the splined or interpolated

vertebral boundary. The number of manually clicked boundary points per vertebrae i.e. 20

is chosen based on [24] so that it can represent the vertebral boundary curvature accurately.

More manually clicked points would significantly increase the amount of human work needed

for manual annotation whereas fewer points would make the boundary inconsistent when

interpolated. As it can be seen in Fig. 2.11, using 20 manually clicked points, the interpolated

continuous curve is able to follow the natural vertebral curvature accurately.

Fig. 2.11 Manual segmentation: manually demarcated center (×), corner (+) and boundary
(o) points. The blue curve (−) represents the splined vertebral boundary.



2.4 Initial Framework 27

2.4 Initial Framework

The work of this dissertation evolved from a semi-automatic shape predictor framework.

This framework is not a contribution of this dissertation, however, it serves as a starting

point for the work to be presented. The framework uses an active shape model (ASM)

to capture the shape variations within the training set. The ASM produces a mean shape,

eigenvalues and eigenvectors which are also known as modes of variation. At the test time,

using manually clicked vertebral centers, an approximation of the vertebra size and rotation

is computed and mean shape is initialized on the vertebrae based on this information. Then

using an iterative procedure, called ASM search, the initialized shape converges on the actual

vertebral boundaries. In the following subsections, we describe the training and the test time

procedures of this framework. This framework is designed based on the work of Benjelloun

et al. [24, 25].

2.4.1 ASM Training

Active shape model (ASM) is a statistical model which captures the variation of a group of

similar shapes defined by a set of points. In our case, vertebra shapes are defined by a set

of 20 points. It can be seen in Fig. 2.11 that the spacings between the manually annotated

points are not uniform which can add additional variation to the model. First, these manually

induced variations are removed by reconfiguring the points between two consecutive corners

with equal spacing with the help of Catmull-Rom spline interpolation [72]. Boundary points

before and after this process can be seen in Fig. 2.12. Then, bearing in mind that different

vertebra (C3-C7) may have different shape variation, an individual ASM is built per vertebra.

Let xxxi be a vector of length 2m describing m 2D points of the i-th training vertebra, given

by:

xxxi = [xi1,yi1,xi2,yi2,xi3,yi3, ...,xim,yim], (2.1)

where (xi j,yi j) is the Cartesian coordinate of the j-th point of the i-th training vertebra and

m = 20 for our case.
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Fig. 2.12 Equally spaced reconfiguration of manually clicked points: original points (+++) and
reconfigured points (×××).

All training vertebral shapes are then aligned/registered using Procrustes registration [73]

to remove variability due to translation, scaling and rotation. Fig. 2.13 shows an example

of Procrustes registration for two quadrilateral shapes. Aligned and non-aligned vertebral

shapes are plotted in Fig. 2.14. Once the example vertebral shapes are aligned, a principal

component analysis (PCA) is applied [74]. This allows any shape, xxxi to be represented by a

mean shape x̄xx, eigenvectors pppk(k = 1,2, ...,2m) and corresponding shape parameters bbb:

xxxi = x̄xx+PPPsbbbi;PPPs = [ppp1, ppp2, ..., pppl], (2.2)

where PPPs is the matrix consisting of the first l eigenvectors. The standard practice to select

l is to find the first few eigenvalues that represent a percentage of the total variation in the

training set. Now, for any known shape from the training data, xxxi, shape parameter bbbi can be

1
2

3
4

1 2

3 4 (a)                                 (b)                                   (c)                                 (d)

Fig. 2.13 Procrustes registration (a) unregistered shapes (b) centered (translation) (c) centered
and scaled (d) centered, scaled and rotated (registered shapes) [2].
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(a)                                                         (b)

Fig. 2.14 (a) Unregistered and (b) registered vertebral shapes for vertebra C3.

computed as:

bbbi = PPPT
s (xxxi − x̄xx). (2.3)

Eqn. 2.3 establishes the relationship between a shape (xxxi) and its shape parameters (bbbi). For

an unknown shape from the test dataset, bbbi needs to be calculated through a procedure known

as ASM search which is described in the next subsection.

(a)                                      (b)                                      (c)

Fig. 2.15 The blue shape represents the mean shape. The green and the red shapes represent
variation in the positive and negative direction for the (a) first, (b) second and (c) third modes
of variation.

2.4.2 ASM Search

At the test time, the mean shape first has to be initialized near the test vertebrae. The vertebra

sizes in pixels vary considerably among images due to the difference in spatial resolution

of the images. The size also varies in millimetres from patient to patient because of natural

variation amongst the human population. Thus, it is more appropriate to compute the vertebra
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orientation and size individually. This is where the user inputs are required, making the

process semi-automatic. The user is asked to localize the vertebral centers. The orientation

and size of the vertebrae are computed using these center points. For each vertebra, a vector

is drawn from its center to the center of the vertebra above (FFFu) and below (FFFd). Then the

orientation vector, FFF , can be computed as the average of these vectors.

FFF =
FFFu −FFFd

2
(2.4)

In case of the top vertebra, FFF =−FFFd and for the bottom vertebra, FFF = FFFu. The magnitude of

the vector FFF represents the coarse size of the vertebra. The vectors are visualized in Fig. 2.16.

Fig. 2.16 Computation of the orientation vector, FFF . Vertebrae centers (o). The green box
approximately represents the size and orientation of the vertebrae.

Using the orientation and magnitude of the vector FFF , the mean shape is initialized on the

current vertebra, this mean shape is a vector of m (= 20) 2D points like Eqn. 2.1. Once the

mean shape is initialized, normal profiles are extracted at each point (green lines in Fig. 2.17).

Based on the gradient of each profile the edge is located at the maxima. Based on the current

location of the point, the 2D offset to the maxima (dxi j,dyi j) is returned for each point j.

dXXX i = [dxi1,dyi1,dxi2,dyi2,dxi3,dyi3, ...,dxi20,dyi20], (2.5)
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dbbbi = PPPsdXXX , (2.6)

bbbi = bbbi +WWWdbbbi, (2.7)

where bbbi is initialized as an all zero vector (this corresponds to the mean shape) and WWW is a

diagonal matrix of weights, one for each mode. This can be identity, or each weight can be

proportional to the standard deviation of the corresponding shape parameter over the training

set. In our case, the identity matrix has been used. Once bbbi is known, the shape model can be

updated by Eqn. 2.2. This process is repeated until a maximum iteration threshold is reached

or dXXX is negligible. Essentially this process converges to a state where the shape fits best.

Fig. 1.2 in Chapter 1 shows an example of the performance of this framework. Due to its

dependence on the manually clicked vertebrae centers for the initialization of the mean shapes

and gradients of image intensity distributions for the shape convergence, this framework lacks

robustness on our dataset containing challenging images. Novel approaches are proposed

in this dissertation to build a fully automatic and robust image analysis framework for the

cervical vertebrae.

Fig. 2.17 ASM search: on the left image, the mean shape is shown in magenta, points on the
mean shape are shown as blue circles and the normal profiles are shown with green lines. An
example of intensity profile in the normal direction is shown on the right, with a dotted line
demarcating a possible edge.
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2.5 Machine Learning

The term ‘machine learning’ refers to a set of algorithms that allows the computers to learn

from examples without being explicitly programmed. The examples, from which these

algorithms learn, are provided through training data points. In Sec. 2.2, we have shown that

most of the related literature in the field involves data-driven methods. These data-driven

methods utilize different forms of machine learning techniques.

Machine learning algorithms can be divided broadly into two groups: supervised and un-

supervised. This categorization depends on the nature of the training data. If the input training

data points have known output values, the data is considered as labeled data. When the output

variables of the labeled data points are used in the learning process, the algorithm can be clas-

sified as a supervised machine learning technique. On the other hand, unsupervised machine

learning algorithms deal with the data where the output values or the labels are unavailable.

There also exists a set of algorithms which falls in between this two categories. These algo-

rithms can be classified as semi-supervised machine learning techniques. Semi-supervised

algorithms learn from a training dataset where the output values are known for some samples

and not known for other samples. In this dissertation, the manual annotation of the verte-

brae works as target output values allowing us to use the supervised machine learning models.

Supervised learning can further be divided into classification and regression based on the

nature of the output variables. If the output variable is discrete, it is called a classification

problem. In case of continuous output variable, the problem is identified as regression. Both

classification and regression problems are present in this dissertation. These problems are

addressed using two of the most used machine learning algorithms in the literature: random

forest and deep learning. Random forest algorithm has been used in Chapter 3 and 5, for spine

localization and corner localization, respectively. Different deep learning-based methods are

proposed, compared and investigated in Chapter 3, 5, 6 and 7. More details about both of

these algorithms can be found in Appendix B.



Chapter 3

Spine Localization

This chapter explores global localization of the cervical spine in the X-ray images. Our aim

here is to find the position and the orientation of the cervical spine in an X-ray image. In

this chapter, we propose two algorithms to solve the localization problem. Given the fact

that the cervical spine consists of several cervical vertebrae, our first algorithm looks for the

vertebrae in the image using a sliding-window technique. This patch-based approach utilizes

random classification forest and kernel density estimation. This algorithm has two-stages

and localizes the spine in a coarse-to-fine manner within a bounding parallelogram. This

algorithm has two drawbacks. First, the patch-based sliding-window technique often fails to

take into account the global positioning of the cervical spine in the image because it only

sees a small patch at a time. Second, the rigid output bounding parallelogram is not capable

of capturing the flexibility of the cervical spine. To address these issues, a second algorithm

is proposed. This method is a deep learning-based approach where we have converted the

localization problem into a dense classification problem at a coarse resolution. Three fully

convolutional networks have been utilized and compared. A novel region-aware loss term

has been proposed which significantly improved the localization performance of all three

networks. This algorithm can localize the spine with arbitrary shapes rather than a bounding

parallelogram.
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Global localization of the spine is a less studied area in the literature. Most of the articles

use a manual or a semi-automatic way to reduce the search area in the image and then

proceed with identification and/or segmentation problems [24, 32, 38, 44, 47]. However,

a few methods have been presented in the literature for localization of the cervical spine

in X-ray images. Most of these methods revolve around the generalized Hough transform

(GHT) and random forest. Tezmol et al. [30] used a GHT-based framework using mean

vertebra templates and an innovative voting accumulator structure. A more recent work

proposed another template matching-based approach relying on the GHT which involves a

training phase [41]. Glocker et al. presented a random regression forest-based localization

and identification framework for vertebrae in arbitrary CT scans [51]. They proposed another

framework using random classification forest which has shown better performance in the

localization and identification of the vertebrae with pathological cases [75].

The contributions of this chapter are:

1. Two state-of-the-art algorithms for global localization of the cervical spine.

2. A comparison of three dense classification networks.

3. A novel region-aware loss function which significantly improved the localization

ability of all three dense classification networks.

4. A major step towards the realization of a fully automatic image analysis framework for

cervical vertebrae.

3.1 Spine Localization using Random Forest

Random forest is a popular machine learning algorithm [76]. It has been used in many

medical image computing literature focused on vertebrae [38, 49, 51, 67, 68, 75]. Like

the localization and identification work of [51, 75], our work also uses the random forest

machine learning algorithm. But instead of localizing and identifying each vertebra, it finds

the position and orientation of the vertebral column in lateral cervical X-ray images.
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3.1.1 Overview

The main component of this framework is a random classification forest trained to distinguish

between the vertebra and non-vertebra patches extracted from the images. The task is de-

signed as a binary classification problem. The framework employs a two-stage coarse-to-fine

approach. In the first coarse localization stage, a sliding window sparsely scans a test image

to vote for vertebra patches. After this sparse voting, an accumulation phase converts the

votes into a bounding parallelogram which indicates the position of the spinal column inside

the image. The fine localization stage scans the resultant bounding parallelogram of the first

stage densely with different patch sizes and orientations. The same voting accumulation

phase is applied again and a refined bounding parallelogram is generated. This first stage

limits the search area for the time consuming second stage and reduces the overall computa-

tion time for the algorithm.

In the next subsections, we first describe how the training data was generated, followed

by how the forest is trained. The localization procedure at test time is explained at the end.

3.1.2 Training Data for Random Classification Forest

The random forest utilized here is designed to classify image patches into two classes:

vertebra and non-vertebra. To train the random forest, image patches are generated from the

training dataset of 124 images and labelled into a vertebra class or non-vertebra class. The

patches are considered with different sizes and orientations. To generate positive patches, the

manual annotation of the vertebral center and boundary points are used.

The original vertebral size is computed from the manually annotated boundary points

and the mean vertebral axis is computed from the vertebral centers. The mean vertebral

axis is given by the orientation vector described in Sec. 2.4.2. To train the forest, seven

different patch sizes with a step of 0.5 mm (starting from the original vertebral size) and 19

orientations of -45◦ to +45◦ with a step of 5◦ have been used. The orientation angle 0◦ is
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the mean vertebral axis. Our training dataset of 124 images contains 586 vertebrae. Thus a

total of 586×7×19 = 77,938 vertebra (positive) image patches were generated. Fig. 3.1a

illustrates boundaries of the extracted patches from a single vertebra. To balance the data,

equal numbers of non-vertebra patches were generated from the rest part of each image with

random sizes and orientations. In order to generate patches for the non-vertebra class, 50%

of the patches are considered from both sides of the vertebral column and the rest is collected

from other areas of the image. Fig. 3.1b shows the areas from which the positive and negative

patches are collected; positive patches are collected from the green box, 50% of the negatives

patches are collected from the blue boxes and other negative patches are collected from the

remainder of the image randomly with random patch size and orientation. More importance

is provided in the areas adjacent to the vertebral column for negative patch creation so that

the forest has a better opportunity to distinguish these areas. These image patches are then

converted to structured forest (SF) feature vectors [77, 78]. This feature vector collects the

gradient magnitude and orientation information at different scales and angles. This feature

vector has shown outstanding performance on the edge detection problem [78]. As vertebra

patches are mostly filled with edge-like structures, this feature vector is chosen to distinguish

(a)                                                     (b)

Fig. 3.1 (a) Positive patch boundaries around a vertebra with different orientations and sizes
(b) the green box indicates the region from where the positive patches collected and the blue
boxes indicates the region from where 50% of the negative patches are collected.
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vertebra from non-vertebra patches.

To compute the feature vector for a patch, first, the patch is resized to a dimension

of 16× 16 and the resized image is smoothed using a triangle filter. Then, the gradient

magnitude is computed in two scales (original and down-sampled by a factor of 2). For each

scale, gradient orientations are computed with four directions resulting in eight orientation

channels. All the channels are visualized Fig. 3.2 using a hypothetical input patch. These

eight orientation channels, two magnitude channels and the smoothed intensity channel

(total 11) of size 16×16 are then resized to 5×5. These smaller size patches are then used

to compute pair-wise difference vectors. The 11 channels of size 16× 16 result in 2,816

feature candidates and pair-wise difference from the same number of channels result in

11× (5×5)!
2!(5×5−2)! = 3,300 feature candidates from each patch. The total feature dimension

stands at 2,816+3,300 = 6,116 for a single patch. Creating 6116 feature candidates from a

small image patch of size 16×16 is redundant. The redundancy is also visible in Fig. 3.2.

However, this feature vector has been proven to perform outstandingly well with the random

forest algorithm [77, 78]. A probable reason could be that the randomness introduced in

the feature selection process at the split nodes of the random forest copes nicely with this

redundancy. The feature vectors are computed using the public toolbox [79] provided by the

authors of the articles [77, 78]. Once the feature vectors and corresponding binary labels are

ready, a random classification forest is trained on the data.

(a)                           (b)

(c)                          (d)                            (e)                          (f)                           (g)

(h)                          (i)                            (j)                          (k)                           (l)

Fig. 3.2 (a) Input image patch of size 16×16 (b) smoothed input image (c) gradient magnitude
at the original scale (d-g) gradient orientations with four different directions at original scale
(h) gradient magnitude after down-sampling (i-l) gradient orientations with four different
directions after down-sampling.
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3.1.3 Training Random Forest

Random forest is an ensemble of decision trees (see Fig. B.1). Here, we are training a

binary classification forest capable of distinguishing between a vertebra image patch and

a non-vertebra patch. Each of tree only sees a random 25% of the training data, which

means each tree begins training with 38,969 randomly chosen training samples at the root

node. The data in the root node is then divided into left and right child node based on the

information gain (IG). Our feature vectors have 6,116 variables. To split the data at each split

node, only a few variables (nVar) are chosen randomly. Each variable is tested for only a

handful of thresholds, nT hresh. So, at each split node, a total of nVar×nT hresh data splits

are considered. For each split node, information gain is computed using the classification

entropy, H. The split which achieves the maximum information gain is chosen to split the

data. The information gain is computed as:

IG = H(S)− ∑
i∈{L,R}

|Si|
|S|

H(Si), (3.1)

where S is a set of examples arriving at a node and SL, SR are the sets of data that travel left

(L) and right (R), respectively. H(S) is the classification entropy of the data S:

H(S) =− ∑
c∈C

p(c)log(p(c)), (3.2)

where C is the set of classes available at the considered node, p(c) is the probability of the

class c in the set C. In our case C ⊆ {0,1}, zero indicating non-vertebra patches and one

indicating vertebra image patches.

The random forest has a number of hyper-parameters. We have already mentioned

the number of variables to test at node split (nVar) and number of thresholds to choose

from (nT hresh). Apart from these two, we also have: maximum allowable tree depth (nD),

minimum number of samples at a node (nMin) and number of trees (nTree) which should

be set before training a forest. The parameters used for training the classification forest
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are reported in Table 3.1. These parameters are chosen based on a sequential parameter

search. For the parameter search, we have used 80 images for training and 10 images for

testing/validation. These images were randomly chosen from our Dataset A, described in

Appendix A.

Parameters Values
nD 10

nMin 50
nTree 10
nVar 85

nT hresh 5

Table 3.1 Optimized hyper-parameters for random forest.

3.1.4 Spine Localization

At test time, a new image is fed into the framework for spine localization. The localization

is done in two steps. First, we generate image patches sparsely from all over the image.

These image patches are then fed into the trained forest, which provides the information

(a)                                                (b)                                                  (c)

Fig. 3.3 (a) Sparsely generated image patches to be fed into the trained random forest (b)
coarse bounding box (blue) with densely sampled patches for fine localization of the spine (c)
final bounding box localizing the spinal region. For simplicity, multiple orientations, sizes,
and overlapping patches have not been demonstrated.
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about which patches are likely to be from the spinal region. Then a coarse bounding

parallelogram is generated near the spinal region. The same process is then repeated within

this bounding parallelogram by extracting patches with multiple scales and orientation. The

process is summarized in the toy example of Fig. 3.3, and described in more detail in the

next subsections.

3.1.4.1 Coarse Localization

For coarse localization of the spine, a set of test points is generated on the image at fixed

step size (S1). A single orientation 0◦ (O1) and a fixed patch size (P1), is considered to

generate image patches, one at each of the test points. The generated image patches overlap

neighboring image patches. The amount of overlapping is controlled by the parameters

S1 and P1. These patches are fed into the trained forest. The forest determines which test

points belong to the spinal region. These positive predicted points, [xxx1,xxx2, · · · ,xxxN ], are then

passed to the vote accumulation phase to generate a bounding parallelogram. The process is

summarized in Fig. 3.4.

(a)                                     (b)                                    (c)                                 (d)

Fig. 3.4 (a) Positive votes on the image (b) resultant distribution (H) (c) H after binarization
(d) H after elimination of invalid areas with the minimum bound parallelogram (yellow).

3.1.4.2 Vote Accumulator

The vote accumulator adds a Gaussian kernel at each of the positive votes. The bandwidth, t,

of these kernels are automatically estimated using a diffusion-based technique proposed by
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Botev et al. [80]. This method allows the bandwidth (t) to change dynamically based on the

vote distribution from image to image. The resultant distributions are then added together to

form a single distribution, H, over the image space:

H(xxx) =
1
N

N

∑
i=1

1√
2πt

e−
(xxx−xxxi)

2

2t , (3.3)

where N is the number of total positive votes coming to the accumulator.

This distribution over the image space is converted to a binary image, B, by dynamic

thresholding:

B(xxx) =

1 if H(xxx)> Ht

0 otherwise
, (3.4)

where Ht = K×max(H) and K is a constant. As max(H) is different for different images, Ht

dynamically changes accordingly. The resulting binary image may be divided into a number

of regions, B j (Fig. 3.4c). The area of each of these parts is measured (A j) and weighted (w j)

based on the distance from the image center (Cimage) to the centroid of the concerned image

part (CB j):

A j = area(B j), (3.5)

w j =
1

distance(Cimage,CB j)
, (3.6)

and

wA j = A j ×w j, (3.7)

where j = 1,2, ...,M; M is the number of disconnected areas in B and Ca denotes the centroid

of the area a. In Fig. 3.4c, M = 3. As the images are taken to diagnose cervical spine related

injuries, the assumption is that the spine should be located near the image center, not at

any extreme corner of the image. Then some of these areas are eliminated if they are small
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enough or located far from any adjacent areas:

B̂ j = B j =

valid (kept) if wA j > At & dB j < dt

invalid (eliminated) otherwise,
(3.8)

where

dB j = min
({

distance(CBk ,CB j) : k ∈ {1,2, ...,M} and k ̸= j
})

, (3.9)

where At and dt are the area and the distance thresholds, respectively. This process reduces

the chance of mis-detection. For example, one such mis-detection can be seen in the skull

region of Fig. 3.4c. Finally, a minimal bounding parallelogram is generated to enclose the

remaining areas [81]:

BoundingParallelogramcoarse = mBP
({

B̂ j : j ∈ {1,2, ...,NB}
})

, (3.10)

where mBP computes the minimum bound parallelogram enclosing the given regions [81]

and NB is the number of valid disconnected regions. This parallelogram is the output of the

coarse localization stage. In Fig. 3.4d, NB = 2.

3.1.4.3 Fine Localization

The coarse localization operates on a single resolution and orientation. As a result, may

struggle to find vertebra with uncommon orientation or size. As the bounding parallelogram

of the previous stage is only meant to find the approximate area covered by the vertebrae,

coarse localization is enough. But in order to find the orientation of the spinal curve, a

finer localization with multiple patch resolutions and orientations is necessary. In this fine

localization stage, a new set of test points is created within the coarse localization bounding

parallelogram, with varying step sizes (S2). At each test point, multiple patches are generated

with different patch sizes (P2) and angles (O2). Then the same random forest, described in

Sec. 3.1.3, is used for the patch classification and then, another vote accumulation process

is conducted. This creates a refined bounding parallelogram within the first stage bounding
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parallelogram. The orientation angle of this smaller bounding parallelogram is computed as

the orientation of the vertebral column.

3.1.4.4 Localization Hyper-parameters

Apart from the random forest related hyper-parameters, the test time localization framework

also has a set of free parameters mentioned in Sec 3.1.4.1 and 3.1.4.3. These parameters are

chosen intuitively based on several factors like the training patch sizes, orientations, and the

localization process. The values of these parameters are reported in Table 3.2.

Parameters Values
P1 24 mm
S1 10 mm
O1 0°
K 0.5
At 10 pixel
dt 15 mm
P2 20, 30, 40 mm
S2 P2/2
O2 -45°, 0°, 45°

Table 3.2 Parameters and values for the random forest-based localization framework.

As mentioned in the beginning of this chapter, the random forest-based spine localization

algorithm suffers from two drawbacks. First, the patch-based search process for the vertebra

patches cannot utilize the topological information of spine being located between the skull

and the body/shoulder. Second, the resulted rigid parallelogram fails to accommodate the

flexibility of the cervical spine. In the next section, we describe a deep learning-based

approach for spine localization which addresses both of these issues by localizing the spine

with arbitrary shapes in a single shot from an X-ray image.
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3.2 Deep Learning-based Spine Localization

The recent success of deep learning in medical image computing inspired us to solve the

spine localization problem with the help of dense classification networks [82, 83]. We have

formulated the localization problem as a dense classification problem at a lower resolution.

Given a set of high-resolution images and manually segmented vertebral ground truth, at

a lower resolution, the ground truth becomes a single connected region. We train a dense

classification network to predict this region. To encourage the network to predict a single

connected region, we introduce a novel term in the loss function which penalizes small

disjoint areas and encourages single region prediction. This novel loss function has produced

significant improvement in localization performance. In contrast with the random forest-

based approach which generates a bounding parallelogram, the proposed framework can

produce a localization map of arbitrary shape in a one-shot process and provides a localization

result that models the cervical spine much better than a rigid parallelogram. There are two key

contributions in this section. First, a novel loss function which constrains the segmentation

to form a single connected region and second, the adaptation and application of dense

classification networks to cervical spine localization in real-life emergency room X-ray

images.

3.2.1 Overview

As mentioned earlier, we have approached the localization problem as a dense classification

problem at a lower resolution. The X-ray images are converted into square images by

padding an appropriate number of zeros in the smaller dimension and the square images

are resized to a lower resolution using bicubic interpolation. This resolution can vary based

on the available memory and size of the training networks. For our case, we chose this

resolution to be 100×100 pixels. A binary ground truth was created for each image using

the manual annotation of the vertebral boundaries. Each of these binary ground truth images

is then resized to the same training resolution. At this resolution, the provided vertebral

segmentation maps become a single connected area encompassing the cervical spine (blue
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region in Fig. 3.5). For this work, we have experimented with modified versions of three

dense classification networks found in the literature: fully convolutional network (FCN) [84],

deconvolutional network (DeConvNet) [85] and UNet [82]. The networks have been trained

from scratch. The networks take an input X-ray image of 100×100 pixels and produce a

binary dense classification result of the same resolution.

3.2.1.1 Localization Ground Truth

As stated earlier, our target is to localize the spinal area in a cervical X-ray image using a

dense classification network. For this purpose, we required labeled data in the form of a

binary dense classification map where the spinal region will be marked as foreground and

other parts of the image will be marked as the background class. We start with the manual

annotation of the vertebral boundaries as described in Sec. 2.3.1. We first convert these into

binary segmentation maps at the original resolution. As our networks are designed to produce

an output dense classification map of 100× 100 pixels, we must create our localization

ground truth of the same size. Since our original image sizes are approximately in the

range of 1000 to 5000 pixels, a simple bicubic interpolation-based resize of the vertebral

segmentation maps produce a connected localization ground truth in the smaller dimension.

Fig. 3.5 Examples of X-ray images and corresponding ground truth. The ground truth is in
blue and overlaid on the original image in the right of each image pair. The vertebrae are
shown in green to highlight the difference between the spine localization ground truth and
the actual vertebrae.
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To visualize the ground truth, it can be transformed back to the original dimensions. The

blue overlay in Fig. 3.5 shows how much area the localization ground truth covers apart from

the actual vertebrae (green).

3.2.2 Network Architectures

The original FCN [84] and DeConvNet [85] were designed to tackle a semantic segmentation

problem having multiple classes on natural images of size 224×224. Since our task here is to

localize the spinal region, we essentially have a binary segmentation problem. Thus, we use

a shallower version having fewer parameters. We also do not shrink the feature map to single

levels like the original FCN and DeConvNet implementation (Fig. B.10 and B.11). This

help us to keep more spatial context available for the final prediction. In our implementation,

the FCN network has six convolutional layers and two pooling layers (size 2×2, stride 2).

The two stages of pooling reduce the dimension from 100× 100 to 25× 25 thus creating

an activation map of smaller size. The final deconvolutional layer upsamples the 25×25

activations to 100×100 pixels, producing an output map equal in size to the input. For our

implementation of DeConvNet, we use our FCN as the contracting part of the network. The

expanding path forms a mirrored version of the contracting convolutional path. Our UNet

also follows a similar structure. However, in the original UNet architecture, the convolutional

layers had no zero padding. Thus, the spatial dimensions of the input and the output were

different. In our case, all the convolutional layers use zero padding, making the network
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capable of producing output with the same spatial dimension as the input. Another important

difference from the original implementations of all networks is that we have used a batch

normalization layer after each convolutional layer of all three networks. We found that the

convergence speed increases with the use of the normalization layer. Fig. 3.6 shows the

network diagrams that include data sizes after each layer for a single input image. The

number of filters in each layer can be tracked from the number of channels in the data blocks.

In total, our FCN has 1,199,042 parameters whereas DeConvNet and UNet have 4,104,194

and 6,003,842 parameters, respectively.

3.2.3 Training

Our training dataset has 124 images. In order to train any network with a large number of

parameters, 124 images are not enough. In order to increase the number of training data, we

have augmented the images by rotating each image from 5◦ to 355◦ with a step of 5◦. This

results in a training set of 8,928 images. In other words, we now have 89,280,000 data pixels

and corresponding ground truth to train our dense classification networks. The augmentation

process also made the framework rotation invariant. Our choice for data augmentation was

only limited to rigid transformations since non-rigid transformation will affect the natural

appearance of the spine in the image. All the networks were trained from randomly-initialized

weights using a mini-batch gradient descent optimization algorithm from this augmented

training dataset.

