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ABSTRACT: The reliability based optimal design is considered of tuned mass-damper-inerter (TMDI) 

equipped linear building frames subject to seismic excitations modeled as stationary colored random 

processes. The TMDI is a recently introduced generalization of the classical linear tuned mass-damper 

(TMD) benefitting from the mass amplification property, the so-called inertance, of the inerter device 

to enhance the vibration suppression capabilities of the TMD. The frequency, damping ratio, and 

inertance TMDI properties are treated as design variables to minimize out-crossing rates of pre-

specified thresholds for building floor accelerations, inter-storey drifts, and TMDI mass displacement. 

Numerical data pertaining to a 10-storey frame structure equipped with a TMDI arranged in 12 

different topologies are furnished indicating the enhanced performance of the TMDI over the classical 

TMD especially for relatively small additional attached mass.   

1. INTRODUCTION 

Over the past several decades, the concept of the 

tuned mass-damper (TMD) has been extensively 

considered for the protection of building 

structures exposed to earthquake hazards in the 

context of passive vibration control (e.g., Rana 

and Soong 1998, Hoang et al. 2008). The TMD 

comprises a mass attached towards the top of the 

structure whose vibration motion is to be 

controlled (primary structure) via optimally 

designed/”tuned” linear spring and dashpot 

elements. Although closed-form expressions for   

optimum TMD properties do exist (e.g., Tigli 

2012), numerical optimization routines are 

commonly employed for TMD design. No matter 

what performance criteria are adopted in this 

design, it is widely recognized that the TMD 

effectiveness for the seismic protection of 

structures depends heavily on its inertia 

properties (e.g., Hoang et al. 2008, Moutinho 

2012). Practically speaking, the larger the 

attached TMD mass that can be accommodated, 

subject to structural design and architectural 

constraints, the more effective the TMD will be. 

In this regard, recently, a generalization of 

the classical TMD has been proposed by Marian 

and Giaralis (2013 and 2014) incorporating an 

“inerter” device: the tuned mass-damper-inerter 

(TMDI). The inerter is a two-terminal 

mechanical device developing a resisting force 

proportional to the relative acceleration of its 

terminals (Smith 2002). The underlying constant 

of proportionality (“inertance”) can be orders of 

magnitude larger than the physical mass of the 

device. In this regard, it was shown analytically 

and numerically that optimally designed TMDI, 

treating the attached mass and inertance as fixed 

quantities, outperforms the classical TMD in 

terms of relative displacement variance of linear 

primary structures under broad-band and narrow-

band stochastic base excitations by exploiting the 

“mass amplification” property of the inerter 

(Marian and Giaralis 2014). 

This paper investigates the optimal 

reliability-based design of the TMDI 

characteristics for seismic applications. Linear 

damped primary structures are considered base-

excited by filtered stationary white noise 
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representing the seismic input action. Compared 

to the work by Marian and Giaralis (2013, 2014), 

this study offers some new insights;  it adopts as 

design objective the optimization of the first-

passage probability beyond certain thresholds for 

building floor accelerations, interstorey drifts, 

and attached mass displacement (stroke) as 

opposed to minimizing solely the variance of the 

top floor displacement; it considers the inertance 

property as a design parameter, not taken as a 

priori fixed; it examines different TMDI 

topologies whereas the TMDI mass is attached at 

intermediate floors within a typical framed 

structure using different connectivity 

arrangements, apart from the practically most 

obvious one: the TMDI mass is attached to the 

top floor via the spring and the damper and 

linked to one floor below via the inerter. The 

governing equations of motion for a structure 

equipped with a TMDI are reviewed in the next 

section, followed (Section 3) by a discussion of 

the first-passage reliability-based design. Section 

4 presents a case study for a 10-storey TMDI 

equipped building frame exposed to stochastic 

seismic excitation. Concluding remarks and 

extensions are finally discussed in Section 5.  

