

City, University of London Institutional Repository

Citation: Spanoudakis, G., Kloukinas, C. & Androutsopoulos, K. (2007). Towards security

monitoring patterns. Paper presented at the 22nd Annual ACM Symposium on Applied
Computing, 11 - 15 March 2007, Seoul, Korea.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1922/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Towards Security Monitoring Patterns

George Spanoudakis Christos Kloukinas Kelly Androutsopoulos
Department of Computing, Department of Computing, Department of Computing,

City University, City University, City University,
Northampton Square, Northampton Square, Northampton Square,

London, EC1V 0HB, U.K. London, EC1V 0HB, U.K. London, EC1V 0HB, U.K.
gespan@soi.city.ac.uk C.Kloukinas@soi.city.ac.uk sbbb530@soi.city.ac.uk

ABSTRACT
Runtime monitoring is performed during system execution to
detect whether the system’s behaviour deviates from that
described by requirements. To support this activity we have
developed a monitoring framework that expresses the
requirements to be monitored in event calculus – a formal
temporal first order language. Following an investigation of how
this framework could be used to monitor security requirements, in
this paper we propose patterns for expressing three basic types of
such requirements, namely confidentiality, integrity and
availability. These patterns aim to ease the task of specifying
confidentiality, integrity and availability requirements in
monitorable forms by non-expert users. The paper illustrates the
use of these patterns using examples of an industrial case study.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: assertion checkers.

Keywords
Runtime monitoring, security patterns, event calculus

1. INTRODUCTION
Researchers and organizations are constantly developing new
security mechanisms for deterring attackers, such as firewalls,
virus detection systems and cryptographic protocols for secure
communication. When developing a system with security
mechanisms, they usually apply static analysis techniques in order
to verify that the system behaviour respects certain security
properties and detect flaws. Static analysis techniques range from
static verification (e.g. model checking) to techniques measuring
the efficiency of algorithms (e.g. encryption).

However, attackers are also constantly working on attack methods
and hence a system can never be considered to be completely
secure. Furthermore, static analysis techniques typically verify
properties based on assumptions about the behaviour of a system
that may turn out to be incorrect at runtime or models which may
be incomplete. Thus, no matter how rigorous static analysis might
have been, there is no guarantee that the final implementation will
not be vulnerable to attack. To alleviate this problem, monitoring
of security requirements can be applied to a system to detect at

runtime whether its behaviour deviates from that described by its
security requirements and the assumptions under which it was
shown to be secure. Runtime monitoring can be used as a
replacement of static verification or in addition to it. Runtime
monitoring takes as input security requirements and checks
whether they are consistent with traces of events that are produced
during system execution.

In this paper, we introduce patterns for expressing basic security
monitoring properties that can be checked at runtime using a
general runtime requirements monitoring framework that is
discussed in [26]. In this framework, requirements are expressed
in event calculus (i.e., a first-order temporal formal language [24]
shortly referred to as "EC" henceforth) in terms of events which
signify the emission/reception of messages by different
components of a system, and fluents that represent changes in the
state of a system which are triggered by events. As correct EC
formulas, however, can be difficult to write, non expert users
could benefit from having abstract EC formulas (patterns)
expressing generic security properties that could be instantiated to
specify the exact security requirements that need to be monitored
in specific systems. To enable this, we introduce patterns which
cover the three main security properties as defined in [3], namely:
(i) Confidentiality − the absence of unauthorised disclosure of
information; (ii) Integrity − the absence of unauthorised
transformations of the state of a system; and (iii) Availability − the
readiness of a system to provide a correct service. Our work was
initially motivated by the work on specification patterns [10][1]
defined to assist users in expressing requirements in formal
languages, such as LTL [20] and CTL [6]. However, these
specification patterns have not been defined for event calculus nor
do they focus on security requirements.

Using the patterns that we introduce in this paper, someone can
implement basic security requirements of a system separately
from the system functionality by creating security-related rules
and verifying and controlling these requirements using the EC
monitoring framework discussed in [26]. In this way it is possible
to separate the treatment of the security requirements from the
application logic. If the system already has built-in security
mechanisms, then the external monitoring of security
requirements adds yet another layer of security checking which is
independent from the system and therefore makes it more fault
tolerant [5], especially if it is possible to control the system when
violations are detected. However, even in cases where control
cannot be applied, our approach can help by providing the basis
for detecting more violations than the system itself, logging
violations, and using the sophisticated reasoning capabilities of
the monitor to analyse specific dynamic event patterns, e.g., for
cases like denial of service attacks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4 /07/0003…$5.00.

mailto:sbbb530@soi.city.ac.uk

The rest of this paper is structured as follows. In Section 2, we
describe the general framework that we use for monitoring and in
Section 3 we overview event calculus. In Section 4, we define the
monitoring patterns and present examples of using them to
express security requirements drawn from an industrial scenario.
In Section 5, we discuss related work and in Section 6 we give
conclusions and present plans for future work.

2. MONITORING FRAMEWORK
The general architecture of the monitoring framework that we use
to monitor the patterns introduced in this paper is shown in Figure
1. This framework consists of a monitoring manager that accepts a
set of (security) requirements to be monitored and based on them
it identifies the event types that need to be observed and sends
them to an event catcher. It also forwards the requirements to be
monitored to the monitoring engine of the framework.

The event catcher observes events from one or more of the agents
that constitute the system being monitored, captures those that
correspond to the event types given by the monitoring manager
and sends them to the monitoring engine of the framework. The
monitoring engine checks whether the event trace that is reported
to it is consistent with the requirements and if it is not it reports a
violation to the manager. It can also deduce information about the
state of the system being monitored from the recorded events,
using formulas that specify how events affect the state of the
monitored system called assumptions (see Section 4.1), and the
standard axioms of EC [24].