Given a dataset of training image (x) - pixel-wise class label (y) pairs, training a deep

neural network means finding a set of optimized parameters ŴWW o that minimize a loss function,

Lt :

ŴWW o = argmin
WWW

N

∑
n=1

Lt({x(n),y(n)};WWW ), (3.11)

where N is the number of training examples and {x(n),y(n)} represents n-th example in the

training set with the corresponding ground truth. The simplest form of the loss function for
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dense classification problem is the pixel-wise log loss also known as the cross-entropy loss:

Lt({x,y};WWW ) =− ∑
i∈Ωp

M

∑
j=1

y j
i logP(y j

i = 1|xi;WWW ), (3.12)

where

P(y j
i = 1|xi;WWW ) =

exp(a j(xi))

∑
M
k=1 exp(ak(xi))

, (3.13)

where a j(xi) is the output of the final activation layer of the network for the pixel xi, Ωp

represents the pixel space, M is the number of class labels and P are the corresponding class

probabilities. However, this term doesn’t constrain the predicted maps to be connected. Since

the objective of the localization problem is to find a single connected region encompassing

the spine area, we add a novel region-aware term in the loss function to force the network to

learn to penalize small and disconnected regions.

3.2.3.1 Region-aware Term

We translate our domain knowledge into the training by proposing a region-based term, Lr.

This term forces the network to produce a single region by penalizing small disjoint regions.

This term can be defined as:

Lr({x,y};WWW ) =
1
2 ∑

i∈Ωp

M

∑
j=1

y j
i EiP2(y j

i = 1|xi;WWW ), (3.14)

where

Ei =

max(Nr −Nt ,0)
Amaxt−Aq

Amaxt
if i ∈ Rq

0 otherwise
, (3.15)

where Nr is the number of regions predicted as spine regions, Nt is the number of target

regions we are looking for, Aq is the area of the q-th region, Amaxt is area of the t-th largest

region, Rq is the set of pixels in the region q, and q represents the regions having area less

than Amaxt . In our case, Nt = 1. Notice that, if Nr is equal to or less than Nt and/or Amaxt = Aq,
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the region-based error becomes zero.

The ()2 in the region-aware loss term puts more emphasis on the disjoint regions with

high probabilities. Eqn. 3.14 is differentiable with respect to the input P(y j
i = 1|xi;WWW ). The 1

2

and ()2 in the equation make the derivative easily tractable. The differentiability ensures the

backpropagation of this proposed loss through the network. The derivative can be computed

as:
∂Lr({x,y};WWW )

∂P(y j
i = 1|xi;WWW )

= y j
i EiP(y

j
i = 1|xi;WWW ). (3.16)

3.2.3.2 Updated Loss Function and Optimization

Combining Eqn. 3.11 and 3.14 gives:

ŴWW o = argmin
WWW

N

∑
n=1

(
Lt({x(n),y(n)};WWW )+Lr({x(n),y(n)};WWW )

)
. (3.17)

To train the network, Eqn. 3.17 is optimized using the mini-batch stochastic gradient descent

(SGD) algorithm. An overview of the gradient descent algorithm can be found in [86].

Throughout this dissertation, the RMSprop version of the SGD algorithm has been used

for training the neural networks. The networks proposed in this chapter was trained for 30

epochs with a batch-size of 10 images. The training took approximately 18 to 24 hours on a

system with NVIDIA Quadro M4000 GPU.

The contribution of each term in the total loss can be controlled by introducing a weight

parameter in Eqn. 3.17. Informal experiments were performed by multiplying the region-

aware loss term, Lr, with a factor of 0.5, 1 and 2. However, the effect of these weights on

the overall performance was negligible. Thus in the following sections, we only report the

results from the network trained with the unity weight factor (i.e., Eqn. 3.17).
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3.3 Experiments and Metrics

Both of the localization frameworks have been tested on the 172 images of our test dataset.

The random forest-based algorithm takes as input a full resolution test image and produces

two bounding parallelograms, one for each stage: coarse and fine. For the deep learning-based

framework, a test image is padded with zeros to form a square, resized to 100×100 pixels

and fed forward through the network to produce localization map of the same resolution,

100× 100. In case, if the network results in multiple regions, only the largest connected

region is kept. This map is converted into a single binary map and transformed (resized and

unpadded) back to the original image resolution.

The predicted binary localization maps are then compared with the vertebra-level ground

truth (green area in Fig. 3.5). We have reported four metrics 1) sensitivity 2) specificity 3)

LMin: percentage of landmark points inside the predicted region and 4) θe: difference in

orientation angle. The sensitivity and specificity are computed based on the true positive

(TP), true negative (TN), false positive (FP) and false negative (FN) pixels between the

prediction and the ground truth:

Sensitivity =
|T P|

|T P|+ |FN|
, (3.18)

Speci f icity =
|T N|

|T N|+ |FP|
. (3.19)

The percentage of landmark points inside the predicted region (LMin) is computed by

computing the percentage of vertebral boundary curve (the blue curve shown in Fig. 2.11)

inside the predicted area. Finally, the ground truth orientation is measured by the angle of

the smallest possible parallelogram that covers the vertebral ground truth. Similarly, the

prediction angle is computed as the angle of the smallest possible parallelogram that covers

the predicted region. For the random forest-based method, the prediction result itself is a

parallelogram. The difference between the angle of the predicted parallelogram and the

ground truth parallelogram is reported as θe.
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3.4 Results

The average metrics over the test dataset for the algorithms are reported in Table 3.3. The

deep learning-based framework has six different versions: three networks, FCN, DeConvNet

and UNet, each of which was trained either with or without the region-aware term, ‘-R’

signifies the use of the updated loss function of Eqn. 3.17. The bold font indicates significant

improvement from the counterpart of the same network/method according to a paired t-test

at a 5% significance level. An italicized font indicates the best performing method in terms

of the metrics.

Sensitivity Specificity LMin θe

RF-Coarse 0.9523 0.9156 0.9308 10.6062
RF-Fine 0.7967 0.9818 0.6631 6.3769

FCN 0.9433 0.9744 0.9204 3.5137
FCN-R 0.9690 0.9708 0.9563 3.1236

DeConvNet 0.8846 0.9738 0.8586 8.3893
DeConvNet-R 0.9201 0.9762 0.9030 5.0269

UNet 0.8769 0.9761 0.8697 4.8608
UNet-R 0.8969 0.9741 0.8888 4.8082

Table 3.3 Average metrics for spine localization.

The coarse stage of the random forest framework produces the best results in terms of

sensitivity and LMin, but produces the worst results in terms of specificity and θe. The fine

stage improves specificity and θe but sensitivity and LMin drops dramatically. This can be

attributed to the bounding parallelograms generated at the fine localization stage. The second

and third columns of Fig. 3.8 and 3.9 show the localized bounding parallelograms generated

by the random forest-based framework. The coarse localization parallelogram covers a lager

area encompassing the spinal region, thus the sensitivity and LMin is very high for the coarse

bounding parallelogram. However, the coarse parallelogram is not capable of tracking the

spine orientation correctly. On the flip side, the fine localization stage creates a smaller

bounding parallelogram which often excludes some part of the vertebral region. While this

parallelogram represents the orientation of the column well but fails to perform in terms of

sensitivity and LMin.
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The deep learning-based frameworks produce balanced results. Among three different

networks, FCN produces better quantitative results than DeConvNet and UNet. The inclusion

of the region-aware term significantly improves the performance of each of this networks

in terms of sensitivity and LMin. However, the specificity drops for FCN and UNet by a

small amount. Based on the results, we can conclude that the FCN-R produces the best

performance. The boxplot of the metrics are shown in Fig. 3.7. Although the average

performance is good for all the networks, the inclusion of the region-aware term always

reduces the standard deviation of the metrics, indicating the positive effect of the novel term.

However, there are several outliers in the boxplots. Most of these outliers come from the

challenging cases in our test dataset. Some of these challenging cases are shown in Fig. 3.9.
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Fig. 3.7 Boxplots of the quantitative metrics.

Fig. 3.8 shows qualitative results for comparatively easier cases for all the methods.

Because of the capability of generating arbitrarily shaped localization maps, the dense

classification networks results follow the spinal column much better than the rigid bounding

parallelograms generated by the random forest framework. The improvement is more

noticeable when the spinal column is curved (Fig. 3.8a). The multi-stage stage upsampling

the DeConvNet and UNet produces finer localization results than the FCN. On the flip side,
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which may cause a portion of the cervical vertebrae to fall outside the predicted region. This

effect can be seen in Fig. 3.8c, 3.8d and 3.8e. The effect of the region-aware term is also

noticeable in most of the cases. The novel term often produces better localization maps,

especially visible for all the networks in Fig. 3.8b. Cases with image artefact are shown

in Fig. 3.8e and 3.9a. Spinal columns with severe degenerative changes and fractures are

shown in Fig. 3.9b, 3.9c and 3.9d. It can be seen that the dense classification networks suffer

more than the random forest counterparts in these severe cases. The patch-based approach of

random forest framework is less dependent on the overall look of the spine thus performs

better than the deep networks which generate the output in one-shot. Another severe case

with a surgical bone implant is shown in Fig. 3.9e where all the algorithms failed to localize

the spine. This is the only example in our dataset where the spine is zoomed to the extent

that the skull is not present in the image. As the dense classification networks are trained

with images where the skulls are always visible partially, the networks fail to localize the

spine for this particular test image. The performance is worsened by the presence of multiple

prominent surgical implants.

In terms of the time required for the frameworks to make an inference, the slowest

deep learning-based framework, UNet-R, is approximately 60 times faster than the random

forest-based counterparts. The patch-based sliding window approach of the random forest-

based framework requires more computation time, where the deep learning-based framework

localizes the spine in a single shot. The deep learning-based framework is also generalizable

and robust to different dataset. We have tested the proposed framework on cervical X-ray

images of NHANES-II dataset [60] and even without any adaptation or transfer learning/fine

tuning on the networks, it showed promising capability of generalization in localizing

the cervical spine. However, due to insufficient ground truth information on this dataset,

quantitative results are not available. A few qualitative localization results on this dataset are

shown in Fig. 3.10. These results also illustrate the fact that our framework is invariant to

rotation of the test image.
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Fig. 3.10 Localization results (blue overlay) on NHANES-II dataset using FCN-R method.

Among the three networks compared in this chapter, quantitatively the FCN has performed

better than DeConvNet and UNet. But the qualitative analysis from Fig. 3.8, reveals that

FCN outputs are coarser than others. The single stage upsampling strategy utilized by the

FCN causes this effect. Both DeConvNet and UNet have a better architecture where the

upsampling is done in stages. These networks first extract the feature context through the

contracting path and then refine the prediction by upsampling the feature maps in stages

with the help of the information from the contracting path. The DeConvNet shares the

information between the contracting and the expanding patch through switch variables and

unpooling layers which produce sparse output matrices. The UNet, on the other hand, utilizes

a more elegant solution. It upsamples the feature maps using deconvolutional layers and

gets information from the contracting side through concatenation of the data matrices. This

provides two benefits over the DeConvNet architecture. First, non-sparse output is generated

ensuring better predictions and second, it strengthens the back-propagation of the loss through

the concatenation path which helps the network to learn better and faster [87]. Thus, in the

following chapters, the UNet architecture has been our choice for the neural network-based

methods.

3.5 Conclusion

In this chapter, we have described two spine localization frameworks: a random forest-based

framework and a deep learning-based framework. The random forest-based framework has

two stages. The first stage localizes spine with a coarse bounding parallelogram whereas the

second stage performs a dense search within the coarse parallelogram with multiple patch
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sizes and orientations and results in a finer bounding parallelogram. However, the sliding

window-based patch extraction process for this framework fails to see the global context of

spine location in an X-ray image and produces a rigid parallelogram which is not capable of

capturing the flexibility of the cervical spine. To address these issues, a dense classification

network-based localization algorithm was proposed which is capable of producing arbitrarily

shaped localization maps resembling the natural spinal curves in a single-shot from an X-ray

image. Three dense classification networks were designed, and their performances were

compared. A novel region-aware loss term has been proposed to encourage prediction of a

single connected region which improved the localization performance significantly for the

experimented networks. The dense classification network-based frameworks require more

training time than the random forest-based framework, but much faster to produce localiza-

tion results at the test time. The best performing network has also performed cervical spine

localization in another dataset without any adaptation or fine-tuning, proving the robustness

and generalization capabilities of the proposed method.

The localization algorithms proposed in this chapter can easily be adapted for other

localization tasks. The machine learning modules have to be trained with the new data, and

the algorithms should be modified/tuned accordingly to fit the new localization target. The

current version of the random forest-based framework can only localize one target. However,

the deep learning-based framework can be used for localization of multiple targets in a single

image. The novel region-aware term is also generalizable and easily be extended from single

region to localization of multiple fixed number of regions. One of the limitations of this

region-aware term is that the number of regions has to be known before training. Future work

can be performed to make the proposed region-aware term generalizable for any number of

regions by dynamically learning the parameter that controls the number of predicted regions.

The frameworks described in this chapter localize the spinal region robustly with high

accuracy. However, the exact location of the vertebrae inside the predicted region is still

unknown. The next step in our quest for a fully automatic framework is to localize the
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vertebral centers. In the next chapter, we describe a novel framework which is capable of

localizing the vertebral centers from the predicted spinal region.



Chapter 4

Center Localization

Landmark localization is a fundamental problem in medical image computing. Many of

the segmentation techniques require initialization of a mean proposal near the anatomy of

interest [24, 25, 38, 88–90]. While many of these methods depend on manual interventions

for landmark localization [24, 25, 89, 90], some propose semi-automatic methods [38, 88].

These semi-automatic methods depend on some prior knowledge and/or manual interventions,

to reduce the region of interest in an image and then use automatic methods to localize the

landmark of interest. In the previous chapter, we have described an automatic method for

the localization of the spinal region in an X-ray image which already limits the region of

interest. The next task for our fully automatic framework is to localize vertebral centers

in the predicted spinal region. In this chapter, we propose a novel probabilistic regression

method to localize the vertebral centers using a fully convolutional neural network.

Localization of vertebral landmarks in 2D radiographic images has been addressed in the

state-of-the-art work of Bromiley et al. [38, 88]. These methods use a patch-based vector

regression technique using random forests, similar to the object detection work proposed

in [91]. Instead of the typical practice of regressing vectors pointing towards the location

of image landmarks using random forests, we design our center localization algorithm to

produce a probability map. Based on the success of the deep neural networks in the previous

chapter, we propose a novel deep fully convolutional neural network to learn the mapping
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between an image patch and a spatially distributed probability map indicating the locations

of the vertebral centers. In contrast to the vector regression techniques, the proposed method

can regress multiple landmarks from a single patch.

The proposed deep convolutional neural network (CNN) essentially solves a regression

problem. In the previous chapter, we have used CNNs to solve dense classification problems.

For classification problems, CNNs produce a probabilistic distribution over the output classes

in the targets. However, regression using CNNs is not usually probabilistic [92, 93]. Among

the existing literature, a CNN-based probabilistic regression method was proposed in [94] to

address this issue. It utilizes a probabilistic interpretation of the Euclidean regression loss

function to enforce a set of known constraints on the output space. Instead of finding a set of

constraints on the output space like [94], we convert the output space into a 2D probability

distribution having the same spatial resolution of the input and train a CNN to learn the

mapping from the input image to the spatially distributed probability map. Another spatially

constrained CNN was proposed in [95] to localize cell nuclei in histopathology images. This

paper employs a patch-based approach where a single nucleus can be detected from a single

patch. The method uses a sliding window technique to discover all the nuclei in a full image.

In contrast, our proposed method is capable of detecting multiple vertebral centers from a

single input patch.

The contributions of the work presented in this chapter are:

1. A novel deep convolutional neural network capable of producing spatially distributed

probability map.

2. An innovative method for probabilistic regression using a convolutional neural network.

3. A fully automatic framework for localization of the vertebral centers in a lateral cervical

X-ray image.

4. Expert-level performance in vertebral center localization.
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4.1 Overview

Localizing vertebral centers is a crucial component in the fully automatic framework. The

initial framework described in Sec. 2.4 used manually clicked vertebral centers, making

the process semi-automatic. The location of the centers can vary based on interpretation,

making the performance of that framework sensitive to user induced variations. To remove

this variation and to make the framework reproducible, we propose a novel probabilistic

vertebral center localization algorithm in this chapter. The centers inside an image patch

are represented by a probability distribution defined over the same pixel space. A modified

dense classification network is used to learn the mapping between the image patches and the

spatially distributed probabilities. We call this novel network: probabilistic spatial regressor

network (PSRN). The network is trained with a novel loss function. The proposed framework

achieved human-level performance in localizing vertebral centers.

4.2 Ground Truth

As mentioned in Sec. 2.3, our medical partners have provided us with manually labeled

center points for the vertebrae. However, the vertebral centers are not attached directly to

any visible landmarks. Thus the human perception of the center varies to some extent. The

ground truth vertebra centers (+) are provided by our medical partners when the images

were received (see Sec. 2.3.1). To understand the extent of the expert interpretation of the

vertebral centers, we asked two experts to annotate vertebral centers multiple times (three

times per vertebra). This variation is illustrated in Fig. 4.1. This motivated us to convert the

manually clicked centers into a probabilistic distribution. This was achieved by amending a

Gaussian distribution at the original ground truth vertebral center (+).
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Fig. 4.1 Variation of manually clicked vertebral centers: ground truth center (+), centers
clicked by two experts (×, ×) multiple times. The yellow circle represents a 3 mm distance
from the ground truth center to illustrate the extent of variation for the expert clicked centers.

The probability distribution at a vertebral center (xc,yc) can be defined as a 2D anisotropic

Gaussian distribution [96]:

F(x,y) =
1

2π
√

vwvh
e−

1
2vxvy

(
a1(x−xc)

2−2a2(x−xc)(y−yc)+a3(y−yc)
2
)
, (4.1)

where

a1 = vw cos2
θ + vh sin2

θ , (4.2)

a2 = (vw − vh)cosθ sinθ , (4.3)

a3 = vw sin2
θ + vh cos2

θ , (4.4)

and

θ =
θl +θb +θr +θt

4
, (4.5)

vw =
wt+wb

2 R
k

, (4.6)

vh =
hl+hr

2 R
k

, (4.7)

where R is the pixel spacing (in millimeters per pixel) of the image, k = 60 is a constant

chosen based on visual evaluation of the ground truth and θl , θb, θr, θt , wt , wb, hl , hr are

computed from the manually annotated vertebral corners and demonstrated in Fig. 4.2a.
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Fig. 4.2 (a) Different parameter required for probabilistic ground truth generation (b) grid
points for training patches.

The process is repeated for all the vertebral centers in an image and a single probabilistic

distribution defined over the image space is generated. A few images with overlayed proba-

bilistic center distributions are shown in Fig. 4.3.

The dense classification network used for center localization framework is trained on a

dataset of 64×64 patches. To generate a training image patch and corresponding probability

distributions, a grid of 9 uniformly spaced points were generated per vertebra and 3 points

were generated in between two consecutive vertebrae. An example of these grid points is

shown in Fig. 4.2b. From each of these grid points, patches were extracted with two scales

(original vertebral size + 2mm and 4mm) and five orientations (-20◦ to 20◦ with a step of 5◦

where 0◦ is the mean vertebral axis). All these extracted patches are then resized to 64×64

pixels, the resolution at which the network will be trained. A total of 66,600 patches were

generated from our 124 training images. Fig. 4.4 shows how these distributions look at the

patch level.
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Fig. 4.4 Patch-level ground truth for center localization.

4.3 Methodology

Here the intention is to predict a two-dimensional probabilistic distribution for an input

patch of 64×64 pixels. The predicted distribution should have the same spatial resolution

as the input patch. The dense classification networks proposed in Chapter 3 are capable of

fulfilling this requirement. However, the properties of the output here is different than the

dense classification networks. Ideally, the predicted 2D distribution should be continuous

(Gaussian) and have a low spread (standard deviation). The single step upsampling strategy of

the FCN architecture may cause the prediction to have higher spread and the sparse output of

the unpooling layers of the DeConvNet architecture may result in non-Gaussian distribution.

Thus, for the probabilistic spatial regressor-based center localization framework, we used a

modified version of the UNet [82] architecture.

4.3.1 Network

The UNet of the previous chapter was designed for an input-output pair of spatial resolution

100×100. A larger spatial resolution was chosen because the global localization problem

required full image to be seen. Here the training patches only needs the vertebra-level images.

Thus the network has been designed for a spatial resolution of 64×64. However, based on

the assumption that the model is more complex and the fact that more training samples are

available, the number layers in the network has also been increased. The contracting path of

the network now has nine convolutional layers. Each convolutional layer is followed by a

batch normalization and rectified linear unit (ReLU). Three maxpooling layers in between

the convolutional layers downsample the spatial dimension from 64×64 to 8×8. As usual,

the upsampling path forms a mirrored version of the downsampling path and upsampling is
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achieved by deconvolutional layers. The network diagram is shown in Fig. 4.5. The number

of filters in each layer can be tracked from the number of channels in the data blocks. The

total number of parameters for the center localization UNet is 24,238,210.
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Fig. 4.5 Probabilistic spatial regressor UNet for center localization (a) network architecture
(b) legend.

4.3.2 Training

The softmax layer at the end of the network creates a probabilistic two-channel output,

just like in a dense pixel-wise classification problem. However, the ground truth here is

a probabilistic map, not a binary segmentation map. Thus, the standard pixel-wise dense

classification loss of Sec. 3.2.3, cannot be used. We formulate a novel loss function for

training the network to predict a probabilistic map.

Loss function for probabilistic spatial regression: To match the two channel output of

the final softmax layer, the ground truth probability (GTp) is also converted to a softmax-like

two channel distribution, PGT :

PGTi,channel=1 =
GTpi −min(GTp)

max(GTp)−min(GTp)
, (4.8)
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PGTi,channel=2 = 1−PGTi,channel=1, (4.9)

where i ∈ Ωp is the pixel space. Notice that, PGTchannel=1 is no longer a normalized probability

distribution (i.e. doesn’t integrate to unity), rather a stretched distribution where the maxi-

mum is unity and minimum is zero. This ensures that the softmax layer is able to produce

similar distribution, as it squashes the input activations to the range from 0 to 1.

Training our UNet would then mean finding an optimized set of parameters ŴWW o which

minimizes a loss, L, between the predicted ŷ(n) and updated ground truth P(n)
GT over the

training dataset:

ŴWW o = argmin
WWW

N

∑
n=1

L({x(n),P(n)
GT };WWW ), (4.10)

where N is the number of training examples and {x(n),P(n)
GT } represents n-th example in the

training set with corresponding ground truth probability of the regression target. Since the

target probabilities are spatially distributed over the pixel space, we can define a pixel-wise

loss function per training sample as:

L({x,PGT};WWW ) =
1

2|Ωp| ∑
i∈Ωp

2

∑
j=1

wi(ŷ
j
i −PGTi,channel= j)

2, (4.11)

where

wi =

1 if i ∈ Ωpφ

|Ωpφ
|

|Ωp| otherwise
, (4.12)

where Ωp is the pixel space and Ωpφ
is set of pixels where the ground truth probabilities are

not zero.

The term (ŷ j
i − PGTi,channel= j) measures the difference between the prediction and the

ground truth. This pixel-wise difference is weighted by wi to address the problem of im-

balanced regression targets. As most of the pixels in the output probability space have

zero probabilities, without this weighting term the solution becomes biased towards the
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probability of the majority pixels. In our case < 5% pixels have non-zero values, thus without

the weighting term, the network converges to predict a flat distribution of zeros.

The network is trained on a system with a NVIDIA Pascal Titan X GPU1 for 30 epochs

with a batch-size of 25 image patches. The training took approximately 72 hours.

4.3.3 Inference and Post-processing

At test time, our spine localization algorithm discussed in Chapter 3 provides an automatic

region of interest. Using this automatic localization result, we create a set of 15 uniformly dis-

tributed points along the approximate central axis of the localization result. The approximate

central axis computed by setting a second order polynomial at the center pixels. From each

point, three patches are generated with different scales and central axis aligned orientation.

The patch sizes are based on the width of the localization area. At each of the 15 points, the

width of localization area is computed. The maximum, median and mean of these widths

(a)                                        (b)                                        (c)                                         (d)

Fig. 4.6 Test patch extraction process (a) localized spinal region (b) horizontal center points
of the localized area (.) (c) 15 uniformly distributed at the approximate central axis of the
region (o) (d) box drawn at the boundaries of each of the 45 extracted patches. Different
colors indicate different patch sizes.

1We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal
GPU used for this research.
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(a)                                                  (b)                                                      (c)                                                 (d)

Fig.4.7
C

enterlocalization
post-processing

(a)predicted
probability

m
ap

on
the

originalim
age

(b)thresholded
m

ap
and

potential
centers

(+
)(c)filtered

centers
afterproxim

ity
analysis

(d)five
m

ostprobable
centers.



70 Center Localization

are considered as patch sizes. The process is summarized in Fig. 4.6. A total of 15 points

× 3 patch sizes = 45 patches are extracted. These patches are passed through the center

localization network to generate patch-level probability maps. The patch size, orientation and

position of these probability maps on the original image are known from the patch creation

process. These probability maps are then put back on the original image (Fig. 4.7a). The

process includes scaling, rotation and translation i.e. affine transformation of the 64×64

pixel patch using the known patch size, orientation and position on the original image space.

The probabilities on the original resolution are then thresholded to remove noise (Fig. 4.7b).

The threshold is defined as 30% of the maximum probability. For every remaining proposal

for a possible vertebral center, the pixel location with the maximum probability is considered

as a potential center (Fig. 4.7b). Further post-processing is performed by removing multi-

ple centers in close proximity by keeping the most probable center in a radius of 10 mm

(Fig. 4.7c). The radius is chosen based on the size of the training vertebrae. Finally, we keep

the maximum number of possible centers to five (C3-C7) and ignore the less probable center

proposals when more than five centers are detected (Fig. 4.7d).

4.4 Experiments and Metrics

The center localization framework is tested on our 172 test images. At the patch level,

the performance of the network is measured by comparing the predicted probability maps

and ground truth maps using the Bhattacharyya coefficient (BC) [97]. The BC represent a

measures of similarity between to two probability distribution thus suitable as a metric to

evaluate patch-level performance of the proposed network. The Bhattacharyya coefficient

(BC) is defined as:

BC(p,q) = ∑
x∈Ω

√
p(x)q(x), (4.13)

where p is the predicted probability distribution, q is the ground truth probability distribution

and Ω is space on which both p and q are defined. The BC varies between zero and one

where higher values represent better matching.
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After the post-processing step, the centers are localized on the original image. The

predicted vertebral centers can be divided into three sets: true positive (TP), false positive

(FP) and false negative (FN). The TP represents the set of vertebrae whose centers have

been correctly detected. A correct detection is considered if the predicted center falls inside

a vertebral body studied in this work, i.e., C3-C7. The FP represents the set of predicted

centers which did not fall inside any of these vertebrae. Finally, the FN is the set of the

studied vertebrae whose centers have not been detected. Based on the TP, FP and FN, we

report two metrics: true positive rate (TPR) and false discovery rate (FDR) [98]:

T PR =
|T P|

|T P|+ |FN|
×100%,

FDR =
|FP|

|FP|+ |T P|
×100%.

The TPR is also known as the ‘recall’ and FDR is a complementary metric to ‘precision’.

While precision represents the percentage of the correct detections among all the detections,

FDR represents the percentage of the incorrect detections. We also report the point to point

Euclidean distance between the correctly detected centers and corresponding ground truth in

mm as distance error.

4.5 Results

The fully automatic center localization algorithm uses the results of the spine localization

algorithm from Chapter 3. For the results discussed in this section, we use the spine

localization result of the FCN-R network. The performance of the center localization

algorithm can also be measured independently. In this case, the uniform grid needed for the

patch creation is generated using the spine localization ground truth (Fig. 3.5) instead of the

prediction of the spine localization framework as mentioned in Sec. 4.3.3. We will present

both results: semi-automatic that uses the spine localization ground truth and fully automatic

that uses spine localization predicted by FCN-R.
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 (a)                                                                                     (b)                                                                                   (c)

 (d)                                                                                      (e)                                                                                   (f)

Fig. 4.8 Image patch (left), ground truth probability (middle) and predicted probability (right)
with corresponding Bhattacharyya coefficients: (a) 0.8285 (b) 0.7153 (c) 0.3304 (d) 0.6149
(e) 0.4353 (f) 0.3715.

First, we present the Bhattacharyya coefficient (BC) between the patch-level inputs

and predictions for the semi-automatic method. A Bhattacharyya coefficient (BC) of zero

represents the worst result and one represents a perfect match between ground truth and

prediction probability. Over all the test patches, an average BC of 0.58 has been achieved at

the patch level. Some of the graphical results with corresponding BC are shown in Fig. 4.8. It

can be seen that even with low BC (Fig. 4.8c and 4.8f), the results are similar. The histogram

of the BC over all the patches is plotted in Fig. 4.9, a BC of > 0.5 was achieved for 71%

of the test patches. A few qualitative results for center localization at the patch level are
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Fig. 4.9 Histogram of Bhattacharyya coefficients.
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Fig. 4.10 Patch-level center localization results: ground truth (left) and prediction (right).

shown in Fig. 4.10. We have also tested the performance of the proposed network on vertebra

patches collected from the NHANES-II dataset. Fig. 4.11 shows a few examples of the

results from this dataset proving the robustness of the trained network.