2. THE TUNED MASS-DAMPER-INERTER 

(TMDI) SYSTEM FOR MULTI-STOREY 

FRAME BUILDING STRUCTURES 

2.1. The ideal inerter 

Conceptually introduced by Smith (2002), the 

ideal inerter is a linear two terminal device of 

negligible mass/weight developing an internal 

(resisting) force F proportional to the relative 

acceleration of its terminals which are free to 

move independently. Its force is expressed as 

 
1 2( - )F b u u , (1) 

where u1 and u2 are the displacement coordinates 

of the inerter terminals as shown in Figure 1 and, 

hereafter, a dot over a symbol signifies 

differentiation with respect to time. In the above 

equation, the constant of proportionality b is the 

so-called inertance and has mass units. It fully 

characterizes the behavior of the ideal inerter.  

Importantly, the physical mass of actual 

inerter devices can be two or more orders of 

magnitude lower than b. This has been 

experimentally validated by testing several 

flywheel-based prototyped inerter devices 

incorporating rack-and-pinion or ball-screw 

mechanisms to transform the translational kinetic 

energy into rotational kinetic energy “stored” in 

a relatively light rotating disk (e.g., 

Papageorgiou and Smith 2004). More recently, 

hydraulic-based inerters achieving inertance 

values b that are almost independent of the 

physical device mass were also experimentally 

verified (Wang et al. 2011, Swift et al. 2013). In 

this regard, the ideal inerter can be construed as 

an inertial amplification device, since by 

“grounding” any one of its terminals, the device 

acts as a “weightless” mass b. This consideration 

led to the tuned mass-damper-inerter system, 

which may enhance the vibration suppression 

capabilities of the classical tuned mass-damper 

for the same attached mass (and thus weight) by 

utilizing the inertial amplification property of the 

inerter (Marian and Giaralis 2013 and 2014).  

 

 
Figure 1: Schematic of an ideal inerter device  

2.2. Equations of motion of the TMDI system 

The topology of the tuned mass-damper-inerter 

(TMDI) configuration originally proposed by 

Marian and Giaralis (2013) for planar base-

excited n-storey frame building primary 

structures modeled as lumped-mass multi-

degree-of-freedom (MDOF) “chain-like” linear 

damped systems is shown in Figure 2. It involves 

a classical tuned mass-damper (TMD) located at 

the top floor of the primary structure comprising 

a mass md attached to the structure via a linear 

spring of stiffness kd and a linear dashpot of 

damping coefficient cd. The TMD mass is linked 

to the penultimate frame floor by an inerter 

device with inertance b. Herein, a significantly 

more general formulation is adopted allowing for 

the consideration of different TMDI topologies 
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in which the TMD is attached to the id floor and 

is linked via an inerter to the ib floor. This 

generalization is accomplished by means of 

properly defined location and connectivity 

vectors as detailed below. 

 

 
Figure 2: Tuned mass-damper-inerter (TMDI) 

equipped seismically excited multi-storey frame. 

 
Let n

s x be the vector collecting the floor 
displacements of the primary structure relative to 
the ground motion. Denote by n

d R the TMD 
location vector specifying the floor the TMD is 
attached to (i.e., vector of zeros with a single one 
in its id entry), and by n

b R be the inerter 
location vector specifying the floor the inerter is 
connected to (i.e., vector of zeros with a single 
one in its ib entry). Let, also, y  be the 
displacement of the TMD mass relative to the id 
floor and define the connectivity vector by 
Rc=Rd-Rb. Then, the resisting force F developing 
within the inerter is equal to ( )cb ysR x . 
Further, the coupled equations of motion for the 
TMDI equipped structure in Figure 2 is 

   

 s          

T T

s d d d c c s d d c

T

s s s d d d s g

m b m b y

m x

   

    
s

M R R R R x R R

C x K x M R R R
 (2) 

and 

 ( )

                               

T T

d d d c s

T

d d d d s g

m b y m b

c y k y m x

  

   

R R x

R R
, (3) 

where nxn

s M , nxn

s C , and nxn

s K  are 

the mass, damping, and stiffness matrices of the 

primary structure; and 1nx

s R  is the influence 

vector. Note that in deriving the previous two 

equations the inerter is taken as weightless, 

similarly to the spring and to the dashpot, and, 

therefore, and it does not attract any horizontal 

seismic inertial force (see also Takewaki et al. 