Monitoring
Engine

Event
Catcher

Monitoring
Manager

(multi-party) Requirements

Source
Entity

Agent
B Event

Types

Requirements

Agent
A

Events

Possible event transmissions

Events

Events

violations

Figure 1. Monitoring Framework

Monitored systems may include one or more different interacting
agents and different types of monitoring may be distinguished
based on the capability to capture securely reliable runtime events
from the different agents that constitute them. According to this
criterion, monitoring can be distinguished into:

 Single-party monitoring: In this type of monitoring only one of
the agents which are involved in an interaction is capable or
willing to provide secure and reliable information about runtime
events. This type of monitoring may be further distinguished,
based on a directed communication from a source agent to a
destination agent into source-party or destination-party
monitoring.

 Multi-party monitoring: In this type of monitoring multiple
agents in an interaction can provide secure and reliable
information about runtime events.

Secure event reporting in this framework is based on a
publish/subscribe architecture based on PKI [27].

3. SPECIFICATION OF PROPERTIES I
Event calculus (EC) is a first-order temporal formal language that
can be used to specify properties of dynamic systems which
change over time. Such properties are specified in terms of events
and fluents.

An event in EC is something that occurs at a specific instance of
time (e.g., invocation of an operation) and may change the state of
a system. Fluents are conditions regarding the state of a system
which are initiated and terminated by events. A fluent may, for
example, signify that a specific system variable has a particular
value at a specific instance of time or that a specific relation
between two objects holds.

The occurrence of an event in EC is represented by the predicate
Happens(e,t,ℜ(t1,t2)). This predicate signifies that an
instantaneous event e occurs at some time t within the time range
ℜ(t1,t2). The boundaries of ℜ(t1,t2) can be specified by using
either time constants or arithmetic expressions over the time
variables of other predicates in an EC formula. The initiation of a
fluent is signified by the EC predicate Initiates(e,f,t) whose
meaning is that a fluent f starts to hold after the event e at time t.
The termination of a fluent is signified by the EC predicate
Terminates(e,f,t) whose meaning is that a fluent f ceases to hold
after the event e occurs at time t. An EC formula may also use the
predicates Initially(f) and HoldsAt(f,t) to signify that a fluent f
holds at the start of the operation of a system and that f holds at
time t, respectively.

Our EC based language uses special types of events and fluents to
specify monitorable properties of systems. More specifically,
fluents can be defined by the user as relations between objects of
the following general form:

relation(Object1, …, Objectn) (I)

In (I), relation is the name of the relation that takes as arguments n
objects (Object1, …, Objectn) that can be fluents or terms. A pre-
defined relation for fluents that is commonly used is:

valueOf(variable, value_exp) (II)

whose meaning is that variable has the value value_exp. In (II),
 variable denotes a typed variable which can be:

(i) a system variable − A system variable is a variable of the
system that is being monitored whose value can be
captured at any time during the monitoring process, or

(ii) a monitoring variable − A monitoring variable is
introduced by the users of the monitoring framework to
represent the deduced states of the system at runtime (i.e.
states which the system itself might not be aware of but its
monitor can use in order to reason about it).

 value_exp is a term that either represents an EC variable/value
or signifies a call to an operation that returns an object of the
same type as the variable. This operation may be a built-in
operation of the monitoring engine (e.g. an operation that
computes the average of a set of values) or an operation that is
invoked in an external party. When value_exp is an operation
call, then effectively the return value of the operation becomes
the value of variable.

Events in our framework represent exchanges of messages
between the agents that constitute a system. A message can invoke
an operation in an agent or return results following the execution

of an operation. In our EC-based language, events are described
by terms that have the following generic form:

event(_id, _sender, _receiver, _status, _oper, _source) (III)

In (III):
 _ID is a unique identifier of the event
 _sender is the identifier of the agent that sends the message.
 _receiver is the identifier of the agent that receives the message.
 _status represents the processing status of an event. The status

of the event can be: (i) REQ-B, that is a request for the
invocation of an operation that has been received but whose
processing has not started yet; (ii) REQ-A, that is a request for
the invocation of an operation that has been received and whose
processing has started; (iii) RES-B, that is a response generated
upon the completion of an operation that has not been
dispatched yet; or (iv) RES-A, that is a response generated upon
the completion of an operation that has been dispatched.

 _oper is the signature of operation that the event invokes or
reports the results of.

 _source is the name of the agent that provided information
about the event.

As an example of a monitoring property expressed in our EC-
based language consider the formula below:
∀ _id1,_id2,_s,_r:String;_v:ObjType t:Time
Happens(e(_id1,_s,_r,REQ-B, o(_v),_r), t1,
ℜ(t1,t1)) ⇒ Happens(e(_id2,_r,_s,RES-A,
o(_v),_r), t2, ℜ(t1,t1+tu))

According to this formula, an agent _r which receives an event
invoking the operation o(_v) in it (i.e. e(_id1,_s,_r,REQ-B,
o(_v),_r)) should complete the execution of o(_v) and respond to
the caller (_s) within tu time units following the request (i.e., an
availability requirement as we discsuss in Section 4.4).

4. SECURITY MONITORING PATTERNS
The monitoring patterns that we have defined to enable the
specification of monitoring rules focus on common security
properties, namely confidentiality, integrity and availability.
These patterns are introduced in the following after an overview
of the monitoring pattern language that we use to express them.