Fig. 4.11 Patch-level center localization results for vertebra patches collected from NHANES-
II dataset: input image patch (left) and predicted probability map overlayed as a heatmap on
the input image patch (right). The ground truth information was not available for this dataset.

After the post-processing phase, the centers are localized on the full resolution test image.

Table 4.1 reports the true positive rate (TPR), false discovery rate (FDR) and distance error

for the correctly detected centers in millimeters (mm).

Among 797 vertebrae from our 172 test images, 755 centers were detected with an average

error of 1.80 mm. The number of false positives was 38, most of these belong to neighboring

vertebrae C2 and T1. To compare the performance of the center localization algorithm with

human performance, an expert radiographer was asked to click on the vertebral centers on

ten random test images three times. These manually predicted centers are compared with the

ground truth centers for those images. The average error was 1.92 mm which is higher than
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Test patch creation Semi-automatic Fully automatic
True positive rate (TPR) 94.73% 93.10%

False discovery rate (FDR) 4.79% 9.40%
Median Mean Std Median Mean Std

Distance error (mm) 1.62 1.80 0.96 1.54 1.72 0.99

Table 4.1 Performance of the center localization framework. The ‘semi-automatic’ patch
creation process uses localization ground truth and the results reported below are independent
of the accuracy of the global localization framework. Results from the fully automatic
procedure which uses the localized spine from the global localization framework are reported
in the right under the ‘fully automatic’ patch creation process.

the average error of correctly detected centers by our algorithm. The performance curve is

shown in Fig. 4.12.

It can be seen that the distance error is < 3 mm for almost 90% of the correctly detected

vertebral centers. For a qualitative comparison, the manually clicked vertebral centers shown

in Fig. 4.1 also varied within a 3 mm radius from the ground truth center. The process is

repeated by changing the uniform grid creation process in the beginning. In this case, the
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Fig. 4.12 Performance curve for center localization. The blue curve (−−−) represents what
percentage of the correctly detected vertebrae (vertical axis) has a distance error (horizontal
axis) lower than specific values.
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Fig. 4.13 Qualitative center localization results. For each pair, ground truth distribution is
shown on the left, prediction distributions are shown on the right. On the predicted image,
the ground truth center is denoted as a cross (×) and predicted centers are denoted as plus
(+).
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Fig. 4.14 More qualitative center localization results. Refer to the caption of Fig. 4.13 for
legend.

uniform grid for patch generation is done using the area predicted by our global localization

algorithm (instead of the global localization ground truth), as discussed in Sec. 4.3.3. The

metrics are reported on the right side of Table 4.1. It can be seen the TPR dropped from
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94.73% to 93.10%, while the FDR is increased from 4.79% to 9.40%. This degradation is

because of the incorrect global localization results, as shown in Fig. 3.9. However, among

the correctly detected centers, the distance error drops from 1.81 mm to 1.72 mm. The

reason behind this is that much of the bad quality image areas have already been removed

by the global localization prediction. So the remaining image areas are of comparatively of

good quality thus center localization performs better on average on these image areas. Some

graphical center localization results on the full resolution images are shown in Fig. 4.13

and 4.14.

4.6 Conclusion

We have described a novel vertebral center localization framework in this chapter. The

vertebral center resides in the middle of the vertebral body without direct attachment to any

visible image landmark. The perception of the center varies based on human interpretation.

Thus the center location is better represented as a probability distribution. To learn the

mapping between the vertebral image patch and the spatially distributed probability map of

the vertebral centers, a novel deep convolutional neural network has been designed. The

proposed network has been incorporated into a framework which localizes vertebral cen-

ters inside the spinal region. Combined with the spine localization framework proposed in

Chapter 3, the framework proposed in this chapter is capable of predicting vertebral centers

from an X-ray image without any manual intervention. The fully automatic vertebral center

localization framework has achieved a true positive rate of 93.10% in center detection and an

expert-level localization accuracy among the correctly detected centers.

The novel convolutional neural network proposed in this chapter essentially solves a

regression problem for image landmark localization. The proposed solution can be adapted

to approach various image landmark localization problems, traditionally solved by random

forest-based methods [38, 88, 91]. The random forest-based methods often use votes from

multiple image patches to generate a probability distribution for a single object. In contrast,
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the proposed method is capable of generating a probability distribution localizing multiple

objects of interest from a single patch.

Although classification using neural networks is probabilistic, regression using neural

networks is often deterministic [92, 93]. The novel convolutional neural network described

in this chapter proposes an innovative solution for probabilistic regression using neural

networks. Unlike the work proposed in [94] which uses a set of known constraints to achieve

probabilistic regression, our method learns to perform probabilistic regression automatically.

So far in this dissertation, we have described a fully automatic framework for localization

of vertebral centers. In the next chapter, we will propose and compare several frameworks

for localization of another essential vertebral landmark: corners. The probabilistic spatial

regression network (PSRN) proposed in this chapter uses a pixel-wise loss function which

doesn’t constrain the prediction to be a valid probability distribution during training. To

address the issue, we will propose major improvements to the PSRN by introducing a new

network block and a novel probabilistic loss function.



Chapter 5

Corner Localization

Corners detection is a classical problem in computer vision. Early work in this topic involves

segmentation of shapes, extracting the boundary as a sequence of points, and then searching

for significant turnings in the boundary [99]. Dependence on the prior segmentation for

corner detection was a major drawback of these methods. This was solved by detecting

corners with the help of local operators [100–102]. These operators are applied on the image

directly to detect corners. Like other topics in computer vision, recent literature on corner

detection involves machine learning techniques [103, 104] which learn to detect corners in a

supervised manner from manually annotated images. Similar to natural images, corners have

great importance in medical images. It can provide key information about the size and the

shape of anatomical organs which can then be used for other high-level purposes.

Earlier in Sec. 2.1.1, we listed a selection of injuries related to cervical vertebrae like

subluxations (spondylolisthesis, retrolisthesis) and compression fractures (wedge, biconcave,

crush). Vertebral corners can play a vital role for detection of these clinical conditions.

Automatically predicted vertebral corners can also be used for initialization of several sta-

tistical shape model-based segmentation methods [57, 69, 89] to build a fully automatic

segmentation framework. Motivated by the importance of the corners, in this chapter, we

propose three novel methods for vertebral corner detection. Following the trend in the corner

detection literature, our methods also develop from using classical operators to advanced
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machine learning techniques.

The first method proposed in this chapter is a Harris corner detector-based frame-

work [102]. It uses prior information from the distribution of corners from the training

dataset and combines it with local edge-based features to detect vertebral corners. Second, a

Hough forest-based framework which utilizes a patch-based method to regress corners of a

vertebra. This framework is inspired from the object detection work proposed in [91]. Finally,

a deep probabilistic spatial regressor network (PSRN)-based corner localization framework

is proposed where we improve upon the work of the previous chapter by introducing a new

spatial normalization layer and a novel probabilistic loss function. All three frameworks

described in this chapter are semi-automatic and require centers of the vertebrae to be given.

The process can be made fully automatic by augmenting the spine localization and the

center localization frameworks from Chapter 3 and 4, respectively, with a corner localization

framework proposed in this chapter.

The contributions of this chapter are following:

1. Three novel semi-automatic vertebral corner detection frameworks.

2. A normalization layer for the probabilistic spatial regressor network (PSRN) which

generates a valid spatially probability map.

3. A novel loss function based on Bhattacharyya coefficient for training the improved

PSRN.

4. A median error of less than a millimeter in localizing vertebral corners.

In the next two sections, we first describe the Harris-based naive Bayes corner detector

(HarrisNB) and Hough forest-based method (HoughF) for vertebral corner localization.

We have studied these two methods extensively in a prior publication [71] on Dataset A,

described in Appendix A. In this chapter, we only report the best-performing methods for

these frameworks. Detailed experimentations and results from [71] have been reported
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in Appendix A which influenced different choices made in this chapter for HarrisNB and

HoughF. In the third section, we describe the improved deep probabilistic spatial regressor

network (PSRN)-based corner localization framework. This is followed by results and

discussion where we evaluate and compare all the methods. Finally, we end the chapter with

the conclusion.

Fig. 5.1 Vertebral corners detected by the Harris corner detector (+).

5.1 Harris-based Naive Bayes Corner Detector

The Harris corner detector is a popular method to identify corners. It uses a second-moment

matrix composed of image derivatives. As with other gradient-based methods, it suffers if the

image has low contrast which is common to X-ray images. Initially, we attempted to apply

standard implementation of the Harris corner detector for localizing vertebral corners, but

results were poor due to the presence of noise in the X-ray image and the smooth transition

of the vertebral boundary at the corners. Examples of the corners detected by Harris corner

detection can be seen in Fig. 5.1. Therefore, we devised a novel multi-scale Harris corner

(a)

(b)

(c)           (c)      (c)
(d)

(e)

(f) (g) (h)Edge Detector

Resize
Resize

Resize

Harris Corner
Detector

Corner-Edge
Filter

Naive Bayes
Filter

1/2
1/4

1/8

Fig. 5.2 Harris-based vertebral corner detector (a) original X-Ray (b) cropped ROI (c) ROI at
different scales (d) Harris Corner detector output at each scale (e) binary edge image (EIO)
(f) output of Corner-Edge filter: P(C|I) (g) P(L|I) (h) final distribution: P(C,L|I), corners
are pointed out by red arrows.
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detector-based framework with a spatial term trained from our manually labelled corners.

The framework is summarized in Fig. 5.2 and described in the following subsections.

5.1.1 Vertebral Patch Extraction

Given a cervical X-ray image and manually annotated vertebral centers, the first step is to

extract a vertebral region of interest (ROI). The coarse orientation and size of the vertebrae

are computed using the center points. These are given by the orientation vector, FFF , discussed

in Sec. 2.4. The magnitude of the orientation vector, FFF , represents the coarse size of the

vertebra. Using this orientation and size, a bounding box is generated to identify a region of

interest (ROI) around the vertebral center (green box in Fig. 5.3).

Fig. 5.3 Vertebral patch/ROI extraction.

The distribution of the corners around the center for each vertebra reveals that vertebral

corners form a quadrilateral, that can be better approximated as a trapezoid (i.e., convex

quadrilateral), as demonstrated in Fig. 5.4 which superimposes normalized corner distribu-

tions of the different cervical vertebral bodies in the dataset. Based on this insight, trapezoidal

ROIs are extracted.

The size and the angles between the arms of the trapezoidal ROI are computed based on

the distribution of the corners in the training dataset. The ROI requires an affine transforma-
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Fig. 5.4 Normalized corner distribution in the dataset.

tion to warp the extracted image patch. The warped image results in an axis-aligned vertebral

body which is illustrated in Fig. 5.5b. This is significant because this framework involves

corner and edge detection methods which detect edges better when they are axis-aligned.

Experiments with square and rectangular ROI have been also been performed on Dataset A

and results can be found in Table A.1.

(a)                                                 (b)

Fig. 5.5 (a) Different ROIs: square (blue), rectangle (red), trapezoid (green) (b) vertebra
inside different ROI: square (top), rectangle (middle) and trapezoid (bottom).

5.1.2 Edge and Corner Detection

The extracted ROI is then passed through a collection of edge detectors. In this work, Canny

edge detector, Sobel, Prewitt, Roberts operators and Laplacian of Gaussian (LoG)-based

edge detector are used. Each of these detectors returns a binary image:

EIψ = EdgeImage(ROI,ψ), (5.1)
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where ψ is the edge detection method and ψ ∈ {Canny, Sobel, Prewitt, Roberts, LoG}. Then

all the returned binary images are added together and an edge is determined only when more

than two edge detectors agree:

EI = EICanny +EISobel +EIPrewitt +EIRoberts +EILoG. (5.2)

Out put Edge Image, EIO =

0 when EI <3

1 otherwise
. (5.3)

This process reduces noise and false edge detection.

The Harris corner detection is applied on the original ROI at four different scales (1, 1/2,

1/4 and 1/8). As Harris corner detection uses gradients in horizontal and vertical directions

to determine a possible corner, the intensity profile at different scales increases the chance

of detecting actual corners. Along with the corner location, it also returns a score which

represents the likelihood of the detected corner. From each scale, the top 50 corners are

selected. All the selected corners are then passed through a Corner-Edge filter. This filter

only selects a corner if it falls within a five pixel radius of an edge pixel (EIO = 1). These

selected corners are then converted into a probability distribution, P(C|I). A spatial prior

probability distribution, P(L|I), is created from the training data containing all the corners

(Fig. 5.4). These P(L|I) looks like Fig. 5.2g for different vertebrae. These P(L|I) are then

made corner specific P(Li|I) by considering single (i-th) corners only:

P(Li|I) =
1
N

N

∑
j=1

1
σc
√

2π
exp

−
(xxx−Ci j)

2

2σ2c , (5.4)

where N is the number of training examples, σ2
c is the variance of Gaussian distribution

initialized at each training corner locations and P(Li|I) is the prior probability distribution for

i-th corner. The variance, σ2
c , is optimized experimentally using a set of validation images

from Dataset A. A final posterior distribution, P(Ci,Li|I) is then computed by multiplying



5.2 Hough Forest-based Vertebral Corner Detector 85

P(C|I) and P(Li|I) following a naive Bayes formulation:

P(Ci,Li|I) = P(C|I)P(Li|I), (5.5)

where Ci is the i-th corner, Li is the location of that corner, and I is the ROI. P(C|I) comes

from the edge-filtered multi-scale Harris corner detection and P(Li|I) comes from the training

data. Final corner positions are found by localizing the maximum probability in each of the

four posterior distributions P(Ci,Li|I). The complete framework is graphically explained in

Fig. 5.2.

5.2 Hough Forest-based Vertebral Corner Detector

Hough forest [91], a variant of the random forest [76, 105] algorithm, has shown promising

performance in object detection using votes from image patches. Here this algorithm has been

adapted and customized in order to localize vertebral corners in X-ray images. In contrast to

the random forest algorithm which performs either regression or classification, Hough forest

performs both together in the same forest. During training the algorithm requires training

Fig. 5.6 (a) Training and (b) test flowcharts for the Hough forest-based vertebral corner
detector.
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data, each of which is associated with a class label and a vector.

Like any other machine learning-based frameworks, our Hough forest-based vertebral

corner detection framework can be divided into two parts: training and testing; an overview

is depicted graphically in Fig. 5.6. During training, the algorithm learns the relative position

of the vertebral corners for different patches generated from the vertebra. The patches are

generated from a region of interest (ROI) around the vertebra. These image patches are then

converted into feature vectors using Haar-like features (Sec. 5.2.2). Training is performed by

Hough forest where both classification and regression entropy are used together. The training

process is summarized in Fig. 5.6a. Once the forest is trained, the framework can be used

to predict corners for new vertebrae. At test time, a new image is provided with manually

clicked vertebral centers. The ROIs are generated and patches are fed into trained forests,

which then goes through a three-stage process to localize corners: forest prediction, filtering

and corner estimation (Sec. 5.2.4). The test time process is summarized as a flowchart in

Fig. 5.6b.

5.2.1 Patch Extraction and Labels

As mentioned in Sec. 5.1.1, three types of ROI geometry can be considered for evaluation.

We have experimented with all three types of ROI in [71], the best performance was achieved

(a)                                                      (b)

Fig. 5.7 Hough forest training (a) class labels and (b) vectors.
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by the rectangular ROI compared to the trapezoidal and square ROIs. Detailed results with all

three ROI types are reported in Table A.3. Since the Hough forest framework does not depend

on the classical corner and edge detection methods, the axis-aligned vertebral boundaries

from the trapezoidal ROI do not improve the performance. After extracting the rectangular

ROI, it is then divided into 16 equal-sized non-overlapping patches. Four center patches are

discarded due to their homogeneous intensity distribution. Each of the boundary patches

is associated with a class label (from 1 to 12) and five vectors. The class label (Cpatch)

represents the position of the patch within the ROI and four vectors (ddd1P1,ddd1P2,ddd1P3 and

ddd1P4) point to four corners from the patch center and vector (ddd2) points to the vertebral center,

as shown in Fig. 5.7. These image patches are converted to feature vectors and fed into a

Hough forest algorithm for training.

5.2.2 Feature Vector

After creation, in order to train or test, the patches are converted into feature vectors. A

detailed experimentation with different types of feature vectors was performed in [71] on

Dataset A. The full description of these feature vectors and results can be found in Sec. A.3

and Table A.3, respectively. In this chapter, we only use the best performing feature vector:

Haar-Mixed. To generate these feature vectors from the patches, we consider both the

intensity and the gradient distribution of each patch. Gradients are calculated in horizontal

and vertical direction. Then the root-mean-square (RMS) of the magnitudes are considered.

Fig. 5.8 shows the intensity and gradient distributions of a few training patches. Both

distributions contain complementary information which can be useful for training.

Intensity                                              Gradient

Fig. 5.8 Appearance of intensity and gradient patches.

Each of these distributions is then passed through ten Haar-like feature templates [106].

These templates are chosen based on the patch appearances in terms of intensity and gradient
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Fig. 5.9 Haar-like feature templates.

distribution (see Fig. 5.9). Each template returns a feature value when passed through an

intensity (I) or gradient (G) patch based on the difference between the average intensity of

the dark and bright area:

fi = Īdark − Ībright , (5.6)

gi = Ḡdark − Ḡbright . (5.7)

where Īx and Ḡx is the average value of intensity and gradient distribution of area denoted

by x, respectively. Finally, feature vectors (Hv) are formed by the feature values from these

feature templates:

Hv = [ f1, f2, f3, ....., f10,g1,g2,g3, .....,g10], (5.8)

5.2.3 Training

In contrast to the random forest method discussed in Sec. B.1 and 3.1.3, which can perform

either regression or classification, Hough forest performs both together in the same forest.

During training the algorithm requires training data, each of which is associated with a class

label and a vector. In our case, patches generated from the vertebrae are converted into

feature vectors (see Sec. 5.2.2). These feature vectors are considered as training data and

corresponding class labels (Cpatch) and vectors ddd1 are used to calculate the information gain

(IG) using classification entropy (Hclass) or regression entropy (Hreg). The choice of entropy

at each node is random in Hough forest. The data flows down the tree until the maximum
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tree depth (D) is reached or the number of elements in a node falls below a threshold (nMin).

The IG is calculated using Eqn. 5.9 which is the same equation described in Sec. 3.1.3:

IG = H(S)− ∑
i∈{L,R}

|Si|
|S|

H(Si), (5.9)

where, S is a set of examples arriving at a node, SL and SR are the data that travel left (L)

and right (R), respectively, and H(S) is the entropy of the data S. Here, H(S) can be either

classification entropy, Hclass, or regression entropy, Hreg. For Hough forest, at any node, this

entropy is chosen at random. These can be calculated as below:

Hclass(S) =− ∑
c∈C

p(c)log(p(c)), (5.10)

where C is the set of classes available at the considered node. In our case C ⊆ {1,2,3, ...,12}.

Hreg(S) =
1
2

log((2π)2|Λ(D1)|), (5.11)

where D1 is the set of ddd1 vectors arriving at the node and Λ(D1) is the covariance matrix

of D1. At each node, the optimum split (maximum IG) is chosen from a subset of all the

possible splits. Each tree branch terminates at a leaf node. The leaf node contains the class

labels (Cpatch) and the ddd1 vectors of the patches that end up at that node.

5.2.4 Prediction

At the time of testing, image patches are generated using the manually annotated vertebral

centers following the process described in Sec. 5.2.1. These test images patches are converted

to feature vectors and fed into the trained forest. Each patch travels through each tree and

reaches a leaf node. Each leaf node contains a set of ddd1 vectors and class labels (Cpatch) from

the training samples. As the image patches are created in a fixed manner based on the ROI,

the class label of the test patch, Ctest , is known at test time. Based on this known class label,

a filtering stage discards all the ddd1 vectors belonging to classes other than Ctest from the leaf
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node training data samples:

d̂dd1tree = d̂dd1 f iltered = {∀ddd1|c =Ctest}. (5.12)

Each of these filtered ddd1 vectors is then combined with the corresponding ddd2 vector of that

patch to find the corner location with respect to the vertebral center (see Fig. 5.7d):

d̂ddpatch = {d̂dd1tree(1), d̂dd1tree(2), ..., d̂dd1tree(N)
}−{d̂dd2patch, d̂dd2patch, ..., d̂dd2patch}. (5.13)

Then the final corner position ddd is predicted using a two-dimensional kernel density estimation

(KDE) process over the collection of vectors coming from all the patches from the same

vertebrae [107]:

d̂dd = KDE({d̂ddpatch(1), d̂ddpatch(2), ..., d̂ddpatch(12)}). (5.14)

Fig. 5.10 KDE: The heat map denotes the confidence of the aggregated probability distribution
p(ddd1_out). Red crosses indicate the positions of the input ddd1_in vectors and green circle
represents the maxima of p(ddd1_out) and output vector ddd1_out .

The KDE process takes a set of 2D vectors and regresses a possible output. Here at each

vector (ddd1_in) location a zero-mean 2D Gaussian distribution with isotropic variance σ2
k is

set:

p(ddd1_in) = N (ddd1_in,σ
2
k ) =

1
σk
√

2π
exp

− (xxx−ddd1_in)
2

2σ2
k , (5.15)
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After placing a distribution at each of the vectors, a final probability map is calculated by

adding all distributions as:

p(ddd1_out) =
1
n

n

∑
i=1

pi(ddd1_in) (5.16)

Finally, the maxima of this aggregated distribution are located and considered as the output

vector (ddd1_out). The process is also graphically summarized in Fig. 5.10.

5.2.5 Parameters

As for any random forest method, there are a few hyper-parameters that should be decided

before training: number of trees (nTree), maximum allowed depth of a tree (D), minimum

number of elements at a node (nMin), number of variables to look at in each split nodes

(nVar) and number of thresholds (nTresh) to consider per variable. Apart from the random

forest parameters, the kernel density estimation (KDE) function requires a given bandwidth

(BW ) which is the variance (σ2
k ) in Eqn. 5.15. The value of these parameters were optimized

using a sequential parameter optimization process on Dataset A. The process is described in

Sec. A.4 and the parameters for the Hough forest trained for this dissertation are reported in

Table A.2.

5.3 Deep Probabilistic Vertebral Corner Localization

In the previous chapter, we have proposed a probabilistic spatial regressor network (PSRN)

for the localization of vertebral centers. The network used a pixel-wise loss function for

training which does not take into account the properties of a valid probability distribution

like the summation must integrates to one. In this section, we propose major improvements

to the PSRN by introducing a new spatial normalization layer and a novel probabilistic loss

function. The improved network will be used in a novel framework to localize vertebral

corners for lateral cervical X-ray images.
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This section is structured as followed. First, in the next subsection, we discuss the ground

truth used for training the improved PSRN. Followed by a summary of the whole corner

localization framework. The new spatial normalization layer is discussed next, followed

by the introduction of the novel loss function. The section ends with the discussion of the

post-processing step needed to convert the probability maps into localized corners on the full

resolution image.

5.3.1 Ground Truth

As discussed earlier, each vertebral body in the dataset was manually annotated for the verte-

bral boundaries and centers by expert radiographers. Two examples with the corresponding

manual annotations are shown in Fig. 5.11a and 5.11b. The corner point of a cervical vertebra

is often not well defined because of the smooth transition of the vertebral boundary. Thus

manually clicked corner points vary substantially from expert to expert and from vertebra to

vertebra. This variation makes it difficult for machine learning algorithms to learn a single

deterministic model for corner prediction. This led us to consider probability distributions

to represent the corners instead of a single point. The probability distribution is generated

by applying the same 2D anisotropic Gaussian distribution used for generating probabilistic

distributions for vertebral centers in Chapter 4. One distribution is added at each manually

clicked corners. However, the full Gaussian distribution was not kept. Given the fact that

the location of the corner can only vary along the vertebral boundaries, we only keep those

values on the boundary. The resulting distributions over the image space can be seen in

Fig. 5.11a and 5.11b.

To create the training image patches and the ground truth probability distributions from

the image-level data-pairs, we follow the same grid-based multi-resolution multi-orientation

procedure mentioned in Sec. 4.2. As a result, we have 66,600 training patches. Similarly, the

patches were resized to a size of 64×64 pixels at which the proposed network is trained. A

few vertebral image patches are shown in Fig. 5.11c with their corresponding ground truth

distributions.
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(a)

(b)

(c)

Fig. 5.11 (a-b) Zoomed X-ray images (left), manual annotations (middle-left): center (o),
manually clicked boundary points (×), corner points (+) and splined vertebrae curve (−),
heatmap of the probability distributions for the corners (middle-right) and heatmap overlayed
on the X-ray image (c) training image patches and corresponding patch-level ground truth
probability distributions.

5.3.2 Framework

The overview of the improved PSRN-based corner localization framework is summarized

in Fig. 5.12. Like the previous two corner localization frameworks, we assume the ver-
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tebral centers are given. From these manually clicked center points, a set of patches is

generated. Each of these image patches is sent forward through the improved probabilistic

spatial regression network described in Sec 5.3.3. The network generates patch-level spatial

probability distributions for corners in each patch. The patches are then transformed back

on the original image space using their known location, orientation and size. Finally, the

vertebral corners are localized from the accumulated patch distribution. These last steps are

part of the post-processing phase and described in Sec. 5.3.4.

Post-processing

(a)                                     (b)                         (c)                         (d)                                      (e)                                                   (f) 

Fig. 5.12 Framework block diagram (a) input image with manually clicked vertebral centers
(b) image patches (c) proposed network (d) patch-level predictions (e) image-level prediction
(f) localized corners.

5.3.3 Network

The network in Fig. 5.12c is trained on the training image patches to learn a mapping for

predicting spatially distributed probabilities for the vertebral corners. We have the same

architecture used in the original PSRN proposed in Chapter 4 with the exception of the final

convolutional and the softmax layer. Previously, the activation from the last convolution layer

had two channels. In this chapter, the final activation of the network is a single channel output

which will be compared with a 2D spatial probability distribution over the input image space.
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Thus, we introduce a new layer to convert the final activation into a valid spatial probability

distribution. One choice for this layer could have been doing softmax-like operation spatially,

but as our input patches have multiple corners with high probabilities (Fig. 5.11b), the

exponential nature of the softmax function often results in a single localized corner. Thus, we

introduce a new spatial normalization layer, which converts the final activation of the network

into a valid spatial probability distribution using a simple mathematical operation by forcing

the minimum to be zero and the integration to be unity. The network is shown in Fig. 5.13.

The total number of parameters in the network is 24,237,633 which is a few parameters less

than the original PSRN. This is because of the difference in the last convolution layer which

now produces a single channel output and contains half of the parameters compared with the

network proposed in Chapter 4.

8 8 512 8 8 512+512

8 8 1024

(a)

Input/Output

Data

Convolution 3x3 Pad 1 Stride1

Batch Normalization

ReLU

Deconvolution 2x2 Crop 0 Upsample x2

Batch Normalization

ReLU

Pool 2x2 Stride 2

Concatenation

(b)

Height Width Channels

Height Width Channels

64 64 1

64 64 1 64 64 64

64 64 64 64 64 64

64 64 64 64 64 64+64

32 32 64 32 32 128

32 32 128 32 32 128

32 32 128 32 32 128+128

16 16 128 16 16 256

16 16 256 16 16 256

16 16 256 16 16 256+256

8 8 256 8 8 512

8 8 512 8 8 512

Convolution 3x3 Pad 1 Stride1

Spatial Normalization

Fig. 5.13 (a) Network architecture (b) legend.

5.3.3.1 Training

Given a dataset of training patch (x) - ground truth probability distribution (y) pairs, training

a deep neural network means finding a set of optimized parameters ŴWW o that minimizes a loss

function, L:

ŴWW o = argmin
WWW

N

∑
n=1

L({x(n),y(n)};WWW ), (5.17)
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where N is the number of training examples and {x(n),y(n)} represents n-th example in the

training set with corresponding ground truth corner probability distribution. We desire a

network where the last layer, the spatial normalization layer, generates a valid probability

distribution. Let P(x) be the output of the network for the input x. We define a differentiable

loss function that measures the similarity between the ground truth and prediction distribu-

tions. We have previously used Bhattacharyya coefficient (BC) to evaluate the similarity

between two probability distributions. BC is zero if there is no similarity and increases to a

maximum of unity as the similarity increases. Based on this knowledge, we define the loss

function per input sample as following:

L({x,y};WWW ) =−2BC(y,P(x)), (5.18)

BC(y,P(x)) = ∑
i∈Ωp

√
yiPi(x), (5.19)

where Ωp represents the pixel space and Pi(x) is the probability at point xi. Eqn. 5.18 is easily

differentiable with respect to the input of the loss layer, P(x). The pixel-wise derivative of

Eqn. 5.18 with respect to Pi(x) is used for the backpropagation of the loss during training:

∂

∂Pi(x)
Li({x,y};WWW ) =−

√
yi

Pi(x)
. (5.20)

The network is trained on the 66,600 image patches generated from the training images.

The network is trained on a system with a NVIDIA Pascal Titan X GPU for 17 epochs with a

batch-size of 25 image patches. The training took approximately 42 hours.