2012, and Marian and Giaralis 2014). Moreover, 

Eq. (3) suggests that the total inertia of the TMDI 

is equal to (md+b). This observation motivates 

the definition of the following dimensionless 

frequency ratio fd, damping ratio ζd, inertance 

ratio β, and mass ratio μ 

1/ ;  
( ) 2( )

/ ; /

d d
d d

d d d

d

k c
f

m b m b

b M m M

 


 

 
 

 

 (4) 

to characterize the design of the TMDI (Marian 

and Giaralis 2015), where ω1 and M is the 

fundamental natural frequency and the total mass 

of the primary structure.  

3. RELIABILITY-BASED DESIGN UNDER 

STATIONARY EXCITATION 

Let
gx  in Eqs. (2) and (3) be a stochastic 

stationary process modeled as filtered  Gaussian 
white noise. Augmentation of the models for the 
excitation and for the structure leads to the 
following state-space system representation 

( ) ( ) ( ) ( ) ( );  ( ) ( ) ( )t t w t t t  x A φ x E φ z C φ x  (5) 

where ( ) xn
t x  is the state vector; ( ) zn

t z  is 
the vector of performance variables (response 
output of the system) with zi denoting the ith 
output; ( )w t  is a zero-mean Gaussian white-
noise process with spectral intensity equal to 
one; and A(φ), E(φ), C(φ) are the state-space 
matrices that are a function of vector φ, which 
represents the controllable parameters of the 
TMDI system (β, fd and ζd). Note that the 
proposed formulation takes into account the 
spectral characteristics of the stochastic 
excitation, by appropriate augmentation of the 
state equation (Taflanidis and Scruggs 2010). 
This allows for an efficient calculation of the 
response statistics for the augmented system.  
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3.1. Stationary response statistics 

Under the modelling assumptions discussed 

above, the output of the system, z(t), has a 

Gaussian distribution with zero mean and 

covariance matrix in stationary response given as 

( ) ( ) ( )TzzK C φ P φ C φ , (6) 

where the state covariance matrix, P(φ), is 
determined by the solution of the following 
Lyapunov equation (Lutes and Sarkani 1997) 

( ) ( ) ( ) ( ) ( ) ( ) 0T   A φ P φ P φ A φ E φ E φ . (7) 

For each of system output variables  1,...,i zz i n  
described as T

i iz  n z  its variance is  

2 ( ) ( ) ( )
i

T T

z i i  n C φ P φ C φ n  (8) 

In evaluating the reliability-based 
performance, the variance of the derivative of the 
components of z needs to be computed whereas 
for the problem to be well-posed (i.e., have finite 
out-crossing rate), the relationship ( ) ( ) 0C φ E φ  
needs to hold (Taflanidis and Scruggs 2010). 
Under this assumption, the variance of iz  is  

2 ( ) ( ) ( ) ( ) ( )
i i i

T T T

z z z  n C φ A φ P φ A φ C φ n  (9) 

Further, the transfer function for zi is 

1( ; ) ( )[ ( )] ( )
i

T

z i i   H φ n C φ I A φ Ε φ . (10) 

3.2. First passage reliability-based design  

Consider an hyper-rectangular domain Ds zn
  

in the space of the performance variables z(t) as  

{ ( ) : ( ) , 1,..., }zn

s i i zD t z t i n    z , (11) 

to define the acceptable performance (Figure 3). 
Region Ds is bounded by the hyperplane pairs Bi: 
|zi|=βi, i=1,…,nz and by appropriate definition of 
the z(t) can represent any desired limit state 
function. The reliability calculation pertains to 
the estimation of the probability that within some 
time duration T, any of the performance variables 
out-crosses the boundary, written as  