4.1 Monitoring Pattern Language
A monitoring pattern is composed of: (i) a monitoring rule which
defines in a parameterised form the event calculus formulas that
will need to be monitored at runtime, and (ii) a set of assumptions
which define in parameterised forms the event calculus formulas
that can be used at runtime to deduce information about the state
of the monitored systems that affects the satisfiability of the
monitoring rules based on captured runtime events. Patterns may
define different monitoring rules and assumptions for different
types of monitoring (e.g. single and multi-party monitoring) if
these types can be applied for the property of the pattern.

The first order language that is used to define the pattern formulas
is based on EC. The variables of this language are typed and
might or might not be replaced depending on their specification in
the pattern. More specifically a variable _x which appears in “<>”
(i.e. <_x>) must be replaced by another compatible variable, that
is a variable whose type is compatible with the type of _x when
the pattern is instantiated. Variables which do not appear in “<>”
should not be replaced.

The type of a pattern variable may be one of the following
predefined set of meta-types: Term, Event, Fluent, Agent, and
InformationTerm. Term is the most general of these meta-types
and represents any type of term that can appear in an EC formula.
The meta-types Event and Fluent represent events and fluents
respectively as defined in Section 3. The meta-type Agent
represents an entity with a computational capacity that can send,
receive and process messages. Finally, the meta-type
InfomationTerm represents some primitive data type (String,
Integer, Real, Boolean) or object type.

In addition to the generic fluents introduced in Section 3, our
pattern language uses the following predefined fluents,
(i) authorised(authorisingAgent,authorisedAgent,e) − This

fluent denotes that the agent authorisedAgent has been
authorised to receive and process the event e or to send an
event e by the agent authorisingAgent.

(ii) exposes(o, owner, i) − This fluent denotes that the response
generated from the execution of an operation o will disclose
an information term i which belongs to the agent owner.

(iii) transforms(o, agent) − This fluent denotes that the execution
of the operation o may transform the state of the agent agent.

4.2 Pattern for Confidentiality
Confidentiality is defined in [3] as “absence of unauthorised
disclosure of information”. This property means that an agent who
possesses some information should not allow unauthorised
disclosure of it. Disclosure may occur either through direct access
of the stored information at the side of the agent which possesses
it or through the dispatch of the information. Information dispatch
can happen through directed communications of the form source
→ dest in which the agent source who possesses the information
sends it over to dest. In communication chains of the form source
→ dest1 → … → destn there is the possibility of unauthorised
disclosure of information not only at the source or during the
transmission of information over a channel but also at some
destination agent desti which despite being authorised to receive
the information itself fails after receiving it to prevent
unauthorised access to it by a third party. The term “unauthorised”
in the above definition assumes an authentication and an
authorisation process. Consequently, the knowledge of the
authentication and authorisation status of agents is a necessary,
albeit not sufficient condition, for monitoring confidentiality.

4.2.1 Pattern for source-party monitoring

The pattern for source-party confidentiality monitoring is shown
in Figure 2.

The rule CSR1 in this pattern is monitored at the source of an
information disclosure message (i.e. the agent _sender in the
pattern) and states that if an information disclosure event E1
happens in this agent that allows another agent (_receiver) to
obtain information _i which is confidential to an agent _owner,
the _receiver should be authorised by the _owner to obtain _i at
the time of the disclosure.
In the pattern, the authorisation of the _receiver is performed by
an operation _authorO which tests whether the _receiver is
authorised to receive the event E1 and thus obtain the information
_i of _owner at time t. During monitoring, authorisation can be
obtained by deduction from the assumption CSA2 of the pattern

and the axioms of EC. According to CSA2, the fluent authorised
(<_owner>, <_receiver>, E1) which indicates the authorisation
of _receiver to receive the event E1 that exposes _i is initiated
only if an event E2 that indicates the receipt of a response from
the execution of the operation _authorO has occurred and the
result of this operation (_result_authorO) signifies the
authorisation (i.e., it is equal to _authorisedValue). Following the
initialisation of the authorisation fluent
authorised(<_owner>,<_receiver>, E1) at some time t0 the
predicate HoldsAt(authorised(<_owner>, <_receiver>, E1), t1)
can be shown to hold at any time t1 after t0 by the following
axiom of EC [24] (assuming that no other event that could have
clipped authorised(<_owner>,<_receiver>, E1) occurred
between t0 and t1):

HoldsAt(f,tB) ⇐ (∃e,t) Happens(e,t,ℜ(tA,tB)) ∧
Initiates(e,f,t) ∧ ¬Clipped(t,f,tB)

Monitoring rules:
∀ _o:Operation; _i:InformationTerm; t1 :Time
 _sender, _receiver, _owner, _agent1:Agent;
 Happens(E1, t1, ℜ(t1, t1)) ∧
 HoldsAt(exposes(<_o>, <_owner>, <_i>), t1) ⇒
 HoldsAt(authorised(<_owner>, <_receiver>, E1),t1)
where: E1 = e(_eID11,<_sender>,<_receiver>,
 [REQ-*|RES-*], <_o>, <_sender>)

CSR1

Assumptions:

Initially(exposes(<_o>, <_owner>, <_i>)) CSA1

∀ _authorO: Operation;
 _sender, _receiver,_agent1, _owner:Agent;

_authorisedValue, _result_authorO: Term; t:Time;
 Happens(E2, t,ℜ(t,t)) ∧

HoldsAt(equalTo(<_result_authorO>,
 <_authorisedValue>),t) ⇒
 Initiates(E2, authorised(<_owner>,<_receiver>,E1),t)
where: E2 = e(_eID2,<_agent1>,<_sender>, RES-A,
 <_authorO>, <_sender>)

CSA2

Figure 2. Pattern for confidentiality monitoring

As indicated by the event E2, the operation _authorO in the
pattern is executed in some agent _agent1 following a request by
the _sender. Thus, CSR1 is satisfied only if prior to its checking,
an event E2 has occurred and by virtue of CSA2 the authorisation
fluent authorised(<_owner>, <_receiver>, E1) has been initiated.