5.3.4 Post-processing

At the test time, given a test image and corresponding manually clicked vertebral centers, we

create test patches following the same procedure described in Sec. 5.3.1. Each patch is then

resized to 64×64 pixel and passed forward through the trained network which generates a

patch-level spatial probability distribution. These probability distributions often have noise
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and residual probabilities in the background. The residual probabilities are a result of the

combined effects of the padding operations of the convolutional layers of the network and

the introduced spatial normalization layer. Throughout the network, we have used zero

padding in the convolutional layers to keep the output size similar to the input. This zero

padding results in a lower value at the border of the output. As our spatial normalization

layer simply forces the minimum to be zero, the border area of the final activation becomes

zero and the rest of the background assumes small residual values. The effect can be seen

in Fig. 5.14c, where the patch borders are visible and have probability values near zero.

The range of values for the residual probability in each patch can be found by analyzing its

histogram. In the next step, we remove these residual probabilities from the background and

re-normalize the distributions to have a range between 0 and 1. These patch-level predictions

are then transformed back on the original image space using their known size, orientation

and location. The affine transformation process is the same as described in Sec. 4.3.3. The

resultant distribution for each vertebra is then weighted by a prior probability distribution

(a)
(a)                            (b)                (c)              (d)                           (e)                                          (f)

Fig. 5.14 Post-processing (a) input image with manually clicked vertebral centers (b) extracted
image patches to be sent forward through the network (c) patch-level prediction results from
the network (d) patch-level predictions after removing residual probabilities (e) image-level
prediction (f) localized corners.
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of corners for that vertebra learned from the training examples. Finally, on the original

image space, the vertebral corners are localized by finding the maximum in each of four

quadrants of each vertebra. The quadrants are defined using the manually clicked center

points. The process is similar to the Harris-based naive Bayes corner detector discussed

in Sec. 5.1.2. In case the algorithm does not find any probability distribution for a corner,

which may be a result of occlusion, surgical implant and/or low contrast, it uses this prior

distribution of corners determine a possible corner location. In the example of Fig. 5.14e, we

show that the bottom-left corner is missing on the original image space because of very low

contrast. The complete process of corner localization starting from a test image including the

post-processing steps is summarized in Fig. 5.14.

5.4 Results and Discussion

We first evaluate the performance of the improved PSRN at the patch level by reporting

the Bhattacharyya coefficient (BC) between each predicted spatial probability map and its

corresponding ground truth probability for the 90,480 image patches generated from our

172 test images. The BC between two probability distribution is defined in Eqn. 5.19. An

average BC of 0.9794 has been achieved over the test patches. A Bhattacharyya coefficient

of 1 indicates a perfect match between two probability distributions. The histogram plot

of the BC metrics is shown in Fig. 5.15. It can be noted that the BC is always in the

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Bhattacharyya coefficients

0

0.02

0.04

0.06

0.08

0.1

0.12

P
er

ce
nt

ag
e 

of
 te

st
 p

at
ch

es

Bhattacharyya coefficients

Fig. 5.15 Histogram plot of Bhattacharyya coefficients for patch-level predictions for PSRN.
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high range of 0.96 to 0.99 for all the test patches. However, the BC has limitations in

measuring the similarity between two distributions. Since the majority pixels on the ground

truth probability distribution have zero values, it doesn’t penalize if a small prediction

probability is present in those places thus BC can be high even if the prediction looks

different. This is why BC stays high even when there is border effects and small residual

probabilities in the background (Fig. 5.14c). Although these results look different from

the patch-level ground truth (Fig. 5.11b), the BC between them can be high as long as the

locations of the maximum probabilities match. As our loss function is based on this metric,

the trained network failed to remove the residual probabilities in the background (Fig. 5.14c).

However, despite this limitation, the network robustly learns to predict high probabilities

at the corner locations. A few patch-level qualitative results from our test dataset and also

from the NHANES-II dataset are shown in Fig. 5.16a and 5.16b, respectively. The predicted

probability heatmaps shown in these examples are after removing the residual background

probabilities (Fig. 5.14d). Fig. 5.16a illustrates that the predicted probability distributions

often have a higher variance than the corresponding ground truth. This could be an effect of

multiple upsampling operations in the expanding path of the U-Net architecture. Instead of

using deconvolutional layers to achieve upsampling, a sub-pixel convolution could be used

which may reduce this effect [108].

After the post-processing phase, the corners are localized on the original image. The

HarrisNB and HoughF also localize the corner on the original image space. So, we can

now compare all three proposed corner localization frameworks discussed in this chapter.

The ground truth corners and the vertebral boundary curves are known from the manual

annotations. We report two metrics:

1. Point to point (P2P): Euclidean distance between the predicted corner to manually

annotated corner in millimeters (mm),

2. Point to curve (P2C): Distance between the predicted corner and manually annotated

vertebral boundary curve (green lines in Fig. 5.11a). This metric is defined in Eqn. 5.21.
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(a)

(b)

Fig. 5.16 Qualitative analysis of the predictions from PSRN (a) patches from the test dataset:
input image patch - PSRN prediction (overlayed on the input patch) - ground truth distribution
(overlayed on the input patch) (b) vertebra patches collected from NHANES-II dataset: input
image patch - PSRN prediction.

P2C(Ĉ,Sgt) = min{D(Ĉ,xxx) : xxx ∈ Sgt}, (5.21)

where Ĉ is the predicted corner, Sgt is set of points in the manually annotated vertebral

boundary curve and D(xxx,yyy) is the Euclidean distance between the point xxx and yyy. For both,

P2P and P2C, lower values represent better results. The P2P is a special case of P2C where

Sgt only contains a single point, i.e., the ground truth corner. The P2C is more appropriate

than P2P when the corner area is smooth and determining a corner depends on human

interpretation. We also report a third metric called fit failure [38]. We define fit failure as the
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percentage of corners with a P2P error greater than 3 mm. The median, mean and standard

deviation of these metrics over the 3,188 corners of the test dataset are reported in Table 5.1.

Point to point (P2P) (mm) Point to curve (P2C) (mm)
Median Mean Std Fit failure (%) Median Mean Std

HarrisNB 2.15 2.70 2.20 34.91 0.53 0.95 1.10
HoughF 1.99 2.48 1.98 27.13 0.88 1.12 1.07
PSRN 0.99 1.54 1.74 11.70 0.35 0.58 0.76

Table 5.1 Euclidean distance between predicted and manually annotated corners.

In terms of P2P error, the HoughF performs better than HarrisNB. The improved PSRN-

based method achieved a 38% relative improvement (mean P2P 1.54 mm vs 2.48 mm)

compared to HoughF. The median error for the proposed method achieved a large drop of 1

mm from the HoughF method. The percentage of vertebrae with fit failure also decreased by

more than 15 percentage points. The cumulative P2P errors for the compared methods are

shown in Fig. 5.17.

0 2 4 6 8 10 12 14

Point to point errors in mm

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 c

or
ne

rs

Performance curve for different methods

PSRN
HoughF
HarrisNB
Fit failure threshold

Fig. 5.17 Cumulative error curve for different corner localization methods.

It can be seen that the improved PSRN-based framework outperforms the other methods

by a large margin. In terms of the P2C error, the HarrisNB outperforms the HoughF method.

We believe this is because of the edge detection process utilized in the HarrisNB method,

which forces the detected corners to be near vertebral boundaries. But the PSRN method

still outperforms the HarrisNB method with a relative improvement of 39% in terms of the
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Fig. 5.18 (a) Boxplot of the errors for different corners and (b) boxplot of the errors for
different vertebrae for PSRN-based corner localization method.

mean error. However, it can be noted that the standard deviation of the PSRN method is still

somewhat high. This is because of the complexity in our test dataset. As we mentioned our

data is not collected under a controlled environment, thus it contains challenging images full

of clinical conditions, bone implants, image artefacts and contrast variations. Some of these

challenging cases are shown in Fig. 5.19c and 5.19d. The boxplots of Fig. 5.18a and 5.18b

also reveal that there are many outliers, most of which belong to the corners from these

challenging cases. In Fig. 5.18a, we show a boxplot of the P2P errors for different corners

for the PSRN method. It can be noted that the corners on the right (or anterior side) have

comparatively lower errors than the left side (posterior). The probable reason behind this

might be that the anterior side of the cervical spine often has better image contrast than the

posterior side which contains posterior spinal arches and processes. The vertebral corners are

also closer in between two vertebrae on the posterior side. The boxplot of corners for different

vertebrae reveals that C3 and C4 have a lower error from the rest of the spine (Fig. 5.18b).

As we go down the spine (from C3 to C7) the variation of the vertebrae increases as well as

the image quality and contrast decrease to some extent, making it harder for the algorithm to

predict corners.
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Some vertebra-level results for all the compared methods are shown in Fig. 5.19. In the

first row, Fig. 5.19a, we show some relatively easy cases where predictions of all the methods

are comparatively good. In Fig. 5.19b, we show some more easy cases, where the improved

PSRN-based methods outperformed the other methods. Some challenging cases with bone

implants, low contrast, image artefacts and clinical condition are shown in Fig. 5.19c, where

the improved PSRN method has produced good results. Finally, in Fig. 5.19d we show some

more challenging cases where almost all the methods have failed.

(a)

(b)

(c)

(d)

Fig. 5.19 Vertebra-level corner predictions: ground truth (+), PSRN (o), HarrisNB (×) and
HoughF (×).

A few qualitative results with the full cervical spine with the predictions from the PSRN-

based corner localization framework are shown Fig. 5.20. Fig. 5.20a and 5.20b show two

examples of healthy spines where the prediction results are near perfect for almost all

the corners. A severe case of bone loss, osteoporosis and low image contrast is shown

in Fig. 5.20c. It can be seen even with such severe conditions, the prediction results are

considerably correct. Fig. 5.20d shows an example with surgical bone implants, which

affected some of the prediction results, especially at the C5-C6 area. However, because
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of the patch-based framework, other corners are well detected. A few results for spinal

misalignment (spondylolisthesis) are reported in the rest of the Fig. 5.20. Fig. 5.20e shows

subluxation (partial dislocation) between C4-C5, Fig. 5.20f between C3-C4 and Fig. 5.20h

between C5-C6. The predicted corners can be used to determine these injuries automatically.

(a)                  (b)    (c)     (d)    (e)     (f)      (h)

Fig. 5.20 Vertebral corner prediction using PSRN-based framework: ground truth (+), PSRN-
based corner prediction (o). The magenta circles (O) indicates the subluxation injuries.

5.5 Conclusion

In this chapter, we proposed three novel vertebral corner localization methods. The first

method, HarrisNB, used classical corner and edge detection methods with a prior knowledge

of possible corner locations from a training dataset. This method can be considered as a

local method where the actual appearance of the corner plays an important role. However,

because of the amount of noise present in the X-ray images, the local information can be

corrupted. The HoughF framework tries to overcome this local dependency by localizing

corners using votes generated by patches extracted from other parts of the region of interest.

However, because this method has less dependency on the local properties, sometimes cor-

ners are localized in homogeneous image regions away from the actual vertebral boundaries.

Finally, we have proposed major improvements to the probabilistic spatial regressor network

by introducing a novel loss function and new spatial normalization layer. The improved
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PSRN was incorporated in a corner localization framework which outperformed the first two

frameworks by a large margin and achieved a median error of less than a millimeter.

The methods proposed in this chapter can be adapted to other domains. The HarrisNB

framework proposes a methodological way of removing unnecessary corners detected by the

classical Harris corner detector by incorporating a prior knowledge and several edge detection

methods. This can be particularly useful for images with high amount of noise. The method

is fast and doesn’t require extensive training like other machine learning techniques. The

proposed HarrisNB is also modular which means if necessary for certain applications, one

can modify/improve the framework by removing/updating certain modules of the framework

(Fig. 5.2).

The HoughF framework was inspired by the success of object detection method proposed

in [91]. Unlike the HarrisNB framework which can only detect corners, the HoughF frame-

work can easily be adapted to localize any other features and objects in the image. One only

needs to update the vectors related to the training image patches with new vectors pointing

towards the new features or objects of interest. The rest of the framework can stay the same.

In the conclusion of the previous chapter, we have already discussed the how the proba-

bilistic spatial regressor network (PSRN) can be used for localization of image landmarks in

the other domains of computer vision. In addition to those applications, the PSRN can also

be used for probabilistic detection of other image features like edges and object boundaries.

We will expand on this in the following chapter.

Like vertebral corners, vertebral boundaries can also play a vital role in the automatic

detection of vertebrae related clinical conditions like subluxation and compression fracture.

In the next chapter, we focus our attention on vertebral boundary detection. We will use

our experience of the dense classification network and the probabilistic spatial regressor

network (PSRN) to solve the boundary detection problem. The PSRN used in this chapter
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suffered from residual background probability problem. It was a combined effect of the

convolution operation with zero padding and the proposed spatial normalization layer. In

the next chapter, we will propose another spatial normalization layer to solve the residual

background probability problem.



Chapter 6

Boundary Detection and Segmentation

6.1 Introduction

Vertebral boundaries are arguably the most characteristic property of the X-ray images. It

separates the vertebral body from the surrounding. The image intensities at the vertebral

boundary are expected to change. However, in X-ray images, the change in the intensity

along the edge of the vertebral body is not always apparent. In this chapter, we propose

machine learning-based solutions to detect vertebral boundaries and segment vertebral bodies.

Boundary detection can be considered as a selective edge detection problem. An edge

in the context of computer vision is defined as any sharp change in the image intensities.

Edge detection is a fundamental problem in computer vision. Literature on this topic in-

cludes some of the seminal work from the 80’s [109–113] to the recent state-of-the-art

work like [78, 114, 115]. While the earlier research in the field focuses on finding suitable

filters [111, 116, 117] and/or tackle the problem using variational approach [112], recent

approaches in the literature are data-driven and designed as supervised machine learning

problems pioneered by [118]. One of the benefits of these supervised methods is that the

edge detection can be selective. Potentially, it is possible to train a machine learning model

which identifies edges along the boundaries of specific objects while ignoring other edges

in the images based on interest. In our case, we would like our model to track vertebral
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boundaries while ignoring the edges from vertebral extensions and other image artifacts.

Most of the recent articles on boundary detection use deep dense classification [114, 115].

Following this trend and based on the success of deep networks in the previous chapters on

vertebrae related problems, in this chapter, we propose two approaches to detect vertebral

boundaries. First, a dense binary classification approach where pixels under the manually

annotated vertebral boundary curve are considered as the foreground and others as the back-

ground. Then an UNet architecture is trained to classify each pixel in a vertebral image patch

as a boundary pixel or a background pixel. Second, leveraging the method from the previous

chapter, we take a probabilistic approach to boundary detection. Instead of representing

the vertebral boundary as foreground and neighboring pixel as background, the vertebral

boundary pixels are assigned a high probability of being an edge, and immediate neighboring

pixels are also assigned a small probability of being an edge. The motivation behind this is

that the manual annotation of vertebral boundary could be erroneous. The vertebral boundary

is manually annotated by 20 sparse points per vertebra, which is then splined to form a

continuous curve. Due to this operation, the curve may fall outside of a boundary pixel.

To predict a spatial probabilistic map of the vertebral boundary, we train our probabilistic

spatial regressor network on the vertebral image patches. We also propose an incremental

improvement to this network where the spatial normalization layer has been modified to

overcome the residual background problem suffered in the previous chapter.

Unfortunately, vertebral boundaries in X-ray images often lack visibility due to noise,

clinical conditions and low bone densities. Furthermore, the presence of the vertebral exten-

sion in the posterior side of the vertebra makes it challenging to visualize vertebral boundary.

These issues make the vertebral boundary detection problem very challenging. Thus, along

with vertebral boundary detection, we also propose a novel method for segmenting the

vertebral body. The expectation is that when trained to segment the whole vertebral body, the

machine learning model will have better opportunity to learn the topological properties of a
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vertebra.

Previous work in vertebral body segmentation has largely been dominated by statistical

shape model (SSM)-based approaches [24, 38, 41, 46, 48, 49, 57, 69, 119]. These methods

record statistical information about the shape and/or the appearance of the vertebrae based on

a training set. Then the mean shape is initialized either manually or semi-automatically near

the actual vertebra. The model then tries to converge to the actual vertebral boundary based

on an ASM search procedure. Recent work utilizes random forest-based machine learning

models in order to achieve shape convergence [38, 49, 57, 69]. In contrast to these methods,

we propose a deep dense classification network-based method for vertebra segmentation.

Instead of predicting the shape of a vertebra, our framework predicts the segmentation mask

for a vertebral image patch. The ground truth here is a binary segmentation map where

the foreground is defined as the whole vertebral body. A dense classification network is

then trained with a standard loss function to learn the mapping between this ground truth

and corresponding input vertebral image patch. The standard dense classification loss func-

tion computes the cross-entropy loss in a pixel-wise manner which does not encourage

prediction of vertebrae-like shapes. Shape characteristics have long been used for medical

image segmentation problems [120–123]. Medical image modalities, including X-rays, often

produce noisy footprints of anatomical body parts, where segmentation problem must rely

on the shape information to produce reliable results. Since vertebrae in lateral X-ray images

have distinct shapes, we want to encourage our proposed network to predict vertebrae-like

structures. However, combining shape information in a dense classification network is not

straightforward. We try to solve this issue by introducing a novel shape-aware term in the

loss function of the dense classification network.

The key contributions of this chapter are:

1. An innovative spatial probabilistic approach to boundary detection problem.

2. A new histogram-based normalization layer to solve the residual background problem

of the probabilistic spatial regressor network.
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3. A qualitative comparison of boundary detection performance by the dense classification

network and the spatial probabilistic regressor network.

4. Introduction of a novel shape-aware term in the loss function of a deep dense classifi-

cation network which learns to preserve the shape of the vertebral body.

6.2 Overview

In the next section, we describe the input image patches and the corresponding boundary

detection and segmentation ground truth for training the deep networks. The network

architectures and the relevant loss functions are explained in Sec. 6.4. A brief discussion

of the compared algorithms and the quantitative metrics has been reported in Sec. 6.5. The

results are discussed in Sec. 6.6 followed by the conclusion of the chapter in Sec. 6.7.

6.3 Ground Truth

We use the same training and test image split used in the previous chapters. However, we

apply a different data augmentation scheme based on the patch extraction process during

inference. To extract the image patches at the test time, one approach could be to use a

sliding window technique. However, since the vertebra position, size and orientation vary a

lot in our test dataset, the patch extraction would need to be performed all over the image

space, possibly with overlapping patches and multiple scales and orientations increasing the

processing time during inference. After we get all the predictions, other points to consider

would be, how to reconcile between multiple predictions for the same vertebra and what to

do with partially visible vertebra image patches. To avoid these complications and since we

have already localized the vertebral centers and corners in the previous chapters, we propose

to use them for an automatic test vertebrae patch extraction process. So, in this chapter, we

assume that the approximate center point of the vertebra is known. For training images,

these vertebral centers are provided by our clinical partner as mentioned in Sec. 2.3. At the

test time, the user can first apply our spine localization algorithm of Chapter 3 to localize
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the spine. Then the center localization framework of Chapter 4 can be applied to predict

vertebral centers. One can also use the corner localization framework of Chapter 5 to localize

the corners, and then compute the refined center location as the centroid of the four localized

corners. However, in this chapter, to test the performance of the boundary detection and

the segmentation algorithm independent of all the previous frameworks, we use the manu-

ally labeled vertebral centers. The fully automatic process will be discussed later in Chapter 8.

For data augmentation, we extract vertebral image patches from the training images with

five different scales and nine different rotations/orientation. Based on the manually annotated

vertebral center points, we compute the mean vertebral axis using the orientation vector

described in Sec. 2.4.2. From this mean vertebral axis, we rotate the vertebrae from -20◦ to

+20◦ with a step of 5◦ and for each rotation, we compute a base vertebral image patch size

based on the distance from the center to the farthest point in the annotated vertebral boundary.

The base size makes sure that the complete vertebra is inside the extracted vertebral image

patch for every rotation. From the base patch size, we increase the size by 1 to 5 mm with

a step of 1 mm to extract vertebral image patches with five different scales for each of the

nine rotational angles. By augmenting the data using this approach, we end up with 26,370

vertebral image patches from training dataset of 124 images containing 586 vertebrae. All

these extracted patches are resized to a common size of 64×64.

 

  

(a) (b) (c)  (d)   (e) 
  

(a) (b) (c)  (d)   (e) 

Fig. 6.1 Ground truth for edge detection networks (a) input vertebrae (b) manually annotated
vertebral boundary (c) binary ground truth for boundary detection and (d) probabilistic
ground truth for boundary detection and (e) binary ground truth for segmentation.
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To create ground truth for these extracted image patches, the manually annotated ver-

tebrae boundary curves are used. For the boundary detection problem, the pixels under

the curve have been assigned foreground class label, and all other pixels are assigned the

background class label. This binary ground truth is used to train the boundary detection

dense classification network. The ground truth is then smoothed with a Gaussian kernel and

normalized as a valid probability distribution to create the ground truth for the probabilistic

spatial networks. We have used a Gaussian kernel with a kernel size of 0.55 pixel. The

choice of the standard deviation is based on visual evaluation of the resulted probability

distribution. For the vertebral body segmentation problem, the pixels inside the boundary

curves are considered as the foreground class and outside are considered as the background

class [124]. Fig. 6.1 shows four examples of all the ground truth from the augmented training

dataset. It can be noted that the binary ground truth in Fig. 6.1c and 6.1e contain artifacts due

to pixelation effect. This effect is caused by the manually annotated curve which is defined to

the 20 pixel-level points at the original resolution (see Sec. 2.3.1). At the patch resolution of

64×64, the pixels under the curve produce pixelation artifacts which may affect the training

of the dense classification networks. The effect is reduced to some extent by the Gaussian

smoothing in the probabilistic boundary ground truth (Fig. 6.1d).

6.4 Network and Training

The dense classification networks for the boundary detection and the segmentation problem

have a similar architecture as the UNet architecture used in the center localization problem.

The network diagram is shown in Fig. 6.2. The network terminates with a softmax layer

which predicts the probability of each pixel belonging to the foreground class or background

class. As this network is performing a pixel-wise binary classification, the standard cross

entropy loss function is used. The same loss function has been used in Chapter 3 for spine

localization network. However, for the boundary detection ground truth, the ratio between

the number of pixels in the foreground class and the background class in the training ground

truth is <0.05. The majority of the pixels belongs to the background class thus training a
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Fig. 6.2 Network architectures (a) common architecture and (b) legend (c) end modules for
dense classification networks for boundary detection and segmentation (d) end modules for
probabilistic networks: PSRN and (e) PSRN-H.

network with such imbalanced data may result in biased predictions. To handle this extreme

data imbalance problem, we introduce a weight parameter into the loss function. This

weight parameter balances the back-propagation of the loss term for the two classes. Similar

balancing parameter has been used in [82]. The value of this parameter is dynamically

computed based on the ratio of the foreground and background pixels.

Given a dataset of training image (x) - binary ground truth (y) pairs, training a dense

classification network means finding a set of optimized parameters ŴWW o that minimize a loss

function, L:

ŴWW o = argmin
WWW

N

∑
n=1

L({x(n),y(n)};WWW ), (6.1)

where N is the number of training examples and {x(n),y(n)} represents n-th example in the

training set with the corresponding ground truth. The loss function for the weighted dense
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classification network is the pixel-wise log loss or the cross-entropy loss used before:

L({x,y};WWW ) =− ∑
i∈Ωp

M

∑
j=1

w jy
j
i logP(y j

i = 1|xi;WWW ), (6.2)

P(y j
i = 1|xi;WWW ) =

exp(a j(xi))

∑
M
k=1 exp(ak(xi))

, (6.3)

where a j(xi) is the output of the penultimate activation layer of the network for the pixel xi,

Ωp represents the pixel space, M is the number of class labels, and P are the corresponding

class probabilities. The weight parameter w j can be defined as:

w j =
∑

M
k=1 |ωk|
|ω j|

, (6.4)

where ωk is the set of pixels having the k-th class label in a training image patch. Thus, the

weight parameter dynamically changes its value from image to image based on the number

of foreground and background pixels in each image.

For the segmentation ground truth, the ratio between the number of pixels in the fore-

ground class and the background class varies between 0.3 to 0.7 based on the scaling factor

of the data augmentation process. Since here this ratio is not as extreme as was it was in

the case of boundary detection ground truth (< 0.05), the data balancing weight parameter

was ignored (i.e., w j = 1 is used). However, to encourage predicted segmentation mask to

conform to possible vertebral shapes, a novel shape-aware term is added to the loss function

of the vertebral body segmentation network. Along with the cross-entropy loss, this term

further penalizes the predicted areas that do not match the ground truth, based on the known

shape of the training vertebra. This term can be defined as:

Ls({x,y};WWW ) =−E(x,y) ∑
i∈Ω̂p

M

∑
j=1

y j
i logP(y j

i = 1|xi;WWW ), (6.5)
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where

E(x,y) = mean
{

min{D(ppp,qqq) : ppp ∈ Sgt(y)} : qqq ∈ Ŝ(x)
}
, (6.6)

and Ŝ(x) is the curve surrounding the predicted regions, SGT (y) is ground truth curve and

D(ppp,qqq) computes the Euclidean distance between the point ppp and qqq. Ŝ(x) is generated by

locating the boundary pixels of the predicted mask which is a function of the input image x.

Similarly, Sgt(y) is generated by locating the boundary pixels of the ground truth mask or the

segmentation label, y. The redefined pixel space, Ω̂p, contains the set of pixels where the

prediction mask doesn’t match the ground truth mask. These terms can also be explained

using the toy example shown in Fig. 6.3. Given a ground truth mask (Fig. 6.3a) and a predic-

tion mask (Fig. 6.3b), E is computed by measuring the average distance between the ground

truth (green) curve and prediction (red) curve (Fig. 6.3c). Fig. 6.3d shows the redefined

pixel space, Ω̂p. The shape-aware term introduces an additional penalty proportional to the

Euclidean distance between predicted and ground truth curve to the pixels that do not match

the ground truth segmentation mask. In the case when the predicted mask is a cluster of small

regions, especially during the first few epochs in training, E becomes very large because of

the increase in the boundary perimeters from the disjoint predictions. Thus, this term also

implicitly forces the network to learn to predict a single connected prediction mask faster.

Instead of the average Euclidean distance, another potential choice for the distance function

could be Hausdorff distance [125]. This distance function computes the maximum distance

between two shapes. For the example shown in Fig. 6.3c, Hausdorff distance would ignore

the fact that the majority parts of the two shapes coincide with each other and thus would

(a)   (b)   (c) (d)

Fig. 6.3 Shape-aware loss (a) ground truth mask (b) prediction mask (c) ground truth shape,
CGT (green) and prediction shape, Ĉ (red) (d) refined pixel space, Ω̂p: false positive (purple)
and false negative (red).



116 Boundary Detection and Segmentation

result in a higher error. In case of multiple disjoint predicted regions, there would have been

different Hausdorff distances for each of the separate regions making the computation of the

loss in Eqn. 6.5 complicated.

Finally, incorporating the shape-aware term, the loss function of Eqn. 6.1 can be extended

as:

ŴWW o = argmin
WWW

N

∑
n=1

(
L({x(n),y(n)};WWW )+Ls({x(n),y(n)};WWW )

)
. (6.7)

The vertebral body segmentation network is trained using the above loss function.

The probabilistic spatial regressor network (PSRN) used in this chapter has the same

architecture of the PSRN used for corner localization in Chapter 5. We also use the same

Bhattacharyya coefficient (BC)-based loss function (see Eqn. 5.18 and 5.19). However, the

spatial normalization layer has been improved with a histogram-based normalization layer

that addresses the residual background probability issue mentioned in Chapter 5. The spatial

normalization layer converts the last feature map from the network to a valid probability

distribution. The previous spatial normalization layer forces the minimum to be zero and
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Fig. 6.4 Histogram-based spatial normalization layer. (a)-(c) illustrate the residual probability
problem of the previous chapter. (d)-(g) summarizes the histogram-based solution to this
problem. (a) input feature map (b) feature map after min subtraction (c) resulted probability
distribution from the original spatial normalization layer (d) histogram of the input feature
map (e) background value subtracted feature map (f) negative value replaced by zeros (g)
resulting probability distribution from the histogram-based spatial normalization layer.



6.5 Experiments 117

summation to be one. This process is illustrated in Fig. 6.4a, 6.4b and 6.4c. Instead of

forcing the minimum value of the last feature map to zero, the new layer finds the residual

background probability by analyzing the histogram of the feature maps and forces any pixel

having values equal or less than the background probability to zero. This way the residual

probability problem can be solved.

Assume X is the input to the normalization layer of the network. Histogram analysis

of this input provides us with n bin centers and corresponding n bin counts representing

the number of pixels with values around each bin center. We locate the maximum of the

bin counts and consider that bin center as the background value for that particular feature

map. We then subtract the background value from all predicted probabilities and replace any

resulting negative values with zeros. Finally, we force the summation of the resultant feature

to be unity. The process is summarized in Fig. 6.4a, 6.4d, 6.4e and 6.4f. In this hypothetical

example, the input, X , is a 5×5 matrix and n = 5. It can be noticed how the background

residual probability problem disappears when histogram-based spatial normalization has

been applied, resulting in a sharper probability distribution. In our training, X is a 64×64

matrix, and we have used n = 25 histogram bins.