 ( | )  for some [0, ]F sP T P D T     φ z . (12) 

If SD is the boundary of Ds, then ( | )FP Tφ  is 
expressed as the probability of first passage 
across SD, which in stationary conditions is  

 ( | )  1 exp ( )FP T T    zφ φ , (13) 

where ( ) 

z φ  is the mean out-crossing rate of the 
boundary SD, conditioned on no previous out-
crossing having occurred (Taflanidis and Beck 
2006). The reliability-based design corresponds 
then to identification of the design variables that 
minimizes the failure probability  

 * arg min ( | ) arg min ( )FP T  

 

    z
φ Φ φ Φ

φ φ φ , (14) 

where Φ denotes the admissible design space for 

the design variables. This design problem 

requires calculation of the out-crossing rate.  

 
Figure 3: First-passage problem for a three 

dimensional response output 

3.3. Out-crossing rate calculation 

As shown in Taflanidis and Beck (2006), for 

vector processes z(t), the out-crossing rate can be 

accurately approximated by a summation of the 

individual out-crossing rates over each linear 

surface of the boundary (corresponding to the 

failure mode associated zi) 

1

( ) ( ) ( ) ( )
z

i i i

n
+ +

z z z

i

P r 


   z φ φ φ φ . (15) 

Each of the individual out-crossing rates is a 
product of three factors: Rice’s unconditional 
out-crossing rate ( )

i

+

zr φ , the temporal-correlation 
correction factor ( )

iz φ , and the spatial-
correlation weighting factor ( )

izP φ . The product 
of the first two is the conditional out-crossing 
rate for scalar zi over |zi|=βi whereas ( )

izP φ

facilitates the extension to the vector case and 
accounts for the correlation between failure 
events on different surfaces of SD. 

z3

Ds

B1

B2

z1

z2

Δ1

z1=n1
Tz

o1=[z2 z3]
T

n1

Definition of 

relevant 

variables for 

Failure mode 1
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Considering these different factors, Rice’s 

out-crossing rate is given by (Rice 1944, 1945) 

 2 2( ) / ( )exp / (2 )
i i i i

+

z z z i zr -β  φ , (16) 

with the required variances given by Eqs. (8) and 
(9). This rate considers out-crossings over the 
entirety of the pair of hyperplanes Bi. Further it 
assumes independence between out-crossing 
events for the process zi. A temporal correlation 
factor ( )

iz φ  may be utilized to approximately 
address errors introduced by this independence 
assumption. The correction factor proposed by 
Taflanidis and Beck (2006) is adopted here for 
this purpose, given by  

  

0.1

0.6

2 2

22
1 exp

( )     
1 exp 2

i

i

i

i

z

z

i z

q





 

   
   

   
 

φ , (17) 

where for a process with spectral density 
i iz zS  

6 2/ (4π ( ) ( ) )
i i i i iz z z z zq S d S d     

 

 
    (18) 

and for the calculation of the integrals in the 

denominator, the spectral density 
i iz zS is 

substituted by the equivalent expression 
*( ; ) ( ; )

i iz z H φ IH φ  with ( ; )
iz H φ  given by 

Eq. (10). The frequency range over which the 

dynamics of system are important is partitioned 

at desired points and the frequency response is 

calculated. The one-dimensional integral is then 

evaluated via standard numerical integration.  

Finally, ( )
izP φ  is evaluated as follows. If Δi 

is the hyper-polygon (dark shaded area in Figure 
3) corresponding to the intersection of SD and of 
any of the pair of hyper-planes Bi, and oi is the 
orthogonal component of z, then ( )

izP φ  
corresponds to the probability that i iΔο  when 
the out-crossing event occurs for zi, 

 ( ) | |
iz i i i iP P Δ z =|  φ ο . (19) 

This ultimately constitutes a (nz-1)-dimensional 
integral corresponding (Taflanidis and Beck 
2006) to integration of a Gaussian probability 
density function over  Δi  and can be efficiently 

performed even for larger nz values with all 
required statistics easily obtained from the output 
covariance matrix of Eq. (6).  