The effect of events on the disclosure of information in the pattern
is specified by the assumptions CSA1 that specify which
operations can expose confidential information.

Note that the event E1 in the pattern can be either a request for the
execution of an information disclosure operation <_o> (i.e., REQ-
* events) or a response generated by executing <_o> in the sender
following an invocation sent earlier by the receiver (i.e., RES-*
events). Also, CSR1 can refer to requests and responses that are to
be dispatched (i.e., when the event status is REQ-B and RES-B,
respectively) or that have been already dispatched (i.e., when the
event status is REQ-A and RES-A, respectively).

1 The variables indicating the identifiers of events in all the formulas in

the paper are assumed to be of type String and universally quantified.

In cases where the status of E1 is REQ-B or RES-B, CSR1
provides scope for pre-emptive control as the relevant requests or
responses can be blocked if the rule is not satisfied. In cases where
the status of E1 is REQ-A or RES-A, the rule provides scope only
for reactive control as the relevant dispatches would have
occurred when the rule is checked.

The pattern in Figure 2 covers also destination-party monitoring
since CSR1 can monitor invocations of an operation in an agent by
observing the responses (RES-*) to these invocations which are
generated by the agent.

4.2.2 Pattern for multi-party monitoring

To ensure that a piece of confidential information _i which an
agent (agent2) has received from another agent (agent1) will not
be disclosed to an unauthorised third party (agent3), it is
necessary to apply CSR1 to agent2. This is possible, however,
only if agent2 agrees to provide information about the exchange
of all the events between it and third parties that would disclose
_i. In this case, to enable the monitoring of agent2, the variable
<_owner> in CSR1 should be agent1, <_sender> should be
agent2, and <_receiver> should be agent3. With these variable
settings, CSR1 would check if agent3 is authorized by agent1 to
receive an event from agent2 that discloses _i. Furthermore,
separate instances of CSR1 and CSA1 should be created for all the
operations which agent2 can invoke in a third party or execute
after an invocation from a third party and would disclose _i.

4.2.3 Example

To illustrate the use of the confidentiality pattern, we use a case
study based on an e-healthcare system supporting monitoring,
assistance and provision of medication to patients with critical
medical conditions that is described in [4]. In this case study,
patients who have been discharged from hospitals with potentially
threatening medical conditions can use an e-health terminal
(EHT) − that is an e-health application installed on their PDAs −
to contact an emergency response centre (ERC) for assistance and
fast ordering of medication.

In one scenario of this case study, a patient who had suffered from
a cardiac arrest, feels unwell and sends through his EHT a request
for assistance to ERC. To establish the cause of the problem, ERC
retrieves the patient’s medical record through the EHT. From this
record, ERC establishes that the patient’s doctor is on vacation
and broadcasts a message to a group of doctors known to be able
to substitute the patient’s doctor. A doctor D receives this message
on his own EHT and replies immediately. ERC verifies D’s ability
to substitute for the patient’s doctor for the specific assistance
request. Following this, D’s EHT interrogates ERC to receive the
patient’s medical data. D analyses all these data, identifies the
most appropriate treatment, and writes the electronic prescription
on his/her EHT which subsequently sends the prescription to ERC
which forwards it to the patient’s EHT after registering it. In this
scenario, Campadello et al. [4] have identified the following
confidentiality requirement:

“A patient’s substitute doctor can access the patient’s medical
data if and only if he is the selected doctor” (i.e., Req. 2.2.1.7
in [4])

Assuming the following operations of ERC,

(a) fetchPatientData(docID:String,request:String,patInfo:Medic
alRecord) − This operation retrieves the medical record of a

patient (patInfo) given (as input) a medical assistance request
associated with the patient (request) and the identifier of a
requesting doctor (docID)

(b) verifyDoctor(docID:String, request:String, verified:Boolean)
− This operation verifies if a doctor (docID) can deal with a
given request (request)

the above requirement can be monitored by an instantiation of the
confidentiality pattern in Figure 2 covering the interaction
between ERC and the EHT of doctor D.

Table 1. Mapping of variables of confidentiality pattern
Pattern Term/Variable System Operation or Parameter
<_sender> ercID
<_receiver> docEhtID
<_agent1> ercID
<_owner> ercID
<_o> fetchPatientData
<_i> patInfo
<_authorO> verifyDoctor
<_result_authorO> verifyDoctor:verified
<_authorisedValue> True

To instantiate the pattern and specify the specific confidentiality
properties of the system, system providers need first to identify
the different agents and interactions in the system, and
subsequently establish the sender and receiver for each interaction
as well as the agents that can accept an event catcher. In the above
example, we focus on the interaction from the doctor’s EHT to the
ERC and assume that an event catcher can be inserted at ERC’s
side. Note that here we consider ERC to be the sender since we
are interested in ERC’s reply to the doctor’s EHT request for a
patient’s record.