6.5 Experiments

We have trained four networks for the boundary detection problem. First, two dense classifi-

cation networks: one without the introduced novel class balancing parameter (BDNet) and

the other with the weight parameter of Eqn. 6.2 (BDNet-W). The class imbalanced network,

BDNet, is trained with the same loss function with equal (unity) weight parameters for both

foreground and background class. We have also trained two networks for the probabilistic

boundary detection: one with the original spatial normalization layer (PSRN) and other with

the histogram-based normalization layer (PSRN-H). For the vertebral body segmentation

problem, we have trained two networks: SegNet and SegNet-S. ‘-S’ signifies the use of

updated shape-aware loss function of Eqn. 6.7. All networks share a common structure
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except the last layer and the loss function. The differences in the networks are illustrated

Fig. 6.2. The networks are trained on a system with a NVIDIA Pascal Titan X GPU for 30

epochs with a batch-size of 25 image patches. The training took approximately 28 hours for

each network.

6.5.1 Test Patch Extraction

As previously stated, for this chapter, we assume the vertebral center points are provided

manually during testing. Based on these points, the orientation vector, FFF , can be computed

as described in Sec. 2.4.2. The direction of this vector dictates the orientation, and the

magnitude of this vector dictates the size of the extracted test patch. Our test dataset of 172

images contains 797 vertebrae. The extracted vertebral image patches are then resized to

(a)                                        (b)

Fig. 6.5 Test patch extraction process (a) manually annotated centers (×), orientation vectors
(↑) and patch boundaries in blue (b) extracted test patches.
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the resolution of 64×64 and propagated through the networks to generate corresponding

predictions. The patch extraction process is illustrated in Fig. 6.5.

6.5.2 Compared Algorithms

To compare with the deep neural network-based prediction results, three active shape model

(ASM)-based shape prediction frameworks have been implemented. A simple maximum

gradient-based image search-based ASM (ASM-G) [119], a Mahalanobis distance-based

ASM (ASM-M) [24] and a random forest-based ASM (ASM-RF) [69]. The latter two have

been used in cervical vertebrae segmentation in different datasets. These ASM-based models

are different from the ASM-based framework discussed in Chapter 2. The ASM-based

framework described in Sec. 2.4 works on the full resolution image, whereas in this chapter,

the models are applied to the extracted 64×64 pixel test image patches. Another important

difference is that a single model is trained for all the vertebrae, C3-C7. Previously, separate

vertebral models were trained. The ASM models were trained on the same 26,370 vertebrae

used for training the deep networks which include the scale and rotation variations introduced

during data augmentation. Training the ASM models this way improved the shape prediction

Fig. 6.6 Performance of the ASM-based initial framework (left) and performance of the
ASM-G method trained in this chapter (right). Converged vertebral shapes (magenta) with
ground truth shapes (green).
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performance from the initial framework. One qualitative comparison between the initial

framework and ASM-G trained for this chapter on the same test images is shown in Fig. 6.6.

6.5.3 Inference and Metrics

During inference, 797 vertebrae from 172 test images are extracted following the process

discussed in Sec. 6.5.1 based on the manually clicked vertebral centers. These patches are

propagated through each of the networks to get the predictions.

The dense classification networks for boundary detection predict binary edge maps. The

predicted edge map can be compared with the corresponding binary ground truth to categorize

the pixels as true positive (TP), true negative (TN), false positive (FP) and false negative

(FN). The performance of the binary boundary detection results can then be compared based

on the Dice similarity coefficient (DSC):

DSC =
2|T P|

2|T P|+ |FP|+ |FN|
. (6.8)

DSC is also known as F-score or F-measure in the edge detection literature. The DSC

between the ground truth edge map and predicted edge map could be computed with a

matching distance (d). The matching distance is the maximum permissible distance when

matching a predicted edge pixel with the ground truth. The use of optimal matching distance

for comparing edge detection algorithms is standard in the literature [114, 115, 126, 127].

Here, we consider two cases: d = 0 and d = 1 pixel. The motivation behind computing the

metrics with a matching distance, d = 1, is illustrated in Fig. 6.7. Although, the ground truth

and the prediction are almost similar in Fig. 6.7a and 6.7b, the DSC is only 0.53 with d = 0.

This happens because the prediction edge pixel is often displaced by a single pixel from the

ground truth. While this is an erroneous prediction, but only computing DSC with d = 0

cannot address the fact the predicted edge pixel was adjacent to the ground truth. However,

comparing the ground truth and prediction with a matching distance, d = 1, can consider

adjacent pixel prediction as a correct prediction.
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(a) (b) (c) (d) 

 Fig. 6.7 Dice similarity coefficient (DSC) with different matching distances for boundary
detection (a) binary ground truth (b) binary prediction (c) overlap between the ground truth
and the prediction. Green indicates true positive, blue false positives and red false negatives.
With matching distance, d = 0, the DSC = 0.53 and with d = 1, the DSC = 0.94.

The performance of the probabilistic spatial regressor networks are measured based on

the Bhattacharyya coefficient between the predicted probability map and the ground truth

probability maps.

For the segmentation networks, SegNet and SegNet-W, the performance is measured by

the DSC without the matching distance. Along with the DSC, we also report the pixel-wise

accuracy (pA) which is defined in Eqn. 6.9.

pA =
|T P|+ |T N|

|T P|+ |T N|+ |FP|+ |FN|
×100%. (6.9)

The DSC and pA metrics are well suited to capture the number of correctly segmented

pixels, but they fail to capture the differences in the shape. In order to compare the shape

of the predicted mask appropriately with the ground truth vertebral boundary, the predicted

masks of the deep segmentation networks are converted into shapes by locating the boundary

pixels. These shapes are then compared with the manually annotated vertebral boundary

curves by measuring average point to curve Euclidean distance (Ep2c) between them. The

error is defined in Eqn. 6.10. The networks are trained and tested on vertebral image patches

of size 64×64 pixels. The image-level pixel spacing (millimeter per pixel) information is

not representative in this normalized space. Thus, the error, Ep2c, is reported in pixels. We

also report the fit failure. This metric has been used previously in Chapter 5 for comparing

different vertebral corner localization methods. The definition can be found in Sec. 5.4. Here,
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in this chapter, we redefine the fit failure as the percentage of vertebrae having an Ep2c of

greater than two pixels.

Ep2c(Ŝ,Sgt) = mean
{

min{D(mmm,nnn) : nnn ∈ Sgt} : mmm ∈ Ŝ
}
, (6.10)

where Ŝ is set points in the predicted shape, Sgt is set of points in the manually annotated

vertebral boundary curve and D(mmm,nnn) is the Euclidean distance between the point mmm and nnn.

Finally, it should be noted that the ASM-based methods predict shapes. To compare these

algorithms with the proposed methods, these predicted shapes are converted to corresponding

binary edge maps, segmentation masks or probability distributions following same procedure

mentioned in Sec. 6.3.

6.6 Results

6.6.1 Boundary Detection

We present the DSC for the boundary detection dense classification networks in Table 6.1.

The shapes predicted by the ASM-based methods are converted to corresponding binary

maps for computing the DSC. It can be seen that the performance of the ASM-based methods

is much lower than the dense classification networks. Among the two version of the dense

classification networks, the performance has been significantly improved when the novel

weighted loss function is used (BDNet-W). The DSC with d = 0 is low, but we have achieved

a maximum average DSC of 0.936 with d = 1. The probabilistic spatial regressor networks

are compared in Table 6.2 based on the Bhattacharyya coefficients (BC). For comparison, the

predictions of the ASM-based methods are also converted to probabilistic outputs. These

methods have achieved a maximum average BC of 0.544 where the PSRN-based methods

achieved BC higher than 0.72. The introduction of the novel histogram-based normalization

layer (PSRN-H) has resulted in significant improvement, pushing the average BC to 0.757.

Following a Jarque-Bera test at the 5% significance level [128], it was found that the resulted
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Fig. 6.8 Cumulative metric curves (a) Dice similarity coefficients (b) Bhattacharyya coeffi-
cients.

metrics are not normally distributed. Thus the significance tests reported in Table 6.1 and 6.2

are performed using the Wilcoxon signed-rank test [129] instead of the student’s t-test.

Dice similarity coefficient
Matching distance d = 0 d = 1 Wilcoxon signed-rank test

Method Mean Std Mean Std p-value
ASM-RF 0.228 0.125 0.678 0.261
ASM-M 0.309 0.124 0.746 0.167
ASM-G 0.273 0.102 0.758 0.158
BDNet 0.489 0.143 0.872 0.138

< 10−65
BDNet-W 0.543 0.124 0.936 0.090

Table 6.1 Dice similarity coefficients for binary boundary detection networks.

Bhattacharyya coefficient
Method Mean Std p-value (Wilcoxon signed-rank test)

ASM-RF 0.473 0.212
ASM-M 0.553 0.161
ASM-G 0.544 0.145
PSRN 0.723 0.067

< 10−93
PSRN-H 0.757 0.083

Table 6.2 Bhattacharyya coefficients for probabilistic boundary detection networks.
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Fig. 6.9 Boxplots of quantitative metrics (a) Dice similarity coefficients (b) Bhattacharyya
coefficients.

The difference in the boundary detection performance between the ASM-based methods

and the deep network-based methods are also visible in the cumulative metric curves shown

in Fig. 6.8. In between the dense classification networks, the difference between the cumu-

lative curves is more near the lower DSCs, indicating the fact that for difficult images the

weighted term is more effective. As we move towards higher DSCs, the curves are nearer.

For the probabilistic spatial regressor networks, we see the opposite pattern is observed.

The networks perform similarly for lower BCs and difference is more for higher BCs. The

boxplots of these metrics are shown in Fig. 6.9.

Qualitative predictions from the networks are shown in Fig. 6.10 and 6.11. The outputs of

the dense classification networks are crisp [115, 130] and more accurate than the ASM-based

methods but often discontinuous and broken. Even for relatively less challenging scenarios

like Fig. 6.10a and 6.10b, the dense classification results are discontinuous. For challenging

examples, the occurrence of discontinuity increases. The probabilistic spatial regressor

networks produce smoother vertebral boundaries. But these predictions are thicker than the

probabilistic ground truth. This issue can be attributed to the contracting path of network

architecture, where much of the spatial information is lost. The dense classification network

recovers the spatial information better than the probabilistic network in the expanding path

through concatenation of data matrices. Overall, the probabilistic outputs give a better

qualitative sense of the vertebral boundaries and less possibility of discontinuity. However,
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the qualitative evaluation depends on human perception and may vary from user to user.

For visualization, a post-processing step can be introduced to reduce the thickness of the

probabilistic boundary predictions. We have applied morphological erosion on the predictions

with a four-neighborhood structuring element. Two examples of this thinning operation are

shown in Fig. 6.12. Notice that after the thinning operation, the prediction thickness becomes

similar to the ground truth thickness.

 

 
(a) (b) (c)  (d) (e) (f) 

Fig. 6.12 Post-processing for reducing thickness of the predicted distribution (a) input test
vertebrae (b) probabilistic ground truth (c) thick prediction of the probabilistic networks (d)
eroded predictions (PSRN-He).

The patch-level predictions can be projected back on the original test images using affine

transformation like previous chapters (Sec. 4.3.3 and 5.3.4). A few examples of image-

level results from BDNet-W and PSRN-H networks are shown in Fig. 6.13 and 6.14. For

the PSRN-H network, we have used the post-processed, thinned predictions (PSRN-He in

Fig. 6.12). We also show what the ground truth looks like when projected back on the original

image. Fig. 6.13 shows examples of spinal columns from healthier subjects, and it can be

seen the dense classification network produces discontinuous and noisy predictions for a

few cases. But the predictions from the PSRN-H network is smooth and continuous in these

examples. Examples of images with severe clinical conditions and bone implants are shown

in Fig. 6.14. Both dense classification and probabilistic approaches suffer in the presence

of these conditions. A problem related with the test patch extraction procedure can also be

noticed in Fig. 6.14d and 6.14e. The ground truth is not continuous for some of the vertebrae.
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 Input image 

Dense Classification PSRN-He 

Prediction 
BDNet-W
Prediction 

Probabilistic 

Ground truth Ground truth 

Fig. 6.13 Image-level edge detection results 1. PSRN-He indicates the eroded (thinned)
patch-level predictions are used.
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Fig. 6.14 Image-level edge detection results 2.
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This is because of the severe degenerative changes which made the vertebrae to be prolonged

exceptionally in the horizontal direction. Since the patch size at test time is proportional

to the distances between the vertebral centers, the prolonged vertebrae get cut off at their

horizontal extremes. As the networks are not trained with such examples, the predictions

suffer greatly in this situation.

6.6.2 Segmentation

The median, mean and standard deviation (std) of the DSC and pA metrics over the test dataset

of 797 vertebrae for segmentation methods are reported in Table 6.3. Deep segmentation

network-based methods outperform the ASM-based methods. The SegNet achieves a 2.9%

improvement in terms of pixel-wise accuracy and an increase of 0.055 for the Dice similarity

coefficient. Among the two versions of the deep network, the use of novel loss function

improves the performance by 0.31% in terms of pixel-wise accuracy. In terms of the

Dice similarity coefficient, the improvement is in the range of 0.006. Although subtle, the

improvements are statistically significant according to a paired t-test at a 5% significance

level. Corresponding p− values between the two versions of the network are reported in

Table 6.3. Bold fonts indicate the best performing metrics. Interestingly, among the ASM-

based methods, the simplest version, ASM-G, performs better than the alternatives. Recent

methods [24, 69] have failed to perform robustly on our challenging dataset of test vertebrae.

Pixel-wise accuracy (%) Dice similarity coefficient
Median Mean Std p-value Median Mean Std p-value

ASM-RF 95.09 90.77 8.98 0.881 0.774 0.220
ASM-M 95.09 93.48 4.92 0.900 0.877 0.073
ASM-G 95.34 93.75 4.48 0.906 0.883 0.066
SegNet 97.71 96.69 3.04

< 10−12
0.952 0.938 0.048

< 10−12
SegNet-S 97.92 97.01 2.79 0.957 0.944 0.044

Table 6.3 Average quantitative metrics for segmentation.

The average point to curve error (Ep2c) for the methods are reported in Table 6.4. The

deep segmentation framework, SegNet, produced a 35% improvement over the ASM-based
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methods in terms of the mean values. The introduction of the novel loss term in training

further reduced the average error by 12% achieving the best error of 0.99 pixels. The most

significant improvement can be seen in the fit failure which denotes the percentage of the test

vertebrae having an average error of higher than 2 pixels. The novel shape-aware network,

SegNet-S, has achieved a drop of around 37% from the ASM-RF method. The cumulative

distribution of the point to curve error is also plotted in the performance curve of Fig. 6.15. It

can be seen that the adaptation deep segmentation network provides a big improvement in

the area under the curve.

Average point to curve (Ep2c) error in pixels
Fit failure(%)Median Mean Std p-value

ASM-RF 1.82 2.59 1.85 43.43
ASM-M 1.54 1.88 1.05 32.70
ASM-G 1.38 1.73 0.99 26.89

SegNet 0.77 1.11 1.29
0.0043

8.59
SegNet-S 0.78 0.999 0.67 6.06

Table 6.4 Average quantitative metric for shape prediction.
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Fig. 6.15 Cumulative distribution of point to curve (Ep2c) errors.

The boxplots of the quantitative metrics are shown in Fig. 6.16. It can be seen that even

the worst outlier for the shape-aware network, SegNet-S, has a pixel-wise accuracy higher

than 70%, signifying the regularizing capability of the novel term. Most of the outliers are



132 Boundary Detection and Segmentation

50

55

60

65

70

75

80

85

90

95

100

P
ix

el
 A

cc
ur

ac
y 

(%
)

Pixel-level accuracy (%)

ASM-RF ASM-M ASM-G           SegNet SegNet-S
Method

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ic

e 
co

ef
fic

ie
nt

Dice similarity coefficient

ASM-RF ASM-M ASM-G           SegNet SegNet-S
Method

(b)

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 e
rr

or
 in

 p
ix

el
s

Point to curve error in pixels

ASM-RF ASM-M ASM-G SegNet SegNet-S
Method

(c)

Fig. 6.16 Boxplots of quantitative metrics (a) pixel-level accuracy (b) Dice similarity coeffi-
cients (c) point to ground truth curve error, Ep2c.

caused by bone implants, fractured vertebrae or abnormal artifacts in the images. A few

examples for qualitative assessment are shown in Fig. 6.17. A relatively less challenging

case is shown in Fig. 6.17a, where all the methods perform well. Examples with bone

implants are shown in Fig. 6.17b and 6.17c. Fig. 6.17d and 6.17e show vertebrae with abrupt

contrast change. Vertebrae with fracture and osteoporosis are shown in Fig. 6.17f and 6.17g.

Fig. 6.17g also shows how SegNet-S has been able to capture the vertebral fracture patterns.

Fig. 6.17h and 6.17i show vertebrae with image artefacts. A complete failure case is shown in

Fig. 6.17j. In all cases, the shape-aware network, SegNet-S, has produced better segmentation

results than its counterpart.

6.6.2.1 Analysis on Challenging Cases

Although statistically significant, the difference in performance between the SegNet and

SegNet-S is subtle over the whole dataset of test vertebrae. This is because the majority of

the vertebrae are healthy and shape-awareness does not improve the results by a large margin.

To show the shape-awareness capability of SegNet-S, a selection of 52 vertebrae with severe

clinical conditions is chosen. The average metrics for this subset of test vertebrae between

SegNet and SegNet-S is reported in Table 6.5. An improvement of 1.2% and 0.02 have been

achieved in terms of pixel-wise accuracy and Dice similarity coefficient, respectively. The

differences over the whole dataset were only 0.31% and 0.006. The metric, Ep2c produces

the most dramatic change. The novel shape-aware network, SegNet-S, reduced the error by
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                     truth

Fig. 6.17 Qualitative segmentation results: true positive (green), false positive (blue) and
false negative (red).
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22.91% for this subset of vertebrae with severe clinical conditions. Fig. 6.18 shows a few

example of this subset of images.

Average quantitative metrics
Pixel-wise

accuracy (%)
Dice

coefficient
Point to curve
error (Ep2c)

SegNet 94.01 0.91 1.61
SegNet-S 95.21 0.93 1.24

Table 6.5 Comparison between SegNet and SegNet-S for cases with severe clinical condition.

Original Ground 
truth

ASM-RF ASM-M ASM-G UNet UNet-S

(a) (b)

(d)

(f)

(c)

(e)

   Input           Ground            SegNet         SegNet-S
image             truth

   Input           Ground            SegNet         SegNet-S
image             truth

Fig. 6.18 Comparison of segmentation performance for vertebrae with severe clinical condi-
tion.

6.6.3 Qualitative Results on NHANES-II Dataset

We have applied our trained networks on the vertebra image patches collected from the

NHANES-II dataset. A few qualitative results for these image patches are in shown in

Fig. 6.19. The probabilistic boundaries are predicted by the PSRN-H network, and the

segmentation masks are generated by the SegNet-S network. It can be seen that most of the

predictions are accurate even though the networks were trained on a completely different

dataset. This proves the robustness of the trained networks.
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Fig. 6.19 Qualitative boundary detection and segmentation results for vertebrae collected from
the NHANES-II: input image patch – predicted vertebral boundary – segmented vertebral
body. The predictions are displayed on the input image patch as the blue overlay. Ground
truth information is not available.

6.7 Conclusion

In this chapter, we have proposed novel methods for detecting vertebral boundaries and

segmenting vertebral bodies. The boundary prediction problem is approached in two ways: a

hard boundary detection using dense classification networks and a soft boundary detection

approach using spatial probabilistic regressor networks. We proposed a weight parameter

to compensate the class imbalance problem in the dense classification network. The weight

dynamically changes based on the number of the pixels belonging to each of the classes.

The dynamic weight parameter achieved significant improvement over unbalanced training

scheme for dense classification networks. We have also proposed a novel histogram-based

normalization layer for the spatial probabilistic regressor network (PSRN) to solve the

residual background probability problem encountered in the previous chapter. The PSRN

with the new normalization layer was able to significantly improve the boundary detection

performance compared to the PSRN with the original normalization layer. For segmentation

problem, we have proposed a robust semi-automatic framework using a dense classifica-

tion network. The proposed deep segmentation method has outperformed the traditional

active shape model (ASM)-based approaches by a significant margin. To incorporate the

shape information with the mask prediction capability of the deep neural network, a novel

shape-aware loss function has been formulated. The inclusion of this novel term in training
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provided significant quantitative and qualitative improvements.

The dynamic weight parameter proposed for the dense classification network can easily

be adapted to other classification neural networks. The weight parameter has been defined

with a general formulation for multiple classes. Thus it can be utilized in any classification

problem where the number of samples per class varies significantly [131]. This parameter

could be particularly useful for several medical applications, where a classification between

healthy and unhealthy subjects is required. The number of samples in the healthy category

often surpass the number of samples in the unhealthy category in medical datasets [132, 133].

In future work, we can utilize this dynamic weight parameter for classification of the verte-

brae with different types and grades of clinical conditions.

In this chapter, we have also proposed an innovative boundary detection approach using

the spatial probabilistic regression network. The state-of-the-art work in the field of boundary

detection is primarily dominated by dense classification networks [114, 115] which classifies

each pixel in the image as being a boundary pixel or a non-boundary pixel. In contrast, we

brought a probabilistic regression approach to the boundary detection problem where a spatial

probability map is generated with high probabilities at the boundary locations. Potentially,

this could change the way boundary detection problem is looked at and outperform the

traditional classification approach where spatial continuity of the boundary is of utmost

importance.

Like the vertebral corners, the predicted vertebral boundaries and bodies can be used to

detect conditions like spondylolisthesis and retrolisthesis in the spinal column. The anterior,

medial and posterior height of the vertebrae can easily be computed from the predictions,

which can then be used to identify vertebrae with compression fractures. The type and the

grade of the compression fracture can also be computed from these heights using the Genant

scale [28]. The predicted vertebral boundaries can be further analyzed to identify conditions

like osteophytes, osteoporosis and other degenerative changes. Moreover, the segmented
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vertebral bodies can also be analyzed to detect complex conditions like low bone density

(bone loss).

The novel shape-aware loss term proposed for the segmentation networks improved the

overall accuracy significantly. The improvement was more noticeable for the vertebrae with

clinical conditions. This can be crucial for correct identification of the clinical conditions and

their severity. The Genant scale categorizes different grades of the compression fracture by

the ratio of the anterior, medial and posterior heights of the fractured vertebra. The improved

performance of the shape-aware network can prove critical in the correct computation of

these heights for the fractured vertebra. Similarly, conditions like osteophytes are also

better segmented when the shape-aware term has been used (see Fig. 6.18). Moreover, the

formulation of the shape-aware term is general and can be adapted to any other anatomies

in medical images or objects in other domains where preservation of the shape is critically

important.

Although the boundary detection and the segmentation performance achieved in this

chapter is very promising, two critical observations can be made from the qualitative results.

First, the predictions of the deep networks are discontinuous and disjoint. The effect can be

seen for boundary detection in Fig. 6.10d, Fig. 6.11a and Fig. 6.11b. Similar effects can also

be noticed for segmentation with multiple disjoint predicted regions and/or holes inside the

vertebral body in Fig. 6.17c:SegNet, 6.17h:SegNet and Fig. 6.18b:SegNet-S, 6.17c:SegNet-

S. Second, although the shape-aware term helps, the predictions of the SegNet-S are still

not constrained to strictly produce vertebra-like structures (Fig. 6.17i, 6.17j, 6.18d, 6.18e

and 6.18f). Both of these issues can be attributed to the use of the loss functions for these

networks which are defined in the pixel-space. The proposed Bhattacharyya coefficient-based

loss function and the novel shape-aware term also works in a pixel-wise manner, thus, cannot

completely solve the problem. In the next chapter, we propose a novel network that is trained

on a loss function defined in the shape space, solving the issues discussed above.





Chapter 7

Shape Prediction

In the previous two chapters, we have used the encoder-decoder UNet architectures for

vertebral boundary detection and vertebral body segmentation. The boundary detection

framework was not able to predict continuous and closed vertebral boundaries in all cases.

The problem was solved by the segmentation framework proposed in the previous chapter.

However, we discovered two issues with the segmentation results. First, the prediction of

multiple disjoint regions and second, the prediction did not always resemble vertebra-like

structures. Both of these issues can be attributed to the loss function used for training the

network which is defined in a pixel-wise manner. To solve these issues, in this chapter,

we propose to predict shapes with the spatial encoder-decoder architecture. A novel loss

function is proposed which computes the loss directly in the shape domain. The proposed

shape predictor network outperformed the segmentation framework of the previous chapter

both qualitatively and quantitatively.

7.1 Overview

Most of the work in vertebrae segmentation involves shape prediction. Active shape mod-

els [119] and level set-based segmentation models [134] have long been used in segmentation

of objects in medical images [24, 49, 57, 69, 90, 135, 136]. Given the fact that a vertebra in

an X-ray image mostly consists of homogeneous and noisy image regions separated by edges,
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active shape model and level set-based segmentation methods try to converge to the edges

and separate the two regions. While these methods work relatively well in many medical

imaging modalities, the discontinuity of the edges in the vertebra and lack of the difference

in image intensities and contrasts inside and outside the vertebra limits the performance of

these methods in our challenging and real-life X-ray image datasets.

In Chapter 6, we used the UNet architecture for vertebral boundary detection and verte-

bral body segmentation. The segmentation framework solved the discontinuous boundary

problem of the boundary detection framework to some extent, however, it failed to capture

the high-level topological shape information. Moreover, it produced multiple regions and

shapes that do not resemble possible vertebra-like structures. Our goal in this chapter is to

learn the mapping between vertebral image patches and shapes directly. To this end, we

use the same architecture used in the previous chapters and modify it to generate a shape

representation function instead of dense classification probabilities or spatially distributed

probabilities over the input image space.

The active shape model learns shape representation from a point cloud model of the

object boundaries and requires a point to point correspondence during convergence on new

example. Since our network’s prediction is defined over the same input image space, con-

verting this prediction to a point-based model with a point to point correspondence is not

differentiable, and thus, end-to-end learning using back-propagation is not possible. Alter-

natively, the level set method proposes a different shape representation where shapes are

represented implicitly by a signed distance function (SDF). The SDF is defined over the same

input image space (Sec. 7.2.1). This gives a straightforward way to use our UNet architecture.

In this chapter, we modify the UNet architecture to generate an SDF from the input image.

The predicted SDFs are converted to the shape parameters, and the loss is computed in the

shape parameter domain. These shape parameters are related to the modes of variation of a

set of training shapes which are computed based on the principal component analysis (PCA).
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Sec. 7.2 describes how the manual annotation of the vertebral shapes are converted to SDFs

and corresponding shape parameters. The modification of the UNet architecture and the loss

function are discussed in Sec. 7.3. The following sections describe the experimentations and

results, before ending the chapter with the conclusion.

7.2 Ground Truth Generation

7.2.1 Level-set Basics

In the level set segmentation method the shapes are represented implicitly by an auxiliary

function, Φ(.). The shape, S, is denoted as the zero-level set of that function:

SSS = {ppp|Φ(ppp) = 0}, (7.1)

where ppp ∈ Ωp and Ωp is pixel-space over which the function is defined. The function, Φ(.),

is a signed distance function (SDF) which is defined as:

Φ(ppp) =

d(ppp,SSS) if ppp ∈ Ωc
v

−d(ppp,SSS) if ppp ∈ Ωv

, (7.2)

where Ωv is the set of pixels inside the object, which is a vertebra in our case, c represents

the complement set and d is defined as:

d(ppp,SSS) := inf
xxx∈SSS

D(ppp,xxx), (7.3)

where in f denotes infimum and D(aaa,bbb) denotes the Euclidean distance between pixel posi-

tion aaa and bbb.
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7.2.2 Conversion of Manual Annotations to SDFs

The models in this chapter have been trained on the same augmented training data used in

Chapter 6. Manual annotation for each of the 26,370 training vertebrae is converted into a

signed distance function. To convert the vertebral shapes into a signed distance function the

pixels lying on the manually annotated vertebral boundary curve have been assigned zero

values. Then all other pixels are assigned values according to Eqn. 7.2, where S represents

the set of pixels with zero values. A few examples of training vertebrae with corresponding

zero-level set pixels and SDFs are illustrated in Fig. 7.1.

Fig. 7.1 Examples of training vertebrae: original image (left), pixels at the zero-level set of
the SDF (center) and the SDF (right). Darker tone represents negative values.