3.4. Optimization consideration  

Calculation of the out-crossing rate facilitates 

then the reliability-based design given by Eq. 

(14) which corresponds to a nonlinear, non-

convex optimization problem which can be 

approached by any appropriate algorithm. 

Further details about this optimization are 

provided in (Taflanidis and Scruggs 2010).  

4. DESIGN EXAMPLE AND DISCUSSION 

The design approach is illustrated by considering 
a 10-storey building frame equipped with a 
single TMDI. The lumped mass per story is 
900ton whereas the stiffness has a gradual 
decrease along height; it is 782.22MN/m for the 
bottom four stories, 626.10MN/m for the three 
intermediate ones and 469.57MN/m for the top 
three stories. Modal damping equal to 3% is 
considered. The natural periods the structure 
along with the participation factors in parenthesis 
are 1.5s (81.7%), 0.55s (11.8%), 0.33s (3.7%). 
The stationary seismic excitation 

gx  is described 
by a high-pass filtered Kanai-Tajimi power 
spectrum (Clough and Penzien 1993) 

   

4 2 2 2 4

2 2
2 2 2 2 2 2 2 2 2 2

( )

4

4 4

g o

g g g

g g g f f f

S s

    

         





   

. (20) 

In the above equation the Kanai-Tajimi 
parameters ωg and ζg represent the 
stiffness/frequency and damping properties, 
respectively, of the supporting ground modeled 
by a linear damped SDOF oscillator driven by 
white noise. Further, the parameters ωf and ζf 
control the cut-off frequency and the “steepness” 
of a high-pass filter used to suppress the low 
frequency content allowed by the Kanai-Tajimi 
filter. Lastly, so is chosen to achieve a desired 
pre-specified value for the root mean square 
acceleration aRMS of the considered seismic input. 
For the purposes of this study, the adopted values 
are ωg=3π, ζg=0.4, ωf=π/2, ζf=0.8, aRMS=0.09g.  
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The vector of structural performance 
variables ( )tz  includes inter-storey drifts and 
absolute accelerations for all 10 floors of the 
structure plus the TMD mass displacement 
(stroke). The assumed thresholds are chosen as 
5cm for interstorey drifts, 1.0g for floor 
accelerations, and 1m for the stroke. For the 
uncontrolled structure (without the TMDI) the 
out crossing rates are 2.82•10-2 and 1.19•10-2  
when considering only the drifts or accelerations 
respectively, whereas the out crossing rate for the 
entire output vector (drifts and accelerations) is 
3.16•10-2. The comparison between these out-
crossing rates demonstrate the strong (but not 
complete) correlation even between the drift and 
acceleration responses; total out-crossing rate is 
greater than the larger of the two but smaller than 
their sum. Additional correlation does exist 
between output at different floors.  

The assumed vector of dimensionless TMDI 

design variables is φ=[ζd fd β]T and includes the 

damping, frequency and inertance ratios, defined 

in Eq. (4). The mass ratio μ is treated as a fixed 

pre-specified parameter and a parametric 

investigation is undertaken for different values of 

μ ranging from 0.1% to 5%. These correspond to 

additional mass for the id floor (floor where the 

TMD is attached to) ranging from 1% to 50% of 

the floor mass. Furthermore, a set of 12 different 

TMDI topologies are assessed defined by id and 

ib floor pairs (i.e., floor numbers where the TMD 

and the inerter are attached, respectively) as 

listed in the first two columns of Table 1. As an 

example, Figure 2 depicts the case where id=10 

and ib=9, that is the first topology considered in 

Table 1. Note that, although practical 

architectural considerations suggest that the 

inerter would link the md mass to the floor 

immediately above or below the id floor, cases in 

which |id-ib|=2 are also examined.  