Having identified the specific pattern rule that will be used,
system providers need to identify the system variables/operations
which will substitute for the pattern terms. To do so, they must
define a mapping from pattern variables onto system operations
and variables. An example of this mapping for the variables of the
pattern of Figure 2 is shown in Table 1. Once this mapping is
identified, system providers need to indicate the variables of the
formula that will substitute for the parameters of the system
operations. If such variables are not identified, formula variables
with the same names and types as operation parameters will be
automatically generated to substitute for these parameters. In our
example, as Table 1 does not define a mapping of operation
parameters, such default variables will be generated automatically
for these parameters. Thus, given the mapping of Table 1, the
following rule and assumptions can be generated automatically
from the pattern of Figure 2:

Rule CR1:
∀ _eID1,_ercID,_docEhtID,_request:String;
 _patInf
 Happens(e(_eID1,_ercID,_docEhtID, RES-B,
fetchPatientData(_docID,_request,_patInfo),
_ercID),t1,ℜ(t1,t1)) ∧
HoldsAt(exposes(fetchPatientData(_docID,_request

nfo), _patInfo), t1) ⇒

o: MedicalRecord; t1:Time

, _patI
 HoldsAt(authorised(_ercID,_docEhtID,
 e(_eID1, _ercID,_docEhtID, RES-B,
fetchPatientData(_docID,_request,_patInfo),

 _ercID)), t1)

Assumption CA1:

Initially(exposes(fetchPatientData(_docEhtID,_re
quest,_patInfo),_patInfo))

Assumption CA2:
∀ _eID1, _eID2,_ercID,_docEhtID:String;
 _verifi
 Happens(e(_eID2,_ercID,_ercID, RES-A,

ed: Boolean; t:Time

 verifyDoctor(_docID,_request,_verified),
_ercID), t,ℜ(t,t)) ∧

 HoldsAt(equalTo(_verified, True),t) ⇒
Initiates(e(_eID2,_ercID,_ercID, RES-A,

 verifyDoctor(_docID,_request,_verified),
_ercID), authorised(_ercID,_docEhtID,

 e(_eID1, _ercID,_docEhtID, RES-B,
fetchPatientData(_docID,_request,_patInfo),

 _ercID)), t)

According to rule CR1, following a request for the execution of
the operation fetchPatientData by a doctor’s EHT to the ERC it
should be checked if the requesting doctor’s EHT has been
authorised to receive the information that is to be disclosed to
him/her. Also, according to CA2 this authorisation can be obtained
through the execution of the operation verifyDoctor. Finally, CA1
specifies that the operation fetchPatientData discloses patInfo.

Note also that since the mapping of Table 1 does not define a
mapping for the parameters docID of the operations
fetchPatientData and verifyDoctor, a default rule variable called
_docID has been generated for both these operations in the
formulas and, as a result, the doctor’s ID (_docID) to be used in
the verifyDoctor operation will be the same as the one used in the
fetchPatientData operation.

4.3 Pattern for Integrity
Integrity has been defined in [3] as “absence of unauthorised
system state transformations”. This definition implies that: (a) no
unauthenticated and unauthorised agent should be allowed to
request the execution of an operation that would change the state
of another agent. Such unauthorised changes can be checked by
destination-party monitoring as we assume that changes of system
states may occur only at specific local agents and an external
agent can only change the state of a system by calling operations
at a destination agent.

4.3.1 Pattern for destination-party integrity monitoring

The pattern for destination-party integrity monitoring is specified
in Figure 3. The monitoring rule of this pattern (IDR1) specifies
that upon the receipt of a request from a _sender for the execution
of an operation _o which may transform the system state of a
_receiver, the _sender must be authorised by the _receiver to
execute _o. The possibility of the execution of _o causing a
transformation in the state of the _receiver is indicated by the
fluent transforms(E1, <_receiver>) which the rule requires to
hold when the _receiver gets the request.

Note that the pattern for integrity monitoring is similar to the one
for confidentiality monitoring but differ in two points. The first
difference is that the confidentiality pattern is monitored at the
sender side, since it is the sender which may expose some
information. The integrity pattern, on the other hand, needs to be
monitored at the receiver side, since it is the receiver which may
eventually transform the system state (at the request of the
sender). This is shown by the different source terms of the events

of the two patterns. The second difference between these two
patterns is that the confidentiality pattern uses the exposes fluent
to specify information disclosure while the integrity pattern uses
the transforms fluent to specify system state transformations.

Monitoring rules:

∀ _o:Operation; _sender, _receiver: Agent; t:Time
 Happens(E1, t, ℜ(t, t)) ∧
 HoldsAt(transforms(<_o>, <_receiver>), t) ⇒
 HoldsAt(authorised(<_receiver>, <_sender>, E1), t)
where: E1 = e(_eID1,<_sender>,<_receiver>,REQ-*,

 <_o>, <_receiver>)

IDR1

Assumptions:

Initially(transforms(<_o>, <_receiver>)) IDA1

∀ _authorO: Operation; agent1: Agent; t:Time
 _sender,_receiver, _result_authorO: Term;
 Happens(E2, t,ℜ(t,t)) ∧

HoldsAt(equalTo(<_result_authorO>,
 <_authorisedValue>),t) ⇒
 Initiates(E2, authorised(<_receiver>, <_sender>,
 E1), t)
where: E2 = e(_eID2,<_agent1>,<_receiver>, RES-A,

 <_authorO>, <_receiver>)

IDA2

Figure 3. Pattern for destination-party integrity monitoring

4.3.2 Example

In the scenario outlined in Section 4.2.3, the following integrity
requirement has been identified:

“Electronic prescriptions shall be issued only by doctors by
means of an e-health terminal.” (i.e., Req. 2.2.1.15 in [4])

This requirement can be monitored by a rule stating that if an ERC
receives an electronic prescription by a doctor then this doctor
must be authorised to issue the prescription. The rule can be
created by instantiating the destination party integrity monitoring
pattern assuming that:

(i) ERC provides the operation
createPrescription(docID:String, request:String, presc:
Prescription)to create new electronic prescriptions (presc)
for a medical assistance request (request), and

(ii) doctors are authorised through the execution of the operation
verifyDoctor of ERC as discussed in Section 4.2.3.