7.2.3 Principal Component Analysis and Shape Parameters

Once all the training vertebral shapes are converted to corresponding signed distance func-

tions, we can apply principal component analysis on the SDFs. First, we compute the mean

SDF, Φ̄, as:

Φ̄ =
1
N

N

∑
n=1

Φn, (7.4)

where N is the number of training samples. We then extract the difference SDF (Φdn) by

subtracting the mean (Φ̄) from each SDF (Φn):

Φdn = Φn − Φ̄. (7.5)
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The vectorized Φdn are then arranged in a matrix, M:

φφφ dn
= vec(Φdn), (7.6)

M = [φφφ d1
|φφφ d2

|....|φφφ dN
]. (7.7)

The covariance matrix, CM can then be computed as:

CM =
1
N

MMT . (7.8)

The principal components of the variations of the training data can be extracted by singular

value decomposition (SVD) of the matrix CM:

[W,Σ,W T
v ] = svd(CM), (7.9)

where Σ is a diagonal matrix containing eigenvalues corresponding to the eigenvectors, which

are arranged in a column-wise manner in W . The eigenvectors are sequentially arranged based

on their corresponding eigenvalues. Now, each shape in the training data can be represented

by the mean shape (φ̄φφ ), matrix of eigenvectors (W ) and a vector of shape parameters, bbbn:

φφφ n = φ̄φφ +Wbbbn. (7.10)

For each training example we can compute bbbn as:

bbbn =W T (φφφ n − φ̄φφ) =W T
φφφ dn

. (7.11)

These parameters are used as the ground truth (bbbGT
n ) for training the proposed network. In

the next section, we describe a deep UNet which is trained to produce the difference SDFs

(Φ̂dn). Φ̂dn is the matrix form of the vector φ̂φφ dn
. We also propose a novel loss function that

computes the error between the prediction and ground truth in the shape parameter domain.
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For SDFs defined over a pixel space of size 64×64 and a training dataset with N samples,

the dimensionality of the matrices and vectors discussed in this section are summarized in

Table 7.1.

Dimension Matrix/Vector
64×64 Φn, Φ̄, Φdn

4096×N M
4096×1 φφφ n, φ̄φφ , φφφ dn

, bbbn
4096×4096 CM, W , V , U

Table 7.1 Dimensionality of different matrices and vectors.

7.3 Methodology

In the previous chapters, we have shown capabilities of the modified UNet to produce

different spatial outputs. The expanding path and the concatenation of the data from the

contracting path allows the network to produce outputs with the same resolution of input.

Here, we want our proposed network, LevelSet-UNet or in short LS-UNet, to take a 64×64

vertebral image patch as input and produce its related difference SDF (Φ̂d) which is also

defined over the same pixel space (for simplicity the mathematics in this section is described

for a single input image patch and the subscript n has been dropped). We use the same

network architecture as we have used in the probabilistic spatial regressor network used in

Chapter 5. The final normalization block, which used to convert the final activation to a valid

probabilistic distribution has been removed. The last convolution layer outputs the difference

signed distance function (Φ̂d) which is then sent to the final layer where is it converted

to shape parameter vector (b̂bb) and compared with the ground truth (bbbGT ). The UNet that

produces Φ̂d is illustrated in Fig. 7.2 and the final layer has been depicted in Fig. 7.3.

The forward pass through the final layer can be summarized below. First, the output of

the last convolution layer of the UNet (Φ̂d) is vectorized:

φ̂φφ d = vec(Φ̂d). (7.12)
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Fig. 7.2 UNet for shape prediction (a) network layers (except the final layer) (b) legend.

Then the final prediction of network is computed as b̂bb:

b̂bb =W T
φ̂φφ d, (7.13)

or in element-wise form:

b̂i =
k

∑
j=1

wi jφ̂d j , (7.14)

where wi j is the value at the i-th row and j-th column of the transposed eigenvector matrix

(W T ) and k is the number of eigenvectors. Finally, the loss is defined as:

L =
k

∑
i=1

Li, (7.15)

where

Li =
1
2
(b̂i −bGT

i )2. (7.16)

The total number of eigenvectors is 4096. Thus, we have the same number of shape

parameters. For back-propagation, the partial derivative of Eqn. 7.16 with respect to the input

variable b̂i can be expressed as:
∂Li

∂ b̂i
= b̂i −bGT

i . (7.17)
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Fig. 7.3 Final layer.

Similarly, the partial derivative of Eqn. 7.14 with respect to the input, φ̂d j , can be expressed

as:
∂ b̂i

∂ φ̂d j

= wi j. (7.18)

7.4 Experiments

The proposed network (LS-UNet) has been trained on a system with a NVIDIA Pascal Titan

X GPU for 30 epochs with a batch-size of 50 images. The network took approximately 22

hours to train. We have also implemented a traditional convolutional neural network (CNN)

where we predict the shape parameter vector bbb directly using a Euclidean loss function. The

network consists of the contracting path of the proposed UNet architecture, followed by

two fully connected (FC) layers which regress the 4096 b-parameters at the output. This

network will be mentioned as LS-FCNet in the following discussions. The LS-UNet has only

24,237,633 parameters where the LS-FCNet network has 110,123,968 trainable parameters.

The FC layers cause a significant increase in the number of parameters. We have also shown

results of vertebral shape prediction based on Chan-Vese level set segmentation method

(LS-CV) [90, 136, 137]. However, this method is a parametric method and finding a common

set of parameters for a challenging dataset like ours was difficult. A grid search method

was followed to find a common set of parameters on a validation set of 40 images with 177

vertebrae. The images in validation set were collected recently and is not included in our
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training and test dataset. We also had to constrain the b-parameters to 1.2 times the standard

deviation to produce acceptable results for this method. Apart from these, we also compare

our results with the segmentation results of the dense classification networks from Chapter 6,

referred to as SegNet and SegNet-S. The foreground predictions of these networks have

been converted into shapes by tracking the boundary pixels. For both of the deep level set

networks, the predicted b-parameters are converted into a signed distance function following

Eqn. 7.10. The final shape is found by locating the zero-level set of this function.

We compare the predicted shapes with the ground truth shapes using two error metrics.

First, the average point to ground truth curve (Ep2c) error defined in Eqn. 6.10. Second, the

Hausdorff distance (dH) [125] between the prediction and ground truth shapes. This metric

is defined in Eqn. 7.19. The Ep2c represents on-average how far the predicted shape points

are from the ground truth, the second metric (dH) denotes what is the maximum difference

between the shapes. Both metrics are reported in pixels.

dH(Ŝ,Sgt) = max{sup
x∈Ŝ

inf
y∈Sgt

D(x,y), sup
y∈Sgt

inf
x∈Ŝ

D(x,y)}, (7.19)

where Ŝ is set points in the predicted shape, Sgt is set of points in the manually annotated

vertebral boundary curve, sup represents the supremum, in f represents the infimum and

D(x,y) is the Euclidean distance between the point x and y.

7.5 Results

We compare the three level set-based methods in Table 7.2. We report the mean and standard

deviation of the metrics over 797 test vertebrae. The Chan-Vese method (LS-CV) achieves

an average Ep2c of 3.11 pixels, where the fully connected version of the deep network (LS-

FCNet) achieves 2.27 pixels and the proposed UNet-based network (LS-UNet) achieves 1.16

pixels only. Hausdorff distance (dH) shows more difference between the LS-CV and the deep

networks.
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Metrics Average Ep2c Average dH
Methods Mean Std Mean Std
LS-CV 3.11 1.13 10.94 3.68

LS-FCNet 2.27 0.83 6.74 3.25
LS-UNet 1.16 0.66 4.11 3.13

Table 7.2 Comparison of deep shape predictor networks with the Chan-Vese model.

Both of these deep networks have been trained to regress all 4096 shape parameters.

These parameters are related to the 4096 eigenvectors or modes of variations. The eigenvalues

represent the variance in the training data along the corresponding eigenvectors. As the

eigenvectors are ranked based on their eigenvalues, eigenvectors with small eigenvalues are

often results of noise and can be ignored. In Table 7.3, we report performance of our proposed

LS-UNet on the validation set of 177 vertebrae when we consider a certain percentage of

total variations at test time. The second row of the table indicates how many parameters

are left when a certain percentage of variation is considered. Other parameters are simply

replaced with zeros when converting back to the signed distance function. It can be seen

that the lowest errors are found when 98% of the total variation is considered and only 18

b-parameters are kept.

Variation (%) 90 95 98 99 99.5 99.8 100
No. of parameters 6 9 18 30 51 117 4096

Average Ep2c 1.34 1.23 1.16 1.19 1.21 1.23 1.25
Average dH 4.83 4.62 3.98 4.15 4.31 4.49 4.68

Table 7.3 Effect of number of eigenvectors on errors for LS-UNet.

Based on this insight, we modified both versions of our level set-based deep networks to

regress only 18 b-parameters and retrained the networks from randomly initialized weights.

We report the performance of the retrained networks in Table 7.4. We also report the metrics

for SegNet and SegNet-S networks from Chapter 6. It can be seen that our proposed LS-

UNet-18, outperforms all other networks quantitatively. However, the improvement over

SegNet-S is minuscule. Table 7.5 reports the results of the statistical significance test between

our proposed LS-UNet-18 and all other methods reported in Table 7.4. It can be seen that the

quantitative improvement of LS-UNet-18 over SegNet-S in terms of the Ep2c metric is not
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statistically significant according to the paired t-test at a 5% significance level. However, the

improvement in terms of Hausdorff distance (dH) passes the significance test.

Metrics Average Ep2c Average dH
nV mR Fit failure (FFs) %Methods Mean Std Mean Std

LS-CV 3.107 1.13 10.94 3.68 0 85.45
SegNet 1.114 1.29 5.06 6.11 57 8.53

SegNet-S 0.999 0.67 4.37 4.02 45 6.02
LS-FCNet-18 2.082 0.78 6.48 3.32 0 43.54
LS-UNet-18 0.996 0.55 4.17 3.06 0 4.14

Table 7.4 Quantitative comparison of different methods.

LS-UNet-18 compared with following methods:
Average Ep2c Average dH
h p-value h p-value

LS-CV 1 < 10−282 1 0
SegNet 1 0.003 1 < 10−05

SegNet-S 0 0.827 1 0.035
LS-FCNet-18 1 < 10−255 1 < 10−151

Table 7.5 Statistical significance test (t-test).

Another benefit of our proposed LS-UNet network over the original SegNet and SegNet-S

is that the loss is computed in the shape domain, not in a pixel-wise manner. In the fifth

column of the Table 7.4, we report the number of test vertebrae with multiple disjoint

predicted regions (nV mR). The pixel-wise loss function-based networks learn the vertebral

shape implicitly but this does not prevent multiple disjoint predictions for a single vertebra.

The SegNet and SegNet-S produce 57 and 45 vertebrae, respectively with multiple predicted

regions, whereas the proposed network does not have any such example indicating that the

topological shape information has been learned based on the seen shapes. Few examples of

these can be found in Fig. 7.7 and Fig. 7.8. We have also reported the fit failure (FFs) for all

the compared methods. Like in Chapter 6, the FFs is defined as the percentage of the test

vertebrae having an Ep2c of greater than 2 pixels. The proposed LS-UNet-18 achieves the

lowest FFs. The cumulative error curves and boxplots of the metrics are shown in Fig. 7.4

and Fig. 7.5, respectively. The proposed method achieves noticeable improvement in terms

of Hausdorff distance (dH). However, in terms of the Ep2c metric, the performance of the
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Fig. 7.4 Cumulative error curves (a) average point to curve error (Ep2c) and (b) Hausdorff
distance (dH).
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Fig. 7.5 Boxplots of quantitative metrics (a) average point to curve error (Ep2c) and (b)
Hausdorff distance (dH) on the right.

proposed method is very close with the SegNet and SegNet-S. Especially for Ep2c less than

1.5 pixels, both SegNet and SegNet-S marginally outperform LS-UNet-18.

However, the qualitative results in Fig. 7.6, 7.7 and 7.8 clearly show the benefit of using

the proposed method. The SegNet and SegNet-S predict a binary mask and the predicted

shape is located by tracking the boundary pixels. This is why the shapes are not smooth. In

contrast, the level set-based methods predict b-parameters which are then converted to signed
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(a)

(b)

(c)

(d)

(e)

Original          LS-CV            SegNet          SegNet-S        LS-FC-18 LS-UNet-18

Fig. 7.6 Qualitative results for comparatively less challenging examples. The predicted shape
is plotted in blue and the ground truth in green.

distance functions. The shape is then located based on the zero-level set of this function,

resulting in smooth vertebral boundaries defined to the sub-pixel level which resembles the

manually annotated vertebral boundary curves.

The worst performance is exhibited by the Chan-Vese methods. As mentioned earlier,

finding a common set of parameters for our complex dataset was difficult, also lack of

contrast in the anterior side of the vertebrae affects the results severely. The b-parameters

predicted by the Deep LS methods were not constrained. The results of LS-FCNet-18
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Original          LS-CV            SegNet          SegNet-S        LS-FC-18 LS-UNet-18

Fig. 7.7 Qualitative results for challenging examples. The predicted shape is plotted in blue
and the ground truth in green.

is better than the traditional Chan-Vese model, but not comparable with the UNet-based

methods. The reason can be attributed to the loss of spatial information because of the pooling

operations. The UNet-based methods recover the spatial information in the expanding path by

using concatenated data from the contracting path, thus performs much better than the fully

connected version of the deep networks. We have shown some examples in Fig. 7.6, where

the input vertebrae have less variations and better contrast. Harder examples are shown in

Fig. 7.7 and Fig. 7.8. Examples with bone implants (Fig. 7.7a, 7.8a), abrupt contrast change

(Fig. 7.7b, 7.7c), clinical conditions (Fig. 7.7d, 7.7e, 7.8d), image artefacts (Fig. 7.8d, 7.8e)
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(a)
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Original         LS-CV            SegNet       SegNet-S       LS-FC-18 LS-UNet-18

Fig. 7.8 Qualitative results for challenging examples.

and low contrasts (Fig. 7.8b, 7.8c) can be found in the qualitative results. It can be seen even

in difficult situations like in Fig. 7.7 and Fig. 7.8, the LS-UNet-18 method predict shapes

which resembles a vertebra where the pixel-wise loss function-based SegNet and SegNet-S

Fig. 7.9 Qualitative results from NHANES-II dataset using LS-UNet-18.
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predict shapes with unnatural variations. The LS-UNet-18 has also been tested on vertebra

from the NHANES-II dataset. A few examples from this dataset are shown in Fig. 7.9.

7.5.1 Corner Localization from Predicted Shapes

The framework discussed so far predicts b̂-parameters, which is converted to corresponding

signed distance function defined over a 64× 64 pixel space. The predicted shape is then

localized by locating the zero-level set of this function. The final shape can then be defined by

a set of 200 evenly spaced points arranged sequentially in the clockwise direction. Inspired

by earlier literature in the topic of corner detection [99], we can use these points to localize

corners in the predicted shapes.
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Fig. 7.10 Computing curvature of a point.

Since test vertebral image patches are extracted based on the manually clicked vertebral

centers, the orientation is always upright. Thus it is safe to assume that the four vertebral

corners are located in the four quadrants of the patch. Based on this assumption, we can

divide the predicted shape into four parts. We then compute the curvature of each point in

the shape following [138]. To compute the curvature, rv, for a single point vvv, we compute the

summation of the distances from a 4-point neighborhood on each side of vvv to the line running

through vvv and orthogonal to the surface normal ĉccv. This curvature computation process for
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a single point is illustrated in Fig. 7.10. The point with the highest curvature from each

shape quadrant is considered as the localization corner. The corner localization process is

summarized in Fig. 7.11.
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Fig. 7.11 Localization of corners from predicted shapes (a) predicted shape points (b) shape
points divided into four quadrants (c) curvature magnitude plotted as a line in the normal
direction (d) corners (×) localized based on the maximum curvature magnitude in each
quadrant.

Once the corners are located at the patch level, based on the known patch extraction

process, they can be transformed back on the original image space and compared with the

manually annotated corners. We report the P2P and P2C errors defined in Sec. 5.4 for

evaluating corner localization frameworks, in Table 7.6. We have achieved a 3.9% relative

improvements in terms of average P2P error and a drop of 4.08% in fit failure (FFc)1 from

the probabilistic spatial regressor network (PSRN)-based corner localization framework

proposed in Chapter 5. The improvement can be attributed to the fact that the localized

corners are extracted from the predicted shapes, whereas for the PSRN-based framework,

the corners were localized from a probability distribution. As the predicted distribution does

not only spread on the actual vertebral boundary, the localized center has the possibility of

staying a few pixel away from the actual boundary. This error is minimized to some extent

as we are localizing the corner from the predicted shapes. However, the improvement in

terms of the P2C is not noticeable. The average P2C error is the same with a lower standard

deviation. Similar corner localization could also be performed from the detected vertebral

1Note that, the fit failure (FFc) discussed in this subsection is different from the fit failure (FFs) reported
in earlier in Table 7.4. The FFs is for shapes and defined in terms of pixels, whereas, FFc is for corners and
defined in terms of millimeters (see Sec. 5.4).
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Point to point (P2P) mm Point to curve (P2C) mm
Method Mean Std Fit failure (FFc) % Mean Std
PSRN 1.54 1.74 11.7 0.58 0.76

LS-UNet-18 1.48 1.26 7.62 0.58 0.61

Table 7.6 Corner localization from LS-UNet-18.

boundaries and segmented vertebral bodies from Chapter 6. However, both the boundary

detection and the segmentation networks generate the pixel-level results. The pixelation

artifacts are noticeable in the binary predictions of the boundary detection networks (see

Fig. 6.10 and 6.11) and the segmentation networks (see Fig. 6.17, 6.18, 7.7 and 7.8). Thus

the computation of the corners would have been coarse and erroneous. A post-processing

smoothing of the pixelated shapes could have solved the issue to some extent but would make

the shapes inaccurate and dependent on the accuracy of the smoothing process.

7.6 Conclusion

In this chapter, we have proposed a novel deep network capable of predicting vertebral

shapes. The network learns to predict signed distance functions over the input image space

which represents the vertebral shapes implicitly at the zero-level set. The proposed network

has shown excellent qualitative improvement in performance over other deep architectures.

Quantitatively, it produced a comparative performance with the SegNet-S mask prediction

network. However, the mask predictor network fails to produce smooth vertebral boundaries

and to constrain the prediction within the possible vertebra-like shapes when the input image

is of poor quality. The proposed shape predictor network is also able to identify that the

predicted shape should be a single connected region indicating the benefit of the proposed

loss function which computes the error in the shape domains. Additionally, the predicted

shapes have also been used to localize vertebral corners. The detected corners from the

predicted shapes outperformed corner localization methods proposed in Chapter 5. In future,

the predicted shapes can be used for automatic detection of vertebral fractures, spinal mis-
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alignment, and other clinical conditions.

Shape is an important characteristic of an object and a fundamental topic in computer

vision. In object segmentation, shape has been widely used in methods to constrain a segmen-

tation result to a class of learned shapes [119, 134]. Although most of the topics in computer

vision have been revolutionized by the advent of deep learning, shape prediction was mostly

untouched. In this chapter, we have proposed a novel deep learning-based approach for

shape prediction. The proposed method has been applied to a vertebral body segmentation

problem and achieved a state-of-the-art performance. The deep shape predictor network

designed in this chapter has been trained to predict shapes for a single object. However, the

network is inherently capable of predicting multiple objects in the same image. This capacity

comes because of the use of signed distance function to represent the shapes. By default, this

function is capable of capturing topological changes of the shapes in terms of the number of

regions and/or objects. Given a dataset of input images and corresponding ground truth with

multiple and a variable number of objects per image, the same network with the same loss

function can be trained.

So far in this dissertation, we have proposed separate methods for spine localization

(Chapter 3), center localization (Chapter 4), corner localization (Chapter 5), boundary

detection (Chapter 6), segmentation (Chapter 6) and shape prediction for cervical vertebrae.

The proposed shape predictor, segmentation, boundary detector and corner localization

frameworks require the vertebral centers to be given at the test time, making these frameworks

semi-automatic. However, our center localization framework can localize center positions

inside a localized spinal region, and our spine localization framework can localize spinal

region without any human input. Thus, a fully automatic framework can now be built

by connecting these frameworks appropriately. In the next chapter, we describe this fully

automatic framework which was the primary research objective of this dissertation.





Chapter 8

Fully Automatic Framework

So far in this dissertation, we have solved several computer vision problems related to X-ray

images of cervical vertebrae. Our anatomies of interest are the five cervical vertebrae in the

spinal column: C3-C7. We have described semi-automatic methods for highlighting different

features of these vertebrae: corners in Chapter 5, boundaries and vertebral bodies in Chapter 6

and vertebral shapes in Chapter 7. These methods work on the extracted test vertebral image

patches of size 64×64 pixels. The extraction process is based on the manually annotated

vertebral centers and thus, the methods were semi-automatic. To make the process fully

automatic, the center localization algorithm of Chapter 4 can be utilized which can predict

vertebral centers if the region of the spine in X-ray image has been localized. Moreover, this

spinal region can be localized using the spine localization framework described in Chapter 3.

Having all the frameworks in place, we now have the capability of building a fully

automatic image analysis framework for the cervical vertebrae in X-ray images. However,

there are a few missing links which are addressed in the following sections.

8.1 Connecting the Dots

If the manually annotated vertebral centers are available, the test vertebral image patches are

extracted based on the orientation vector (FFF), which is described in Sec. 2.4.2. The patch
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size depends on the magnitude of the vector and the orientation is given by its direction. This

process works because when the manually annotated centers are available, the topological

information about the identity of the vertebra is also known. Unfortunately, the vertebra

identity is not available for the centers localized using the center localization algorithm.

To solve the problem, based on our assumption that image is upright, we can arrange the

predicted centers sequentially from top to bottom as C3 to C7 and proceed with the extraction

process. This way we compute the orientation vector (FFF). Although the direction of the

vector is relevant for test patch extraction, the magnitude of this vector cannot be used as a

measure of patch size because of the possibility of missing center in between two predicted

centers. To solve this issue, a common patch size of 32 mm is chosen based on the distribution

of training vertebral sizes. The vertebral size is defined as the distance from the vertebral

center to the farthest point in the manually annotated vertebral boundary, similar to the base

vertebral size discussed in Sec. 6.3. About 90% of the training vertebrae have a size smaller

than 32 mm. A bigger patch size can increase this percentage. However, it would make a

significant amount of the test vertebrae to appear smaller inside the extracted patch. This will

adversely affect the following methods, as they are not trained on examples where vertebral

size is smaller compared to the patch size. Fig. 8.1 shows the distribution of the vertebral

sizes in our training dataset.
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Fig. 8.1 Histogram plot of vertebral size in the training dataset.
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Once we have solved the test patch extraction process, the patches can be extracted, and

patch-level predictions can be generated. We have already discussed how to project back

the patch-level predictions to original images space for corner localization and boundary

detection frameworks in Sec. 4.3.3 and 5.3.4, respectively. The process involves affine

transformation of the predictions using scaling, rotation, and translation which are known

from the patch extraction process. These methods generate outputs defined over the 64×64

input image patch. The output of the vertebral segmentation framework is also similar and

thus, can also be transformed back to the original image space using the same procedure.

The shape prediction framework produces shape as a signed distance function. The resulting

shape is given by the set of points at the zero-level set of this function. The set of points can

also be scaled, rotated and translated accordingly to produce results on the original image

space. Now, having the missing links solved, all the methods can be threaded together to

produce a fully automatic image analysis tool for lateral cervical vertebrae in X-ray images.

8.2 Complete Framework

Given a high-resolution test image, the image can be zero-padded to form a square image

and resized to 100×100 pixels. The resized image can be fed into the best performing spine

localization network, FCN-R, to predict the spinal region. The network localizes the spinal

region at the input resolution of 100×100 pixel, which can then be transformed back, i.e.,

resized and unpadded, to the original image. The process is summarized in Fig. 8.2:1.

Based on the spine localization result, a set of 45 patches are generated following the

process described in Sec. 4.3.3. All the patches are then resized to 64×64 pixel and passed

through the novel probabilistic spatial regressor network (PSRN) proposed in Chapter 4.

Each patch generates a probability map of localized centers. These patch-level probabilities

are then put back on the original image space. And the centers are localized using the

post-processing steps of Sec. 4.3.3. Fig. 8.2:2 depicts the center localization process.
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The predicted centers are sequentially arranged and a new set of vertebral test patches

using the orientation vector (FFF) and the fixed size discussed in Sec. 8.1 (Fig. 8.2:3a). One

patch is extracted for each of the predicted centers. These patches are the again resized to the

resolution of 64×64 and ready for further processing to generate final results (Fig. 8.2:3b).

For the next stage, we have four options: corner localization, boundary detection, seg-

mentation and shape prediction. Each of the four methods produces a different output which

can be used for various applications e.g., corners can be used for checking spinal alignment

curve, predicted boundary probabilities could be used to detect the presence of osteophytes,

segmented vertebral bodies and predicted shapes can be used to measure bone density, detect

osteoporosis and other vertebral injuries. Also, while some of the information might be

redundant in all four options, a user can prefer one output over other for further visual

evaluation. As the goal of this dissertation is to produce a fully automatic image analysis

tool for the cervical vertebra in X-ray images, we kept all options in our proposed complete

framework. The framework ends with four parallel terminal modules that produce four

visually different outputs.

The first terminal module localizes corners. Corner localization is done by Bhattacharyya

coefficient-based loss function equipped PSRN network discussed in Chapter 5. However,

there is a difference between the input patches produced by the extraction process discussed in

Sec. 5.3.4 and the input test patches used here. In the prior case, a grid-based multi-resolution

multi-orientation process was used to create multiple patches from the vertebrae and also

from the intervertebral spaces. Whereas here, only a single patch per vertebrae has been

used to keep the terminal modules similar to each other and also, to avoid complications in

the grid creation process in case of missing center predictions. The second terminal module

detects vertebral boundaries. The improved histogram-based normalization layer assisted

PSRN discussed in Chapter 6 is used for boundary detection. The generated probability

edge maps are then post-processed using morphological erosion to reduce the thickness. For

segmentation the shape-aware SegNet-S of Chapter 6 has been used in the third terminal
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module. Finally, in the last module, shape prediction is achieved by the novel shape predictor

UNet described in Chapter 7. An additional set of corners are also localized from the

predicted shapes using the process described in Sec. 7.5.1. All these patch-level predictions

are then transformed back on the original image space and visualized. The complete process

with all the terminal modules is summarized in Fig. 8.2.

8.3 Qualitative Evaluation

Qualitative results are shown in Fig. 8.3, 8.4 and 8.5. Four images with different overall

intensity variations are shown in Fig. 8.3. It can be seen that the framework can produce

good predictions for most of the vertebrae. Fig. 8.3a includes vertebrae with osteophyte (C5)

and teardrop fracture (C6) which make the prediction challenging. However, the final results

are accurate even with these conditions. Some deviations from the ground truth can be seen

for the segmentation and shape prediction results for the affected vertebrae. However, the

predicted boundaries were able to capture the variations induced by the clinical conditions.

Another point of interest is the contrast between the corner localization results from the two

available options. For the PSRN-based corner localization framework, the posterior corners

(×) for two consecutive vertebrae cannot be separated. However, for the corners (×) localized

from the predicted shapes, all the posterior corners are visible separately. The reason behind

this can be attributed to the individual process of the two methods. The PSRN-based method

creates a probability distribution for localized corners, and as the corners in the posterior sides

are very close, two consecutive distribution merges in the final image and the process detects

both corners at the same location. Whereas for the corners localized from the predicted

shapes, first, the shapes are predicted and then corners are localized by finding the points with

maximum curvature from the predicted shape points. Thus the corners are visible separately

from each other, even when their locations are close. Fig. 8.3b shows an almost perfect

results for all the outputs. The spine was localized with high accuracy, vertebral centers are

almost at the middle of each vertebra, corners have been localized at the correct positions.

Boundary detection, segmentation and shape prediction all match the ground truth accurately.
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The subject has a spinal misalignment (retrolisthesis) between the vertebra C5 and C6, which

is visible with all the highlighted predictions. A vertebra (C5) with uncommon structure and

a probable fracture can be seen in the example shown in Fig. 8.3c. The final results from all

four terminal modules have been able to follow the anomaly accurately. However, vertebra

C3 of the same example shows disagreement between the ground truth and the results on the

posterior side. Fig. 8.3d shows another example of near perfect results from all the modules.

The complete framework produces acceptable results for most of the images in the test

dataset. But, the results are not always perfect. In Fig. 8.4, we report some interesting

cases from the results. Our medical partners were not able to provide manual annotation

of vertebrae C7 for the example in Fig. 8.4a due to lack of contrast in the image near that

vertebra. But, the center localization framework have localized a vertebral center for C7

and although the results for corner localization, boundary detection and segmentation are

inaccurate, the shape predicted by the LS-UNet-18 can be considered accurate. An opposite

example can be found in Fig. 8.4b, where due to lack of contrast our method has failed to

produce results for C7 but our medical partners have provided manual annotation. Fig. 8.4c

shows a fault in our center localization post-processing process. When more than five centers

have been localized, the post-processing described in Sec. 4.3.3, keeps the five most confident

centers and ignores the rest. By doing so, for this particular example the algorithm missed C5

and detected T1, the first thoracic vertebra. And as the following terminal modules work on

the extracted image patches, there was no scope of correcting the mistake. Another problem

related to the center localization process is illustrated in the complicated example of Fig. 8.4d.

The algorithm detected two false centers, one on the intervertebral disk between C2 and C3

and another in the vertebral extension of C2. Both of these false centers caused bad results

from all the terminal modules.