Due to space limitations, attention is herein 

focused on the optimal TMDI performance in 

terms of out-crossing rate estimated by Eq. (15) 

and in terms of the optimal inertance ratio β for 

which results are reported in Table 1. This choice 

is justified by the fact that optimal values for the 

above two quantities are herein derived for the 

first time in the literature. However, it is noted in 

passing that trends for optimal frequency ratio fd 

and damping ratio ζd parameters not shown here 

follow, in general, the ones discussed in Marian 

and Giaralis (2014).  

In view of the numerical data in Table 1 

pertaining to various TMDI topologies several 

observations can be made. For one, a definite 

optimum inertance ratio β is obtained in all cases 

from the optimization algorithm whose value 

depends significantly on the mass ratio μ. Above 

a certain critical mass ratio value, the classical 

TMD (no inerter included) achieves better 

performance. In other words, the inclusion of the 

inerter device is more beneficial for relatively 

small attached masses, an observation previously 

reported in the literature in terms of top floor 

displacement variance minimization (Marian and 

Giaralis 2014). Herein, it is also found that this 

critical mass ratio value is strongly dependent on 

the TMDI topology. Examining the structural 

performance, it is observed that the incorporation 

of the inerter leads to enhanced vibration 

suppression compared to the classical TMD. 

Slightly better performance is achieved for id>ib 

compared to the id<ib (i.e., the attached mass is 

linked to a lower rather than an upper floor via 

the inerter) and significantly better performance 

is achieved for |id-ib|=2 compared to the 

practically more feasible |id-ib|=1 cases. Further, 

for the TMDI cases (non-zero inertance) an 

increase of the mass ratio does not impact the 

performance significantly. However, an almost 

linear positive relationship exists between 

performance and mass ratio for the TMD cases. 

Interestingly, in some TMDI cases with |id-ib|=2 

and id<ib smaller mass ratio lead to better 

performance. Overall, placement of the TMDI at 

lower floors provides greater efficiency, while 

for the TMD cases higher floor placement seems 

to be more beneficial. Lastly, it is generally 

found that the improvement of performance due 

to the inclusion of the TMDI is remarkable with 

reduction of out-crossing rates close to order of 

magnitudes for some cases even for mass ratios 

as low as 0.1% of the total mass of the structure.   



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 

Vancouver, Canada, July 12-15, 2015 

 7 

To shed more light in the above 

comparisons, Figure 4 plots the transfer function 

of the absolute top floor acceleration for the 

uncontrolled (primary) structure, for three 

different optimal TMDI cases for μ=1% and for 

an optimal TMD case for μ=5%. Evidently, 

TMDI leads to a fundamentally different 

behavior than the classical TMD, impacting a 

greater range of natural frequencies beyond the 

fundamental one. Placement of the inerter two 

floors apart provides an even more broad-band 

influence. This demonstrates that a proper design 

for a TMDI needs to account for a wide 

frequency response range and should not target 

only the fundamental mode as in the case of 

reliability-based design of the classical TMD 

(Marano et al. 2007). The proposed state-space 

analysis approach and, especially, the 

consideration of the correlation between failure 

modes facilitate seamlessly this goal.   

 
Figure 4: Absolute value of transfer 

function for the top floor acceleration for 4 

different topologies. 

Table 1: Optimal out-crossing rate *( ) 100+ z φ  and optimal inerter ratio β % (in parenthesis) for different TMDI 

topologies. The cases for which an optimal value of β=0 is obtained are denoted by TMD  

TMDI topology mass ratio μd 

id ib 0.1% 0.3% 0.5% 0.75% 1% 1.5% 2% 3% 4% 5% 

10 9 
1.507 

(217.7) 
1.497 

(210.9) 
1.487 

(204.7) 
1.161 

(TMD) 
0.795 

(TMD) 
0.381 

(TMD) 
0.194 

(TMD) 
 

0.064 
(TMD) 

 

0.028 
(TMD) 

 