Table 2. Mapping of variables of integrity pattern
Pattern Term/Variable System Operation or Parameter
<_sender> docEhtID
<_receiver> ercID
<_o> createPrescription
<_authorO> verifyDoctor
<_result_authorO> verifyDoctor:verified
<_authorisedValue> True
<_agent1> ercID

Following the procedure for instantiating a pattern that we
described in Section 4.2.3, we can define the mapping between the
variables of the pattern of Figure 3, and the operations of the e-
healthcare system and their parameters. This mapping is shown in
Table 2. From this mapping we can generate the following rule as
an instance of the rule IDR1 in order to check the requirement
Req. 2.2.1.15 at runtime:

Rule IR1:

∀ _eID1,_ercID,_docEhtID:String; t:Time
 Happens(e(_eID1,_docEhtID,_ercID,REQ-B,
createPrescription(_docID,_request,_presc),
_ercID), t, ℜ(t,t)) ∧ HoldsAt(transforms(

 createPrescription(_docID,_ request,_presc),
_ercID), t) ⇒ HoldsAt(authorised(_ercID,
_docID, e(_eID1,_docEhtID, _ercID,REQ-B,
createPrescription(_docID,_ request,_presc),
_ercID)), t)

We can also generate the assumptions IA1 and IA2 below as
instances of the formulas IDA1 and IDA2, respectively:

Assumption IA1:
Initially(transforms(createPrescription(_docID,
_ request,_presc), _ercID))

Assumption IA2:
∀ _eID2,_ercID,_docEhtID:String; t:Time;
 _request: String, _verified: Boolean
 Happens(e(_eID2,_ercID,_ercID, RES-A,
verifyDoctor(_docID, _request,_verified),

 _ercID), t,ℜ(t,t)) ∧
 HoldsAt(equalTo(_verified, True),t) ⇒
 Initiates(e(_eID2,_ercID,_ercID, RES-A,
verifyDoctor(_docID,_request,_verified),
_ercID), authorised(_ercID, _docEhtID,

 e(_eID1,_docEhtID, _ercID,REQ-B,
createPrescription(_docID,_ request,_presc),
_ercID)), t)

The rule IR1 above checks whether the doctor (_docID) who
invokes the operation createPrescription in ERC (_ercID) is
authorised to do so. Note that, due to the mapping of the pattern
variables of Table 2, IR1 effectively describes a delegation of the
doctor’s right to create prescriptions to his/her EHT, since it is the
EHT which is the sender in this interaction (_docEhtID), while it
is the doctor who is being authorised (_docID) for the action in
reality. The assumption IA2 above states that a doctor is
authorised to call the operation createPrescription in ERC only if
this is verified by the operation verifyDoctor. In this case, an
appropriate authorisation fluent will be generated by IA2 and by
virtue of the EC axiom discussed in Section 4.3.2 we can derive
that the HoldsAt predicate in the head of the rule IR1 is satisfied.

4.4 Pattern for Availability
According to [3], availability is defined as “readiness for correct
system service”. In [3], a service is deemed to be correct if it
implements the specified system function. Readiness of a system
in this definition means that if some agent invokes an operation to
access some information or use a resource, it will eventually
receive a correct response to the request. In some cases, the
property may be strengthened to require that a response will be
received within a fixed time period following the invocation.
These cases can be effectively monitored by our framework as
indicated below.

4.4.1 Pattern for source-party availability monitoring

The pattern for source party availability monitoring specifies a
monitoring rule that checks whether, following the dispatch of an
event by a source agent (_sender) requesting the execution of an
operation _o in a destination agent (_receiver), the source agent
receives a response from the destination agent for the request
within tu time units after the dispatch (see rule ASR1 in Figure 4).

Note that, as it is based on events captured at the source of a
request, ASR1 checks the availability of both the receiver of the
request and the communication channel between it and the sender.
Also the use of a bounded range for the time variable t2 in ASR1
(i.e., R(t1,t1+tu)) is necessary since if the variable was unbounded,
the rule would not be decidable (only cases where the rule is
satisfied would be detectable).

Monitoring rules:
∀ _o:Operation; _sender, _receiver:Agent; t1, t2:Time;
 Happens(e (_eID, <_sender>,<_receiver>, REQ-*,

<_o>,<_sender>), t1, R(t1,t1)) ⇒
 Happens(e (_eID, <_receiver>, <_sender>, RES-B,

<_o>,<_sender>), t2, R(t1, t1+ tu))

ASR1

Figure 4. Pattern for source-party availability monitoring

4.4.2 Patterns for destination-party availability
monitoring

For destination-party availability monitoring, we introduce two
patterns that specify different monitoring rules. These patterns are
shown in Figure 5. The rule of the first pattern (ADR1) states that
an agent (_receiver) which receives a request for the execution of
an operation from another agent (_sender) should respond to the
sender within tu time units after the receipt of the request. The rule
of the second pattern (ADR2) is used to check the availability of
an agent (_sender) which is known to operate correctly only if it
requests the execution of an operation _o (or a set of such
operations) in another agent (_receiver) at regular time intervals.