Examples of images with severe degenerative changes, bone fusion, image artefacts

and surgical bone implants are shown in Fig. 8.5. The example in Fig. 8.5a shows sign of

severe degeneration in all the vertebrae. The spinal region in the image is also relatively
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small. However, our spine localization and the center localization method were able to

correctly localize the spine and vertebral centers. The results from terminal modules for the

vertebra C3 and C4 are inaccurate because of the severity of the condition. Acceptable results

were generated for following vertebrae where degeneration was less. Another example with

extreme clinical conditions is reported in Fig. 8.5b. Although the spine localization and

center localization results were good, the final vertebral image patch extraction process failed

to compensate for the unnaturally long vertebrae. The generated patches with a fixed size

of 32 mm were not able to encompass the complete vertebrae. So results from the terminal

modules were not accurate. Fig. 8.5c reports an image with strong image artefacts which

caused the center localization process to miss the center for C5 and caused two false positives.

Because of the false positives, the computation of the orientation vector was affected and so

were the extracted patches. The effects are visible in the results for vertebra C4 and C6. The

predicted shapes and boundary for C3 were accurate. Finally, a complete failure of the fully

automatic framework is reported in Fig. 8.5d. The presence of multiple surgical implants

in the image caused the spine localization process to fail, and all the following modules

suffered.

The fully automatic framework has also been applied to the images from the NHANES-II

dataset. The results are shown in Fig. 8.6 and 8.7. It should be noted that the pixel spacings

of these images are unknown. The fully automatic framework uses the pixel spacing in

the center localization post-processing and during the vertebral patch extraction steps. For

the NHANES-II images, we have chosen a fixed pixel spacing of 0.1 mm per pixel by

comparing with images of similar sizes in our dataset. The images were also flipped and

rotated accordingly so that the posterior side stays on the left side of each image, similar to

the images in our dataset as explained in Sec. 2.3. Fig. 8.6 and 8.7 demonstrate the robustness

of our proposed fully automatic framework.
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8.4 Quantitative Evaluation

In the previous section, we have showcased the performance of our framework with qualita-

tive results for a few cases from our test dataset where we have highlighted specific issues.

For an overall evaluation of the performance, we report average quantitative metrics over the

whole test dataset in this section.

The spine localization module of the complete framework uses FCN-R network reported

in Chapter 3. The localization performance of this network has already been reported in

Table 3.3. An average sensitivity of 0.97 and a mean orientation error of 3.12◦ have been

achieved. The fully automatic center localization process has also been discussed in Chap-

ter 4. A true positive rate of 93.10% and false discovery rate of 9.40% have been achieved.

Out of our 797 test vertebrae, 742 centers have been correctly detected with an average error

of 1.72 mm. The number of false positives was 77.

For the 742 vertebrae which have been correctly detected, the corners localized by the

corner localization terminal module have an average error of 2.69 mm. This error is higher

than the error reported in Table 5.1 because of three reasons. First, here the corners are local-

ized using only one patch per detected vertebra, where the process described in Sec. 5.3.4

involves extraction of multiple patches from the spinal region. Second, the fixed size patch

extraction process sometimes can not extract the whole vertebrae, and thus, the corners

are not visible. And third, the post-processing stage involves the use of prior distribution

corners which are defined per-vertebra. Because our center localization process does not

provide topological information about the identity of the vertebra, a simple and error-prone

approach has been utilized. The top center is considered as C3 and the following assigned

sequentially without compensating for the probable missing centers. Because of all these

issues, the corner localization results are poor making this terminal module the weakest in

the complete framework. However, we have another set of corners predicted by the shape

prediction terminal module which achieved a much lower average error of 1.74 mm. Unlike

the corner localization terminal module, this module only suffers from the issue of fixed
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patch size.

Finally, the vertebral body segmentation terminal module has achieved an average Dice

similarity coefficient of 0.876 for overall vertebrae segmentation performance on the whole

test dataset. The shape predicted by the shape predicted module can also be converted to

segmentation masks. The converted masks achieved Dice similarity coefficient of 0.871.

The set of points predicted by the shape prediction module on the original image has

also been compared with the manually annotated vertebral curves. This comparison is made

with a metric similar to the Ep2c error described and used in Chapter 6 and 7. However,

there are two differences. First, the error reported in these chapters was reported in pixels

as it was computed on the extracted patch space where the pixel spacing information is not

representative because of the resize operation. Here, in this chapter, the final predicted shape

points are localized on the original image. Thus, the errors are reported in millimeters by

using the known image pixel spacing values. Second, the original Ep2c errors were computed

at the vertebra level. Here, because the prediction methods do not provide information about

the identity of the vertebrae, the error is computed at the image level. Manually annotated

vertebral boundary curves are converted to a single set of points and compared with the

set of points predicted by the shape prediction module. An average error of 1.25 mm has

been achieved with a median value of 0.54 mm. The segmentation masks predicted by the

segmentation modules can also be converted to a set of points by tracking the boundary

pixels of the predictions. These points achieved an average error of 1.24 mm.

The complete framework has been implemented in MATLAB, and the source codes

have not been optimized for computational efficiency. On a computer without any GPU, the

complete framework takes 16 seconds on average to produce all the results for a single image,

about a half of which is taken by the center localization process because of the number of

patches involved. Each of the deep networks used in the complete framework requires only
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0.1 to 0.25 seconds to produce a single patch-level output. Most of the computational time is

spent for the patch extraction and post-processing steps.

8.5 Future Work and Conclusion

The fully automatic image analysis tool described in this chapter was built by cascading indi-

vidual frameworks in a seamless manner. Because of the sequential nature of the framework,

errors in the first phases of framework propagate to the rest of the modules. If the spine

localization module fails to localize the spinal region, vertebral centers will be incorrect.

Thus, the patch extraction procedure will not be able to extract vertebral image patches and

rest of modules will produce wrong predictions subsequently. An example of such failure

was illustrated in Fig. 8.5d. When spine region has been localized correctly, there is still a

possibility of detection of false vertebral centers. Our center localization algorithm has a

high true positive rate of 93.10% but it also produces 77 false positive centers. The patches

extracted from these false positive centers cause erroneous results for the terminal modules.

To solve the problem of error propagation, in the future version of the complete frame-

work, new modules can be added which will check the validity or correctness of the previous

modules. First, the validity of localized spinal region can be checked based on the confi-

dence of the output from the FCN-R network. This dense classification network predicts

probabilities of the foreground and background classes. These probability values might

provide insight about the correctness of the spine localization prediction. A second validity

check module can be added after the vertebral image patch extraction process (Fig. 8.2:3b).

The extracted patches can be sent through a binary classifier which will check if the patch

contains a vertebra or not. The random forest model described in Sec. 3.1 can be useful in

this regard.

Apart from the addition of further modules, geometric analysis of the predicted center

locations can also help to reduce the number of false positive centers. Based on the predicted
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centers, random sample consensus (RANSAC) algorithm [139] can be utilized to check

which predicted center does not belong to an approximate second-order polynomial curve.

This process should be able to detect false center predictions like the examples shown in

Fig. 8.4d and 8.5c. The missing centers like in the example shown in Fig. 8.4c can also

be found by measuring the center to center distances and adding new centers in the middle

where the distance is approximately double.

In this chapter, we have proposed a first-of-its-kind, fully automatic image analysis

framework for cervical vertebrae in X-ray images. Although the framework has considerable

scopes for improvement, the current version has been able to produce robust results for most

of the images in our test dataset. Qualitative results for all the test images can be found at the

following link - https://goo.gl/BVwNe4.

https://goo.gl/BVwNe4




Chapter 9

Conclusion

9.1 Summary

The cervical spine is one of the most important anatomies of our body. Because of its relative

location and its connection to the other organs, more than a half of all spinal injuries occur

in the cervical spine. For any cervical spine related injuries, X-ray is commonly the first

method of choice for diagnosis because of its quick results, low cost and ease of access. But

even with the advancement in imaging technologies, a significant percentage of cervical

spine injuries remain unnoticed. About two-third of the patients with missed injuries suffer

neurological deterioration [7]. Towards building an automatic injury detection system which

can reduce the amount of missing injuries, we have proposed a fully automatic image analysis

framework for cervical vertebrae in X-ray images. The complete framework takes a lateral

cervical X-ray image as the input and highlights several vertebral features in the output.

Although the current framework does not detect vertebral injuries, it can provide the user

with different views of the spine with highlighted vertebral features like corners, bound-

aries and shapes. These supplementary views generated by an automated system have the

potential to augment the radiologist’s decision and to reduce the number of unnoticed injuries.

The proposed complete framework consists of six specialized modules, each of which

solves a particular computer vision problem related to the lateral cervical X-ray image. The
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first module of the fully automatic framework localizes the spinal region in the image. The

second module takes the localized spinal region and localizes vertebral centers. Based on the

localized vertebral centers, vertebral image patches are extracted and fed into four parallel

terminal modules. The first terminal module localizes vertebral corners and the second

terminal module detects and highlights vertebral boundaries. Next, the segmentation of

the vertebral bodies is performed by the third module. Finally, the fourth terminal module

predicts vertebral shapes and also localizes corners from the predicted shapes.

9.2 Outcomes

The main research question posed at the beginning of this dissertation was: ‘Is it possible to

develop a fully automatic image analysis framework for cervical vertebrae in X-ray images?’.

We approached the solution by dividing our goal into several objectives in Sec. 1.2, each of

which can now be addressed.

1. Spine localization: The first objective was to localize the spinal region in the X-ray

image. To address this objective, we have proposed and compared two spine localiza-

tion algorithms in Chapter 3. The first algorithm uses random classification forest and

localizes the spine using a coarse-to-fine approach. It produces a bounding parallel-

ogram around the spinal region in the image. However, the bounding parallelogram

was not able to capture the orientation and the flexibility of the spine. To localize the

spinal region with arbitrary shapes, we have proposed a deep learning-based algorithm.

A novel region-aware loss term is proposed which takes into account the connected

nature of the predicted region in training. The proposed loss was able to improve

the performance of all three dense classification networks which were compared in

Sec. 3.2. An average sensitivity and specificity of 0.97 have been achieved in localizing

the cervical spine.

2. Center localization: The purpose of this objective was to predict vertebral centers in

the localized spinal region. We have proposed a novel probabilistic spatial regressor

network (PSRN) to fulfil this objective. This is reported in Chapter 4. As vertebral
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centers are not attached directly to any visible image landmark, the location of the

center varies based on human interpretation. This motivated us to convert the manually

clicked vertebral centers into probabilistic distributions. A dense classification net-

work, UNet, is augmented with a novel loss function to generate spatially distributed

probability distribution. The center localization algorithm has been able to detect

94.73% vertebral centers with an average error of 1.80 mm which was lower than the

error computed from centers localized by an expert radiologist.

3. Corner localization: The third objective was to predict vertebral corners with help

of the already localized vertebral centers. This objective was addressed in Chapter 5.

Three innovative methods were proposed for localization of vertebral corners. The

first method uses classical corner (Harris) and edge (Canny, Sobel, Prewitt, Roberts,

LoG) detectors and combines the results with a prior distribution of corners in a naive

Bayes formulation to localize vertebral corners. The second method involves Hough

forest which localizes vertebral corners using a patch-based approach. Finally, a deep

learning-based corner localization framework has been proposed where we improve

upon the proposed probabilistic spatial regressor network (PSRN) of Chapter 4. A

new spatial normalization layer and a novel loss function based on Bhattacharyya

coefficient was proposed. We have achieved a median error of less than a millimeter

for corner localization.

4. Vertebral boundary detection: After solving the localization issues, our next objective

was to detect vertebral boundaries. A dense classification and a probabilistic approach

were taken to address this issue. A novel weighted loss function is proposed to

solve the data imbalance problem faced by the dense classification networks. For the

probabilistic approach, the PSRN network of Chapter 5 has been improved further

with a histogram-based normalization layer to solve residual background problem

discovered in the previous chapter. Both of these amendments has proven to achieve a

significant improvement in boundary detection performance.



180 Conclusion

5. Vertebral body segmentation: The objective of vertebra segmentation has also been ad-

dressed in Chapter 6. Vertebra segmentation was performed using a dense classification

network. The standard dense classification network is trained using a pixel-wise loss

function which is not capable of capturing shape information explicitly. To address the

issue, a novel shape-aware loss term has been proposed which resulted in significant

improvement in segmentation performance. We have shown that the shape-awareness

helps the network to segment vertebrae with clinical conditions with higher accuracy.

Overall, a high Dice similarity coefficient of 0.944 is achieved by the shape-aware

segmentation network.

6. Vertebral shape prediction: A novel convolutional neural network was proposed to

address the objective of vertebral shape prediction. The shape predictor network

builds upon the success of the UNet architecture used in this dissertation for dense

classification and probabilistic spatial regression tasks. The network has been modified

to produce signed distance functions defined over the same pixel space as the input

to the network. The shape is represented by the zero-level set of the predicted signed

distance function. This novel shape predictor network has been reported in Chapter 7

which achieved an average shape error of less than a pixel.

9.2.1 Fully Automatic Framework

Finally, after addressing each of the objectives, we turn to our original quest of building a

fully automatic framework which has been described in Chapter 8. The best-performing

methods from each of the chapters were selected and joined together in a seamless manner.

The complete framework takes a lateral cervical X-ray image and highlights several vertebral

features at the end without any user input. The fully automatic framework has achieved a

Dice similarity coefficient 0.876.
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9.3 Future Work

In this dissertation, we worked on a dataset of X-ray images collected from real-life medical

emergency rooms which posed a set of challenging and practical problems to overcome.

We have been able to solve a set of computer vision related problems, but there are several

limitations in our proposed solutions. In the next subsection, we will list some limitations

and likely ways to address them. After that, we will list a number of things we have already

explored without any fruitful outcomes so far. Finally, we will end this section with some

directions of research which might be useful for other researchers interested in moving

forward with the work presented in this dissertation.

9.3.1 Limitations

One of the limitation of the work presented here is our assumption that the X-ray image

is upright and the anterior side in the left of the image. Although our spine localization

algorithm is rotation and view invariant, the rest of the algorithms are not invariant to these

assumptions. There are two possible ways to solve this issue. First, the models can be

retrained with new data which will include these variations. A second approach can be to

include a new module in the framework which will determine the orientation of the scanned

subject in the image and will rotate and/or flip the image accordingly so that the following

modules can work without the need of retraining. Similar modules for determination of

anatomical pose and view can be found in the literature for classification of cardiac views in

echocardiogram [140, 141]. Instead of adding a new module, we can also improve our spine

localization algorithm to determine the orientation of the subject. This can be achieved as a

post-processing step and/or the network can be augmented to produce appropriate outputs.

Another limitation of the current framework is that it cannot provide any information

about the identity the predicted vertebral centers. A further geometrical analysis of the

predicted centers can solve this issue to some extent with some assumptions like the image is

upright, and the top vertebra is always C3. But these assumptions are not always valid. To
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solve the problem completely, a new vertebra identification framework can be formulated

and trained to identify and localize cervical vertebrae simultaneously.

The fixed size of the test patch extraction process is also a limitation in the proposed

framework. According to the analysis of our training data in Fig. 8.1, about 10% of the

vertebrae are larger than chosen test patch size. We need to improve the process to determine

the patch size dynamically. An immediate solution could be to extract patches with multiple

sizes. But that would require reconciliation between multiple predictions for the same verte-

bra.

The current version of the corner localization framework requires vertebral centers to

be known. It uses the centers to select correct prior distribution which is required in the

post-processing steps. Future work is needed to remove this dependency. Once removed, the

vertebral corners can be localized directly from the localized spinal area. These corners can

also be used to determine the size of the test patches dynamically to address the issue of the

patch extraction process.

The current version of the boundary detection framework suffers from the problem of

boundary thickness, common to the UNet like encoder-decoder architecture-based methods.

Recent work by Wang et al. have addressed a similar problem by replacing the deconvolu-

tion layers with sub-pixel convolution [108, 115]. The use of sub-pixel convolution can be

explored to improve the boundary detection performance.

The segmentation module and the shape prediction produce similar results with different

representations. Both modules share a common deep architecture but trained with different

loss functions. While each loss function has some advantages over the other, future work can

be performed to combine the benefits of both loss functions in the same network.
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Finally, the all the machine learning-based models proposed in this dissertation suffer

when an abnormal vertebra is presented at the test time. This happens because the models are

trained using a dataset mostly full of healthy vertebrae. As our primary focus was to create a

prototype of the fully automatic image analysis framework, less attention was provided to

recognize the abnormal situations. Moving forward, the proposed framework can work as a

starting point, and more emphasis could be exerted on detecting the complex cases accurately

where fewer examples are available to train the models.

9.3.2 Unsuccessful Attempts

There are several things that we have tried but ended up with unfruitful results. Below we

present a list of a few of those unsuccessful attempts which seemed promising at the time.

• U-DeConvNet: A novel network architecture was developed by combining the UNet

and DeConvNet architecture. The proposed network had an encoder-decoder archi-

tecture which shared information using both techniques from UNet and DeConvNet,

i.e., concatenation data matrices and unpooling using switch variables. The intuition

was that sharing more information from the contracting encoder path would result in

better performance. However, the results from the proposed network were better than

DeConvNet but worse than UNet. The reason was the use of unpooling layers. These

layers produce sparse outputs which affect the overall performance.

• Autoencoder-based shape statistics compiler: In Sec. 7.4, we have described a convo-

lutional neural network (CNN) for predicting the level set parameters directly from a

vertebral image patch. In our initial set of experiments, we have also tried the same

for active shape model (ASM)-based parameters. But the results were inaccurate. To

build upon the idea, an attempt was made to replace the principal component analysis

(PCA)-based shape statistics compiler with the use of deep autoencoder network. The

ASM capture the shape statistics through PCA by computing mean shape, eigenvalues,

and eigenvectors. Noisy information and variations from minor eigenvectors are dis-

carded, and a full shape can be represented by a small number of parameters. The idea
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was to achieve the same using autoencoders, given a detailed shape, an autoencoder

will be trained to reproduce the same shape at the decoder output. After training, the

encoder can be used to represent the shapes in a different space with a fewer number

of parameters. These shapes could have been used as the ground truth for training

a vertebral image patch to shape parameter network. The autoencoder was able to

represent the shape with less number of parameters. But unfortunately, the decoded

shapes were not close to the actual shape like ASM-based methods to proceed to the

next step.

• Vertebra identification network: In the previous subsection, we have mentioned the

need of a vertebra identification framework. This is an area of research that have not

been included in the dissertation. However, we have tried to train a fully convolutional

network to recognize vertebrae by predicting each vertebral center in a different

channel. The method was partially successful, but future work is needed to make the

results presentable. The network was parameter heavy as we had to increase the input

resolution to 384×384. The network takes about four days to train with the existing

facilities. Thus performing a complete set of experimentation with the network to

improve the results was out of the scope of this dissertation.

9.3.3 Directions for Future Research

• Injury detection: In this dissertation, we have solved the computer vision part of a

fully automatic injury detection system. The current framework highlights several

vertebral features like centers, corners, boundaries, and shapes. The obvious next step

is to utilize this information to detect anomalies in the spinal area. While injuries

like vertebral misalignment, osteophytes, vertebral fractures (wedge and crushed) and

reduction of intervertebral disk can be computed easily from the detected corners,

boundaries and shapes, detection of other anomalies like osteoporosis, bone loss, and

teardrop fracture, etc. needs further work.
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• End-to-end framework: The work in this dissertation has shown that a fully automatic

framework can be developed for X-ray images. However, the final framework is a

combination of different modules, each of which solves a particular task. A fully end-

to-end trainable framework can be developed in the future. This can be approached in

various ways. One idea could be to use architectures like R-CNN [142, 143] to generate

region proposal around the vertebrae from a full resolution image and then perform

segmentation and/or shape prediction using the techniques proposed in Chapter ??

and 7. The networks can be formulated and trained in an end-to-end fashion. Another

novel idea could be to formulate a neural network which will be a combination of a

recurrent neural network module and a fully convolutional neural network module.

The network will start with a low-resolution image and using recurrency, it will learn

to zoom and crop parts of the image and provide a crisp vertebrae segmentation result

at the end.

• Extension to other views of the cervical spine: As mentioned earlier, the X-ray images

of the cervical spine is usually taken with three standard views: lateral, anterior-

posterior (AP), odontoid process (Peg). These views have been shown in Fig.2.2.

The methods proposed in this dissertation is focused only on the lateral view of the

cervical spine. However, this dissertation presents a systematic way of building a

fully automatic image analysis framework by addressing fundamental vision related

problems like image landmark localization, boundary detection and segmentation. The

same set of problems are also relevant to other views of the cervical spine. Thus, in

future, if enough input images and corresponding manual annotations of the vertebrae

are available, the models presented in this dissertation can be adapted and reformulated

to work with the AP and Peg views.

• Extension to 3D images: The work presented in this dissertation are designed for 2D

radiographic images. The spine can also be scanned using computer tomography (CT)

and magnetic resonance imaging (MRI) techniques. Although the image acquisition

times are longer than 2D radiographs, the CT and MRI techniques produce high quality
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3D images of the spine which are more diagnostic for clinical evaluation. Most of the

state-of-the-art methods proposed here use deep neural networks where loss functions

are defined in a pixel-wise manner. Even the loss function for the shape predictor

network computes an element-wise Euclidean distance between the shape parameters.

Thus the formulations are easily generalizable from 2D to 3D. Theoretically, it should

requires two major changes. First, the final loss of the proposed deep networks is

usually computed using a summation operation over the pixel space (Ωp) which should

be replaced by the voxel space for the 3D data. And, second, the 2D fully convolutional

neural network architectures should be replaced by appropriate 3D architectures. In this

dissertation, we have extensively used the UNet-like architecture for solving different

problems. A 3D version of the UNet architecture, VNet, has already been proposed

in [144]. In future, the algorithms proposed in this dissertation can be updated using

the VNet-like architectures to build fully automatic image analysis frameworks for 3D

CT and MRI scans.

• Probabilistic regression: Regression using neural networks are mostly deterministic.

In this dissertation, we have proposed a novel method for probabilistic regression

using neural networks. By choosing an appropriate standard deviation, any regression

target can be converted to a probability distribution defined over the output space.

Then the proposed fully convolutional neural network can be adapted to learn the

mapping between the input data and the output probability distribution. Theoretically,

the method has the capacity to solve any regression problem. A systematic study of the

proposed method for different regression problems, however, was outside the scope

of this dissertation. In future, the applicability and generalizability of this proposed

method can be evaluated on different regression datasets.

9.4 Personal Experience

My PhD research began with a set of real-life emergency room X-ray images and a semi-

automatic framework that uses active shape model (ASM) to achieve vertebrae segmentation.
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The framework was capable of producing acceptable results only for a handful of vertebrae.

Since then it has been quite a journey through thick and thin, to the fully automatic framework

that is capable of producing good results for the majority of the images in a test dataset full

of complicated cases.

Although at the end of my PhD research I have been able to produce something that I am

proud of, the journey was not smooth. Especially in the first year and a half, a good amount

research was performed which did not produce expected results. The corner localization

methods described in Sec. 5.1 and 5.2 were initially formulated to initialize the mean shape

of the ASM-based initial framework with high accuracy. However, the performance of the

corner localization was not accurate enough to improve the performance of the initial frame-

work. Another attempt was made to improve the performance of active shape model-based

framework by incorporating random forest models in the ASM search method. This work,

ASM-RF, improved the segmentation performance by a small margin from other state-of-the-

art ASM-based methods and was published in [69]. However, the method failed to outperform

the simplest gradient-based ASM method when applied to the test dataset used in this dis-

sertation at the resolution of 64×64 (see Table 6.3), and thus, excluded from this dissertation.

The real breakthrough in my research came after starting to incorporate deep learning

into the solutions. Deep learning was making waves in the computer vision field since 2012.

But lack of enough data samples to work with prevented us from using it in the beginning

of my PhD. Slowly but surely, medical image communities also found ways to use deep

learning-based solutions using data augmentation techniques. The UNet architecture was

proposed in 2015 with great success in medical image segmentation. The number of images

in our dataset also increased with time. Based on these developments, we first used the

UNet and other dense classification networks to localize spinal region in the X-ray image.

After getting robust localization results, we moved forward with deep learning solve other

problems. And with time, we have been able to build a prototype fully automatic framework
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that produces acceptable results for the majority of the images in our challenging test dataset.

Coming from an engineering background, I was always motivated to find solutions to

any problem with existing tools and technologies without carefully thinking about original

contributions, theoretical novelty, and innovation. This trend is noticeable in my initial

research, especially in Sec. 3.1, 5.1, and 5.2, where I have used existing methods to solve

different problems. The amount of theoretical novelty in these proposed solutions was

limited, but they provided a practical way to solve the problems. However, with time, I have

learned that original contributions, theoretical novelty, and innovation are necessary for a

dissertation worthy of a PhD award. Thus, I have tried my best to include key contributions

and innovation in the rest of work done for my PhD. The region-aware loss term for the spine

localization framework and shape-aware loss term included in the segmentation framework

are two examples of this effort. The novel probabilistic spatial regressor network proposed

in Chapter 4 and improved in Chapter 5 and 6 is one of the two major contributions of this

dissertation. I believe this novel spatial regressor network can be utilized beyond medical

imaging to solve image landmark localization problems in a broader aspect. The other major

contribution is the novel shape predictor network where we have described a practical way to

predict shapes using a encoder-decoder architecture like UNet.

Going back to my original motivation, the personal aim for my PhD was to replace the

initial framework with a robust fully automatic framework capable of detecting vertebral

injuries. Unfortunately, I have not been able to work on the injury detection part within

the limited time-line of my PhD research. Changing the title of my dissertation from ‘fully

automatic injury detection system’ to ‘fully automatic image analysis framework’ was

difficult for me. However, I believe given the outputs that the proposed fully automatic

framework produces, injury detection system can be implemented with ease. Looking back,

I am more than happy with what I have achieved during the last three years. I have learned a

lot of lessons about research, work and the life itself. I have had an amazing experience, and
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I hope these lessons will help me to grow as a researcher and most importantly as a good,

responsible human-being on this earth.
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Appendix A

Supplementary Experiments and Results

This appendix includes additional experiments and results performed in [71] on Dataset A,

that influenced the methods described in Chapter 5.

A.1 Dataset A

The dataset used in this dissertation was received in batches. The first batch contained 138

images which were collected at the beginning of my PhD. The rest was not received until

mid-2016. Our work before receiving the rest of the data was performed on a subset of

90 images from 138 images of the first batch. These 90 images were selected manually

to reduce the complexity by ignoring most of the images with low contrasts and severe

clinical conditions. However, some complex samples were intentionally kept to investigate

Fig. A.1 Example of images in Dataset A.
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the response of the proposed methods on these variations. A few images from this dataset

are shown in Fig. A.1.

A.2 Effect of ROI Selection on HarrisNB

As described in Sec. 5.1.1, the extracted region of interest (ROI) for the Harris-based naive

Bayes corner detector (HarrisNB) around a vertebra can be a square, rectangle or trapezoid

(Fig. 5.5). The results of this method with all three ROIs are reported in Table A.1. The results

show an increase of error from the square ROI to the rectangle ROI and a sharp decrease for

the trapezoid ROI. The increased area of the rectangle from the square sometimes triggers

false corners whereas, for the trapezoid ROI, the axis-aligned vertebral boundaries result in

much better edge and corner detection which decrease the error to 2.06 mm.

ROI type Error in MM
Square 2.52

Rectangle 2.54
Trapezoid 2.06

Table A.1 Effect of different ROIs on HarrisNB.

A.3 Additional Feature Vectors for HoughF

The Hough forest-based vertebral corner detector (HoughF) also works on the patches

extracted based on different ROIs. The patch extraction process has been discussed in

Sec. 5.2.1. After extraction, the patches are converted into feature vectors. Several feature

vectors were evaluated in [71] which have not been included in Sec. 5.2.

Intensity and gradient distribution-based feature vectors: The patches contain grey-

level intensity distributions (I). Patch sizes in pixels vary from image to image based on the

corresponding X-ray resolution. To generate feature vectors of similar length and distributions

range, patches are resized to form a square shape and distributions are normalized. Four
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sizes are considered: 30×30, 10×10, 5×5, and 3×3 pixels. These resized patches are then

converted into feature vectors of length 900 (I30), 100 (I10), 25 (I5) and 9 (I3), respectively.

The same procedure is repeated with the gradient distribution of each patch. Gradients are

calculated in horizontal and vertical direction. After that the root-mean-square (RMS) of

the magnitudes are considered. This process also produced feature vectors of length 900

(G30), 100 (G10), 25 (G5) and 9 (G3). A few examples of the resized patches for intensity

and gradient distributions are shown in Fig. A.2.

I30            I10             I5             I3 G30          G10           G5            G3

Intensity                                                          Gradient

Fig. A.2 Appearance of intensity and gradient patches of different sizes.

Intensity and gradient-based Haar-like feature vectors: The Haar-Mixed feature vector

described in Sec. 5.2.2 can be divided into two different feature vectors by splitting Hv of

Eqn. 5.8 as Haar-Intensity (Hvi) and Haar-Gradient (Hvg), where

Hvi = [ f1, f2, f3, ....., f10], (A.1)

Hvg == [g1,g2,g3, .....,g10], (A.2)

where fx’s and gx’s are from Eqn. 5.8.