0.014 
(TMD) 

 10 8 
0.348 
(122.2) 

0.342 
(120.1) 

0.335 
(119.7) 

0.327 
(114.2) 

0.319 
(110.1) 

0.302 
(104.6) 

9 10 
1.526 

(224.7) 
1.554 

(230.8) 
1.581 

(238.34) 
1.249 

(TMD) 
0.881 

(TMD) 
0.448 

(TMD) 
 

0.244 
(TMD) 

 

0.093 
(TMD) 

 
0.047 

(TMD) 
 

0.027 
(TMD) 

 
9 8 

0.626 
(234.7) 

0.625 
(228.9) 

0.623 
(223.3) 

0.620 
(216.4) 

0.616 
(209.8) 

9 7 
0.071 

(139.6) 
0.071 

(136.8) 
0.071 

(134.7) 
0.070 

(133.2) 
0.070 

(129.5) 
0.069 

(125.9) 
0.068 

(120.8) 
0.066 

(111.5) 

8 9 
0.634 

(240.63) 
0.648 

(251.0) 
0.662 

(260.3) 
0.677 

(341.9) 
0.691 

(345.8) 
0.565 

(TMD) 
0.331 

(TMD) 
0.145 

(TMD) 
 

0.083 
(TMD) 

 

0.057 
(TMD) 

 
8 10 

0.355 
(126.5) 

0.365 
(133.2) 

0.373 
(151.2) 

0.382 
(152.4) 

0.392 
(153.3) 

0.411 
(156.3) 

0.331 
(TMD) 

8 7 
0.276 

(315.85) 
0.279 

(309.7) 
0.281 

(303.5) 
0.284 

(296.4) 
0.287 

(296.5) 
0.292 

(277.7) 
0.297 

(266.5) 

8 6 
0.024 

(180.27) 
0.025 

(176.6) 
0.025 

(173.2) 
0.025 

(169.9) 
0.026 

(167.1) 
0.027 

(161.9) 
0.027 

(157.4) 
0.028 

(148.5) 
0.029 

(139.6) 
0.030 

(129.6) 

7 8 
0.278 

(326.6) 
0.285 

(341.9) 
0.291 

(413.9) 
0.299 

(416.7) 
0.306 

(420.1) 
0.322 

(424.9) 
0.338 

(429.7) 
0.204 

(TMD) 
0.117 

(TMD) 
0.079 

(TMD) 
 

7 9 
0.072 

(143.7) 
0.074 

(151.3) 
0.076 

(171.8) 
0.079 

(172.5) 
0.082 

(174.6) 
0.087 

(176.8) 
0.093 

(179.4) 
0.105 

(184.1) 
0.118 

(188.7) 

7 6 
0.135 

(418.5) 
0.137 

(413.9) 
0.139 

(410.4) 
0.141 

(404.3) 
0.144 

(403.6) 
0.148 

(394.0) 
0.153 

(387.2) 
0.163 

(376.6) 
0.117 

(TMD) 
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5. CONCLUDING REMARKS 

A first-passage reliability based approach was 

considered for the optimum design of the 

recently proposed tuned mass-damper-inerter 

(TMDI) system to control the dynamic response 

of linear building frames subject to stationary 

seismic excitations. Different failure modes were 

examined for defining acceptable performance, 

extending to inter-storey drifts and floor 

acceleration responses for the primary structure 

as well as displacement responses of the attached 

mass. The design variables included the 

inertance (mass amplification property) of the 

inerter as well as the TMDI linear spring and 

damping constants. The illustrative example 

demonstrated the enhanced performance of the 

TMDI over the classical TMD especially for 

relatively small additional attached mass. Future 

work will include treating the mass ratio as a 

design parameter as well as the consideration of 

TMDI topology optimization. Further, the 

robustness of the TMDI to uncertain seismic 

excitation properties and their non-stationary 

nature, including ground motions with forward 

directivity pulses, and to uncertain primary 

structure properties will also be assessed. 
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