Pattern 1
Monitoring rules:
∀ _o:Operation, _sender, _receiver: Agent; t1, t2:Time
 Happens(e(_eID, <_sender>,<_receiver>,REQ-B,
 <_o>,<_receiver>), t1, R(t1,t1)) ⇒

Happens(e(_eID, <_receiver>, <_sender>,RES-A,
 <_o>,<_receiver>), t2, R(t1,t1+tu))

ADR1

Pattern 2

Monitoring rules:
∀ _o:Operation, _sender, _receiver: Agent; t1, t2:Time
 Happens(e(_eID1, <_sender>,<_receiver>,REQ-*,
 <_o>,<_receiver>), t1, R(t1,t1)) ⇒

 Happens(e(_eID2, <_sender>,<_receiver>,REQ-*,
 <_o>,<_receiver>), t2, R(t1,t1+tu))

ADR2

Figure 5. Patterns for destination-party availability
monitoring

Note that, in the case of availability there is no need for an
additional multi-party monitoring pattern since if both source and
destination party monitoring can be applied, the monitoring of
ADR1 checks the availability of the service at the destination side
and the monitoring of rule ASR1 checks the availability of both
the destination side and the communication channel between the
two agents. It should also be noted that the patterns for
availability do not address the correctness of system functions.
This is because system correctness must be assessed against some
additional model of the intended behaviour of a system which can
not be specified in a generic form as part of the pattern.

4.4.3 Example

In the e-healthcare system scenario introduced in Section 4.2.3,
the following availability requirement has been identified:

“The patient’s e-health terminal shall continuously… emit an
OK status to the ERC.” (i.e., Req. 2.2.1.11 in [4])

Assuming that the status of an EHT to ERC is notified by calling
the operation reportStatus(ehtID: String) and that the abstract
_sender and _receiver terms in the pattern are mapped onto the id
of an EHT (_ehtID) and the id of the ERC (_ercID) respectively,
the above requirement can be monitored using the following rule

AR3: ∀ _eID1, _eID2, _ehtID, _ercID:String; t1,
t2:Time Happens(e(_eID1,_ehtID,_ercID,REQ-A,
reportStatus(_ehtID)),_ercID),t1, ℜ(t1,t1))
⇒ Happens(e(_eID2,_ehtID,_ercID,REQ-A,
reportStatus(_ehtID),_ercID),t2, ℜ(t1,t1+tu)

AR3 is created by instantiating the rule ADR2 of the availability
pattern and checks if an EHT invokes the operation reportStatus
in intervals of no more than tu time units.

5. RELATED WORK

Konrad and Cheng [17] define specification patterns expressed in
the real-time temporal logics MTL [18], TCTL [2], and RTGIL
[21]. Their work extends the Dwyer et al. pattern system [10] with
a taxonomy of (i) duration properties that describe a bounded
duration of an occurrence, (ii) periodic properties that describe
periodic occurrences, and (iii) real-time order properties that
place time bounds on the order of occurrences. Our patterns differ
in that we specifically consider monitorable security properties
and not general liveness/safety properties as [17].

Propel [25] is also an extension of [10] that helps specifiers
identify the subtleties and alternative options associated with the
intended behaviour of systems (see the Response pattern of [10]
for example). Propel allows specifiers examine all the options
explicitly and decide on the final instantiation of the property
(where all the options have been resolved). Unlike our approach,
Propel does not support the expression of real-time information.

Bandera [7] is another extension of [10] that deals with events in a
state-based formalism but with no real-time information. Bandera
supports user defined patterns and provides a structured-English
front end for the patterns, which are then translated into the
formalism of the chosen model checker.

Security patterns have also been introduced to aid the
development of secure software systems but not for verification or
monitoring. Such patterns have been proposed as part of UMLsec
[15] and SecureUML [19]. In UMLsec, Jürjens proposes some
transformation patterns between UML models that are used to
introduce patterns by refinement [14]. These patterns are for
security solutions rather than for formulating security properties.
SecureUML [19] is another extension of UML which provides
syntax for expressing access control policies directly in UML.
Other recent work has also focused on specifying security patterns
[23] that describe solutions to particular recurring security
problems. Security patterns that can be applied at different
architectural levels of software systems are also described in [12].
These patterns however are not expressed in a formal language
and thus are not always clear to developers.

Finally, apart from [8] which describes authorisation policies for
determining access rights of processes to objects (without being

able to express time constraints), no other work in the area of
intrusion detection and dynamic monitoring of security (e.g.
[11][8][16][22][9]) has used property specification patterns to
express monitoring rules, to the best of our knowledge.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented patterns for expressing three
basic security properties, namely confidentiality, integrity and
availability, in a way which permits their monitoring at runtime.
These patterns are expressed in Event Calculus and can be used
with a generic framework for monitoring functional and non
functional requirements at runtime with sophisticated reasoning
capabilities [26]. The creation of these patterns aims at making it
easier for system providers to specify basic security requirements
for their systems and monitor them using this framework. By
doing so, system providers can outsource security requirements to
the monitoring infrastructure and use monitoring as an additional
layer of security checking which is independent from checks
performed by the system that is being monitored, thus, making it
more fault tolerant. Furthermore, monitoring enables the
identification, diagnosis and future prevention of attacks, even for
dynamic and difficult to describe attack scenarios.