Random Mirrored Feature (RMF): RMF is a novel feature vector introduced in [71].

For all the patches that arrive at a particular node, vectors are generated randomly from the

patch center (pppc). The length of the vectors Lx varies between a lower limit (Lmin) to a higher

limit (Lmax). Lmax is proportional to the size of the vertebra and not limited by the patch
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Fig. A.3 Random Mirrored Feature (RMF).

size as the feature vector is created from the original image. For each pair of vectors, one

direction (δδδ 1) is randomly chosen. The direction of the other vector (δδδ 2) is computed by

mirroring δδδ 1 either horizontally or vertically. This mirroring is applied so that two vectors

can reach regions inside and outside the vertebra (see Fig. A.3). One feature value ( f ) is

created from one pair of vectors by calculating the difference between the intensities (I) at

those vector locations:

f = I(pppc +L1δδδ 1)− I(pppc +L2δδδ 2). (A.3)

During training, 85 feature values are computed at a split node and the one that maximizes

the information gain is chosen. This number is chosen based on an optimization process

(Sec. A.4). The RMF feature vector is inspired by the work of [145], where random displace-

ment feature vectors are used in 3D on depth images. Here, two types of RMF are used. The

first type considers only one pixel at each of the random vector locations (RMF-1P) and the

other type considers the average intensity of a 3×3 pixel box centered at each vector location

(RMF-B) to calculate the feature values using Eqn. A.3.

Convolutional Neural Net (CNN) feature vectors: Off-the-shelf CNN feature vectors

using a pre-trained deep neural network have been used for various complicated image

processing tasks with great success [146]. Based on this insight, a pre-trained deep network

(VGG-16) is used to convert the patches into CNN feature vectors [147, 148]. Two sizes of

patches are considered for CNN feature vectors. The first one is the standard non-overlapping

patch size used for generating the Haar-like features described in Sec. 5.2.1 and 5.2.2. The

second is a larger and overlapping patch size to provide more spatial information about

the patch to the network. The size of the larger patch is the same as Lmax used for RMF
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feature vectors. The CNN feature vector created from the standard size patch is denoted by

CNN-S and the other is denoted by CNN-B. The pre-trained network has 37 layers including

the final classification layer. The output response of the 36th layer is used as the feature

vector. A detailed description of this pre-trained network can be found in [147]. This network

requires a three channel RGB image of size 224×224 pixels as an input. To conform to

this requirement, our patches (both standard and large) are resized to 224×224 and same

grey-level intensity channel is repeated in each of the three channels. The length of the CNN

feature vectors is 1,000.

Structured forest (SF) feature vectors: Edge detection is a fundamental problem in image

processing. Recent work [77, 78, 149] in this domain have shown significant improvement

from the baseline [150]. All these articles use a complex feature vector. We call this feature

vector structured forest (SF) feature. The computation process of this feature vector has

been described in Sec. 3.1.2. The length of this feature vector is 6,116. Both patch sizes are

considered to compute this vector: features computed from standard size patch is denoted by

SF-S and larger patch (described in the previous paragraph) is denoted as SF-B.

A.4 Optimization of Parameters for HoughF

As described in Sec. 5.2.5, there are some hyper-parameters in HoughF methods. They can be

listed as: number of trees (nTree), maximum allowed depth of a tree (D), minimum number
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of elements at a node (nMin), number of variables to look at in each split nodes (nVar)

and number of thresholds (nTresh) to consider per variable. The kernel density estimation

(KDE) function also requires a bandwidth (BW ) which is the variance, σ2
k , in Eqn. 5.15.

To accurately optimize the forest for all these parameters, the experiment is conducted for

a single corner of a vertebra for all the images in Dataset A in a 10-fold manner, and the

localization algorithm is repeated with different parameters. Due to time constraints, a

sequential optimization approach is followed instead of a multi-dimensional approach. The

sequence of the parameters was chosen based on the understanding of the problem. The

sequence followed is: the bandwidth (BW ), number of trees (nTree), maximum tree depth (D),

minimum element at a node (nMin) and number of variables (nVar) & number of thresholds

(nT hresh) for each feature vector in a two-dimensional fashion. Most related variables were

chosen for the two-dimensional optimization. The cost function for the optimization is the

Parameters Feature type Feature length Value
BW (σ2

k )

N/A

0.03
nTree 100

D 10
nMin 5

nVar-nT hresh

SF 6116
85-10

RMF Infinitya (5000)
CNN 1000 30-10
I30

900 15-20
G30
I10

100 10-2
G10
I5

25
2-1G5

Haar-Mixed 20
I3

9
1-5

G3
Haar-Intensity

10
Haar-Gradient

Table A.2 Optimized parameters for corner localization.

atextRMF is dynamically created with random vectors. Technically, the feature length is infinity. However,
for the sake of implementation, the choice of possible vector locations was quantized such that maximum
possible feature length becomes 5000.
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average Euclidean error between corners predicted by the forest and annotated manually by

experts. The error vs. parameter value graphs are shown in Fig. A.4. The selection of the

BW is reported in Fig. A.4a and nVar-nT heta selection for Haar-Mixed features is reported

Fig. A.4b. The BW selection graph indicates that the lowest error occurs with BW = 0.03.

Lowest error for nVar-nT heta selection occurs at 2-1. The next option could have been 4-5,

but that would increase the computational cost by a factor of ten. Similarly, all the parameters

are optimized based on the lowest error and corresponding computational cost. The chosen

parameters are reported in Table A.2.

A.5 Additional Results for HoughF

The Hough forest-based vertebral corner detector (HoughF) has been evaluated for different

ROIs and feature vectors described in Sec. A.3. The results are summarized in Table A.3.

The average performance in the last column shows that the rectangle and trapezoid ROIs

perform marginally better than the square ROI. In between the rectangle and trapezoid ROIs,

the earlier is slightly better. However, the pattern is not consistent with all the features. The

lowest error of 2.01 mm is achieved with the Haar-Mixed feature for the rectangle ROI.

Results reported in Table A.1 for HarrisNB clearly show that the trapezoid ROI can help

when the algorithm uses horizontal and vertical gradients to detect edges and corners as

this ROI aligns the vertebral edges (see Fig. 5.5). But the forest framework does not use

this information explicitly. Thus the differences are not noticeable. Among all the features,

Haar-Mixed performed the best followed by Intensity 5 (I5). The advanced features (RMF,

CNN, SF) do not perform very well in terms of the error.
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Appendix B

Random Forest and Deep Learning

In this appendix, we briefly introduce two key machine learning algorithms that have been

explored in this dissertation: random forest and deep learning.

B.1 Random Forest

Random forest is a popular machine learning algorithm that has been used in many computer

vision tasks with great accuracy and performance [76, 105]. The algorithm can be used for

supervised learning e.g. classification or regression and also for unsupervised learning e.g.

clustering. The algorithm utilizes the concepts of randomness and generalization. It is faster

to train than its deep learning counterparts. The algorithm also requires less data for training

making it a popular choice in the medical image analysis domain. It has been used in many

related state-of-the-art articles [38, 49, 51, 57].

A random forest is an ensemble of binary decision trees. A decision tree consists of

several nodes (see Fig. B.1). The root node is where all data points start their journey. Other

nodes can be categorized as split nodes and leaf nodes. Split nodes are where the data gets

divided into left and right branches based on a cost function called the information gain (IG).

The data splits are performed with sparse optimization of the cost function. The cost function

considers only a small subset of all possible data splits and optimizes within that small subset.
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This optimization is intentionally kept imperfect. Each data point ends at a leaf node when

the tree reaches a maximum depth or number of data points in a node become lower than a

threshold.

Random forest exploits generalization among the trees. The accuracy of an individual

tree is sacrificed by introducing randomness and weak optimization of split nodes to achieve

better results over the forest. The randomization is added by sampling random subsets of

data for training each tree (bagging) and by randomly choosing only a subset of variables

and thresholds to optimize the IG at each node (RNO: randomized node optimization). Both

types of randomization help to reduce overfitting of the model and improve the performance
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Fig. B.1 Decision tree: a tree starts with a set of training data at the root node. Based on a
cost function the data is divided into left and right child nodes. The process is repeated at
the split nodes. Each branch of the tree ends with a leaf node. Leaf nodes are associated
with a decision based on the set of training data it contains. At test time, a new data point, X,
starts at the root node and follows a tree branch based on the splits learned during training. A
decision can be taken based on which leaf node it reaches. In this toy example, we show a
decision tree for a set of 32 characters containing two letters: ‘#’ and ‘%’.
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of the overall forest prediction.

If the forest predicts discrete values, then the forest is called a classification forest, if it

predicts continuous values then the forest is called a regression forest. The difference during

training is to calculate the information gain (IG) accordingly. The IG can be calculated with

different types of entropy based on the application. Entropy is a measure of randomness of a

collection of data points, the split node divides the data so that the overall entropy becomes

less. The leaf nodes are responsible for predicting a class label or for regressing an output

variable. Several prediction models for classification and regression have been used for

different problems.

We have used random classification forests for the spine localization problem which

is discussed in Chapter 3. Another hybrid random forest that performs classification and

regression together, called Hough forest, is described in Chapter 5 for vertebral corner

localization.

B.2 Deep Learning

Recently, the term ‘deep learning’ has become very popular in the field of machine learning,

artificial intelligence and computer vision. The term covers a range of artificial neural

network-based machine learning techniques. In this section, we start by describing a single

perceptron which is essentially the atomic unit of any neural network. Building on this,

we then continue by introducing multi-layer networks (MLP) or fully connected networks,

convolutional neural networks (CNN) and finally, fully convolutional networks (FCN), the

last of which has been extensively used in this dissertation to solve several localization,

segmentation and prediction problems.
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B.2.1 Perceptron

The initial idea of a perceptron dates back to the work of Warren McCulloch and Walter

Pitts in 1943 [151], who drew an analogy between biological neurons and simple logic gates

with binary outputs. In more intuitive terms, neurons can be understood as the sub-units of a

neural network in a biological brain. Here, the signals of variable magnitudes arrive at the

dendrites. Those input signals are then accumulated in the cell body of the neuron and if the

accumulated signal exceeds a certain threshold, an output signal is generated which is passed

on by the axon. The process is summarized in Fig. B.2.

Based on this simplified understanding of the neuron, Frank Rosenblatt proposed the

perceptron learning rule [152]. The key idea was to define an algorithm to learn the values of

a set of weights, www, that are multiplied with the input features in order to make a decision

whether a neuron fires or not, essentially, solving a binary classification problem. The

structure of a perceptron is highly motivated by the structure of the biological neuron.

Given an input vector xxx, the output of the network can be found as:

ẑ = f (wwwT xxx+b) (B.1)

Input
signals Dendrites

Axon
Cell nucleus

Myelin sheath
Axon terminals

Output 
signals

Fig. B.2 Schematic of a biological neuron.
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Fig. B.3 Schematic of Rosenblatt perceptron.

where f is the activation function. For probabilistic output, the activation function is usually

a sigmoid function which squashes the input to a valid probabilistic range of 0 to 1.

σ(a) =
1

1+ e−a (B.2)

Now, if we know the actual label, z for out input vector xxx, then we can define a loss term, L,

a

σ(
a)

Fig. B.4 Sigmoid function.

as:

L =
1
2
(z− ẑ)2 (B.3)

For dataset containing N training data with known labels, the loss function can be defined

over the dataset as:

L =
1

2N

N

∑
i=1

Li (B.4)
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Li = (zi − ẑi)
2 (B.5)

or

Li(www,xxx) =
(

zi −
1

1+ e−(wwwT xxxi+b)

)2

(B.6)

Now, we can compute the derivatives:

∂Li

∂w j
= 2(zi − ẑi)ẑi(1− ẑi)xi j (B.7)

∂Li

∂b
= 2(zi − ẑi)ẑi(1− ẑi) (B.8)

Then the weights can be updated using gradient descent algorithm [86]:

wt
j = wt−1

j −η
∂L

∂wt−1
j

(B.9)

bt = bt−1 −η
∂L

∂bt−1 (B.10)

where t represents optimization iteration number and η is the step size of the gradient descent

algorithm, also known as the learning rate. b0 and w0
j’s are initialized randomly. The training

data is usually randomly sorted and passed through the perceptron several times (epochs), to

allow the optimization process to reach convergence.

The perceptron described above is applicable for binary classification problems. For

multiclass problems, multiple neurons (equal to the number of classes in the dataset) can be

used, followed by a softmax layer. The softmax layer normalizes the output values to form a

valid probability distribution over the output classes. For example, for a three-class problem

(z1, z2 and z3), the network of Fig. B.5 can be used.
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Fig. B.5 Multiclass classification using perceptrons.

B.2.2 Multi-layer Perceptron

The network of Fig. B.5 can solve multiclass problems but is still not suitable for complex

classification tasks. The model has (n+1)×3 parameters only, where n is the length of the

input vector. To model complex problems, the number of parameters can be increased by

cascading more layers between the input and output layers, these layers are often termed

as ‘hidden layers’ in the literature. As long as each of the layers is differentiable, gradient

descent can be used to optimize the weights. The propagation of the derivative of the error

or the loss function from the output layer to the input layer is called backpropagation. A

deep multi-layer perceptron is shown in Fig. B.6. This network is also known as the fully

connected network as each neuron is connected to all other neurons of the consecutive layers

through weights.

B.2.3 Convolutional Neural Network

The multi-layer perceptron is a powerful machine learning tool. Researchers have proven that

given enough neurons it can approximate any function [153]. But it has a huge number of

parameters that require memory and computation power. Also, the network is not suitable for

images. Although one can vectorize the image and use an MLP for a particular problem [154],

such an approach fails to take into account the fact that the image consists of simple and
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Fig. B.6 Multi-layer perceptron or fully connected network.

repetitive structures such as edges of different orientations, distributed over a 2D plane.

Research into the brain’s visual pathway also supported the fact that the first layer in the path

detects edges, from which the next layers detect higher level features and finally it decides

what the image is or is about [155]. Based on these developments in different disciplines, in

1998, Yann LeCunn proposed convolutional neural networks (CNN) for handwritten digit

classification [156]. The network is shown in Fig. B.7. The network takes a single channel

32×32 pixel image of handwritten digits and classifies these into ten classes representing

digits from 0 to 9. Detailed descriptions of different layers used in CNNs can be found in

Sec. B.2.5.

But, CNNs were mostly unused for complex computer vision problems because of their

requirements for computing power, large memory and huge training datasets. Other machine

learning algorithms, like SVM, AdaBoost and random forest, became the state-of-the-art in

the field. In 2012, Alex Krizhevsky reintroduced the CNN in the computer vision community

and won the ImageNet classification challenge by outperforming the previous state-of-the-art

by a large margin [23]. This network is known as AlexNet. The challenge had a thousand

image categories and 1.5 million images to train on. Since 2012, several innovative variants

of CNNs, like VGGNet [147], ResNet [87], GoogLeNet [157] have been proposed achieving

better and better performance. In 2015, PReLU-nets achieved an error of 4.94% surpassing
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the human performance level (5.1%) [158]. Fig. B.9 shows the architecture of the VGG-16

network. The network uses the same convolution and pooling throughout the network. This

is one of the most used CNN architectures in the literature.

B.2.4 Fully Convolutional Network

The fully convolutional network (FCN) is an evolution of the CNN, suited for image segmen-

tation problems. In segmentation problems, instead of classifying the whole image into a

certain class, each pixel has to be classified. This problem has been termed as a dense classifi-

cation problem. In [84], the fully connected layers are replaced by convolutional layers. The
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final map is then upsampled using a deconvolution layer to produce a segmentation result of

the same size as the input. We show the fully convolutional version of the VGG-16 Net in

Fig. B.10. This network has been used for segmentation of 21 object classes of the PASCAL

VOC 2011 dataset [159], thus the final layer consists of 21 channels.

The single step upsampling strategy causes the segmentation map to become coarse

losing fine details about the object boundaries. To solve this problem, DeConvNet [85] was

proposed. This network consists of two paths: a contracting path that reduces the spatial

dimension through pooling and an expanding path that upsamples the contracted activations

into the same input resolution in stages. The DeConvNet achieves upsampling through

unpooling which uses the maxpooling indexes (called switch variables) to upsample the input

map.

A similar dense classification network, UNet, is proposed in [82]. This network also

has a contracting path and an expanding path. But it uses a different upsampling strategy.

Instead of unpooling layers, it uses a learnable deconvolution layers to achieve upsampling

in the expanding path. The network also shares information between the contracting path

and the expanding path by concatenation of data matrices. UNet is designed for biomedical
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Fig. B.10 Fully convolutional network for image segmentation (VGG-16 FCN) (a) network
architecture (b) legend.
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Fig. B.11 Deconvolutional network for image segmentation (a) network architecture (b)
legend.

image segmentation. The network takes an input image of size 572× 572 and creates a

segmentation map of size 388×388. The problem is a binary dense classification problem

thus the final output has only two channels.
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Fig. B.12 UNet for medical image segmentation (a) network architecture (b) legend.

B.2.5 Layers in a Deep Neural Network

All the deep convolutional neural network discussed above consists of several layers. Each

layer performs certain computation on the input and produces an output feature map which is



224 Random Forest and Deep Learning

usually fed to a next layer in the network. In the following subsections, we look into different

layers used in those deep architectures in more detail.

B.2.5.1 Convolutional Layer

The convolutional layer performs 2D convolution on the input feature map x with K number

of filters f and produces output feature map y. The process is graphically illustrated in

Fig. B.13. Mathematically, the values in the output feature map can be computed as:

y(i, j,k)=
C

∑
c=1

P

∑
Pi=−P

P

∑
Pj=−P

x(Si−S+1+Pi,S j−S+1+Pj,c) f (Pi+P+1,Pj+P+1,c,k)+bk,

(B.11)

where k = 1,2, ...,K; S is a hyper-parameter called ‘stride’ in the literature and other symbols

bear the same meaning described in Fig. B.13d. The number of channels in each filter is

determined by the number of channels in the input feature map (C). The number of channels

in the output feature map is determined by the number of filters (K). The number of rows

(Hy) and columns (Wy) in the output feature map is determined by the following equations:

Hy =
Hx −H f +2P

S
+1,Wy =

Wx −Wf +2P
S

+1. (B.12)

In the example illustrated in Fig. B.13, Hx =Wx = 5, H f =Wf = 3, P = 1 and S = 2.

The f (∗,∗,∗,∗) and b∗ are the trainable parameters of the layer. The convolutional layers

have been used throughout this dissertation in the all the proposed networks.

B.2.5.2 Subsampling and Maxpooling

The subsampling and maxpooling layers reduce the spatial size of the input feature map

and produce a smaller output feature map. These operations are performed in each channel

separately, thus do not change the number of channels in the output feature map. For a single

channel input, the process is illustrated in Fig. B.14. For subsampling layer, the values in the



B.2 Deep Learning 225

P
P

P

0
0

0
0

0
0

0
0

f(1,1,1,1)
f(1,2,1,1)

f(1,3,1,1)
f(1,1,1,2)

f(1,2,1,2)
f(1,3,1,2)

f(1,1,1,K
)

f(1,2,1,K
)

f(1,3,1,K
)

y(1,1,1)
y(1,2,1)

y(1,3,1)
0

x(1,1,1)
x(1,2,1)

x(1,3,1)
x(1,4,1)

x(1,5,1)
x(1,6,1)

0
⊛

f(2,1,1,1)
f(2,2,1,1)

f(2,3,1,1)
f(2,1,1,2)

f(2,2,1,2)
f(2,3,1,2)

•
•
•

f(2,1,1,K
)

f(2,2,1,K
)

f(2,3,1,K
)

=
y(2,1,1)

y(2,2,1)
y(2,3,1)

0
x(2,1,1)

x(2,2,1)
x(2,3,1)

x(2,4,1)
x(2,5,1)

x(2,6,1)
0

f(3,1,1,1)
f(3,2,1,1)

f(3,3,1,1)
f(3,1,1,2)

f(3,2,1,2)
f(3,3,1,2)

f(3,1,1,K
)

f(3,2,1,K
)

f(3,3,1,K
)

y(3,1,1)
y(3,2,1)

y(3,3,1)
0

x(3,1,1)
x(3,2,1)

x(3,3,1)
x(3,4,1)

x(3,5,1)
x(3,6,1)

0
0

x(4,1,1)
x(4,2,1)

x(4,3,1)
x(4,4,1)

x(4,5,1)
x(4,6,1)

0
f(1,1,2,1)

f(1,2,2,1)
f(1,3,2,1)

f(1,1,2,2)
f(1,2,2,2)

f(1,3,2,2)
f(1,1,2,K

)
f(1,2,2,K

)
f(1,3,2,K

)
y(1,1,2)

y(1,2,2)
y(1,3,2)

0
x(5,1,1)

x(5,2,1)
x(5,3,1)

x(5,4,1)
x(5,5,1)

x(5,6,1)
0

f(2,1,2,1)
f(2,2,2,1)

f(2,3,2,1)
f(2,1,2,2)

f(2,2,2,2)
f(2,3,2,2)

•
•
•

f(2,1,2,K
)

f(2,2,2,K
)

f(2,3,2,K
)

y(2,1,2)
y(2,2,2)

y(2,3,2)
0

x(6,1,1)
x(6,2,1)

x(6,3,1)
x(6,4,1)

x(6,5,1)
x(6,6,1)

0
f(3,1,2,1)

f(3,2,2,1)
f(3,3,2,1)

f(3,1,2,2)
f(3,2,2,2)

f(3,3,2,2)
f(3,1,2,K

)
f(3,2,2,K

)
f(3,3,2,K

)
y(3,1,2)

y(3,2,2)
y(3,3,2)

0
0

0
0

0
0

0
0

•
•

•
•

•
0

x(1,1,2)
x(1,2,2)

x(1,3,2)
x(1,4,2)

x(1,5,2)
x(1,6,2)

0
f(1,1,C

,1)
f(1,2,C

,1)
f(1,3,C

,1)
f(1,1,C

,2)
f(1,2,C

,2)
f(1,3,C

,2)
f(1,1,C

,K
)

f(1,2,C
,K

)
f(1,3,C

,K
)

y(1,1,K
)

y(1,2,K
)

y(1,3,K
)

0
x(2,1,2)

x(2,2,2)
x(2,3,2)

x(2,4,2)
x(2,5,2)

x(2,6,2)
0

f(2,1,C
,1)

f(2,2,C
,1)

f(2,3,C
,1)

f(2,1,C
,2)

f(2,2,C
,2)

f(2,3,C
,2)

•
•
•

f(2,1,C
,K

)
f(2,2,C

,K
)

f(2,3,C
,K

)
y(2,1,K

)
y(2,2,K

)
y(2,3,K

)
0

x(3,1,2)
x(3,2,2)

x(3,3,2)
x(3,4,2)

x(3,5,2)
x(3,6,2)

0
f(3,1,C

,1)
f(3,2,C

,1)
f(3,3,C

,1)
f(3,1,C

,2)
f(3,2,C

,2)
f(3,3,C

,2)
f(3,1,C

,K
)

f(3,2,C
,K

)
f(3,3,C

,K
)

y(3,1,K
)

y(3,2,K
)

y(3,3,K
)

0
x(4,1,2)

x(4,2,2)
x(4,3,2)

x(4,4,2)
x(4,5,2)

x(4,6,2)
0

0
x(5,1,2)

x(5,2,2)
x(5,3,2)

x(5,4,2)
x(5,5,2)

x(5,6,2)
0

b
1

b
2

•
•
•

b
K

0
x(6,1,2)

x(6,2,2)
x(6,3,2)

x(6,4,2)
x(6,5,2)

x(6,6,2)
0

0
0

0
0

0
0

0
0

•••
0

0
0

0
0

0
0

0
0

x(1,1,C
)

x(1,2,C
)

x(1,3,C
)

x(1,4,C
)

x(1,5,C
)

x(1,6,C
)

0
0

x(2,1,C
)

x(2,2,C
)

x(2,3,C
)

x(2,4,C
)

x(2,5,C
)

x(2,6,C
)

0
0

x(3,1,C
)

x(3,2,C
)

x(3,3,C
)

x(3,4,C
)

x(3,5,C
)

x(3,6,C
)

0
0

x(4,1,C
)

x(4,2,C
)

x(4,3,C
)

x(4,4,C
)

x(4,5,C
)

x(4,6,C
)

0
0

x(5,1,C
)

x(5,2,C
)

x(5,3,C
)

x(5,4,C
)

x(5,5,C
)

x(5,6,C
)

0
0

x(6,1,C
)

x(6,2,C
)

x(6,3,C
)

x(6,4,C
)

x(6,5,C
)

x(6,6,C
)

0
0

0
0

0
0

0
0

0

H
x : #R

ow
s in the input feature m

ap.
W

x  : #C
olum

ns in the input feature m
ap.

C
 : #C

hannels in the input feature m
ap and the convolutions filters.

P
 : A

m
ount of zero padding around the input feature m

ap.*

H
f : #R

ow
s in the convolutional filters.*

W
f  : #C

olum
ns in the convolutional filters.*

*C
onventionally: H

f  =
 W

f  =
 F

 w
here F

 is an odd num
ber and P

 =
 ceil(F

/2)-1.

K
 : N

um
ber of convolutional filters and #C

hannels in the output feature m
ap.

H
y  : #R

ow
s in the output feature m

ap.
W

y  : #C
olum

ns in the output feature m
ap.

⊛
 C

onvoultion

Hx

W
x

Hf

W
f

H
y

W
y

P
0

0
0

0
0

0
0

0
•

•
•

•
•

•
•

•
•

•

(a)

(b)

(c)

(d)

Fig.B
.13

C
onvolutionallayer(a)inputfeature

m
ap

(b)filters
(c)outputfeature

m
ap

(d)legend.



226 Random Forest and Deep Learning

output feature map can be computed as:

y(i, j) = wi j

M

∑
mi=1

M

∑
m j=1

x(Si−S+mi,S j−S+m j)+bi j, (B.13)

where S is the stride, M×M is the size of the receptive field and wi js and bi js are trainable

parameters of the layer. For non-overlapping subsampling, S = M. For the example shown in

Fig. B.14 and subsampling layers used in the CNN of Fig. B.7, S = M = 2.

In contrast to the subsampling layers, the maxpooling layers do not have any trainable

parameters. The maxpooling operation simply choose the maximum value from the input

feature map under the receptive field.

y(i, j) = max{x(Si−S+mi,S j−S+m j) : mi = 1,2, ...,M,m j = 1,2, ...,M}. (B.14)

The maxpooling layers have been used throughout this dissertation and mentioned as

‘MaxPool’ in the network diagrams.

B.2.5.3 Gaussian Connection

The Gaussian connection layer is a particular version of the fully connected layer where the

output values are computed using Eqn. B.15 [156]. This layer is illustrated in Fig. B.15. The

x(1,1) x(1,2) x(1,3) x(1,4)

x(2,1) x(2,2) x(2,3) x(2,4) y(1,1) y(1,2)
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x(4,1) x(4,2) x(4,3) x(4,4)

(a) (b)

Fig. B.14 Subsampling and maxpooling (a) input feature map (b) output feature map.
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output values (y) can be computed as:

yi =
Lin

∑
j
(x j −wi j)

2; i = 1,2, ...,Lout , (B.15)

where Lin and Lout are the length of the input vector and output vector, respectively. This

layer has been used in the CNN proposed in [156] (see Fig. B.7).

B.2.5.4 Rectified Linear Unit (ReLU)

The rectified linear unit (ReLU) performs a simple non-linear operation and used as a

replacement of the sigmoid operation:

y(x) =

x i f x > 0

0 otherwise
, (B.16)
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Fig. B.15 Gaussian connection.
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The operation is also illustrated in Fig. B.16. The rectified linear units have been used

throughout this dissertation.
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Fig. B.16 Rectified linear unit (ReLU).

B.2.5.5 Deconvolutional Layer

The deconvolutional layer performs a backward convolution operation. In Fig. B.13, we have

illustrated a forward pass of the convolution operation with a stride, S = 2, where the spatial

size of the output was reduced by a factor of S. During backpropagation, this convolution

layer has to perform an upsampling operation. The deconvolutional layer simply switches

the forward pass and the backward pass operations of the convolutional layer. The operation

is also termed as backward convolution. Due to its backward nature, the hyper-parameter

‘stride’ for the deconvolutional layer is renamed as ‘upsample’ and the term ‘padding’ is

replaced by ‘cropping’. This layer has been used in the networks described in Sec. B.2.4.

B.2.5.6 Unpooling and Switch Variable

The unpooling operation is introduced in [85] to perform a backward maxpooling operation.

The maxpooling operation chooses the maximum value from a receptive field. The index
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of this maximum value is saved as ‘switch variable’. At the time of unpooling, this switch

variable is used to upsample the input feature map. The process is graphically illustrated in

Fig. B.17 for a maxpooling operation with ‘stride’ 2 and receptive field of size 2×2. This

layer has been used in the DeConvNets described in Sec. B.2.4 and 3.2.2.
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0 1 0 1
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Fig. B.17 Unpooling and switch variable.
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