Our current work focuses on the development of a tool to support
the instantiation of the patterns presented in this paper and the
validation of the generated security requirements. This tool will
generate pattern instances automatically based on mappings
between the pattern variables and system operations/variables as
discussed in this paper. Our aim is to use this tool to support the
instantiation of patterns for real-world applications and investigate
if our approach is expressive enough for these. Finally, we are
also working on the development of template formulas as part of
the confidentiality patterns to assist system providers express
theories for confidential information leaks that can result from
disclosing non confidential pieces of information independently.

ACKNOWLEDGEMENTS
The work reported in this paper has been funded by the European
Commission under the Information Society Technologies
Programme as part of the integrated project SERENITY (contract
IST-027587).

REFERENCES
[1] Specification patterns, http://patterns.projects.cis.ksu.

edu/
[2] Alur, R.: Techniques for Automatic Verification of Real-

Time Systems. PhD thesis, Stanford Univ., August (1991)
[3] Avizienis A., Laprie J-C., Randell B.: Fundamental Concepts

of Dependability. Report N01145, LAAS-CNRS, (2001)
[4] Campadello S. et al.: S&D Requirements specification,

Deliverable A7.D2.1, SERENITY Project, /www.serenity-
forum.org/-Activities-.html?debut_article=4, (2006).

[5] Chen, L. and Avizienis A.: *N-version Programming: A
Fault-Tolerance Approach To Reliability Of Software
Operation, Proc. Of 25th Inter. Symp. on Fault-Tolerant
Computing, 'Highlights from Twenty-Five Years', vol.
III:113-119, 1995.

[6] Clarke, E.M., Emerson, E.A., and Sistla, A.P.: Automatic
Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans. on
Programming Languages and Systems, 8(2):244-263 (1986)

[7] Corbett, C., Dwyer, M.B., Hatcliff, and Robby: A language
framework for expressing checkable properties of dynamic
software. Proc. of the SPIN Software Model Checking
Workshop, LNCS vol. 1885, (2000)

[8] Damianou N, Dulay N, Lupu E, Sloman M. : The Ponder
Policy Specification Language, POLICY 2001, (2001)

[9] Denning, D.: An Intrusion-Detection Model, IEEE Trans. on
Software Engineering, 13(2):222-232. (1987).

[10] Dwyer, M.B., Avrunin, G.S. and Corbett, J.C.: Property
Specification Patterns for Finite state Verification. Proc. Of
2nd Work. on Formal Methods in Software Practice, (1998)

[11] English, C., Terzis, S., Nixon, P.: Towards Self-Protecting
Ubiquitous Systems Monitoring Trust-based Interactions,
Proc. of UbiSys '04, (2004)

[12] Fernandez, E.B., and Pan, R.: A pattern language for security
models. Technical report, Florida Atlantic University,
published in PLoP (2001)

[13] Flake, S., and Mueller, W.: An OCL Extension for Real-
Time Constraints. Advances in Object Modelling with the
OCL, LNCS. Springer-Verlag, (2001)

[14] Jürjens, J.: Transformations for introducing patterns - a
secure systems case study. In Work. on Transformations in
UML, ETAPS 2001 Satellite Event, (2001)

[15] Jurjens, J.: UMLsec: Extending UML for secure systems
development. Proc. of the 5th Int. Conf. on the Unified
Modeling Language, LNCS, 2460: 412-425, (2002)

[16] Ko, C., Ruschitzka, M. & Levitt, K.: Execution monitoring of
security-critical programs in distributed systems: A
specification-based approach. Proc. of the IEEE Symposium
on Security and Privacy, 175-187, (1997)

[17] Konrad, S. and Cheng, B. H: Real-time specification
patterns. Proc of the 27th Int. Conf. on Soft. Engineering,
372-381 (2005)

[18] Koymans, R:. Specifying Real-Time Properties with Metric
Temporal Logic. RealTime Systems, 2(4):255-299, 1990

[19] Lodderstedt, T., Basin, D. A., and Doser, J.: SecureUML: A
UML-Based Modeling Language for Model-Driven Security.
Proc. of the 5th Int. Conf. on the Unified Modeling Language
LNCS, vol. 2460: 426-441, Springer-Verlag, (2002).

[20] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag (1992)

[21] Moser, L.E., Ramakrishna, Y.S., Kutty, G., Melliar-Smith,
P.M., and Dillon, K.: A Graphical Environment for the
Design of Concurrent Real-Time Systems, ACM Trans. on
Software Engineering Methodology, 6: 31-79, (1997)

[22] Porras, P. A. and Neumann, P. G.: EMERALD: Event
monitoring enabling responses to anomalous live
disturbances, In Proc. 20th National Information Systems
Security Conference, 353-365. (1997)

[23] Security Patterns, http://www.securitypatterns.org
[24] Shanahan, M.P.: The Event Calculus Explained, in Artificial

Intelligence Today, LNAI no. 1600:409-430, Springer (1999)
[25] Smith, R.L., Avrunin, G.S., Clarke, L.A. and Osterweil, L.J.:

Propel: An approach supporting property elucidation. In
Proc. of the 24th Int. Conf. on Software Engineering, 11-21,
May (2002)

[26] Spanoudakis, G. and Mahbub, K.: Non Intrusive Monitoring
of Service Based Systems, Int. Journal of Cooperative
Information Systems, 15(3): 325-358, (2006)

[27] Srivatsa, M. and Liu, L.: Securing Publish-Subscribe Overlay
Services with EventGuard, Proc. of the 12th ACM Conf on
Computer and Communications Security, 289-298, (2005)

http://patterns.projects.cis.ksu.edu/
http://patterns.projects.cis.ksu.edu/
http://www.securitypatterns.org/
http://www.doc.ic.ac.uk/%7Empsha/ECExplained.pdf

